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Preface

Studying from this book will help both electrical

technology and electrical engineering students learn circuit

analysis with, it is hoped, less effort and more

understanding. Since this book begins with the analysis of

dc resistive circuits and continues to that of ac circuits, as

do the popular circuit analysis textbooks, a student can,

from the start, use this book as a supplement to a circuit

analysis textbook.

The reader does not need a knowledge of differential or

integral calculus even though this book has derivatives in

the chapters on capacitors, inductors, and transformers, as

is required for the voltage-current relations. The few

problems with derivatives have clear physical explanations

of them, and there is not a single integral anywhere in the

book. Despite its lack of higher mathematics, this book can

be very useful to an electrical engineering reader since

most material in an electrical engineering circuit analysis

course requires only a knowledge of algebra. Where there

are different definitions in the electrical technology and

engineering fields, as for capacitive reactances, phasors,

and reactive power, the reader is cautioned and the various

definitions are explained.

One of the special features of this book is the

presentation of PSpice, which is a computer circuit analysis

or simulation program that is suitable for use on personal

computers (PCs). PSpice is similar to SPICE, which has

become the standard for analog circuit simulation for the

entire electronics industry. Another special feature is the



presentation of operational-amplifier (op-amp) circuits. Both

of these topics are new to this second edition. Another topic

that has been added is the use of advanced scientific

calculators to solve the simultaneous equations that arise in

circuit analyses. Although this use requires placing the

equations in matrix form, absolutely no knowledge of matrix

algebra is required. Finally, there are many more problems

involving circuits that contain dependent sources than there

were in the first edition.

I wish to thank Dr. R. L. Sullivan, who, while I was writing

this second edition, was Chairman of the Department of

Electrical Engineering at the University of Florida. He

nurtured an environment that made it conducive to the

writing of books. Thanks are also due to my wife, Lois Anne,

and my son Mathew for their constant support and

encouragement without which I could not have written this

second edition.

JOHN R. O’MALLEY
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Chapter 1


Basic Concepts

DIGIT GROUPING

To make numbers easier to read, some international scientific

committees have recommended the practice of separating digits

into groups of three to the right and to the left of decimal points,

as in 64 325.473 53. No separation is necessary, however, for

just four digits, and they are preferably not separated. For

example, either 4138 or 4 138 is acceptable, as is 0.1278 or

0.127 8, with 4138 and 0.1278 preferred. The international

committees did not approve of the use of the comma to separate

digits because in some countries the comma is used in place of

the decimal point. This digit grouping is used throughout this

book.

INTERNATIONAL SYSTEM OF UNITS

The International System of Units (SI) is the international

measurement language. SI has nine base units, which are shown

in Table 1-1 along with the unit symbols. Units of all other

physical quantities are derived from these.

Table 1-1



There is a decimal relation, indicated by prefixes, among

multiples and submultiples of each base unit. An SI prefix is a

term attached to the beginning of an SI unit name to form either

a decimal multiple or submultiple. For example, since “kilo” is the

prefix for one thousand, a kilometer equals 1000 m. And because

“micro” is the SI prefix for one-millionth, one microsecond equals

0.000 001 s.

The SI prefixes have symbols as shown in Table 1-2, which also

shows the corresponding powers of 10. For most circuit analyses,

only mega, kilo, milli, micro, nano, and pico are important. The

proper location for a prefix symbol is in front of a unit symbol, as

in km for kilometer and cm for centimeter.

Table 1-2



ELECTRIC CHARGE

Scientists have discovered two kinds of electric charge:

positive and negative. Positive charge is carried by subatomic

particles called protons, and negative charge by subatomic

particles called electrons. All amounts of charge are integer

multiples of these elemental charges. Scientists have also found

that charges produce forces on each other: Charges of the same

sign repel each other, but charges of opposite sign attract each

other. Moreover, in an electric circuit there is conservation of

charge, which means that the net electric charge remains

constant—charge is neither created nor destroyed. (Electric

components interconnected to form at least one closed path

comprise an electric circuit or network.)

The charge of an electron or proton is much too small to be the

basic charge unit. Instead, the SI unit of charge is the coulomb

with unit symbol C. The quantity symbol is Q for a constant

charge and q for a charge that varies with time. The charge of an

electron is –1.602 × 10–19 C and that of a proton is 1.602 × 10–19

C. Put another way, the combined charge of 6.241 × 1018

electrons equals —1 C, and that of 6.241 × 1018 protons equals 1

C.

Each atom of matter has a positively charged nucleus

consisting of protons and uncharged particles called neutrons.

Electrons orbit around the nucleus under the attraction of the

protons. For an undisturbed atom the number of electrons equals

the number of protons, making the atom electrically neutral. But

if an outer electron receives energy from, say, heat, it can gain



enough energy to overcome the force of attraction of the protons

and become a free electron. The atom then has more positive

than negative charge and is a positive ion. Some atoms can also

“capture” free electrons to gain a surplus of negative charge and

become negative ions.

ELECTRIC CURRENT

Electric current results from the movement of electric charge.

The SI unit of current is the ampere with unit symbol A. The

quantity symbol is I for a constant current and i for a time-

varying current. If a steady flow of 1 C of charge passes a given

point in a conductor in 1 s, the resulting current is 1 A. In general,

in which t is the quantity symbol for time.

Current has an associated direction. By convention the

direction of current flow is in the direction of positive charge

movement and opposite the direction of negative charge

movement. In solids only free electrons move to produce current

flow —the ions cannot move. But in gases and liquids, both

positive and negative ions can move to produce current flow.

Since electric circuits consist almost entirely of solids, only

electrons produce current flow in almost all circuits. But this fact

is seldom important in circuit analyses because the analyses are

almost always at the current level and not the charge level.

In a circuit diagram each I (or i) usually has an associated

arrow to indicate the current reference direction, as shown in Fig.

1-1. This arrow specifies the direction of positive current flow, but

not necessarily the direction of actual flow. If, after calculations, I

is found to be positive, then actual current flow is in the direction

of the arrow. But if I is negative, current flow is in the opposite

direction.



Fig. 1-1

Fig. 1-2

A current that flows in only one direction all the time is a direct

current (dc), while a current that alternates in direction of flow is

an alternating current (ac). Usually, though, direct current refers

only to a constant current, and alternating current refers only to a

current that varies sinusoidally with time.

A current source is a circuit element that provides a specified

current. Figure 1-2 shows the circuit diagram symbol for a current

source. This source provides a current of 6 A in the direction of

the arrow irrespective of the voltage (discussed next) across the

source.

VOLTAGE

The concept of voltage involves work, which in turn involves

force and distance. The SI unit of work is the joule with unit

symbol J, the SI unit of force is the newton with unit symbol N,



and of course the SI unit for distance is the meter with unit

symbol m.

Work is required for moving an object against a force that

opposes the motion. For example, lifting something against the

force of gravity requires work. In general the work required in

joules is the product of the force in newtons and the distance

moved in meters:

where W, F, and s are the quantity symbols for work, force, and

distance, respectively.

Energy is the capacity to do work. One of its forms is potential

energy, which is the energy a body has because of its position.

The voltage difference (also called the potential difference)

between two points is the work in joules required to move 1 C of

charge from one point to the other. The SI unit of voltage is the

volt with unit symbol V. The quantity symbol is For v, although E

and e are also popular. In general,

The voltage quantity symbol V sometimes has subscripts to

designate the two points to which the voltage corresponds. If the

letter a designates one point and b the other, and if W joules of

work are required to move Q coulombs from point b to a, then

Vab = W/Q. Note that the first subscript is the point to which the

charge is moved. The work quantity symbol sometimes also has

subscripts as in Vab = Wab/Q.

If moving a positive charge from b to a (or a negative charge

from a to b) actually requires work, the point a is positive with

respect to point b. This is the voltage polarity. In a circuit

diagram this voltage polarity is indicated by a positive sign (+) at

point a and a negative sign (–) at point b, as shown in Fig. 1-3a

for 6 V. Terms used to designate this voltage are a 6-V voltage or



potential rise from b to a or, equivalently, a 6-V voltage or

potential drop from a to b.

Fig. 1-3

If the voltage is designated by a quantity symbol as in Fig. 1-

3b, the positive and negative signs are reference polarities and

not necessarily actual polarities. Also, if subscripts are used, the

positive polarity sign is at the point corresponding to the first

subscript (a here) and the negative polarity sign is at the point

corresponding to the second subscript (b here). If after

calculations, Vab is found to be positive, then point a is actually

positive with respect to point b, in agreement with the reference

polarity signs. But if Vab is negative, the actual polarities are

opposite those shown.

A constant voltage is called a dc voltage. And a voltage that

varies sinusoidally with time is called an ac voltage.

A voltage source, such as a battery or generator, provides a

voltage that, ideally, does not depend on the current flow

through the source. Figure l-4a shows the circuit symbol for a

battery. This source provides a dc voltage of 12 V. This symbol is

also often used for a dc voltage source that may not be a battery.

Often, the + and – signs are not shown because, by convention,

the long end-line designates the positive terminal and the short

end-line the negative terminal. Another circuit symbol for a dc

voltage source is shown in Fig. 1-4b. A battery uses chemical

energy to move negative charges from the attracting positive

terminal, where there is a surplus of protons, to the repulsing

negative terminal, where there is a surplus of electrons. A voltage

generator supplies this energy from mechanical energy that

rotates a magnet past coils of wire.



Fig. 1-4

DEPENDENT SOURCES

The sources of Figs. 1-2 and 1-4 are independent sources. An

independent current source provides a certain current, and an

independent voltage source provides a certain voltage, both

independently of any other voltage or current. In contrast, a

dependent source (also called a controlled source) provides a

voltage or current that depends on a voltage or current

elsewhere in a circuit. In a circuit diagram, a dependent source is

designated by a diamond-shaped symbol. For an illustration, the

circuit of Fig. 1-5 contains a dependent voltage source that

provides a voltage of 5V1, which is five times the voltage V1 that

appears across a resistor elsewhere in the circuit. (The resistors

shown are discussed in the next chapter.) There are four types of

dependent sources: a voltage-controlled voltage source as shown

in Fig. 1-5, a current-controlled voltage source, a voltage-

controlled current source, and a current-controlled current

source. Dependent sources are rarely separate physical

components. But they are important because they occur in

models of electronic components such as operational amplifiers

and transistors.



Fig. 1-5

POWER

The rate at which something either absorbs or produces

energy is the power absorbed or produced. A source of energy

produces or delivers power and a load absorbs it. The SI unit of

power is the watt with unit symbol W. The quantity symbol is P

for constant power and p for time-varying power. If 1 J of work is

either absorbed or delivered at a constant rate in 1 s, the

corresponding power is 1 W. In general,

The power absorbed by an electric component is the product of

voltage and current if the current reference arrow is into the

positively referenced terminal, as shown in Fig. 1-6:

Fig. 1-6



Such references are called associated references. (The term

passive sign convention is often used instead of “associated

references.”) If the references are not associated (the current

arrow is into the negatively referenced terminal), the power

absorbed is P = – VI.

If the calculated P is positive with either formula, the

component actually absorbs power. But if P is negative, the

component produces power--it is a source of electric energy.

The power output rating of motors is usually expressed in a

power unit called the horsepower (hp) even though this is not an

SI unit. The relation between horsepower and watts is 1 hp =

745.7 W.

Electric motors and other systems have an efficiency (η) of

operation defined by

Efficiency can also be based on work output divided by work

input. In calculations, efficiency is usually expressed as a decimal

fraction that is the percentage divided by 100.

The overall efficiency of a cascaded system as shown in Fig. 1-

7 is the product of the individual efficiencies:

Fig. 1-7

ENERGY

Electric energy used or produced is the product of the electric

power input or output and the time over which this input or



output occurs:

Electric energy is what customers purchase from electric utility

companies. These companies do not use the joule as an energy

unit but instead use the much larger and more convenient

kilowatthour (kWh) even though it is not an SI unit. The number

of kilowatthours consumed equals the product of the power

absorbed in kilowatts and the time in hours over which it is

absorbed:

Solved Problems

1.1 Find the charge in coulombs of (a) 5.31 × 1020 electrons,

and (b) 2.9 × 1022 protons.

(a) Since the charge of an electron is –1.602 × 10–19 C, the

total charge is

(b) Similarly, the total charge is

1.2 How many protons have a combined charge of 6.8 pC?

Because the combined charge of 6.241 × 1018 protons is

1 C, the number of protons is



1.3 Find the current flow through a light bulb from a steady

movement of (a) 60 C in 4 s, (b) 15C in 2 min, and (c) 1022

electrons in 1 h.

Current is the rate of charge movement in coulombs per

second. So,

(a) 

(b) 

(c) 

The negative sign in the answer indicates that the current

flows in a direction opposite that of electron movement. But

this sign is unimportant here and can be omitted because the

problem statement does not specify the direction of electron

movement.

1.4 Electrons pass to the right through a wire cross section at

the rate of 6.4 × 1021 electrons per minute. What is the

current in the wire?

Because current is the rate of charge movement in

coulombs per second,

The negative sign in the answer indicates that the current is to

the left, opposite the direction of electron movement.

1.5 In a liquid, negative ions, each with a single surplus

electron, move to the left at a steady rate of 2.1 × 1020 ions

per minute and positive ions, each with two surplus protons,



move to the right at a steady rate of 4.8 × 1019 ions per

minute. Find the current to the right.

The negative ions moving to the left and the positive

ions moving to the right both produce a current to the right

because current flow is in a direction opposite that of

negative charge movement and the same as that of positive

charge movement. For a current to the right, the movement

of electrons to the left is a negative movement. Also, each

positive ion, being doubly ionized, has double the charge of

a proton. So,

1.6 Will a 10-A fuse blow for a steady rate of charge flow

through it of 45 000 C/h?

The current is

which is more than the 10-A rating. So the fuse will blow.

1.7 Assuming a steady current flow through a switch, find the

time required for (a) 20 C to flow if the current is 15 mA, (b)

12 μC to flow if the current is 30 pA, and (c) 2.58 × 1015

electrons to flow if the current is –64.2 nA.

Since I = Q/t solved for t is t = Q/I,

(a) 

(b) 

(c) 



1.8 The total charge that a battery can deliver is usually

specified in ampere-hours (Ah). An ampere-hour is the

quantity of charge corresponding to a current flow of 1 A for

1 h. Find the number of coulombs corresponding to 1 Ah.

Since from Q = It, 1 C is equal to one ampere second

(As),

1.9 A certain car battery is rated at 700 Ah at 3.5 A, which

means that the battery can deliver 3.5 A for approximately

700/3.5 = 200 h. However, the larger the current, the less

the charge that can be drawn. How long can this battery

deliver 2 A?

The time that the current can flow is approximately

equal to the ampere-hour rating divided by the current:

Actually, the battery can deliver 2 A for longer than 350 h

because the ampere-hour rating for this smaller current is

greater than that for 3.5 A.

1.10 Find the average drift velocity of electrons in a No. 14

AWG copper wire carrying a 10-A current, given that copper

has 1.38 × 1024 free electrons per cubic inch and that the

cross-sectional area of No. 14 AWG wire is 3.23 × 10—3 in2.

The average drift velocity (v) equals the current divided

by the product of the cross-sectional area and the electron

density:



The negative sign in the answer indicates that the electrons

move in a direction opposite that of current flow. Notice the

low velocity. An electron travels only 1.28 m in 1 h, on the

average, even though the electric impulses produced by the

electron movement travel at near the speed of light (2.998 ×

108 m/s).

1.11 Find the work required to lift a 4500-kg elevator a vertical

distance of 50 m.

The work required is the product of the distance moved

and the force needed to overcome the weight of the

elevator. Since this weight in newtons is 9.8 times the mass

in kilograms.

1.12 Find the potential energy in joules gained by a 180-lb man

in climbing a 6-ft ladder.

The potential energy gained by the man equals the work

he had to do to climb the ladder. The force involved is his

weight, and the distance is the height of the ladder. The

conversion factor from weight in pounds to a force in

newtons is 1 N = 0.225 lb. Thus,

1.13 How much chemical energy must a 12-V car battery

expend in moving 8.93 × 1020 electrons from its positive

terminal to its negative terminal?

The appropriate formula is W= QV. Although the signs of

Q and V are important, obviously here the product of these



quantities must be positive because energy is required to

move the electrons. So, the easiest approach is to ignore the

signs of Q and V. Or, if signs are used, V is negative because

the charge moves to a more negative terminal, and of

course Q is negative because electrons have a negative

charge. Thus,

1.14 If moving 16 C of positive charge from point b to point a

requires 0.8 J, find Vab, the voltage drop from point a to point

b.

1.15 In moving from point a to point b, 2 × 1019 electrons do 4

J of work. Find Vab, the voltage drop from point a to point b.

Work done by the electrons is equivalent to negative

work done on the electrons, and voltage depends on work

done on charge. So, Wba = – 4 J, but Wab = – Wba = 4 J. Thus,

The negative sign indicates that there is a voltage rise from a

to b instead of a voltage drop. In other words, point b is more

positive than point a.

1.16 Find Vab, the voltage drop from point a to point b, if 24 J

are required to move charges of (a) 3 C, (b) – 4 C, and (c) 20

× 1019 electrons from point a to point b.

If 24 J are required to move the charges from point a to

point b, then — 24 J are required to move them from point b to

point a. In other words, Wab = — 24 J. So,



(a) 

The negative sign in the answer indicates that point a is

more negative than point b —there is a voltage rise from a to b.

(b) 

(c) 

1.17 Find the energy stored in a 12-V car battery rated at 650

Ah.

From W = QV and the fact that 1 As = 1 C,

1.18 Find the voltage drop across a light bulb if a 0.5-A current

flowing through it for 4 s causes the light bulb to give off

240 J of light and heat energy.

Since the charge that flows is Q = It = 0.5 × 4 = 2 C,

1.19 Find the average input power to a radio that consumes

3600 J in 2 min.

1.20 How many joules does a 60-W light bulb consume in 1 h?

From rearranging P = W/t and from the fact that 1 Ws =

1 J,



1.21 How long does a 100-W light bulb take to consume 13 kJ?

From rearranging P = W/t,

1.22 How much power does a stove element absorb if it draws

10 A when connected to a 115-V line?

1.23 What current does a 1200-W toaster draw from a 120-V

line?

From rearranging P = VI,

1.24 Figure 1-8 shows a circuit diagram of a voltage source of

V volts connected to a current source of I amperes. Find the

power absorbed by the voltage source for

(a) V = 2 V, I = 4 A

(b) V = 3 V, I = –2 A

(c) V = –6 V, I = –8 A



Fig. 1-8

Because the reference arrow for I is into the positively

referenced terminal for V, the current and voltage references for

the voltage source are associated. This means that there is a

positive sign (or the absence of a negative sign) in the relation

between power absorbed and the product of voltage and current:

P = VI. With the given values inserted,

(a) P = VI = 2 × 4 = 8 W

(b) P = VI = 3 × (–2)= –6W

The negative sign for the power indicates that the voltage

source delivers rather than absorbs power.

(c) P = VI = –6 × (–8) = 48 W

1.25 Figure 1-9 shows a circuit diagram of a current source of I

amperes connected to an independent voltage source of 8 V

and a current-controlled dependent voltage source that

provides a voltage that in volts is equal to two times the

current flow in amperes through it. Determine the power P1

absorbed by the independent voltage source and the power

P2 absorbed by the dependent voltage source for (a) I = 4 A,

(b) I = 5 mA, and (c) I = —3 A.



Fig. 1-9

Because the reference arrow for I is directed into the

negative terminal of the 8-V source, the power-absorbed

formula has a negative sign: P1 = —8I. For the dependent

source, though, the voltage and current references are

associated, and so the power absorbed is P2 = 2I (I) = 2I2.

With the given current values inserted,

(a) P1 = –8(4)= –32W and P2 = 2(4)2 = 32 W. The negative

power for the independent source indicates that it is

producing power instead of absorbing it.

(b) P1 = –8(5 × 10–3)= –40 × 10–3 W = –40 mW

P2 = 2(5 × 10–3)2 = 50 × 10–6 W = 50 μW

(c) P1 = –8(–3) = 24 W and P2 = 2(–3)2 = 18 W. The power

absorbed by the dependent source remains positive

because although the current reversed direction, the

polarity of the voltage did also, and so the actual current

flow is still into the actual positive terminal.

1.26 Calculate the power absorbed by each component in the

circuit of Fig. 1-10.



Fig. 1-10

Since for the 10-A current source the current flows out of

the positive terminal, the power it absorbs is P1 = — 16(10)

= — 160 W. The negative sign indicates that this source is

not absorbing power but rather is delivering power to other

components in the circuit. For the 6-V source, the 10-A

current flows into the negative terminal, and so P2 = –6(10)

= –60 W. For the 22-V source, P3 = 22(6) = 132W. Finally, the

dependent source provides a current of 0.4(10) = 4 A. This

current flows into the positive terminal since this source also

has 22 V, positive at the top, across it. Consequently, P4 =

22(4) = 88 W. Observe that

The sum of 0 W indicates that in this circuit the power

absorbed by components is equal to the power delivered.

This result is true for every circuit.

1.27 How long can a 12-V car battery supply 250 A to a starter

motor if the battery has 4 × 106 J of chemical energy that

can be converted to electric energy?

The best approach is to use t = W/P. Here,

And so



1.28 Find the current drawn from a 115-V line by a dc electric

motor that delivers 1 hp. Assume 100 percent efficiency of

operation.

From rearranging P = VI and from the fact that 1 W/V = 1

A,

1.29 Find the efficiency of operation of an electric motor that

delivers 1 hp while absorbing an input of 900 W.

1.30 What is the operating efficiency of a fully loaded 2-hp dc

electric motor that draws 19 A at 100 V? (The power rating

of a motor specifies the output power and not the input

power.)

Since the input power is

the efficiency is

1.31 Find the input power to a fully loaded 5-hp motor that

operates at 80 percent efficiency.

For almost all calculations, the efficiency is better

expressed as a decimal fraction that is the percentage



divided by 100, which is 0.8 here. Then from η = Pout/Pin,

1.32 Find the current drawn by a dc electric motor that delivers

2 hp while operating at 85 percent efficiency from a 110-V

line.

From 

1.33 Maximum received solar power is about 1 kW/m2. If solar

panels, which convert solar energy to electric energy, are 13

percent efficient, how many square meters of solar cell

panels are needed to supply the power to a 1600-W toaster?

The power from each square meter of solar panels is

So, the total solar panel area needed is

1.34 What horsepower must an electric motor develop to

pump water up 40 ft at the rate of 2000 gallons per hour

(gal/h) if the pumping system operates at 80 percent

efficiency?

One way to solve for the power is to use the work done

by the pump in 1 h, which is the weight of the water lifted in

1 h times the height through which it is lifted. This work

divided by the time taken is the power output of the

pumping system. And this power divided by the efficiency is



the input power to the pumping system, which is the

required output power of the electric motor. Some needed

data are that 1 gal of water weighs 8.33 lb, and that 1 hp =

550 (ft º lb)/s. Thus,

1.35 Two systems are in cascade. One operates with an

efficiency of 75 percent and the other with an efficiency of

85 percent. If the input power is 5 kW, what is the output

power?

1.36 Find the conversion relation between kilowatthours and

joules.

The approach here is to convert from kilowatthours to

watt-seconds, and then use the fact that 1 J = 1 Ws:

1.37 For an electric rate of 7¢/kilowatthour, what does it cost

to leave a 60-W light bulb on for 8 h?

The cost equals the total energy used times the cost per

energy unit:

1.38 An electric motor delivers 5 hp while operating with an

efficiency of 85 percent. Find the cost for operating it

continuously for one day (d) if the electric rate is

6¢/kilowatthour.



The total energy used is the output power times the time

of operation, all divided by the efficiency. The product of this

energy and the electric rate is the total cost:

Supplementary Problems

1.39 Find the charge in coulombs of (a) 6.28 × 1021 electrons

and (b) 8.76 × 1020 protons.

Ans. (a) -1006 C, (b) 140 C

1.40 How many electrons have a total charge of –4 nC?

Ans. 2.5 × 1010 electrons

1.41 Find the current flow through a switch from a steady

movement of (a) 90 C in 6 s, (b) 900 C in 20 min, and (c) 4 ×

1023 electrons in 5 h.

Ans. (a) 15 A, (b) 0.75 A, (c) 3.56 A

1.42 A capacitor is an electric circuit component that stores

electric charge. If a capacitor charges at a steady rate to 10

mC in 0.02 ms, and if it discharges in 1 μs at a steady rate,

what are the magnitudes of the charging and discharging

currents?

Ans. 500 A, 10 000 A

1.43 In a gas, if doubly ionized negative ions move to the right

at a steady rate of 3.62 × 1020 ions per minute and if singly

ionized positive ions move to the left at a steady rate of 5.83

× 1020 ions per minute, find the current to the right.

Ans. -3.49 A



1.44 Find the shortest time that 120 C can flow through a 20-A

circuit breaker without tripping it.

Ans. 6 s

1.45 If a steady current flows to a capacitor, find the time

required for the capacitor to (a) charge to 2.5 mC if the

current is 35 mA, (b) charge to 36 pC if the current is 18υ A,

and (c) store 9.36 × 1017 electrons if the current is 85.6 nA.

Ans. (a) 71.4 ms, (b) 2 μs, (c) 20.3 d

1.46 How long can a 4.5-Ah, 1.5-V flashlight battery deliver

100 mA?

Ans. 45 h

1.47 Find the potential energy in joules lost by a 1.2-lb book in

falling off a desk that is 31 in high.

Ans. 4.2 J

1.48 How much chemical energy must a 1.25-V flashlight

battery expend in producing a current flow of 130 mA for 5

min?

Ans. 48.8 J

1.49 Find the work done by a 9-V battery in moving 5 × 1020

electrons from its positive terminal to its negative terminal.

Ans. 721 J

1.50 Find the total energy available from a rechargeable 1.25-V

flashlight battery with a 1.2-Ah rating.

Ans. 5.4 kJ

1.51 If all the energy in a 9-V transistor radio battery rated at

0.392 Ah is used to lift a 150-lb man, how high in feet will he

be lifted?

Ans. 62.5 ft



1.52 If a charge of —4 C in moving from point a to point b

gives up 20 J of energy, what is Vab?

Ans. – 5 V

1.53 Moving 6.93 × 1019 electrons from point b to point a

requires 98 J of work. Find Vab.

Ans. –8.83 V

1.54 How much power does an electric clock require if it draws

27.3 mA from a 110-V line?

Ans. 3 W

1.55 Find the current drawn by a 1000-W steam iron from a

120-V line.

Ans. 8.33 A

1.56 For the circuit of Fig. 1-11, find the power absorbed by the

current source for (a) V = 4 V, I = 2 mA; (b) V = –50 V, I = –

150 μA; (c) V = 10 mV, I = –15 mA; (d) V = –120 mV, I = 80

mA.

Fig. 1-11

Ans. (a) –8 mW, (b) –7.5 mW, (c) 150 μW, (d) 9.6 mW

1.57 For the circuit of Fig. 1-12, determine P1, P2, P3, which are

powers absorbed, for (a) I = 2 A, (b) I = 20 mA, and (c) I = –

3 A.



Fig. 1-12

Ans. (a) P1 = 16 W, P2 = –24 W, P3 = –20 W; (b) P1 = 0.16 W,

P2 = –2.4 mW, P3 = –0.2 W; (c) P1 = –24 W, P2 = –54 W, P3 =

30 W

1.58 Calculate the power absorbed by each component in the

circuit of Fig. 1-13.

Fig. 1-13

Ans. P1 = 16 W, P2 = –48 W, P3 = –48 W, P4 = 80 W

1.59 Find the average input power to a radio that consumes

4500 J in 3 min.

Ans. 25 W

1.60 Find the voltage drop across a toaster that gives off 7500

J of heat when a 13.64-A current flows through it for 5 s.

Ans. 110 V

1.61 How many joules does a 40-W light bulb consume in 1 d?



Ans. 3.46 MJ

1.62 How long can a 12-V car battery supply 200 A to a starter

motor if the battery has 28 MJ of chemical energy that can

be converted to electric energy?

Ans. 3.24 h

1.63 How long does it take a 420-W color TV set to consume

(a) 2 kWh and (b) 15 kJ?

Ans. (a) 4.76 h, (b) 35.7 s

1.64 Find the current drawn by a 110-V dc electric motor that

delivers 2 hp. Assume 100 percent efficiency of operation.

Ans. 13.6 A

1.65 Find the efficiency of operation of an electric motor that

delivers 5 hp while absorbing an input of 4190 W.

Ans. 89 percent

1.66 What is the operating efficiency of a dc electric motor

that delivers 1 hp while drawing 7.45 A from a 115-V line?

Ans. 87 percent

1.67 Find the current drawn by a 100-V dc electric motor that

operates at 85 percent efficiency while delivering 0.5 hp.

Ans. 4.39 A

1.68 What is the horsepower produced by an automobile

starter motor that draws 250 A from a 12-V battery while

operating at an efficiency of 90 percent?

Ans. 3.62 hp

1.69 What horsepower must an electric motor develop to

operate a pump that pumps water at a rate of 24 000 liters

per hour (L/h) up a vertical distance of 50 m if the efficiency

of the pump is 90 percent? The gravitational force on 1 L of

water is 9.78 N.



Ans. 4.86 hp

1.70 An ac electric motor drives a dc electric voltage

generator. If the motor operates at an efficiency of 90

percent and the generator at an efficiency of 80 percent,

and if the input power to the motor is 5 kW, find the output

power from the generator.

Ans. 3.6 kW

1.71 Find the cost for one year (365 d) to operate a 20-W

transistor FM-AM radio 5 h a day if electrical energy costs

8¢/kilowatthour.

Ans. $2.92

1.72 For a cost of $5, how long can a fully loaded 5-hp electric

motor be run if the motor operates at an efficiency of 85

percent and if the electric rate is 6¢/kilowatthour?

Ans. 19 h

1.73 If electric energy costs 6¢kilowatthour, calculate the

utility bill for one month for operating eight 100-W light

bulbs for 50 h each, ten 60-W light bulbs for 70 h each, one

2-kW air conditioner for 80 h, one 3-kW range for 45 h, one

420-W color TV set for 180 h, and one 300-W refrigerator for

75 h.

Ans. $28.51.



Chapter 2


Resistance

OHM’S LAW

In flowing through a conductor, free electrons collide with

conductor atoms and lose some kinetic energy that is

converted into heat. An applied voltage will cause them to

regain energy and speed, but subsequent collisions will slow

them down again. This speeding up and slowing down occurs

continually as free electrons move among conductor atoms.

Resistance is this property of materials that opposes or

resists the movement of electrons and makes it necessary to

apply a voltage to cause current to flow. The SI unit of

resistance is the ohm with symbol Ω, the Greek uppercase

letter omega. The quantity symbol is R.

In metallic and some other types of conductors, the

current is proportional to the applied voltage: Doubling the

voltage doubles the current, tripling the voltage triples the

current, and so on. If the applied voltage V and resulting

current I have associated references, the relation between V

and I is

in which R is the constant of proportionality. This relation is

known as Ohm’s law. For time-varying voltages and currents,



i = v/R. And for nonassociated references, I = – V/R or i = –

v/R.

From Ohm’s law it is evident that, the greater the

resistance, the less the current for any applied voltage. Also,

the electric resistance of a conductor is 1 Ω if an applied

voltage of 1 V causes a current of 1 A to flow.

The inverse of resistance is often useful. It is called

conductance and its quantity symbol is G. The SI unit of

conductance is the Siemens with symbol S, which is

replacing the popular non-SI unit mho with symbol 

(inverted omega). Since conductance is the inverse of

resistance, G = 1/R. In terms of conductance, Ohm’s law is

which shows that the greater the conductance of a

conductor, the greater the current for any applied voltage.

RESISTIVITY

The resistance of a conductor of uniform cross section is

directly proportional to the length of the conductor and

inversely proportional to the cross-sectional area. Resistance

is also a function of the temperature of the conductor, as is

explained in the next section. At a fixed temperature the

resistance of a conductor is

where l is the conductor length in meters and A is the cross-

sectional area in square meters. The constant of

proportionality ρ, the Greek lowercase letter rho, is the

quantity symbol for resistivity, the factor that depends on

the type of material.



The SI unit of resistivity is the ohm-meter with unit symbol

Ω·m. Table 2-1 shows the resistivities of some materials at

20°C.

Table 2-1

A good conductor has a resistivity close to 10–8 Ω·m.

Silver, the best conductor, is too expensive for most uses.

Copper is a common conductor, as is aluminum. Materials

with resistivities greater than 1010 Ω·m are insulators. They

can provide physical support without significant current

leakage. Also, insulating coatings on wires prevent current

leaks between wires that touch. Materials with resistivities in

the range of 10–4 to 10–7 Ω·m are semiconductors, from

which transistors are made.

The relationship among conductance, length, and cross-

sectional area is

where the constant of proportionality σ, the Greek lowercase

sigma, is the quantity symbol for conductivity. The SI unit of

conductivity is the siemens per meter with symbol S·m–1.

TEMPERATURE EFFECTS



The resistances of most good conducting materials

increase almost linearly with temperature over the range of

normal operating temperatures, as shown by the solid line in

Fig. 2-1. However, some materials, and common

semiconductors in particular, have resistances that decrease

with temperature increases.

Fig. 2-1

If the straight-line portion in Fig. 2-1 is extended to the

left, it crosses the temperature axis at a temperature T0 at

which the resistance appears to be zero. This temperature T0

is the inferred zero resistance temperature. (The actual zero

resistance temperature is –273°C.) If T0 is known and if the

resistance R1 at another temperature T1 is known, then the

resistance R2 at another temperature T2 is, from straight-line

geometry,

Table 2-2 has inferred zero resistance temperatures for some

common conducting materials.

Table 2-2



A different but equivalent way of finding the resistance R2

is from

where x1 with the Greek lowercase alpha, is the temperature

coefficient of resistance at the temperature T1. Often T1 is

20°C. Table 2-3 has temperature coefficients of resistance at

20°C for some common conducting materials. Note that the

unit of α is per degree Celsius with symbol °C–1.

Table 2-3



RESISTORS

In a practical sense a resistor is a circuit component that is

used because of its resistance. Mathematically, a resistor is a

circuit component for which there is an algebraic relation

between its instantaneous voltage and instantaneous current

such as v = iR, the voltage-current relation for a resistor that

obeys Ohm’s law—a linear resistor. Any other type of

voltage-current relation (v = 4i2 + 6, for example) is for a

nonlinear resistor. The term “resistor” usually designates a

linear resistor. Nonlinear resistors are specified as such.

Figure 2-2a shows the circuit symbol for a linear resistor, and

Fig. 2-2b that for a nonlinear resistor.

Fig. 2-2

RESISTOR POWER ABSORPTION



Substitution from V = IR into P = VI gives the power

absorbed by a linear resistor in terms of resistance:

Every resistor has a power rating, also called wattage rating,

that is the maximum power that the resistor can absorb

without overheating to a destructive temperature.

NOMINAL VALUES AND TOLERANCES

Manufacturers print resistance values on resistor casings

either in numerical form or in a color code. These values,

though, are only nominal values: They are only

approximately equal to the actual resistances. The possible

percentage variation of resistance about the nominal value is

called the tolerance. The popular carbon-composition

resistors have tolerances of 20, 10, and 5 percent, which

means that the actual resistances can vary from the nominal

values by as much as ±20, ± 10, and ±5 percent of the

nominal values.

COLOR CODE

The most popular resistance color code has nominal

resistance values and tolerances indicated by the colors of

either three or four bands around the resistor casing, as

shown in Fig. 2-3.



Fig. 2-3

Each color has a corresponding numerical value as

specified in Table 2-4. The colors of the first and second

bands correspond, respectively, to the first two digits of the

nominal resistance value. Because the first digit is never

zero, the first band is never black. The color of the third

band, except for silver and gold, corresponds to the number

of zeros that follow the first two digits. A third band of silver

corresponds to a multiplier of 10–2, and a third band of gold

to a multiplier of 10–1. The fourth band indicates the

tolerance and is either gold- or silver-colored, or is missing.

Gold corresponds to a tolerance of 5 percent, silver to 10

percent, and a missing band to 20 percent.

Table 2-4



OPEN AND SHORT CIRCUITS

An open circuit has an infinite resistance, which means

that it has zero current flow through it for any finite voltage

across it. On a circuit diagram it is indicated by two terminals

not connected to anything—no path is shown for current to

flow through. An open circuit is sometimes called an open.

A short circuit is the opposite of an open circuit. It has zero

voltage across it for any finite current flow through it. On a

circuit diagram a short circuit is designated by an ideal

conducting wire—a wire with zero resistance. A short circuit

is often called a short.

Not all open and short circuits are desirable. Frequently,

one or the other is a circuit defect that occurs as a result of a

component failure from an accident or the misuse of a

circuit.

INTERNAL RESISTANCE

Every practical voltage or current source has an internal

resistance that adversely affects the operation of the source.

For any load except an open circuit, a voltage source has a

loss of voltage across its internal resistance. And except for a

short-circuit load, a current source has a loss of current

through its internal resistance.

In a practical voltage source the internal resistance has

almost the same effect as a resistor in series with an ideal

voltage source, as shown in Fig. 2-4a. (Components in series

carry the same current.) In a practical current source the

internal resistance has almost the same effect as a resistor

in parallel with an ideal current source, as shown in Fig. 2-4b.

(Components in parallel have the same voltage across

them.)



Fig. 2-4

Solved Problems

2.1 If an oven has a 240-V heating element with a

resistance of 24 Ω, what is the minimum rating of a fuse

that can be used in the lines to the heating element?

The fuse must be able to carry the current of the

heating element:

2.2 What is the resistance of a soldering iron that draws

0.8333 A at 120 V?

2.3 A toaster with 8.27 Ω of resistance draws 13.9 A. Find

the applied voltage.



2.4 What is the conductance of a 560-kΩ resistor?

2.5 What is the conductance of an ammeter that indicates

20 A when 0.01 V is across it?

2.6 Find the resistance at 20°C of an annealed copper bus

bar 3 m in length and 0.5 cm by 3 cm in rectangular

cross section.

The cross-sectional area of the bar is (0.5 × 10–2)(3

× 10–2) = 1.5 × 10–4m2. Table 2-1 has the resistivity of

annealed copper: 1.72 × 10–8 Ω·m at 20°C. So,

2.7 Find the resistance of an aluminum wire that has a

length of 1000 m and a diameter of 1.626 mm. The wire

is at 20°C.

The cross-sectional area of the wire is πr2, in which r

= d/2 = 1.626 × 10–3/2 = 0.813 × 10–3m. From Table 2-1

the resistivity of aluminum is 2.83 × 10–8 Ω·m. So,

2.8 The resistance of a certain wire is 15 Ω. Another wire of

the same material and at the same temperature has a



diameter one-third as great and a length twice as great.

Find the resistance of the second wire.

The resistance of a wire is proportional to the length

and inversely proportional to the area. Also, the area is

proportional to the square of the diameter. So, the

resistance of the second wire is

2.9 What is the resistivity of platinum if a cube of it 1 cm

along each edge has a resistance of 10 μ Ω across

opposite faces?

From R = pl/A and the fact that A = 10–2 × 10–2 =

10–4 m2 and l = 10–2m,

2.10 A 15-ft length of wire with a cross-sectional area of

127 cmils has a resistance of 8.74 Ω at 20°C. What

material is the wire made from?

The material can be found from calculating the

resistivity and comparing it with the resistivities given in

Table 2-1. For this calculation it is convenient to use the

fact that, by the definition of a circular mil, the

corresponding area in square inches is the number of

circular mils times π/4 × 10–6. From rearranging R =

pl/A,



Since iron has this resistivity in Table 2-1, the material

must be iron.

2.11 What is the length of No. 28 AWG (0.000 126 in2 in

cross-sectional area) Nichrome wire required for a 24-Ω

resistor at 20°C?

From rearranging R = pl/A and using the resistivity

of Nichrome given in Table 2-1,

2.12 A certain aluminum wire has a resistance of 5 Ω at

20°C. What is the resistance of an annealed copper wire

of the same size and at the same temperature?

For the copper and aluminum wires, respectively,

Taking the ratio of the two equations causes the length

and area quantities to divide out, with the result that the

ratio of the resistances is equal to the ratio of the

resistivities:

Then with the insertion of resistivities from Table 2-1,



2.13 A wire 50 m in length and 2 mm2 in cross section has

a resistance of 0.56 Ω. A 100-m length of wire of the

same material has a resistance of 2 Ω at the same

temperature. Find the diameter of this wire.

From the data given for the first wire, the resistivity

of the conducting material is

Therefore the cross-sectional area of the second wire is

and, from A = π (d/2)2, the diameter is

2.14 A wire-wound resistor is to be made from 0.2-mm-

diameter constantan wire wound around a cylinder that

is 1 cm in diameter. How many turns of wire are

required for a resistance of 50 Ω at 20°C?

The number of turns equals the wire length divided

by the circumference of the cylinder. From R = pl/A and

the resistivity of constantan given in Table 2-1, the

length of the wire that has a resistance of 50 Ω is



The circumference of the cylinder is 2πr, in which r = 10–

2/2 = 0.005 m, the radius of the cylinder. So, the number

of turns is

2.15 A No. 14 AWG standard annealed copper wire is

0.003 23 in2 in cross section and has a resistance of

2.58 mΩ/ft at 25°C. What is the resistance of 500 ft of

No. 6 AWG wire of the same material at 25°C? The

cross-sectional area of this wire is 0.0206 in2.

Perhaps the best approach is to calculate the

resistance of a 500-ft length of the No. 14 AWG wire,

and then take the ratio of the two R = pl/A equations.

Since the resistivities and lengths are the same, they

divide out, with the result that

2.16 The conductance of a certain wire is 0.5 S. Another

wire of the same material and at the same temperature

has a diameter twice as great and a length three times

as great. What is the conductance of the second wire?

The conductance of a wire is proportional to the

area and inversely proportional to the length. Also, the

area is proportional to the square of the diameter.

Therefore the conductance of the second wire is



2.17 Find the conductance of 100 ft of No. 14 AWG iron

wire, which has a diameter of 64 mils. The temperature

is 20°C.

The conductance formula is G = σA/l, in which σ = 1/

σ and A = π (d/2)2. Of course, the resistivity of iron can

be obtained from Table 2-1. Thus,

2.18 The resistance of a certain copper power line is 100 Ω

at 20°C. What is its resistance when the sun heats up

the line to 38°C?

From Table 2-2 the inferred absolute zero resistance

temperature of copper is –234.5°C, which is T0 in the

formula R2 = R1(T2 – T0)/(T1 – T0). Also, from the given

data, T2 = 38°C, R1 = 100 Ω, and T1 = 20°C. So, the

wire resistance at 38°C is

2.19 When 120 V is applied across a certain light bulb, a

0.5-A current flows, causing the temperature of the

tungsten filament to increase to 2600°C. What is the

resistance of the light bulb at the normal room

temperature of 20°C?

The resistance of the energized light bulb is 120/0.5

= 240 Ω. And since from Table 2-2 the inferred zero



resistance temperature for tungsten is –202°C, the

resistance at 20°C is

2.20 A certain unenergized copper transformer winding

has a resistance of 30 Ω at 20°C. Under rated operation,

however, the resistance increases to 35 Ω. Find the

temperature of the energized winding.

The formula R2 = R1(T2 – T0)/(T1 – T0) solved for T2

becomes

From the specified data, R2 = 35 Ω, T1 = 20 C, and R1 =

30 Ω. Also, from Table 2-2, T0 = –234.5 C. So,

2.21 The resistance of a certain aluminum power line is

150 Ω at 20°C. Find the line resistance when the sun

heats up the line to 42nC. First use the inferred zero

resistance temperature formula and then the

temperature coefficient of resistance formula to show

that the two formulas are equivalent.

From Table 2-2 the zero resistance temperature of

aluminum is –236°C, Thus,



From Table 2-3 the temperature coefficient of resistance

of aluminum is 0.003 91°C–1 at 20°C. So,

2.22 Find the resistance at 35°C of an aluminum wire that

has a length of 200 m and a diameter of 1 mm.

The wire resistance at 20°C can be found and used

in the temperature coefficient of resistance formula.

(Alternatively, the inferred zero resistance temperature

formula can be used.) Since the cross-sectional area of

the wire is π (d/2)2, where d = 10–3m, and since from

Table 2-1 the resistivity of aluminum is 2.83 × 10–8 Ω·m,

the wire resistance at 20C is

The only other quantity needed to calculate the wire

resistance at 35°C is the temperature coefficient of

resistance of aluminum at 20°C. From Table 2-3 it is

0.003 91°C–1. So,

2.23 Derive a formula for calculating the temperature

coefficient of resistance from the temperature T1 of a

material and T0, its inferred zero resistance

temperature.



In R2 = R1[1 + α1(T2 – T1)] select T2 = T0. Then R2 =

0Ω, by definition. The result is 0 = R1[1 + α1(T0 – T1)],

from which

2.24 Calculate the temperature coefficient of resistance of

aluminum at 30°C and use it to find the resistance of an

aluminum wire at 70°C if the wire has a resistance of 40

Ω at 30°C.

From Table 2-2, aluminum has an inferred zero

resistance temperature of –236°C. With this value

inserted, the formula derived in the solution to Prob.

2.23 gives

So

2.25 Find the resistance of an electric heater that absorbs

2400 W when connected to a 120-V line.

From P = V2/R,

2.26 Find the internal resistance of a 2-kW water heater

that draws 8.33 A.



From P = I2R,

2.27 What is the greatest voltage that can be applied

across a -W, 2.7-MΩ resistor without causing it to

overheat?

From P = V2/R,

2.28 If a nonlinear resistor has a voltage-current relation

of V = 3I2 + 4, what current does it draw when

energized by 61 V? Also, what power does it absorb?

Inserting the applied voltage into the nonlinear

equation results in 61 = 3I2 + 4, from which

Then from P = VI,

2.29 At 20°C a pn junction silicon diode has a current-

voltage relation of I = 10–14(e40V – 1). What is the diode

voltage when the current is 50 mA?

From the given formula,



Multiplying both sides by 1014 and adding 1 to both sides

results in

Then from the natural logarithm of both sides,

2.30 What is the resistance range for (a) a 10 percent,

470-Ω resistor, and (b) a 20 percent, 2.7-MΩ resistor?

(Hint: 10 percent corresponds to 0.1 and 20 percent to

0.2.)

(a) The resistance can be as much as 0.1 × 470 = 47 Ω

from the 470-Ω nominal value. So, the resistance can

be as small as 470 – 47 = 423 Ω or as great as 470 +

47 = 517 Ω.

(b) Since the maximum resistance variation from the

nominal value is 0.2(2.7 + 106) = 0.54 MΩ, the

resistance can be as small as 2.7 – 0.54 = 2.16 MΩ or

as great as 2.7 + 0.54 = 3.24 MΩ.

2.31 A voltage of 110 V is across a 5 percent, 20-kΩ

resistor. What range must the current be in? (Hint: 5

percent corresponds to 0.05.)

The resistance can be as much as 0.05(20 × 103) =

103Ω from the nominal value, which means that the

resistance can be as small as 20 – 1 = 19 kΩ or as great

as 20 + 1 = 21 kΩ. Therefore, the current can be as

small as



or as great as

2.32 What are the colors of the bands on a 10 percent,

5.6-Ω resistor?

Since 5.6 = 56 × 0.1, the resistance has a first digit

of 5, a second digit of 6, and a multiplier of 0.1. From

Table 2-4, green corresponds to 5, blue to 6, and gold to

0.1. Also, silver corresponds to the 10 percent tolerance.

So, the color bands and arrangement are green-blue-

gold-silver from an end to the middle of the resistor

casing.

2.33 Determine the colors of the bands on a 20 percent,

2.7-MΩ resistor.

The numerical value of the resistance is 2 700 000,

which is a 2 and a 7 followed by five zeros. From Table 2-

4 the corresponding color code is red for the 2, violet for

the 7, and green for the five zeros. Also, there is a

missing color band for the 20 percent tolerance. So, the

color bands from an end of the resistor casing to the

middle are red-violet-green-missing.

2.34 What are the nominal resistance and tolerance of a

resistor with color bands in the order of green-blue-

yellow-silver from an end of the resistor casing toward

the middle?

From Table 2-4, green corresponds to 5, blue to 6,

and yellow to 4. The 5 is the first digit and 6 the second

digit of the resistance value, and 4 is the number of

trailing zeros. Consequently, the resistance is 560 000 Ω

or 560 kΩ. The silver band designates a 10 percent

tolerance.



2.35 Find the resistance corresponding to color bands in

the order of red-yellow-black-gold.

From Table 2-4, red corresponds to 2, yellow to 4,

and black to 0 (no trailing zeros). The fourth band of

gold corresponds to a 5 percent tolerance. So, the

resistance is 24 Ω with a 5 percent tolerance.

2.36 If a 12-V car battery has a 0.04-Ω internal resistance,

what is the battery terminal voltage when the battery

delivers 40 A?

The battery terminal voltage is the generated

voltage minus the voltage drop across the internal

resistance:

2.37 If a 12-V car battery has a 0.1-Ω internal resistance,

what terminal voltage causes a 4-A current to flow into

the positive terminal?

The applied voltage must equal the battery

generated voltage plus the voltage drop across the

internal resistance:

2.38 If a 10-A current source has a 100-Ω internal

resistance, what is the current flow from the source

when the terminal voltage is 200 V?

The current flow from the source is the 10 A minus

the current flow through the internal resistance:



Supplementary Problems

2.39 What is the resistance of a 240-V electric clothes

dryer that draws 23.3 A?

Ans. 10.3 Ω

2.40 If a voltmeter has 500 kΩ of internal resistance, find

the current flow through it when it indicates 86 V.

Ans. 172 μA

2.41 If an ammeter has 2 mΩ of internal resistance, find

the voltage across it when it indicates 10 A.

Ans. 20 mV

2.42 What is the conductance of a 39-Ω resistor?

Ans. 25.6 mS

2.43 What is the conductance of a voltmeter that indicates

150 V when 0.3 mA flows through it?

Ans. 2 μS

2.44 Find the resistance at 20°C of an annealed copper

bus bar 2 m long and 1 cm by 4 cm in rectangular cross

section.

Ans. 86 μ Ω

2.45 What is the resistance of an annealed copper wire

that has a length of 500 m and a diameter of 0.404

mm?

Ans. 67.1 Ω

2.46 The resistance of a wire is 25 Ω. Another wire of the

same material and at the same temperature has a

diameter twice as great and a length six times as great.

Find the resistance of the second wire.

Ans. 37.5 Ω



2.47 What is the resistivity of tin if a cube of it 10 cm

along each edge has a resistance of 1.15 μ Ω across

opposite faces?

Ans. 11.5 × 10–8 Ω·m

2.48 A 40-m length of wire with a diameter of 0.574 mm

has a resistance of 75.7 Ω at 20°C. What material is the

wire made from?

Ans. Constantan

2.49 What is the length of No. 30 AWG (10.0-mil diameter)

constantan wire at 20°C required for a 200-Ω resistor?

Ans. 20.7 m

2.50 If No. 29 AWG annealed copper wire at 20°C has a

resistance of 83.4 Ω per 1000 ft, what is the resistance

per 100 ft of Nichrome wire of the same size and at the

same temperature?

Ans. 485 Ω per 100 ft

2.51 A wire with a resistance of 5.16 Ω. has a diameter of

45 mils and a length of 1000 ft. Another wire of the

same material has a resistance of 16.5 Ω and a

diameter of 17.9 mils. What is the length of this second

wire if both wires are at the same temperature?

Ans. 506 ft

2.52 A wirewound resistor is to be made from No. 30 AWG

(10.0-mil diameter) constantan wire wound around a

cylinder that is 0.5 cm in diameter. How many turns are

required for a resistance of 25 Ω at 20°C?

Ans. 165 turns

2.53 The conductance of a wire is 2.5 S. Another wire of

the same material and at the same temperature has a

diameter one-fourth as great and a length twice as

great. Find the conductance of the second wire.



Ans. 78.1 mS

2.54 Find the conductance of 5 m of Nichrome wire that

has a diameter of 1 mm.

Ans. 157 mS

2.55 If an aluminum power line has a resistance of 80 Ω at

30°C, what is its resistance when cold air lowers its

temperature to – 10°C?

Ans. 68 Ω

2.56 If the resistance of a constantan wire is 2 MΩ at –

150°C, what is its resistance at 200°C?

Ans. 2.006 MΩ

2.57 The resistance of an aluminum wire is 2.4 Ω at –5°C.

At what temperature will it be 2.8 Ω?

Ans. 33.5°C

2.58 What is the resistance at 90°C of a carbon rod that

has a resistance of 25 Ω at 20°C?

Ans. 24.1 Ω

2.59 Find the temperature coefficient of resistance of iron

at 20°C if iron has an inferred zero resistance

temperature of – 162°C.

Ans. 0.0055°C–1

2.60 What is the maximum current that a 1-W, 56-kΩ

resistor can safely conduct?

Ans. 4.23 mA

2.61 What is the maximum voltage that can be safely

applied across a -W, 91-Ω resistor?

Ans. 6.75 V

2.62 What is the resistance of a 240-V, 5600-W electric

heater?



Ans. 10.3 Ω

2.63 A nonlinear resistor has a voltage-current relation of

V = 2I2 + 3I + 10. Find the current drawn by this

resistor when 37 V is applied across it.

Ans. 3 A

2.64 If a diode has a current-voltage relation of I = 10–

14(e40V – 1), what is the diode voltage when the current

is 150 mA?

Ans. 0.758 V

2.65 What is the resistance range for a 5 percent, 75-kΩ

resistor?

Ans. 71.25 to 78.75 kΩ

2.66 A 12.1-mA current flows through a 10 percent, 2.7-kΩ

resistor. What range must the resistor voltage be in?

Ans. 29.4 to 35.9 V

2.67 What are the resistor color codes for tolerances and

nominal resistances of (a) 10 percent, 0.18 Ω (b) 5

percent, 39 kΩ; and (c) 20 percent, 20 MΩ?

Ans. (a) Brown-gray-silver-silver, (b) orange-white-

orange-gold, (c) red-black-blue-missing

2.68 Find the tolerances and nominal resistances

corresponding to color codes of (a) brown-brown-silver-

gold, (b) green-brown-brown-missing, and (c) blue-gray-

green-silver.

Ans. (a) 5 percent, 0.11 Ω; (b) 20 percent, 510 Ω; (c) 10

percent, 6.8 MΩ

2.69 A battery provides 6 V on open circuit and it provides

5.4 V when delivering 6 A. What is the internal

resistance of the battery?

Ans. 0.1 Ω



2.70 A 3-hp automobile electric starter motor operates at

85 percent efficiency from a 12-V battery. What is the

battery internal resistance if the battery terminal

voltage drops to 10 V when energizing the starter

motor?

Ans. 7.60 mΩ

2.71 A short circuit across a current source draws 20 A.

When the current source has an open circuit across it,

the terminal voltage is 600 V. Find the internal

resistance of the source.

Ans. 30 Ω

2.72 A short circuit across a current source draws 15 A. If a

10-Ω resistor across the source draws 13 A, what is the

internal resistance of the source?

Ans. 65 Ω



Chapter 3


Series and Parallel DC

Circuits

BRANCHES, NODES, LOOPS, MESHES, SERIES- AND

PARALLEL-CONNECTED COMPONENTS

Strictly speaking, a branch of a circuit is a single

component such as a resistor or a source. Occasionally,

though, this term is applied to a group of components that

carry the same current, especially when they are of the

same type.

A node is a connection point between two or more

branches. On a circuit diagram a node is sometimes

indicated by a dot that may be a solder point in the actual

circuit. The node also includes all wires connected to the

point. In other words, it includes all points at the same

potential. If a short circuit connects two nodes, these two

nodes are equivalent to and in fact are just a single node,

even if two dots are shown.

A loop is any simple closed path in a circuit. A mesh is a

loop that does not have a closed path in its interior. No

components are inside a mesh.

Components are connected in series if they carry the

same current.

Components are connected in parallel if the same voltage

is across them.



KIRCHHOFF’S VOLTAGE LAW AND SERIES DC CIRCUITS

Kirchhoff’s voltage law, abbreviated KVL, has three

equivalent versions: At any instant around a loop, in either a

clockwise or counterclockwise direction,

1. The algebraic sum of the voltage drops is zero.

2. The algebraic sum of the voltage rises is zero.

3. The algebraic sum of the voltage drops equals the

algebraic sum of the voltage rises.

In all these versions, the word “algebraic” means that the

signs of the voltage drops and rises are included in the

additions. Remember that a voltage rise is a negative

voltage drop, and that a voltage drop is a negative voltage

rise. For loops with no current sources, the most convenient

KVL version is often the third one, restricted such that the

voltage drops are only across resistors and the voltage rises

are only across voltage sources.

In the application of KVL, a loop current is usually

referenced clockwise, as shown in the series circuit of Fig. 3-

1, and KVL is applied in the direction of the current. (This is

a series circuit because the same current I flows through all

components.) The sum of the voltage drops across the

resistors, V1 + V2 + V3, is set equal to the voltage rise Vs

across the voltage source: V1 + V2 + V3 = Vs. Then the IR

Ohm’s law relations are substituted for the resistor voltages:

Fig. 3-1



from which I = VS/RT and RT = R1 + R2 + R3. This RT is the

total resistance of the series-connected resistors. Another

term used is equivalent resistance, with symbol Req.

From this result it should be evident that, in general, the

total resistance of series-connected resistors (series

resistors) equals the sum of the individual resistances:

Further, if the resistances are the same (R), and if there are

N of them, then RT = NR. Finding the current in a series

circuit is easier using total resistance than applying KVL

directly.

If a series circuit has more than one voltage source, then

in which each Vs term is positive for a voltage rise and is

negative for a voltage drop in the direction of I.

KVL is seldom applied to a loop containing a current

source because the voltage across the current source is not

known and there is no formula for it.

VOLTAGE DIVISION

The voltage division or voltage divider rule applies to

resistors in series. It gives the voltage across any resistor in

terms of the resistances and the total voltage across the

series combination—the step of finding the resistor current

is eliminated. The voltage division formula is easy to find

from the circuit shown in Fig. 3-1. Consider finding the



voltage V2. By Ohm’s law, V2 = IR2. Also, I = Vs/(R1 + R2 +

R3). Eliminating I results in

In general, for any number of series resistors with a total

resistance of RT and with a voltage of Vs across the series

combination, the voltage Vx across one of the resistors Rx is

This is the formula for the voltage division or divider rule.

For this formula, Vs and Vx must have opposing polarities;

that is, around a closed path one must be a voltage drop

and the other a voltage rise. If both are rises or both are

drops, the formula requires a negative sign. The voltage Vs

need not be that of a source. It is just the total voltage

across the series resistors.

KIRCHHOFF’S CURRENT LAW AND PARALLEL DC

CIRCUITS

Kirchhoff’s current law, abbreviated KCL, has three

equivalent versions: At any instant in a circuit,

1. The algebraic sum of the currents leaving a closed

surface is zero.

2. The algebraic sum of the currents entering a closed

surface is zero.

3. The algebraic sum of the currents entering a closed

surface equals the algebraic sum of those leaving.



The word “algebraic” means that the signs of the currents

are included in the additions. Remember that a current

entering is a negative current leaving, and that a current

leaving is a negative current entering.

In almost all circuit applications, the closed surfaces of

interest are those enclosing nodes. So, there is little loss of

generality in using the word “node” in place of “closed

surface” in each KCL version. Also, for a node to which no

voltage sources are connected the most convenient KCL

version is often the third one, restricted such that the

currents entering are from current sources and the currents

leaving are through resistors.

In the application of KCL, one node is selected as the

ground or reference or datum node, which is often indicated

by the ground symbol  Usually, the node at the bottom

of the circuit is the ground node, as shown in the parallel

circuit of Fig. 3-2. (This is a parallel circuit because the same

voltage V is across all circuit components.) The voltages on

other nodes are almost always referenced positive with

respect to the ground node. At the nongrounded node in the

circuit shown in Fig. 3-2, the sum of the currents leaving

through resistors, I1 + I2 + I3, equals the current IS entering

this node from the current source: I1 + I2 + I3 = IS. The

substitution of the I = GV Ohm’s law relations for the

resistor currents results in

Fig. 3-2



from which V = IS/GT and GT = G1 + G2 + G3 = 1/R1 + 1/R2

+ 1/R3. This GT is the total conductance of the circuit.

Another term used is equivalent conductance, with symbol

Geq.

From this result it should be evident that, in general, the

total conductance of parallel-connected resistors (parallel

resistors) equals the sum of the individual conductances:

If the conductances are the same (G), and if there are N of

them, then GT = NG and RT = 1/GT = 1/NG = R/N. Finding

the voltage in a parallel circuit is easier using total

conductance than applying KCL directly.

Sometimes working with resistances is preferable to

conductances. Then from RT = 1/GT = 1/(G1+ G2 + G3+ …),

An important check on calculations with this formula is that

RT must always be less than the least resistance of the

parallel resistors.

For the special case of just two parallel resistors,

So, the total or equivalent resistance of two parallel

resistors is the product of the resistances divided by the



sum.

The symbol || as in R1 || R2 indicates the resistance of two

parallel resistors: R1 || R2 = R1R2/(R1 + R2). It is also

sometimes used to indicate that two resistors are in parallel.

If a parallel circuit has more than one current source,

in which each IS term is positive for a source current

entering the nongrounded node and is negative for a source

current leaving this node.

KCL is seldom applied to a node to which a voltage source

is connected. The reason is that the current through a

voltage source is not known and there is no formula for it.

CURRENT DIVISION

The current division or current divider rule applies to

resistors in parallel. It gives the current through any resistor

in terms of the conductances and the current into the

parallel combination—the step of finding the resistor voltage

is eliminated. The current division formula is easy to derive

from the circuit shown in Fig. 3-2. Consider finding the

current I2. By Ohm’s law, I2 = G2V. Also, V = IS/(G1 + G2 +

G3). Eliminating V results in

In general, for any number of parallel resistors with a total

conductance GT and with a current IS entering the parallel

combination, the current Ix through one of the resistors with

conductance Gx is



This is the formula for the current division or divider rule.

For this formula, IS and Ix must be referenced in the same

direction, with Ix referenced away from the node of the

parallel resistors that IS is referenced into. If both currents

enter this node, then the formula requires a negative sign.

The current IS need not be that of a source. It is just the

total current entering the parallel resistors.

For the special case of two parallel resistors, the current

division formula is usually expressed in resistances instead

of conductances. If the two resistances are R1 and R2, the

current I1 in the resistor with resistance R1 is

In general, as this formula indicates, the current flowing in

one of two parallel resistors equals the resistance of the

other resistor divided by the sum of the resistances, all

times the current flowing into the parallel combination.

KILOHM-MILLIAMPERE METHOD

The basic equations V = RI, I = GV, P = VI, P = V2/R, and P

= I2R are valid, of course, for the units of volts (V), amperes

(a), ohms (Ω), siemens (S), and watts (W). But they are

equally valid for the units of volts (V), milliamperes (mA),

kilohms (kΩ), millisiemens (mS), and milliwatts (mW), the

use of which is sometimes referred to as the kilohm-

milliampere method. In this book, this second set will be

used almost exclusively in the writing of network equations



when the network resistances are in the kilohm range,

because with it the writing of powers of 10 can be avoided.

Solved Problems

3.1 Determine the number of nodes and branches in the

circuit shown in Fig. 3-3.

Fig. 3-3

Dots 1 and 2 are one node, as are dots 3 and 4 and

also dots 5 and 6, all with connecting wires. Dot 7 and

the two wires on both sides are another node, as are

dot 8 and the two wires on both sides of it. So, there

are five nodes. Each of the shown components A

through H is a branch—eight branches in all.

3.2 Which components in Fig. 3-3 are in series and which

are in parallel?

Components F, G, and H are in series because they

carry the same current. Components A and B, being

connected together at both ends, have the same

voltage and so are in parallel. The same is true for

components C, D, and E —they are in parallel. Further,

the parallel group of A and B is in series with the



parallel group of C, D, and E, and both groups are in

series with components F, G, and H.

3.3 Identify all the loops and all the meshes for the circuit

shown in Fig. 3-4. Also, specify which components are

in series and which are in parallel.

Fig. 3-4

There are three loops: one of components A, E, F, D,

and C; a second of components B, H, G, F, and E; and a

third of A, B, H, G, D, and C. The first two loops are also

meshes, but the third is not because components E and

F are inside it. Components A, C, and D are in series

because they carry the same current. For the same

reason, components E and F are in series, as also are

components B, H, and G. No components are in parallel.

3.4 Repeat Prob. 3.3 for the circuit shown in Fig. 3-5.



Fig. 3-5

The three loops of components A, B, and C; C, D,

and E; and F, D, and B are also meshes—the only

meshes. All other loops are not meshes because

components are inside them. Components A, B, D, and

E form one of these other loops; components A, F, and

E another one; components A, F, D, and C a third; and

components F, E, C, and B a fourth. The circuit has

three meshes and seven loops. No components are in

series or in parallel.

3.5 What is V across the open circuit in the circuit shown

in Fig. 3-6?

Fig. 3-6

The sum of the voltage drops in a clockwise

direction is, starting from the upper left corner,

In the summation, the 40 and 10 V are negative

because they are voltage rises in a clockwise direction.

The negative sign in the answer indicates that the

actual open-circuit voltage has a polarity opposite the

shown reference polarity.



3.6 Find the unknown voltages in the circuit shown in Fig.

3-7. Find V1 first.

Fig. 3-7

The basic KVL approach is to use loops having only

one unknown voltage apiece. Such a loop for V1

includes the 10-, 8-, and 9-V components. The sum of

the voltage drops in a clockwise direction around this

loop is

Similarly, for V2 the sum of the voltage drops clockwise

around the top mesh is

Clockwise around the bottom mesh, the sum of the

voltage drops is



The negative sign for V3 indicates that the polarity of the

actual voltage is opposite the reference polarity.

3.7 What is the total resistance of 2-, 5-, 8-, 10-, and 17-Ω

resistors connected in series?

The total resistance of series resistors is the sum of

the individual resistances: RT = 2 + 5 + 8+ 10 + 17 =

42 Ω

3.8 What is the total resistance of thirty 6-Ω resistors

connected in series?

The total resistance is the number of resistors times

the common resistance of 6 Ω: RT, = 30 × 6 = 180 Ω

3.9 What is the total conductance of 4-, 10-, 16-, 20-, and

24-S resistors connected in series?

The best approach is to convert the conductances

to resistances, add the resistances to get the total

resistance, and then invert the total resistance to get

the total conductance:

and

3.10 A string of Christmas tree lights consists of eight 6-

W, 15-V bulbs connected in series. What current flows

when the string is plugged into a 120-V outlet, and

what is the hot resistance of each bulb?

The total power is PT = 8 × 6 = 48 W. From PT = VI,

the current is I = PT/V = 48/120 = 0.4 A. And from P =



I2R, the hot resistance of each bulb is R = P/I2 = 6/0.42

= 37.5 Ω

3.11 A 3-V, 300-mA flashlight bulb is to be used as the

dial light in a 120-V radio. What is the resistance of the

resistor that should be connected in series with the

flashlight bulb to limit the current?

Since 3 V is to be across the flashlight bulb, there

will be 120 – 3 = 117 V across the series resistor. The

current is the rated 300 mA. Consequently, the

resistance is 117/0.3 = 390Ω.

3.12 A person wants to move a 20-W FM-AM transistor

radio from a junked car with a 6-V battery to a new car

with a 12-V battery. What is the resistance of the

resistor that should be connected in series with the

radio to limit the current, and what is its minimum

power rating?

From P = VI, the radio requires 20/6 = 3.33 A. The

resistor, being in series, has the same current. Also, it

has the same voltage because 12 – 6 = 6 V. As a result,

R = 6/3.33 = 1.8Ω. With the same voltage and current,

the resistor must dissipate the same power as the

radio, and so has a 20-W minimum power rating.

3.13 A series circuit consists of a 240-V source and 12-,

20-, and 16-Q resistors. Find the current out of the

positive terminal of the voltage source. Also find the

resistor voltages. Assume associated references, as

should always be done when there is no specification of

references.

The current is the applied voltage divided by the

equivalent resistance:



Each resistor voltage is this current times the

corresponding resistance: V12 = 5 × 12 = 60 V, V20 = 5 ×

20 = 100 V, and V16 = 5 × 16 = 80 V. As a check, the sum

of the resistor voltages is 60 + 100 + 80 = 240 V, the same

as the applied voltage.

3.14 A resistor in series with an 8-Q resistor absorbs 100

W when the two are connected across a 60-V line. Find

the unknown resistance R.

The total resistance is 8 + R, and thus the current is

60/(8 + R). From I2R = P,

which simplifies to R2 – 20R + 64 = 0. The quadratic

formula can be used to find R. Recall that for the equation

ax2 + bx + c – 0, this formula is

so

A resistor with a resistance of either 16 or 4 Ω will

dissipate 100 W when connected in series with an 8-Ω

resistor across a 60-V line.



This particular quadratic equation can be factored

without using the quadratic formula. By inspection, R2 –

20R + 64 = (R – 16)(R – 4) = 0, from which R = 16 Ω or

R = 4 Ω, the same as before.

3.15 Resistors R1, R2, and R3 are in series with a 100-V

source. The total voltage drop across R1 and R2 is 50 V,

and that across R2 and R3 is 80 V. Find the three

resistances if the total resistance is 50 Ω.

The current is the applied voltage divided by the

total resistance: I = 100/50 = 2 A. Since the voltage

across resistors R1 and R2 is 50 V, there must be 100 –

50 = 50 V across R3. By Ohm’S law, R3 = 50/2 = 25 Ω.

Resistors R2 and R3 have 80 V across them, leaving 100

– 80 = 20 V across R1. Thus, R1 20/2 = 10 Ω. The

resistance of R2 is the total resistance minus the

resistances of R1 and R3: R2 = 50 – 10 – 25 = 15 Ω.

3.16 What is the maximum voltage that can be applied

across the series combination of a 150-Ω, 2-W resistor

and a 100-Ω, 1-W resistor without exceeding the power

rating of either resistor?

From P = I2R, the maximum safe current for the

150-Q resistor is  That for the

100-Ω resistor is  The maximum current

cannot exceed the lesser of these two currents and so

is 0.1 A. For this current, V = I (R1 + R2) = 0.1(150 +

100) = 25 V.

3.17 In a series circuit, a current flows from the positive

terminal of a 180-V source through two resistors, one

of which has 30 Ω of resistance and the other of which

has 45 V across it. Find the current and the unknown

resistance.



The 30-Ω resistor has 180 – 45 = 135 V across it

and thus a 135/30 = 4.5-A current through it. The other

resistance is 45/4.5 = 10 Ω.

3.18 Find the current and unknown voltages in the circuit

shown in Fig. 3-8.

Fig. 3-8

The total resistance is the sum of the resistances:

10 + 15 + 6 + 8 + 11 = 50 Ω. The total voltage rise

from the voltage sources in the direction of I is 12 — 5

+ 8 = 15 V. The current I is this voltage divided by the

total resistance: I = 15/50 = 0.3 A. By Ohm’S law, V1, =

0.3 × 10 = 3 V, V2 = 0.3 × 15 = 4.5 V, V3 = – 0.3 × 6 =

– 1.8 V, V4 = 0.3 × 8 = 2.4 V, and V5 = –0.3 × 11 = –

3.3 V. The equations for V3, and V5 have negative signs

because the references for these voltages and the

reference for I are not associated.

3.19 Find the voltage Vab in the circuit shown in Fig. 3-8.

Vab is the voltage drop from node a to node b,

which is the sum of the voltage drops across the

components connected between nodes a and b either

to the right or to the left of node a. It is convenient to

choose the path to the right because this is the



direction of the I = 0.3-A current found in the solution of

Prob. 3.18. Thus,

Note that an IR drop is always positive in the direction of

I. A voltage reference, and that of V3, in particular here, has

no effect on this.

3.20 Find I1 I2, and V in the circuit shown in Fig. 3-9.

Fig. 3-9

Since the 90-V source is across the 10-Ω resistor, I1,

= 90/10 = 9 A. Around the outside loop in a clockwise

direction, the voltage drop across the two resistors is

(25 + 15)I2 = 40I2. This is equal to the sum of the

voltage rises across the voltage sources in this outside

loop:



The voltage V is equal to the sum of the drops across

the 25-Ω resistor and the 30-V source: V = (1.5 × 25) +

30 = 67.5 V. Notice that the parallel 10-Ω resistor does

not affect I2. In general, resistors in parallel with voltage

sources that have zero internal resistances (ideal

voltage sources) do not affect currents or voltages

elsewhere in a circuit. They do, however, cause an

increase in current flow in these voltage sources.

3.21 A 90-V source is in series with five resistors having

resistances of 4, 5, 6, 7, and 8 Ω. Find the voltage

across the 6-Ω resistor. (Here “voltage” refers to the

positive voltage, as it will in later problems unless

otherwise indicated. The same is true for current.)

By the voltage division formula, the voltage across

a resistor in a series circuit equals the resistance of that

resistor times the applied voltage divided by the total

resistance. So,

3.22 Use voltage division to determine the voltages V4

and V5 in the circuit shown in Fig. 3-8.

The total voltage applied across the resistors equals

the sum of the voltage rises from the voltage sources,

preferably in a clockwise direction: 12 — 5 + 8 = 15 V.

The polarity of this net voltage is such that it produces

a clockwise current flow. In this sum the 5 V is negative

because it is a drop, and rises are being added. Put

another way, the polarity of the 5-V source opposes the

polarities of the 12- and 8-V sources. The V4 voltage



division formula should have a positive sign because V4

is a drop in the clockwise direction—it opposes the

polarity of the net applied voltage:

The voltage division formula for V5 requires a negative

sign because both V5 and the net source voltage are

rises in the clockwise direction:

3.23 Find the voltage Vab across the open circuit in the

circuit shown in Fig. 3-10.

Fig. 3-10

The 10-Ω resistor has zero current flowing through

it because it is in series with an open circuit. (Also, it

has zero volts across it.) Consequently, voltage division

can be used to obtain V1. The result is



Then, a summation of voltage drops around the right-

hand half of the circuit gives 0 – 30 + Vab + 10 – 60 = 0.

Therefore, Vab = 80 V.

3.24 For the circuit of Fig. 3-11, calculate I and the power

absorbed by the dependent source.

Fig. 3-11

A good first step is to solve for the controlling

quantity V1 in terms of I. Applying Ohm’S law to the 4-Ω

resistor gives V1 = 41. Consequently, in the direction of

I, the voltage rise across the dependent source is

4.5(4I) = 18I. Then by KVL,

The negative sign indicates that the 2-A current flows

counterclockwise, opposite the reference direction for I.

Since the current and voltage references for the

dependent source are not associated, the power

absorbed formula has a negative sign:

But I = –2 A, and so P = –18(– 2)2 = – 72 W. The

presence of the negative sign means that the



dependent source is supplying power instead of

absorbing it.

3.25 In the circuit of Fig. 3-11, determine the resistance

“seen” by the independent voltage source.

The resistance “seen” by the source is equal to the

ratio of the source voltage to the current that flows out

of the positive terminal of the source:

The negative sign of the resistance is a result of the

action of the dependent source. It indicates that the

remainder of the circuit supplies power to the

independent source. Actually, it is the dependent source

alone that supplies this power, as well as the power to

the two resistors.

3.26 Find V1 in the circuit of Fig. 3-12.

Fig. 3-12

First observe that no current flows in the single wire

connecting the two halves of this circuit, as is evident

from enclosing either half in a closed surface. Then only

this single wire would cross this surface, and since the

sum of the currents leaving any closed surface must be

zero, the current in this wire must be zero. From



another point of view, there is no return path for a

current that would flow in this wire.

From KVL applied to the left-hand half of the circuit,

16I1 + 4V1 = 24. And for the right-hand half of the

circuit, Ohm’S law gives

Then, substituting for I1, in the KVL equation produces

3.27 Calculate I and Vab in the circuit of Fig. 3-13.

Fig. 3-13

Because of the open circuit between nodes a and b,

the middle branch has no effect on the current I.

Consequently, I can be obtained by applying KVL to the

outside loop. The total resistance of this loop is 2 + 8 +

5 + 9 = 24 Ω. And in the direction of I, the sum of the



voltage rises from voltage sources is 100 + 20= 120 V.

So, I = 120/24 = 5 A.

From the summing of voltage drops across the

right-hand branch, the voltage drop, top to bottom,

across the middle branch is 5(5) – 20 + 5(9) = 50 V.

Consequently, VBb – 50 – 30 = 20 V because there is

zero volts across the 10-Ω resistor.

3.28 Determine the voltage drop Vab across the open

circuit in the circuit of Fig. 3-14.

Fig. 3-14

Because of the open circuit, no current flows in the

9-Ω and 13-Ω resistors and so there is zero volts across

each of them. Also, then, all the 6-Ω source current

flows through the 10-Ω resistor and all the 8-A source

current flows through the 5-Ω resistor, making V1 = –

6(10) = – 60 V and V2 spectively. So, Vab, the voltage

drop from node a to b, is from summing voltage drops,



The 4-, 11-, 9-, 18-, and 13-Ω resistors have no effect on

this result.

3.29 Find the unknown currents in the circuit shown in Fig.

3-15. Find I1, first.

Fig. 3-15

The basic KCL approach is to find closed surfaces

such that only one unknown current flows across each

surface. In Fig. 3-15, the large dashed loop represents a

closed surface drawn such that I1 is the only unknown

current flowing across it. Other currents flowing across

it are the 10-, 8-, and 9-A currents. I1 and the 9-A

currents leave this closed surface, and the 8-A and 10-A

currents enter it. By KCL, the sum of the currents

leaving is zero: I1 + 9 – 8 – 10 = 0, or I1, = 9 A. I2 is

readily found from summing the currents leaving the

middle top node: I2 – 8 – 10 = 0, or I2 = 18 A. Similarly,

at the right top node, I3 + 8 – 9 = 0, and I3 = 1 A.

Checking at the left top node: 10 – I1 – I3 = 10 – 9 – 1 =

0, as it should be.

3.30 Find I for the circuit shown in Fig. 3-16.



Fig. 3-16

Since I is the only unknown current flowing across

the shown dashed loop, it can be found by setting to

zero the sum of the currents leaving this loop: I – 16 – 8

– 9 + 3 + 2 – 10 = 0, from which I = 38 A.

3.31 Find the short-circuit current I3 for the circuit shown

in Fig. 3-17.

Fig. 3-17

The short circuit places the 100 V of the left-hand voltage

source across the 20-Ω resistor, and it places the 200 V of

the right-hand source across the 25-Ω resistor. By Ohm’S

law, I1 = 100/20 = 5 A and I2 = –200/25 = –8 A. The

negative sign occurs in the I2 formula because of

nonassociated references.

From KCL applied at the top middle node, I3 = I1 + I2 =

5 – 8 = —3 A. Of course the negative sign in the answer



means that 3 A actually flows up through the short

circuit, opposite the direction of the I3 current reference

arrow.

3.32 Calculate V in the circuit of Fig. 3-18.

Fig. 3-18

The short circuit places all 36 V of the voltage

source across the 20-kΩ resistor. So, by Ohm’S law, I1 =

36/20 = 1.8 mA. (The kilohm-milliampere method was

used in finding I1.) Applying KCL to the top middle node

gives

Finally, by Ohm’s law,

3.33 Find the total conductance and resistance of four

parallel resistors having resistances of 1, 0.5, 0.25, and

0.125 Ω.

The total conductance is the sum of the individual

conductances:



The total resistance is the inverse of this total

conductance: RT = 1/GT = 1/15 = 0.0667 Ω

3.34 Find the total resistance of fifty 200-Ω resistors

connected in parallel.

The total resistance equals the common resistance

divided by the number of resistors: 200/50 = 4 Ω.

3.35 A resistor is to be connected in parallel with a 10-kΩ

resistor and a 20-kΩ resistor to produce a total

resistance of 12 kΩ. What is the resistance of the

resistor?

Assuming that the added resistor is a conventional

resistor, no added parallel resistor will give a total

resistance of 12 kΩ because the total resistance of

parallel resistors is always less than the least individual

resistance, which is 10 kΩ. With transistors, however, it

is possible to make a component that has a negative

resistance and that in parallel can cause an increase in

total resistance. Generally, however, the term resistor

means a conventional resistor that has only positive

resistance.

3.36 Three parallel resistors have a total conductance of

1.75 S. If two of the resistances are 1 and 2 Ω, what is

the third resistance?

The sum of the individual conductances equals the

total conductance:



The resistance of the third resistor is the inverse of this

conductance: R3 = 1/G3 = 1/0.25 = 4 Ω.

3.37 Without using conductances, find the total resistance

of two parallel resistors having resistances of 5 and 20

Ω.

The total resistance equals the product of the

individual resistances divided by the sum: RT = (5 ×

20)/(5 + 20) = 100/25 = 4 Ω.

3.38 Repeat Prob. 3.37 for three parallel resistors having

resistances of 12, 24, and 32 Ω.

One approach is to consider the resistances two at

a time. For the 12- and the 24-Ω resistances, the

equivalent resistance is

This combined with the 32-Ω resistance gives a total

resistance of

3.39 A 60-W, a 100-W, and a 200-W light bulb are

connected in parallel across a 120-V line. Obtain the

equivalent hot resistance of this combination from the

individual hot resistances of the bulbs.

From R = V2/P, the individual resistances are

1202/60 = 240 Ω, 1202, 100 = 144 Ω, and 1202/200 =

72 Ω. The 72- and 144-Ω resistances have an

equivalent resistance of (72 × 144)/(72 + 144) = 48 Ω.

The equivalent resistance of this and the 240-Ω



resistance is the total equivalent hot resistance: (240 ×

48)/(240 × 48) = 40 Ω. As a check, from the total power

of 360 W, RT, = V2/P = 1202/360 = 40 Ω.

3.40 Determine RT, in RT, = (4 + 24|| 12)||6.

It is essential to start evaluating inside the

parentheses, and then work out. By definition, the term

24 || 12 = (24 × 12)/(24 + 12) = 8. This adds to the 4:

4 + 8 = 12. The expression reduces to 12||6, which is

(12 × 6)/(12 + 6) = 4. Thus, RT = 4 Ω.

3.41 Find the total resistance RT of the resistor ladder

network shown in Fig. 3-19.

Fig. 3-19

To find the equivalent resistance of a ladder

network by combining resistances, always start at the

end opposite the input terminals. At this end, the series

4- and 8-Ω resistors have an equivalent resistance of 12

Ω. This combines in parallel with the 24-Ω resistance:

(24 × 12)/(24 + 12) = 8 Ω. This adds to the 3 and the 9

Ω of the series resistors for a sum of 8 + 3 + 9 = 20 Ω.

This combines in parallel with the 5-Ω resistance: (20 ×

5)/(20 + 5) = 4 Ω. RT, is the sum of this resistance and

the resistances of the series 16- and 14-Ω resistors: RT

= 4 + 16 + 14 = 34 Ω.



3.42 In the circuit shown in Fig. 3-20 find the total

resistance RT with terminals a and b (a) open-circuited,

and (b) short-circuited.

Fig. 3-20

(a) With terminals a and b open, the 40- and 90-Ω

resistors are in series, as are the 60- and 10-Ω

resistors. The two series combinations are in parallel;

so

(b) For terminals a and b short-circuited, the 40- and 60-Ω

resistors are in parallel, as are the 90- and 10-Ω

resistors. The two parallel combinations are in series,

making

3.43 A 90-A current flows into four parallel resistors

having resistances of 5, 6, 12, and 20 Ω. Find the

current in each resistor.



The total resistance is

This value times the current gives the voltage across

the parallel combination: 2 × 90 = 180 V. Then by

Ohm’s law, I5 = 180/5 = 36 A, I6 = 180/6 = 30 A, I12 =

180/12 = 15 A, and I20 = 180/20 = 9 A.

3.44 Find the voltage and unknown currents in the circuit

shown in Fig. 3-21.

Fig. 3-21

Even though it has several dots, the top line is just

a single node because the entire line is at the same

potential. The same is true of the bottom line. Thus,

there are just two nodes and one voltage V. The total

conductance of the parallel-connected resistors is G = 6

+ 12 + 24 + 8 = 50 S. Also, the total current entering

the top node from current sources is 190 – 50 + 60 =

200 A. This conductance and current can be used in the

conductance version of Ohm’S law, I = GV, to obtain

the voltage: V= I/G – 200/50 = 4 V. Since this is the

voltage across each resistor, the resistor currents are I1

= 6 × 4 = 24 A, I2 = – 12 × 4 = – 48 A, I3 = 24 × 4 =

96 A, and I4 = –8 × 4 = –32 A. The negative signs are

the result of non-associated references. Of course, all

the actual resistor currents leave the top node.



Note that the parallel current sources have the

same effect as a single current source, the current of

which is the algebraic sum of the individual currents

from the sources.

3.45 Use current division to find the currents I2 and I3 in

the circuit shown in Fig. 3-21.

The sum of the currents from current sources into

the top node is 190 – 50 + 60 = 200 A. Also, the sum of

the conductances is 6 + 12 + 24 + 8 = 50 S. By the

current division formula,

The formula for I2 has a negative sign because I2 has a

reference into the top node, and the sum of the currents

from current sources is also into the top node. For a

positive sign, one current in the formula must be into a

node and the other current must be out of the same

node.

3.46 A 90-A current flows into two parallel resistors

having resistances of 12 and 24 Ω. Find the current in

the 24-Ω resistor.

The current in the 24-Ω resistor equals the

resistance of the other parallel resistor divided by the

sum of the resistances, all times the input current:

As a check, this current results in a voltage of 30 × 24 =

720 V, which is also across the 12-Ω resistor. Thus, I12 =



720/12 = 60 A, and I24 + I12 = 30 + 60 = 90 A, which is

the input current.

3.47 Calculate V1 and V2 in the circuit of Fig. 3-22.

Fig. 3-22

A good first step is to solve for the controlling

current I in terms of V1: I = V1/5. Thus, the dependent

source current is, in terms of V1, 3(V1,/5) = 0.6V1,

directed downward. Then, KCL applied at the top right-

hand node gives

The voltage drop across the 12-Ω resistor is 9(12) =

108 V. Finally, KVL applied around the outside loop

results in V2 = 108 + 10 = 118 V. Observe that the 12-

Ω resistor has no effect on V1, but it does have an effect

on V2,

3.48 Calculate I and V in the circuit of Fig. 3-23.



Fig. 3-23

The source current of 40 mA flows into the parallel

resistors. So, by current division,

Then by KVL, V = –900 + 32(5) = –740 V. Observe that

although the voltage-source voltage has an effect on the

current-source voltage, it has no effect on the resistor

current I.

3.49 Use voltage division twice to find V1 in the circuit

shown in Fig. 3-24.

Fig. 3-24

Clearly, V1 can be found from V2 by voltage

division. And V2 can be found from the source voltage



by voltage division used with the equivalent resistance

to the right of the 16-Ω resistor. This resistance is

By voltage division,

A common error in finding V2 is to neglect the loading of

the resistors to the right of the V2 node.

3.50 Use current division twice to find I1 in the circuit

shown in Fig. 3-25.

Fig. 3-25

Obviously I1 can be found from I2 by current

division. And, if the total resistance of the bottom three

branches is found, current division can be used to find

I2 from the input current. The needed total resistance is



By the two-resistance form of the current division

formula,

Supplementary Problems

3.51 Determine the number of nodes, branches, loops,

and meshes in the circuit shown in Fig. 3-26.

Fig. 3-26

Ans. 6 nodes, 8 branches, 7 loops, 3 meshes

3.52 Find V1, V2, and V3 for the circuit shown in Fig. 3-26.

Ans. V1 = 26V, V2 = –21 V, V3 = 2 V

3.53 Four resistors in series have a total resistance of 500

Ω. If three of the resistors have resistances of 100, 150,



and 200 Ω, what is the resistance of the fourth resistor?

Ans. 50 Ω

3.54 Find the total conductance of 2-, 4-, 8-, and 10-S

resistors connected in series.

Ans. 1.03 S

3.55 A 60-W, 120-V light bulb is to be connected in series

with a resistor across a 277-V line. What is the

resistance and minimum power rating of the resistor

required if the light bulb is to operate under rated

conditions?

Ans. 314 Ω, 78.5 W

3.56 A series circuit consists of a dc voltage source and

4-, 5-, and 6-Ω resistors. If the current is 7 A, find the

source voltage.

Ans. 105 V

3.57 A 12-V battery with a 0.3-Ω internal resistance is to

be charged from a 15-V source. If the charging current

should not exceed 2 A, what is the minimum resistance

of a series resistor that will limit the current to this safe

value?

Ans. 1.2 Ω

3.58 A resistor in series with a 100-Ω resistor absorbs 80

W when the two are connected across a 240-V line.

Find the unknown resistance.

Ans. 20 or 500 Ω

3.59 A series circuit consists of a 4-V source and 2-, 4-,

and 6-Ω resistors. What is the minimum power rating of

each resistor if the resistors are available in power

ratings of  W, 1 W, and 2 W?



Ans. P2 =  W, P4 =  W, P6 = 1 W

3.60 Find Vab in the circuit shown in Fig. 3-27.

Fig. 3-27

Ans. 20 V

3.61 Use voltage division to find the voltage V4 in the

circuit shown in Fig. 3-27.

Ans. –8 V

3.62 A series circuit consists of a 100-V source and 4-, 5-,

6-, 7-, and 8-Ω resistors. Use voltage division to

determine the voltage across the 6-Ω resistor.

Ans. 20 V

3.63 Determine I in the circuit of Fig. 3-28.



Fig. 3-28

Ans. 3 A

3.64 Find V across the open circuit in the circuit of Fig. 3-

29.

Fig. 3-29

Ans. –45 V

3.65 Find the indicated unknown currents in the circuits

shown in Fig. 3-30.



Fig. 3-30

Ans. I1 = 2A, I2 = –6A, I3 = –5A, I4 = 3 A

3.66 Find the short-circuit current I in the circuit shown in

Fig. 3-31.

Fig. 3-31

Ans. 3 A

3.67 Calculate V1 in the circuit of Fig. 3-32.



Fig. 3-32

Ans. 96 V

3.68 What are the different resistances that can be

obtained with three 4-Ω resistors?

Ans. 1.33, 2, 2.67, 4, 6, 8, and 12 Ω

3.69 A 100-Ω resistor and another resistor in parallel have

an equivalent resistance of 75 Ω. What is the resistance

of the other resistor?

Ans. 300 Ω

3.70 Find the equivalent resistance of four parallel

resistors having resistances of 2, 4, 6, and 8 Ω.

Ans. 0.96 Ω

3.71 Three parallel resistors have a total conductance of

2 mS. If two of the resistances are 1 and 5 kΩ, what is

the third resistance?

Ans. 1.25 kΩ

3.72 The equivalent resistance of three parallel resistors

is 10 Ω. If two of the resistors have resistances of 40

and 60 Ω, what is the resistance of the third resistor?



Ans. 17.1 Ω

3.73 Determine RT in RT = (24||48 + 24) || 10.

Ans. 8 Ω

3.74 Determine RT in RT = (6|| 12 + 10||40) || (6 + 2).

Ans. 4.8 Ω

3.75 Find the total resistance RT of the resistor ladder

network shown in Fig. 3-33.

Fig. 3-33

Ans. 26.6 kΩ

3.76 Repeat Prob. 3.75 with all resistances doubled.

Ans. 53.2 kΩ

3.77 In the circuit shown in Fig. 3-34, find RT with

terminals a and b (a) open-circuited, and (b) short-

circuited.



Fig. 3-34

Ans. (a) 18.2 Ω, (b) 18.1 Ω

3.78 A 15-mA current flows into four parallel resistors

having resistances of 4, 6, 8, and 12 kΩ. Find each

resistor current.

Ans. I4 = 6mA, I6 = 4 m A, I8 = 3 m A, I12 = 2 m A

3.79 Repeat Prob. 3.78 with all resistances doubled.

Ans. Same currents

3.80 Find the unknown currents in the circuit shown in Fig.

3-35.



Fig. 3-35

Ans. I1 = –10A, I2 = –8A, I3 = 6sA, I4 = –2A, I5 = 12A

3.81 Find R1 and R2 for the circuit shown in Fig. 3-36.

Fig. 3-36

Ans. R1 = 20Ω, R2 = 5Ω

3.82 In the circuit shown in Fig. 3-36, let R1, = 6 Ω and R2

= 12 Ω. Then use current division to find the new

current in the R1 resistor.



Ans. 1.33 A

3.83 A 60-A current flows into a resistor network

described by RT = 40||(12 + 40||10). Find the current in

the 10-Ω resistor.

Ans. 32 A

3.84 A 620-V source connected to a resistor network

described by RT = 50 + R||20 provides 120 V to the 20-

Ω resistor. What is R?

Ans. 30 Q

3.85 Find I in the circuit shown in Fig. 3-37.

Fig. 3-37

Ans. 4 A

3.86 In the circuit shown in Fig. 3-38 there is a 120-V, 60-

W light bulb. What must be the supply voltage Vs for

the light bulb to operate under rated conditions?



Fig. 3-38

Ans. 285 V

3.87 In the circuit of Fig. 3-39, calculate I and also the

power absorbed by the dependent source.

Fig. 3-39

Ans. 2 A, 560 W

3.88 Use voltage division twice to find the voltage V in

the circuit shown in Fig. 3-40.



Fig. 3-40

Ans. 36 V

3.89 In the circuit shown in Fig. 3-41, use current division

twice to calculate the current I in the RL for (a) RL = 0Ω,

(b) RL = 5Ω, and (c) RL = 20 Ω.

Fig. 3-41

Ans. (a) 16 A, (b) 9.96 A, (c) 4.67 A

3.90 Use repeated current division in finding I in the

circuit of Fig. 3-42.



Fig. 3-42

Ans. 4 mA



Chapter 4


DC Circuit Analysis

CRAMER’S RULE

A knowledge of determinants is necessary for using

Cramer’s rule, which is a popular method for solving the

simultaneous equations that occur in the analysis of a circuit.

A determinant is a square arrangement of numbers between

two vertical lines, as follows:

in which each a is a number. The first and second subscripts

indicate the row and column, respectively, that each number

is in.

A determinant with two rows and columns is a second-

order determinant. One with three rows and columns is a

third-order determinant, and so on.

Determinants have values. The value of the second-order

determinant



is a11a22 – a21a12, which is the product of the numbers on the

principal diagonal minus the product of the numbers on the

other diagonal:

For example, the value of

is 8(–4) –6(–2) = –32 + 12 = –20.

A convenient method for evaluating a third-order

determinant is to repeat the first two columns to the right of

the third column and then take the sum of the products of

the numbers on the diagonals indicated by downward

arrows, as follows, and subtract from this the sum of the

products of the numbers on the diagonals indicated by

upward arrows. The result is

For example, the value of



from

is 180 – 168 – 120 – (280 – 80 – 162) = –146.

Evaluations of higher-order determinants require other

methods that will not be considered here.

Before Cramer’s rule can be applied to solve for the

unknowns in a set of equations, the equations must be

arranged with the unknowns on one side, say the left, of the

equal signs and the knowns on the right-hand side. The

unknowns should have the same order in each equation. For

example, I1 may be the first unknown in each equation, I2

the second, and so on. Then, by Cramer’s rule, each

unknown is the ratio of two determinants. The denominator

determinants are the same, being formed from the

coefficients of the unknowns. Each numerator determinant

differs from the denominator determinant in only one

column. For the first unknown, the numerator determinant

has a first column that is the right-hand side of the

equations. For the second unknown, the numerator

determinant has a second column that is the right-hand side

of the equations, and so on. As an illustration, for



CALCULATOR SOLUTIONS

Although using Cramer’s rule is popular, a much better

way to solve the simultaneous equations of interest here is

to use an advanced scientific calculator. No programming is

required, the equations are easy to enter, and solutions can

be obtained just by pressing a single key. Typically the

equations must be first placed in matrix form. But no

knowledge of matrix algebra is required.

To be placed in matrix form, the equations must be

arranged in exactly the same form as for using Cramer’s

rule, with the unknowns being in the same order in each

equation. Then, three matrices are formed from these

equations. As an illustration, for the following previously

considered equations,

the corresponding matrix equation is



Incidentally, a matrix comprising a single column is usually

referred to as a vector.

The elements of the three-by-three matrix are just the

coefficients of the unknowns and are identical to the

elements in the denominator determinant of Cramer’s rule.

The adjacent vector has elements that are the unknowns

being solved for, and the vector on the right-hand side has

elements that consist of the right-hand sides of the original

equations.

The elements of the vector on the right-hand side and the

elements of the coefficient matrix are then entered into a

calculator. The exact method of entering the elements

depends on the calculator used but should be simple to do.

Typically, the solutions are returned in a vector,.and they

appear in the same order as the corresponding quantity

symbols in the vector of unknowns.

The calculator method cannot be too strongly

recommended. The decrease in errors and the time saved

will quickly compensate the user for the little additional cost

that was required to purchase such a calculator. The

calculator should also be capable of solving simultaneous

equations that have complex, instead of just real,

coefficients, as will be required later for the analysis of

sinusoidally excited circuits.

SOURCE TRANSFORMATIONS

Depending on the type of analysis, a circuit with either no

voltage sources or no current sources may be preferable.

Because a circuit may have an undesired type of source, it is

convenient to be able to transform voltage sources to



equivalent current sources, and current sources to

equivalent voltage sources. For a transformation, each

voltage source should have a series internal resistance, and

each current source a parallel internal resistance.

Figure 4-la shows the transformation from a voltage source

to an equivalent current source, and Fig. 4-1b the

transformation from a current source to an equivalent

voltage source. This equivalence applies only to the external

circuit connected to these sources. The voltages and

currents of this external circuit will be the same with either

source. Internally, the sources are usually not equivalent.

Fig. 4-1

As shown, in the transformation of a voltage source to an

equivalent current source, the same resistor is in parallel

with the current source, and the source current equals the

original source voltage divided by the resistance of this

resistor. The current source arrow is directed toward the

terminal nearest the positive terminal of the voltage source.

In the transformation from a current source to an equivalent

voltage source, the same resistor is in series with the voltage

source, and the source voltage equals the original source

current times the resistance of this resistor. The positive

terminal of the voltage source is nearest the terminal toward

which the arrow of the current source is directed. This same

procedure applies to the transformations of dependent

sources.



MESH ANALYSIS

In mesh analysis, KVL is applied with mesh currents, which

are currents assigned to meshes, and preferably referenced

to flow clockwise, as shown in Fig. 4-2a.

Fig. 4-2

KVL is applied to each mesh, one at a time, using the fact

that in the direction of a current I, the voltage drop across a

resistor is IR, as shown in Fig. 4-2b. The voltage drops across

the resistors taken in the direction of the mesh currents are

set equal to the voltage rises across the voltage sources. As

an illustration, in the circuit shown in Fig. 4-2a, around mesh

1 the drops across resistors R1 and R3 are I1R1 and (I1 – I2)R3,

respectively, the latter because the current through R3 in the

direction of I1 is I1 – I2, The total voltage rise from voltage

sources is V1 – V3, in which V3 has a negative sign because it

is a voltage drop. So, the mesh equation for mesh 1 is

Notice that R1 + R3, the coefficient of I1, is the sum of the

resistances of the resistors in mesh 1. This sum is called the

self-resistance of mesh 1. Also, –R3, the coefficient of I2, is



the negative of the resistance of the resistor that is common

to or mutual to meshes 1 and 2. R3 is called the mutual

resistance. In mesh equations, mutual resistance terms

always have negative signs because the other mesh currents

always flow through the mutual resistors in directions

opposite to those of the principal mesh currents.

It is easier to write mesh equations using self-resistances

and mutual resistances than it is to directly apply KVL. Doing

this for mesh 2 results in

In a mesh equation, the voltage for a voltage source has a

positive sign if the voltage source aids the flow of the

principal mesh current—that is, if this current flows out of the

positive terminal—because this aiding is equivalent to a

voltage rise. Otherwise, a source voltage has a negative

sign.

For mesh analysis, the transformation of all current

sources to voltage sources is usually preferable because

there is no formula for the voltages across current sources.

If, however, a current source is positioned at the exterior of a

circuit such that only one mesh current flows through it, that

current source can remain because the mesh current through

it is known—it is the source current or the negative of it,

depending on direction. KVL is not applied to this mesh.

The number of mesh equations equals the number of

meshes minus the number of current sources, if there are

any.

LOOP ANALYSIS

Loop analysis is similar to mesh analysis, the principal

difference being that the current paths selected are loops

that are not necessarily meshes. Also, there is no convention



on the direction of loop currents; they can be clockwise or

counterclockwise. As a result, mutual terms can be positive

when KVL is applied to the loops.

For loop analysis, no current source need be transformed

to a voltage source. But each current source should have

only one loop current flowing through it so that the loop

current is known. Also, then KVL is not applied to this loop

because the current source voltage is unknown.

Obviously, the loops for the loop currents must be selected

such that every component has at least one loop current

flowing through it. The number of these loops equals the

number of meshes if the circuit is planar —that is, if the

circuit can be drawn on a flat surface with no wires crossing.

In general, the number of loop currents required is B – N + 1,

where B is the number of branches and N is the number of

nodes.

If the current through only one component is desired, the

loops should be selected such that only one loop current

flows through this component. Then, only one current has to

be solved for. In contrast, for mesh analysis, finding the

current through an interior component requires solving for

two mesh currents.

NODAL ANALYSIS

For nodal analysis, preferably all voltage sources are

transformed to current sources and all resistances are

converted to conductances. KCL is applied to all nodes but

the ground node, which is often indicated by a ground

symbol at the bottom node of the circuit, as shown in Fig. 4-

3a. As mentioned in Chap. 3, almost always the bottom node

is selected as the ground node even though any node can

be. Conventionally, voltages on all other nodes are

referenced positive with respect to the ground node. As a

consequence, showing node voltage polarity signs is not

necessary.



Fig. 4-3

In nodal analysis, KCL is applied to each nongrounded

node, one at a time, using the fact that in the direction of a

voltage drop V, the current in a resistor is GV, as shown in

Fig. 4-3b. The currents leaving a node through resistors are

set equal to the currents entering the node from current

sources. As an illustration, in the circuit shown in Fig. 4-3a,

the current flowing down through the resistor with

conductance G1, is G1 V1. The current to the right through

the resistor with conductance G3 is G3(V1 – V2). This current

is equal to the conductance times the voltage at the node at

which the current enters the resistor minus the voltage at

the node at which the current leaves the resistor. The

quantity (V1, – V2) is, of course, just the resistor voltage

referenced positive at the node at which the current enters

the resistor and negative at the node at which the current

leaves the resistor, as is required for associated references.

The current entering node 1 from current sources is I1 – I3, in

which I3 has a negative sign because it is actually leaving

node 1. So, the nodal equation for node 1 is



Notice that the V1 coefficient of G1 + G3 is the sum of the

conductances of the resistors connected to node 1. This sum

is called the self-conductance of node 1. The coefficient of V2

is – G3, the negative of the conductance of the resistor

connected between nodes 1 and 2. G3 is called the mutual

conductance of nodes 1 and 2. Mutual conductance terms

always have negative signs because all nongrounded node

voltages have the same reference polarity—all are positive.

It is easier to write nodal equations using self-

conductances and mutual conductances than it is to directly

apply KCL. Doing this for node 2 results in

The transformation of all voltage sources to current

sources is not absolutely essential for nodal analysis, but is

usually preferable for the shortcut approach with self-

conductances and mutual conductances. The problem with

voltage sources is that there is no formula for the currents

flowing through them. Nodal analysis, though, is fairly easy

to use with circuits having grounded voltage sources, each of

which has a terminal connected to ground. Such voltage

sources give known voltages at their nongrounded terminal

nodes, making it unnecessary to apply KCL at these nodes.

Other voltage sources—floating voltage sources—can be

transformed to current sources.

The number of nodal equations equals the number of

nongrounded nodes minus the number of grounded voltage

sources.

DEPENDENT SOURCES AND CIRCUIT ANALYSIS



Mesh, loop, and nodal analyses are about the same for

circuits having dependent sources as for circuits having only

independent sources. Usually, though, there are a few more

equations. Also, positive terms may appear in the circuit

equations where only negative mutual resistance or

conductance terms appear for circuits having no dependent

sources. Almost always, a good first step in the analysis of a

circuit containing dependent sources is to solve for the

dependent source controlling quantities in terms of the mesh

or loop currents or node voltages being solved for.

Solved Problems

4.1 Evaluate the following determinants:

(a) The product of the numbers on the principal diagonal

is 1 × 4 = 4, and for the numbers on the other diagonal

is – 2 × 3 = – 6. The value of the determinant is the

first product minus the second product: 4 –(–6) = 10.

(b) Similarly, the value of the second determinant is – 5(–

8) – 7(6) = 40 – 42 = –2.

4.2 Evaluate the following determinant:

One method of evaluation is to repeat the first two

columns to the right of the third column and then find



the products of the numbers on the diagonals, as

indicated:

The value of the determinant is the sum of the products

for the downward-pointing arrows minus the sum of the

products for the upward-pointing arrows:

4.3 Use Cramer’s rule to solve for the unknowns in

The first unknown V1 equals the ratio of two

determinants. The denominator determinant has

elements that are the coefficients of V1 and V2. The

numerator determinant differs only in having the first

column replaced by the right-hand sides of the

equations:



The denominator determinant for V2 has the same

value of 56. In the numerator determinant the second

column, instead of the first, is replaced by the right-

hand sides of the equations:

4.4 Use Cramer’s rule to solve for the unknowns in

All three unknowns have the same denominator

determinant of coefficients, which evaluates to

In the numerator determinants, the right-hand sides

of the equations replace the first column for I1, the

second column for I2, and the third column for I3:



4.5 Transform the voltage sources shown in Fig. 4-4 to

current sources.

Fig. 4-4

(a) The current of the equivalent current source equals the

voltage of the original voltage source divided by the

resistance: 21/3 = 7 A. The current direction is toward

node a because the positive terminal of the voltage

source is toward that node. The parallel resistor is the

same 3-Ω resistor of the original voltage source. The

equivalent current source is shown in Fig. 4-5a.



Fig. 4-5

(b) The current of the current source is 40/8 = 5 A. It is

directed toward node b because the positive terminal

of the voltage source is toward that node. The parallel

resistor is the same 8-Ω resistor of the voltage source.

Figure 4-5b shows the equivalent current source.

(c) The current of the current source is 8I1/2 = 4I1, with a

direction toward node a because the positive terminal

of the voltage source is toward that node. The parallel

resistor is the same 2-Ω resistor of the voltage source.

Figure 4-5c shows the equivalent current source.

4.6 Transform the current sources shown in Fig. 4-6 to

voltage sources.



Fig. 4-6

(a) The voltage of the equivalent voltage source equals

the current of the original current source times the

resistance: 5 × 4 = 20 V. The positive terminal is

toward node a because the direction of the current of

the original current source is toward that node. Of

course, the source resistance remains 4 Ω, but is in

series instead of in parallel. Figure 4-7a shows the

equivalent voltage source.



Fig. 4-7

(b) The voltage is 6 × 5 = 30 V, positive toward node b

because the direction of the current of the original

current source is toward that node. The source

resistance is the same 5 Ω, but is in series. The

equivalent voltage source is shown in Fig. 4-7b.

(c) The voltage is 3I1, × 6 = 18I1, positive toward node a

because the direction of the current of the current

source is toward that node. The source resistance is the

same 6 Ω but is in series. The equivalent voltage

source is shown in Fig. 4-7c.

4.7 Find the currents down through the resistors in the

circuit shown in Fig. 4-8. Then transform the current

source and 2-Ω resistor to an equivalent voltage source

and again find the resistor currents. Compare results.



Fig. 4-8

By current division, the current down through the 2-

Ω resistor is

The remainder of the source current (16 – 12 = 4 A) flows

down through the 6-Ω resistor.

Transformation of the current source produces a

voltage source of 16 × 2 = 32 V in series with a 2-Ω

resistor, all in series with the 6-Ω resistor, as shown in

the circuit of Fig. 4-9. In this circuit, the same current

32/(2 + 6) = 4 A flows through both resistors. The 6-Ω

resistor current is the same as for the original circuit,

but the 2-Ω resistor current is different. This result

illustrates the fact that although a transformed source

produces the same voltages and currents in the circuit

exterior to the source, the voltages and currents inside

the source usually change.



Fig. 4-9

4.8 For the circuit of Fig. 4-10, use repeated source

transformations to obtain a single mesh circuit, and

then find the current I.

Fig. 4-10

The first step is to transform the voltage source and

series resistor into a current source and parallel resistor.

The resistance does not change, but the source current

is 37.5/5 = 7.5 A directed upward. The 5-Ω resistor from

the source transformation is in parallel with the 20-Ω

resistor. Consequently, the combined resistance is (5 ×

20)/(5 + 20) = 4 Ω. The next step is to transform the

7.5-A current source and the parallel 4-Ω resistor into a

series voltage source and resistor. The resistance

remains the same, and the voltage of the voltage source

is 4(7.5) = 30 V, positive upward, as shown in the circuit

of Fig. 4-11, which is a single mesh circuit.



Fig. 4-11

The KVL equation for this circuit is 3I2 + 9I – 30 = 0,

from which the current I can be obtained by applying

the quadratic formula:

The solutions are I = 2 A and I = –5 A. Only the I = 2A is

physically possible. The current must be positive since in

the circuit of Fig. 4-11 there is only one source, and

current must flow out of the positive terminal of this

source.

4.9 Find the mesh currents in the circuit shown in Fig. 4-12.

Fig. 4-12

The self-resistance of mesh 1 is 5 + 6 = 11 Ω, and

the resistance mutual with mesh 2 is 6 Ω. The sum of

the source voltage rises in the direction of I1 is 62 – 16 =

46 V. So, the mesh 1 KVL equation is 11I1 – 6I2 = 46.

No KVL equation is needed for mesh 2 because I2 is

the only current flowing through the 4-A current source,

with the result that I2 = –4 A. The current I2 is negative

because its reference direction is down through the



current source, but the 4-A source current actually flows

up. Incidentally, a KVL equation cannot be written for

mesh 2 without introducing a variable for the voltage

across the current source because this voltage is

unknown.

The substitution of I2 = – 4 A into the mesh 1

equation results in

4.10 Determine the mesh currents in the circuit shown in

Fig. 4-13.

Fig. 4-13

The self-resistance of mesh 1 is 6 + 4 = 10 Ω, the

mutual resistance with mesh 2 is 4 Ω, and the sum of

the source voltage rises in the direction of I1 is 40 – 12 =

28 V. So, the mesh 1 KVL equation is 10I1, – 4I2 = 28.

Similarly, for mesh 2 the self-resistance is 4 + 12 =

16 Ω, the mutual resistance is 4Ω, and the sum of the

voltage rises from voltage sources is 24 + 12 = 36 V.

These give a mesh 2 KVL equation of –4I1 + 16I2 = 36.

Placing the two mesh equations together shows the

symmetry of coefficients (here –4) about the principal

diagonal as a result of the common mutual resistance:



A good way to solve these two equations is to add four

times the first equation to the second equation to

eliminate I2. The result is

This substituted into the second equation gives

4.11 Obtain the mesh currents in the circuit of Fig. 4-14.

Fig. 4-14

A good first step is to solve for the controlling

quantity Vx in terms of the mesh current I2. Clearly, Vx =

4I2, and consequently the voltage of the dependent

source is 0.5 Vx = 0.5(4I2) = 2I2. Then, the application of

KVL to the meshes gives



and

In matrix form, these simplify to

In the matrix of coefficients, the lack of symmetry about

the principal diagonal is the result of the action of the

dependent source. The solutions can be obtained by

using Cramer’s rule or, preferably, by using a calculator.

The mesh currents are I1 = –8 A and I2 = 1 A.

4.12 Find the mesh currents in the circuit shown in Fig. 4-

15.

Fig. 4-15

One analysis approach is to transform the 13-A

current source and parallel 5-Ω resistor into a voltage

source, as shown in the circuit of Fig. 4-16.



Fig. 4-16

The self-resistance of mesh 1 is 4 + 5 = 9 Ω, and

that of mesh 2 is 6 + 5 = 11 Ω. The mutual resistance is

5 Ω. The voltage rises from sources are 75 – 65 = 10 V

for mesh 1 and 65 – 13 = 52 V for mesh 2. The

corresponding mesh equations are

Multiplying the first equation by 5 and the second by 9

and then adding them eliminates I1:

This substituted into the first equation produces

From the original circuit shown in Fig. 4-15, the

current through the current source is I2–I3 = 13 A, and so



Another approach is to use the so-called supermesh

method, which is applicable when a circuit contains

internal current sources. Mesh currents are used, but for

each internal current source, KVL is applied to the loop

that would be a mesh if the current source were

removed. For the circuit of Fig. 4-15, this loop

(supermesh) comprises the 5-Ω and 6-Ω resistors and

the 13-V source. The KVL equation is 5(I3 – I1) + 6I2 = –

13. This, with the mesh 1 equation of 9I1 – 5I3 = 75,

comprises two equations with three unknowns. The

required third equation can be obtained by applying KCL

to either node of the current source, or, more simply, by

noting that the current up through the current source in

terms of mesh currents is I2 – I3. This current must, of

course, be equal to the 13 A of the source. So, the two

KVL equations are augmented with the single KCL

equation I2 – I3 = 13. In matrix form these equations are

The solutions are the same as obtained before: I1 = 5 A,

I2 = 7 A, and I3 = –6 A.

In general, for the supermesh approach, the K.VL

equations must be augmented with KCL equations, the

number of which is equal to the number of internal

current sources.

4.13 Find the mesh currents in the circuit shown in Fig. 4-

17.



Fig. 4-17

The self-resistances are 3 + 4 = 7 Ω. for mesh 1, 4 +

5 + 6 = 15 Ω for mesh 2, and 6 + 7 = 13 Ω for mesh 3.

The mutual resistances are 4 Ω for meshes 1 and 2, 6 Ω

for meshes 2 and 3, and 0 Ω for meshes 1 and 3. The

aiding source voltages are 42 + 25 = 67 V for mesh 1, –

25 – 57 – 70 = –152 V for mesh 2, and 70 + 4 = 74 V for

mesh 3. So, the mesh equations are

Notice the indicated symmetry of the mutual coefficients

about the principal diagonal, shown as a dashed line.

Because of the common mutual resistances, this

symmetry always occurs—unless a circuit has

dependent sources. Also, notice for each mesh that the

self-resistance is equal to or greater than the sum of the

mutual resistances because the self-resistance includes

the mutual resistances.

By Cramer’s rule,



4.14 Find the mesh currents in the circuit shown in Fig. 4-

18.

Fig. 4-18

The self-resistances are 3 + 4 + 5 = 12 Ω for mesh

1, 5 + 6 + 7 = 18 Ω for mesh 2, and 6 + 4 + 8 = 18 Ω

for mesh 3. The mutual resistances are 5 Ω for meshes 1

and 2, 6 Ω for meshes 2 and 3, and 4 Ω for meshes 1

and 3. The aiding source voltages are 150 – 100 – 74 = –

24 V for mesh 1, 74 + 15 + 23 = 112 V for mesh 2, and

100 – 191 – 15 = –106 V for mesh 3. So, the mesh

equations are



For a check, notice the symmetry of the coefficients

about the principal diagonal.

By Cramer’s rule,

4.15 Use mesh analysis in determining the power

absorbed by the dependent voltage source in the circuit

of Fig. 4-19.



Fig. 4-19

In terms of mesh currents, the dependent source

controlling quantity Ix is Ix = I1 – I2. So, the dependent

source provides a voltage of 20Ix – 20(I1 – I2). In writing

mesh equations for a circuit that has dependent

sources, a good approach is to temporarily ignore the

dependent sources, write the mesh equations using the

self- and mutual-resistance approach, and then add the

dependent source expressions to the pertinent

equations. The result of doing that here is

which simplify to

The solutions are I1 = 0.148 A, I2 = –0.3 A, and I3 =

0.256 A. Finally, the power absorbed by the dependent

source is equal to the source voltage times the current

flow into the positive-referenced terminal:



4.16 Use mesh analysis in finding V0 in the circuit of Fig.

4.20.

Fig. 4-20

As always for a circuit containing dependent

sources, a good first step is to solve for the dependent

source controlling quantities in terms of the quantities

being solved for, which are mesh currents here.

Obviously, Ix = I1 – I2 and V0 = 5I3. So, the dependent

current source provides a current of 1.5Ix = 1.5(I1 – I2)

and the dependent voltage source provides a voltage of

6V0 = 6(5I3) = 30I3.

The KVL equation for mesh 1 is (10 + 40)I1 – 40I2 +

30I3 = 20. Preferably, KVL should not be applied to

meshes 2 and 3 because of the dependent current

source that is in these meshes. But a good approach to

use is the supermesh method presented in Prob. 4.12.

Applying KVL to the mesh obtained by deleting this

current source gives the equation –30I3 + 40(I2 – I1) +

5I2 + 5I3 = 0. The necessary third independent

equation, 1.5(I1 – I2) = I3 – I2, is obtained by applying



KCL at a terminal of the dependent current source.

These three equations simplify to, in matrix form,

Then Cramer’s rule or, preferably, a calculator can be

used to obtain the current I3 = 0.792 A. Finally, V0 = 5I3

= 5(0.792) = 3.96 V.

4.17 Use loop analysis to find the current flowing to the

right through the 5-kΩ resistor in the circuit shown in

Fig. 4-21.

Fig. 4-21

Three loop currents are required because the circuit

has three meshes. Only one loop current should flow

through the 5-kΩ resistor so that only one current needs

to be solved for. The paths for the two other loop

currents can be selected as shown, but there are other

suitable paths.

As has been mentioned, since working with kilohms

is inconvenient, a common practice is to drop those

units—to divide each resistance by 1000. But then the



current answers will be in milliamperes. With this

approach, and from self-resistances, mutual resistances,

and aiding source voltages, the loop equations are

Notice the symmetry of the I coefficients about the

principal diagonal, just as for mesh equations. But there

is the difference that some of these coefficients are

positive. This is the result of two loop currents flowing

through a mutual resistor in the same direction—

something that cannot happen in mesh analysis if all

mesh currents are selected in the clockwise direction, as

is conventional.

From Cramer’s rule,

4.18 Use loop analysis to find the current down through

the 8-Ω resistor in the circuit shown in Fig. 4-22.



Fig. 4-22

Because the circuit has three meshes, the analysis

requires three loop currents. The loops can be selected

as shown, with only one current I1 flowing through the 8-

Ω resistor so that only one current needs to be solved

for. Also, only one loop current should flow through the

7-A source so that this loop current is known, making it

unnecessary to apply KVL to the corresponding loop.

There are other ways of selecting the loop current paths

to satisfy these conditions.

The self-resistance of the first loop is 6 + 8 = 14 Ω,

and the resistance mutual with the second loop is 6 Ω.

The 7-A current flowing through the 6-Ω resistor

produces a 42-V drop in the first loop. The resulting loop

equation is

The 6 coefficient of I2 is positive because I2 flows

through the 6-Ω resistor in the same direction as I1.

For the second loop, the self-resistance is 6 + 10 =

16 Ω, of which 6 Ω is mutual with the first loop.

The second loop equation is



The two loop equations together are

Multiplying the first equation by 8 and the second by –3

and then adding them eliminates I2:

4.19 Two 12-V batteries are being charged from a 16-V

generator. The internal resistances are 0.5 and 0.8 Ω for

the batteries and 2 Ω for the generator. Find the

currents flowing into the positive battery terminals.

The arrangement is basically parallel, with just two

nodes. If the voltage at the positive node with respect to

the negative node is called V, the current flowing away

from the positive node through the sources is

Multiplying by 4 produces

Consequently, the current into the 12-V battery with 0.5-

Ω internal resistance is (12.533 – 12)/0.5 = 1.07 A, and

the current into the other 12-V battery is (12.533 –

12)/0.8 = 0.667 A.



4.20 Determine the node voltages in the circuit shown in

Fig. 4-23,

Fig. 4-23

Using self-conductances and mutual conductances is

almost always best for getting the nodal equations. The

self-conductance of node 1 is 5 + 8 = 13 S, and the

mutual conductance is 8 S. The sum of the currents from

current sources into this node is 36 + 48 = 84 A. So, the

node 1 KCL equation is 13V1 – 8V2 = 84.

No KCL equation is needed for node 2 because a

grounded voltage source is connected to it, making V2 =

–5 V. Anyway, a KCL equation cannot be written for this

node without introducing a variable for the current

through the 5-V source because this current is unknown.

The substitution of V2 = – 5 V into the node 1

equation results in



4.21 Find the node voltages in the circuit shown in Fig. 4-

24.

Fig. 4-24

The self-conductance of node 1 is 6 + 4 = 10 S. The

conductance mutual with node 2 is 6 S, and the sum of

the currents into node 1 from current sources is 57 – 15

= 42 A. So, the node 1 KCL equation is 10V1 – 6V2 = 42.

Similarly, for node 2 the self-conductance is 6 + 8 =

14 S, the mutual conductance is 6 S, and the sum of the

input currents from current sources is 39 + 15 = 54 A.

These give a node 2 KCL equation of –6V1 + 14V2 = 54.

Placing the two nodal equations together shows the

symmetry of the coefficients (– 6 here) about the

principal diagonal as a result of the same mutual

conductance coefficient in both equations:

Three times the first equation added to five times the

second eliminates V1. The result is



This substituted into the first equation gives

4.22 Use nodal analysis in finding I in the circuit of Fig. 4-

25.

Fig. 4-25

The controlling quantity I in terms of node voltages

is I = V2/6. Consequently, the dependent current source

provides a current of 0.5I = 0.5(V2/6) = V2/12, and the

dependent voltage source provides a voltage of 12I =

12(V2/6) = 2V2.

Because of the presence of the dependent sources,

it may be best to apply KCL at nodes 1 and 2 on a

branch-to-branch basis instead of attempting to use a

shortcut method. Doing this gives



These simplify to

Adding these equations eliminates V1 and results in 2V2

= 36 or V2 = 18 V. Finally,

4.23 Find the node voltages in the circuit shown in Fig. 4-

26.

Fig. 4-26

One analysis approach is to transform the voltage

source and series resistor to a current source and

parallel resistor, as shown in the circuit of Fig. 4-27.



Fig. 4-27

The self-conductance of node 1 is 4 + 5 = 9 S, and

that of node 2 is 5 + 6 = 11 S. The mutual conductance

is 5 S. The sum of the currents into node 1 from current

sources is 75 – 65 = 10 A, and that into node 2 is 65 –

13 = 52 A. Thus, the corresponding nodal equations are

Except for V’s instead of I’s, these are the same

equations as for Prob. 4.12. Consequently, the answers

are the same: V1 = 5 V and V2 = 7 V. Circuits having

such similar equations are called duals.

From the original circuit shown in Fig. 4-26, the 13-V

source makes V3 13 V more negative than V2: V3 = V2 –

13 = 7 – 13 = –6V.

Another approach is to apply the so-called

supernode method, which is applicable for the nodal

analyses of circuits that contain floating voltage

sources. (A voltage source is floating if neither terminal

is connected to ground.) For this method, each floating

voltage source is enclosed in a separate loop, or closed

surface, as shown in Fig. 4-26 for the 13-V source. Then

KCL is applied to each closed surface as well as to the



nongrounded nodes to which no other voltage sources

are connected.

For the circuit of Fig. 4-26, KCL can be applied to

node 1 in the usual fashion. The result is 9V1 – 5V3 = 75.

For a supernode, it is best not to use any shortcuts but

instead to consider each branch current. For the

supernode shown this gives 6V2 + 5(V3 – V1) = –13.

Another independent equation is needed. It can be

obtained from the voltage drop across the floating

voltage source: V2 – V3 = 13. So, the two KCL equations

are augmented with a single KVL equation. In matrix

form these equations are

The solutions are, of course, the same: V1 = 5 V, V2 = 7

V, and V3 = –6 V.

In general, for the supernode approach, the KCL

equations must be augmented with KVL equations, the

number of which is equal to the number of floating

voltage sources.

4.24 Use nodal analysis to obtain the node voltages V1

and V2 in the circuit of Fig. 4-28.



Fig. 4-28

The controlling current Ix expressed in terms of node

voltages is Ix = (V1 – 6V2)/40. So, the dependent current

source provides a current of 1.5Ix = 1.5(V1 – 6V2)/40.

Applying KCL to nodes 1 and 2 produces

These simplify to

which have solutions of V1 = 10.4 V and V2 = 3.96 V, as

can easily be obtained.

The circuit of Fig. 4-28 is the same as that of Fig. 4-

20 of Prob. 4.16 in which mesh analysis was used.

Observe that nodal analysis is easier to apply than mesh

analysis since there is one less equation and the

equations are easier to obtain. Often, but not always,

one analysis method is best. The ability to select the

best analysis method comes mostly from experience.



The first step should always be to check the number of

required equations for the various analysis methods:

mesh, loop, and nodal.

4.25 Obtain the nodal equations for the circuit shown in

Fig. 4-29.

Fig. 4-29

The self-conductances are 3 + 4 = 7 S for node 1, 4

+ 5 + 6 = 13 S for node 3. The mutual conductances

are 4S for nodes 1 and 2, = 15S for node 2, and 6 + 7 =

6S for nodes 2 and 3, and 0 S for nodes 1 and 3. The

currents flowing into the nodes from current sources are

42 + 25 = 67 A for node 1, – 25 – 57 – 70 = –152 A for

node 2, and 70 + 4 = 74 A for node 3. So, the nodal

equations are

Notice the symmetry of coefficients about the principal

diagonal. This symmetry always occurs for circuits that

do not have dependent sources.

Since this set of equations is the same as that for

Prob. 4.13, except for having V’s instead of I’s, the



answers are the same: V1 = 5 V, V2 = –8 V, and V3 = 2

V.

4.26 Obtain the nodal equations for the circuit shown in

Fig. 4-30.

Fig. 4-30

The self-conductances are 3 + 4 + 5 = 12 S for node

1, 5 + 6 + 7= 18 S for node 2, and 6 + 4 + 8 = 18 S for

node 3. The mutual conductances are 5 S for nodes 1

and 2, 6 S for nodes 2 and 3, and 4 S for nodes 1 and 3.

The currents into the nodes from current sources are

150 – 100 – 74 = –24 A for node 1, 74 + 15 + 23 = 112

A for node 2, and 100 – 191 – 15 = –106 A for node 3.

So, the nodal equations are

As a check, notice the symmetry of the coefficients

about the principal diagonal.



Since these equations are basically the same as

those in Prob. 4.14, the answers are the same: V1 = –2

V, V2 = 4 V, and V3 = –5 V.

4.27 Figure 4-31 shows a transistor with a bias circuit. If Ic

= 50IB and if VBE = 0.7 V, find VCE.

Fig. 4-31

Perhaps the best way to find VCE is to first find IB and

Ic, and from them the voltage drops across the 1.5-kΩ

and 250-Ω resistors. Then, use KVL on the right-hand

mesh and obtain VCE from 9 V minus these two drops.

IB can be found from the two left-hand meshes. The

current through the 250-Ω resistor is Ic + IB = 50IB + IB

= 51IB, giving a voltage drop of (51IB)(250). This drop

added to VBE is the drop across the 700-Ω resistor. Thus,

the current through this resistor is [0.7 + (51IB)

(250)]/700. From KCL applied at the left-hand node, this

current plus IB is the total current flowing through the 3-

kΩ resistor. The voltage drop across this resistor added

to the drop across the 700-Ω resistor equals 9 V, as is

evident from the outside loop:



From this, IB = 75.3 μA. So, Ic = 50IB = 3.76 mA and

Supplementary Problems

4.28 Evaluate the following determinants:

Ans. (a) –18, (b) 1708

4.29 Evaluate the following determinants:

Ans, (a) 23 739, (b) –26 022

4.30 Use Cramer’s rule to solve for the unknowns in

Ans. (a) V1 = –2V, V2 = 4V; (b) I1 = 17 A, I2 = –24 A

4.31 Without using Cramer’s rule or the matrix-calculator

approach, solve for the unknowns in



Ans. (a) I1 = –9 A, I2 = 11 A; (b) V1 = 20 V, V2 = 13 V

4.32 Use Cramer’s rule to solve for the unknowns in

Ans. V1 – 11 V, V2 = 21 V, V3 = –39 V

4.33 What is the current-source equivalent of a 12-V

battery with a 0.5-Ω internal resistance?

Ans. I = 24 A, R = 0.5 Ω

4.34 What is the voltage-source equivalent of a 3-A

current source in parallel with a 2-kΩ resistor?

Ans. V = 6kV, R = 2 kΩ

4.35 Use repeated source transformations in obtaining I in

the circuit of Fig. 4-32.

Fig. 4-32

Ans. 2 A



4.36 Find the mesh currents in the circuit shown in Fig. 4-

33.

Fig. 4-33

Ans. I1 = 3 A, I2 = –8A, I3 = 7 A

4.37 Solve for the mesh currents in the circuit shown in

Fig. 4-34.

Fig. 4-34

Ans. I1 = 5 mA, I2 = –2 mA

4.38 Repeat Prob. 4.37 with the 24-V source changed to –

1 V.

Ans. I1 = 7 mA, I2 = 1 mA



4.39 Two 12-V batteries in parallel provide current to a

light bulb that has a hot resistance of 0.5 Ω. If the

battery internal resistances are 0.1 and 0.2 Ω, find the

power consumed by the light bulb.

Ans. 224 W

4.40 Determine Ix in the circuit of Fig. 4-35.

Fig. 4-35

Ans. –4.86 mA

4.41 Calculate the mesh currents in the circuit of Fig. 4-36.

Fig. 4-36

Ans. I1 = 2 mA, I2 = –3 mA, I3 = 4 mA

4.42 Find the mesh currents in the circuit shown in Fig. 4-

37.



Fig. 4-37

Ans. I1 = –2mA, I2 = 6mA, I3 = 4 mA

4.43 Double the voltages of the voltage sources in the

circuit shown in Fig. 4-37 and redetermine the mesh

currents. Compare them with the original mesh

currents.

Ans. I1 = –4 mA, I2 = 12mA, I3 = 8 mA, double

4.44 Double the resistances of the resistors in the circuit

shown in Fig. 4-37 and redetermine the mesh currents.

Compare them with the original mesh currents.

Ans. I1 = –1mA, I2 = 3 mA, I3 = 2 mA, half

4.45 Repeat Prob. 4.42 with the three voltage-source

changes of 176 to 108 V, 112 to 110 V, and 48 to 66 V.

Ans. I1 = 3 mA, I2 = 4 mA, I3 = 5 mA

4.46 For a certain three-mesh circuit, the self-resistances

are 20, 25, and 32 Ω for meshes 1, 2, and 3,

respectively. The mutual resistances are 10 Ω for

meshes 1 and 2, 12 Ω for meshes 2 and 3, and 6 Ω for

meshes 1 and 3. The aiding voltages from voltage

sources are –74, 227, and –234 V for meshes 1, 2, and

3, respectively. Find the mesh currents.



Ans. I1 = –3A, I2 = 5A, I3 = –6A

4.47 Repeat Prob. 4.46 for the same self-resistances and

mutual resistances, but for aiding source voltages of

146, –273, and 182 V for meshes 1, 2, and 3,

respectively.

Ans. I1 = 5A, I2 = –7A, I3 = 4A

4.48 Obtain the mesh currents in the circuit of Fig. 4-38.

Fig. 4-38

Ans. I1 = –0.879 mA, I2 = –6.34 mA, I3 = –10.1mA

4.49 Determine the mesh currents in the circuit of Fig. 4-

39.



Fig. 4-39

Ans. I1 = –3.26 mA, I2 = –1.99 mA, I3 = 1.82 mA

4.50 Use loop analysis to find the current flowing down

through the 6-Ω resistor in the circuit shown in Fig. 4-33.

Ans. 11 A

4.51 Use loop analysis to find the current flowing to the

right through the 8-kΩ resistor in the circuit shown in

Fig. 4-37.

Ans. 2 mA

4.52 Use loop analysis to find the current I in the circuit

shown in Fig. 4-40.



Fig. 4-40

Ans. 0.375 A

4.53 Obtain the node voltages in the circuit shown in Fig.

4-41.

Fig. 4-41

Ans. V1 = –8V, V2 = 3V, V3 = 7 V

4.54 Find the node voltages in the circuit shown in Fig. 4-

42.



Fig. 4-42

Ans. V1 = 5V, V2 = – 2 V

4.55 Double the currents from the current sources in the

circuit shown in Fig. 4-42 and redetermine the node

voltages. Compare them with the original node

voltages.

Ans. V1 = 10V, V2 = –4V, double

4.56 Double the conductances of the resistors in the

circuit shown in Fig. 4-42 and redetermine the node

voltages. Compare them with the original node

voltages.

Ans. V1 = 2.5 V, V2 = – 1 V, half

4.57 Repeat Prob. 4.54 with the 24-A source changed to –

1 A.

Ans. V1 = 7 V, V2 = 1 V

4.58 Find V0 for the circuit shown in Fig. 4-43.



Fig. 4-43

Ans. –50 V

4.59 Find V in the circuit shown in Fig. 4-44.

Fig. 4-44

Ans. 180V

4.60 Calculate the node voltages in the circuit of Fig. 4-45.

Fig. 4-45



Ans. V1 = –63.5 V, V2 = 105.9 V

4.61 Find the voltages V1, V2, and V3 in the circuit shown

in Fig. 4-46.

Fig. 4-46

Ans. V1 = 5V, V2 = –2V, V3 = 3 V

4.62 Find the node voltages in the circuit shown in Fig. 4-

47.

Fig. 4-47

Ans. V1 = –2 V, V2 = 6 V, V3 = 4 V

4.63 Repeat Prob. 4.62 with the three current-source

changes of 176 to 108 A, 112 to 110 A, and 48 to 66 A.

Ans. V1= 3V, V2 = 4 V, V3 = 5 V



4.64 For a certain four-node circuit, including a ground

node, the self-conductances are 40, 50, and 64 S for

nodes 1, 2, and 3, respectively. The mutual

conductances are 20 S for nodes 1 and 2, 24 S for

nodes 2 and 3, and 12 S for nodes 1 and 3. Currents

flowing in current sources connected to these nodes are

74 A away from node 1, 227 A into node 2, and 234 A

away from node 3. Find the node voltages.

Ans. V1 = –1.5 V, V2 = 2.5 V, V3 = –3 V

4.65 Repeat Prob. 4.64 for the same self-conductances

and mutual conductances, but for source currents of

292 A into node 1, 546 A away from node 2, and 364 A

into node 3.

Ans. V1 = 5V, V2 = –7 V, V3 = 4 V

4.66 In the circuit shown in Fig. 4-48, find VCE if Ic = 30IB

and VBE = 0.7 V.

Fig. 4-48

Ans. 3.68 V

4.67 Repeat Prob. 4.66 with the dc voltage source

changed to 9 V and the collector resistor changed from



2 kΩ to 2.5 kΩ.

Ans. 2.89 V



Chapter 5


DC Equivalent Circuits, Network

Theorems, and Bridge Circuits

INTRODUCTION

Network theorems are often important aids for network

analyses. Some theorems apply only to linear, bilateral circuits, or

portions of them. A linear electric circuit is constructed of linear

electric elements as well as of independent sources. A linear

electric element has an excitation-response relation such that

doubling the excitation doubles the response, tripling the

excitation triples the response, and so on. A bilateral circuit is

constructed of bilateral elements as well as of independent

sources. A bilateral element operates the same upon reversal of

the excitation, except that the response also reverses. Resistors

are both linear and bilateral if they have voltage-current relations

that obey Ohm’s law. On the other hand, a diode, which is a

common electronic component, is neither linear nor bilateral.

Some theorems require deactivation of independent sources.

The term deactivation refers to replacing all independent sources

by their internal resistances. In other words, all ideal voltage

sources are replaced by short circuits, and all ideal current sources

by open circuits. Internal resistances are not affected, nor are

dependent sources. Dependent sources are never deactivated in

the application of any theorem.

THÉVENIN’S AND NORTON’S THEOREMS

Thévenin’s and Norton’s theorems are probably the most

important network theorems. For the application of either of them,

a network is divided into two parts, A and B, as shown in Fig. 5-la,



with two joining wires. One part must be linear and bilateral, but

the other part can be anything.

Thévenin’s theorem specifies that the linear, bilateral part, say

part A, can be replaced by a Thévenin equivalent circuit consisting

of a voltage source and a resistor in series, as shown in Fig. 5-1b,

without any changes in voltages or currents in part B. The voltage

VTh of the voltage source is called the Thévenin voltage, and the

resistance RTh of the resistor is called the Thévenin resistance.

As should be apparent from Fig. 5-lb, VTh is the voltage across

terminals a and b if part B is replaced by an open circuit. So, if the

wires are cut at terminals a and b in either circuit shown in Fig. 5-1,

and if a voltmeter is connected to measure the voltage across

these terminals, the voltmeter reading is VTh. This voltage is

almost always different from the voltage across terminals a and b

with part B connected. The Thévenin or open-circuit voltage Vn is

sometimes designated by Voc.

Fig. 5-1

With the joining wires cut, as shown in Fig. 5-2a, RTh is the

resistance of part A with all independent sources deactivated. In

other words, if all independent sources in part A are replaced by

their internal resistances, an ohmmeter connected to terminals a

and b reads Thévenin’s resistance.



Fig. 5-2

If in Fig. 5-2a the resistors in part A are in a parallel-series

configuration, then RTh can be obtained readily by combining

resistances. If, however, part A contains dependent sources

(remember, they are not deactivated), then, of course, resistance

combination is not applicable. But in this case the approach shown

in Fig. 5-2b can be used. An independent source is applied, either

voltage or current and of any value, and RTh obtained from the

resistance “seen” by this source. Mathematically,

So, if a source of voltage Vs is applied, then Is is calculated for this

ratio. And if a source of current Is is applied, then Vs is calculated.

The preferred source, if any, depends on the configuration of part

A.

Thévenin’s theorem guarantees only that the voltages and

currents in part B do not change when part A is replaced by its

Thévenin equivalent circuit. The voltages and currents in the

Thévenin circuit itself are almost always different from those in the

original part A, except at terminals a and b where they are the

same, of course.

Although RTh is often determined by finding the resistance at

terminals a and b with the connecting wires cut and the

independent sources deactivated, it can also be found from the

current Isc that flows in a short circuit placed across terminals a

and b, as shown in Fig. 5-3a. As is apparent from Fig. 5-3b, this

short-circuit current from terminal a to b is related to the Thévenin

voltage and resistance. Specifically,



Fig. 5-3

So, RTh is equal to the ratio of the open-circuit voltage at terminals

a and b and the short-circuit current between them. With this

approach to determining RTh, no sources are deactivated.

From VTh = IscRTh, it is evident that the Thévenin equivalent can

be obtained by determining any two of the quantities VTh, Isc, and

RTh. Common sense dictates that the two used should be the two

that are the easiest to determine.

The Norton equivalent circuit can be derived by applying a

source transformation to the Thévenin equivalent circuit, as

illustrated in Fig. 5-4a. The Norton equivalent circuit is sometimes

illustrated as in Fig. 5-4b, in which IN = VTh/RTh and RN = RTh.

Notice that, if a short circuit is placed across terminals a and b in

the circuit shown in Fig. 5-4b, the short-circuit current Isc from

terminal a to b is

Fig. 5-4



equal to the Norton current IN. Often in circuit diagrams, the

notation ISC is used for the source current instead of IN. Also, often

RTh is used for the resistance instead of RN.

In electronic circuit literature, an electronic circuit with a load is

often described as having an output resistance Rout. If the load is

disconnected and if the source at the input of the electronic circuit

is replaced by its internal resistance, then the output resistance

Rout of the electronic circuit is the resistance “looking in” at the

load terminals. Clearly, it is the same as the Thévenin resistance.

An electronic circuit also has an input resistance Rin, which is the

resistance that appears at the input of the circuit. In other words, it

is the resistance “seen” by the source. Since an electronic circuit

typically contains the equivalent of dependent sources, the input

resistance is determined in the same way that a Thévenin

resistance is often obtained—by applying a source and

determining the ratio of the source voltage to the source current.

MAXIMUM POWER TRANSFER THEOREM

The maximum power transfer theorem specifies that a resistive

load receives maximum power from a linear, bilateral dc circuit if

the load resistance equals the Thévenin resistance of the circuit as

“seen” by the load. The proof is based on calculus. Selecting the

load resistance to be equal to the circuit Thévenin resistance is

called matching the resistances. With matching, the load voltage is

KTh/2, and so the power consumed by the load is (VTh/2)2 / RTh =

V2
Th/4RTh.

SUPERPOSITION THEOREM

The superposition theorem specifies that, in a linear circuit

containing several independent sources, the current or voltage of a

circuit element equals the algebraic sum of the component

voltages or currents produced by the independent sources acting

alone. Put another way, the voltage or current contribution from

each independent source can be found separately, and then all the

contributions algebraically added to obtain the actual voltage or

current with all independent sources in the circuit.



This theorem applies only to independent sources—not to

dependent ones. Also, it applies only to finding voltages and

currents. In particular, it cannot be used to find power in dc

circuits. Additionally, the theorem applies to each independent

source acting alone, which means that the other independent

sources must be deactivated. In practice, though, it is not essential

that the independent sources be considered one at a time; any

number can be considered simultaneously.

Because applying the superposition theorem requires several

analyses, more work may be done than with a single mesh, loop,

or nodal analysis with all sources present. So, using the

superposition theorem in a dc analysis is seldom advantageous. It

can be useful, though, in the analyses of some of the operational-

amplifier circuits of the next chapter.

MILLMAN’s THEOREM

Millman’s theorem is a method for reducing a circuit by

combining parallel voltage sources into a single voltage source. It

is just a special case of the application of Thévenin’s theorem.

Figure 5-5 illustrates the theorem for only three parallel voltage

sources, but the theorem applies to any number of such sources.

The derivation of Millman’s theorem is simple. If the voltage

sources shown in Fig. 5-5a are transformed to current sources (Fig.

5-5b) and the currents added, and if the conductances are added,

the result is a single current source of G1V1 + G2 V2 + G3V3 in

parallel with a resistor having a conductance of G1 + G2 + G3 (Fig.

5-5c). Then, the transformation of this current source to a voltage

source gives the final result indicated in Fig. 5-5d. In general, for N

parallel voltage sources the Millman voltage source has a voltage

of



Fig. 5-5

and the Millman series resistor has a resistance of

Note from the voltage source formula that, if all the sources have

the same voltage, this voltage is also the Millman source voltage.

Y-Δ AND Δ-Y TRANSFORMATIONS

Figure 5-6a shows a Y (wye) resistor circuit and Fig. 5-6b a Δ

(delta) resistor circuit. There are other names. If the Y circuit is

drawn in the shape of a T, it is also called a T (tee) circuit. And if

the Δ circuit is drawn in the shape of a π, it is also called a π (pi)

circuit.



Fig. 5-6

It is possible to transform a Y to an equivalent Δ and also a Δ to

an equivalent Y. The corresponding circuits are equivalent only for

voltages and currents external to the Y and Δ circuits. Internally,

the voltages and currents are different.

Transformation formulas can be found from equating resistances

between two lines to a Δ and a Y when the third line to each is

open. This equating is done three times, with a different line open

each time. Some algebraic manipulation of the results produces

the following Δ-to-Y transformation formulas:

Also produced are the following Y-to-Δ transformation formulas:

Notice in the Δ-to-Y transformation formulas that the

denominators are the same: R1 + R2 + R3, the sum of the A

resistances. In the Y-to-Δ transformation formulas, the numerators

are the same: RARB + RARC + RBRC the sum of the different

products of the Y resistances taken two at a time.

Drawing the Y inside the Δ, as in Fig. 5-7, is a good aid for

remembering the numerators of the Δ-to-Y transformation



formulas and the denominators of the Y-to-Δ transformation

formulas. For each Y resistor in the Δ-to-Y transformation formulas,

the two resistances in each numerator product are those of the

two Δ resistors adjacent to the Y resistor being found. In the Y-to-Δ

transformation formulas, the single Y resistance in each

denominator is that of the Y resistor opposite the Δ resistor being

found.

If it happens that each Y resistor has the same value RY, then

each resistance of the corresponding Δ is 3RY, as the formulas

give. And if each Δ resistance is RΔ, then each resistance of the

corresponding Y is RΔ/3. So, in this special but fairly common case,

RΔ = 3RY and, of course, RY = RΔ/3.

Fig. 5-7

BRIDGE CIRCUITS

As illustrated in Fig. 5-8a, a bridge resistor circuit has two joined

Δ’s or, depending on the point of view, two joined Y’s with a shared

branch. Although the circuit usually appears in this form, the forms

shown in Fig. 5-8b and c are also common. The circuit illustrated in

Fig. 5-8c is often called a lattice. If a Δ part of a bridge is

transformed to a Y, or a Y part transformed to a Δ, the circuit



becomes series-parallel. Then the resistances can be easily

combined, and the circuit reduced.

Fig. 5-8

A bridge circuit can be used for precision resistance

measurements. A Wheatstone bridge has a center branch that is a

sensitive current indicator such as a galvanometer, as shown in

Fig. 5-9. Three of the other branches are precision resistors, one of

which is variable as indicated. The fourth branch is the resistor

with the unknown resistance Rx that is to be measured.

Fig. 5-9

For a resistance measurement, the resistance R2 of the variable

resistor is adjusted until the galvanometer needle does not deflect

when the switch in the center branch is closed. This lack of

deflection is the result of zero voltage across the galvanometer,

and this means that, even with the switch open, the voltage across



R1 equals that across R2, and the voltage across R3 equals that

across Rx. In this condition the bridge is said to be balanced. By

voltage division,

Taking the ratio of the two equations produces the bridge balance

equation:

Presumably, R1 and R3 are known standard resistances and a dial

connected to R2 gives this resistance so that Rx can be solved for.

Of course, a commercial Wheatstone bridge has dials that directly

indicate Rx upon balance.

A good way to remember the bridge balance equation is to

equate products of the resistances of opposite branch arms: R1 Rx

= R2R3. Another way is to equate the ratio of the top and bottom

resistances of one side to that of the other: R1/R3 = R2/Rx.

Solved Problems

5.1 A car battery has an open-circuit terminal voltage of 12.6 V.

The terminal voltage drops to 10.8 V when the battery

supplies 240 A to a starter motor. What is the Thévenin

equivalent circuit for this battery?

The Thévenin voltage is the 12.6-V open-circuit voltage

(VTh = 12.6 V). The voltage drop when the battery supplies

240 A is the same drop that would occur across the Thévenin

resistor in the Thévenin equivalent circuit because this resistor

is in series with the Thévenin voltage source. From this drop,



5.2 Find the Thévenin equivalent circuit for a dc power supply

that has a 30-V terminal voltage when delivering 400 mA and

a 27-V terminal voltage when delivering 600 mA.

For the Thévenin equivalent circuit, the terminal voltage is

the Thévenin voltage minus the drop across the Thévenin

resistor. Consequently, from the two specified conditions of

operation,

Subtracting,

from which

This value of RTh substituted into the first equation gives

5.3 Find the Thévenin equivalent circuit for a battery box

containing four batteries with their positive terminals

connected together and their negative terminals connected

together. The open-circuit voltages and internal resistances of

the batteries are 12.2 V and 0.5 Ω, 12.1 V and 0.1 Ω, 12.4 V

and 0.16 Ω, and 12.4 V and 0.2 Ω.

The first step is to transform each voltage source to a

current source. The result is four ideal current sources and

four resistors, all in parallel. The next step is to add the

currents from the current sources and also to add the



conductances of the resistors, the effect of which is to

combine the current sources into a single current source and

the resistors into a single resistor. The final step is to

transform this source and resistor to a voltage source in series

with a resistor to obtain the Thévenin equivalent circuit.

The currents of the equivalent sources are

which add to

The conductances add to

From this current and conductance, the Thévenin voltage and

resistance are

5.4 Find the Norton equivalent circuit for the power supply of

Prob. 5.2 if the terminal voltage is 28 V instead of 27 V when

the power supply delivers 600 mA.

For the Norton equivalent circuit, the load current is the

Norton current minus the loss of current through the Norton

resistor. Consequently, from the two specified conditions of

operation,



Subtracting,

or

Substituting this into the first equation gives

5.5 What resistor draws a current of 5 A when connected across

terminals a and b of the circuit shown in Fig. 5-10?

Fig. 5-10

A good approach is to use Thévenin’s theorem to simplify

the circuit to the Thévenin equivalent of a VTh voltage source

in series with an RTh resistor. Then the load resistor R is in

series with these, and Ohm’s law can be used to find R:



The open-circuit voltage at terminals a and b is the

voltage across the 20-Ω resistor since there is 0 V across the

6-Ω resistor because no current flows through it. By voltage

division this voltage is

RTh is the resistance at terminals a and b with the 100-V

source replaced by a short circuit. This short circuit places the

5-and 20-Ω resistors in parallel for a net resistance 5||20 = 4Ω.

So. RTh = 6 + 4 =10Ω.

With VTh and RTh known, the load resistance R for a 5-A

current can be found from the previously derived equation:

5.6 In the circuit shown in Fig. 5-11, find the base current IB if Ic

= 30IB. The base current is provided by a bias circuit

consisting of 54- and 9.9-kΩ resistors and a 9-V source. There

is a 0.7-V drop from base to emitter.



Fig. 5-11

One way to find the base current is to break the circuit at

the base lead and determine the Thévenin equivalent of the

bias circuit. For this approach it helps to consider the 9-V

source to be two 9-V sources, one of which is connected to the

1.6-kΩ collector resistor and the other of which is connected

to the 54-kΩ bias resistor. Then the bias circuit appears as

illustrated in Fig. 5-12a. From it, the voltage VTh is, by voltage

division,

Replacing the 9-V source by a short circuit places the 54- and

9.9-kΩ resistors in parallel for an RTh of

and the circuit simplifies to that shown in Fig. 5-12b.

Fig. 5-12

From KVL applied to the base loop, and from the fact that

IC + IB = 31IB flows through the 540-Ω emitter resistor,



from which

Of course, the simplifying kilohm-milliampere method was

used in some of the calculations.

5.7 Find the Thévenin equivalent circuit at terminals a and b of

the circuit with transistor model shown in Fig. 5-13.

Fig. 5-13

The open-cirCuit voltage is 500 × 30IB = 15 000IB, positive

at terminal b. From the base circuit, IB = 10/1000 A = 10 mA.

Substituting in for IB gives

The best way to find RTh is to deactivate the independent

10-V source and determine the resistance at terminals a and

b. With this source deactivated, IB = 0 A, and so 30IB = 0 A,

which means that the dependent current source acts as an

open circuit—it produces zero current regardless of the

voltage across it. The result is that the resistance at terminals

a and b is just the shown 500 Ω.

The Thévenin equivalent circuit is a 500-Ω resistor in

series with a 150-V source that has its positive terminal

toward terminal b, as shown-in Fig. 5-14.



Fig. 5-14

5.8 What is the Norton equivalent circuit for the transistor circuit

shown in Fig. 5-15?

Fig. 5-15

A good approach is to first find Isc, which is the Norton

current IN; next find Voc, which is the Thévenin voltage VTh;

and then take their ratio to obtain the Norton resistance RN,

which is the same as RTh.

Placing a short circuit across terminals a and b makes Vc =

0 V, which in turn causes the dependent voltage source in the

base circuit to be a short circuit. As a result, IB = 1/2000 A =

0.5 mA. This short circuit also places 0 V across the 40-kΩ

resistor, preventing any current flow through it. So, all the 25/B

= 25 × 0.5 = 12.5 mA current from the dependent current

source flows through the short circuit in a direction from

terminal b to terminal a: Isc = IN = 12.5 mA.



The open-circuit voltage is more difficult to find. From the

collector circuit, Vc = (–25IB)(40 000) = — 106IB. This

substituted into the KVL equation for the base circuit produces

an equation in which IB is the only unknown:

So, IB = 1/1600 A = 0.625 mA, and Vc = -106IB = – 106(0.625 ×

10–3) = –625 V. The result is that Voc = 625 V, positive at

terminal b.

In the calculation of RN, signs are important when, as

here, a circuit has dependent sources that can cause RN to be

negative. From Fig. 5-3b, RTh = RN is the ratio of the open-

circuit voltage referenced positive at terminal a and the short-

circuit current referenced from terminal a to terminal b.

Alternatively, both references can be reversed, which is

convenient here. So,

The Norton equivalent circuit is a 50-kΩ resistor in parallel

with a 12.5-mA current source that is directed toward terminal

b, as shown in Fig. 5-16.

Fig. 5-16



5.9 Directly find the output resistance of the circuit shown in Fig.

5-15.

Figure 5-17 shows the circuit with the 1-V independent

source deactivated and a 1-A current source applied at the

output a and b terminals. From Ohm’s law applied to the base

circuit,

Fig. 5-17

Nodal analysis applied to the top node of the collector circuit

gives

upon substitution for IB. The solution is Vc = 50 000 V, and so

Rout, = RTh = 50 kΩ. This checks with the RN = RTh answer from

the Prob. 5.8 solution in which the RN = RTh = VocIsc approach

was used.

5.10 Find the Thévenin equivalent of the circuit shown in Fig. 5-

18.



Fig. 5-18

The Thévenin or open-circuit voltage, positive at terminal

a, is the indicated V plus the 30 V of the 30-V source. The 8-Ω

resistor has no effect on this voltage because there is zero

current flow through it as a result of the open circuit. With zero

current there is zero voltage. V can be found from a single

nodal equation:

Multiplying by 40 and simplifying produces

So, VTh = – 80 + 30 = — 50 V. Notice that the 5-Ω and 4-Ω

resistors have no effect on VTh

Figure 5-19a shows the circuit with the voltage sources

replaced by short circuits and the current source by an open

circuit. Notice that the 5-Ω resistor has no effect on RTh

because it is shorted, and neither does the 4-Ω resistor

because it is in series with an open circuit. Since the resistor

arrangement in Fig. 5-19a is series-parallel, RTh is easy to

calculate by combining resistances: RTh = 8 + 40 || 10 = 16Ω.



Fig. 5-19

The fact that neither the 5-Ω nor the 4-Ω resistor has an

effect on VTh and RTh leads to the generalization that resistors

in parallel with ideal voltage sources, and resistors in series

with ideal current sources, have no effect on voltages and

currents elsewhere in a circuit.

5.11 Obtain the Thévenin equivalent of the circuit of Fig. 5-20a.

By inspection, VTh = 0 V because the circuit does not

contain any independent sources. For a determination of RTh,

it is necessary to apply a source and calculate the ratio of the

source voltage to the source current. Any independent source

can be applied, but often a particular one is best. Here, if a 12-

V voltage source is applied positive at terminal a, as shown in

Fig. 5-20b, then I = 12/12 = 1 A, which is the most convenient

current. As a result, the dependent source provides a voltage

of 8I = 8 V. So, by KCL,

Finally,



Fig. 5-20

5.12 For the circuit of Fig. 5-21, obtain the Thévenin equivalent

to the left of the a-b terminals. Then use this equivalent in

determining I.

Fig. 5-21

The Thévenin equivalent can be obtained by determining

any two of VTh, RTh, and Isc. By inspection, it appears that the

two easiest to determine are VTh and KVL.

If the circuit is opened at the a-b terminals, all 24 A of the

independent current source must flow through the 10-Ω

resistor, making Vx = 10(24) = 240 V. Consequently, the

dependent current source provides a current of 0.05 Vx =

0.05(240) = 12 A, all of which must flow through the 12-Ω

resistor. As a result, by KVL,



Because of the presence of the dependent source, RTh

must be found by applying a source and determining the ratio

of the source voltage to the source current. The preferable

source to apply is a current source, as shown in Fig. 5-22a. If

this source is 1 A, then Vx = 10(1)= 10 V, and consequently

the dependent current source provides a current of 0.05(10) =

0.5 A. Since this is one-half the source current, the other half

must flow through the 12-Ω resistor. And so, by KVL,

Then,

Figure 5-22b shows the Thévenin equivalent connected to

the nonlinear load of the original circuit. The current I is much

easier to calculate with this circuit. By KVL,

Fig. 5-22

Applying the quadratic formula gives



Only the 2-A current is physically possible because current

must flow out of the positive terminal of the Thévenin voltage

source, which means that I must be positive. So, I = 2 A.

5.13 Figure 5-23a shows an emitter-follower circuit for obtaining

a low output resistance for resistance matching. Find Rout.

Because the circuit has a dependent source but no

independent sources, Rout must be found by applying a source

at the output terminals, preferably a 1-A current source as

shown in Fig. 5-23b.

Fig. 5-23

From KCL applied at the top node,

But from Ohm’s law applied to the l-kΩ resistor, IB = — V/1000.

With this substitution the equation becomes

from which V = 18.2 V. Then Rout = V/1 = 18.2 Ω, which is

much smaller than the resistance of either resistor in the

circuit.

5.14 Find the input resistance Rin of the circuit shown in Fig. 5-

24.



Fig. 5-24

Since this circuit has a dependent source but no

independent sources, the approach to finding the input

resistance is to apply a source at the input. Then the input

resistance is equal to the input voltage divided by the input

current. A good source to apply is a 1-A current, as shown in

Fig. 5-25.

Fig. 5-25

By nodal analysis,

But from the right-hand branch, I = V/50. With this substitution

the equation becomes

the solution to which is V = 33.3 V. So, the input resistance is



5.15 Find the input resistance of the circuit shown in Fig. 5-24 if

the dependent current source has a current of 5I instead of

1.5I.

For a 1-A current source applied at the input terminals, the

nodal equation at the top node is

But, from the right-hand branch, I = V/50. With this

substitution the equation is

from which V = —25 V. Thus, the input resistance is Rin =

„25/1 = — 25 Ω.

A negative resistance may be somewhat disturbing to the

mind when first encountered, but it is physically real even

though it takes a transistor circuit, an operational amplifier, or

the like to obtain it. Physically, a negative input resistance

means that the circuit supplies power to whatever source is

applied at the input, with the dependent source being the

source of power.

5.16 Figure 5-26a shows an emitter-follower circuit for obtaining

a large input resistance for resistance matching. The load is a

30-Ω. resistor, as shown. Find the input resistance Rin.

Because the circuit has a dependent source and no

independent sources, the preferable way to find Rin is from the

input voltage when a 1-A current source is applied, as shown

in Fig. 5-26b. Here, Is = 1 A, and so the total current to the

parallel resistors is IB + 100IB = 101IB = 101 A, and the

voltage V is



The input resistance is Rin = V/1 = 2.7 kΩ, which is much

greater than the 30 Ω of the load.

Fig. 5-26

5.17 What is the maximum power that can be drawn from a 12-

V battery that has an internal resistance of 0.25 Ω?

A resistive load of 0.25 Ω draws maximum power because

it has the same resistance as the Thévenin or internal

resistance of the source. For this load, half the source voltage

drops across the load, making the power 670.25 = 144 W.

5.18 What is the maximum power that can be drawn by a

resistor connected to terminals a and b of the circuit shown in

Fig. 5-15?

In the solution to Prob. 5.8, the Thévenin resistance of the

circuit shown in Fig. 5-15 was found to be 50 kí and the Norton

current was found to be 12.5 mA. So, a load resistor of 50 kΩ

absorbs maximum power. By current division, half the Norton

current flows through it, producing a power of

5.19 In the circuit of Fig. 5-27, what resistor RL will absorb

maximum power and what is this power?



Fig. 5-27

For maximum power transfer, RL = RTh and pmax =

V2
Th/(4RTh). So, it is necessary to obtain the Thévenin

equivalent of the portion of the circuit to the left of the a and

b terminals.

If RL is replaced by an open circuit, then the current I is, by

current division,

Consequently, the dependent voltage source provides a

voltage of 10(6.4) = 64 V. Then, by KVL,

It is convenient to use the short-circuit current approach in

determining Rn. If a short circuit is placed across terminals a

and b, all components of the circuit of Fig. 5-27 are in parallel.

Consequently, the voltage drop, top to bottom, across the 10-

Χ resistor of 10I is equal to the —10I voltage drop across the

dependent voltage source. Since the solution to 10I = —10I is

I = 0 A, there is a zero voltage drop across both resistors,

which means that all the 8 A of the current source must flow

down through the short circuit. So, Isc = 8 A and



Thus, RL = 16 Ω for maximum power absorption. Finally, this

power is

5.20 In the circuit of Fig. 5-28, what resistor RL will absorb

maximum power and what is this power?

Fig. 5-28

It is, of course, necessary to obtain the Thévenin

equivalent to the left of the a and b terminals. The Thévenin

voltage VTh will be obtained first. Observe that the voltage

drop across the 4-Ω resistor is Vx, and that this resistor is in

series with an 8-Ω resistor. Consequently, by voltage division

performed in a reverse manner, the open-circuit voltage is VTh

= Vab = 3VX. Next, with R, removed, applying KCL at the node

that includes terminal a gives

the solution to which is Vx = 24 V. So, VTh = 3VX = 3(24) = 72

V.

By inspection of the circuit, it should be fairly apparent

that it is easier to use Isc to obtain RTh than it is to determine

RTh directly. If a short circuit is placed across terminals a and

h, then Vx = 0 V, and so no current flows in the 4-Ω resistor



and there is no current flow in the dependent current source.

Consequently, Isc = 90/6 = 15 A. Then,

which is the resistance that RL should have for maximum

power absorption. Finally,

5.21 Use superposition to find the power absorbed by the 12-Ω

resistor in the circuit shown in Fig. 5-29.

Fig. 5-29

Superposition cannot be used to find power in a dc circuit

because the method applies only to linear quantities, and

power has a squared voltage or current relation instead of a

linear one. To illustrate, the current through the 12-Ω resistor

from the 100-V source is, with the 6-A source replaced by an

open circuit, 100/(12 + 6) = 5.556 A. The corresponding

power is 5.5562 × 12 = 370 W. With the voltage source

replaced by a short circuit, the current through the 12-Ω

resistor from the 6-A current source is, by current division,

[6/(12 + 6)](6) = 2 A. The corresponding power is 22 × 12 =

48 W. So, if superposition could be applied to power, the result

would be 370 + 48 = 418 W for the power dissipated in the

12-Ω resistor.



Superposition does, however, apply to currents. So, the

total current through the 12-Ω resistor is 5.556 + 2 = 7.556 A,

and the power consumed is 7.5562 × 12 = 685 W, which is

much different than the 418 W found by erroneously applying

superposition to power.

5.22 In the circuit shown in Fig. 5-29, change the 100-V source

to a 360-V source, and the 6-A current source to an 18-A

source, and use superposition to find the current I.

Figure 5-30a shows the circuit with the current source

replaced by an open circuit. Obviously, the component Iv of I

from the voltage source is Iv = –360/(6 + 12) = –20 A. Figure

5-30/b shows the circuit with the voltage source replaced by a

short circuit. By current division, Ic, the current-source

component of I, is Ic = [12/(12 + 6)](18) = 12 A. The total

current is the algebraic sum of the current components: I = Iv

+ Ic = -20 + 12 = -8 A.

Fig. 5-30

5.23 For the circuit shown in Fig. 5-18, use superposition to find

VTh referenced positive on terminal a.

Clearly, the 30-V source contributes 30 V to VTh because

this source, being in series with an open circuit, cannot cause

any currents to flow. Zero currents mean zero resistor voltage

drops, and so the only voltage in the circuit is that of the

source.

Figure 5-31a shows the circuit with all independent

sources deactivated except the 100-V source. Notice that the



voltage across the 40-Ω resistor appears across terminals a

and b because there is a zero voltage drop across the 8-Ω

resistor. By voltage division this component of VTh is

Figure 5-31b shows the circuit with the current source as

the only independent source. The voltage across the 40-Ω

resistor is the open-circuit voltage since there is a zero voltage

drop across the 8-Ω resistor. Note that the short circuit

replacing the 100-V source prevents the 5-Ω resistor from

having an effect, and also it places the 40- and 10-Ω resistors

in parallel for a net resistance of 40|| 10 = 8 Ω. So, the

component of VTh from the current source is VThc = – 20 × 8 =

– 160 V.

Fig. 5-31

VTh is the algebraic sum of the three components of

voltage:

Notice that finding VTh by superposition requires more

work than finding it by nodal analysis, as was done in the

solution to Prob. 5.10.

5.24 Use superposition to find VTh for the circuit shown in Fig. 5-

15.



Although this circuit has three sources, superposition

cannot be used since two of the sources are dependent. Only

one source is independent. The superposition theorem does

not apply to dependent sources.

5.25 Use Millman’s theorem to find the current flowing to a 0.2-

Ω resistor from four batteries operating in parallel. Each

battery has a 12.8-V open-circuit voltage. The internal

resistances are 0.1, 0.12, 0.2, and 0.25 Ω.

Because the battery voltages are the same, being 12.8 V,

the Millman voltage is VM = 12.8 V. The Millman resistance is

the inverse of the sum of the conductances:

Of course, the resistor current equals the Millman voltage

divided by the sum of the Millman and load resistances:

5.26 Use Millman’s theorem to find the current drawn by a 5-Ω

resistor from four batteries operating in parallel. The battery

open-circuit voltages and internal resistances are 18 V and 1

Ω, 20 V and 2 Ω, 22 V and 5 Ω, and 24 V and 4 Ω.

The Millman voltage and resistance are

The current is, of course, the Millman voltage divided by the

sum of the Millman and load resistances:



5.27 Use Millman’s theorem to find I for the circuit shown in Fig.

5-32.

Fig. 5-32

The Millman voltage and resistance are

And so

5.28 Transform the Δ shown in Fig. 5-33a to the Y shown in Fig.

5-33b for (a) R1 = R2 = R3 = 36 Ω, and (b) Rx = 20 Ω, R2 = 30

Cl, and R3 = 50 Ω.

(a) For Δ resistances of the same value, Ry = RΔ/3. So, here, RA

= RB = Rc = 36/3 = 12 Ω.

(b) The denominators of the RY formulas are the same: R1 + R2

+ R3 = 20 + 30 + 50 = 100 Ω. The numerators are products

of the adjacent resistor resistances if the Y is placed inside

the Δ:



Fig. 5-33

5.29 Transform the Y shown in Fig. 5-33b to the A shown in Fig.

5-33a for (a) RA = RB = Rc = 5 Ω, and (b) RA = 10 Ω, RB = 5 Ω,

Rc = 20 Ω.

(a) For Y resistances of the same value: RA = 3Ry. So, here, R1 =

R2 R3 = 3 × = 5 = 15 Ω

(b) The numerators of the RA formulas are the same: RARB +

RARC + RB Rc = 10 × 5 + 10 × 20 + 5 × 20 = 350. The

denominators of the RA formulas are the resistances of the Y

arms opposite the A arms if the Y is placed inside the Δ.

Thus,

5.30 Use a Δ-to-Y transformation in finding the currents I1, I2,

and I3 for the circuit shown in Fig. 5-34.



Fig. 5-34

The Δ of 15-Ω resistors transforms to a Y of 15/3 = 5-Ω

resistors that are in parallel with the Y of 20-Ω resistors. It is

not obvious that they are in parallel, and in fact they would

not be if the resistances for each Y were not all the same

value. When, as here, they are the same value, an analysis

would show that the middle nodes are at the same potential,

just as if a wire were connected between them. So,

corresponding resistors of the two Y’s are in parallel, as shown

in Fig. 5-35a. The two Y’s can be reduced to the single Y

shown in Fig. 5-35b, in which each Y resistance is 5||20 = 4 Ω.

With this Y replacing the Δ-Y combination, the circuit is as

shown in Fig. 5-35c.

Fig. 5-35



With the consideration of It and I3 as loop currents, the

corresponding KVL equations are

the solutions to which are I, = 0.88 A and I3 = 1.42 A. Then,

from KCL applied at the right-hand node, I2 = –I1 – I3 = –2.3 A.

5.31 Using a Y-to-Δ transformation, find the total resistance RT of

the circuit shown in Fig. 5-36, which has a bridged-T

attenuator.

Fig. 5-36

Fig. 5-37

Figure 5-37a shows the T part of the circuit inside a Δ as

an aid in finding the A resistances. From the Y-to-Δ

transformation formulas,



As a result of this transformation, the circuit becomes

series-parallel as shown in Fig. 5-37b, and the total resistance

is easy to find:

5.32 Find I for the circuit shown in Fig. 5-38 by using a Δ-Y

transformation.

Fig. 5-38

The bridge simplifies to a series-parallel configuration

from a transformation of either the top or bottom Δ to a Y, or

the left- or right-hand Y to a Δ. Perhaps the most common

approach is to transform one of the Δ’s to a Y, although the

work required is about the same for any type of

transformation. Figure 5-39a shows the top Δ enclosing a Y as

a memory aid for the transformation of this Δ to a Y. All three Y

formulas have the same denominator: 14 + 10 + 6 = 30. The

numerators, though, are the products of the resistances of the

adjacent Δ resistors:



With this transformation the circuit simplifies to that shown in

Fig. 5-39b in which all the resistors are in series-parallel. From

it,

Fig. 5-39

5.33 In the circuit shown in Fig. 5-38, what resistor R replacing

the 20-Ω resistor causes the bridge to be balanced? Also,

what is I then?

For balance, the product of the resistances of opposite

bridge arms are equal:

With the bridge in balance, the center arm can be

considered as an open circuit because it carries no current.

This being the case, and because the bridge is a series-

parallel arrangement, the current I is



Alternatively, the center arm can be considered to be a short

circuit because both ends of it are at the same potential. From

this point of view,

which is, of course, the same.

5.34 The slide-wire bridge shown in Fig. 5-40 has a uniform

resistance wire that is 1 m long. If balance occurs with the

slider at 24 cm from the top, what is the resistance of Rx?

Let Rw be the total resistance of the resistance wire. Then

the resistance from the top of the wire to the slider is

(24/100)Rw. = 0.24Rw. That from the slider to the bottom of

the wire is (76/100)Rw. = 0.76Rw. So, the bridge resistances

are 0.24Rw., 0.76Rw, 30 Ω, and Rx. These inserted into the

bridge balance equation give

Fig. 5-40

Supplementary Problems



5.35 A car battery has a 12.1-V terminal voltage when supplying

10 A to the car lights. When the starter motor is turned over,

the extra 250 A drawn drops the battery terminal voltage to

10.6 V. What is the Thévenin equivalent circuit of this battery?

Ans. 6 mΩ, 12.16 V

5.36 In full sunlight a 2- by 2-cm solar cell has a short-circuit

current of 80 mA, and the current is 75 mA for a terminal

voltage of 0.6 V. What is the Norton equivalent circuit?

Ans. 120 Ω, 80 mA

5.37 Find the Thévenin equivalent of the circuit shown in Fig. 5-

41. Reference VTh positive toward terminal a.

Fig. 5-41

Ans. 12 Ω, 12 V

5.38 In the circuit shown in Fig. 5-41, change the 5-A current

source to a 7-A current source, the 12-Ω resistor to an 18-Ω

resistor, and the 48-V source to a 96-V source. Then find the

Norton equivalent circuit with the current arrow directed

toward terminal a.

Ans. 12.5 Ω, 3.24 A

5.39 For the circuit shown in Fig. 5-42, find the Norton

equivalent with IN referenced positive toward terminal a.



Fig. 5-42

Ans. 4 Ω, –3 A

5.40 Find the Norton equivalent of the circuit of Fig. 5-43.

Reference IN up.

Fig. 5-43

Ans. 8 Ω, 8 A

5.41 Determine the Norton equivalent of the circuit of Fig. 5-44.

Reference IN up.

Fig. 5-44



Ans. 78 n, 1.84 A

5.42 Find the Thévenin equivalent of the grounded-base

transistor circuit shown in Fig. 5-45. Reference VTh positive

toward terminal a.

Fig. 5-45

Ans. 4 kΩ, 3.9 V

5.43 In the transistor circuit shown in Fig. 5-46, find the base

current IB if Ic = 40IB. There is a 0.7-V drop from base to

emitter.

Fig. 5-46

Ans. 90.1 θA

5.44 Find the Thévenin equivalent of the transistor circuit shown

in Fig. 5-47. Reference VTh positive toward terminal a.



Fig. 5-47

Ans. 5.88 kΩ, –29.4 V

5.45 Find I in the circuit shown in Fig. 5-48, which contains a

nonlinear element having a V-I relation of V = 3I2. Use

Thévenin’s theorem and the quadratic formula.

Fig. 5-48

Ans. 2 A

5.46 Find the Thévenin equivalent of the circuit of Fig. 5-49.

Reference VTh positive toward terminal a.



Fig. 5-49

Ans. 18.7 Ω, 26 V

5.47 Obtain the Thévenin equivalent of the circuit of Fig. 5-50.

Fig. 5-50

Ans. –1.5 Ω, 0 V

5.48 Find the input resistance at terminals 1 and 1’ of the

transistor circuit shown in Fig. 5-51 if a 2-kΩ resistor is

connected across terminals 2 and 2’.

Fig. 5-51

Ans. 88.1 kΩ

5.49 Find the output resistance at terminals 2 and 2’ of the

transistor circuit shown in Fig. 5-51 if a source with a 1-kΩ

internal resistance is connected to terminals 1 and 1’. In

finding the output resistance remember to replace the source

by its internal resistance.



Ans. 32.6 Ω

5.50 Find the input resistance at terminals 1 and 1’ of the

transistor circuit shown in Fig. 5-52 if a 5-kΩ load resistor is

connected between terminals 2 and 2’, from collector to

emitter.

Fig. 5-52

Ans. 760 Ω

5.51 Find the output resistance at terminals 2 and 2’ of the

transistor circuit shown in Fig. 5-52 if a source with a 500-Ω

internal resistance is connected to terminals 1 and 1'.

Ans. 100 kΩ

5.52 What resistor connected between terminals a and b in the

bridge circuit shown in Fig. 5-53 absorbs maximum power and

what is this power?

Fig. 5-53

Ans. 2.67 kΩ, 4.25 mW



5.53 What will be the reading of a zero-resistance ammeter

connected across terminals a and b of the bridge circuit

shown in Fig. 5-53? Assume that the ammeter is connected to

have an upscale reading. What will be the reading if a 1-kΩ

resistor is in series with the ammeter?

Ans. 2.52 mA, 1.83 mA

5.54 Some solar cells are interconnected for increased power

output. Each has the specifications given in Prob. 5.36. What

area of solar cells is required for a power output of 1 W?

Assume a matching load.

Ans. 20.8 cm2

5.55 In the circuit of Fig. 5-54, what resistor RL will absorb

maximum power, and what is this power?

Fig. 5-54

Ans. 3.33 Ω, 480 W

5.56 In the circuit of Fig. 5-55, what resistor connected across

terminals a and b will absorb maximum power, and what is

this power?



Fig. 5-55

Ans. 100 kΩ, 62.5 θW

5.57 For the circuit shown in Fig. 5-41, use superposition to find

the contribution of each source to VTh if it is referenced

positive toward terminal a.

Ans. 32 V from the 48-V source, — 20 V from the 5-A source

5.58 For the circuit shown in Fig. 5-42, use superposition to find

the contribution of each source to the current in a short circuit

connected between terminals a and b. The short-circuit

current reference is from terminal a to terminal b.

Ans. 5 A from the 60-V source, — 8 A from the 8-A source

5.59 In the circuit shown in Fig. 5-48, replace the nonlinear

resistor with an open circuit and use superposition to find the

contribution of each source to the open-circuit voltage

referenced positive at the top.

Ans. 13.2 V from the 22-V source, 9.6 V from the 4-A source

5.60 An automobile generator operating in parallel with a

battery energizes a 0.8-Ω load. The open-circuit voltages and

internal resistances are 14.8 V and 0.4 Ω for the generator,

and 12.8 V and 0.5 Ω for the battery. Use Millman’s theorem

to find the load current.

Ans. 13.6 A

5.61 For the automobile circuit of Prob. 5.60 use superposition to

find the load current contribution from each source.



Ans. 8.04 A from the generator, 5.57 A from the battery

5.62 Transform the A shown in Fig. 5-56a to the Y in Fig. 5-56b

for R1 = 2kΩ, R2 = 4 kΩ, and R3 = 6kΩ.

Ans. RA = 667 Ω, RB = 2 kΩ, Rc = 1 kΩ

5.63 Repeat Prob. 5.62 for R1 = 8 Ω, R2 = 5 Ω, and R3 = 7 Ω.

Ans. RA = 2Ω, RB = 1.75 Ω, Rc = 2.8 Ω

Fig. 5-56

5.64 Transform the Y shown in Fig. 5-56b to the A in Fig. 5-56a

for RA = 12Ω, RB = 15Ω, and Rc = 18 Ω.

Ans. R1 = 44.4 Ω, R2 = 37 Ω, R3 = 55.5 Ω

5.65 Repeat Prob. 5.64 for Rx = 10 kΩ, KB = 18kΩ, and Rc = 12

kΩ.

Ans. R1 = 28.7 kΩ, R2 = 43 kΩ, R3 = 51.6 kΩ

5.66 For the lattice circuit shown in Fig. 5-57, use a Δ-Y

transformation to find the V that makes I = 3 A.

Ans. 177 V



Fig. 5-57

5.67 Use a Δ-Y transformation to find the currents in the circuit

shown in Fig. 5-58.

Fig. 5-58

Ans. I1 = 7.72 A, I2 = –0.36 A, I3 = –7.36 A

5.68 Use a Δ-to-Y transformation in finding the voltage V that

causes 2 A to flow down through the 3-Ω resistor in the circuit

shown in Fig. 5-59.



Fig. 5-59

Ans. 17.8 V

5.69 In the lattice circuit shown in Fig. 5-57, what resistor

substituted for the top 40-Ω resistor causes zero current flow

in the 50-Ω resistor?

Ans. 90 Ω

5.70 If in the slide-wire bridge shown in Fig. 5-40, balance occurs

with the slider at 67 cm from the top, what is the resistance

Rx?

Ans. 14.8 Ω.

5.71 Use a A-Y transformation to find I in the circuit shown in Fig.

5-60. Remember that for a Δ-Y transformation, only the

voltages and currents external to the Δ and Y do not change.

Fig. 5-60



Ans. 0.334 A

5.72 In the circuit of Fig. 5-61, what resistor RL will absorb

maximum power, and what is this power?

Fig. 5-61

Ans. 12 Ω, 192 W

5.73 In the circuit of Fig. 5-62, what resistor RL will absorb

maximum power, and what is this power?

Fig. 5-62

Ans. 30 Ω, 1.48 W



Chapter 6


Operational-Amplifier Circuits

INTRODUCTION

Operational amplifiers, usually called op amps, are

important components of electronic circuits. Basically, an op

amp is a very high-gain voltage amplifier, having a voltage

gain of 100 000 or more. Although an op amp may consist of

more than two dozen transistors, one dozen resistors, and

perhaps one capacitor, it may be as small as an individual

resistor. Because of its small size and relatively simple

external operation, for purposes of an analysis or a design an

op amp can often be considered as a single circuit element.

Figure 6-la shows the circuit symbol for an op amp. The

three terminals are an inverting input terminal a (marked —),

a noninverting input terminal b (marked +), and an output

terminal c. But a physical operational amplifier has more

terminals. The extra two shown in Fig. 6-1b are for dc power

supply inputs, which are often +15 V and —15 V. Both

positive and negative power supply voltages are required to

enable the output voltage on terminal c to vary both

positively and negatively with respect to ground.



Fig. 6-1

OP-AMP OPERATION

The circuit of Fig. 6-2a, which is a model for an op amp,

illustrates how an op amp operates as a voltage amplifier. As

indicated by the dependent voltage source, for an open-

circuit load the op amp provides an output voltage of v0 = A

(v+ — v–), which is A times the difference in input voltages.

This A is often referred to as the open-loop voltage gain.

From A (v+ — v–), observe that a positive voltage v + applied

to the noninverting input terminal b tends to make the

output voltage positive, and a positive voltage v– applied to

the inverting input terminal a tends to make the output

voltage negative.

The open-loop voltage gain A is typically so large (100 000

or more) that it can often be approximated by infinity (∞), as

is shown in the simpler model of Fig. 6-2b. Note that Fig. 6-

2b does not show the sources or circuits that provide the

input voltage v+ and v- with respect to ground. Instead, just

the voltages v+ and V- are shown. Doing this simplifies the

circuit diagrams without any loss of information.

In Fig. 6-2a, the resistors shown at the input terminals

have such large resistances (megohms) as compared to

other resistances (usually kilohms) in a typical op-amp

circuit, that they can be considered to be open circuits, as is



shown in Fig. 6-2b. As a consequence, the input currents to

an op amp are almost always negligibly small and assumed

to be zero. This approximation is important to remember.

The output resistance R0 may be as large as 75 Ω or more,

and so may not be negligibly small. When, however, an op

amp is used with negative-feedback components (as will be

explained), the effect of R0 is negligible, and so R0 can be

replaced by a short circuit, as shown in Fig. 6-2b. Except for

a few special op-amp circuits, negative feedback is always

used.



Fig. 6-2

The simple model of Fig. 6-2b is adequate for many

practical applications. However, although not indicated,

there is a limit to the output voltage: It cannot be greater

than the positive supply voltage or less than the negative

supply voltage. In fact, it may be several volts less in

magnitude than the magnitude of the supply voltages, with

the exact magnitude depending upon the current drawn from



the output terminal. When the output voltage is at either

extreme, the op amp is said to be saturated or to be in

saturation. An op amp that is not saturated is said to be

operating linearly.

Since the open-loop voltage gain A is so large and the

output voltage is limited in magnitude, the voltage v+ — v–

across the input terminals has to be very small in magnitude

for an op amp to operate linearly. Specifically, it must be less

than 100 μV in a typical op-amp application. (This small

voltage is obtained with negative feedback, as will be

explained.) Because this voltage is negligible compared to

the other voltages in a typical op-amp circuit, this voltage

can be considered to be zero. This is a valid approximation

for any op amp that is not saturated. But if an op amp is

saturated, then the voltage difference v+ — v– can be

significantly large, and typically is.

Of less importance is the limit on the magnitude of the

current that can be drawn from the op-amp output terminal.

For one popular op amp this output current cannot exceed

40 mA.

The approximations of zero input current and zero voltage

across the input terminals, as shown in Fig. 6-3, are the

bases for the following analyses of popular op-amp circuits.

In addition, nodal analysis will be used almost exclusively.

Fig. 6-3

POPULAR OP-AMP CIRCUITS



Figure 6-4 shows the inverting amplifier, or simply

inverter. The input voltage is v0 and the output voltage is v0.

As will be shown, v0 = Gvi in which G is a negative constant.

So, the output voltage v0 is similar to the input voltage vi but

is amplified and changed in sign (inverted).

Fig. 6-4

As has been mentioned, it is negative feedback that

provides the almost zero voltage across the input terminals

of an op amp. To understand this, assume that in the circuit

of Fig. 6-4 vi is positive. Then a positive voltage appears at

the inverting input because of the conduction path through

resistor Ri. As a result, the output voltage v0 becomes

negative. Because of the conduction path back through

resistor Rf, this negative voltage also affects the voltage at

the inverting input terminal and causes an almost complete

cancellation of the positive voltage there. If the input voltage

vi had been negative instead then the voltage fed back

would have been positive and again would have produced

almost complete cancellation of the voltage across the op-

amp input terminals.

This almost complete cancellation occurs only for a

nonsaturated op amp. Once an op amp becomes saturated,



however, the output voltage becomes constant and so the

voltage fed back cannot increase in magnitude as the input

voltage does.

In every op-amp circuit in this chapter, each op amp has a

feedback resistor connected between the output terminal

and the inverting input terminal. Consequently, in the

absence of saturation, all the op amps in these circuits can

be considered to have zero volts across the input terminals.

They can also be considered to have zero currents into the

input terminals because of the large input resistances.

The best way to obtain the voltage gain of the inverter of

Fig. 6-4 is to apply KCL at the inverting input terminal. Before

doing this, though, consider the following. Since the voltage

across the op-amp input terminals is zero, and since the

noninverting input terminal is grounded, it follows that the

inverting input terminal is also effectively at ground. This

means that all the input voltage vi is across resistor Ri and

that all the output voltage v0 is across resistor Rf.

Consequently, the sum of the currents entering the inverting

input terminal is

So, the voltage gain is G = –(Rf/Ri), which is the negative of

the resistance of the feedback resistor divided by the

resistance of the input resistor. This is an important formula

to remember for analyzing an op-amp inverter circuit or for

designing one. (Do not confuse this gain G of the inverter

circuit with the gain A of the op amp itself.)

It should be apparent that the input resistance is just Ri.

Additionally, although the load resistor RL affects the current

that the op amp must provide, it has no effect on. the

voltage gain.



The summing amplifier, or summer, is shown in Fig. 6-5.

Basically, a summer is an inverter circuit with more than one

input. By convention, the sources for providing the input

voltages va, vb, and vc are not shown. If this circuit is

analyzed with the same approach used for the inverter, the

result is

For the special case of all the resistances being the same,

this formula simplifies to

There is no special significance to the inputs being three in

number. There can be two, four, or more inputs.

Fig. 6-5

Figure 6-6 shows the noninverting voltage amplifier.

Observe that the input voltage vi is applied at the

noninverting input terminal. Because of the almost zero



voltage across the input terminals, vi is also effectively at the

inverting input terminal. Consequently, the KCL equation at

the inverting input terminal is

Fig. 6-6

Since the voltage gain of 1/(1 + Rf/Ra) does not have a

negative sign, there is no inversion with this type of

amplifier. Also, for the same resistances, the magnitude of

the voltage gain is slightly greater than that of the inverter.

But the big advantage that this circuit has over the inverter

is a much greater input resistance. As a result, this amplifier

will readily amplify the voltage from a source that has a large

output resistance. In contrast, if an inverter is used, almost

all the source voltage will be lost across the large output

resistance of the source, as should be apparent from voltage

division.

The buffer amplifier, also called the voltage follower or

unity-gain amplifier, is shown in Fig. 6-7. It is basically a

noninverting amplifier in which resistor Ra is replaced by an



open circuit and resistor Rf by a short circuit. Because there

is zero volts across the op-amp input terminals, the output

voltage is equal to the input voltage: v0 = vi. Therefore, the

voltage gain is 1. This amplifier is used solely because of its

large input resistance, in addition to the typical op-amp low

output resistance.

Fig. 6-7

There are applications, in which a voltage signal is to be

converted to a proportional output current such as, for

example, in driving a deflection coil in a television set. If the

load is floating (neither end grounded), then the circuit of

Fig. 6-8 can be used. This is sometimes called a voltage-to-

current converter. Since there is zero volts across the op-

amp input terminals, the current in resistor Ra is iL = vi/Ra,

and this current also flows through the load resistor RL.

Clearly, the load current iL is proportional to the signal

voltage vi.



Fig. 6-8

The circuit of Fig. 6-8 can also be used for applications in

which the load resistance RL varies but the load current iL

must be constant. vi is made a constant voltage and vi and

Ra are selected such that vi/Ra is the desired current iL.

Consequently, when RL varies, the load current iL does not

change. Of course, the load current cannot exceed the

maximum allowable op-amp output current, and the load

voltage plus the source voltage cannot exceed the maximum

obtainable output voltage.

CIRCUITS WITH MULTIPLE OPERATIONAL AMPLIFIERS

Often, op-amp circuits are cascaded, as shown, for

example, in the circuit of Fig. 6-9. In a cascade arrangement,

the input to each op-amp stage is the output from a

preceding op-amp stage, except, of course, for the first op-

amp stage. Cascading is often used to improve the

frequency response, which is a subject beyond the scope of

the present discussion.



Fig. 6-9

Because of the very low output resistance of an op-amp

stage as compared to the input resistance of the following

stage, there is no loading of the op-amp circuits. In other

words, connecting the op-amp circuits together does not

affect the operation of the individual op-amp circuits. This

means that the overall voltage gain GT is equal to the

product of the individual voltage gains G1, G2, G3, …; that is,

GT = G1 G2 G3….

To verify this formula, consider the circuit of Fig. 6-9. The

first stage is an inverting amplifier, the second stage is a

noninverting amplifier, and the last stage is another

inverting amplifier. The output voltage of the first inverter is

– (6/2)vi = – 3vi, which is the input to the noninverting

amplifier. The output voltage of this amplifier is (1 + 4/2)(–

3vi) = –9vi. And this is the input to the inverter of the last

stage. Finally, the output of this stage is v0 = –9vi,(–10/5) =

18vi. So, the overall voltage gain is 18, which is equal to the

product of the individual voltage gains: GT = (–3)(3)(–2) =

18.

If a circuit contains multiple op-amp circuits that are not

connected in a cascade arrangement, then another approach

must be used. Nodal analysis is standard in such cases.



Voltage variables are assigned to the op-amp output terminal

nodes, as well as to other nongrounded nodes, in the usual

manner. Then nodal equations are written at the

nongrounded op-amp input terminals to take advantage of

the known zero input currents. They are also written at the

nodes at which the voltage variables are assigned, except

for the nodes that are at the outputs of the op amps. The

reason for this exception is that the op-amp output currents

are unknown and if nodal equations are written at these

nodes, additional current variables must be introduced,

which increases the number of unknowns. Usually, this is

undesirable. This standard analysis approach applies as well

to a circuit that has just a single op amp.

Even if multiple op-amp circuits are not connected in

cascade, they can sometimes be treated as if they were. This

should be considered especially if the output voltage is fed

back to op-amp inputs. Then the output voltage can often be

viewed as another input and inserted into known voltage-

gain formulas.

Solved Problems

6.1 Perform the following for the circuit of Fig. 6-10.

Assume no saturation for parts (a) and (b). (a) Let Rf =

12 kΩ, Va = 2 V, and Vb = 0 V. Determine V0 and I0. (b)

Repeat part (a) for Rf = 9 kΩ, Va = 4 V, and Vb = 2 V. (c)

Let Va = 5 V and Vb = 3V and determine the minimum

value of Rf that will produce saturation if the saturation

voltage levels are V0 = ± 14 V.



Fig. 6-10

(a) Since for Vb = 0 V the circuit is an inverter, the inverter

voltage-gain formula can be used to obtain V0.

Then KCL applied at the output terminal gives

(b) Because of the zero voltage across the op-amp input

terminals, V– = Vb = 2 V. Then, by KCL applied at the

inverting op-amp input terminal,

The solution is V0 = – 4 V. Another approach is to use

superposition. Since the circuit is an inverter as regards

Va and is a noninverting amplifier as regards Vb, the

output voltage is



With V0 known, KCL can be applied at the output

terminal to obtain

(c) By superposition,

Since Rf must be positive, the op amp can saturate only

at the specified — 14-V saturation voltage level. So,

the solution to which is Rf = 25.5 kΩ. This is the

minimum value of Rf that will produce saturation.

Actually the op amp will saturate for Rf ≥ 25.5 kΩ.

6.2 Assume for the summer of Fig. 6-5 that Ra = 4 kΩ.

Determine the values of Rb, Rc, and Rf that will provide

an output voltage of V0 = — (3va + 5vh + 2vc).

First, determine Rf. The contribution of V0 to V0 is –

(Rf/Ra)va. Consequently, for a voltage gain of —3 and

with Ra = 4 kΩ,



Next, determine Rh. The contribution of vb to V0 is —

(Rf/Rb)vb. So, with Rf = 12kΩ and for a voltage gain of —

5,

Finally, the contribution of vc to vo is —(Rf/Rc)vc. So, with

Rf = 12 kΩ and for a voltage gain of — 2,

6.3 In the circuit of Fig. 6-11, first find Vo and Io for Va = 4

V. Then assume op-amp voltage saturation levels of V0

= ± 12 V and determine the range of Va for linear

operation.

Fig. 6-11

Because this circuit is a summer,



and 

Now, finding the range of Va for linear operation,

Therefore, Va = (20 ± 12)/3. So, for linear operation, Va

must be less than (20 + 12)/3 = 10.7 V and greater than

(20 – 12)/3 = 2.67 V: 2.67 V < Va < 10.7 V.

6.4 Calculate V0 and Ia in the circuit of Fig. 6-12.

Fig. 6-12

Because of the zero voltage drop across the op-amp

input terminals, the voltage with respect to ground at

the inverting input terminal is the same 5 V that is at

the noninverting input terminal. With this voltage

known, the voltage V0 can be determined from summing

the currents flowing into the inverting input terminal:



Thus, V0 = –4 V. Finally, applying KCL at the output

terminal gives

6.5 In the circuit of Fig. 6-13a, a 10-kΩ load resistor is

energized by a source of voltage vs that has an internal

resistance of 90 kΩ. Determine vL, and then repeat this

for the circuit of Fig. 6-13b.

Fig. 6-13

Voltage division applied to the circuit of Fig. 6-13a

gives

So, only 10 percent of the source voltage reaches the load.

The other 90 percent is lost across the internal resistance of

the source.



For the circuit of Fig. 6-13ft, no current flows in the

signal source because of the large op-amp input

resistance. Consequently, there is a zero voltage drop

across the source internal resistance, and the entire

source voltage appears at the noninverting input

terminal. Finally, since there is zero volts across the op-

amp input terminals, vL = vs So, the insertion of the

voltage follower results in an increase in the load

voltage from 0.1 vs to vs.

Note that although no current flows in the 90-kΩ

resistor in the circuit of Fig. 6-13b, there is current flow

in the 10-kΩ resistor, the path for which is not evident

from the circuit diagram. For a positive vL, this current

flows down through the 10-kΩ resistor to ground, then

through the op-amp power supplies (not shown), and

finally through the op-amp internal circuitry to the op-

amp output terminal.

6.6 Obtain the input resistance Rin of the circuit of Fig. 6-

14a.

The input resistance Rin can be determined in the usual

way, by applying a source and obtaining the ratio of the

source voltage to the source current that flows out of the

positive terminal of the source. Figure 6-14b shows a source

of voltage Vs applied. Because of the zero current flow into

the op-amp noninverting input terminal, all the source

current Is flows through Rf, thereby producing a voltage of

IsRf across it, as shown. Since the voltage across the op-amp

input terminals is zero, this voltage is also across Ra and

results in a current flow to the right of IsRf/Ra. Because of the

zero current flow into the op-amp inverting input terminal,

this current also flows up through Rb, resulting in a voltage

across it of IsRfRb/Ra, positive at the bottom. Then, KVL

applied to the left-hand mesh gives



Fig. 6-14

The input resistance being negative means that this op-

amp circuit will cause current to flow into the positive

terminal of any voltage source that is connected across the

input terminals, provided that the op amp is not saturated.

Consequently, the op-amp circuit supplies power to this

voltage source. But, of course, this power is really supplied

by the dc voltage sources that energize the op amp.

6.7 For the circuit of Fig. 6-14a, let Rf = 6 kΩ, Rb = 4 kΩ,

and Ra = 8 kΩ, and determine the power that will be

supplied to a 4.5-V source that is connected across the

input terminals.

From the solution to Prob. 6.6,



Therefore, the current that flows into the positive

terminal of the source is 4.5/3 = 1.5 mA. Consequently,

the power supplied to the source is 4.5(1.5) = 6.75 mW.

6.8 Obtain an expression for the voltage v0 in the circuit of

Fig. 6-15.

Fig. 6-15

Clearly, in terms of v+, this circuit is a noninverting

amplifier. So,

The voltage v+ can be found by applying nodal analysis

at the noninverting input terminal.

Finally, substituting for v+ yields



From this result it is evident that the circuit of Fig. 6-15 is

a noninverting summer. The number of inputs is not

limited to three. In general,

in which n is the number of inputs.

6.9 In the circuit of Fig. 6-15, assume that Rf = 6 kΩ and

then determine the values of the other resistors

required to obtain v0 = 2(v1 + v2 + v3).

From the solution to Prob. 6.8, the multiplier of the

voltage sum is

As long as the value of R is reasonable, say in the kilohm

range, it does not matter much what the specific value

is. Similarly, the specific value of RL does not affect v0

provided RL is in the kilohm range or greater.

6.10 Obtain an expression for the voltage gain of the op-

amp circuit of Fig. 6.16.



Fig. 6-16

Superposition is a good approach to use here. If vb = 0 V,

then the voltage at the noninverting input terminal is zero,

and so the amplifier becomes an inverting amplifier.

Consequently, the contribution of va to the output voltage v0

is –(Rf/Ra)va. On the other hand, if va = 0 V, the circuit

becomes a noninverting amplifier that amplifies the voltage

at the noninverting input terminal. By voltage division, this

voltage is Rcvb/(Rb + Rc). Therefore, the contribution of vb to

the output voltage v0 is

Finally, by superposition the output voltage is



This voltage-gain formula can be simplified by the

selection of resistances such that Ra/Rf = Rb/Rc. The

result is

in which case the output voltage v0 is a constant times

the difference vb – va of the two input voltages. This

constant can, of course, be made 1 by the selection of Rf

= Ra. For obvious reasons the circuit of Fig. 6-16 is called

a difference amplifier.

6.11 For the difference amplifier of Fig. 6-16, let Rf = 8 kΩ.

and then determine values of Ra, Rb, and Rc to obtain v0

= 4(vb – va).

From the solution to Prob. 6.10, the contribution of –

4va to v0 requires that Rf/Ra = 8/Ra = 4, and so Ra = 2

kΩ For this value of Ra and for Rf = 8 kΩ, the multiplier

of vb becomes

Inverting results in

Therefore, Rc = 4Rb gives the desired response, and

obviously there is no unique solution, as is typical of the



design process. So, if Rb is selected as 1 kΩ, then Rc = 4

kΩ. And for Rb = 2 kΩ, Rc = 8 kΩ, and so on.

6.12 Find V0 in the circuit of Fig. 6-17.

Fig. 6-17

By nodal analysis at the noninverting input terminal,

which simplifies to V0 = 3V + – 8. But by voltage

division,

And so,



6.13 For the op-amp circuit of Fig. 6-18, calculate V0. Then

assume op-amp saturation voltages of ± 14 V, and find

the resistance of the feedback resistor Rf that will result

in saturation of the op amp.

Fig. 6-18

By voltage division,

Then since V– = V+ = 2 V, the node-voltage equation at

the inverting input terminal is

Now, Rf is to be changed to obtain saturation at one

of the two voltage saturation levels. From KCL applied at

the inverting input terminal,



So, Rf = 2 – V0. Clearly, for a positive resistance value of

Rf, the saturation must be at the negative voltage level

of — 14 V. Consequently, Rf = 2 — (— 14) = 16 kΩ.

Actually, this is the minimum value of R; that gives

saturation. There is saturation for Rf ≥ 16 kΩ.

6.14 For the circuit of Fig. 6-19, calculate the voltage V0

and the current I0.

Fig. 6-19

In Fig. 6-19, observe the lack of polarity references

for V– and V +. Polarity references are not essential

because these voltages are always referenced positive

with respect to ground. Likewise the polarity reference

for V0 could have been omitted.

By voltage division,



With V– = 0.6 V0, the node-voltage equation at the

inverting input terminal is

The current I0 can be obtained from applying KCL at the

op-amp output terminal:

6.15 Determine V0 and I0 in the circuit of Fig. 6-20.

The voltage V0 can be found by writing nodal

equations at the inverting input terminal and at the V1

node and using the fact that the inverting input terminal

is effectively at ground. From summing currents



Fig. 6-20

into the inverting input terminal and away from the

V1 node, these equations are

which simplify to

Consequently,

Finally, I0 is equal to the sum of the currents flowing

away from the op-amp output terminal through the 8-kΩ

and 4-kΩ resistors:

6.16 Find V0 in the circuit of Fig. 6-21.



Fig. 6-21

The node-voltage equation at the V1 node is

which upon multiplication by 40 becomes 27V1 – 5V0 = 40.

Also, by voltage division,

Further, since the op amp and the 9-kΩ and 3-kΩ resistors

form a noninverting amplifier,



Finally, substitution for V1 in the node-voltage equation

yields

6.17 Determine V0 in the circuit of Fig. 6-22.

Fig. 6-22

Since V– = 0 V, the node-voltage equations at the V1,

and inverting-input terminal nodes are

Multiplying the first equation by 24 and the second

equation by 12 gives



from which V0 can be readily obtained: V0 = –1.95 V.

6.18 Assume for the op amp in the circuit of Fig. 6-23 that

the saturation voltages are V0 = ± 14 V and that Rf = 6

kΩ. Then determine the maximum resistance of Ra that

results in the saturation of the op amp.

The circuit of Fig. 6-23 is a noninverting amplifier,

the voltage gain of which is G = 1 + 6/2 = 4.

Consequently, V0 = 4V+, and for saturation at the

positive level (the only saturation possible), V+ = 14/4 =

3.5 V. The resistance of Ra that will result in this voltage

can be obtained by using voltage division:

Fig. 6-23

and thus



This is the maximum value of resistance for Ra for which

there is saturation. Actually, saturation occurs for Ra ≥ 4

kΩ.

6.19 In the circuit of Fig. 6-23, assume that Ra = 2 kΩ, and

then find what the resistance of Rf must be for the op

amp to operate in the linear mode. Assume saturation

voltages of V0 = ± 14 V.

With Ra = 2 kΩ, the voltage V+ is, by voltage division,

Then for V0 = 14 V, the output voltage equation is

Therefore,

Clearly, then, for V0 to be less than the saturation

voltage of 14 V, the resistance of the feedback resistor

Ri must be less than 4.86 kΩ.

6.20 Obtain the Thévenin equivalent of the circuit of Fig.

6-24 with VTh referenced positive at terminal a.



Fig. 6-24

By inspection, the part of the circuit comprising the op

amp and the 2.5-kΩ and 22.5-kΩ resistors is a noninverting

amplifier. Consequently,

Since VTh = Vab, the node voltage equation at terminal a is

If a short circuit is placed across terminals a and b, then



Consequently,

6.21 Calculate V0 in the circuit of Fig. 6-25.

Fig. 6-25

Although nodal analysis can be applied, it is simpler to

view this circuit as a summer cascaded with a noninverting

amplifier. The summer has two inputs, V0 and 4 V.

Consequently, through use of the summer and noninverting

voltage formulas,

So,



6.22 Find V0 in the circuit of Fig. 6-26.

The circuit of Fig. 6-26 can be viewed as two

cascaded summers, with V0 being one of the two inputs

to the first summer. The other input is 3 V. Then, the

output Vx of the first summer is

Fig. 6-26

The output V0 of the second summer is

Substituting for V1 gives



Finally, 

6.23 Determine V0 in the circuit of Fig. 6-27.

Fig. 6-27

In this cascaded arrangement, the first op-amp

circuit is an inverting amplifier. Consequently, the op-

amp output voltage is — (6/2)(— 3) = 9 V. For the

second op amp, observe that V– = V+ = 2 V. Thus, the

nodal equation at the inverting input terminal is

Perhaps a better approach for the second op-amp circuit is

to apply superposition, as follows:

6.24 Find V10 and V20 in the circuit of Fig. 6-28.



Fig. 6-28

Before starting the analysis, observe that because of the

zero voltages across the op-amp input terminals, the

inverting input voltages are v1— = 8 V and V2— = 4 V. The

two equations needed to relate the output voltages can be

obtained by applying KCL at the two inverting input

terminals. These equations are

These equations simplify to

The solutions to these equations are V10 = 12.5 V and V20

= 1 V.

6.25 For the circuit of Fig. 6-29, calculate V10, V20, I1, and

I2. Assume that the op-amp saturation voltages are ±

14 V.



Fig. 6-29

Observe that op amp 1 has no negative feedback

and so is probably in saturation, and it is saturated at 14

V because of the 5 V applied to the noninverting input

terminal. Assume this is so. Then this 14 V is an input to

the circuit portion containing op amp 2, which is an

inverter. Consequently, V20 = –(3/12)(14) = –3.5 V. And,

by voltage division,

Since this negative voltage is applied to the inverting

input of op amp 1, both inputs to this op amp tend to

make the op-amp output positive. Also, the voltage

across the op-amp input terminals is not approximately

zero. For both of these reasons, the assumption is

confirmed that op amp 1 is saturated at the positive

saturation level. Therefore, V10 = 14V and V20 = – 3.5 V.

Finally, by KCL,



Supplementary Problems

6.26 Obtain an expression for the load current iL in the

circuit of Fig. 6-30 and show that this circuit is a

voltage-to-current converter, or a constant current

source, suitable for a grounded-load resistor.

Fig. 6-30

Ans. iL = –vi/R; iL is proportional to vi and is independent

of RL

6.27 Find V0 in the circuit of Fig. 6-31.



Fig. 6-31

Ans. –4 V

6.28 Assume for the summer of Fig. 6-5 that Rb = 12 kΩ,

and obtain the values of Ra, Rc, and Rf that will result in

an output voltage of v0 = – (8va + 4vh + 6vt).

Ans. Ra = 6 kΩ, Rc = 8 kΩ, Rf = 48 kΩ

6.29 In the circuit of Fig. 6-32, determine V0 and I0 for Va =

6 V and Vb = 0 V.

Ans. –5 V, –0.625 mA

6.30 Repeat Prob. 6.29 for Va = 16 V and Vb = 4 V.

Fig. 6-32

Ans. 10 V, 1.08 mA

6.31 For the circuit of Fig. 6-32, assume that the op-amp

saturation voltages arc ± 14 V and that Vb = 0 V.

Determine the range of Va for linear operation.

Ans. –6.67 V < Va < 12 V

6.32 For the difference amplifier of Fig. 6-16, let Rf =12kΩ,

and determine the values of Ra, Rb, and Rc to obtain v0



= vb – 2v0.

Ans. Ra = 6 kΩ; Rb and Rc have resistances such that Rb

= 2RC

6.33 In the circuit of Fig. 6-33, let Vs = 4 V and calculate

V0 and I0.

Fig. 6-33

Ans. 7.2 V, 1.8 mA

6.34 For the op-amp circuit of Fig. 6-33, find the range of

Vs for linear operation if the op-amp saturation voltages

are V0 = ±14 V.

Ans. –7.78 V < Vs < 7.78 V

6.35 For the circuit of Fig. 6-34, calculate Va and Ia for Va =

0 V and Vb = 12 V.



Fig. 6-34

Ans. –12 V, –7.4 mA

6.36 Repeat Prob. 6.35 for Va = 4 V and Vb = 8 V

Ans. 8 V, 3.27 mA

6.37 Determine V0 and I0 in the circuit of Fig. 6-35 for

VaFig. 6-35 for Va = 1.5 V and Vb = 0 V.

Fig. 6-35

Ans. –11 V, –6.5 mA

6.38 Repeat Prob. 6.37 for Va = 5 V and Vb = 3 V.



Ans. –5.67 sV, –3.42 mA

6.39 Obtain V0 and I0 in the circuit of Fig. 6-36 for Va = 12

V and Vb = 0 V.

Fig. 6-36

Ans. 10.8 V, 4.05 mA

6.40 Repeat Prob. 6.39 for Va = 4 V and Vb = 2 V.

Ans. –14.8 V, –7.05 mA

6.41 In the circuit of Fig. 6-37, calculate Va if Vs = 4 V.

Fig. 6-37



Ans. –3.10 V

6.42 Assume for the circuit of Fig. 6-37 that the op-amp

saturation voltages are V0 = ±14V. Determine the

minimum positive value of Vs that will produce

saturation.

Ans. 18.1 V

6.43 Assume for the op-amp in the circuit of Fig. 6-38 that

the saturation voltages are V0 = ± 14 V and that Rf =

12 kΩ. Calculate the range of values of Ra that will

result in saturation of the op amp.

Fig. 6-38

Ans. Ra ≥ 7 kΩ

6.44 Assume for the op-amp circuit of Fig. 6-38 that Ra =

10 kΩ and that the op-amp saturation voltages are V0 =

± 13 V. Determine the range of resistances of Rf that

will result in linear operation.

Ans. 0 Ω ≥ Rf ≥ 8.625 kΩ

6.45 Obtain the Thévenin equivalent of the circuit of Fig.

6-39 for Vs = 4 V and Rf = 8 kΩ. Reference VTh positive



toward terminal a.

Fig. 6-39

Ans. 5.33 V, 1.33 kΩ

6.46 Repeat Prob. 6.45 for Vs = 5 V and Rf = 6 kΩ.

Ans. 6.11V, 1.33 kΩ

6.47 Calculate V0 in the circuit of Fig. 6-40 with Rf replaced

by an open circuit.

Ans. 8 V

6.48 Repeat Prob. 6.47 for Rf = 4 kΩ.



Fig. 6-40

Ans. –4.8 V

6.49 Calculate V0 in the circuit of Fig. 6-41 for Va = 2 V

and Vb = 0 V.

Fig. 6-41

Ans. 1.2 V

6.50 Repeat Prob. 6.49 for Va = 3 V and Vb = 2 V.



Ans. 2.13 V

6.51 Determine V10 and V20 in the circuit of Fig 6-42.

Fig. 6-42

Ans. V10 = 1.6V, K20 = 10.5 V



Chapter 7


PSpice DC Circuit Analysis

INTRODUCTION

PSpice, from MicroSim Corporation, is a computer

program that can be used on many personal computers

(PCs) for the analyses of electric circuits. PSpice is a

derivative of SPICE which is a circuit simulation program

that was developed in the 1970s at the University of

California at Berkeley. SPICE is an acronym for Simulation

Program with Integrated Circuit Emphasis. PSpice was the

first derivative of SPICE that was suitable for use on PCs.

PSpice and SPICE, which are similar in use, are both used

extensively in industry. There are various versions of each.

Principally, only the creation of a PSpice circuit file (also

called source file) is presented in this chapter. (But much of

this material applies as well to the creation of a SPICE circuit

file.) This creation requires the use of a text editor. Typically

there are two text editors that can be used, one of which is

in what is called the PSpice Control Shell.

The PSpice Control Shell is a menu system that includes a

built-in text editor. The Control Shell can be run by simply

typing PS at the DOS prompt (perhaps C: >), and then

pressing the Enter key. After a few seconds, a menu

appears. Menu items can be selected by using either the

keyboard, mouse, or arrow keys to move horizontally and

vertically within the menus. Running PSpice interactively

using the Control Shell requires some study, at least for

most PSpice users. The MicroSim Corporation has a User’s



Guide that includes an explanation of the Control Shell,

among many other features. And there are circuit analysis

textbooks that explain its use. But no explanation will be

given here.

Instead of editing via the Control Shell, some PSpice users

may prefer to use an ASCII text editor, assuming one has

been installed to be accessed from PSpice. In this case, the

first step to utilizing PSpice might be at the DOS prompt to

type CD PSPICE and then press the Enter key to change to

the PSpice directory. Then, depending on the particular

ASCII text editor, the next step may be to just type ED

EEL.CIR and enter it. The ED is the code for edit, and

EEL.CIR is the name of the circuit file. Another name such as

EE.CIR is as suitable, but the extension. CIR must be

included. Now the editing process can be begun and the

circuit file created.

After the creation of the circuit file, the computer must be

instructed to run the PSpice program with the particular

circuit file. If the Control Shell is being used, then the

Analysis menu item can be selected for doing this. If it is not

being used, then all that is necessary is to type PSPICE

followed by the name of the circuit file. The computer then

runs the program and places the results in an output file

that has the same name as the circuit file except that the

extension. OUT replaces the extension. CIR.

Assuming no error notification, the final step is to print

the output file. If the Control Shell is being used, this

printing can be obtained via the Quit menu item. If it is not

being used, then the printout can be obtained by typing

PRINT followed by the name of the output file.

BASIC STATEMENTS

A specific PSpice circuit file will be presented before a

general consideration of the basic statements. Below is the



circuit file for the circuit of Fig. 7-1.

Fig. 7-1

In this circuit file, the first line, which is called a title line,

identifies the circuit being analyzed. The last line is an.END

line and is required complete with the period. The lines in

between define the circuit, with one component per line.

Each of these lines begins with a unique component name,

the first letter of which identifies the type of component.

Following each name are the numbers of the two nodes

between which the component is connected. And following

these node numbers is the electrical value of the

component.

If PSpice is run with this circuit file, the following appears

in the output file:



This printed output includes node voltages and voltage-

source currents. The directions of these currents are into the

first specified nodes of the voltage sources. The specified

total power dissipation is the total power provided by the

two voltage sources. Since this power is negative, these

sources absorb the indicated 7.99 W. The E designates a

power of 10, as often does a D in a SPICE output. In a SPICE

output, though, the total power dissipation is the net power

generated by all the independent sources, both voltage and

current.

Now consider PSpice circuit file statements in general.

The first line in the circuit file must be a title statement. Any

comments can be put in this line. For future reference,

though, it is a good idea to identify the circuit being

analyzed. No other such line is required, but if another is

desired, one can be obtained by starting the line with an

asterisk (*) in column 1. Although not recommended, the

title line can be left blank. But the circuit description (the

component lines) cannot start in the first line.

Between the title line and the. END line are the

component or element lines, which can be in any order.

Each consists of three fields: a name field, a node field, and

a value field. Spaces must appear between the fields and

also between the node numbers within the node field. The

number of spaces is not critical.

In the name field the first letter designates the type of

component: R for resistor, V for independent voltage source,

and I for independent current source. The letters do not

have to be capitalized. Each R, V, or I designator is followed

by some label to identify the particular component. A label



can consist of letters as well as numbers, with a limit of

seven in SPICE.

Each node field comprises two nonnegative integers that

identify the two nodes between which the particular circuit

component is connected. For a resistor, it does not matter

which node label is placed first. For a voltage source, the

first node label must be the node at which the voltage

source has its positive polarity marking. For a current

source, the first node label must be for the node at which

the current enters the current source. Note that this node

arrangement pertains when positive voltages or currents are

specified, as is usual. If negative values are specified, the

node arrangement is reversed.

As regards node numbers, there must be a 0 node. This is

the node which PSpice considers to be the ground node. The

other nodes are preferably identified by positive integers,

but these integers need not be sequential.

The value field is simply the value—positive or negative—

of the component in ohms, volts, or amperes, whichever

applies. The resistances must be nonzero. Note that the

values must not contain commas.

A comment can be inserted in a component line by

placing a semicolon after the value field, then the comment

is inserted after the semicolon.

As another illustration, consider the circuit of Fig. 7-2. A

suitable circuit file is



Fig. 7-2

In this circuit file, observe the use of suffix letters in the

value field to designate powers of 10. The 2E3 for the VI

statement could as well be 2K. Following is a complete

listing of PSpice suffix letters and scale factors.

These suffix letters do not have to be capitalized; PSpice

makes no distinction between uppercase and lowercase

letters.

DEPENDENT SOURCES

All four dependent sources are available in PSpice. Their

identifiers are E for a voltage-controlled voltage source, F for

a current-controlled current source, G for a voltage-

controlled current source, and H for a current-controlled

voltage source.



For an illustration of dependent source statements,

consider the circuit of Fig. 7-3, and the corresponding circuit

file below.

Fig. 7-3

In Fig. 7-3 the two “dummy” voltage sources VD1 and

VD2, with zero in the value field, are needed because of the

PSpice requirement that for a current to be a controlling

quantity, it must flow through an independent voltage

source. If no such source is present, then a “dummy”

voltage source of zero volts must be inserted. The voltage is

made zero to avoid affecting the circuit operation. The 0

need not be specified, though, because PSpice will use a

default of 0 V.



For each dependent source statement, the first two nodes

specified are the nodes between which the dependent

source is positioned. Further, the arrangement of these

nodes is the same as for an independent source with regard

to voltage polarity or current direction.

For a voltage-controlled dependent source, there is a

second pair of specified nodes. These are the nodes across

which the controlling voltage occurs, with the first node

being the node at which the controlling voltage is

referenced positive. For a current-controlled dependent

source, there is an independent voltage source designator

instead of a second pair of nodes. This is the name of the

independent voltage source through which the controlling

current flows from the first specified node of the voltage

source to the second. The last field in each dependent

source statement is for the scale factor or multiplier.

PSpice does not have a built-in component for an ideal

operational amplifier. From the model shown in Fig. 6-2b,

though, it should be apparent that all that is required to

effectively obtain an ideal op amp is a single voltage-

controlled voltage source with a huge voltage gain, say 500

000 or more. If a nonideal op amp is desired, resistors can

be included as shown in Fig. 6-2a.



.DC AND. PRINT CONTROL STATEMENTS

So far, the only voltages and currents obtained have been

node voltages and independent voltage source currents.

Obtaining others requires the inclusion of a. DC control

statement, and also a. PRINT statement in the source file.

If a circuit had, say, a 30-V dc voltage source named VI, a

suitable. DC control statement would be

(VI was selected for purposes of illustration, but any

independent voltage or current source can be used as a. DC

control statement.) Note that two value specifications are

necessary, which are both 30 here. The reason for having

two of them is to allow for a variation in voltage. If, for

example, three analyses were desired, one for VI = 30 V,

another for VI = 35 V, and a third for VI = 40 V, the

statement would be

where 30 is the first voltage variation, 40 is the last one,

and 5 is the voltage increment between the variations.

Now, suppose it is desired to obtain the voltage on node 4

with respect to ground, the voltage across nodes 2 and 3

with node 2 referenced positive, the voltage across resistor

R6 with the positive reference at the first specified node of

that resistor, and the current through resistor R2 with the

reference direction of the current being into the first

specified node of that resistor. The required. PRINT

statement would be



When a. PRINT statement is used, only the voltages and

currents specified in that statement will appear in the

output.

The DC must be included in the.PRINT statement to

specify the type of analysis. Further, although optional, a DC

specification is often included in each dc independent

source statement between the node and value fields as in,

for example,

With some versions of SPICE, only currents flowing

through voltage sources can be specified as in, for example,

I(V2). Also, voltages must be specified across nodes and not

components.

RESTRICTIONS

PSpice requires a dc path to ground from each node. This

is seldom a problem for dc circuits, but must be considered

for some other circuits, as will be seen. Resistors and

voltage sources (and also inductors) provide dc paths, but

current sources (and capacitors) do not. A resistor of huge

resistance can always be inserted between a node and

ground to provide a dc path. The resistance should be large

enough that the presence of the resistor does not

significantly affect the circuit operation.

Each node must have at least two circuit components

connected to it. This restriction poses a slight problem at an

open circuit. One simple solution is to insert a resistor of

huge resistance across the open circuit.

Finally, PSpice will not allow a loop of voltage sources (or

of inductors). The insertion of a resistor in series with one of

the voltage sources will eliminate this problem. The



resistance should be small enough that the presence of the

resistor does not significantly affect the circuit operation.

Solved Problems

7.1 Repeat Prob. 4.11 using PSpice. Specifically, find the

mesh currents I1 and I2 in the circuit of Fig. 4-14.

Figure 7-4 is Fig. 4-14 (redrawn and labeled for

PSpice). Such a circuit will be referred to as a PSpice

circuit. Following are the corresponding circuit file and

the printed output obtained from running PSpice with

this circuit file. Observe that I1 = I(R1) = – 8 A and I2 = I

(R3) = 1 A are in agreement with the answers to Prob.

4.11.

Fig. 7-4



7.2 Repeat Prob. 4.15 using PSpice. Specifically, find the

power absorbed by the dependent source in the circuit

of Fig. 4-19.

Figure 7.5 is the PSpice circuit corresponding to the

circuit of Fig. 4-19.

Fig. 7-5

Since PSpice does not provide a power output except for

the total power produced by independent voltage sources,



the power absorbed by the dependent source must be

calculated by hand after PSpice is used to obtain the voltage

across the dependent source and the current flowing into

the positive terminal of this source.

In the following circuit file, observe in the V2 statement

(V2 5 0 –16) that node 5 is the first specified node, which in

turn means that the specified voltage must be negative

since node 5 is not the positive node. Node 5 should be the

first specified node because the controlling current Ix flows

into it. Remember that a controlling current must flow

through an independent voltage source.

The power absorbed by the dependent source can

be obtained from the printed output:

which agrees with the answer to Prob. 4.15.

7.3 Repeat Prob. 4.22 using PSpice. Specifically,

determine the current I in the circuit of Fig. 4-25.



Figure 7-6 is the PSpice circuit corresponding to the

circuit of Fig. 4-25. This PSpice circuit, though, has an

added dummy voltage source VD. It is the current in

this source that is the controlling current for the two

dependent sources. Again, remember that a controlling

current must flow through an independent voltage

source.

Fig. 7-6

Below is the corresponding circuit file along with the

printed output obtained when this file is run with PSpice.

The output I(R3) = 3 A agrees with the answer to Prob. 4.22.



7.4 Repeat Prob. 4.49 using PSpice. Specifically,

determine the mesh currents I1 I2, and I3 in the circuit

of Fig. 4-39.

Figure 7-7 is the PSpice circuit corresponding to the

circuit of Fig. 4-39. A dummy voltage source V2 has

been included for the controlling current Ix to flow

through.

Following is the corresponding circuit file along with

the printed output obtained when this file is run with

PSpice. The currents I (R1) = I1 = – 3.260 mA, I (R4) =

I2 = – 1.989 mA, and I (R3) = I3 = 1.823 mA agree

within three significant digits with the answers to Prob.

4.49.

Fig. 7-7



7.5 Repeat Prob. 5.11 using PSpice. In other words, obtain

the Thévenin equivalent of the circuit of Fig. 5-20a.

Figure 7-8 is the PSpice circuit corresponding to the

circuit of Fig. 5-20a. This PSpice circuit has a dummy

voltage source VI inserted for sensing the controlling

current I.

Fig. 7-8



Above is the corresponding circuit file along with

the PSpice output. In the circuit file a. TF statement has

been included to obtain the Thévenin resistance. The

format of this statement is

The resulting output consists of three parts:

1. The ratio of the output variable to the specified source

quantity. For example, in the case in which the

independent source provides an input voltage and the

output is the output voltage, this ratio is the voltage

gain of the circuit.

2. The second is the resistance “seen” by the

independent source. It is the ratio of the source

voltage to the source current flowing out of the

positive source terminal with the other independent

sources deactivated. In an electronic circuit, this

resistance may be the input resistance.



3. The final output part consists of the output resistance

at the terminals of the output variable, and includes

the resistance of any resistor connected across these

terminals. For the present case, this output resistance

is the Thévenin resistance, which is the desired

quantity.

The voltage gain and the input resistance parts of the

output are not of interest. The printed output resistance

of 3 Ω, the Thévenin resistance, agrees with the answer

to Prob. 5.11. The Thévenin voltage is zero, of course,

as is specified by the printed node 2 voltage.

7.6 Repeat Prob. 5.46 using PSpice. Specifically, obtain

the Thévenin equivalent of the circuit of Fig. 5-49 to the

left of terminals a and b.

Fig. 7-9

Figure 7-9 is the PSpice circuit corresponding to the

circuit of Fig. 5-49. A resistor R3 has been inserted

across the open circuit at terminals a and b to satisfy

the PSpice requirement that at least two components

must be connected to each node. However, the



resistance of R3 is so large that the presence of this

resistor will not significantly affect the circuit operation.

Below is the corresponding circuit file along with

the resulting output. A.TF statement has been included

in the circuit file to obtain the Thévenin resistance. No

.DC or .PRINT statements have been included because

the node voltages will be printed out automatically.

Observe that node voltage 4 is essentially the same as

the voltage across terminals 4 and 5, the Thévenin

voltage, because the voltage drop across resistor R4 is

negligible. The obtained node 4 voltage value of 26 V

and the output resistance value of 18.67 Ω, which are

the Thévenin quantities, agree with the answers to

Prob. 5.46.



7.7 Repeat the first part of Prob. 6.13 using PSpice.

Specifically, compute V0 in the circuit of Fig. 6-18.

Figure 6-18 is redrawn in Fig. 7-10a, for

convenience. Figure 7-10b shows the corresponding

PSpice circuit. Observe that the op amp has been

deleted, and a model for it included. This model El is

simply a voltage-controlled voltage source connected

across the terminals that were the op-amp output

terminals. The 106 voltage gain of this source is not

critical.

Following is the corresponding circuit file along with

the pertinent part of the output obtained when PSpice

is run with this circuit file. Here, V0 = V(4) = —10 V,

which is the same as the answer to the first part of

Prob. 6.13.



Fig. 7-10



7.8 Repeat Prob. 6.20 using PSpice. Specifically, obtain

the Thévenin equivalent of the circuit of Fig. 6-24.

Figure 7-1 la is the same as Fig. 6-24, and is

included here for convenience. Figure 7-1 lb is the

corresponding PSpice circuit in which the op amp has

been replaced by a model El that is a voltage-controlled

voltage source.

Below is the corresponding circuit file along with

the pertinent portion of the output file. Node voltage

V(3) = 3 V is the Thévenin voltage, and the output

resistance of 571.4 Ω is the Thévenin resistance. Both

values agree with the answers to Prob. 6.20.



Fig. 7-11



7.9 Repeat Prob. 6.24 using PSpice. Specifically, obtain

the voltages V10 and V20 in the circuit of Fig. 6-28.

Figure 7-12a is the same as Fig. 6-28 and is

included solely for convenience. Figure 7-12b is the

corresponding PSpice circuit in which the two op amps

have been replaced by models El and E2, which are

voltage-controlled voltage sources.

Following is the corresponding circuit file and the

pertinent part of the output file. The results of V(3)=

V10 = 12.5 V and V(4) = V20 = 1 V agree with the

answers to Prob. 6.24.



Fig. 7-12



Supplementary Problems

7.10 Use PSpice to compute Ix in the circuit of Fig. 4-28.

Ans. –0.333 A

7.11 Use PSpice to determine I in the circuit of Fig. 4-45.

Ans. –3.53 mA

7.12 Use PSpice to find the Thévenin voltage at terminals

a and b in the circuit of Fig. 5-44. Reference VTh

positive at terminal a.

Ans. 143.3 V

7.13 Use PSpice to obtain V0 in the circuit of Fig. 6-21.

Ans. 10 V

7.14 Use PSpice to find V0 in the circuit of Fig. 6-22.

Ans. –1.95 V

7.15 Use PSpice to determine V10 and V20 in the circuit of

Fig. 6-42.

Ans. 1.6 V, 10.5 V



7.16 Without using PSpice, determine the output

corresponding to the following circuit file.

Ans. 4 A

7.17 Without using PSpice, determine the output

corresponding to the following circuit file.

Ans. 4 A

7.18 Without using PSpice, determine the output

corresponding to the following circuit file.



Ans. 6 V

7.19 Without using PSpice, determine the output

corresponding to the following circuit file.

Ans. 1.6 A

7.20 Without using PSpice, determine the output

corresponding to the following circuit file.



Ans. 3 A

7.21 Without using PSpice, determine the output

corresponding to the following circuit file.

Ans. I(R4) = 6.95 mA, I(R3) = –14.6 mA, I(R5) = 10.0 mA

7.22 Without using PSpice, determine the output

corresponding to the following circuit file.

Ans. –2V



7.23 Without using PSpice, determine the output

corresponding to the following circuit file. (Hint:

Consider an op-amp circuit.)

Ans. 12V

7.24 Without using PSpice, determine the output

corresponding to the following circuit file. (Hint:

Consider an op-amp circuit.)



Ans. 12V



Chapter 8


Capacitors and Capacitance

INTRODUCTION

A capacitor consists of two conductors separated by an

insulator. The chief feature of a capacitor is its ability to store

electric charge, with negative charge on one of its two

conductors and positive charge on the other. Accompanying

this charge is energy, which a capacitor can release. Figure 8-1

shows the circuit symbol for a capacitor

Fig. 8-1

CAPACITANCE

Capacitance, the electrical property of capacitors, is a

measure of the ability of a capacitor to store charge on its two

conductors. Specifically, if the potential difference between the

two conductors is V volts when there is a positive charge of Q

coulombs on one conductor and a negative charge of the same

amount on the other, the capacitor has a capacitance of

where C is the quantity symbol of capacitance.



The SI unit of capacitance is the farad, with symbol F.

Unfortunately, the farad is much too large a unit for practical

applications, and the microfarad (μF) and picofarad (pF) are

much more common.

CAPACITOR CONSTRUCTION

One common type of capacitor is the parallel-plate capacitor

of Fig. 8-2a. This capacitor has two spaced conducting plates

that can be rectangular, as shown, but that often are circular.

The insulator between the plates is called a dielectric. The

dielectric is air in Fig. 8-2a, and is a slab of solid insulator in

Fig. 8-2b

Fig. 8-2

A voltage source connected to a capacitor, as shown in Fig.

8-3, causes the capacitor to become charged. Electrons from

the top plate are attracted to the positive terminal of the

source, and they pass through the source to the negative

terminal where they are repelled to the bottom plate. Because

each electron lost by the top plate is gained by the bottom

plate, the magnitude of charge Q is the same on both plates.

Of course, the voltage across the capacitor from this charge

exactly equals the source voltage. The voltage source did work

on the electrons in moving them to the bottom plate, which

work becomes energy stored in the capacitor.



Fig. 8-3

For the parallel-plate capacitor, the capacitance in farads is

where A is the area of either plate in square meters, d is the

separation in meters, and ε is the permittivity in farads per

meter (F/m) of the dielectric. The larger the plate area or the

smaller the plate separation, or the greater the dielectric

permittivity, the greater the capacitance.

The permittivity ε relates to atomic effects in the dielectric.

As shown in Fig. 8-3, the charges on the capacitor plates

distort the dielectric atoms, with the result that there is a net

negative charge on the top dielectric surface and a net positive

charge on the bottom dielectric surface. This dielectric charge

partially neutralizes the effects of the stored charge to permit

an increase in charge for the same voltage.

The permittivity of vacuum, designated by ε0, is 8.85 pF/m.

Permittivities of other dielectrics are related to that of vacuum

by a factor called the dielectric constant or relative

permittivity, designated by εr. The relation is ε = εrε0. The

dielectric constants of some common dielectrics are 1.0006 for



air, 2.5 for paraffined paper, 5 for mica, 7.5 for glass, and 7500

for ceramic.

TOTAL CAPACITANCE

The total or equivalent capacitance (CT or Ceq) of parallel

capacitors, as seen in Fig. 8-4a, can be found from the total

stored charge and the Q = CV formula. The total stored charge

QT equals the sum of the individual stored charges: QT = Q1, +

Q2 + Q1. With the substitution of the appropriate Q = CV for

each Q, this equation becomes CTV = C1V + C2V + C3V. Upon

division by V, it reduces to CT = C1 + C2 + C3. Because the

number of capacitors is not significant in this derivation, this

result can be generalized to any number of parallel capacitors:

Fig. 8-4

So, the total or equivalent capacitance of parallel capacitors is

the sum of the individual capacitances.

For series capacitors, as shown in Fig. 8-4b, the formula for

the total capacitance is derived by substituting Q/C for each V

in the KVL equation. The Q in each term is the same. This is

because the charge gained by a plate of any capacitor must

have come from a plate of an adjacent capacitor. The KVL



equation for the circuit shown in Fig. 8-4b is VS = V1 + V2 + V3.

With the substitution of the appropriate Q/C for each V, this

equation becomes

upon division by Q. This can also be written as

Generalizing,

which specifies that the total capacitance of series capacitors

equals the reciprocal of the sum of the reciprocals of the

individual capacitances. Notice that the total capacitance of

series capacitors is found in the same way as the total

resistance of parallel resistors.

For the special case of N series capacitors having the same

capacitance C, this formula simplifies to CT = C/N. And for two

capacitors in series it is CT = C1C2/(C1 + C2).

ENERGY STORAGE

As can be shown using calculus, the energy stored in a

capacitor is



where Wc is in joules, C is in farads, and V is in volts. Notice

that this stored energy does not depend on the capacitor

current.

TIME-VARYING VOLTAGES AND CURRENTS

In dc resistor circuits, the currents and voltages are constant

—never varying. Even if switches are included, a switching

operation can, at most, cause a voltage or current to jump

from one constant level to another. (The term “jump” means a

change from one value to another in zero time.) When

capacitors are included, though, almost never does a voltage

or a current jump from one constant level to another when

switches open or close. Some voltages or currents may initially

jump at switching, but the jumps are almost never to final

values. Instead, they are to values from which the voltages or

currents change exponentially to their final values. These

voltages and currents vary with time—they are time-varying.

Quantity symbols for time-varying quantities are

distinguished from those for constant quantities by the use of

lowercase letters instead of uppercase letters. For example, v

and i are the quantity symbols for time-varying voltages and

currents. Sometimes, the lowercase t, for time, is shown as an

argument with lowercase quantity symbols as in v(t) and i(t).

Numerical values of v and i are called instantaneous values, or

instantaneous voltages and currents, because these values

depend on (vary with) exact instants of time.

As explained in Chap. 1, a constant current is the quotient of

the charge Q passing a point in a wire and the time T required

for this charge to pass: I = Q/T. The specific time T is not

important because the charge in a resistive dc circuit flows at a

steady rate. This means that doubling the time T doubles the

charge Q, tripling the time triples the charge, and so on,

keeping I the same.

For a time-varying current, though, the value of i usually

changes from instant to instant. So, finding the current at any

particular time requires using a very short time interval Δt. If



Δq is the small charge that flows during this time interval, then

the current is approximately Δq/Δt. For an exact value of

current, this quotient must be found in the limit as Δt

approaches zero (Δt → 0):

This limit, designated by dq/dt, is called the derivative of

charge with respect to time.

CAPACITOR CURRENT

An equation for capacitor current can be found by

substituting q = Cv into i = dq/dt:

But C is a constant, and a constant can be factored from a

derivative. The result is

with associated references assumed. If the references are not

associated, a negative sign must be included. This equation

specifies that the capacitor current at any time equals the

product of the capacitance and the time rate of change of

voltage at that time. But the current does not depend on the

value of voltage at that time.

If a capacitor voltage is constant, then the voltage is not

changing and so dv/dt is zero, making the capacitor current

zero. Of course, from physical considerations, if a capacitor

voltage is constant, no charge can be entering or leaving the



capacitor, which means that the capacitor current is zero. With

a voltage across it and zero current flow through it, the

capacitor acts as an open circuit: a capacitor is an open circuit

to dc. Remember, though, it is only after a capacitor voltage

becomes constant that the capacitor acts as an open circuit.

Capacitors are often used in electronic circuits to block dc

currents and voltages.

Another important fact from i = C dv/dt or i ⋍ C Δv/Δt is that

a capacitor voltage cannot jump. If, for example, a capacitor

voltage could jump from 3 V to 5 V or, in other words, change

by 2 V in zero time, then Δv would be 2 and Δt would be 0,

with the result that the capacitor current would be infinite. An

infinite current is impossible because no source can deliver this

current. Further, such a current flowing through a resistor

would produce an infinite power loss, and there are no sources

of infinite power and no resistors that can absorb such power.

Capacitor current has no similar restriction.. It can jump or

even change directions, instantaneously. Capacitor voltage not

jumping means that a capacitor voltage immediately after a

switching operation is the same as immediately before the

operation. This is an important fact for resistor-capacitor (RC)

circuit analysis.

SINGLE-CAPACITOR DC-EXCITED CIRCUITS

When switches open or close in a dc RC circuit with a single

capacitor, all voltages and currents that change do so

exponentially from their initial values to their final constant

values, as can be shown from differential equations. The

exponential terms in a voltage or current expression are called

transient terms because they eventually become zero in

practical circuits.

Figure 8-5 shows these exponential changes for a switching

operation at t = 0 s. In Fig. 8-5a the initial value is greater than

the final value, and in Fig. 8-5b the final value is greater.

Although both initial and final values are shown as positive,



both can be negative or one can be positive and the other

negative.

The voltages and currents approach their final values

asymptotically, graphically speaking, which means that they

never actually reach them. As a practical matter, however,

after five time constants (defined next) they are close enough

to their final values to be considered to be at them.

Time constant, with symbol τ, is a measure of the time

required for certain changes in voltages and currents. For a

single-capacitor RC circuit, the time constant of the circuit is

the product of the capacitance and the Thévenin resistance as

“seen” by the capacitor:

RC time constant = τ = RThC

The expressions for the voltages and currents shown in Fig.

8-5 are

Fig. 8-5

for all time greater than zero (t > 0 s). In these equations, v

(0+) and i (0+) are initial values immediately after switching; v



(∞) and i (∞) are final values; e = 2.718, the base of natural

logarithms; and τ is the time constant of the circuit of interest.

These equations apply to all voltages and currents in a linear,

RC, single-capacitor circuit in which the independent sources, if

any, are all dc.

By letting t = τ in these equations, it is easy to see that, in a

time equal to one time constant, the voltages and currents

change by 63.2 percent of their total change of v (∞) – v (0+)

or i (∞) – i (0+). And by letting t = 5τ, it is easy to see that,

after five time constants, the voltages and currents change by

99.3 percent of their total change, and so can be considered to

be at their final values for most practical purposes.

RC TIMERS AND OSCILLATORS

An important use for capacitors is in circuits for measuring

time—timers. A simple timer consists of a switch, capacitor,

resistor, and dc voltage source, all in series. At the beginning

of a time interval to be measured, the switch is closed to cause

the capacitor to start charging. At the end of the time interval,

the switch is opened to stop the charging and “trap” the

capacitor charge. The corresponding capacitor voltage is a

measure of the time interval. A voltmeter connected across the

capacitor can have a scale calibrated in time to give a direct

time measurement.

As indicated in Fig. 8-5, for times much less than one time

constant, the capacitor voltage changes almost linearly.

Further, the capacitor voltage would get to its final value in

one time constant if the rate of change were constant at its

initial value. This linear change approximation is valid if the

time to be measured is one-tenth or less of a time constant, or,

what amounts to the same thing, if the voltage change during

the time interval is one-tenth or less of the difference between

the initial and final voltages.

A timing circuit can be used with a gas tube to make an

oscillator —a circuit that produces a repeating waveform. A gas

tube has a very large resistance—approximately an open



circuit—for small voltages. But at a certain voltage it will fire

or, in other words, conduct and have a very low resistance—

approximately a short circuit for some purposes. After

beginning to conduct, it will continue to conduct even if its

voltage drops, provided that this voltage does not drop below a

certain low voltage at which the tube stops firing

(extinguishes) and becomes an open circuit again.

The circuit illustrated in Fig. 8-6a is an oscillator for

producing a sawtooth capacitor voltage as shown in Fig. 8-6b.

If the firing voltage VF of the gas tube is one-tenth or less of

the source voltage Vs, the capacitor voltage increases almost

linearly, as shown in Fig. 8-6b, to the voltage VF, at which time

T the gas tube fires. If the resistance of the conducting gas

tube is small and much less than that of the resistor R, the

capacitor rapidly discharges through the tube until the

capacitor voltage drops to VE, the extinguishing voltage, which

is not great enough to keep the tube conducting. Then the

tube cuts off, the capacitor starts charging again, and the

process keeps repeating indefinitely. The time T for one

charging and discharging cycle is called a period.

Fig. 8-6

Solved Problems

8.1 Find the capacitance of an initially uncharged capacitor

for which the movement of 3 × 1015 electrons from one



capacitor plate to another produces a 200-V capacitor

voltage.

From the basic capacitor formula C = Q/V, in which Q

is in coulombs,

8.2 What is the charge stored on a 2-μF capacitor with 10 V

across it?

From C = Q/V,

8.3 What is the change of voltage produced by 8 × 109

electrons moving from one plate to the other of an initially

charged 10-pF capacitor?

Since C = Q/V is a linear relation, C also relates

changes in charge and voltage: C = ΔQ/ΔV In this

equation, ΔQ is the change in stored charge and ΔV is the

accompanying change in voltage. From this,

8.4 Find the capacitance of a parallel-plate capacitor if the

dimensions of each rectangular plate is 1 by 0.5 cm and

the distance between plates is 0.1 mm. The dielectric is

air. Also, find the capacitance if the dielectric is mica

instead of air.

The dielectric constant of air is so close to 1 that the

permittivity of vacuum can be used for that of air in the

parallel-plate capacitor formula:



Because the dielectric constant of mica is 5, a mica

dielectric increases the capacitance by a factor of 5: C = 5

× 4.43 = 22.1 pF.

8.5 Find the distance between the plates of a 0.01-μF

parallel-plate capacitor if the area of each plate is 0.07 m2

and the dielectric is glass.

From rearranging C = εA/d and using 7.5 for the

dielectric constant of glass,

8.6 A capacitor has a disk-shaped dielectric of ceramic that

has a 0.5-cm diameter and is 0.521 mm thick. The disk is

coated on both sides with silver, this coating being the

plates. Find the capacitance.

With the ceramic dielectric constant of 7500 in the

parallel-plate capacitor formula,

8.7 A 1-F parallel-plate capacitor has a ceramic dielectric 1

mm thick. If the plates are square, find the length of a

side of a plate.

Because each plate is square, a length l of a side is 

 From this and C = ε A/d,



Each side is 123 m long or, approximately, 1.3 times the

length of a football field. This problem demonstrates that

the farad is an extremely large unit.

8.8 What are the different capacitances that can be obtained

with a 1- and a 3-μF capacitor?

The capacitors can produce 1 and 3 μF individually; 1

+ 3 = 4 μF in parallel; and (1 × 3)/(l + 3) = 0.75 μF in

series

8.9 Find the total capacitance CT of the circuit shown in Fig.

8-7.

Fig. 8-7

At the end opposite the input, the series 30- and 60-μF

capacitors have a total capacitance of 30 × 60/(30 + 60)

= 20 μF. This adds to the capacitance of the parallel 25-μF

capacitor for a total of 45 μF to the right of the 90-μF

capacitor. The 45- and 90-μF capacitances combine to 45

× 90/(45 + 90) = 30 μF. This adds to the capacitance of

the parallel 10-μF capacitor for a total of 30 + 10 = 40 μF

to the right of the 60-μF capacitor. Finally,

8.10 A 4-μF capacitor, a 6-μF capacitor, and an 8-μF

capacitor are in parallel across a 300-V source. Find (a)



the total capacitance, (b) the magnitude of charge stored

by each capacitor, and (c) the total stored energy.

(a) Because the capacitors are in parallel, the total or

equivalent capacitance is the sum of the individual

capacitances: CT = 4 + 6 + 8 = 18 μF.

(b) The three charges are, from Q = CV. (4 × 10–6)(300) C =

1.2 mC, (6 × 10–6)(300) C = 1.8 mC, and (8 × 10–6)(300)

C = 2.4 mC for the 4-, 6-, and 8-μF capacitors,

respectively.

(c) The total capacitance can be used to obtain the total

stored energy:

8.11 Repeat Prob. 8.10 for the capacitors in series instead of

in parallel, but find each capacitor voltage instead of each

charge stored.

(a) Because the capacitors are in series, the total

capacitance is the reciprocal of the sum of the reciprocals

of the individual capacitances:

(b) The voltage across each capacitor depends on the

charge stored, which is the same for each capacitor. This

charge can be obtained from the total capacitance and

the applied voltage:

From V = Q/C, the individual capacitor voltages are



for the 4-, 6-, and 8-μF capacitors, respectively,

(c) The total stored energy is

8.12 A 24-V source and two capacitors are connected in

series. μF one capacitor has 20 μFof capacitance and has

16 V across it, what is the capacitance of the other

capacitor?

By KVL, the other capacitor has 24 – 16 = 8 V across

it. Also, the charge on it is the same as that on the other

capacitor: Q = CV = (20 × 10–6)(16) C = 320μC. So, C =

Q/V = 320 × 10–6/8 F = 40 μF.

8.13 Find each capacitor voltage in the circuit shown in Fig.

8-8.

Fig. 8-8

The approach is to find the equivalent capacitance, use it to

find the charge, and then use this charge to find the voltages

across the 6- and 12-μF capacitors, which have this same

charge because they are in series with the source.



At the end opposite the source, the two parallel

capacitors have an equivalent capacitance of 5 + 1 = 6

μF. With this reduction, the capacitors are in series,

making

The desired charge is

which is the charge on the 6-μF capacitor as well as on the

12-μF capacitor. From V = Q/C,

8.14 Find each capacitor voltage in the circuit shown in Fig.

8-9.

Fig. 8-9

A good analysis method is to reduce the circuit to a

series circuit with two capacitors and the voltage source,

find the charge on each reduced capacitor, and from it



find the voltages across these capacitors. Then the

process can be partially repeated to find all the capacitor

voltages in the original circuit.

The parallel 20- and 40-μF capacitors reduce to a

single 60-μF capacitor. The 30- and 70-μF capacitors

reduce to a 30 × 70/(30 + 70) = 21-μF capacitor in

parallel with the 9-μF capacitor. So, all three of these

capacitors reduce to a 21 + 9 = 30-μF capacitor that is in

series with the reduced 60-μF capacitor, and the total

capacitance at the source terminals is 30 × 60/(30 + 60)

= 20 μF. The desired charge is

This charge can be used to obtain V1 and V2:

Alternatively, V2 = 400 – V1 = 400 – 133 = 267 V.

The charge on the 30-μF capacitor and also on the

series 70-μF capacitor is the 8 mC minus the charge on

the 9-μF capacitor:

Consequently, from V = Q/C,

As a check V3 = V4 = 187 + 80 = 267 V = V2.

8.15 A 3-μF capacitor charged to 100 V is connected across

an uncharged 6-μF capacitor. Find the voltage and also



the initial and final stored energies.

The charge and capacitance are needed to find the

voltage from V = Q/C. Initially, the charge on the 3-μF

capacitor is Q = CV = (3 × 10–6)(100) C = 0.3 mC. When

the capacitors are connected together, this charge

distributes over the two capacitors, but does not change.

Since the same voltage is across both capacitors, they arc

in parallel. So, CT = 3 + 6 = 9 μF, and

The initial energy is all stored by the 3-μF capacitor: 

CV2 = 0.5(3 × 10–6)(100)2 J = 15 mJ. The final energy is

stored by both capacitors: 0.5(9 × 10–6)(33.3)2 J = 5 mJ.

8.16 Repeat Prob. 8.15 for an added 2-kΩ series resistor in

the circuit.

The resistor has no effect on the final voltage, which is

33.3 V, because this voltage depends only on the

equivalent capacitance and the charge stored, neither of

which are affected by the presence of the resistor. Since

the final voltage is the same, the final energy storage is

the same: 5 mJ. Of course, the resistor has no effect on

the initial 15 mJ stored. The resistor will, however, slow

the time taken for the voltage to reach its final value,

which time is five time constants after the switching. This

time is zero μF the resistance is zero. The presence of the

resistor also makes it easier to account for the 10-mJ

decrease in stored energy—it is dissipated in the resistor.

8.17 A 2-μF capacitor charged to 150 V and a 1-μF capacitor

charged to 50 V are connected together with plates of

opposite polarity joined. Find the voltage and the initial

and final stored energies.



Because of the opposite polarity connection, some of

the charge on one capacitor cancels that on the other. The

initial charges are (2 × 10–6)(150) C = 300 μC for the 2-μF

capacitor and (1 × 10–6)(50) C = 50 μC for the 1-μF

capacitor. The final charge distributed over both

capacitors is the difference of these two charges: 300 – 50

= 250 μC. It produces a voltage of

The initial stored energy is the sum of the energies

stored by both capacitors:

The final stored energy is

8.18 What is the current flowing through a 2-μF capacitor

when the capacitor voltage is 10 V?

There is not enough information to find the capacitor

current. This current depends on the rate of change of

capacitor voltage and not the voltage value, and this rate

is not given.

8.19 If the voltage across a 0.1-μF capacitor is 3000t V, find

the capacitor current.

The capacitor current equals the product of the

capacitance and the time derivative of the voltage. Since

the time derivative of 3000t is 3000,



which is a constant value.

The capacitor current can also be found from i = C Δr/

Δt because the voltage is increasing linearly. If Δt is taken

as, say, 2 s, from 0 to 2 s, the corresponding Δt is 3000Δt

= 3000(2 – 0) = 6000 V. So.

8.20 Sketch the waveform of the current that flows through

a 2-μF capacitor when the capacitor voltage is as shown

in Fig. 8-10. As always, assume associated references

because there is no statement to the contrary.

Fig. 8-10

Graphically, the dv/dt in i = C dv/dt is the slope of the

voltage graph. For straight lines this slope is the same as

Δv/Δt. For this voltage graph, the straight line for the

interval of t = 0 s to t = 1 μs has a slope of (20 – 0)/(1 ×



10–6 – 0) V/s = 20 MV/s, which is the voltage at t = 1 μs

minus the voltage at í = 0 s, divided by the time at t = 1

μs minus the time at t = 0 s. As a result, during this time

interval the current is i = C dv/dt = (2 × 10–6)(20 × 106) =

40 A.

From t = 1 μs to t = 4 μs, the voltage graph is

horizontal, which means that the slope and, consequently,

the current are zero: i = 0 A.

For the time interval from t = 4 μs to t = 6 μs, the

straight line has a slope of (– 20 –20)/(6 × 10–6 – 4 × 10–6)

V/s = —20 MV/s. This change in voltage produces a

current of i = C dv/dt = (2 × 10–6)(—20 × 106) = –40 A.

Finally, from t = 6 μs to t — 8 μs, the slope of the

straight line is [0 – (–20)]/(8 × 10–6 – 6 × 10–6) V/s = 10

MV/s and the capacitor current is i = C dv/dt = (2 × 10–6)

(10 × 106) = 20 A.

Figure 8-11 is a graph of the capacitor current. Notice

that, unlike capacitor voltage, capacitor current can jump,

as it does at 1, 4, and 6 μs. In fact, at 6 μs the current

reverses direction instantaneously.



Fig. 8-11

8.21 Find the time constant of the circuit shown in Fig. 8-12.

Fig. 8-12

The time constant is τ = RThC, where RTh is the

Thévenin resistance at the capacitor terminals.

Here,

and so the time constant is τ = RThC = (20 × 103)(6 × 10–

6) = 0.12 s.

8.22 How long does a 20-μF capacitor charged to 150 V take

to discharge through a 3-MΩ resistor? Also, at what time

does the maximum discharge current occur and what is

its value?

The discharge is considered to be completed after five

time constants:

Since the current decreases as the capacitor

discharges, it has a graph as shown in Fig. 8-5a with a



maximum value at the time of switching, t = 0 s here. In

this circuit the current has an initial value of 150/(3 × 106)

A = 50 μA because initially the capacitor voltage of 150 V,

which cannot jump, is across the 3-MΩ resistor.

8.23 At t = 0 s, a 100-V source is switched in series with a 1-

kΩ resistor and an uncharged 2-μF capacitor. What are (a)

the initial capacitor voltage, (b) the initial current, (c) the

initial rate of capacitor voltage increase, and (d) the time

required for the capacitor voltage to reach its maximum

value?

(a) Since the capacitor voltage is zero before the switching,

it is also zero immediately after the switching—a

capacitor voltage cannot jump: v (0+) = 0 V.

(b) By KVL, at t = 0+ s the 100 V of the source is all across

the 1-kΩ resistor because the capacitor voltage is 0 V.

Consequently, i (0+) = 100/103 A = 100 mA.

(c) As can be seen from Fig. 8-5b, the initial rate of capacitor

voltage increase equals the total change in capacitor

voltage divided by the circuit time constant. In this circuit

the capacitor voltage eventually equals the 100 V of the

source. Of course, the initial value is 0 V. Also, the time

constant is τ = RC = 103(2 × 10–6)s = 2 ms. So, the

initial rate of capacitor voltage increase is 100/(2 × 10–3)

= 50 000 V/s. This initial rate can also be found from i =

C dv/dt evaluated at t = 0+ s:

(d) It takes five time constants, 5 × 2 = 10 ms, for the

capacitor voltage to reach its final value of 100 V.

8.24 Repeat Prob. 8.23 for an initial capacitor charge of 50

μC The positive plate of the capacitor is toward the

positive terminal of the 100-V source.



(a) The initial capacitor voltage is V = Q/C = (50 × 10–6)/(2

× 10–6) = 25 V.

(b) At t = 0+ s, the voltage across the resistor is, by KVL,

the source voltage minus the initial capacitor voltage.

This voltage difference divided by the resistance is the

initial current: i (0 +) = (100 – 25)/103 A = 75 mA.

(c) The initial rate of capacitor voltage increase equals the

total change in capacitor voltage divided by the time

constant: 75/(2 × 10–3) = 37 500 V/s.

(d) The initial capacitor voltage has no effect on the circuit

time constant and so also not on the time required for

the capacitor voltage to reach its final value. This time is

10 ms, the same as for the circuit discussed in Prob. 8.23.

8.25 In the circuit shown in Fig. 8-13, find the indicated

voltages and currents at t = 0+ s, immediately after the

switch closes. The capacitors are initially uncharged. Also,

find these voltages and currents “a long time” after the

switch closes.

Fig. 8-13

At t = 0+ s, the capacitors have 0 V across them

because the capacitor voltages cannot jump from the 0-V

values that they have at t = 0– s, immediately before the

switching: v1(0+) = 0 V and = v4(0+) = 0 V. Further, with

0 V across them, the capacitors act like short circuits at t

= 0+ s, with the result that the 100 V of the source is



across both the 25-Ω and 50-Ω resistors: v2(0+) = v3(0+)

= 100 V. Three of the initial currents can be found from

these voltages:

The remaining initial current, i2(0+), can be found by

applying KCL at the node at the top of the 1-μF capacitor:

A “long time” after the switch closes means more than five

time constants later. At this time the capacitor voltages are

constant, and so the capacitors act like open circuits, blocking

i2 and i4: i2(∞) = i4(∞) = 0 A. With the 1-μF capacitor acting like

an open circuit, the 10-Ω and 25-Ω resistors are in series

across the 100-V source, and so i1(∞) = i3(∞) = 100/35 = 2.86

A. From the resistances and the calculated currents, v1(∞) = 10

× 2.86 = 28.6 V, v2(∞) = 25 × 2.86 = 71.4 V, and v3(∞) = 0 ×

50 = 0 V. Finally, from the right-hand mesh,

8.26 A 2-μF capacitor, initially charged to 300 V, is

discharged through a 270-kΩ resistor. What is the

capacitor voltage at 0.25 s after the capacitor starts to

discharge?

The voltage formula is v = v (∞) + [v (0+) – v (∞]e–t/τ.

Since the time constant is τ = RC = (270 × 103)(2 × 10–6)

= 0.54 s, the initial capacitor voltage is v (0+) = 300 V,

and the final capacitor voltage is v (∞) = 0 V, it follows

that the equation for the capacitor voltage is

v (t) = 0 +(300 – 0)e–t/0.54 = 300e–1.85t V for t ≥ 0 s



From this, v (0.25) = 300e–1.85(0.25) = 189 V.

8.27 Closing a switch connects in series a 200-V source, a 2-

MΩ resistor, and an uncharged 0.1-μF capacitor. Find the

capacitor voltage and current at 0.1 s after the switch

closes.

The voltage formula is v = v (∞) + [v (0+) – v (∞)]e–t/τ.

= Here, v (∞) = 200 V, v (0+) = 0 V, and τ = (2 × 106)(0.1

× 10–6) = 0.2 s. So,

v (t) = 200 + [0 – 200]e–t/0.2 = 200 – 200e–5t V for t > 0 s

Substitution of 0.1 to t gives v (0.1):

v (0.1) = 200 – 200e–0.5 = 78.7 V

Similarly, i = i (∞) + [i (0+) – i (∞)]e–t/τ, in which i (0

+) = 200/(2 × 106) A = 0.1 mA, i (∞) = 0 A, and of course

τ = 0.2 s. With these values inserted,

i (t) = 0 + (0.1 – 0)e–5t = 0.1e–5t mA for t > 0 s

From this. i (0.1) = 0.1e–0.5 mA = 60.7 μA. This current can

also be found by using the voltage across the resistor at t

= 0.1 s: i (0.1) = (200 – 78.7)/(2 × 106) A = 60.7 μA.

8.28 For the circuit used in Prob. 8.27, find the time required

for the capacitor voltage to reach 50 V. Then find the time

required for the capacitor voltage to increase another 50

V, from 50 to 100 V. Compare times.

From the solution to Prob. 8.27, v(t) = 200 – 200e–5t V.

To find the time at which the voltage is 50 V, it is only

necessary to substitute 50 for v(t) and solve for t: 50 =

200 – 200e–5t or e–5t = 150/200 = 0.75. The exponential

can be eliminated by taking the natural logarithm of both

sides:



In e–5t = In 0.75 from which –5t = –0.288 and t =

0.288/5 s = 57.5 ms

The same procedure can be used to find the time at

which the capacitor voltage is 100 V: 100 = 200 – 200e–5t

or e–5t = 100/200 = 0.5. Further,

In e–5t = In 0.5 from which –5t = –0.693 and t =

0.693/5 s = 138.6 ms

The voltage required 57.5 ms to reach 50 V, and 138.6

– 57.5 = 81.1 ms to increase another 50 V, which verifies

the fact that the rate of increase becomes less and less as

time increases.

8.29 In the circuit shown in Fig. 8-14, the switch closes at t =

0 s. Find vc and i for t > 0 s if vc (0) = 100 V.

Fig. 8-14

All that are needed for the v and i formulas are vc (0

+), vc (∞), i (0 +), i (∞). and τ = RThC. Of course, vc (0 +)

= 100 V because the capacitor voltage cannot jump. The

voltage vc (∞) is the same as the voltage across the 60-Ω

resistor a long time after the switch closes, because at this

time the capacitor acts like an open circuit. So, by voltage

division,



Also, i (∞) = vc (∞)/60 = 180/60 = 3 A. It is easy to obtain i

(0 +) from v (0 +), which can be solved for using a nodal

equation at the middle top node for the time t = 0+ s:

from which v (0 +) = 132 V. So, i (0 +) = 132/60 = 2.2 A.

Since the Thévenin resistance at the capacitor terminals is

16 + 60||40 = 40 Ω, the time constant is τ = RC = 40(2.5

× 10–3) = 0.1 s.

With these quantities substituted into the r and i

formulas,

8.30 The switch is closed at t = 0 s in the circuit shown in

Fig. 8-15. Find i for t > 0 s. The capacitor is initially

uncharged.

Fig. 8-15

The quantities i (0 +), i (∞), and τ are needed for the

current formula



At t = 0+ s, the short-circuiting action of the capacitor

prevents the 20-mA current source from affecting i (0 +).

Also, it places the 6-kΩ resistor in parallel with the 60-kΩ

resistor. Consequently, by current division,

in which the simplifying kilohm-milliampere method is

used.

After five time constants the capacitor no longer

conducts current and can be considered to be an open

circuit and so neglected in the calculations. By nodal

analysis,

from which v1(∞) = –62.67 V. So, i (∞) = –62.67/(60 × 103)

A = –1.04 mA.

The Thévenin resistance at the capacitor terminals is

(6 + 40||60)||(40 + 20) = 20 kΩ This can be used to find

the time constant:

Now that i (0 +), i (∞), and τ are known, the current i

can be found:

8.31 After a long time in position 1, the switch in the circuit

shown in Fig. 8-16 is thrown to position 2 at t = 0 s for a

duration of 30 s and then returned to position 1. (a) Find



the equations for v for t ≥ 0 s. (b) Find v at t = 5s and at t

= 40 s. (c) Make a sketch of v for 0 s ≤ t ≤ 80 s.

Fig. 8-16

(a) At the time that the switch is thrown to position 2, the

initial capacitor voltage is 20 V, the same as immediately

before the switching; the final capacitor voltage is 70 V,

the voltage of the source in the circuit; and the time

constant is (20 × 106)(2 × 10–6) = 40s. Consequently,

while the switch is in position 2,

Of course, the capacitor voltage never reaches the “final

voltage” because a switching operation interrupts the

charging, but the circuit does not “know” this ahead of

time.

When the switch is returned to position 1, the circuit

changes, and so the equation for t changes. The initial

voltage at this t = 30-s switching can be found by

substituting 30 for t in the equation for v that was just

calculated: v (30) = 70 – 50e–0.025(30) = 46.4 V. The final

capacitor voltage is 20 V, and the time constant is (5 ×

106)(2 × 10–6) = 10s. For these values, the basic voltage



formula must be modified since the switching occurs at t

= 30 s instead of at t = 0+ s. The modified formula is

The t – 30 is necessary in the exponent to account for the

time shift. With the values inserted into this formula, the

capacitor voltage is

(b) For v at t = 5 s, the first voltage equation must be used

because it is the one that is valid for the first 30 s: v (5)

= 70 – 50e–0.025(5) = 29.7 V. For v at t = 40s, the second

equation must be used because it is the one that is valid

after 30 s: v (5) = 70 – 50e–0.1(40 – 30) = 29.7 V.

(c) Figure 8-17 shows the voltage graph which is based on

the two voltage equations. The voltage rises

exponentially to 46.4 V at t = 30 s, heading toward 70 V.

After 30 s, the voltage decays exponentially to the final

value of 20 V, reaching it at 80 s, five time constants

after the switch returns to position 1.

Fig. 8-17



8.32 A simple RC timer has a switch that when closed

connects in series a 300-V source, a 16-MΩ resistor, and

an uncharged 10-μF capacitor. Find the time between the

closing and opening of the switch if the capacitor charges

to 10 V during this time.

Because 10 V is less than one-tenth of the final

voltage of 300 V, a linear approximation can be used. In

this approximation the rate of voltage change is

considered to be constant at its initial value. Although not

needed, this rate is the quotient of the possible total

voltage change of 300 V and the time constant of RC =

(16 × 106)(10 × 10–6) = 160 s. Since the voltage that the

capacitor charges to is 1/30th of the possible total voltage

change, the time required for this charging is

approximately 1/30th of the time constant: t ≃ 160/30 =

5.33 s.

This time can be found more accurately, but with

more effort, from the voltage formula. For it, v (0 +) = 0V,

v (∞) = 300 V, and τ = 160 s. With these values inserted,

the capacitor voltage equation is v = 300 – 300et/160. For v

= 10 V, it becomes 10 = 300 – 300e–t/160, from which t =

160 In(300/290) = 5.42 s. The approximation of 5.33 s is

within 2 percent of this formula value of 5.42 s.

8.33 Repeat Prob. 8.32 for a capacitor voltage of 250 V.

The approximation cannot be used since 250 V is

more than one-tenth of 300 V. The exact formula must be

used. From the solution to Prob. 8.32, t = 300 – 300e–t/160.

For v = 250 V, it becomes 250 = 300 – 300e–t/160, which

simplifies to t = 160 In(300/50) = 287 s. By comparison,

the linear approximation gives t = (250/300)(160) = 133

s, which is considerably in error.

8.34 For the oscillator circuit shown in Fig. 8-18, find the

period of oscillation if the gas tube fires at 90 V and

extinguishes at 10 V. The gas tube has a 50-Ω resistance

when firing and a 1010-Ω resistance when extinguished.



Fig. 8-18

When extinguished, the gas tube has such a large

resistance (1010 Ω) compared to the 1-MΩ resistance of

the resistor that it can be considered to be an open circuit

and neglected during the charging time of the capacitor.

During this time, the capacitor charges from an initial 10 V

toward the 1000 V of the source, but stops charging when

its voltage reaches 90 V, at which time the tube fires.

Although this voltage change is 90 – 10 = 80 V, the initial

circuit action is as if the total voltage change will be 1000

– 10 = 990 V. Since 80 V is less than one-tenth of 990 V, a

linear approximation can be used to find the proportion

that the charging time is of the time constant of 106(2 ×

10–6) = 2 s. The proportionality is t/2 = 80/990, from

which t = 160/990 = 0.162 s. If an exact analysis is made,

the result is 0.168 52 s.

When the tube fires, its 50-Ω resistance is so small

compared to the 1-MΩ resistance of the resistor that the

resistor can be considered to be an open circuit and

neglected along with the voltage source. So, the

discharging circuit is essentially an initially charged 2-μF

capacitor and a 50-Ω resistor, until the voltage drops from

the 90-V initial voltage to the 10-V extinguishing voltage.

The time constant of this circuit is just (2 × 10–6)(50) s =

0.1 ms. This is so short compared to the charging time

that the discharging time can usually be neglected even if

five time constants are used for the discharge time. If an

exact analysis is made, the result is a time of 0.22 ms for

the capacitor to discharge from 90 to 10 V.



In summary, by approximations the period is T =

0.162 + 0 = 0.162 s, as compared to the exact-method

result of T = 0.168 52 + 0.000 22 = 0.168 74 s or 0.169 s

to three significant digits. Note that the approximate

result is within about 4 percent of the actual result. This is

usually good enough, especially in view of the fact that in

the actual circuit the component values probably differ

from the specified values by more than this.

8.35 Repeat Prob. 8.34 with the source voltage changed

from 1000 V to 100 V.

During the charge cycle the capacitor charges toward

100 V from an initial 10 V, the same as if the total voltage

change will be 100 – 10 = 90 V. Since the actual voltage

change of 90 – 10 = 80 V is considerably more than one-

tenth of 90 V, a linear approximation is not valid. The

exact method must be used. For this, v (∞) = 100 V, v (0

+) = 10 V, and τ = 2 s. The corresponding voltage formula

is

The desired time is found by letting v = 90 V, and solving

for t: 90 = 100 – 90e–t/2, which simplifies to t = 2 In

(90/10) = 4.39 s. This is the period because the discharge

time, which is the same as that found in the solution to

Prob. 8.34, is negligible compared to this time.

Supplementary Problems

8.36 What electron movement between the plates of a 0.1-

μF capacitor produces a 110-V change of voltage?

Ans. 6.87 × 1013 electrons



8.37 If the movement of 4.68 × 1014 electrons between the

plates of a capacitor produces a 150-V change in

capacitor voltage, find the capacitance.

Ans. 0.5 μF

8.38 What change in voltage of a 20-μF capacitor is

produced by a movement of 9 × 1014 electrons between

plates?

Ans. 7.21 V

8.39 A tubular capacitor consists of two sheets of aluminum

foil 3 cm wide and 1 m long, rolled into a tube with

separating sheets of waxed paper of the same size. What

is the capacitance if the paper is 0.1 mm thick and has a

dielectric constant of 3.5?

Ans. 9.29 nF

8.40 Find the area for each plate of a 10-μF parallel-plate

capacitor that has a ceramic dielectric 0.5 mm thick.

Ans. 0.0753 m2

8.41 Find the thickness of the mica dielectric of a 10-pF

parallel-plate capacitor if the area of each plate is 10–4

m2.

Ans. 0.443 mm

8.42 Find the diameter of a disk-shaped 0.001-μF capacitor

that has a ceramic dielectric 1 mm thick.

Ans. 4.38 mm

8.43 What are the different capacitances that can be

obtained with a 1-μF capacitor, a 2-μF capacitor, and a 3-

μF capacitor?

Ans. 0.545 μF, 0.667 μF, 0.75 μF, 1 μF, 1.2 μF, 2 μF, 2.2 μF,

2.75 μF, 3 μF, 3.67 μF, 4 μF, 5 μF, 6 μF

8.44 Find the total capacitance CT of the circuit shown in Fig.

8-19.



Fig. 8-19

Ans. 2.48 μF

8.45 A 5-, a 7-, and a 9-μF capacitor are in parallel across a

200-V source. Find the magnitude of charge stored by

each capacitor and the total energy stored.

Ans. Q5 = 1 mC, Q7 = 1.4 mC, Q9 = 1.8 mC, 0.42 J

8.46 A 6-, a 16-, and a 48-μF capacitor are in series with a

180-V source. Find the voltage across each capacitor and

the total energy stored.

Ans. V6 = 120 V, V16 = 45 V, V48 = 15 V, 64.8 mJ

8.47 Two capacitors are in series across a 50-V source. If one

is a 1-μF capacitor with 16 V across it, what is the

capacitance of the other?

Ans. 0.471 μF

8.48 Find each capacitor voltage in the circuit shown in Fig.

8-20.



Fig. 8-20

Ans. v1 = 200 V, v2 = 100 V, v3 = 40 V, v4 = 60 V

8.49 A 0.1-μF capacitor charged to 100 V and a 0.2-μF

capacitor charged to 60 V are connected together with

plates of the same polarity joined. Find the voltage and

the initial and final stored energies.

Ans. 73.3 V, 860 μJ, 807 μJ

8.50 Repeat Prob. 8.49 for plates of opposite polarity joined.

Ans. 6.67 V, 860 μJ, 6.67 μJ

8.51 Find the voltage across a 0.1-μF capacitor when the

capacitor current is 0.5 mA.

Ans. There is not enough information to determine a

unique value.

8.52 Repeat Prob. 8.51 if the capacitor voltage is 6 V at t = 0

s and if the 0.5-mA capacitor current is constant. Of

course, assume associated references.

Ans. 6 + 5000t V

8.53 If the voltage across a 2-μF capacitor is 200t V for t ≤ 1

s, 200 V for 1 s ≤ 1 ≤ 5 s, and 3200 – 600t V for t ≥ 5 s,

find the capacitor current.

Ans. 0.4 mA for t < 1 s, 0 A for 1 s < t < 5 s, –1.2 mA for t

> 5 s

8.54 Find the time constant of the circuit shown in Fig. 8-21.



Fig. 8-21

Ans. 60 μs

8.55 Find the time constant of the circuit shown in Fig. 8-22.

Fig. 8-22

Ans. 66.3 ms

8.56 How long does it take a 10-μF capacitor charged to 200

V to discharge through a 160-kΩ resistor, and what is the

total energy dissipated in the resistor?

Ans. 8 s, 0.2 J

8.57 At t = 0 s. the closing of a switch connects in series a

150-V source, a 1.6-kΩ resistor, and the parallel

combination of a 1-kΩ resistor and an uncharged 0.2-μF

capacitor. Find (a) the initial capacitor current, (b) the

initial and final 1-kΩ resistor currents, (c) the final

capacitor voltage, and (d) the time required for the

capacitor voltage to reach its final value.



Ans. (a) 93.8 mA, (b) 0 A and 57.7 mA, (c) 57.7 V (d) 0.615

ms

8.58 Repeat Prob. 8.57 for a 200-V source and an initial

capacitor voltage of 50 V opposed in polarity to that of

the source.

Ans. (a) 43.8 mA, (b) 50 mA and 76.9 mA, (c) 76.9 V, (d)

0.615 ms

8.59 In the circuit shown in Fig. 8-23, find the indicated

voltages and currents at t = 0+ s, immediately after the

switch closes. Notice that the current source is active in

the circuit before the switch closes.

Fig. 8-23

Ans. 

8.60 In the circuit shown in Fig. 8-23, find the indicated

voltages and currents a long time after the switch closes.

Ans 

8.61 A 0.1-μF capacitor, initially charged to 230 V, is

discharged through a 3-MΩ resistor. Find the capacitor



voltage 0.2 s after the capacitor starts to discharge.

Ans. 118 V

8.62 For the circuit described in Prob. 8.61, how long does it

take the capacitor to discharge to 40 V?

Ans. 0.525 s

8.63 Closing a switch connects in series a 300-V source, a

2.7-MΩ resistor, and a 2-μF capacitor charged to 50 V with

its positive plate toward the positive terminal of the

source. Find the capacitor current 3 s after the switch

closes. Also, find the time required for the capacitor

voltage to increase to 250 V.

Ans. 53.1 μA, 8.69 s

8.64 The switch is closed at t = 0 s in the circuit shown in

Fig. 8-24. Find v and i for t > 0 s. The capacitor is initially

uncharged.

Fig. 8-24

Ans. 60(1 – e–2t) V, 1 – 0.4e–2t mA

8.65 Repeat Prob. 8.64 for v (0 +) = 20 V and for the 60-kΩ

resistor replaced by a 70-kΩ resistor.

Ans. 63 – 43e–1.961 V, 0.9 – 0.253e–1.961 mA

8.66 After a long time in position 1, the switch in the circuit

shown in Fig. 8-25 is thrown to position 2 for 2 s, after



which it is returned to position 1. Find v for t ≥ 0 s.

Fig. 8-25

Ans. –200 + 300e–0.1t V for 0 s ≤ t ≤ 2 s; 100 – 54.4e–0.2(t –

2) = 100 – 81.1e–0.2t V for t ≥ 2 s

8.67 After a long time in position 2, the switch in the circuit

shown in Fig. 8-25 is thrown at t = 0 s to position 1 for 4 s,

after which it is returned to position 2. Find v for t ≥ 0 s.

Ans. 100 – 300e–0.2t V for 0 s ≤ t ≤ 4 s; –200 + 165e–0.1(t –

4) = –200 + 246e–0.1t V for t ≥4 s

8.68 A simple RC timer has a 50-V source, a switch, an

uncharged 1-μF capacitor, and a resistor, all in series.

Closing the switch and then opening it 5 s later produces

a capacitor voltage of 3 V. Find the resistance of the

resistor.

Ans. 83.3 M Ω approximately, 80.8 M Ω more exactly

8.69 Repeat Prob. 8.68 for a capacitor voltage of 40 V.

Ans. 3.11 M Ω

8.70 In the oscillator circuit shown in Fig. 8-18, replace the

1-MΩ resistor with a 4.3-MΩ resistor and the 1000-V

source with a 150-V source and find the period of

oscillation.

Ans. 7.29 s



Chapter 9


Inductors, Inductance, and

PSpice Transient Analysis

INTRODUCTION

The following material on inductors and inductance is

similar to that on capacitors and capacitance presented in

Chap. 8. The reason for this similarity is that, mathematically

speaking, the capacitor and inductor formulas are the same.

Only the symbols differ. Where one has v, the other has i,

and vice versa; where one has the capacitance quantity

symbol C, the other has the inductance quantity symbol L;

and where one has R, the other has G. It follows then that

the basic inductor voltage-current formula is v = L di/dt in

place of i = C dv/dt, that the energy stored is Li2 instead of 

Cv2, that, inductor currents, instead of capacitor voltages,

cannot jump, that inductors are short circuits, instead of

open circuits, to dc, and that the time constant is LG = L/R

instead of CR. Although it is possible to approach the study

of inductor action on the basis of this duality, the standard

approach is to use magnetic flux.

This chapter also includes material on using PSpice to

analyze transient circuits.

MAGNETIC FLUX

Magnetic phenomena are explained using magnetic flux,

or just flux, which relates to magnetic lines of force that, for



a magnet, extend in continuous lines from the magnetic

north pole to the south pole outside the magnet and from

the south pole to the north pole inside the magnet, as is

shown in Fig. 9-la. The SI unit of flux is the weber, with unit

symbol Wb. The quantity symbol is Φ for a constant flux and

φ for a time-varying flux.

Fig. 9-1

Current flowing in a wire also produces flux, as shown in

Fig. 9-1b. The relation between the direction of flux and the

direction of current can be remembered from one version of

the right-hand rule. If the thumb of the right hand is placed

along, the wire in the direction of the current flow, the four

fingers of the right hand curl in the direction of the flux about

the wire. Coiling the wire enhances the flux, as does placing

certain material, called ferromagnetic material, in and

around the coil. For example, a current flowing in a coil

wound on an iron cylindrical core produces more flux than

the same current flowing in an identical coil wound on a

plastic cylinder.

Permeability, with quantity symbol μ, is a measure of this

flux-enhancing property. It has an SI unit of henry per meter



and a unit symbol of H/m. (The henry, with unit symbol H, is

the SI unit of inductance.) The permeability of vacuum,

designated by μ0, is 0.47π μH/m. Permeabilities of other

materials are related to that of vacuum by a factor called the

relative permeability, with symbol μr. The relation is μ =

μrμ0. Most materials have relative permeabilities close to 1,

but pure iron has them in the range of 6000 to 8000, and

nickel has them in the range of 400 to 1000. Permalloy, an

alloy of 78.5 percent nickel and 21.5 percent iron, has a

relative permeability of over 80 000.

If a coil of N turns is linked by a φ amount of flux, this coil

has a flux linkage of Nφ. Any change in flux linkages induces

a voltage in the coil of

This is known as Faraday’s law. The voltage polarity is such

that any current resulting from this voltage produces a flux

that opposes the original change in flux.

INDUCTANCE AND INDUCTOR CONSTRUCTION

For most coils, a current i produces a flux linkage Nφ that

is proportional to i. The equation relating Nφ and i has a

constant of proportionality L that is the quantity symbol for

the inductance of the coil. Specifically, Li = Nφ and L = Nφ/i.

The SI unit of inductance is the henry, with unit symbol H. A

component designed to be used for its inductance property

is called an inductor. The terms “coil” and “choke” are also

used. Figure 9-2 shows the circuit symbol for an inductor.



Fig. 9-2

The inductance of a coil depends on the shape of the coil,

the permeability of the surrounding material, the number of

turns, the spacing of the turns, and other factors. For the

single-layer coil shown in Fig. 9-3, the inductance is

approximately L = N2μA/l, where N is the number of turns of

wire, A is the core cross-sectional area in square meters, l is

the coil length in meters, and μ is the core permeability. The

greater the length to diameter, the more accurate the

formula. For a length of 10 times the diameter, the actual

inductance is 4 percent less than the value given by the

formula.

Fig. 9-3

INDUCTOR VOLTAGE AND CURRENT RELATION

Inductance instead of flux is used in analyzing circuits

containing inductors. The equation relating inductor voltage,

current, and inductance can be found from substituting Nφ =

Li into v = d(Nφ)/dt. The result is v = L di/dt, with associated

references assumed. If the voltage and current references

are not associated, a negative sign must be included. Notice

that the voltage at any instant depends on the rate of

change of inductor current at that instant, but not at all on

the value of current then.



One important fact from v = L di/dt is that if an inductor

current is constant, not changing, then the inductor voltage

is zero because di/dt = 0. With a current flowing through it,

but zero voltage across it, an inductor acts as a short circuit:

An inductor is a short circuit to dc. Remember, though, that

it is only after an inductor current becomes constant that an

inductor acts as a short circuit.

The relation v = L di/dt ≃ L Δi/Δt also means that an

inductor current cannot jump. For a jump to occur, Δi would

be nonzero while Δt was zero, with the result that Δi/Δt would

be infinite, making the inductor voltage infinite. In other

words, a jump in inductor current requires an infinite inductor

voltage. But, of course, there are no sources of infinite

voltage. Inductor voltage has no similar restriction. It can

jump or even change polarity instantaneously. Inductor

currents not jumping means that inductor currents

immediately after a switching operation are the same as

immediately before the operation. This is an important fact

for RL (resistor-inductor) circuit analysis.

TOTAL INDUCTANCE

The total or equivalent inductance (LT or Leq) of inductors

connected in series, as in the circuit shown in Fig. 9-4a, can

be found from KVL: vs = v1 + v2 + v3. Substituting from v = L

di/dt results in



Fig. 9-4

which upon division by di/dt reduces to LT = L1 + L2 + L3.

Since the number of series inductors is not significant in this

derivation, the result can be generalized to any number of

series inductors:

which specifies that the total or equivalent inductance of

series inductors is equal to the sum of the individual

inductances.

The total inductance of inductors connected in parallel, as

in the circuit shown in Fig. 9-4b, can be found starting with

the voltage-current equation at the source terminals: v =

LTdis/dt, and substituting in is = i1 + i2 + i3:



Each derivative can be eliminated using the appropriate di/dt

= v/L:

which can also be written as

Generalizing,

which specifies that the total inductance of parallel inductors

equals the reciprocal of the sum of the reciprocals of the

individual inductances. For the special case of N parallel

inductors having the same inductance L, this formula

simplifies to LT = L/N. And for two parallel inductors it is LT =

L1L2/(L1 + L2). Notice that the formulas for finding total

inductances are the same as those for finding total

resistances.

ENERGY STORAGE

As can be shown by using calculus, the energy stored in

an inductor is



in which wL is in joules, L is in henries, and i is in amperes.

This energy is considered to be stored in the magnetic field

surrounding the inductor.

SINGLE-INDUCTOR DC-EXCITED CIRCUITS

When switches open or close in an RL dc-excited circuit

with a single inductor, all voltages and currents that are not

constant change exponentially from their initial values to

their final constant values, as can be proved from differential

equations. These exponential changes are the same as those

illustrated in Fig. 8-5 for capacitors. Consequently, the

voltage and current equations are the same: v = v (∞) + [v

(0 +) – v (∞)]e–t/τ V and i = i (∞) + [i (0 +) – i (∞)]e–t/τ A. The

time constant τ, though, is different. It is τ = L/RTh, in which

RTh is the circuit Thévenin resistance at the inductor

terminals. Of course, in one time constant the voltages and

currents change by 63.2 percent of their total changes, and

after five time constants they can be considered to be at

their final values.

Because of the similarity of the RL and RC equations, it is

possible to make RL timers. But, practically speaking, RC

timers are much better. One reason is that inductors are not

nearly as ideal as capacitors because the coils have

resistances that are seldom negligible. Also, inductors are

relatively bulky, heavy, and difficult to fabricate using

integrated-circuit techniques. Additionally, the magnetic

fields extending out from the inductors can induce unwanted

voltages in other components. The problems with inductors

are significant enough that designers of electronic circuits

often exclude inductors entirely from their circuits.

PSPICE TRANSIENT ANALYSIS



The PSpice statements for inductors and capacitors are

similar to those for resistors but instead of an R, they begin

with an L for an inductor and a C for a capacitor. Also,

nonzero initial inductor currents and capacitor voltages must

be specified in these statements. For example, the

statement

specifies that inductor LI is connected between nodes 3 and

4, that its inductance is 5 mH, and that it has an initial

current of 6 mA that enters at node 3 (the first specified

node). The statement

specifies that capacitor C2 is connected between nodes 7

and 2, that its capacitance is 8 μF, and that it has an initial

voltage of 9 V positive at node 7 (the first specified node).

For PSpice to perform a transient analysis, the circuit file

must include a statement having the form

in which TSTEP and TSTOP specify times in seconds. This

statement might be, for example,

in which 0.02 corresponds to TSTEP, 4 to TSTOP, and UIC to

UIC, which means “use initial conditions.” The TSTEP of 0.02

s is the printing or plotting increment for the printer output,

and the TSTOP of 4 s is the stop time for the analysis. A good

value for TSTOP is four or five time constants. For the



specified TSTEP and TSTOP times, the first output printed is

for t = 0 s, the second for t = 0.02 s, the third for t = 0.04 s,

and so on up to the last one for t = 4 s.

The. PRINT statement for a transient analysis is the same

as that for a dc analysis except that TRAN replaces DC. The

resulting printout consists of a table of columns. The first

column consists of the times at which the outputs are to be

specified, as directed by the specifications of the. TRAN

statement. The second column comprises the values of the

first specified output quantity in the. PRINT statement, which

values correspond to the times of the first column. The third

column comprises the values of the second specified output

quantity, and so on.

With a plot statement, a plot of the output quantities

versus time can be obtained. A plot statement is similar to a

print statement except that it begins with.PLOT instead

of.PRINT.

Improved plots can be obtained by running the graphics

postprocessor Probe which is a separate executable program

that can be obtained with PSpice. Probe is one of the menu

items of the Control Shell. If the Control Shell is not being

used, the statement. PROBE must be included in the circuit

file for the use of Probe. Then, the PROBE mode may be

automatically entered into after the running of the PSpice

program.

With Probe, various plots can be obtained by responding to

the menus that appear at the bottom of the screen. These

menus are fairly self-explanatory and can be mastered with a

little experimentation and trial-and-error.

For transient analysis, PSpice has five special time-

dependent sources, only two of which will be considered

here: the periodic-pulse source and the piecewise-linear

source.

Figure 9-5 shows the general form of the pulse for the

periodic-pulse source. This pulse can be periodic, but does



not have to be and will not be for present purposes. The

parameters signify VI for the initial value, V2 for the pulsed

value, TD for time delay, TR for rise time, TF for fall time, PW

for pulse width, and PER for period. For a pulse voltage

source VI that is connected between nodes 2 and 3, with the

positive reference at node 2, the corresponding PSpice

statement has the form

Fig. 9-5

The commas do not have to be included. Also, if a pulse is

not periodic, no PER parameter is specified. PSpice then

assigns a default value, which is the TSTOP value in the.

TRAN statement.

If a zero rise or fall time is specified, PSpice will use a

default value equal to the TSTEP value in the. TRAN

statement. Since this value is usually too large, nonzero but

insignificant rise and fall times should be specified, such as

one-millionth of a time constant.

The piecewise-linear source can be used to obtain a

voltage or a current that has a waveform comprising only

straight lines. It applies, for example, to the pulse of Fig. 9-5.

The corresponding PSpice statement for it is



Again, the commas are optional. The entries within the

parentheses are in pairs specifying the corners of the

waveform, where the first specification is time (0, Tl, T2, etc.)

and the second is the voltage at that time (VI, V2, V3, etc.).

The times must continually increase, even if by very small

increments—no two times can be exactly the same. If the

last time specified in the PWL statement is less than TSTOP

in the. TRAN statement, the pulse remains at its last

specified value until the TSTOP time.

PWL statements can be used to obtain sources of voltage

and current that have a much greater variety of waveforms

than those that can be obtained with PULSE statements.

However, PULSE statements apply to periodic waveforms

while PWL statements do not.

Solved Problems

9.1 Find the voltage induced in a 50-turn coil from a

constant flux of 104 Wb, and also from a changing flux

of 3 Wb/s.

A constant flux linking a coil does not induce any

voltage—only a changing flux does. A changing flux of 3

Wb/s induces a voltage of v = N dφ/dt = 50 × 3 = 150 V.

9.2 What is the rate of change of flux linking a 200-turn

coil when 50 V is across the coil?

This rate of change is the dφ/dt in v = N dφ/dt:



9.3 Find the number of turns of a coil for which a change of

0.4 Wb/s of flux linking the coil induces a coil voltage of

20 V.

This number of turns is the N in v = N dφ/dt:

9.4 Find the inductance of a 100-turn coil that is linked by

3 × 10–4 Wb when a 20-mA current flows through it.

The pertinent formula is Li = Nφ. Thus,

9.5 Find the approximate inductance of a single-layer coil

that has 300 turns wound on a plastic cylinder 12 cm

long and 0.5 cm in diameter.

The relative permeability of plastic is so nearly 1

that the permeability of vacuum can be used in the

inductance formula for a single-layer cylindrical coil:

9.6 Find the approximate inductance of a single-layer 50-

turn coil that is wound on a ferromagnetic cylinder 1.5

cm long and 1.5 mm in diameter. The ferromagnetic

material has a relative permeability of 7000.



9.7 A 3-H inductor has 2000 turns. How many turns must

be added to increase the inductance to 5 H?

In general, inductance is proportional to the square

of the number of turns. By this proportionality,

So, 2582 – 2000 = 582 turns must be added without

making any other changes.

9.8 Find the voltage induced in a 150-mH coil when the

current is constant at 4 A. Also, find the voltage when

the current is changing at a rate of 4 A/s.

If the current is constant, di/dt = 0 and so the coil

voltage is zero. For a rate of change of di/dt = 4 A/s,

9.9 Find the voltage induced in a 200-mH coil at t = 3 ms if

the current increases uniformly from 30 mA at t = 2 ms

to 90 mA at t = 5 ms.

Because the current increases uniformly, the

induced voltage is constant over the time interval. The

rate of increase is Δi/Δt, where Δi is the current at the

end of the time interval minus the current at the

beginning of the time interval: 90 – 30 = 60 mA. Of

course, Δi is the time interval: 5 – 2 = 3 ms. The voltage

is



9.10 What is the inductance of a coil for which a changing

current increasing uniformly from 30 mA to 80 mA in

100 μs induces 50 mV in the coil?

Because the increase is uniform (linear), the time

derivative of the current equals the quotient of the

current change and the time interval:

Then, from v = L di/dt,

9.11 Find the voltage induced in a 400-mH coil from 0 s to

8 ms when the current shown in Fig. 9-6 flows through

the coil.

Fig. 9-6



The approach is to find di/dt, the slope, from the

graph and insert it into v = L di/dt for the various time

intervals. For the first millisecond, the current decreases

uniformly from 0 A to —40 mA. So, the slope is (—40 ×

10—3 —0)/(1 × 10—3) = —40 A/s, which is the change in

current divided by the corresponding change in time.

The resulting voltage is v = L di/dt = (400 × 10—3)(—40)

= —16 V. For the next three milliseconds, the slope is

[20 × 10—3 — (—40 × 10—3)]/(3 × 10—3) = 20 A/s and

the voltage is v = (400 × 10—3)(20) = 8 V. For the next

two milliseconds, the current graph is horizontal, which

means that the slope is zero. Consequently, the voltage

is zero: v = 0 V. For the last two milliseconds, the slope

is (0 — 20 × 10—3)/(2 × 10—3) = —10 A/s and v = (400

× 10—3)(—10) = –4 V.

Figure 9-7 shows the graph of voltage. Notice that

the inductor voltage can jump and can even

instantaneously change polarity.

Fig. 9-7



9.12 Find the total inductance of three parallel inductors

having inductances of 45, 60, and 75 mH.

9.13 Find the inductance of the inductor that when

connected in parallel with a 40-mH inductor produces a

total inductance of 10 mH.

As has been derived, the reciprocal of the total

inductance equals the sum of the reciprocals of the

inductances of the individual parallel inductors:

9.14 Find the total inductance LT of the circuit shown in

Fig. 9-8.

Fig. 9-8



The approach, of course, is to combine inductances

starting with inductors at the end opposite the terminals

at which LT is to be found. There, the parallel 70- and

30-mH inductors have a total inductance of 70(30)/(70 +

30) = 21 mH. This adds to the inductance of the 9-mH

series inductor: 21 + 9 = 30 mH. This combines with the

inductance of the parallel 60-mH inductor: 60(30)/(60 +

30) = 20 mH. And, finally, this adds with the

inductances of the series 5- and 8-mH inductors: LT = 20

+ 5 + 8 = 33 mH.

9.15 Find the energy stored in a 200-mH inductor that has

10 V across it.

Not enough information is given to determine the

stored energy. The inductor current is needed, not the

voltage, and there is no way of finding this current from

the specified voltage.

9.16 A current i = 0.32t A flows through a 150-mH

inductor. Find the energy stored at t = 4 s.

At t = 4 s the inductor current is i = 0.32 × 4 = 1.28

A, and so the stored energy is

9.17 Find the time constant of the circuit shown in Fig. 9-9.



Fig. 9-9

The time constant is L/RTh, where RTh is the

Thévenin resistance of the circuit at the inductor

terminals. For this circuit,

and so τ = (50 × 10—3)/(80 × 103) s = 0.625 μs.

9.18 What is the energy stored in the inductor of the

circuit shown in Fig. 9-9?

The inductor current is needed. Presumably, the

circuit has been constructed long enough (5τ = 5 ×

0.625 = 3.13 μs) for the inductor current to become

constant and so for the inductor to be a short circuit.

The current in this short circuit can be found from

Thévenin’s resistance and voltage. The Thévenin

resistance is 80 kΩ, as found in the solution to Prob.

9.17. The Thévenin voltage is the voltage across the 20-

kΩ resistor if the inductor is replaced by an open circuit.

This voltage will appear across the open circuit since the

14-, 75-, and 150-kΩ resistors will not carry any current.

By voltage division, this voltage is

Because of the short-circuit inductor load, the inductor

current is VTh/(RTh + 0) = 20/80 = 0.25 mA, and the

stored energy is 0.5(50 × 10–3)(0.25 × 10–3)2 J = 1.56 nJ.

9.19 Closing a switch connects in series a 20-V source, a

2-Ω resistor, and a 3.6-H inductor. How long does it take



the current to get to its maximum value, and what is

this value?

The current reaches its maximum value five time

constants after the switch closes: 5L/R = 5(3.6)/2 = 9 s.

Since the inductor acts as a short circuit at that time,

only the resistance limits the current: i (∞) = 20/2 = 10

A.

9.20 Closing a switch connects in series a 21-V source, a

3-Ω resistor, and a 2.4H inductor. Find (a) the initial and

final currents, (b) the initial and final inductor voltages,

and (c) the initial rate of current increase.

(a) Immediately after the switch closes, the inductor

current is 0 A because it was 0 A immediately before

the switch closed, and an inductor current cannot jump.

The current increases from OA until it reaches its

maximum value five time constants (5 × 2.4/3 = 4 s)

after the switch closes. Then, because the current is

constant, the inductor becomes a short circuit, and so i

(∞) = V/R = 21/3 = 7 A.

(b) Since the current is zero immediately after the switch

closes, the resistor voltage is 0 V, which means, by

KVL, that all the source voltage is across the inductor:

The initial inductor voltage is 21 V. Of course, the final

inductor voltage is zero because the inductor is a short

circuit to dc after five time constants.

(c) As can be seen from Fig. 8-5b, the current initially

increases at a rate such that the final current value

would be reached in one time constant if the rate did

not change. This initial rate is



Another way of finding this initial rate, which is di/dt at

t = 0 +, is from the initial inductor voltage:

9.21 A closed switch connects a 120-V source to the field

coils of a dc motor. These coils have 6 H of inductance

and 30 Ω of resistance. A discharge resistor in parallel

with the coil limits the maximum coil and switch

voltages at the instants at which the switch is opened.

Find the maximum value of the discharge resistor that

will prevent the coil voltage from exceeding 300 V.

With the switch closed, the current in the coils is

120/30 = 4 A because the inductor part of the coils is a

short circuit. Immediately after the switch is opened, the

current must still be 4 A because an inductor current

cannot jump—the magnetic field about the coil will

change to produce whatever coil voltage is necessary to

maintain this 4 A. In fact, if the discharge resistor were

not present, this voltage would become great enough—

thousands of volts—to produce arcing at the switch

contacts to provide a current path to enable the current

to decrease continuously. Such a large voltage might be

destructive to the switch contacts and to the coil

insulation. The discharge resistor provides an alternative

path for the inductor current, which has a maximum

value of 4 A. To limit the coil voltage to 300 V, the

maximum value of discharge resistance is 300/4 = 75 Ω.

Of course, any value less than 75 Ω will limit the voltage

to less than 300 V, but a smaller resistance will result in

more power dissipation when the switch is closed.

9.22 In the circuit shown in Fig. 9-10, find the indicated

currents a long time after the switch has been in

position 1.



Fig. 9-10

The inductor is, of course, a short circuit, and shorts

out the 20-Ω resistor. As a result, i1 = 0 A. This short

circuit also places the 18-Ω resistor in parallel with the

12-Ω resistor. Together they have a total resistance of

18(12)/(18 + 12) = 7.2 Ω. This adds to the resistance of

the series 6.8-Ω resistor to produce 7.2 + 6.8 = 14 Ω at

the source terminals. So, the source current is 140/14 =

10 A. By current division,

9.23 For the circuit shown in Fig. 9-10, find the indicated

voltage and currents immediately after the switch is

thrown to position 2 from position 1, where it has been

a long time.

As soon as the switch leaves position 1, the left-

hand side of the circuit is isolated, becoming a series

circuit in which i3 = 140/(6.8 + 12) = 7.45 A. In the

other part of the circuit, the inductor current cannot

jump, and is 4 A, as was found in the solution to Prob.

9.22: i2 = 4 A. Since this is a known current, it can be

considered to be from a current source, as shown in Fig.



9-11. Remember, though, that this circuit is valid only

for the one instant of time immediately after the switch

is thrown to position 2. By nodal analysis,

Fig. 9-11

And i1 = v/20 = –20.9/20 = –1.05 A.

This technique of replacing inductors in a circuit by

current sources is completely general for an analysis at

an instant of time immediately after a switching

operation. (Similarly, capacitors can be replaced by

voltage sources.) Of course, if an inductor current is

zero, then the current source carries 0 A and so is

equivalent to an open circuit.

9.24 A short is placed across a coil that at the time is

carrying 0.5 A. If the coil has an inductance of 0.5 H and

a resistance of 2 Ω, what is the coil current 0.1 s after

the short is applied?

The current equation is needed. For the basic

formula i = i (∞) + [i (0 +) – i (∞)]e–t/τ, the initial current

is i (0 +) = 0.5 A because the inductor current cannot

jump, the final current is i (∞) = 0 A because the current



will decay to zero after all the initially stored energy is

dissipated in the resistance, and the time constant is τ

= L/R = 0.5/2 = 0.25 s. So,

and i (0.1) = 0.5e–4(0.1) = 0.335 A.

9.25 A coil for a relay has a resistance of 30 Ω and an

inductance of 2 H. If the relay requires 250 mA to

operate, how soon will it operate after 12 V is applied to

the coil?

For the current formula, i (0 +) = 0 A, i (∞) = 12/30

= 0.4 A, and τ = 2/30 = 1/15 s. So,

The time at which the current is 250 mA = 0.25 A can be

found by substituting 0.25 for i and solving for t:

Taking the natural logarithm of both sides results in

9.26 For the circuit shown in Fig. 9-12, find v and i for t > 0

s if at t = 0 s the switch is thrown to position 2 after

having been in position 1 for a long time.



Fig. 9-12

The switch shown is a make-before-break switch

that makes contact at the beginning of position 2 before

breaking contact at position 1. This temporary double

contacting provides a path for the inductor current

during switching and prevents arcing at the switch

contacts. To find the voltage and current, it is only

necessary to get their initial and final values, along with

the time constant, and insert these into the voltage and

current formulas. The initial current i (0 +) is the same

as the inductor current immediately before the

switching operation, with the switch in position 1: i (0 +)

= 50/(4 + 6) = 5 A. When the switch is in position 2, this

current produces initial voltage drops of 5 × 6 = 30 V

and 14 × 5 = 70 V across the 6- and 14-Ω resistors,

respectively. By KVL, 30 + 70 + v (0 +) = 20, from

which v (0 +) = = – 80 V. For the final values, clearly v

(∞) = 0 V and i (∞) = 20/(14 + 6) = 1 A. The time

constant is 4/20 = 0.2 s. With these values inserted, the

voltage and current formulas are



9.27 For the circuit shown in Fig. 9-13, find i for t ≥ 0 s if

the switch is closed at t = 0 s after being open for a

long time.

Fig. 9-13

A good approach is to use the Thévenin equivalent

circuit at the inductor terminals. The Thévenin

resistance is easy to find because the resistors are in

series-parallel when the sources are deactivated: RTh =

10 + 30||60 = 30 Ω. The Thévenin voltage is the

indicated V with the center branch removed because

replacing the inductor by an open circuit prevents the

center branch from affecting this voltage. By nodal

analysis,



So, the Thévenin equivalent circuit is a 30-Ω resistor in

series with a 45-V source, and the polarity of the source

is such as to produce a positive current i. With the

Thévenin circuit connected to the inductor, it should be

obvious that i (0 +) = 0 A, i (∞) = 45/30 = 1.5 A, τ =

(120 × 10–3)/30 = 4 × 10–3s, and 1/τ = 250. These

values inserted into the current formula result in i = 1.5

– 1.5e– 250t A for t ≥ 0 s.

9.28 In the circuit shown in Fig. 9-14, switch S1 is closed at

t = 0 s, and switch S2 is opened at t = 3 s. Find i (2) and

i (4), and make a sketch of i for t ≥ 0 s.

Fig. 9-14

Two equations for i are needed: one with both

switches closed, and the other with switch S1 closed and



switch S2 open. At the time that S1 is closed, i (0 +) = 0

A, and i starts increasing toward a final value of i (∞) =

6/(0.1 + 0.2) = 20 A. The time constant is 1.2/(0.1 +

0.2) = 4 s. The 1.2-Ω resistor does not affect the current

or time constant because this resistor is shorted by

switch S2. So, for the first three seconds, i = 20 – 20e–t/4

A, and from this, i (2) = 20 – 20e–2/4 = 7.87 A.

After switch S2 opens at t = 3 s, the equation for i

must change because the circuit changes as a result of

the insertion of the 1.2-Ω resistor. With the switching

occurring at t = 3 s instead of at t = 0 s, the basic

formula for i is i = i (∞) + [i (3 +) – i (∞)–]e–(t – 3)/τ A. The

current i (3 +) can be calculated from the first i equation

since the current cannot jump at t = 3 s: i (3 +) = 20 –

20e–3/4 = 10.55 A. Of course, i (∞) = 6/(0.1 + 1.2 + 0.2)

= 4 A and τ = 1.2/1.5 = 0.8 s. With these values

inserted, the current formula is

from which i (4) = 4 + 6.55e–1.25(4 – 3) = 5.88 A.

Figure 9-15 shows the graph of current based on the

two current equations.



Fig. 9-15

9.29 Use PSpice to find the current i in the circuit of Fig. 9-

16.

Fig. 9-16



The time constant is τ = L/R = 1.5/6 = 0.25 s. So, a

suitable value for TSTOP in the. TRAN statement is 4τ =

1 s because the current is at approximately its final

value then. The number of time steps will be selected as

only 20, for convenience. Then, TSTEP in the. TRAN

statement is TSTOP/20 = 0.05 s. Even though the initial

inductor current is zero, a UIC specification is needed in

the. TRAN statement. Otherwise, only the final value of

2 A will be obtained. A. PLOT statement will be included

to obtain a plot. Because a table of values will

automatically be obtained with this plot, no. PRINT

statement is needed. Probe will also be used to obtain a

plot to demonstrate the superiority of its plot. Following

is a suitable circuit file.

When PSpice is run with this circuit file, the plots of

Figs. 9-17a and 9-17b are obtained from the. PLOT and.

PROBE statements, respectively. The Probe plot required

a little additional effort in responding to the menus at

the bottom of the screen. The first column at the left-

hand side of Fig. 9-17a gives the times at which the

current is evaluated, and the second column gives the

current values at these times. The values are plotted

with the time axis being the vertical axis and the current

axis the horizontal axis. The Probe plot of Fig. 9-17b is

obviously superior in appearance, but it does not

contain the current values explicitly at the various times

as does the table with the other plot. But values can be



obtained from the Probe plot by using the cursor feature

which is included in the menus.

Fig. 9-17



9.30 In the circuit of Fig. 9-18, the switch is moved to

position 1 at t = 0 s and then to position 2 at t = 2 s.

The initial capacitor voltage is v (0) = 20 V. Find v for t

≥ 0 s by hand and also by using PSpice.

Fig. 9-18

The time constant is

Also, v (0) = 20 V, and for the switch in position 1 the

final voltage is v (∞) = 100 V. Therefore,

At t = 2 s,

So, for t ≥ 2 s, v (t) = 89.2e–(t – 2) = 658.9e –t V.



For the PSpice circuit file, a suitable value for TSTOP

is 5 s, which is three time constants after the second

switching. This time is not critical, of course, and

perhaps a preferable time would be 6 s, which is four

time constants after the second switching. But 5 s will

be used. The number of time steps is not critical either.

For convenience, 20 will be used. Then,

To obtain the effects of switching, a PULSE source will be

used, with 0 V being one value and 100 V the other. The time

duration of the 100 V is 2 s, of course. Alternatively, a PWL

source could be used. A .PRINT statement will be included to

generate a table of values, and a.PROBE statement to obtain

a plot. Following is a suitable circuit file.

If a PWL source were used instead of the PULSE

source, the VI statement would be

The V(C1) specification is included in the.PROBE statement

so that Probe will store the V(2) node voltage under this

name. Alternatively, this specification could be omitted and a

trace of V(2) specified in the Probe mode.

When PSpice is run with this circuit file, the. PRINT statement

generates the table of Fig. 9-19a, and the.PROBE statement



generates Fig. 9-19b. Notice that the voltage value at t = 2 s

is 89.2 V, which completely agrees with the value obtained

by hand.



Fig. 9-19

Supplementary Problems

9.31 Find the voltage induced in a 500-turn coil when the

flux changes uniformly by 16 × 10–5 Wb in 2 ms.

Ans. 40 V

9.32 Find the change in flux linking an 800-turn coil when

3.2 V is induced for 6 ms.

Ans. 24 μWb

9.33 What is the number of turns of a coil for which a flux

change of 40 × 10–6 Wb in 0.4 ms induces 70 V in the

coil?

Ans. 700 turns

9.34 Find the flux linking a 500-turn, 0.1-H coil carrying a

2-mA current.



Ans. 0.4 μWb

9.35 Find the approximate inductance of a single-layer,

300-turn air-core coil that is 3 in long and 0.25 in in

diameter.

Ans. 47 μH

9.36 Find the approximate inductance of a single-layer

500-turn coil that is wound on a ferromagnetic cylinder

that is 1 in long and 0.1 in in diameter. The

ferromagnetic material has a relative permeability of

8000.

Ans. 0.501 H

9.37 A 250-mH inductor has 500 turns. How many turns

must be added to increase the inductance to 400 mH?

Ans. 132 turns

9.38 The current in a 300-mH inductor increases uniformly

from 0.2 to 1 A in 0.5 s. What is the inductor voltage for

this time?

Ans. 0.48 V

9.39 If a change in current in a 0.2-H inductor produces a

constant 5-V inductor voltage, how long does the

current take to increase from 30 to 200 mA?

Ans. 6.8 ms

9.40 What is the inductance of a coil for which a changing

current increasing uniformly from 150 to 275 mA in 300

μs induces 75 mV in the coil?

Ans. 180 μH

9.41 Find the voltage induced in a 200-mH coil from 0 to 5

ms when a current i described as follows flows through

the coil: i = 250t A for 0 s ≤ t ≤ 1 ms, i = 250 mA for 1



ms ≤ t ≤ 2 ms, and i = 416 – 83 000t mA for 2 ms ≤ t ≤

5 ms.

Ans. v = 50 V for 0 s < t < 1 ms; 0 V for 1 ms < t < 2

ms; – 16.6 V for 2 ms < t < 5 ms

9.42 Find the total inductance of four parallel inductors

having inductances of 80, 125, 200, and 350 mH.

Ans. 35.3 mH

9.43 Find the total inductance of a 40-mH inductor in

series with the parallel combination of a 60-mH

inductor, an 80-mH inductor, and a 100-mH inductor.

Ans. 65.5 mH

9.44 A 2-H inductor, a 430-Ω resistor, and a 50-V source

have been connected in series for a long time. What is

the energy stored in the inductor?

Ans. 13.5 mJ

9.45 A current i = 0.56t A flows through a 0.5-H inductor.

Find the energy stored at t = 6 s.

Ans. 2.82 J

9.46 What is the energy stored by the inductor in the

circuit shown in Fig. 9.20 if R = 20 Ω?

Fig. 9-20

Ans. 667 mJ



9.47 Find the time constant of the circuit shown in Fig. 9-

20 for R = 90 Ω.

Ans. 4.21 ms

9.48 How long after a short circuit is placed across a coil

carrying a current of 2 A does the current go to zero if

the coil has 1.2 H of inductance and 40 Ω of resistance?

Also, how much energy is dissipated?

Ans. 0.15 s, 2.4 J

9.49 A switch closing connects in series a 10-V source, an

8.2-Ω resistor, and a 1.2-H inductor. How long does the

current take to reach its maximum value, and what is

this value?

Ans. 732 ms, 1.22 A

9.50 In closing, a switch connects a 100-V source with 5 Ω

of internal resistance across the parallel combination of

a 20-Ω resistor and a 0.4-H inductor. What are the initial

and final source currents, and what is the initial rate of

inductor current increase?

Ans. 4 A, 20 A, 200 A/s

9.51 In the circuit shown in Fig. 9-21, the switch is thrown

at t = 0 s from an open position to position 1. Find the

indicated currents at t = 0+ s and also at a long time

later.



Fig. 9-21

Ans. i1(0 +) = 3.57 A, i2(0 +) = 0 A, i1(∞) = 2.7 A, i2(∞)

= 2.43 A

9.52 In the circuit shown in Fig. 9-21, the switch is thrown

at t = 0 s to position 2 from position 1 where it has been

a long time. Find the indicated currents at t = 0+ s and

also at a long time later.

Ans. i1(0 +) = –5.64 A, i2(0 +) = 2.43 A, i1(∞) = –3.43 A,

i2(∞) = –3.09 A

9.53 A switch closing at t = 0 s connects a 20-mH inductor

to a 40-V source that has 10 Ω of internal resistance.

Find the inductor voltage and current for t > 0 s.

Ans. v = 40e–500 t V, i = 4(1 – e– 500t) A

9.54 A switch closing at t = 0 s connects a 100-V source

with a 15-Ω internal resistance to a coil that has 200 mH

of inductance and 5 Ω of resistance. Find the coil

voltage for t > 0 s.

Ans. 25 + 75e–100t V

9.55 A coil for a relay has a resistance of 20 Ω and an

inductance of 1.2 H. The relay requires 300 mA to

operate. How soon will the relay operate after a 20-V



source with 5 Ω of internal resistance is applied to the

coil?

Ans. 22.6 ms

9.56 For the circuit shown in Fig. 9-22, find i as a function

of time after the switch closes at t = 0 s.

Fig. 9-22

Ans. 0.04(1 – e–500t) A

9.57 Assume that the switch in the circuit shown in Fig. 9-

22 has been closed a long time. Find i as a function of

time after the switch opens at t = 0 s.

Ans. 0.04e–536t A

9.58 In the circuit shown in Fig. 9-23, the switch is thrown

to position 1 at t = 0 s after being open a long time.

Then it is thrown to position 2 at t = 2.5 s. Find i for t ≥

0 s.



Fig. 9-23

Ans. 50(1 – e0.1t) A for 0 s ≤ t ≤ 2.5 s; –20 + 31.1e–0.05(t –

2.5) A for t ≥ 2.5 s

9.59 Obtain the expression for the response for t ≥ 0 s

corresponding to the following circuit file. Also, from this

expression, determine the 11th value that will be

printed.

Ans. 120 – 90e–0.5t V, 94.2 V

9.60 Obtain the expression for the response for t ≥ 0 s

corresponding to the following circuit file. Also, from this



expression, determine the 9th value that will be printed.

Ans. 3 – 5e–10t A, 1.99 A

9.61 Obtain the expressions for the response for t ≥ 0 s

corresponding to the following circuit file. Also, from

these expressions, determine the 17th value that will be

printed.

Ans. 80 – 130e–100t V for 0 s ≤ t ≤ 0.02 s; 62.4e–100(t –

0.02) V for t ≥ 0.02 s; 18.8V

9.62 Obtain the expressions for the response for t ≥ 0 s

corresponding to the following circuit file. Also, from

these expressions, determine the 13th value that will be

printed.



Ans. 60–90e–62.5t mA for 0 s ≤ t ≤ 32 ms; 47.8e–62.5(t –

0.032) mA for t ≥ 32 ms; 17.6 mA



Chapter 10


Sinusoidal Alternating

Voltage and Current

INTRODUCTION

In the circuits considered so far, the independent sources

have all been dc. From this point on, the circuits have

alternating-current (ac) sources.

An ac voltage (or ac current) varies sinusoidally with time,

as shown in Fig. 10-la. This is a periodic voltage since it

varies with time such that it continually repeats. The

smallest nonrepeatable portion of a periodic waveform is a

cycle, and the duration of a cycle is the period T of the wave.

The reciprocal of the period, and the number of cycles in a

period, is the frequency, which has a quantity symbol f:



Fig. 10-1

The SI unit of frequency is the hertz, with unit symbol Hz.

In these definitions, notice the terms wave and waveform.

They do not refer to the same thing. A wave is a varying

voltage or current, but a waveform is a graph of such a

voltage or current. Often, however, these terms are used

interchangeably..

Although the sine wave of Fig. 10-1a is by far the most

common periodic wave, there are other common ones:

Figure 10-1b shows a square wave, Fig. 10-1c a sawtooth

wave, and Fig. 10-1d a triangular wave. The dashed lines at

both ends indicate that the waves have no beginnings and

no ends, as is strictly required for periodic waves. But, of

course, all practical voltages and currents have beginnings

and ends. When a wave is obviously periodic, these dashed

lines are often omitted.

The voltage waveforms shown in Fig. 10-1a and b are

negative or below the time axis for part of each period.

During these times, the corresponding voltages have

polarities opposite the reference polarities. Of course, when

the waveforms are above the time axis, these voltages have

the same polarities as the references. For similar graphs of



currents, the currents flow in the current reference directions

when the waveforms are above the time axis, and in

opposite directions when the waveforms are below that axis.

SINE AND COSINE WAVES

Figure 10-2 shows the basics of an ac generator or

alternator for generating a sinusoidal voltage. The

conductor, which in practice is a coil of wire, is rotated by a

steam turbine or by some other source of mechanical

energy. This rotation causes a continuous change of

magnetic flux linking the conductor, thereby inducing a sine

wave voltage in the conductor. This change of flux, and so

the induced voltage, varies from zero when the conductor is

horizontal to a maximum when the conductor is vertical. If t

= 0 s corresponds to a time when the conductor is horizontal

and the induced voltage is increasing, the induced voltage is

v = Vm sin ωt, where Vm is the peak value or amplitude, sin

is the operation designator for a sine wave, ωt is the

argument, and ω is the quantity symbol for the radian

frequency of the voltage. (Some authors use the terms

“angular velocity” or “angular frequency” instead of radian

frequency.) The SI unit of radian frequency is radian per

second, and the unit symbol is rad/s. The frequency f and the

radian frequency ω are related by

ω = 2πf



Fig. 10-2

The radian in radian per second is an SI angular unit, with

symbol rad, and it is an alternative to degrees. A radian is

the angle subtended by an arc on the circumference of a

circle if the arc has a length equal to the radius. Since the

circumference of a circle equals 2πr, where r is the radius, it

follows that 2π rad equals 360° or

This relation is useful for converting from degrees to radians

and from radians to degrees. Specifically,

and



But, of course, a scientific calculator will perform either

conversion at the press of a key. The waveform of sin cot has

the shape shown in Fig. 10-la. In each cycle it varies from 0

to a positive peak or maximum of 1, back to 0, then to a

negative peak or minimum of –1, and back to 0 again. For

any value of the argument cot, sin wt can be evaluated with

a calculator operated in the radians mode. Alternatively, the

argument can be converted to degrees and the calculator

operated in the more popular decimal degrees mode. For

example, sin (π/6) = sin 30° = 0.5.

The abscissa of a graph of a sine wave can be expressed

in radians, degrees, or time. Sometimes, when time is used,

it is in fractions of the period T, as in Fig. 10-1a. Usually,

determining what the fractions should be is obvious from the

corresponding proportions of a cycle.

Consider the graphing of one cycle of a specific ac

voltage: vx =20 sin 377f V. The peak value or amplitude is 20

V because sin 377t has a maximum value of 1. The radian

frequency is ω = 377 rad/s, which corresponds to I = w/2π =

60 Hz, the frequency of the electrical power systems in the

United States. The period is T= 1/60 = 16.7 ms. A cycle of

this voltage can be plotted by substituting, into 20 sin 377t,

different times for t from the time interval of f = 0s to t =

16.7 ms. Figure 10-3a shows the results of evaluating this

sine wave at 21 different times and drawing a smooth curve

through the plotted points. For comparison purposes, all

three abscissa units—seconds, radians, and degrees—are

shown.



Fig. 10-3

Figure 10-3b shows a graph of one cycle of v2 = 20 sin

(377t + 30°) V. Notice that the argument 377t + 30° is the

sum of two terms, the first of which is in radians and the

second of which is in degrees. Showing such an addition is

common despite the fact that before the terms can be

added, either the first term must be converted to degrees or



the second term must be converted to radians. The 30° in

the argument is called the phase angle.

The cosine wave, with designator cos, is as important as

the sine wave. Its waveform has the same shape as the sine

waveform, but is shifted 90°—a fourth of a period—ahead of

it. Sine and cosine waves are so similar that the same term

“sinusoid” is applied to both as well as to phase-shifted sine

and cosine waves. Figure 10-3c is a graph of v3 = 20 sin

(377i + 90°) = 20 cos 377f V. Notice that the values of the

cosine wave v3 occur one-fourth period earlier than

corresponding ones for the sine wave v1.

Some sine and cosine identities are important in the study

of ac circuit analysis:

PHASE RELATIONS

Sinusoids of the same frequency have phase relations that

have to do with the angular difference of the sinusoidal

arguments. For example, because of the added 30° in its

argument, v2 = 20 sin (377t + 30°) V of the last section

leads v1, = 20 sin 377f V by 30°. Alternatively, v1 lags v2 by



30°. This means that the peaks, zeros, and other values of v2

occur earlier than those of vl by a time corresponding to 30°.

Another but less specific way of expressing this phase

relation is to say that v2 and v2 have a 30° phase difference

or that they are 30° out of phase. Similarly, the cosine wave

v3 leads the sine wavev3 by 90° or v1 lags v3 by 90°. They

have a phase difference of 90°; they are 90° out of phase.

Sinusoids that have a 0° phase difference are said to be in

phase. Figure 10-4a shows sinusoids that are in phase, and

Fig. 10-4b shows sinusoids that are 180° out of phase.

Fig. 10-4

The phase difference between two sinusoids can be found

by subtracting the phase angle of one from that of the other,

provided that both sinusoids have either the sine form or the

cosine form, and that the amplitudes have the same sign—

both positive or both negative. Additionally, of course, the

two sinusoids must have the same frequency.

AVERAGE VALUE

The average value of a periodic wave is a quotient of area

and time—the area being that between the corresponding

waveform and the time axis for one period, and the time

being one period. Areas above the time axis are positive, and

areas below are negative. The areas must be algebraically

added (signs must be included) to obtain the total area

between the waveform and time axis for one period. (The



average value of a periodic wave is always assumed to be

calculated over a period unless otherwise specified.)

The average value of a sinusoid is zero because over one

period the positive and negative areas cancel in the sum of

the two areas. For some purposes, though, a nonzero

“average” is used. By definition, it is the average of a

positive half-cycle. From calculus, this average is 2/π = 0.637

times the peak value.

RESISTOR SINUSOIDAL RESPONSE

If a resistor of R ohms has a voltage v = Vm sin (ωt + ϑ)

across it, the current is, by Ohm’s law, i = v/R = (VmR) sin

(ωt + ϑ). The multiplier VJR is the current peak Im. Im= VmR.

Notice that the current is in phase with the voltage. To

repeat, a resistor current and voltage are in phase. (The

references are, of course, assumed to be associated.)

Instantaneous resistor power dissipation varies with time

because the instantaneous voltage and current vary with

time, and the power is the product of the two. Specifically,

which shows that the peak power is Pm = VmIm, and it occurs

each time that sin (ω + 0) = +1. From the identity sin2 x =

(1 – cos 2x)/2,

which is a constant plus a sinusoid of twice the frequency of

the voltage and current. This instantaneous power is zero

each time that the voltage and current are zero, but it is

never negative because the positive first term is always



equal to or greater than the second term, which is negative

half the time. The fact that the power is never negative

means that a resistor never delivers power to a circuit.

Rather, it dissipates as heat all the energy it receives.

The average power supplied to a resistor is just the first

term: Pm = VmIm/2, because the average value of the second

term is zero. From Vm = ImR,

These formulas differ from the corresponding dc formulas by

a factor of 

EFFECTIVE OR RMS VALUES

Although periodic voltages and currents vary with time, it

is convenient to associate with them specific values called

effective values. Effective voltages are used, for example, in

the rating of electrical appliances. The 120-V rating of an

electric hair dryer and the 240-V rating of an electric clothes

dryer are effective values. Also, most ac ammeters and

voltmeters give readings in effective values.

By definition, the effective value of a periodic voltage or

current (veff or Ieff) is the positive dc voltage or current that

produces the same average power loss in a resistor: Pav =

V2
eff/R and Pav = I2eff/R. Since for a sinusoidal voltage the

average power loss is Pav = V2
m/2R,



Similarly, leff = Im/  = 0.707lm. So, the effective value of a

sinusoidal voltage or current equals the peak value divided

by .

Another name for effective value is root mean square

(rms). The corresponding voltage and current notations are

Vrms and Irms, which are the same as Veff and Ieff. This name

stems from a procedure for finding the effective or rms value

of any periodic voltage or current—not just sinusoids. As can

be derived using calculus, this procedure is to

1. Square the periodic voltage or current.

2. Find the average of this squared wave over one period.

Another name for this average is the mean.

3. Find the positive square root of this average.

Unfortunately, except for square-type waves, finding the

area in step 2 requires calculus. Incidentally, if this

procedure is applied to a sawtooth and a triangular wave,

the result is the same effective value—the peak value

divided by .

INDUCTOR SINUSOIDAL RESPONSE

If an inductor of L henries has a current i = lm sin (ωt +θ)

flowing through it, the voltage across the inductor is

The multiplier ωLlm is the peak voltage Vm: Vm = ωLIm and Im

= Vm/ωL. From a comparison of Im – Vm/ωL and Im = VR,

clearly ωL has a current-limiting action similar to that of R.

The quantity ωL is called the inductive reactance of the

inductor. Its quantity symbol is XL:



It has the same ohm unit as resistance. Unlike resistance,

though, inductive reactance depends on frequency—the

greater the frequency the greater its value and so the

greater its current-limiting action. For sinusoids of very low

frequency, approaching 0 Hz or dc, an inductive reactance is

almost zero, which means that an inductor is almost a short

circuit to such sinusoids, in agreement with dc results. At the

other frequency extreme, for sinusoids of very high

frequencies, approaching infinity, an inductive reactance

approaches infinity, which means that an inductor is almost

an open circuit to such sinusoids.

From a comparison of the inductor current and voltage

sinusoids, it can be seen that the inductor voltage leads the

inductor current by 90° or the inductor current lags the

inductor voltage by 90°.

The instantaneous power absorbed by an inductor is

which from sine and cosine identities reduces to

This power is sinusoidal at twice the voltage and current

frequency. Being sinusoidal, its average value is zero—a

sinusoidally excited inductor absorbs zero average power. In

terms of energy, at the times when p is positive, an inductor

absorbs energy. And at the times when p is negative, an

inductor returns energy to the circuit and acts as a source.

Over a period, it delivers just as much energy as it receives.



CAPACITOR SINUSOIDAL RESPONSE

If a capacitor of C farads has a voltage v = Vm sin (ωt + ϑ)

across it, the capacitor current is

The multiplier ωCVm is the peak current lm: I,m = ωCVm and

Vm/Im = 1/ωC. So, a capacitor has a current-limiting action

similar to that of a resistor, with 1/ ωC corresponding to R.

Because of this, some electric circuits books define

capacitive reactance as 1/ωC. However, almost all electrical

engineering circuits books include a negative sign and define

capacitive reactance as

The negative sign relates to phase shift, as will be explained

in Chap. 12. Of course, the quantity symbol for capacitive

reactance is Xc and the unit is the ohm.

Because 1/ωC is inversely proportional to frequency, the

greater the frequency the greater the current for the same

voltage peak. For high-frequency sinusoids, a capacitor is

almost a short circuit, and for low-frequency sinusoids

approaching 0 Hz or dc, a capacitor is almost an open circuit.

From a comparison of the capacitor voltage and current

sinusoids, it can be seen that the capacitor current leads the

capacitor voltage by 90°, or the capacitor voltage lags the

capacitor current by 90’. This is the opposite of the inductor

voltage and current phase relation.

The instantaneous power absorbed by a capacitor is



the same as for an inductor. The instantaneous power

absorbed is sinusoidal at twice the voltage and current

frequency and has a zero average value. So, a capacitor

absorbs zero average power. Over a period a capacitor

delivers just as much energy as it absorbs.

Solved Problems

10.1 Find the periods of periodic voltages that have

frequencies of (a) 0.2 Hz, (b) 12 kHz, and (c) 4.2 MHz.

(a) From T = 1/f’, T= 1/0.2 = 5 s

(b) Similarly, T = 1/(12 × 103) s = 83.3 μs

(c) r = 1/(4.2 × 106)s = 238 ns

10.2 Find the frequencies of periodic currents that have

periods of (a) 50 μs, (b) 42 ms, and (c) 1 h.

(a) From f = 1/T, f = 1/(50 μ 1(T6) Hz = 20 kHz

(b) Similarly, f = 1/(42 × 10’ 3) = 23.8 Hz

(c) 

10.3 What are the period and frequency of a periodic

voltage that has 12 cycles in 46 ms?

The period is the time taken for one cycle, which can be

found by dividing the 12 cycles into the time that it takes for

them to occur (46 ms): T = 46/12 = 3.83 ms. Of course, the

frequency is the reciprocal of the period: f = 1/(3.83 × 10–3)

= 261 Hz. Alternatively, but what amounts to the same

thing, the frequency is the number of cycles that occur in 1

s: f = 12/(46 × 10–3) = 261 Hz.



10.4 Find the period, the frequency, and the number of

cycles shown for the periodic wave illustrated in Fig. 10-

5.

Fig. 10-5

The wave has one positive peak at 2 μs and another

positive peak at 14 μs, between which times there is one

cycle. So, the period is T = 14 – 2 = 12 μs, and the frequency

is f = 1/T = 1/(12 × 1CT6) Hz = 83.3 kHz. There is one other

cycle shown—from – 10 to 2 μs.

10.5 Convert the following angles in degrees to angles in

radians: (a) 49°, (b) – 130°, and (c) 435°.

(a)

(b)

(c) 

10.6 Convert the following angles in radians to angles in

degrees: (a) ω/18 rad, (b) —0.562 rad, and (c) 4 rad.



(a) 

(b) 

(c) 

10.7 Find the periods and frequencies of sinusoidal

currents that have radian frequencies of (a) 9ω rad/s, (b)

0.042 rad/s, and (c) 13 M rad/s.

From f = ω/2n and T =1/f,

(a) f = 9ω/2ω = 4.5 Hz, T = 1/4.5 = 0.222 s

(b) f = 0.042/2ω: Hz = 6.68 mHz, T= 1/(6.68 × 10”3) =

150 s

(c) f = 13 × 10
6
/2ti Hz = 2.07 MHz, T = 1/(2.07 × 106) s =

0.483 μs

10.8 Find the radian frequencies of sinusoidal voltages that

have periods of (a) 4 s, (b) 6.3 ms, and (c) 7.9 μ(S.

From ω = 2ωf = 2ω/T.

(a) ω = 2ω/4 = 1.57 rad/s

(b) ω = 2ω/(6.3 × 10–3) = 997 rad/s

(c) ω = 2ω/(7.9 × 10–6) = rad/s = 0.795 Mrad/s

10.9 Find the amplitudes and frequencies of (a) 42.1

sin(377t + 30°) and (b) -6.39 cos(105t -20°).

(a) The amplitude is the magnitude of the multiplier:

|42.1| = 42.1. Note the vertical lines about 42.1 for

designating the magnitude operation, which removes a

negative sign, if there is one. The radian frequency is

the multiplier of t: 377 rad/s. From it, and f = ω/2Ą, the

frequency is f = 377/2ω = 60 Hz.

(b) Similarly, the amplitude is | —6.39| = 6.39. The radian

frequency is 105 rad/s, from which f= ω/2ω = 10
5
/2ttHz =

15.9 kHz.



10.10 Find the instantaneous value of v = 70 sin 400ωt V at t

= 3 ms.

Substituting for t: υ(3 ms) = 70 sin (40071 × 3 × 10–

3) = 70 sin 1.2ω V. Since the 1.2ω sinusoidal argument

is in radians, a calculator must be operated in the

radians mode for this evaluation. The result is —41.1 V.

Alternatively, the angle can be converted to degrees,

1.2ω × 180°/ω = 216° and a calculator operated in the

more popular decimal degrees mode: v (3 ms) = 70 sin

216’ = —41.1 V.

10.11 A current sine wave has a peak of 58 mA and a radian

frequency of 90 rad/s. Find the instantaneous current at t

= 23 ms.

From the specified peak current and frequency, the

expression for the current is i = 58 sin 90t mA. For t =

23 ms, this evaluates to

Of course, the 2.07 in radians could have been

converted to degrees; 2.07 × 180°/ω = 118.6, and then

58 sin 118.6° evaluated.

10.12 Evaluate (a) v = 200 sin (3393t + ω/7) V and (b) i = 67

cos (3016t – 42c) mA at t= 1.1ms.

From substituting 1.1 × 10–3 for t,

(a)v (l.l ms) = 200 sin (3393 × 1.1 × 10–3 + ω/7) = 200 sin

4.18 = -172 V

Operating a calculator in the radians mode is

convenient for this calculation because both parts of

the sinusoidal argument are in radians.

(b)i (l.l ms) = 67cos(3016 × 1.1 × 10–3 – 42°) = 67 cos

(190° – 42°) = -56.9 mA



Note that the first term was converted from radians to

degrees so that it could be added to the second term.

Alternatively, the second term could have been

converted to radians.

10.13 Find expressions for the sinusoids shown in Fig. 10-6.

Fig. 10-6

The sinusoid shown in Fig. 10-6a can be considered to be

either a phase-shifted sine wave or a phase-shifted cosine

wave—it does not make any difference. For the selection of a

phase-shifted sine wave, the general expression is ω’= 12

sin (ω + 0), since the peak value is shown as 12. The radian

frequency ω can be found from the period. One-fourth of a

period occurs in the 15-ms time interval from —5 to 10 ms,

which means that T = 4 × 15 = 60 ms, and so ω= ω/T =

2ω/(60 × 10 –3) = 104.7 rad/s. From the zero value at t — – 5

ms and the fact that the waveform is going from negative to

positive then, just as a sine wave does for a zero argument,

the argument can be zero at this time: 104.7(—5 × 10–3) + φ

= 0, from which 9 = 0.524 rad = 30°. The result is v = 12 sin

(104.7t + 0.524) = 12 sin (104.7t + 30°) V.

Now consider the equation for the current shown in Fig.

10-6b. From ω = 2ωf = 2ω(60) = 377 rad/s and the peak

value of 10 mA, i = 10 cos (37ω + 9) mA, with the arbitrary

selection of a phase-shifted cosine wave. The angle φ can be

determined from the zero value at ωt = O 7ω. For this value

of ωt, the phase-shifted cosine argument can be 1.5ω rad



because at 1.5ω rad = 270° a cosine waveform is zero and

going from negative to positive, as can be seen from Fig. 10-

3c. So, for ωt = 0.7ω, the argument can be ωt + ω =.7φ +

ρ= 1.571, from which φ = O.8φ rad = 144°. The result is i = 10

cos (377t + 0.8φ) = 10cos(377t + 144°) mA.

10.14 Sketch a cycle of ν = 30 sin (754t + 60°) V for the

period beginning at t = 0 s. Have all three abscissa units

of time, radians, and degrees.

A fairly accurate sketch can be made from the initial value,

the peaks of 30 and —30 V, and the times at which the

waveform is zero and at its peaks. Also needed is the period,

which is T = 2ω/ω = 27i/754 = 8.33 ms. The initial value can

be found by substituting 0 for t in the argument. The result is

v = 30 sin 60° = 26 V. The waveform is zero for the first time

when the argument is π radians since sin π = 0. This time

can be found from the argument with the 60° converted to

π/3 radians: 754t + ω/3 = ω, from which t = 2.78 ms. The

next zero is half a period later: 2.78 + 8.33/2 = 6.94 ms. The

positive peak for this cycle occurs at a time when the

sinusoidal argument is n/2: 754t + ω/3 = ω/2, from which t =

0.694 ms. The negative peak is half a period later: t = 0.694

+ 8.33/2 = 4.86 ms. The radian units for these times can be

found from ωt = 754t = 2407πt. Of course, the

corresponding degree units can be found by converting from

radians to degrees. Figure 10-7 shows the sinusoid.



Fig. 10-7

10.15 What is the shortest time required for a 2.1 krad/s

sinusoid to increase from zero to four-fifths of its peak

value?

For convenience, the expression for the sinusoid can

be considered to be Vm sin (2.1 × 103t). The time

required for this wave to equal 0.8 Vm can be found from

Vm sin (2.1 × 103t) = 0.8 Vm, which simplifies to sin (2.1

× 103t) = 0.8. This can be evaluated for t by taking the

inverse sine, called the arcsine, of both sides. This

operation causes the sin operation to be canceled,

leaving the argument. On a calculator, the arcsine may

be designated by “sin–1” or “asin.” Taking the arcsine of

both sides produces

which simplifies to 2.1 × 103t = sin – 0.8, from which



The 0.9273 is, of course, in radians.

10.16 If 50 V is the peak voltage induced in the conductor of

the alternator shown in Fig. 10-2, find the voltage

induced after the conductor has rotated through an

angle of 35° from its vertical position.

When the conductor is in a vertical position, the

induced voltage is a maximum in magnitude, but can be

either positive or negative. The vertical position can, for

convenience, be considered to correspond to 0°. Then,

since the induced voltage is sinusoidal, and since the

cosine wave has a peak at 0°, the voltage can be

considered to be ν = ± 50 cos 0, in which ϑ is the angle

of the conductor from the vertical. So, with the

conductor at 35° from the vertical, the induced voltage

is v = ±50 cos 35° = ±V.

10.17 If the conductor in the alternator shown in Fig. 10-2 is

rotating at 60 Hz, and if the induced voltage has a peak

of 20 V, find the induced voltage 20 ms after the

conductor passes through a horizontal position if the

voltage is increasing then.

The simplest expression for the induced voltage is v

= 20 sin 377t V if t = 0 s corresponds to the time at

which the conductor is in the specified horizontal

position. This is the voltage expression because the

induced voltage is sinusoidal, 20 V is specified as the

peak, 377 rad/s corresponds to 60 Hz, and sin ω is zero

at t = 0 s and is increasing. So,

10.18 Find the periods of (a) 7 – 4 cos (400t + 30°), (b) 3 sin2

4t, and (c) 4 cos 3t sin 3t.



(a) The expression 7 – 4 cos (400t + 30°) is a sinusoid of –

4 cos (400t + 30°) “riding” on a constant 7. Since only

the sinusoid contributes to the variations of the wave,

only it determines the period: T = 2ω/ω = 2ω/400 s =

15.7 ms.

(b) Because of the square, it is not immediately obvious

what the period is. The identity sin2 × = (1 – cos 2x)/2

can be used to eliminate the square:

From the cosine wave portion, the period is T = 2ω/ω =

2ω:/8 = 0.785 s.

(c) Because of the product of the sinusoids in 4 cos 3t sin

3t, some simplification must be done before the period

can be determined. The identity sin (x + y) = sin × cos

y + sin y cos x can be used for this by setting y = x.

The result is

from which sin × cos × = (sin 2x)/2. Here, × = 3t, and so

From this, the period is T = 2ω/aω = 2ω/6 = 1.05 s.

10.19 Find the phase relations for the following pairs of

sinusoids:

(a) v = 60 sin (377t + 50°) V, i= 3 sin (754t – 10°) A

(b) v1 =6.4 sin (7.1πt + 30°) V, v2 = 7.3 sin (7.1 πt – 10°)

V



(c) v = 42.3 sin (400t + 60°) V, i = -4.1 sin (400t – 50°) A

(a) There is no phase relation because the sinusoids have

different frequencies.

(b) The angle by which v1 leads v2 is the phase angle of vi

minus the phase angle of v2: ang v1 — ang v2 = 30° –

(-10°) = 40°. Alternatively, v2 lags v1 by 40°.

(c) The amplitudes must have the same sign before a

phase comparison can be made. The negative sign of i

can be eliminated by using the identity – sin × = sin (x

± 180°). The positive sign in + is more convenient

because, as will be seen, it leads to a phase difference

of the smallest angle, as is generally preferable. The

result is

The angle by which v leads i is the phase angle of v

minus the phase angle of i: ang v – ang í = 60° – 130° =

—70°. The negative sign indicates that v lags, instead of

leads, i by 70°. Alternatively, i leads v by 70°. If the

negative sign in ± had been used, the result would have

been that v leads i by 290°, which is equivalent to – 70°

because 360° can be subtracted from (or added to) a

sinusoidal angle without affecting the value of the

sinusoid.

10.20 Find the angle by which i1 = 3.1 sin (754t – 20°) mA

leads i2 = - 2.4 cos (754t + 30°) mA.

Before a phase comparison can be made, both

amplitudes must have the same sign, and both

sinusoids must be of the same form: either phase-

shifted sine waves or phase shifted cosine waves. The

negative sign of i2 can be eliminated by using the

identity —cos × = cos (x + 180°). At this point it is not



clear whether the positive or negative sign is preferable,

and so both will be kept:

Both of these phase-shifted cosine waves can be

converted to phase-shifted sine waves by using the

identity cos × = sin (x + 90°):

Now a phase angle comparison can be made: i, leads i2

by —20° – 300° = —320° from the first i2 expression, or

by —20° – (– 60°) = 40° from the second i2 expression.

Being smaller in magnitude, the 40° lead is preferable to

a – 320° lead. But both are equivalent.

10.21 Find the average values of the periodic waveforms

shown in Fig. 10-8.

Fig. 10-8

The waveform shown in Fig. 10-8a is a sinusoid

“riding” on top of a constant 3 V. Since the average

value of the sinusoid is zero, the average value of the

waveform equals the constant 3 V.



The average value of the waveform shown in Fig.

10-86, and of any waveform, is the area under the

waveform for one period, divided by the period. Since

for the cycle beginning at t = 0 s, the waveform is at 8 V

for half a period and is at 1 V for the other half-period,

the area underneath the curve for this one cycle is, from

the height-times-base formula for a rectangular area, 8

× T/2 + 1 × T/2 = 4.5T. So, the average value is

4.5T/T=4.5V. Note that the average value does not

depend on the period. This is generally true.

The cycle of the waveform shown in Fig. 10-8c

beginning at f = 0 s is a triangle with a height of 10 and

a base of T. The area under the curve for this one cycle

is, from the triangular area formula of one-half the

height times the base, 0.5 × 10 × T= 57. And so the

average value is 5T/T= 5 V.

10.22 What are the average values of the periodic waveforms

shown in Fig. 10-9?

Fig. 10-9

For the cycle starting at f = 0 s, the i1, waveform

shown in Fig. 10-9« is at 8 A for half a period and is at —

3 A for the next half-period. So, the area for this cycle is

8(T/2) + (– 3)(7,’2) = 2.57, and the average value is

2.5T/T= 2.5 A.



The i2 waveform shown in Fig. 10-9b has a complete

cycle from r = 0 s to t = 5 s. For the first 2 s the area

under the curve is 6x2 = 12. For the next second it is

-2x1 = -2. And for the last 2 s it is -4x2= -8. The

algebraic sum of these areas is 12 – 2 – 8 = 2, which

divided by the period of 5 results in an average value of

2/5 = 0.4 A.

10.23 What is the average power absorbed by a circuit

component that has a voltage v = 6sin(377t + 10°) V

across it when a current; = 0.3 sin (377f – 20e) A flows

through it? Assume associated references since there is

no statement to the contrary.

The average power is, of course, the average value

of the instantaneous power p:

This can be simplified using a sine-cosine identity

derived by subtracting cos (x + y) = cos x cos y – sin x

sin y from cos (x – y) = cos x cos y + sin.v sin y. The

result is the identity sin x sin y = 0.5[cos (x-y)- cos (x +

y)]. Here, x = 311t + 10° and y = 377f – 20°. So,

Since the second term is a sinusoid, and so has an

average value of zero, the average power equals the

first term:

Note in particular that the average power is not

equal to the product of the average voltage (0 V) and



the average current (0 A), nor is it equal to the product

of the effective value of voltage (6/ ) and the effective

value of current (0.3/ ).

10.24 If the voltage across a single circuit component is i; =

40 sin (400f + 10°) V for a current through it of i = 34.1

sin (400t + 10°) mA, and if the references are

associated, as should be assumed, what is the

component?

Since the voltage and current are in phase, the

component is a resistor. The resistance is R = Vm/ =

40/(34.1 × 10-3) Ω = 1.17 kΩ.

10.25 The voltage across a 62-Ω resistor is v = 30 sin (200πt

+ 30°) V. Find the resistor current and plot one cycle of

the voltage and current waveforms on the same graph.

From i = v/R, i = [30 sin (200tií + 30c)]/62 = 0.484 sin

(200ωf + 30°) A. Of course, the period is T = 2n/co =

2ω/200ω s = 10 ms. For both waves, the curves will be

plotted from the initial, peak, and zero values and the

times at which they occur. At í = 0 s, v = 30 sin 30° =

15 V and i = 0.484 sin 30° = 0.242 A. The positive peaks

of 30 V and 0.484 A occur at a time tp corresponding to

60° since the sinusoidal arguments are 90° then. From

the proportionality tp/T = 60°/360°, the peak time is tp =

10/6 = 1.67 ms. Of course, the negative peaks occur at

a half-period later, at 1.67 + 5 = 6.67 ms. The first zero

values occur at a time corresponding to 150° because

the sinusoidal arguments are 180° then. Using a

proportionality again, this time is (150/360)(10) = 4.17

ms. The next zeros occur one half-period later, at 4.17 +

5 = 9.17 ms. The voltage and current waveforms are

shown in Fig. 10-10. The relative heights of the voltage

and current peaks should not be of concern, because

they are in different units.



Fig. 10-10

10.26 A 30-Ω. resistor has a voltage of dissipation of the

resistor?

10.27 Find the average power absorbed by a 2.7-Ω resistor

when the current i= 1.2 sin (377t + 30°) A flows through

it.

10.28 What is the peak voltage at a 120-V electric outlet?

The 120 V is the effective value of the sinusoidal

voltage at the outlet. Since for a sinusoid the peak is 

times the effective value, the peak voltage at the outlet

is  × 120 = 170 V.

10.29 What is the reading of an ac voltmeter connected

across a 680-Ω resistor that has a current of i = 6.2 cos

(377f – 20°) mA flowing through it?



The voltmeter reads the effective value of the

resistor voltage, which can be found from leff and R.

Since Vm = ImR, then Vm/  = (Vm/ (R) or Veff = IeffR.

So,

10.30 What is the reading of an ac voltmeter connected

across a 10-Ω resistor that has a peak power dissipation

of 40 W?

The peak voltage Vm can be found from the peak

power:  from which .

The effective or rms voltage, which is the voltmeter

reading, is Vm/  = 20/ = 14.1V.

10.31 What is the expression for a 240-Hz sine wave of

voltage that has an rms value of 120 V?

Since the peak voltage is 120 ×  = 170 V and the

radian frequency is 2ω × 240 = 1508 rad/s, the sine

wave is v = 170 sin 1508t V.

10.32 Find the effective value of a periodic voltage that has a

value of 20 V for one half-period and —10 V for the other

half-period.

The first step is to square the wave. The result is

400 for the first half-period and (—10)2 = 100 for the

second half-period. The next step is to find the average

of the squares from the area divided by the period: (400

× T/2 + 100 × T/2)/T = 250. The last step is to find the

square root of this average:  = 15.8V.

10.33 Find the effective value of the periodic current shown in

Fig. 10-11a.



Fig. 10-11

The first step is to square the wave, which has a

period of 8 s. The squared wave is shown in Fig. 10-1 b.

The next step is to find the average of the squared

wave, which can be found by dividing the area by the

period: [16(3) + 9(6 – 4)]/8 = 8.25. The last step is to

find the square root of this average: Ieff = 

10.34 Find the reactances of a 120-mH inductor at (a) 0 Hz

(dc), (b) 40 rad/s, (c) 60 Hz, and (d) 30 kHz.

From XL = ωL = 2ωL,

(a) XL = 2ω(0)(120 × 10”3) = 0Ω

(b) XL = 40(120 × 10–3) = 4.8Ω

(c) XL = 2ω(60)(120 × 10”3) = 45.2 Ω

(d) XL = 2ω(30 × 103)(120 × 10–3) Ω = 22.6 kΩ

10.35 Find the inductances of the inductors that have

reactances of (a) 5 Ω at 377 rad/s, (b) 1.2 kΏ at 30 kHz,

and (c) 1.6 MΩ at 22.5 Mhz.



Solving for L in XL = ωL results in L – Xl/ω = Xl/2ωf.

So,

(a) L = 5/377 H = 13.3 mH

(b) L = (1.2 × 10
3
)/(2ω × 30 × 103) H = 6.37 mH

(c) L = (1.6 × 106)/(2ω × 22.5 × 106) H = 11.3 mH

10.36 Find the frequencies at which a 250-mH inductor has

reactances of 30 Ω and 50 kΩ

from XL= ωL, = the frequency is f= XL/2ωL, and so

10.37 What is the voltage across a 30-mH inductor that has a

40-mA, 60-Hz current flowing through it?

The specified current is, of course, the effective

value, and the desired voltage is the effective value of

voltage, although not specifically stated. In general, the

ac current and voltage values given are effective values

unless otherwise specified. Because XL = Vm/Lm, it

follows that XL = (Vm/ )/(Im/ ) = Veff/Ieff. So, here,

Veff = IeffXL=(40 × 10 -1)(2ω × 60)(30 × 10-3=0.452 V

10.38 The voltage v = 30 sin (200ωt + 30°) V is across an

inductor that has a reactance of 62 Ω. Find the inductor

current and plot one cycle of the voltage and current on

the same graph.

The current peak equals the voltage peak divided by

the reactance: m = 30/62 = 0.484 A. And, since the

current lags the voltage by 90°,



The voltage graph is the same as that shown in Fig.

10-10. The current graph for these values, though,

differs from that in Fig. 10-10 by a shift right by a time

corresponding to 90°, which time is one-fourth of a

period: 10/4 = 2.5 ms. The waveforms are shown in Fig.

10-12.

Fig. 10-12

10.39 Find the voltages across a 2-H inductor for the

following currents:

(a) 10 A, (b) 10 sin (377t + 10°) A, and (c) 10 cos (104£ –

20°) A. As always, assume associated references

because there is no statement to the contrary.

(a) The inductor voltage is zero because the current is a

constant and the time derivative of a constant is zero:

v = 2 d(l0)/dt = 0 V. From another point of view, the

reactance is 0 Ω because the frequency is 0 Hz, and so

Vm = ImXL = 10(0) = 0 V.

(b) The voltage peak equals the current peak times the

reactance of 377 × 2 = 754 Ω:



Since the voltage leads the current by 90° and since sin

(x + 90°) = cos x,

(c) Similarly, Vm = ImXL = 10(104 × 2) V = 0.2 MV, and 

10.40 Find the reactances of a 0.1 -/F capacitor at (a) 0 Hz

(dc), (b) 377 rad/s, (c) 30 kHz, and (d) 100 MHz.

From Xc= - 1/coC = – l/2ω/C,

(a) 

(b) 

(c) 

(d) 

10.41 Find the capacitances of capacitors that have a

reactance of – 500 Ω at (a) 377 rad/s, (b) 10 kHz, and (c)

22.5 MHz.

Solving for C in Xc = – 1/ωC results in C = – 1/ωXc =

– 1/(2ωf × Xc). So,

(a) 

(b) 

(c) 

10.42 Find the frequencies at which a 2-μF capacitor has

reactances of —0.1 and – 2500 Ω.



From Xc = – 1/ωC = —1/2ωfC, the frequency is f = —

1/(Xc × 2ωC). So,

10.43 What current flows through a 0.1-/μF capacitor that has

200 V at 400 Hz across it?

Although not specifically stated, it should be

understood that the effective capacitor voltage is

specified and the effective capacitor current is to be

found. If both sides of Im, = ωCVm are divided by  the

result is Im/  =ωCVm/  or Ieff = ωCVeff so,

10.44 What is the voltage across a capacitor that carries a

120-mA current if the capacitive reactance is -230 Ω?

From the solution to Prob. 10.43, Ieff = ωCVff or Veff –

Iff(1/ωC). Since 1/ωC is the magnitude of capacitive

reactance, the effective voltage and current of a

capacitor have a relation of Veff = leff|Xc|. Consequently,

here, Veff = (120 × 10-3)|- 230| - 27.6 V.

10.45 The voltage v = 30 sin (200ωt + 30°) V is across a

capacitor that has a reactance of —62 Ω. Find the

capacitor current and plot one cycle of the voltage and

current on the same graph.

From Vm/Im = 1ωC = |Xc|, the current peak equals

the voltage peak divided by the magnitude of capacitive

reactance: Im = 30/1 – 62| = 0.484 A. And, since the

current leads the voltage by 90°,



Notice that the current sinusoid has the same phase

angle as the voltage sinusoid, but, because of the 90°

lead, is a phase-shifted cosine wave instead of the

phase-shifted sine wave of the voltage.

The voltage graph is the same as that in Fig. 10-10.

The current graph differs from that in Fig. 10-10 by a

shift left by a time corresponding to 90°, which time is

one-fourth of a period: 10/4 = 2.5 ms. The waveforms

are shown in Fig. 10-13.

Fig. 10-13

10.46 What currents flow through a 2μ capacitor for voltages

of (a) v = 5 sin (317t + 10°) V and (b)v= 12 cos(104t-

20°)V?

(a) The current peak equals ωC times the voltage peak:

Also, because the capacitor current leads the capacitor

voltage by 90° and the voltage is a phase-shifted sine



wave, the current can be expressed as a phase-shifted

cosine wave with the same phase angle: i = 3.77 cos

(377f + 10”) mA.

(b)The current peak is

Also, the current leads the voltage by 90°. As a result,

Supplementary Problems

10.47 Find the periods of periodic currents that have

frequencies of (a) 1.2 mHz, (b) 2.31kHz, and (c) 16.7

MHz.

Ans. (a) 833 s, (b) 433 μs, (c) 59.9 ns

10.48 What are the frequencies of periodic voltages that have

periods of (a) 18.3 ps, (b) 42.3 s, and (c) 1 d?

Ans. (a) 546 GHz (gigahertz—i.e., 109 Hz), (b) 23.6 mHz,

(c) 11.6/(Hz

10.49 What are the period and frequency of a periodic

current for which 423 cycles occur in 6.19 ms?

Ans. 14.6 μs, 68.3 kHz

10.50 Convert the following angles in degrees to angles in

radians: (a) —40°, (b) —1123°, and (c) 78°.

Ans, (a) -0.698 rad, (b) - 19.6 rad, (c) 1.36 rad

10.51 Convert the following angles in radians to angles in

degrees: (a) 13.4 rad, (b) 0.675 rad, and (c) -11.7 rad.



Ans. (a) 768°, (b) 38.7°, (c) -670°

10.52 Find the periods of sinusoidal voltages that have radian

frequencies of (a) 120ωrad/s, (b) 0.625 rad/s, and (c)

62.1 krad/s.

Ans. (a) 16.7 ms, (b) 10.1 s, (c) 101, μ

10.53 Find the radian frequencies of sinusoidal currents that

have periods of (a) 17.6 μs, (b) 4.12 ms, and (c) 1 d.

Ans. (a) 357 krad/s, (b) 1.53 krad/s, (c) 72.7 μrad/s

10.54 What are the amplitudes and frequencies of (a) -63.7

cos (754t – 50°) and (b) 429 sin (4000t + 15°)?

Ans. (a) 63.7, 120 Hz; (b) 429, 637 Hz

10.55 Find the instantaneous value of i = 80 sin 500t mA at

(a)l = 4ms and (b)t = 2.1s.

Ans. (a) 72.7 mA, (b) 52 mA

10.56 What is the frequency of a sine wave of voltage which

has a 45-V peak and which continuously increases from 0

V at t = 0 s to 24 V at f = 46.2 ms?

Ans. 1.94 Hz

10.57 If a voltage cosine wave has a peak value of 20 V at t =

0 s, and if it takes a minimum of 0.123 s for this voltage

to decrease from 20 to 17 V, find the voltage at t = 4.12

s.

Ans. 19.3 V.

10.58 What is the instantaneous value of; i = 13.2 cos (377 t

+ 50°) mA at (a) t= -42.1ms and (b) f = 6.3 s?

Ans. (a) -10 mA, (b) 7.91 mA

10.59 Find an expression for a 400-Hz sinusoidal current that

has a 2.3-A positive peak at t = —0.45 ms.

Ans. i = 2.3 cos (800πt + 64.8°) A



10.60 Find an expression for a sinusoidal voltage that is 0 V

at t = —8.13 ms, after which it increases to a peak of 15

V at t = 6.78 ms.

Ans. v= 15 sin (105r + 49.1C) V

10.61 What is the shortest time required for a 4.3-krad/s

sinusoid to increase from two-fifths to four-fifths of its

peak value?

Ans. 120 us

10.62 If 43.7 V is the peak voltage induced in the conductor

of the alternator shown in Fig. 10-2, find the voltage

induced after the conductor has rotated through an

angle of 43’ from its horizontal position.

Ans. ±29.8 V

10.63 If the conductor of the alternator in Fig. 10-2 is rotating

at 400 Hz, and if the induced voltage has a 23-V peak,

find the induced voltage 0.23 ms after the conductor

passes through its vertical position.

Ans. ± 19.3 V

10.64 Find the periods of (a) 4 + 3 sin (800πt - 15°), (b) 8.1

cos2 9πt, and (c) 8 sin 16t cos 16t.

Ans. (a) 2.5 ms, (ft) 111 ms, (c) 196 ms

10.65 Find the phase relations for the following pairs of

sinusoids:

(a) v = 6 sin (30t – 40 ‘) V, i = 10 sin (30t – tî/3) mA

(b) Vl = -8sin(40t-80”) V, v2 = - 10 sin (40t – 50) V

(c) i1 = 4 cos (70t – 40’) mA, i2 = - 6 cos (70t + 80”) mA

(d) v= -4sin(45t + 5’)V, i = 7 cos (45t + 80’) mA

Ans. (a) c leads i by 20°, (b) v1 lags v2 by 30°, (c) ii leads

i2 by 60°, (d) v leads i by 15°



10.66 Find the average value of a half-wave rectified

sinusoidal voltage that has a peak of 12 V. This wave

consists only of the positive half-cycles of the sinusoidal

voltage. It is zero during the times that the sinusoidal is

negative.

Ans. 3.82 V

10.67 Find the average values of the periodic waveforms

shown in Fig. 10-14.

Ans. (a) 3.5, (b) 4, (c)

Fig. 10-14

10.68 What is the average power absorbed by a circuit

component that has a voltage v = 10 V across it when a

current i = 5 + 6 cos 33t A flows through it?

Ans. 50 W

10.69 Find the average power absorbed by a circuit

component that has a voltage v = 20.3 cos (754t – 10) V

across it when a current i = 15.6 cos (754t – 30°) mA

flows through it.

Ans. 149 mW

10.70 What is the conductance of a resistor that has a

voltage v = 50.1 sin (200πt + 30°) V across it when a

current i = 6.78 sin (2007rf + 30°) mA flows through it?



Ans. 135 μS

10.71 If the voltage v = 150 cos (377t + 45°) V is across a

33-kΩ resistor, what is the resistor current?

Ans. i = 4.55 cos (377t + 45°) mA

10.72 Find the average power absorbed by an 82-Ω resistor

that has a voltage v = 311 cos (377t – 45°) V across it.

Ans. 590 W

10.73 What is the average power absorbed by a 910-Ω

resistor that has a current i = 9.76 sin (754r – 36”) mA

flowing through it?

Ans. 43.3 mW

10.74 Find the average power absorbed by a resistor having a

voltage v = 87.7 cos (400ωt – 15°) V across it and a

current i = 2.72 cos (400ωt – 15°) mA flowing through it.

Ans. 119 mW

10.75 What is the reading of an ac ammeter that is in series

with a 470-fl resistor that has a voltage i; = 150 cos

(377t + 30c) V across it?

Ans. 226 mA

10.76 What is the reading of an ac ammeter that is in series

with a 270-Ω resistor that has a peak power dissipation

of 10 W?

Ans. 136 mA

10.77 What is the expression for a 400-Hz current cosine

wave that has an effective value of 13.2 mA?

Ans. i = 18.7 cos 800ωt mA

10.78 Find the effective value of v = 3 + 2 sin 4t V. (Hint: Use

a sinusoidal identity in finding the average value of the

squared voltage.)



Ans. 3.32 V

10.79 Find the effective value of a periodic current that has a

value of 40 mA for two-thirds of a period and 25 mA for

the remaining one-third of the period. Would the

effective value be different if the current were – 25 mA

instead of 25 mA for the one-third period?

Ans. 35.7 mA, no

10.80 Find the effective value of a periodic current that in a

20-ms period has a value of 0.761 A for 4 ms, 0 A for 2

ms, —0.925 A for 8 ms, and 1.23 A for the remaining 6

ms. Would the effective value be different if the time

segments were in seconds instead of in milliseconds?

Ans. 0.955 A, no

10.81 Find the reactances of a 180-mH inductor at (a) 754

rad/s, (b) 400 Hz, and (c) 250 kHz.

Ans. (a) 136 Ω, (b) 452 Ω, (c) 283 kΩ

10.82 Find the inductances of the inductors that have

reactances of (a) 72.1 Ω at 754 rad/s, (b) 11.9 Ω at 12

kHz, and (c) 42.1 kΩ at 2.1 MHz.

Ans. (a)95.6mH, (b)158βH, (c)3.19mH

10.83 What are the frequencies at which a 120-mH inductor

has reactances of (a) 45 Ω and (b) 97.1 kΩ?

Ans. (a) 59.7 Hz, (b) 129 kHz

10.84 What current flows through an 80-mH inductor that has

120 V at 60 Hz across it?

Ans. 3.98 A

10.85 What is the inductance of the inductor that will draw a

current of 250 mA when connected to a 120-V, 60-Hz

voltage source?

Ans. 1.27 H



10.86 What are the currents that flow in a 500-mH inductor

for voltages of (a) v = 170 sin (400t + ω/6) V and (b)v=

156cos(1000it + 10°) V?

Ans. (a) i = 0.85 sin (400t – 60°) A, (b) i = 0.312 sin

(l000t + 10°) A

10.87 Find the reactances of a 0.25-βf capacitor at (a) 754

rad/s, (b) 400 Hz, and (c) 2 MHz.

Ans. (a) -5.31 kΩ, (b)-1.59 kΩ, (c)-0.318Ω

10.88 Find the capacitances of the capacitors that have

reactances of (a) —700 ω at 377 rad/s, (b) —450 φ at

400 Hz, and (c) -1.23 kΩ at 25 kHz.

Ans. (a) 3.79μF, (b) 0.884 μF, (c)5.18nF

10.89 Find the frequency at which a 0.1 -/μF capacitor and a

120-m H inductor have the same magnitude of

reactance.

Ans. 1.45 kHz

10.90 What is the capacitance of a capacitor that draws 150

mA when connected to a 100-V, 400-Hz voltage source?

Ans. 0.597 μF

10.91 What are the currents that flow in a 0.5-μF capacitor for

capacitor voltages of (a) v = 190 sin (377t + 15°) V and

(b) v = 200 cos (1000t – 40°) V?

Ans. (a) i = 35.8 cos (377t + 15°) mA, (b) i = 0.1 cos

(l000t + 50°) A

10.92 What are the voltages across a 2-μF capacitor for

currents of (a) i = 7 sin (754t + 15°) mA and (b) i =

250cos(103i-30°)mA?

Ans. (a) v = 4.64 sin (754t – 75°) V, (b) v = 125 sin (103t

– 30°) V



Chapter 11


Complex Algebra and Phasors

INTRODUCTION

The best way to analyze almost all ac circuits is by using complex

algebra. Complex algebra is an extension of the algebra of real

numbers—the common algebra. In complex algebra, though, complex

numbers are included along with their own special rules for addition,

multiplication, subtraction, and division. As is explained in Chaps. 12

and 13, in ac circuit analysis, sinusoidal voltages and currents are

transformed into complex numbers called phasors; resistances,

inductances, and capacitances are transformed into complex

numbers called impedances; and then complex algebra is applied in

much the same way that ordinary algebra is applied in dc circuit

analysis.

A scientific calculator will operate on complex numbers as readily

as on real numbers. But still it is important to know how to perform

the various operations on complex numbers without the use of a

calculator.

IMAGINARY NUMBERS

The common numbers that everyone uses are real numbers. But

these are not the only kind of numbers. There are also imaginary

numbers. The name “imaginary” is misleading because it suggests

that these numbers are only in the imagination, when actually they

are just as much numbers as the common real numbers. Imaginary

numbers were invented when it became necessary to have numbers

that are square roots of negative numbers (no real numbers are). This

inventing of numbers was not new since it had been preceded by the

inventions of noninteger real numbers and negative real numbers.

Imaginary numbers need to be distinguished from real numbers

because different rules must be applied in the mathematical

operations involving them. There is no one universally accepted way



of representing imaginary numbers. In the electrical field, however, it

is standard to use the letter j, as in j2, j0.01, and –j5.6.

The rules for adding and subtracting imaginary numbers are the

same as those for adding and subtracting real numbers except that

the sums and differences are imaginary. To illustrate,

The multiplication rule, though, is different. The product of two

imaginary numbers is a real number that is the negative of the

product that would be found if the numbers were real numbers

instead. For example,

Also, j1(j1) = – 1, from which  Likewise,  and so

forth.

Sometimes powers of j1 appear in calculations. These can have

values of 1, –1, j1, and –j1, as can be shown by starting with (j1)2 =

j1(j1) = – 1 and then progressively multiplying by j1 and evaluating.

As an illustration, (j1)3 = j1(j1)2 = j1(–1) = –j1 and (j1)4 = j1(j1)3 =

j1(–j1)= 1.

The product of a real number and an imaginary number is an

imaginary number that, except for being imaginary, is the same as if

the numbers were both real. For example, 3(j5) = j15 and –j5.1(4) = –

j20.4.

In the division of two imaginary numbers, the quotient is real and

the same as if the numbers were real. As an illustration,

A convenient memory aid for division is to treat the j’s as if they are

numbers and to divide them out as in



This should be viewed as a memory aid only, because j just

designates a number as being imaginary and is not a number itself.

However, treating) as a number in division, as well as in the other

mathematical operations, is often done because of convenience and

the fact that it does give correct answers.

If an imaginary number is divided by a real number, the quotient is

imaginary but otherwise the same as for real numbers. For example,

The only difference if the denominator is imaginary and the

numerator is real is that the quotient is the negative of the above. To

illustrate,

The basis for this rule can be shown by multiplying a numerator and

denominator by j1, as in

Multiplying to make the denominator real, as here, is called

rationalizing.

COMPLEX NUMBERS AND THE RECTANGULAR FORM

If a real number and an imaginary number are added, as in 3 + j4,

or subtracted, as in 6 – j8 the result is considered to be a single

complex number in rectangular form. Other forms of complex

numbers are introduced in the next section.

A complex number can be represented by a point on the complex

plane shown in Fig. 11.1. The horizontal axis, called the real axis, and

the vertical axis, called the imaginary axis, divide the complex plane

into four quadrants, as labeled. Both axes have the same scale. The

points for real numbers are on the real axis because a real number

can be considered to be a complex number with a zero imaginary



part. Figure 11-1 has four of these points: —5, —1, 2, and 4. The

points for imaginary numbers are on the imaginary axis because an

imaginary number can be considered to be a complex number with a

zero real part. Figure 11-1 has four of these points: j3, j1, —j2, and —

j4. Other complex numbers have nonzero real and imaginary parts,

and so correspond to points off the axes. The real part of each

number gives the position to the right or to the left of the vertical

axis, and the imaginary part gives the position above or below the

horizontal axis. Figure 11-1 has four of these numbers, one in each

quadrant.

Fig. 11-1

In Fig. 11-1 the complex numbers 4 + j2 and 4 — j2 have the same

real part, and they also have the same imaginary part—except for

sign. A pair of complex numbers having this relation are said to be

conjugates: 4 + j2 is the conjugate of 4 — j2, and also 4 — j2 is the

conjugate of 4 + j2. Points for conjugate numbers have the same

horizontal position but opposite vertical positions, being equidistant

on opposite sides of the real axis. If lines are drawn from the origin to

these points, both lines will have the same length, and, except for

sign, the same angle from the positive real axis. (Angles are positive



if measured in a counterclockwise direction from this axis, and

negative if measured in a clockwise direction.) These graphical

relations of conjugates are important for the polar form of complex

numbers presented in the next section.

The rectangular form is the only practical form for addition and

subtraction. These operations are applied separately to the real and

imaginary parts. As an illustration, (3 + j4) + (2 + j6) = 5 + j10 and

(6 — j7) — (4 — j2) = 2 — j5.

In the multiplication of complex numbers in the rectangular form,

the ordinary rules of algebra are used along with the rules for

imaginary numbers. For example,

It follows from this multiplication rule that if a complex number is

multiplied by its conjugate, the product is real and is the sum of the

real part squared and the imaginary part squared. To illustrate,

In the division of complex numbers in rectangular form, the

numerator and denominator are first multiplied by the conjugate of

the denominator to make the denominator real, or rationalized, so

that the division will be straightforward. As an example of this

operation, consider

POLAR FORM

The polar form of a complex number is a shorthand for the

exponential form. Polar or exponential forms are usually the best

forms for multiplying and dividing, but are not useful for adding and

subtracting unless done graphically, which is rarely done. Typically,

though, a scientific calculator can add and subtract complex numbers

in polar form as well as in rectangular form. The exponential form is

Aejθ, where A is the magnitude and θ is the angle of the complex

number. Also, e = 2.718 … is the base of the natural logarithm. The



polar shorthand for Aejθ is  as in 4ej45° =  and in —8ej60° = 

 Although both forms are equivalent, the polar form is much

more popular because it is easier to write.

That a number such as 5ej60 is a complex number is evident from

Euler’s identity: ejθ = cos θ + j sin θ. As an illustration, 7ej30° = 

= 7 cos 30° + j7 sin 30° = 6.06 + j3.5. This use of Euler’s identity not

only shows that a number such as Aejθ =  is a complex number,

but also gives a method for converting a number from exponential or

polar form to rectangular form.

Another use of Euler’s identity is for deriving formulas for

converting a complex number from rectangular form to the

exponential and polar forms. Suppose that x and y are known in x +

jy, and that A and θ are to be found such that x + jy = Aejθ =  By

Euler’s identity, x + jy = A cos θ + jA sin θ. Since two complex

numbers are equal only if the real parts are equal and if the

imaginary parts are equal, it follows that x = A cos θ and y = A sin θ.

Taking the ratio of these equations eliminates A:

(Note that if x is negative, 180° must be either added to or

subtracted from θ.) So, θ can be found from the arctangent of the

ratio of the imaginary part to the real part. With θ known, A can be

found by substituting θ into either x = A cos θ or into y = A sin θ.

Another popular way of finding A is from a formula based on

squaring both sides of A cos θ = x and of A sin θ = y and adding:

But since, from trigonometry, cos2θ + sin2 θ = 1, it follows that A2 =

x2 + y2 and  So, the magnitude of a complex number

equals the square root of the sum of the squares of the real and

imaginary parts. Most scientific calculators have a built-in feature for

converting between rectangular and polar forms.

This conversion can also be understood from a graphical

consideration. Figure 11-2a shows a directed line from the origin to

the point for the complex number x + jy. As shown in Fig. 11-2b, this



line forms a right triangle with its horizontal and vertical projections.

From elementary trigonometry, x = A cos θ, y = A sin θ, and 

 in agreement with the results from Euler’s identity.

Often this line, instead of the point, is considered to correspond to a

complex number because its length and angle are the amplitude and

angle of the complex number in polar form.

Fig. 11-2

As has been mentioned, the conjugate of a complex number in

rectangular form differs only in the sign of the imaginary part. In

polar form this difference appears as a difference in sign of the angle,

as can be shown by converting any two conjugates to polar form. For

example,  and its conjugate is 

As stated, the rectangular form is best for adding and subtracting,

and the polar form is often best for multiplying and dividing. The

multiplication and division formulas for complex numbers in polar

form are easy to derive from the corresponding exponential numbers

and the law of exponents. The product of the complex numbers Aejθ

and Bejφ is (Aejθ)(Bejφ) = ABej (θ + φ), which has a magnitude AB that is

the product of the individual magnitudes and an angle θ + φ that, by

the law of exponents, is the sum of the individual angles. In polar

form this is 

For division the result is

So, the magnitude of the quotient is the quotient A/B of the

magnitudes, and the angle of the quotient is, by the law of



exponents, the difference θ — φ of the numerator angle minus the

denominator angle.

PHASORS

By definition, a phasor is a complex number associated with a

phase-shifted sine wave such that, if the phasor is in polar form, its

magnitude is the effective (rms) value of the voltage or current and

its angle is the phase angle of the phase-shifted sine wave. For

example,  is the phasor for  and  is the

phasor for i = 0.621 sin (754t – 27°) A. Of course, 0.621 = (0.439).

Note the use of the boldface letters V and I for the phasor voltage

and current quantity symbols. It is conventional to use boldface letter

symbols for all complex quantities. Also, a superscript asterisk is used

to designate a conjugate. As an illustration, if V = 

 V* =  The magnitude

of a phasor variable is indicated by using lightface, and the

magnitude of a complex number is indicated by using parallel lines.

For example, if I = 3 + j4 = , then I = |3 +

j4| = | | = 5A.

A common error is to equate a phasor and its corresponding

sinusoid. They cannot be equal because the phasor is a complex

constant, but the sinusoid is a real function of time. In short, it is

wrong to write something like 

Phasors are usually shown in the polar form for convenience. But

the rectangular form is just as correct because, being a complex

number, a phasor can be expressed in any of the complex number

forms. Not all complex numbers, though, are phasors—just those

corresponding to sinusoids.

There is not complete agreement on the definition of a phasor.

Many electrical engineers use the sinusoidal peak value instead of

the effective value. Also, they use the angle from the phase-shifted

cosine wave instead of the sine wave.

One use of phasors is for summing sinusoids of the same

frequency. If each sinusoid is transformed into a phasor and the

phasors added and then reduced to a single complex number, this

number is the phasor for the sum sinusoid. As an illustration, the

single sinusoid corresponding to v = 3 sin (2t + 30°) + 2 sin (2t –

15°) V can be found by adding the corresponding phasors,



and then transforming the sum phasor to a sinusoid. The result is v =

4.64 sin (2t + 12.2°) V. This procedure works for any number of

sinusoids being added and subtracted, provided that all have the

same frequency.

Notice that using  did not contribute anything to the final result.

The  was introduced in finding the phasors, and then deleted in

transforming the sum phasor to a sinusoid. When the problem

statement is in sinusoids and the answer is to be a sinusoid, it is

easier to neglect the  and use phasors that are based on peak

values instead of rms values.

Phasors are sometimes shown on a complex plane in a diagram

called a phasor diagram. The phasors are shown as arrows directed

out from the origin with lengths corresponding to the phasor

magnitudes, and arranged at angles that are the corresponding

phasor angles. Such diagrams are convenient for showing the angular

relations among voltages and currents of the same frequency.

Sometimes they are also used for adding and subtracting, but not if

accuracy is important.

Another diagram, called a funicular diagram, is more convenient

for graphical addition and subtraction. In this type of diagram the

adding and subtracting are the same as for vectors. For adding, the

arrows of the phasors are placed end to end and the sum phasor is

found by drawing an arrow from the tail of the first arrow to the tip of

the last. If a phasor is to be subtracted, its arrow is rotated 180

(reversed) and then added.

Solved Problems

11.1 Perform the following operations:

(a) j2 + j3 – j6 – j8 (b) j2(–j3)(j4)(–j6) (c)  (d) 

(a) The rules for adding and subtracting imaginary numbers are

the same as for adding and subtracting real numbers, except

that the result is imaginary. So,



(b) The numbers can be multiplied two at a time, with the result

Alternatively, j1 can be factored from each factor and a

power of j1 found times a product of real numbers:

(c) The denominator can be made real by multiplying the

numerator and denominator by j1, and then division performed

as if the numbers were real—except that the quotient is

imaginary:

Alternatively, since 1/j1 = –j1,

(d) For convenience, the j’s can be considered to be numbers and

divided out:

11.2 Add or subtract as indicated, and express the results in

rectangular form:

(a) (6.21 + j3.24) + (4.13 – j9.47)

(b) (7.34 – j1.29) – (5.62 + j8.92)

(c) (– 24 + j12) – (– 36 – j16) – (17 – j24)

The real and imaginary parts are separately added or

subtracted:



(a) (6.21 + j3.24) + (4.13 – j9.47) = (6.21 + 4.13) + j (3.24 – 9.47)

= 10.34 – j6.23

(b) (7.34 – j1.29) – (5.62 + j8.92) = (7.34 – 5.62) – j (1.29 + 8.92)

= 1.72 – j10.21

(c) (– 24 + j12) – (– 36 – j16) – (17 – j24) = (– 24 + 36 – 17) + j (12

+ 16 + 24)= – 5 + j52

11.3 Find the following products and express them in rectangular

form:

(a) (4 + j2)(3 + j4) (b) (6 + j2)(3 – j5)(2 – j3)

In the multiplication of complex numbers in rectangular

form, the ordinary rules of algebra are used along with the rules

for imaginary numbers:

(a) (4 + j2)(3 + j4) = 4(3) + 4(j4) + j2(3) + j2(j4) = 12 + j16 + j6 –

8 = 4 + j22

(b) It is best to multiply two numbers at a time:

Multiplying three or more complex numbers in rectangular form

usually requires more work than does converting them to polar

form and multiplying.

11.4 Evaluate

The value of this second-order determinant equals the

product of the elements on the principal diagonal minus the

product of the elements on the other diagonal, the same as for

one with real elements:

11.5 Evaluate



The evaluation of a third-order determinant with complex

elements is the same as for one with real elements:

Although this procedure is straightforward, it is difficult to do

without making errors. Using a calculator is much better.

11.6 Find the following quotients in rectangular form:

(a)  (b) 

For division in the rectangular form, the numerator and

denominator should be multiplied by the conjugate of the

denominator to make the denominator real. Then the division is

straightforward. Doing this results in

(a) 

(b) 

11.7 Convert the following numbers to polar form:

(a) 6 + j9 (b) –21.4 + j33.3 (c) –0.521 – j1.42 (d) 4.23 + j4.23

If a calculator is used that does not have a rectangular-to-polar

conversion feature, then a complex number x + jy can be

converted to its equivalent  with the formulas  and

θ = tan–1 (y/x). With this approach

(a) 

(b) 

Typically, a calculator will give tan–1 (–33.3/21.4) = –57.3°, which

differs from the correct angle by 180°. For such a calculator, this



error of 180° always occurs in a rectangular-to-polar form

conversion whenever the real part of the complex number is

negative. The solution, of course, is to change the calculator

angle by either positive or negative 180°, whichever is more

convenient.

(c) 

Again, because the real part is negative, a calculator may not

give an angle of —110°, but tan–1 (1.42/0.521) = 70°, instead,

(d) 

As can be generalized from this result, when the magnitudes of

the real and imaginary parts are equal, the polar magnitude is 

times this magnitude. Also, the angle is 45° if the number is in

the first quadrant of the complex plane, 135 if it is in the second,

— 135° if it is in the third, and —45° if it is in the fourth.

11.8 Convert the following numbers to rectangular form:

(a)  (b)  (c)  (d)  (e) 

If a calculator is used that does not have a polar-to-rectangular

conversion feature, then Euler’s identity can be used:  = A cos

θ +j A sin θ. With this approach

(a) 

(b) 

(c) 

(d) 

(e) 

Parts (c) and (d) show that an angular difference of 180°

corresponds to multiplying by — 1. And parts (c) and (e) show

that an angular difference of 360° has no effect. So, in general, 

 and 

11.9 Find the following products in polar form:

(a)  (b) 

(a) When all the factors are in polar form, the magnitude of the

product is the product of the individual magnitudes along with



negative signs, if any, and the angle of the product is the sum

of the individual angles. So,

(b) The numbers in rectangular form must be converted to polar

form before being multiplied:

11.10 Find the quotients in polar form for (a)  and (b) 

(a) When the numerator and denominator are in polar form, the

magnitude of the quotient is the quotient of the magnitudes,

and the angle of the quotient is the angle of the numerator

minus the angle of the denominator. So,

(b) The denominator should be converted to polar form as a first

step:

11.11 Find the following quotient:

Since each exponent of a number indicates how many times

the number is to be multiplied by itself, the effect of an exponent

is to raise the number magnitude to this exponent and to

multiply the number angle by this exponent. Thus,

11.12 Find the corresponding phasor voltages and currents for the

following:



(a) v = (50) sin (377t – 35°) V

(b) i = (90.4) sin (754t + 48°) mA

(c) v = 83.6 cos (400t – 15°) V

(d) i = 3.46 cos (815t + 30°) A

A phasor in polar form has a magnitude that is the effective

value of the corresponding sinusoidal voltage or current, and an

angle that is the phase angle of the sinusoid if it is in phase-

shifted sine-wave form. So,

(a) 

(b) 

(c) 

(d) 

11.13 Find the voltages and currents corresponding to the

following phasor voltages and currents (each sinusoid has a

radian frequency of 377 rad/s):

(a)  (b)  (c) V = 4 – j6 V (d) I = – 3 + j1

A

If a phasor is in polar form, the corresponding voltage or

current is a phase-shifted sine wave that has a phase angle that

is the phasor angle, and a peak value that is the  times the

phasor magnitude. Thus,

(a) 

(b) 

(c) 

(d) 

11.14 Find a single sinusoid that is the equivalent of each of the

following:

(a) 6.23 sin ωt + 9.34 cos ωt

(b) 5 sin (4t – 20°) + 6 sin (4t + 45°) – 7 cos (4t – 60°) + 8 cos (4t

+ 30°)

(c) 5 sin 377t + 6 cos 754t



A phasor approach can be used since the terms are sinusoids.

The procedure is to find the phasor corresponding to each

sinusoid, add the phasors to obtain a single complex number, and

then find the sinusoid corresponding to this number. Preferably

the phasors are based on peak values because there is no

advantage in introducing a factor of  since the problems

statements are in sinusoids and the answers are to be in

sinusoids. Thus,

(a) 

(b) 

(c) The sinusoids cannot be combined because they have different

frequencies.

11.15 For the circuit shown in Fig. 11-3, find vs if v1 = 10.2 sin

(754t + 30°) V, v2 = 14.9 sin (754t – 10°) V, and v3 = cos (754t –

25°) V.

Fig. 11-3

By KVL, vs = v1 – v2 + v3 = 10.2 sin (754t + 30°) – 14.9 sin (754t

– 10°) + 16.1 cos (754t – 25°) V The sum sinusoid can be found

by using phasors:



Since the problem statement is in sinusoids and the final result is

a sinusoid, finding the solution would have been slightly easier

using phasors based on peak rather than rms values.

11.16 In the circuit shown in Fig. 11-4, voltmeters VM1 and VM2

have readings of 40 and 30 V, respectively. Find the reading of

voltmeter VM3.

Fig. 11-4

It is tempting to conclude that, by KVL, the reading of

voltmeter VM3 is the sum of the readings of voltmeters VM1 and

VM2. But this is wrong because KVL applies to phasor voltages

and not to the rms voltages of the voltmeter readings. The rms

voltages, being positive real constants, do not have the angles

that the phasor voltages have.

For the phasors required for KVL, angles must be associated

with the given rms voltages. One angle can be arbitrarily

selected because only the magnitude of the sum is desired. If 0°

is selected for the resistor voltage phasor, this phasor is 

and then that for the inductor voltage must be  The

inductor voltage phasor has a 90° greater angle because this

voltage leads the current by 90°, but the resistor voltage is in

phase with the current. By KVL, the phasor voltage for the source

is  which has an rms value of 50 V.

So, the reading of voltmeter VM3 is 50 V, and not the 30 + 40 =

70 V that might at first be supposed.

11.17 Find vs for the circuit shown in Fig. 11-5.



Fig. 11-5

The voltage vs can be determined from vS = vR + vL + vc

after these component voltages are found. By Ohm’s law,

The inductor voltage vL leads the current by 90° and has a peak

value of ωL = 3000(120 × 10–3) = 360 times the peak value of

the current:

The capacitor voltage vc lags the current by 90° and has a peak

value that is 1/ωC = 1/(3000 × 6 × 10–6) = 55.6 times the peak

value of the current:

Phasors, which are conveniently based on peak values, can be

used to find the sum sinusoid:

11.18 Find is for the circuit shown in Fig. 11-6.



Fig. 11-6

The current is can be determined from iS = iR + iL + iC after these

component currents are found. By Ohm’s law,

The inductor current iL lags the voltage by 90° and has a peak

value that is 1/ωL = 1/(2500 × 6 × 10–3) = 1/15 times the peak

value of the voltage:

The capacitor current ic leads the voltage by 90° and has a peak

value that is ωC = 2500(20 × 10–6) = 0.05 times the peak value

of the voltage:

Phasors, which are conveniently based on peak values, can be

used to find the sum sinusoid:

11.19 If two currents have phasors of  and  mA, what is

the angle and rms value of the current that is the sum of these

currents? Solve by using a funicular diagram. Check the answer

by using complex algebra.

Figure 11-7 shows the tail of the 7-mA phasor at the tip of

the 10-mA phasor, as required for vector addition. The sum



phasor, extending from the tail of the 10-mA phasor to the tip of

the 7-mA phasor, has a length corresponding to approximately

16.5 mA and an angle of approximately 13°. In comparison, the

result from complex algebra is

Fig. 11-7

which is, of course, considerably more accurate than the

graphical result.

11.20 A synchronous motor draws a 9-A current from a 240-V, 60-

Hz source. A parallel induction motor draws 8 A. If the

synchronous motor current leads the applied voltage by 20°,

and if the induction motor current lags this voltage by 30°, what

is the total current drawn from the source? Find this current

graphically and algebraically.

The choice of the reference phasor—the one arranged

horizontally at 0”—is somewhat arbitrary. The voltage phasor or

either current phasor could be used. In fact, no phasor has to be

at 0°, but it is usually convenient to have one at this angle. In

Fig. 11-8 the synchronous motor current phasor is arbitrarily

positioned horizontally, and the induction motor current phasor

at its tip is positioned at an angle of -50° with it since there is a

20° — (— 30°) = 50° phase angle difference between the two

currents. Also shown is the sum phasor, which has a measured

length corresponding to 15.4 A. In comparison, from complex

algebra,



Fig. 11-8

and

in agreement with the graphical result to three significant digits.

Usually, agreement to only two significant digits should be

expected because of the comparative lack of accuracy with the

graphical approach.

Supplementary Problems

11.21 Perform the following operations:

(a) j6 — j7 + j4 — j8 + j9 (b) (j2)2(—j3)(j7)(—j8)(j0.9) (c) (d) 

Ans. (a) j4, (b) —604.8, (c) —j20, (d) j2

11.22 Perform the following operations and express the results in

rectangular form:

(a) (4.59 + j6.28) + (5.21 — j4.63)

(b) (8.21 + j4.31) — (4.92 — j6.23) — (—5.16 + j7.21)

(c) 3 + j4 — 5 + j6 — 7 + j8 — 9 + j10 — 11

Ans. (a) 9.8 + j1.65, (b) 8.45 + j3.33, (c) —29 + j28



11.23 Find the following products and express them in rectangular

form:

(a) (6 — j7)(4 + j2)

(b) (5 + j1)(—7 — j4)(—6 + j9)

(c) (—2 + j6)(—4 — j4)(—6 + j8)(7 + j3)

Ans. (a) 38 — j16, (b) 429 — j117, (c) — 1504 + j2272

11.24 Find the following products and express them in rectangular

form:

(a) (4 + j3)2(4 – j3)2 (b) (0.6 — j0.3)2(—2 + j4)3

Ans. (a) 625, (b) 18 — j36

11.25 Evaluate 

Ans. 44 + j78

11.26 Evaluate 

Ans. 156 — j762

11.27 Evaluate 

Ans. —65 — j1400

11.28 Find the following quotients in rectangular form:

(a)  (b)  (c) 

Ans. (a) 0.588 + j2.35, (b) —0.976 — j1.22, (c) 1.07 + j0.2

11.29 Convert each of the following to polar form:

(a) 8.1 + j11

(b) 16.3 — j12.2

(c) —33.4 + j14.7

(d) —12.7 — j17.3



(e) 16.2 + j16.2

(f) —19.1 + j19.1

Ans. (a) 

(b) 

(c) 

(d) 

(e) 

(f) 

11.30 Convert each of the following to rectangular form:

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Ans. (a) 7.43 + j9.17, (b) —10.8 + j8.43, (c) —12.9 — j9.06, (d)

8.01 — j26.2, (e) —13.7 + j9.93, (f) 12.1 + j20.9

11.31 Perform the following operations and express the results in

polar form:

(a) 

(b) 

(c) 

Ans (a)  (b)  (c) 

11.32 Find the following products in polar form:

(a) 

(b) 

(c) 

Ans (a)  (b)  (c) 

11.33 Find the following quotients in polar form:



(a)  (b)  (c) 

Ans. (a)  (b)  (c) 

11.34 Find the following quotients in polar form:

(a) 

(b) 

Ans. (a)  (b) 

11.35 Find the following quotient in polar form:

Ans. 

11.36 Find the corresponding phasor voltages and currents of the

following in polar form:

(a) v = (42.1) sin (400t — 30°)V

(b)i = (36.9) sin (6000t + 72°) A

(c) v = —64.3 sin (377t — 34°) V

(d) i = —38.1 cos (754t — 72°) A

(e) v = —86.4 cos (672t + 34°) V

Ans.(a)  (b)  c)  d) 

 e) V = 

11.37 Find the voltages and currents corresponding to the

following phasor voltages and currents (each sinusoid has a

radian frequency of 754 rad/s):

(a) 

(b) 

(c) 

(d) I = 4 — j6 A



(e) V = —7 — j8 V

(f) I = —8.96 + j7.61 A

Ans. (a) v = 21.4 sin (754t + 62°) V

(b) i = 13.6 sin (754t — 31°)A

(c) v = —20.2 sin (754t — 69.7°) V

(d) i = 10.2 sin (754t — 56.3°) A

(e) v = —15 sin (754t + 48.8°) V

(f) i = —16.6 sin (754t — 40.3°) A

11.38 Find a single sinusoid that is the equivalent of each of the

following:

(a) 7.21 sin ωt + 11.2 cos ωt

(b) —8.63 sin 377t — 4.19 cos 377t

(c) 4.12 sin (64t — 10°) — 6.23 sin (64t — 35°) + 7.26 cos (6t —

35°) — 8.92 cos (64t + 17°)

Ans. (a) 13.3 sin (ωt + 57.2°), (b) —9.59 sin (377t + 25.9°), (c)

5.73 sin (64t + 2.75°)

11.39 In Fig. 11-9, find i1, if i2 = 14.6 sin (377t — 15°) mA, i3 =

21.3 sin(377t + 30°) mA, and i4 = 13.7 cos (377t + 15°) mA.

Fig. 11-9

Ans. i1 = —27.7 cos (377t + 88.3°) mA

11.40 In the circuit shown in Fig. 11-10, ammeters A1 and A2 have

readings of 4 and 3 A, respectively. What is the reading of

ammeter A3?



Fig. 11-10

Ans. 2.65 A

11.41 A current i = 0.621 sin (400t + 30°) mA flows through a 3.3-

kΩ resistor in series with a 0.5-μF capacitor. Find the voltage

across the series combination. Of course, as always, assume

associated references when, as here, there is no statement to

the contrary.

Ans. v = 3.72 sin (400t — 26.6°) V

11.42 A voltage v = 240 sin (400t + 10°) V is across a 680-Ω

resistor in parallel with a 1-H inductor. Find the current flowing

into this parallel combination.

Ans. i = 0.696 sin (400t — 49.5°) A

11.43 A current i = 0.248 cos (377t — 15°) A flows through the

series combination of a 91-Ω resistor, a 120-mH inductor, and a

20-μF capacitor. Find the voltage across the series combination.

Ans. v = 31.3 sin (377t + 31.2°) V

11.44 The voltage v = 120 sin (1000t + 20°) V is across the

parallel combination of a 10-kΩ resistor, a 100-mH inductor, and

a 10-μF capacitor. Find the total current iT flowing into the

parallel combination. Also, find the inductor current iL and

compare peak values of iL and iT.

Ans. iT = 0.012 sin (1000t + 20°) A and iL = 1.2 sin (1000t — 70°)

A. The inductor current peak is 100 times the input current peak.



Chapter 12


Basic AC Circuit Analysis,

Impedance, and Admittance

INTRODUCTION

In the analysis of an ac circuit, voltage and current phasors

are used with resistances and reactances in much the same

way that voltages and currents are used with resistances in the

analysis of a dc circuit. The original ac circuit, called a time-

domain circuit, is transformed into a phasor-domain circuit that

has phasors instead of sinusoidal voltages and currents, and

that has reactances instead of inductances and capacitances.

Resistances remain unchanged. The phasor-domain circuit is

the circuit that is actually analyzed. It has the advantage that

the resistances and reactances have the same ohm unit and so

can be combined similarly to the way that resistances can be

combined in a dc circuit analysis. Also, the analysis of the

phasor-domain circuit requires no calculus, but only complex

algebra. Finally, all the dc circuit analysis concepts for finding

voltages and currents apply to the analysis of a phasor-domain

circuit, but, of course, complex numbers are used instead of

real numbers.

PHASOR-DOMAIN CIRCUIT ELEMENTS

The transformation of a time-domain circuit into a phasor-

domain circuit requires relations between the voltage and

current phasors for resistors, inductors, and capacitors. First,

consider obtaining this relation for a resistor of R ohms. For a

current i = Im sin (ωt + θ), the resistor voltage is, of course, v =



RIm sin (ωt + θ), with associated references assumed. The

corresponding phasors are

Dividing the voltage equation by the current equation

eliminates Im, 0, and  and produces a relation between the

voltage and current phasors:

This result shows that the resistance R of a resistor relates

the resistor voltage and current phasors in the same way that

it relates the resistor voltage and current (R = v/i). Because of

this similarity, the relation V/I = R can be represented in a

phasor-domain circuit in the same way that v/i = R is

represented in the original time-domain circuit. Figure 12-1

shows this.

Fig. 12-1

Next, consider an inductor of L henries. As shown in Chap.

10, for a current i = Im sin (ωt + θ), the inductor voltage is v =

ωLIm cos (ωt + θ) = sin (ωt + θ + 90°). The corresponding

phasors are



Dividing the voltage equation by the current equation results in

a phasor relation of

This result of  in polar form jωL in rectangular form.

Since ωL is the inductive reactance XL, as defined in Chap. 10,

then

Note that jωL relates the inductor voltage and current

phasors in the same way that R relates the resistor voltage and

current phasors. Consequently, jωL has a similar current-

limiting action and the same ohm unit. In addition, because of

its j1 multiplier, it produces a phase shift of 90° 

From the resistor discussion and the similarity of V/I = R and

V/I = jωL, the time-domain circuit to phasor-domain circuit

transformation for an inductor, as shown in Fig. 12-2, should be

apparent. The usual inductor circuit symbol is used in the

phasor-domain circuit, but it is associated with jωL ohms

instead of with the L henries of the original time-domain circuit.

The inductor voltage and current are transformed, of course,

into corresponding phasors.

Fig. 12-2



The same approach can be used for a capacitor. For a

voltage v = Vm sin (ωt + θ), a capacitor of C farads has a

current of i = ωCVm sin (ωt + θ + 90°). The corresponding

phasors are

and

As defined in Chap. 10, – 1/ωC is the reactance Xc of a

capacitor. Therefore,

(Remember that many circuits books have capacitive

reactance defined as Xc = 1/ωC, in which case V/I = –jXc.) The –

j1/ωC quantity has a current-limiting action similar to that of a

resistance. In addition, the –j1 multiplier produces a –90° phase

shift.

Figure 12-3 shows the time-domain circuit to phasor-domain

circuit transformation for a capacitor. In the phasor-domain

circuit the conventional capacitor circuit symbol is used, but it

is associated with –j1/ωC ohms instead of with the C farads of

the original time-domain circuit.



Fig. 12-3

AC SERIES CIRCUIT ANALYSIS

A method for analyzing a series ac circuit can be understood

from a simple example. Suppose that the sinusoidal current i is

to be found in the series circuit shown in Fig. 12-4a, in which

the source has a radian frequency of ω = 4 rad/s. The first step

is to draw the corresponding phasor-domain circuit shown in

Fig. 12-4b, in which the current and voltages are replaced by

corresponding phasors, the inductance is replaced by

Fig. 12-4

and the capacitance is replaced by

The resistance, of course, is not changed.

The next step is to apply KVL to this phasor-domain circuit.

Although it is not obvious, KVL applies to voltage phasors as

well as to voltages because it applies to the sinusoidal

voltages, and these sinusoids can be summed using phasors.

(For similar reasons, KCL applies to the current phasors of

phasor-domain circuits.) The result of applying KVL is



The third step is to substitute for the V’s using  VR

= 6I, VL = j8I, and VC = –j4I. With these substitutions the KVL

equation becomes

from which

and

IMPEDANCE

The KVL analysis method of the last section requires much

more work than is necessary. Some of the initial steps can be

eliminated by using impedance. Impedance has the quantity

symbol Z and the unit ohm (Ω). For a two-terminal circuit with

an input voltage phasor V and an input current phasor I, as

shown in Fig. 12-5, the impedance Z of the circuit is defined as



Fig. 12-5

For this impedance to exist, the circuit cannot have any

independent sources, although it can have any number of

dependent sources. This impedance is often called the total or

equivalent impedance. It is also called the input impedance,

especially for a circuit that has dependent sources or

transformers. (Transformers will be discussed in Chap. 16.)

In general, and not just for series circuits,

in which R, the real part, is the resistance and X, the imaginary

part, is the reactance of the impedance. For the series phasor-

domain circuit shown in Fig. 12-4b, R = 6 Ω and X = 8 – 4 = 4

Ω. For this circuit, the resistance R depends only on the

resistance of the resistor, and the reactance X depends only on

the reactances of the inductor and capacitor. But for a more

complex circuit, R and X are usually both dependent on the

individual resistances and reactances.

Being a complex quantity, impedance can be expressed in

polar form. From complex algebra,

in which  is the magnitude of impedance

and tan–1 (X/R) is the angle of impedance.

As should be evident from Z = V/I, the impedance angle is

the angle by which the input voltage leads the input current,

provided that this angle is positive. If it is negative, then the

current leads the voltage. A circuit with a positive impedance

angle is sometimes called an inductive circuit because the



inductive reactances dominate the capacitive reactances to

cause the input current to lag the input voltage. Similarly, a

circuit that has a negative impedance angle is sometimes

called a capacitive circuit.

Because impedances relate to voltage and current phasors in

the same way that resistances relate to dc voltages and

currents, it follows that impedances can be combined in the

same way as resistances. Consequently, the total impedance

ZT of electrical components connected in series equals the sum

of the impedances of the individual components:

And, for two parallel components with impedances Z1, and Z2,

Often, the T subscript in ZT is omitted.

The total impedance of an ac circuit is used in the same way

as the total resistance of a dc circuit. For example, for the

circuit shown in Fig. 12-4a, the first step after drawing the

phasor-domain circuit illustrated in Fig. 12-4b is to find the

impedance of the circuit at the terminals of the source. This

being a series circuit, the total impedance is equal to the sum

of the individual impedances:

Then, this is divided into the voltage phasor of the source to

obtain the current phasor:



And, of course, the current i can be found from its phasor I, as

has been done.

An impedance diagram is an aid to understanding

impedance. This diagram is constructed on an impedance

plane which, as illustrated in Fig. 12-6, has a horizontal

resistance axis designated by R and a vertical reactance axis

designated by jX. Both axes have the same scale, Shown is a

diagram of  for an inductive circuit and 

 for a capacitive circuit. An inductive

circuit has an impedance diagram in the first quadrant and a

capacitive circuit has one in the fourth quadrant. For a diagram

to be in either the second or third quadrant, a circuit must have

a negative resistance, which may occur if a circuit contains

dependent sources.

Fig. 12-6



An impedance triangle is often a more convenient graphical

representation. The triangle contains vectors corresponding to

R, jX, and Z, with the vector for jX drawn at the end of the R

vector and the vector for Z drawn as the sum of these two

vectors, as in Fig. 12-7a. Figure 12-7b shows an impedance

triangle for  and Fig. 12-7c one for 

.

Fig. 12-7

VOLTAGE DIVISION

The voltage division or divider rule for ac circuits should be

apparent from this rule for dc circuits. Of course, voltage

phasors must be used instead of voltages and impedances

instead of resistances. So, for a series circuit energized by an

applied voltage with phasor Vs, the voltage phasor Vx across a

component with impedance Zx is

in which ZT is the sum of the impedances. A negative sign must

be included if Vx and Vs do not have opposing polarities.



AC PARALLEL CIRCUIT ANALYSIS

A method for analyzing a parallel ac circuit can be illustrated

by a simple example. Suppose that the sinusoidal voltage v is

to be found in the parallel circuit shown in Fig. 12-8a. With the

techniques presented so far, the first step in finding v is to

draw the corresponding phasor-domain circuit shown in Fig. 12-

8b, using the source frequency of 5000 rad/s. The next step is

to apply KCL to this circuit:

Fig. 12-8

The third step is to substitute for the I’s, using  IR =

V/1000, IL = V/j2500, and Ic = V/(– j1000). With these

substitutions, the equation becomes



which simplifies to

from which

The corresponding voltage is

Since this voltage lags the input current, the circuit is

capacitive. This is the result of the capacitive reactance being

smaller than the inductive reactance—directly opposite the

effect for a series circuit.

ADMITTANCE

The analysis method of the last section can be improved

upon by using admittance, which has the quantity symbol Y

and the unit Siemens (S). By definition, admittance is the

reciprocal of impedance:

From this it follows that



Also, it follows that the admittance of a resistor is Y = 1/R = G,

that of an inductor is Y = 1/jωL = –j1/ωL, and that of a

capacitor is Y = 1/(– j1/ωC) = jωC.

Being the reciprocal of impedance, the admittance of an ac

circuit corresponds to the conductance of a dc resistive circuit.

Consequently, admittances of parallel components can be

added:

In general, and not just for parallel circuits,

in which G, the real part, is the conductance and B, the

imaginary part, is the susceptance of the admittance. For the

parallel phasor-domain circuit shown in Fig. 12-8b,

from which G = 0.001 S and B = 0.0006 S. For this simple

parallel circuit, the conductance G depends only on the

conductance of the resistor, and the susceptance B depends

only on the susceptances of the inductor and capacitor. But for

a more complex circuit, both G and B usually depend on the

individual conductances and susceptances.

Being a complex quantity, admittance can be expressed in

polar form. From complex algebra,

in which  is the magnitude and tan–1(B/G) is

the angle of admittance.



Since admittance is the reciprocal of impedance, the angle of

an admittance is the negative of the angle for the

corresponding impedance. Consequently, an admittance angle

is positive for a capacitive circuit and negative for an inductive

circuit. Also, B, the susceptance, has these same signs.

The total admittance of an ac circuit is used in the same way

as the total conductance of a dc circuit. To illustrate, for the

circuit shown in Fig. 12-8a, the first step after drawing the

phasor-domain circuit illustrated in Fig. 12-8b is to find the

admittance of the circuit at the terminals of the source. As has

been found,  Then, this is

divided into the current phasor to obtain the voltage phasor:

Finally, the voltage v can be determined from its phasor V, as

has been done.

As should be expected from the discussion of an impedance

diagram, there is an admittance diagram that can be

constructed on an admittance plane that has a horizontal

conductance axis G and a vertical susceptance axis jB. There is

also an admittance triangle that is used similarly to the

impedance triangle.

CURRENT DIVISION

Current division applies to ac phasor-domain circuits in the

same way as to dc resistive circuits. So, if a parallel phasor-

domain circuit has a current phasor Is directed into it, the

current phasor Ix for a branch that has an admittance Yx is



in which YT is the sum of the admittances. A negative sign

must be included if Ix and Is do not have opposite reference

directions into one of the nodes. For the special case of two

parallel branches with impedances Z1 and Z2, this formula

reduces to

in which I1 is the current phasor for the Z1 branch.

For convenience, from this point on the word “phasor” in

voltage phasor and current phasor will often be omitted. That

is, the V’s and I’s will often be referred to as voltages and

currents, respectively, as is common practice.

Solved Problems

12.1 Find the total impedance in polar form of a 0.5-H inductor

and a series 20-Ω resistor at (a) 0 Hz, (b) 10 Hz, and (c) 10

kHz.

The total impedance is Z = R + jωL = R + j2πfL.

(a) For f = 0 Hz,

The impedance is purely resistive because 0 Hz

corresponds to dc, and an inductor is a short circuit to dc.

(b) For f = 10 Hz,

(c) For f = 10 kHz,



At 10 kHz the reactance is so much larger than the

resistance that the resistance is negligible for most

purposes.

12.2 A 200-Ω resistor, a 150-mH inductor, and a 2-μF capacitor

are in series. Find the total impedance in polar form at 400

Hz. Also, draw the impedance diagram and the impedance

triangle.

The total impedance is

The impedance diagram is shown in Fig. 12-9a and the

impedance triangle is shown in Fig. 12-9b In the

impedance diagram, the end point for the Z arrow is found

by starting at the origin and moving up the vertical axis to

j377 Ω (jXL), then moving horizontally right to over 200 Ω

(R), and finally moving vertically down by 199 Ω, the

magnitude of the capacitive reactance (|Xc|). The

impedance triangle construction is obvious from the

calculated R = 200 Ω and X = 178 Ω.



Fig. 12-9

12.3 A 2000-Ω resistor, a 1-H inductor, and a 0.01-μF capacitor

are in series. Find the total impedance in polar form at (a) 5

krad/s, (b) 10 krad/s, and (c) 20 krad/s.

The formula for the total impedance is Z = R + jωL –

j1/ωC. So

(a) 

(b) 

(c) 

Notice that for ω = 10 krad/s in part (b), the

impedance is purely resistive because the inductive and

capacitive terms cancel. This is the resonant radian

frequency of the circuit. For lower frequencies, the circuit

is capacitive, as is verified in part (a). For higher

frequencies, the circuit is inductive, as is verified in part

(c).

12.4 A coil energized by 120 V at 60 Hz draws a 2-A current

that lags the applied voltage by 40° What are the coil



resistance and inductance?

The magnitude of the impedance can be found by

dividing the rms voltage by the rms current: Z = 120/2 =

60 Ω. The angle of the impedance is the 40° angle by

which the voltage leads the current. Consequently, Z =

60∠40° = 46 + j38.6 Ω From the real part, the resistance

of the coil is 46 Ω, and from the imaginary part, the

reactance is 38.6 Ω. Since ωL is the reactance, and ω = 2π

(60) = 377 rad/s, the inductance is L = 38.6/377 = 0.102

H.

12.5 A load has a voltage of  and a current of 

 at a frequency of 400 Hz. Find the two-element

series circuit that the load could be. Assume associated

references, of course.

The impedance is

Because the imaginary part is negative, the circuit is

capacitive, which means that the two series elements are a

resistor and a capacitor. The real part is the resistance of

the resistor: R = 3.76 Ω The imaginary part is the reactance

of the capacitor, – 1/ωC = – 1.37, from which

12.6 A 20-Ω resistor is in series with a 0.1-μF capacitor. At what

radian frequency are the circuit voltage and current out of

phase by 40°?

A good approach is to find the reactance from the

impedance angle and the resistance, and then find the

radian frequency from the reactance and the capacitance.



The impedance angle has a magnitude of 40° because this

is the phase angle difference between the voltage and the

current. Also, the angle is negative because this is a

capacitive circuit. So, θ = –40°. As should be apparent

from the impedance triangle shown in Fig. 12-7a, and also

from the complex algebra presentation, reactance and

resistance are related by the tangent of the impedance

angle: X = R tan θ. Here, Xc = 20 tan (–40°) = –16.8 Ω.

Finally, from Xc = – 1/ωC,

12.7 A 200-mH inductor and a resistor in series draw 0.6 A

when 120 V at 100 Hz is applied. Find the impedance in

polar form.

The magnitude of the impedance can be found by

dividing the voltage by the current: Z = 120/0.6 = 200 Ω.

The angle of the impedance is θ = sin–1 (XL/Z), as is

evident from the impedance triangle shown in Fig. 12-7a.

Here,

The impedance is .

12.8 What capacitor in series with a 750-Ω resistor limits the

current to 0.2 A when 240 V at 400 Hz is applied?

When the capacitor is in the circuit, the impedance has

a magnitude of Z = V/I = 240/0.2 = 1200 Ω. This is related

to the resistance and reactance by  If both

sides are squared and X solved for, the result is



The negative sign must be selected because the circuit is

capacitive and therefore has a negative reactance.

Substituting for Z and R gives

Finally, since X = – 1/ωC,

Incidentally, another way of finding X is from the

impedance magnitude times the sine of the impedance

angle:

12.9 A capacitor is in series with a coil that has 1.5 H of

inductance and 5 Ω of resistance. Find the capacitance that

makes the combination purely resistive at 60 Hz.

For the circuit to be purely resistive, the reactances

must add to zero. And since the reactance of the inductor

is 2π (60)(1.5) = 565 Ω, the reactance of the capacitor

must be – 565 Ω. From Xc = –1/ωC,

12.10 Three circuit elements in series draw a current of 10 sin

(400t + 70°) A in response to an applied voltage of 50 sin



(400t + 15°) V. If one element is a 16-mH inductor, what

are the two other elements?

The unknown elements can be found from the

impedance. It has a magnitude that is equal to the voltage

peak divided by the current peak: Z = 50/10 = 5 Ω, and an

angle that is the voltage phase angle minus the current

phase angle: θ = 15° – 70° = –55°. Therefore, the

impedance is  – j4.1 Ω. The real part must

be produced by a 2.87-Ω resistor. The third element must

be a capacitor because the imaginary part, the reactance,

is negative. Of course, the capacitive reactance plus the

inductive reactance equals the impedance reactance:

12.11 Find the input impedance at 5 krad/s of the circuit shown

in Fig. 12-10a.

Fig. 12-10

The first step is to use jωL, –j1/ωC, and phasors to

construct the corresponding phasor-domain circuit that is

shown in Fig. 12-10b along with a source of . The

presence of the dependent source makes it necessary to

apply a source to find Zin, and the best source is a current

source of  because with it,  Note that



the controlling voltage for the dependent source is the

voltage drop across the resistor and capacitor:

The initial negative sign is required because the voltage

and current references are not associated. By KVL,

Finally, 

12.12 A 240-V source is connected in series with two

components, one of which has an impedance of  Ω.

What is the impedance of the other component if the

current that flows is 2 A and if it leads the source voltage

by 40°?

Since the total impedance is the sum of the known and

unknown impedances, the unknown impedance is the total

impedance minus the known impedance. The total

impedance has a magnitude of

and an angle of –40°, the angle by which the voltage leads

the current. (This angle is negative because the voltage

lags, instead of leads, the current.) Therefore, the total

impedance is  Subtracting the known

impedance of 80∠60° ≒ results in the desired impedance:



12.13 Find the total impedance of two parallel components that

have impedances of Z1 =  and Z2 = 

The total impedance is the product of the individual

impedances divided by the sum:

12.14 Find the total impedances at 1 krad/s of a 1-H inductor

and a 1-μF capacitor connected in series and also in

parallel.

The inductor and capacitor impedances are

The total impedance of the elements in series is the sum of

the individual impedances: Z = j1000 – j1000 = 0 Ω, which

is a short circuit. For the two in parallel, the total

impedance is

which is an open circuit.

12.15 What capacitor and resistor connected in series have the

same total impedance at 400 rad/s as a 10-μF capacitor

and a 500-≒ resistor connected in parallel?

At 400 rad/s, the impedance of the 10-μF capacitor is



The total impedance of the parallel combination is, of

course, the product of the individual impedances divided

by the sum:

For the series resistor and capacitor to have this

impedance, the resistor resistance must be 100 Ω, the real

part, and the capacitor reactance must be – 200 Ω, the

imaginary part. So, R = 100Ω, and by the capacitor

reactance formula,

12.16 What two circuit elements connected in series have the

same total impedance at 4 krad/s as the parallel

combination of a 50-μF capacitor and a 2-mH coil with a

10-Ω winding resistance?

The impedance of the coil is

and that of the capacitor is

The impedance of the parallel combination is the product of

these impedances divided by the sum:



To produce an impedance of 2.29 – j5.69 Ω, the two series

components must be a resistor that has a resistance of

2.29 Ω and a capacitor that has a reactance of – 5.69 Ω.

Since Xc = – 1/ωC,

12.17 For the circuit shown in Fig. 12-11, find the indicated

unknown phasors and the corresponding sinusoids. The

frequency is 60 Hz. Also, find the average power delivered

by the source.

Fig. 12-11

Since this is a series circuit, the current can be found

first and then used to find the voltages:

The resistor and inductor voltage drops are the products of

this current and the individual impedances:



The radian frequency needed for the corresponding

sinusoids is ω = 2π (60) = 377 rad/s. The peak values of

the sinusoids are, of course, the magnitudes of the

corresponding phasors times . Thus,

Since the average power absorbed by the inductor is

zero, the average power delivered by the source is the

same as that absorbed by the resistor, which is I2R = 62 ×

12 = 432 W.

12.18 Find the current and unknown voltages in the circuit

shown in Fig. 12-12a.

The first step is to draw the corresponding phasor-

domain circuit shown in Fig. 12-12b using the ω = 4000

rad/s of the source. Since sinusoidal results are desired, it

is best to use phasors based, on peak rather than on rms

values. That is why the source in Fig. 12-12b has a voltage

of  instead of   The current is

Fig. 12-12



This current can be used to obtain the voltage phasors:

The corresponding sinusoidal quantities are

12.19 A voltage  is applied across a resistor and

inductor that are in series. If the resistor rms voltage drop

is 40 V, what is the inductor voltage phasor?

A funicular diagram is useful here. Since the resistor

voltage is in phase with the current, and the inductor

voltage leads the current by 90°, the phasor funicular

diagram is a right triangle, as shown in Fig. 12-13. This

particular diagram is useful only for finding the phasor

magnitude and the relative phasor angular relations, the

latter because the phasors are not at the correct angles. By

Pythagoras' theorem, VL =  The shown

angle θ is  The angle of the resistor voltage

is less than the source voltage angle by this 66.4°: φ = 30°

–66.4° = –36.4°. The angle of the inductor voltage is, of

course, 90° greater than the resistor voltage angle: 90° +

(– 36.4°) = 53.6°. So, the inductor voltage phasor is 



Fig. 12-13

12.20 In a phasor-domain circuit,  V is applied across

two series components, one of which is a 20-Ω resistor and

the other of which is a coil with an impedance of 

Use current to find the individual component voltage drops.

The current is

Each component voltage drop is the product of the current

and the component impedance:

12.21 Repeat Prob. 12.20 using voltage division.

Voltage division eliminates the step of finding the

current. Instead, the voltages are found directly from the



applied voltage and the impedances:

12.22 A phasor-domain circuit has  applied across three

series-connected components having impedances of 

 and  Use voltage division to find

the voltage drop V across the component with the

impedance of 

12.23 Use voltage division to find VR, VL, and Vc in the circuit

shown in Fig. 12-14.

Fig. 12-14

For voltage division, the total impedance Z is needed: Z

= 20 +j1000 –jl000 = 20 Ω Incidentally, since this

impedance is purely resistive, the circuit is in resonance.

By the voltage division formula,



Notice that the rms inductor and capacitor voltages are 50

times greater than the rms source voltage. This voltage

rise, although impossible in a dc resistive circuit, is

common in a series resonant ac circuit.

12.24 Use voltage division to find the voltage V in the circuit

shown in Fig. 12-15.

Fig. 12-15

Because the two voltage sources are in series, they

produce a net applied voltage that is the sum of the

individual source voltages: 

which is the voltage needed for the voltage division

formula. The series components that V is across have a

combined impedance of Z = 50 –j60 + j70 = 50 + j10 = 

 The total circuit impedance is



Now, all the quantities have been calculated that are

needed for the voltage division formula, which is

The negative sign is required in the formula because the

reference polarity of V does not oppose the polarities of the

sources.

12.25 Find the current I in the circuit shown in Fig. 12-16.

Fig. 12-16

The current can be found by dividing the voltage by the

total impedance, and this impedance can be found by

combining impedances starting at the end of the circuit

opposite the source. There, the series resistor and

capacitor have a combined impedance of 

 This can be combined in parallel

fashion with the j20Ω of the parallel inductor:

This plus the 10 Ω of the series resistor is the total

impedance:



Finally, the current I is

12.26 Use voltage division twice to find V1 in the circuit shown

in Fig. 12-16.

Voltage division can be used to find V2 from the source

voltage, and used again to find V1 from V2. For the

calculation of V2, the equivalent impedance to the right of

the 10-Ω resistor is needed. It is  as

was found in the solution to Prob. 12-25. By voltage

division,

And, by voltage division again,

12.27 Derive expressions for the conductance and the

susceptance of an admittance in terms of the resistance

and reactance of the corresponding impedance.

In general,

Rationalizing,



Since Y = G + jB,

Notice from G = R/(R2 + X2) and B = –X/(R2 + X2) that the

conductance and the susceptance are both functions of the

resistance and reactance. Also, G ≠ 1/R except if X = 0.

And, B ≠ 1/X However, B= –1/X if R = 0.

12.28 The impedance of a circuit has 2 Ω of resistance and 4 Ω

of reactance. What are the conductance and susceptance

of the admittance?

The expressions developed in the solution to Prob. 12.27

can be used:

But, in general, it is easier to use the inverse of impedance:

The real part is the conductance: G = 0.1 S; the imaginary

part is the susceptance: B = –0.2 S.

12.29 Find the total admittances in polar form of a 0.2-μF

capacitor and a parallel 5.1-Ω resistor at frequencies of (a)

0 Hz, (b) 100 kHz, and (c) 40 MHz.

The total admittance is Y = G + jωC = 1/R + j2πfC..

(a) For f = 0 Hz,



(b) For f = 100 kHz,

(c) For f = 40 MHz,

At 40 MHz, the susceptance is so much larger than the

conductance that the conductance is negligible for most

purposes.

12.30 A 200-Ω resistor, a l-μF capacitor, and a 75-mH inductor

are in parallel. Find the total admittance in polar form at

400 Hz. Also, draw the admittance diagram and the

admittance triangle.

The total admittance is

The admittance diagram is shown in Fig. 12-17a and the

admittance triangle in Fig. 12-17b). In the admittance

diagram, the end point for the Y arrow is found by starting

at the origin and moving down the vertical axis to –j5.31

mS (jBL), and then by moving horizontally to the right to

over 5 mS (G) and vertically up by 2.51 mS (Bc).



Fig. 12-17

12.31 A 100-Ω resistor, a 1-mH inductor, and a 0.1-μF capacitor

are in parallel. Find the total admittances in polar form at

radian frequencies of (a) 50 krad/s, (b) 100 krad/s, and (c)

200 krad/s.

The expression for the total admittance is Y = 1/R + jωC

–j1/ωL.

(a) 

(b) 

(c) 

Notice for ω = 100 krad/s in part (b) that the admittance

is real because the inductive and capacitive susceptance

terms cancel. Consequently, this is the resonant radian



frequency of the circuit. For lower frequencies, the circuit is

inductive, as is verified in part (a). And for greater

frequencies, the circuit is capacitive, as is verified in part

(c). This response is opposite that for a series RLC circuit.

12.32 Three components in parallel have a total admittance of 

 If the admittances of two of the component are

 and  what is the admittance Y3 of

the third component?

Since YY = Y1 + Y2 + Y3,

12.33 What is the total impedance of three parallel components

that have impedances of  Z2 =  and Z3 = 

Perhaps the best approach is to invert each impedance

to find the corresponding admittance, add the individual

admittances to obtain the total admittance, and then invert

the total admittance to find the total impedance.

Inverting,

Adding, 

Inverting, 

12.34 Find the simplest parallel circuit that has the same

impedance at 400 Hz as the series combination of a 300-Ω

resistor, a 0.25-H inductor, and a l-μF capacitor.

The parallel circuit can be determined from the

admittance, which can be found by inverting the



impedance:

The simplest parallel circuit that has this admittance is a

parallel resistor and inductor. From the real part of the

admittance, this resistor must have a conductance of 2.096

mS and so a resistance of 1/(2.096 × 10-3) = 477 Ω. And

from the imaginary part, the inductor must have a

susceptance of – 1.61 mS. The corresponding inductance

is, from B, = – 1/ωL,

12.35 A load has a voltage of  and a current of 

 both at 2 kHz. Find the two-element parallel

circuit that the load can be. As always, assume associated

references because there is no statement to the contrary.

Because the two elements are in parallel, the load

admittance should be used to find them:

The real part 0.3064 is, of course, the conductance of a

resistor. The corresponding resistance is R = 1/0.3064 =

3.26 Ω. The imaginary part 0.2571, being positive, is the

susceptance of a capacitor. From Bc = ωC,



12.36 A 0.5-Ω resistor is in parallel with a 10-mH inductor. At

what radian frequency do the circuit voltage and current

have a phase angle difference of 40°?

A good approach is to find the susceptance from the

admittance angle and the conductance, and then find the

radian frequency from the susceptance and the

inductance. The admittance angle has a magnitude of 40°

because this is the phase angle difference between the

voltage and current, and it is negative because this is an

inductive circuit. So, θ –40°. Then from θ = tan-1 (BL/G),

And, from the formula for inductive susceptance, 

12.37 A resistor and a parallel 1-μF capacitor draw 0.48 A when

120 V at 400 Hz is applied. Find the admittance in polar

form.

The magnitude of the admittance is Y = I/V = 0.48/120

S = 4 mS. From admittance triangle considerations, the

angle of the admittance is θ = sin-1 (B/Y). Since B = ωC,

and θ = sin-1 0.2π = 38.9°. Therefore, the admittance is 

12.38 Capacitors are sometimes connected in parallel with

inductive industrial loads to decrease the current drawn

from the source without affecting the load current. To verify



this concept, consider connecting a capacitor across a coil

that has 10 mH of inductance and 2 Ω of resistance and

that is energized by a 60-Hz, 120-V source. What is the

capacitance required to make the source current a

minimum, and what is the decrease in this current?

Since I = YV, the current magnitude will be a minimum

when the admittance magnitude y is a minimum. The total

admittance Y is the sum of the admittances of the coil and

capacitor:

Because the capacitance can affect only the susceptance,

the admittance magnitude is a minimum for zero

susceptance. For this,

With zero susceptance, Y = 0.110S and |I| = |Y||V| =

0.110(120) = 13.2 A. In comparison, before the capacitor

was added, the magnitude of the current was equal to the

product of the magnitudes of the coil admittance and

voltage: |0.110 –j0.207|(120) = 0.234(120) = 28.1 A. So,

the parallel capacitor causes a decrease in source current

of 28.1 – 13.2 = 14.9 A even though the coil current

remains the same 28.1 A. What happens is that some of

the coil current flows through the capacitor instead of

through the source. Incidentally, since the susceptance is

zero, the circuit is in resonance.

12.39 Find the total impedance ZT of the circuit shown in Fig.

12-18.



Fig. 12-18

This is, of course, a ladder circuit. Although for such a circuit

it is possible to find ZT by using only impedance (or

admittance), it is usually best to alternate admittance and

impedance, using admittance for parallel branches and

impedance for series branches/This will be done starting at the

end opposite the input.

There, the 3- and 7j6-Ω elements have a combined

admittance of

which corresponds to an impedance of

This adds to the – j4 Ω of the series capacitor for an

impedance of

The inverse of this added to the conductance of the parallel

6-Ω resistor is



The corresponding impedance adds to the j2 Ω of the series

inductor:

The corresponding admittance plus the conductance of the

4-Ω resistor is YT

Finally,

12.40 Find the input admittance at 50 krad/s of the circuit

shown in Fig. 12-19a.

Fig. 12-19

The first step is to use –j1/ωL, G, jωC, and phasors to

construct the corresponding phasor-domain circuit shown

in Fig. 12-19b along with a source of  With this source,



the circuit has an input admittance of  Note

that the controlling current I is the sum of the currents in

the two right-hand branches:

And so the dependent-source current flowing down is –2I =

–2(2 + j1). This can be used in a KCL equation at the top

node to obtain Iin:

Finally,

12.41 Find Iin and IL for the circuit shown in Fig. 12-20.

Fig. 12-20

The current Iin can be found from the source voltage

divided by the input impedance Zin, which equals the 2 Ω

of the series resistor plus the total impedance of the three

branches to the right of this resistor. Since these branches

extend between the same two nodes, they are in parallel

and have a total admittance Y that is the sum of the

individual admittances:



Adding the 2 Ω to the inverse of this admittance results in

from which

The current IL can be found from the load voltage and

impedance. The load voltage VL is equal to the current Iin

divided by the total admittance of the three parallel

branches:

and

Alternatively, IL can be found directly from IL by current

division. I, is equal to the product of Iin and the admittance

of the load divided by the total admittance of the three

parallel branches:



12.42 A current of  A flows into four parallel branches that

have admittances of  and  S. Use

current division to find the current I in the  branch.

Of course, since there is no statement to the contrary,

assume that the current references are such that the

current division formula does not have a negative sign.

The current I in the branch with the admittance of 

 is equal to this admittance divided by the sum of

the admittances, all times the input current:

12.43 Use current division to find IL for the circuit shown in Fig.

12-21.

Fig. 12-21

Since there are just two branches and the branch

impedances are specified, the impedance form of the



current division formula is preferable: The current in one

branch is equal to the impedance of the other branch

divided by the sum of the impedances, all times the input

current. For this circuit, though, a negative sign is required

because the input current and IL have reference directions

into the same node—the bottom node:

12.44 Use current division to find iL for the circuit shown in Fig.

12-22.

Fig. 12-22

The individual admittances are

These substituted into the current division formula give

from which



12.45 Use current division twice to find the current IL for the

circuit shown in Fig. 12-23.

Fig. 12-23

The approach is to find I from the source current by

current division, and then find IL from I by current division.

For the I current division formula, the impedance to the

right of the 2-Ω resistor is needed. It is

By current division,

By current division again,

12.46 Determine V0 and I0 in the circuit of Fig. 12-24.



Fig. 12-24

Because this circuit has the same configuration as the

inverter op-amp circuit of Fig. 6-4, the same formula

applies, with the R’s replaced by Z's. The feedback

impedance is Zf = 6 –j8 kΩ and the input impedance is Zi =

3 +j4 kΩ Therefore, with the impedances expressed in

kilohms,

12.47 Find v0 and i0 in the circuit of Fig. 6-2a.

Fig. 12-25



The first step is to draw the corresponding phasor-

domain circuit of Fig. 12-25b using the Ω = 10 000 rad/s of

the source. The shown peak value of 4 V for the source

voltage phasor magnitude is preferable to the rms value

because sinusoidal answers are desired.

Because the circuit of Fig. 12-25b has the same

configuration as the noninverting amplifier of Fig. 6-6, the

same voltage gain formula is valid, with the R’s replaced by

Z’s. Here, Zf = 3 –j2 kΩ and

Za = 2 +j1 kΩ With the impedances expressed in kilohms,

and

The corresponding sinusoids are

12.48 Calculate V0 in the circuit of Fig. 12-26.



Fig. 12-26

Since the op-amp circuit of Fig. 12-26 has the same

configuration as the summer of Fig. 6-5, the same formula

applies, with the R's replaced by Z's. So, with the

impedances expressed in kilohms,

12.49 Find I0 in the circuit of Fig. 12-27.

Fig. 12-27



The circuit of Fig. 12-27 consists of two cascaded op-

amp circuits that have configurations of, respectively, a

noninverting voltage amplifier and an inverting voltage

amplifier. Consequently, the noninverting and inverting

formulas apply, with the R's replaced by Z's. Therefore,

and

12.50 Determine V0 in the circuit of Fig. 12-28.

Fig. 12-28

The first op-amp circuit can be considered to be similar

to a summer with one input of  and the other of V0.



Then the output V0 is

Va is the input to the second op-amp circuit, which has a

configuration similar to that of a noninverting amplifier.

Consequently,

Finally,

Supplementary Problems

12.51 A 0.5-μF capacitor and a 2-kΩ resistor are in series. Find

the total impedance in polar form at (a) 0 Hz, (b) 60 Hz,

and (c) 10 kHz.

Ans (a)  (b)  (c) 

12.52 A 300-Ω resistor, a 1-H inductor, and a 1-μF capacitor are

in series. Find the total impedance in polar form and

whether the circuit is inductive or capacitive at (a) 833

rad/s, (b) 1000 rad/s, and (c) 1200 rad/s.

Ans. (a)  capacitive; (b)  neither

capacitive nor inductive; (c)  inductive

12.53 A capacitor and resistor in series have an impedance of 

 at 400 Hz. Find the capacitance and resistance.



Ans. 0.42 μF, 948 Ω

12.54 A load has a voltage of  and a current of  A

at a frequency of 60 Hz. Find the two-element series circuit

that the load can be.

Ans. An 11.6-Ω resistor and an 8.24-mH inductor

12.55 Two circuit elements in series draw a current of 16 sin

(200t + 35°) A in response to an applied voltage of 80 cos

200r V. Find the two elements.

Ans. A 2.87-Ω resistor and a 20.5-mH inductor

12.56 A 100-Ω resistor is in series with a 120-mH inductor. At

what frequency do the circuit voltage and current have a

phase angle difference at 35°?

Ans. 92.9 Hz

12.57 A 750-Ω resistor is in series with a 0.1-μF capacitor. At

what frequency does the total impedance have a

magnitude of 1000 Ω?

Ans. 2.41 kHz

12.58 Find the total impedance in polar form of three series-

connected components that have impedances of 

 and 

Ans. 25.9/-6.77° Ω

12.59 What resistor in series with a 2-H inductor limits the

current to 120 mA when 120 V at 60 Hz is applied?

Ans. 657 Ω

12.60 Two circuit elements in series draw a current of 24 sin

(5000t – 10°) mA in response to an applied voltage of 120

 sin (5000t + 30°) V. Find the two elements.

Ans. A 5.42-kΩ resistor and a 0.909-H inductor

12.61 Find the input impedance at 20 krad/s for the circuit

shown in Fig. 12-29.



Fig. 12-29

Ans. 

12.62 A 300-V source is connected in series with three

components, two of which have impedances of  and 

Ω Find the impedance of the third component if the

current that flows is 5 A and if it lags the source voltage by

20°

Ans. 

12.63 Find the total impedance of two parallel components that

have identical impedances of 

Ans. 

12.64 What is the total impedance of two parallel components

that have impedances of  and 

Ans. 

12.65 A 120-mH coil with a 30-Ω winding resistance is in

parallel with a 20-Ω resistor. What series resistor and

inductor produce the same impedance at 60 Hz as this

parallel combination?

Ans. 15.6 Ω, 10.6 mH

12.66 A 2-mH coil with a 10-Ω winding resistance is in parallel

with a 10-μF capacitor. What two series circuit elements

have the same impedance at 8 krad/s?

Ans. A 13.9-Ω resistor and a 7.2μF capacitor



12.67 For the circuit shown in Fig. 12-30, find I, VR, and Vc, and

the corresponding sinusoidal quantities if the frequency is

50 Hz. Also, find the average power delivered by the

source.

Ans.

Average power delivered =1.12 kW

Fig. 12-30

12.68 A voltage source of 340 sin (l000t +25°) V, a 2-Ω resistor,

a 1-H inductor, and a 1-μF capacitor are in series. Find the

current out of the positive terminal of the source. Also, find

the resistor, inductor, and capacitor voltage drops.

Ans.

12.69 A voltage that has a phasor of  is applied across

a resistor and capacitor that are in series. If the capacitor

rms voltage is 120 V, what is the resistor voltage phasor?

Ans. 



12.70 A phasor-domain circuit has  applied across two

components, a 30-Ω resistor and a coil that has an

impedance of  Find the voltage drops across the

resistor and the coil.

Ans. Resistor voltage  coil voltage 

12.71 A voltage source of 170 sin (377t – 30°) V, a 200-Ω

resistor, and a 10-μF capacitor are in series. Find the

resistor and capacitor voltage drops.

Ans. vR = 102 sin (377t + 23°) V, vc = 136 sin (377t – 67°)

V

12.72 Repeat Prob. 12.71 with an added series 1-H inductor.

Also, find the inductor voltage.

Ans. vR = 148 sin(377t – 59°) V, vc = 197 sin (377t – 149°)

V, vL = 280 sin (377t + 31°) V

12.73 A phasor-domain circuit has  applied across three

series-connected components that have impedances of 

 and  Find the component voltage

drops.

Ans 

12.74 What is the current I for the circuit shown in Fig. 12-31?

Fig. 12-31

Ans. 



12.75 Use voltage division twice to find V in the circuit shown in

Fig. 12-31.

Ans. 

12.76 Derive expressions for the resistance and reactance of an

impedance in terms of the conductance and susceptance

of the corresponding admittance.

Ans R = G/(G2 + B2), X = –B/(G2 + B2)

12.77 Find the total admittance in polar form of a 1-μF capacitor

and a parallel 3.6-Ω resistor at (a) 5 Hz, (b) 44.2 Hz, and (c)

450 Hz.

Ans. (a)  (b)  (c) 

12.78 A 1-kΩ resistor, a 1-H inductor, and a 1-μF capacitor are

in parallel. Find the total admittance in polar form at (a)

500 rad/s, (b) 1000 rad/s, and (c) 5000 rad/s.

Ans. (a)  (b)  (c) 

12.79 An inductor and a parallel resistor have an admittance of 

 at 400 Hz. What are the inductance and

resistance?

Ans. 7.96 mH, 11.5 Ω

12.80 Find the simplest series circuit that has the same total

impedance at 400 Hz as the parallel arrangement of a 620-

Ω resistor, a 0.5-H inductor, and a 0.5-μF capacitor.

Ans. A 573-Ω resistor and a 2.43-μF capacitor

12.81 A load has a voltage of  and a current of 

. What two-element parallel circuit can this load

be at 400 Hz?

Ans. A 2.61-kμ resistor and a 1.24-H inductor

12.82 A resistor and a parallel 0.5-μF capacitor draw 50 mA

when 120 V at 60 Hz is applied. What is the total

admittance in polar form and what is the resistance of the

resistor?



Ans. 

12.83 What two circuit elements in parallel have an admittance

of  at 60 Hz?

Ans. A 3.89-Ω resistor and an 8.66-mH inductor

12.84 What two circuit elements in parallel have an admittance

of  at 400 Hz?

Ans. A 462-Ω resistor and a 0.497-μF capacitor

12.85 Three circuit elements in parallel have an admittance of 

 at a frequency of 2 kHz. If one is a 60-mH

inductor, what are the two other elements?

Ans. A 207-Ω resistor and a 29.2-mH inductor

12.86 A 2-kΩ resistor is in parallel with a 0.1-μF capacitor. At

what frequency does the total admittance have an angle of

40?

Ans. 668 Hz

12.87 A resistor and a parallel 120-mH inductor draw 3 A when

100 V at 60 Hz is applied. What is the total admittance?

Ans. 

12.88 A certain industrial load has an impedance of  at a

frequency of 60 Hz. What capacitor connected in parallel

with this load causes the angle of the total impedance to

decrease to 15°? Also, if the load voltage is 120 V, what is

the decrease in line current produced by adding the

capacitor?

Ans1.18mF, 20.7 A

12.89 Find the admittance Y of the circuit shown in Fig. 12-32.



Fig. 12-32

Ans. 

12.90 Find the input admittance at 1 krad/s of the circuit shown

in Fig. 12-33.

Fig. 12-33

Ans. 4 S

12.91 Repeat Prob. 12.90 for a radian frequency of 1 Mrad/s.

Ans. 

12.92 A current of  flows into three parallel branches that

have impedances of 200, j10, and –j10 Ω. Find the current

in the j10-Ω branch.

Ans. 

12.93 A current of 20 sin (200t – 30°) A flows into the parallel

combination of a 100-Ω resistor and a 25-μF capacitor. Find

the capacitor current.

Ans. 8.94 sin (200t + 33.4°) A



12.94 A current of  flows into three parallel branches that

have impedances of  and  What is

the current in the  branch?

Ans. 

12.95 Use current division twice to find I for the circuit shown in

Fig. 12-34.

Fig. 12-34

Ans. 

12.96 Calculate I0 in the circuit of Fig. 12-35.

Fig. 12-35

Ans. 



12.97 Find i0 in the circuit of Fig. 12-36.

Fig. 12-36

Ans. 0.441 cos(104t –69.9°)mA

12.98 Obtain V0 and I0 in the circuit of Fig. 12-37.

Fig. 12-37

Ans. 

12.99 Calculate V0 in the circuit of Fig. 12-38.



Fig. 12-38

Ans. 

12.100 Determine V0 and I0 in the circuit of Fig. 12-39.

Fig. 12-39

Ans. 

12.101 Obtain v0 in the circuit of Fig. 12-40.



Fig. 12-40

Ans. 7.40 sin (8000t + 86.5°) V



Chapter 13


Mesh, Loop, Nodal, and

PSpice Analyses of AC

Circuits

INTRODUCTION

The material in this chapter is similar to that in Chap. 4.

Here, however, the analysis techniques apply to ac phasor-

domain circuits instead of to dc resistive circuits and so to

voltage and current phasors instead of to voltages and

currents and to impedances and admittances instead of just

to resistances and conductances. Also, an analysis is often

considered completed after the unknown voltage or current

phasors are determined. The final step of finding the actual

time-function voltages and currents is often not done

because they are not usually important. Besides, it is a

simple matter to obtain them from the phasors.

One other introductory note: From this point on, the term

“impedance” and “admittances” will often be used to mean

components with impedances and components with

admittances, as is common practice.

SOURCE TRANSFORMATIONS

As has been explained, mesh and loop analyses are

usually easier to do with all current sources transformed to

voltage sources and nodal analysis is usually easier to do

with all voltage sources transformed to current sources.



Figure 13-1a shows the rather obvious transformation from a

voltage source to a current source, and Fig. 13-1b shows the

transformation from a current source to a voltage source. In

each circuit the rectangle next to Z indicates components

that have a total impedance of Z. These components can be

in any configuration and can, of course, include dependent

sources—but not independent sources.

Fig. 13-1

MESH AND LOOP ANALYSES

Mesh analysis for phasor-domain circuits should be

apparent from the presentation of mesh analysis for dc

circuits in Chap. 4. Preferably all current sources are

transformed to voltage sources, then clockwise-referenced

mesh currents are assigned, and finally KVL is applied to

each mesh.

As an illustration, consider the phasor-domain circuit

shown in Fig. 13-2. The KVL equation for mesh 1 is



Fig. 13-2

where I1 Z1, (I1 — I3)Z2, and (I1 — I2)Z3 are the voltage drops

across the impedances Z1(Z2, and Z3. Of course, V1 + V2 —

V3 is the sum of the voltage rises from voltage sources in

mesh 1. As a memory aid, a source voltage is added if it

“aids” current flow—that is, if the principal current has a

direction out of the positive terminal of the source.

Otherwise, the source voltage is subtracted.

This equation simplifies to

The Z1 + Z2 + Z3 coefficient of I1 is the self-impedance of

mesh 1, which is the sum of the impedances of mesh 1. The

— Z3 coefficient of I2 is the negative of the impedance in the

branch common to meshes 1 and 2. This impedance Z3 is a

mutual impedance —it is mutual to meshes 1 and 2.

Likewise, the — Z2 coefficient of I3 is the negative of the



impedance in the branch mutual to meshes 1 and 3, and so

Z2 is also a mutual impedance. It is important to remember

in mesh analysis that the mutual terms have initial negative

signs.

It is, of course, easier to write mesh equations using self-

impedances and mutual impedances than it is to directly

apply KVL. Doing this for meshes 2 and 3 results in

and

Placing the equations together shows the symmetry of the I

coefficients about the principal diagonal:

Usually, there is no such symmetry if the corresponding

circuit has dependent sources. Also, some of the off-diagonal

coefficients may not have initial negative signs.

This symmetry of the coefficients is even better seen with

the equations written in matrix form:

For some scientific calculators, it is best to put the equations

in this form and then key in the coefficients and constants so

that the calculator can be used to solve the equations. The



calculator-matrix method is generally superior to any other

procedure such as Cramer’s rule.

Loop analysis is similar except that the paths around

which KVL is applied are not necessarily meshes, and the

loop currents may not all be referenced clockwise. So, even if

a circuit has no dependent sources, some of the mutual

impedance coefficients may not have initial negative signs.

Preferably, the loop current paths are selected such that

each current source has just one loop current through it.

Then, these loop currents become known quantities with the

result that it is unnecessary to write KVL equations for the

loops or to transform any current sources to voltage sources.

Finally, the required number of loop currents is B — N + 1

where B is the number of branches and N is the number of

nodes. For a planar circuit, which is a circuit that can be

drawn on a flat surface with no wires crossing, this number

of loop currents is the same as the number of meshes.

NODAL ANALYSIS

Nodal analysis for phasor-domain circuits is similar to

nodal analysis for dc circuits. Preferably, all voltage sources

are transformed to current sources. Then, a reference node

is selected and all other nodes are referenced positive in

potential with respect to this reference node. Finally, KCL is

applied to each nonreference node. Often the polarity signs

for the node voltages are not shown because of the

convention to reference these voltages positive with respect

to the reference node.

For an illustration of nodal analysis applied to a phasor-

domain circuit, consider the circuit shown in Fig. 13-3. The

KCL equation for node 1 is



Fig. 13-3

where V1, Y1,(V1 — V2)Y2, and (V1 — V3)Y6 are the currents

flowing away from node 1 through the admittances Y1, Y2,

and Y6. Of course, I1, + I2 — I6 is the sum of the currents

flowing into node 1 from current sources,

This equation simplifies to

The coefficient Y1 + Y2 + Y6 of V1, is the self-admittance of

node 1, which is the sum of the admittances connected to

node 1. The coefficient — Y2 of V2 is the negative of the

admittance connected between nodes 1 and 2. So, Y2 is a

mutual admittance. Similarly, the coefficient — Y6 of V3 is the

negative of the admittance connected between nodes 1 and

3, and so Y6 is also a mutual admittance.

It is, of course, easier to write nodal equations using self-

admittances and mutual admittances than it is to directly

apply KCL. Doing this for nodes 2 and 3 produces



and

Placing the equations together shows the symmetry of the

V coefficients about the principal diagonal:

Usually, there is no such symmetry if the corresponding

circuit has dependent sources. Also, some of the off-diagonal

coefficients may not have initial negative signs. In matrix

form these equations are

PSPICE AC ANALYSIS

The use of PSpice to analyze an ac circuit is perhaps best

introduced by way of an illustration. Consider the time-

domain circuit of Fig. 13-4. A suitable PSpice circuit file for

obtaining V0 and I„ is



Fig. 13-4

Observe that the resistor, inductor, and capacitor

statements are essentially the same as for the other types of

analyses, except that no initial conditions are specified in the

inductor and capacitor statements. If the circuit had

contained a dependent source, the corresponding statement

would have been the same also.

In the independent source statement, the term AC, which

must be included after the node specification, is followed by

the peak value of the sinusoidal source and then the phase

angle. If rms magnitudes are desired in the printed outputs,

then rms values instead of peak values, should be specified

in the independent source statement.

The frequency of the sources (and all sources must have

the same frequency), in hertz, is specified in an. AC control

statement, after.AC LIN 1. Here the frequency is 1000/2π =

159.155 Hz. (The source frequency of 1000 is, of course, in

radians per second.) Note that this frequency must be

specified twice. The format of the. AC control statement



allows for the variation in frequency, a feature that is not

used in this example.

The. PRINT statement requires the insertion of AC

after.PRINT. After AC are specified the magnitudes (M) and

phases (P) of the desired voltages and currents: VM(C1)

specifies the magnitude of the voltage across capacitor Cl,

and VP(C1) specifies its phase; IM(L1) specifies the

magnitude of the current flowing through inductor LI, and

IP(L1) specifies its phase. If the results are desired in

rectangular form, then the letters R for real part and I for

imaginary part are used instead of M and P.

If this circuit file is run with PSpice, the output file will

include the following:

Consequently, , and 

 where the magnitudes are expressed

in peak values. As stated, if rms magnitudes are desired,

then rms magnitudes should be specified in the independent

source statements.

Solved Problems

13.1 Perform a source transformation on the circuit shown

in Fig. 13-5.



Fig. 13-5

The series impedance is 

which when divided into the voltage of the original

source gives the source current of the equivalent circuit:

As shown in Fig. 13-6, the current direction is toward

node a, as it must be because the positive terminal of

the voltage source is toward that node also. The parallel

impedance is, of course, the series impedance of the

original circuit.

Fig. 13-6

13.2 Perform a source transformation on the circuit shown

in Fig. 13-7.



Fig. 13-7

This circuit has a dependent voltage source that

provides a voltage in volts that is three times the

current I flowing elsewhere (not shown) in the complete

circuit. When, as here, the controlling quantity is not in

the circuit being transformed, the transformation is the

same as for a circuit with an independent source.

Therefore, the parallel impedance is 

and the source current directed toward node a is

as shown in Fig. 13-8.

Fig. 13-8



When the controlling quantity is in the portion of the

circuit being transformed, a different method must be

used, as is explained in Chap. 14 in the section on

Thévenin’s and Norton’s theorems.

13.3 Perform a source transformation on the circuit shown

in Fig. 13-9.

Fig. 13-9

The parallel impedance is  The

product of the parallel impedance and the current is the

voltage of the equivalent voltage source:

As shown in Fig. 13-10, the positive terminal of the

voltage source is toward node a, as it must be since the

current of the original circuit is toward that node also.

The source impedance is, of course, the same 3.07/15.7°

Ω, but is in series with the source instead of in parallel

with it.



Fig. 13-10

13.4 Perform a source transformation on the circuit shown

in Fig. 13-11.

Fig. 13-11

This circuit has a dependent current source that

provides a current flow in amperes that is six times the

voltage V across a component elsewhere (not shown) in

the complete circuit. Since the controlling quantity is not

in the circuit being transformed, the transformation is

the same as for a circuit with an independent source.

Consequently, the series impedance is 

 and the source voltage is



with, as shown in Fig. 13-12, the positive polarity toward

node a because the current of the current source is also

toward that node. The same source impedance is, of

course, in the circuit, but is in series with the source

instead of in parallel with it.

Fig. 13-12

13.5 Assume that the following equations are mesh

equations for a circuit that does not have any current

sources or dependent sources. Find the quantities that

go in the blanks.

The key is the required symmetry of the I

coefficients about the principal diagonal. Because of this

symmetry, the coefficient of I2 in the first equation must

be —(4 + j3), the same as the coefficient of I1, in the

second equation. Also, the coefficient of I1, in the third

equation must be —(3 + j2), the same as the coefficient

of I3 in the first equation. And the coefficient of I2 in the



third equation must be —(6 — j8), the same as the

coefficient of I3 in the second equation.

13.6 Find the voltages across the impedances in the circuit

shown in Fig. 13-13a. Then transform the voltage source

and  component to an equivalent current source

and again find the voltages. Compare results.

Fig. 13-13

By voltage division,

By KVL,

Transformation of the voltage source results in a

current source of  A in parallel

with a  component, both in parallel with the 

 component, as shown in Fig. 13-13b. In this

parallel circuit, the same voltage V is across all three

components. That voltage can be found from the

product of the total impedance and the current:



Notice that the  component voltage is the

same as for the original circuit, but that the 

component voltage is different. This result illustrates the

fact that a transformed source produces the same

voltages and currents outside the source, but usually

not inside it.

13.7 Find the mesh currents for the circuit shown in Fig.

13-14.

Fig. 13-14

The self-impedance and mutual-impedance

approach is almost always best for getting mesh

equations. The self-impedance of mesh 1 is 4 + j15 + 6

— j7 = 10 + j8 Ω, and the impedance mutual with mesh

2 is 6 —j7Ω. The sum of the source voltage rises in the

direction of I1 is   In this sum

the  voltage is subtracted because it is a voltage

drop instead of a rise. The mesh 1 equation has, of

course, a left-hand side that is the product of the self-

impedance and I, minus the product of the mutual

impedance and I2. The right-hand side is the sum of the

source voltage rises. Thus, this equation is



No KVL equation is needed for mesh 2 because I2 is

the only mesh current through the  current

source. As a result,  The initial negative

sign is required because I2 has a positive direction down

through the source, but the specified  current is

up. Remember that, if for some reason a KVL equation

for mesh 2 is wanted, a variable must be included for

the voltage across the current source since this voltage

is not known.

The substitution of  into the mesh 1

equation produces

from which

Another good analysis approach is to first transform

the current source and parallel impedance to an

equivalent voltage source and series impedance, and

then find II from the resulting single mesh circuit. If this

is done, the equation for I1 will be identical to the one

above.

13.8 Solve for the mesh currents I1 and I2 in the circuit

shown in Fig. 13-15.



Fig. 13-15

The self-impedance and mutual-impedance

approach is the best for mesh analysis. The self-

impedance of mesh 1 is 8 — j14 + 4 = 12 — j14 Ω, the

mutual impedance with mesh 2 is 4 Ω, and the sum of

the source voltage rises in the direction of I1, is 

 So, the mesh 1 KVL

equation is

For mesh 2 the self-impedance is 6 + j10 + 4 = 10 +

j Ω, the mutual impedance is 4Ω, and the sum of the

voltage rises from voltage sources is  So, the

mesh 2 KVL equation is

Placing the two mesh equations together shows the

symmetry of coefficients (here —4) about the principal

diagonal as a result of the common mutual impedance:



By Cramer’s rule,

and since I2 has the same denominator as I1,

13.9 Use loop analysis to find the current down through

the 4-Ω resistor in the circuit shown in Fig. 13-15.

The preferable selection of loop currents is I1, and I3

because then I1 is the desired current since it is the only

current in the 4-Ωresistor and has a downward direction.

Of course, the self-impedance and mutual-impedance

approach should be used.

The self-impedance of the I1, loop is 8 — j14 + 4 =

12 — j14 Ω, the mutual impedance with the I3 loop is 8

— j14Ω, and the sum of the source voltage rises in the

direction of I1, is   The self-

impedance of the I3 loop is 8-j14 + 6 + j10 = 14 — j4Ω,

of which 8 j14Ω is mutual with the I1, loop. The source

voltage rise in the direction of I3 is  Therefore,

the loop equations are



The mutual terms are positive because the I1 and I3 loop

currents have the same direction through the mutual

impedance.

By Cramer’s rule,

As a check, notice that this loop current should be equal

to the difference in the mesh currents I1 and I2 found in

the solution to Prob. 13.8. It is, since 

13.10 Find the mesh currents for the circuit shown in Fig.

13-l6a.



Fig. 13-16

A good first step is to transform the  current

source and parallel 5-Ω resistor into a voltage source

and series resistor, as shown in the circuit of Fig. 13-

16b. Note that this transformation eliminates mesh 3.

The self-impedance of mesh 1 is 3 + j4 + 5 = 8 + j4 Ω,

and that of mesh 2 is 4 — j6 + 5 = 9 — j6Ω. The mutual

impedance’ is 5Ω. The sum of the voltage rises from

sources is  for mesh 1 and 

 for mesh 2. The corresponding

mesh equations are

In matrix form these are



These equations are best solved using a scientific

calculator (or a computer). The solutions obtained are 

 and 

From the original circuit shown in Fig. 13-16a, the

current in the current source is 

Consequently,

13.11 Use loop analysis to solve for the current flowing

down through the 5-Ω resistor in the circuit shown in

Fig. 13-16a.

Because this circuit has three meshes, the analysis

requires three loop currents. The loops can be selected

as in Fig. 13-17 with only one current I1 flowing through

the 5-Ω resistor so that only one current needs to be

solved for. Also, preferably only one loop current should

flow through the current source.

Fig. 13-17



The self-impedance of the I1 loop is 3 + j4 + 5 = 8 +

j4Ω, the impedance mutual with the I2 loop is 3 + j4Ω,

and the aiding source voltage is  V. So, the loop 1

equation is

The I2 coefficient is positive because I2 and I1 have the

same direction through the mutual components.

For the second loop, the self-impedance is 3 + j4 +

4j2Ω, of which 3 + j4Ω is mutual with loop 1. The 

current flowing through the components of 4 — j6Ω

produces a voltage drop of  that

has the same effect as the voltage from an opposing

voltage source. In addition, the voltage sources have a

net aiding voltage of  The

resulting loop 2 equation is

In matrix form these equations are

A scientific calculator can be used to obtain 

 from these equations.

As a check, this loop current I1 should be equal to

the difference in the mesh currents l1 and I3 found in the

solution to Prob. 13.10. It is, since 



13.12 Use mesh analysis to solve for the currents in the

circuit of Fig. 13-18.

Fig. 13-18

The self-impedances are 4 + j12 + 8 = 12 + j12Ω for

mesh 1, 8 + 8 — j16 = 16 — j16Ω for mesh 2, and 18 —

j20 + 8 + j12 = 26 — j8Ω for meshes 3. The mutual

impedances are 8Ω for meshes 1 and 2, 8Ω for meshes

2 and 3, and jl2Ω for meshes 1 and 3. The sum of the

aiding source voltages is   for

mesh 1,  for mesh 2, and 

 for mesh 3. In matrix form, the mesh equations

are

The solutions, which are best obtained by using a

calculator or computer, are



13.13 Show a circuit that corresponds to the following

mesh equations:

Because there are two equations, the circuit has two

meshes: mesh 1 for which I1, is the principal mesh

current, and mesh 2 for which I2 is the principal mesh

current. The —(11 + j5) coefficients indicate that

meshes 1 and 2 have a mutual impedance of 11 + j5Ω

which could be from an 11-Ω resistor in series with an

inductor that has a reactance of 5Ω. In the first equation

the I1 coefficient indicates that the resistors in mesh 1

have a total resistance of 17Ω. Since 11Ω of this is in the

mutual impedance, there is 17 — 11 = 6Ω of resistance

in mesh 1 that is not mutual. The —j4 of the I1

coefficient indicates that mesh 1 has a total reactance

of — 4Ω. Since the mutual branch has a reactance of 5Ω,

the remainder of mesh 1 must have a reactance of —4

— 5 = —9Ω, which can be from a single capacitor. The 

 on the right-hand side of the mesh 1 equation is

the result of a total of  V of voltage source rises

(aiding source voltages). One way to obtain this is with a

single sourse  V that is not in the mutual branch and

that has a polarity such that l1 flows out of its positive

terminal

Similarly, from the second equation, mesh 2 has a

nonmutual resistance of 18 — 11 = 7Ω that can be from

a resistor that is not in the mutual branch. And from the

j7 part of the I2 coefficient, mesh 2 has a total reactance



of 7Ω. Since 5Ω of this is in the mutual branch, there is 7

— 5 = 2Ω remaining that could be from a single inductor

that is not in the mutual branch. The —  on the

right-hand side is the result of a total of  V of

voltage source drops—opposing source voltages. One

way to obtain this is with a single source of  V that

is not in the mutual branch and that has a polarity such

that I2 flows into its positive terminal

Figure 13-19 shows the corresponding circuit. This is

just one of an infinite number of circuits from which the

equations could have been written.

Fig. 13-19

13.14 Use loop analysis to solve for the current flowing to

the right through the 6-Ω resistor in the circuit shown in

Fig. 13-20.



Fig. 13-20

Three loop currents are required because the circuit

has three meshes. Only one of the loop currents should

flow through the 6-Ω resistor so that only one current

has to be solved for. This current is I2, as shown. The

paths for the two other loop currents can be selected as

shown, but there are other suitable paths.

It is relatively easy to put these equations into

matrix form. The loop self-impedances and mutual

impedances can be used to fill in the coefficient matrix.

And the elements for the source vector are  for

loop 1 and 0 V for the two other loops. Thus, the

equations in matrix form are

The solutions, which are best obtained from a calculator

or computer, include 

13.15 Solve for the node voltages in the circuit shown in

Fig. 13-21.



Fig. 3-21

Using self-admittances and mutual admittances is

almost always best for obtaining the nodal equations.

The self-admittance of node 1 is

of which 4 S is mutual conductance. The sum of the

currents from current sources into node 1 is 

 A. So, the node 1 KCL

equation is

No KCL equation is needed for node 2 because a

grounded voltage source is connected to it, making 

 If, however, for some reason a KCL

equation is wanted for node 2, a variable has to be

introduced for the current through the voltage source

because this current is unknown. Note that, because the

voltage source does not have a series impedance, it

cannot be transformed to a current source with the

source transformation techniques presented in this

chapter.

The substitution of V2 = —12/—15° into the node 1

equation results in

from which



13.16 Find the node voltages in the circuit shown in Fig.

13-22.

Fig. 13-22

The self-admittance of node 1 is

of which  is mutual admittance. The

sum of the currents into node 1 from current sources is 

 Therefore, the node 1 KCL

equation is

The self-admittance of node 2 is



of which  is mutual admittance. The sum of the

currents into node 2 from current sources is 

 The result is a node 2 KCL

equation of

In matrix form these equations are

The solutions, which are easily obtained with a scientific

calculator, are V1 =  and V2 = 

13.17 Use nodal analysis to find V for the circuit shown in

Fig. 13-23.

Fig. 13-23

Although a good approach is to transform both

voltage sources to current sources, this transformation



is not essential because both voltage sources are

grounded. (Actually, source transformations are never

absolutely necessary.) Leaving the circuit as it stands

and summing currents away from the V node in the form

of voltages divided by impedances gives the equation of

The first term is the current flowing to the left through

the 8 — jl4Ω components, the second is the current

flowing down through the 4-Ω resistor, and the third is

the current flowing to the right through the 6 + j10Ω

components.

This equation simplifies to

Further simplification reduces the equation to

from which

Incidentally, this result can be checked since the

circuit shown in Fig. 13-23 is the same as that shown in

Fig. 13-15 for which, in the solution to Prob. 13.9, the

current down through the 4-Ω resistor was found to be 

. The voltage V across the center branch can be



calculated from this current: V = 

 which checks.

13.18 Find the node voltages in the circuit shown in Fig.

13-24a.

Fig. 13-24

Since the voltage source does not have a grounded

terminal, a good first step for nodal analysis is to

transform this source and the series resistor to a current

source and parallel resistor, as shown in Fig. 13-24b.

Note that this transformation eliminates node 3. In the

circuit shown in Fig. 13-24b, the self-admittance of node

1 is 3 + j4 + 5 = 8 + j4 S, and that of node 2 is 5 + 4 —

j6 = 9 — j6 S. The mutual admittance is 5 S. The sum of

the currents into node 1 from current sources is 

, and that into node 2 is 



. Thus, the corresponding

nodal equations are

Except for having V’s instead of I’s, these are the same

equations as for Prob. 13.10. Consequently, the answers

are numerically the same:  and 

.

From the original circuit shown in Fig. 13-24a, the

voltage at node 3 is  more negative than the

voltage at node 2. So,

13.19 Calculate the node voltages in the circuit of Fig. 13-

25.

Fig. 13-25

The self-admittances are 4 + 8 + j12 = 12 + j12 S

for node 1, 8 — jl6 + 8 = 16 — j16 S for node 2, and 8 +

18 — j20 + jl2 = 26 — j8 S for node 3. The mutual



admittances are 8 S for nodes 1 and 2, jl2 S for nodes 1

and 3, and 8 S for nodes 2 and 3. The currents flowing

into the nodes from current sources are 

 for node 1, 

 for node 2, and  for

node 3. So, the nodal equations are

Except for having V’s instead of I’s, this set of equations

is the same as that for Prob. 13.12. So, the answers are

numerically the same: ,

and 

13.20 Show a circuit corresponding to the nodal equations

Since there are two equations, the circuit has three

nodes, one of which is the ground or reference node,

and the others of which are nodes 1 and 2. The circuit

admittances can be found by starting with the mutual

admittance. From the —(3 — j4) coefficients, nodes 1

and 2 have a mutual admittance of 3 — j4 S, which can

be from a resistor and inductor connected in parallel

between nodes 1 and 2. The 8 + j6 coefficient of V, in

the first equation is the self-admittance of node 1. Since

3 — j4 S of this is in mutual admittance, there must be

components connected between node 1 and ground that

have a total of 8 + j6 — (3 — j4) = 5 + j10S of

admittance. This can be from a resistor and parallel



capacitor. Similarly, from the second equation,

components connected between node 2 and ground

have a total admittance of 11 — j6— (3 — j4) = 8 — j2

S. This can be from a resistor and parallel inductor.

The 4 + j2 on the right-hand side of the first

equation can be from a total current of 4 + j2 = 

 entering node 1 from current sources. The

easiest way to obtain this is with a single current source

connected between node 1 and ground with the source

arrow directed into node 1. Similarly, from the second

equation, the  can be from a single current

source of  A connected between node 2 and

ground with the source arrow directed away from node 2

because of the initial negative sign in .

The resulting circuit is shown in Fig. 13-26.

Fig. 13-26

13.21 For the circuit shown in Fig. 13-27, which contains a

transistor model, first find V as a function of I. Then, find

V as a numerical value.



Fig. 13-27

In the right-hand section of the circuit, the current IL

is, by current division.

And, by Ohm’s law,

which shows that the magnitude of V is 17.2 × 104 times

that of I, and the angle of V is 29.5° — 180° = —150.5°

plus that of I. (The — 180° is from the negative sign.)

If this value of V is used in the 0.01-V expression of

the dependent source in the left-hand section of the

circuit, and then KVL applied, the result is

from which



This, substituted into the equation for V, gives

13.22 Solve for I in the circuit shown in Fig. 13-28.

Fig. 13-28

What analysis method is best for this circuit? A brief

consideration of the circuit shows that two equations are

necessary whether mesh, loop, or nodal analysis is

used. Arbitrarily, nodal analysis will be used to find V1,

and then I will be found from V1. For nodal analysis, the

voltage source and series resistor are preferably

transformed to a current source with parallel resistor.

The current source has a current of 

directed into node 1, and the parallel resistor has a

resistance of 0.4 Ω.

The self-admittances are

for node 1, and



for node 2. The mutual admittance is l/(—j0.8) =j1.25 S.

The controlling current I in terms of V1 is I = V1/j0.5

= –j2Vl, which means that 2I = –j4V1 is thecurrent into

node 2 from the dependent current source.

From the admittances and the source currents, the

nodal equations are

which, with j4V1 added to both sides of the second

equation, simplify to

The lack of symmetry of the coefficients about the

principal diagonal and the lack of an initial negative sign

for the V1 term in the second equation are caused by the

action of the dependent source.

If a calculator is used to solve for V1, the result is 

 Finally,

13.23 Use PSpice to obtain the mesh currents in the circuit

of Fig. 13-18 of Prob. 13.12.



The first step is to obtain a corresponding PSpice

circuit. Since no frequency is specified in Prob. 13.12 (or

even if one was), a convenient frequency can be

assumed and then used in calculating the inductances

and capacitances from the specified inductive and

capacitive impedances. Usually, ω = 1 rad/s is the most

convenient. For this frequency, the inductor that has an

impedance of j12 í has an inductance of 12/1 = 12 H.

The capacitor that has an impedance of —j20 Ω has a

capacitance of 1/20 = 0.05 F, as should be apparent.

And the capacitor that has an impedance of —j16 has a

capacitance of 1/16 = 0.0625 F.

Figure 13-29 shows the corresponding PSpice circuit.

For convenience, the voltage-source voltages remain

specified in phasor form, and the mesh currents are

shown as phasor variables. Thus, Fig. 13-29 is really a

mixture of a time-domain and phasor-domain circuit

diagram.

Fig. 13-29



In the circuit file the frequency must be specified in

hertz, which for 1 rad/s is 1/2π = 0.159 155 Hz. The

circuit file corresponding to the PSpice circuit of Fig. 13-

29 is as follows:

When this circuit file is run with PSpice, the output

file will contain the folio wing results.

The answers  and 

 agree within three significant digits

with the answers to Prob. 13.12.

13.24 Calculate Vo in the circuit of Fig. 13-30.

By nodal analysis,



Also

Fig. 13-30

Substituting, from the third equation into the second and

multiplying both resulting equations by 280 gives

Use of Crameer’s rule or a scientific calculator provides

the solution 

13.25 Repeat Prob. 13.24 using PSpice.

For a PSpice circuit file, capacitances are required

instead of the capacitive impedances that are specified

i, n the circuit of Fig. 13-30. It is often convenient to

assume a frequency of ω = 1 rad/s to obtain these

capacitances. Then, of course, f = 1/2π = 0.159 155 Hz



is the frequency that must be specified in the circuit file.

For ω = 1 rad/s, the capacitor that has an impedance of

—j8 Ω has a capacitance of 1/16 = 0.O625 F, and the

capacitor that has an impedance of — j8 Ω has a

capacitance of 1/8 = 0.125 F. Figure 13-31 shows the

PSpice circuit that corresponds to the phasor-domain

circuit of Fig. 13-30. The V2 dummy source is required to

obtain the controlling current for the Fl current-

controlled current source.

Fig. 13-31

The corresponding circuit file is



When this circuit file is run with PSpice, the output file

includes

from which  which is in complete

agreement with the answer to Prob. 13.24.

13.26 Use PSpice to determine v0 in the circuit of Fig. 12-

25a of Prob. 12.47.

Figure 13-32 is the PSpice circuit corresponding to

the circuit of Fig. 12-25a. The op amp has been deleted

and a voltage-controlled voltage source El inserted at

what was the op-amp output. This source is, of course, a

model for the op amp. Also, a large resistor R1 has been

inserted from node 1 to node 0 to satisfy the PSpice

requirement for at least two components connected to

each node.

Fig. 13-32

Following is the circuit file. The specified frequency,

1591.55 Hz, is equal to the source frequency of 10 000



rad/s divided by 2π. Also shown is the output obtained

when this circuit file is run with PSpice. The answer of 

 is the phasor for

which agrees within three significant digits with the v0

answer of Prob. 12.47.

13.27 Find V0 in the circuit of Fig. 13-33.



Fig. 13-33

Since the first op-amp circuit has the configuration

of a noninverting amplifier, and the second has that of

an inverter, the pertinent formulas from Chap. 6 apply,

with the R’s replaced by Z’s. So, with the impedances

expressed in kilohms,

13.28 Repeat Prob. 13.27 using PSpice.

Figure 13-34 is the PSpice circuit corresponding to

the circuit of Fig. 13-33, with the op amps replaced by

voltage-controlled voltage sources that are connected

across the former op-amp output terminals. In addition,

a large resistor Rl has been inserted from node 1 to

node 0 to satisfy the PSpice requirement for at least two

components connected to each node. The large resistors

R4 and R6 have been inserted to provide dc paths from

nodes 4 and 7 to node 0, as is required from every node.

Without these resistors, the circuit has no such dc paths



because of dc blocking by capacitors. The capacitances

have been determined using an arbitrary source

frequency of 1000 rad/s, which corresponds to 1000/2π

= 159.155 Hz. As an illustration, for the capacitor which

an impedance of — Ω kfi, the magnitude of the

reactance is

Fig. 13-34

Following is the circuit file for the circuit of Fig. 13-34

and also the results from the output file obtained when

the circuit file is run with PSpice. The output of 

 agrees with the answer to Prob.

13.27.



Supplementary Problems

13.29 A 30-Ω resistor and a 0.1-H inductor are in series

with a voltage source that produces a voltage of 120 sin

(377t + 10°) V. Find the components for the

corresponding phasor-domain current-source

transformation.

Ans. A current source of  in parallel with an

impedance of 

13.30 A  voltage source is in series with a 6-Ω

resistor and the parallel combination of a 10-Ω resistor

and an inductor with a reactance of 8 Ω Find the

equivalent current-source circuit.

Ans. A  current source and a parallel 

impedance

13.31 A  voltage source is in series with the

parallel arrangement of an inductor that has a



reactance of 100 Ω and a capacitor that has a reactance

of —100 Ω. Find the current-source equivalent circuit.

Ans. An open circuit

13.32 Find the voltage-source circuit equivalent of the

parallel arrangement of a  current source, a

60-Ω resistor, and an inductor with an 80-Ω reactance.

Ans. A  voltage source in series with a 

impedance

13.33 A  current source is in parallel with the

series arrangement of an inductor that has a reactance

of 100 Ω and a capacitor that has a reactance of — 100

Ω Find the equivalent voltage-source circuit.

Ans. A short circuit

13.34 In the circuit shown in Fig. 13-35, find the currents I1

and I2. Then do a source transformation on the current

source and parallel  impedance and find the

currents in the impedances. Compare.

Ans.   After the

transformation both are  So, the current does

not remain the same in the  impedance involved in

the source transformation.

Fig. 13-35



Fig. 13-36

13.35 Find the mesh currents in the circuit shown in Fig.

13-36.

Ans 

13.36 Find I in the circuit shown in Fig. 13-37.

Ans. 

Fig. 13-37



Fig. 13-38

13.37 Find the mesh currents in the circuit shown in Fig.

13-38.

Ans. 

13.38 Find the mesh currents in the circuit shown in Fig.

13-39.

Ans. 

Fig. 13-39

13.39 Use loop analysis to solve for the current that flows

down in the 10-Í2 resistor in the circuit shown in Fig. 13-

39.

Ans. 

13.40 Use mesh analysis to find the current I in the circuit

shown in Fig. 13-40.

Ans. 



Fig. 13-40

13.41 Use loop analysis to find the current flowing down

through the capacitor in the circuit shown in Fig. 13-40.

Ans. 

13.42 Find the current I in the circuit shown in Fig. 13-41.

Ans. 

Fig. 13-41

13.43 For the circuit shown in Fig. 13-41, use loop analysis

to find the current flowing down through the capacitor

that has the reactance of — j2 Ω.

Ans. 



13.44 Use loop analysis to find l in the circuit shown in Fig.

13-42.

Ans. 

Fig. 13-42

13.45 Rework Prob. 13.44 with all impedances doubled.

Ans. 

13.46 Find the node voltages in the circuit shown in Fig.

13-43.

Ans. 

Fig. 13-43



13.47 Find the node voltages in the circuit shown in Fig.

13-44.

Ans. 

Fig. 13-44

13.48 Solve for the node voltages in the circuit shown in

Fig. 13-45.

Ans. 

Fig. 13-45

13.49 Find the node voltages in the circuit shown in Fig.

13-46.



Ans. 

Fig. 13-46

13.50 Solve for the node voltages of the circuit shown in

Fig. 13-47.

Ans. 

Fig. 13-47

13.51 For the circuit shown in Fig. 13-48, find V as a

function of 1, and then find V as a numerical value.

Ans. 



Fig. 13-48

13.52 Solve for I in the circuit shown in Fig. 13-49.

Ans. 

Fig. 13-49

In Probs. 13.53 through 13.58, given the specified PSpice

circuit files, determine the output phasor voltages or

currents without using PSpice.

13.53



Ans 

13.54

Ans 

13.55



Ans 

13.56

Ans 

13.57



Ans 

13.58

Ans 



Chapter 14


AC Equivalent Circuits,

Network Theorems, and

Bridge Circuits

INTRODUCTION

With two minor modifications, the dc network theorems

discussed in Chap. 5 apply as well to ac phasor-domain

circuits: The maximum power transfer theorem has to be

modified slightly for circuits containing inductors or

capacitors, and the same is true of the superposition

theorem if the time-domain circuits have sources of different

frequencies. Otherwise, though, the applications of the

theorems for ac phasor-domain circuits are essentially the

same as for dc circuits.

THÉVENIN’S AND NORTON’S THEOREMS

In the application of Thévenin’s or Norton’s theorems to an

ac phasor-domain circuit, the circuit is divided into two parts,

A and B, with two joining wires, as shown in Fig. 14-la. Then,

for Thévenin’s theorem applied to part A, the wires are

separated at terminals a and b, and the open-circuit voltage

VTh, the Thévenin voltage, is found referenced positive at

terminal a, as shown in Fig. 14-lb. The next step, as shown in

Fig. 14-1 c, is to find Thévenin’s impedance ZTh of part A at



terminals a and b. For Thévenin’s theorem to apply, part A

must be linear and bilateral, just as for a dc circuit.

There are three ways to find ZTh. For one way, part A must

have no dependent sources. Also, preferably, the

impedances are arranged in a series-parallel configuration.

In this approach, the independent sources in part A are

deactivated, and then ZTh is found by combining impedances

and admittances—that is, by circuit reduction.

If the impedances of part A are not arranged series-

parallel, it may not be convenient to use circuit reduction.

Or, it may be impossible, especially if part A has dependent

sources. In this case, ZTh can be found in a second way by

applying a voltage source as shown in Fig. 14-1d or a current

source as shown in Fig. 14-le, and finding ZTh = VT/IT. Often.,

the mosit convenient source voltage is VT =  V and the

most convenient source current is IT =  A.

Fig. 14-1



The third way to find ZTh is to apply a short circuit across

terminals a and b, as shown in Fig. 14-1f, then find the short-

circuit current Isc, and use it in ZTh = VTh/Isc. Of course, VTh

must also be known. For this approach, part A must have

independent sources, and they must not be deactivated.

In the circuit shown in Fig. 14-lg, the Thévenin equivalent

produces the same voltages and currents in part B that the

original part A does. But only the part B voltages and

currents remain the same; those in part A almost always

change, except at the a and b terminals.

For the Norton equivalent circuit shown in Fig. 14-1h, the

Thévenin impedance is in parallel with a current source that

provides a current up that is equal to the short-circuit current

down in the circuit shown in Fig. 14-1f. The Norton equivalent

circuit also produces the same part B voltages and currents

that the original part A does.

Because of the relation VTh = IscZTh, any two of the three

quantities VTh, Isc, and ZTh can be found from part A and then

this equation used to find the third quantity if it is needed for

the application of either Thévenin’s or Norton’s theorem.

Obviously, PSpice can be used to obtain the needed two

quantities, one at a time, as should be apparent. However,

the.TF feature explained in Prob. 7.5 cannot be used for this

since its use is limited to dc analyses.

MAXIMUM POWER TRANSFER THEOREM

The load that absorbs maximum average power from a

circuit can be found from the Thévenin equivalent of this

circuit at the load terminals. The load shou’id have a

reactance that cancels the reactance of this Thévenin

impedance because reactance does not a’bsorb any average

power but does limit the current. Obviously, for maximum

power transfer, there should be no reactance limiting the

current flow to the resistance part of the load. This, in turn,



means that the load and Thévenin reactances must be equal

in magnitude but opposite in sign.

With the reactance cancellation, the overall circuit

becomes essentially purely resistive. As a result, the rule for

maximum power transfer for the resistances is the same as

that for a dc circuit: The load resistance must be equal to the

resistance part of the Thévenin impedance. Having the same

resistance but a reactance that differs only in sign, the load

impedance for maximum power transfer is the conjugate of

the Thévenin impedance of the circuit connec ted to t he

load:  Also, because the overall circuit is purely

resistive, the maximum power absorbed by the load is the

same as for a dc circuit:  in which VTh is the rms

value of the Thé venin voltage VTh and RTh is the resistance

part of ZTh.

SUPERPOSITION THEOREM

If, in an ac time-domain circuit, the independent sources

operate at the same frequency, the superposition theorem

for the corresponding phasor-domain circuit is the same as

for a dc circuit. That is, the desired voltage or current phasor

contribution is found from each individual source or

combination of sources, and then the various contributions

are algebraically added to obtain the desired voltage or

current phasor. Independent sources not involved in ai

particular solution are deactivated, but dependent sources

are left in the circuit.

For a circuit in which all sources have the; same

frequency, an analysis with the superposition theorem is

usually more work than a standard mesh, loop, or nodal

analysis with all sources present. But the superposition

theorem is essential if a time-domain circuit has inductors or

capacitors and has sources operating at different

frequencies. Since the reactances depend on the radian



frequency, the same phasor-domain circuit cannot be used

for all sources if they do not have the same frequency. There

must be a different phasor-domain circuit for each different

radian frequency, with the differences being in the

reactances and in the deactivation of the various

independent sources. Preferably, all independent sources

having the same radian frequency are considered at a time,

while the other independent sources are deactivated. This

radian frequency is used to find the inductive and capacitive

reactances for the corresponding phasor-domain circuit, and

this circuit is analyzed to find the desired phasor. Then, the

phasor is transformed to a sinusoid. This process is repeated

for each different radian frequency of the sources. Finally,

the individual sinusoidal responses are added to obtain the

total response. Note that the adding is of the sinusoids and

not of the phasors. This is because phasors of different

frequencies cannot be validly added.

AC Y-Δ and Δ-Y TRANSFORMATIONS

Chapter 5 presents the Y-Δ and Δ-Y transformation

formulas for resistances. The only difference for impedances

is in the use of Z’s instead of R’s. Specifically, for the Δ-Y

arrangement shown in Fig. 14-2, the Y-to-Δ transformation

formula; are

and the Δ-to-Y transformation formulas are



The Y-to-Δ transformation formulas all have the same

numerator, which is the sum of the different products of the

pairs of the Y impedances. Each denominator is the Y

impedance shown in Fig. 14-2 that is opposite the impedance

being found. The Δ-to-Y transformation formulas, on the

other hand, have the same denominator, which is the sum of

the Δ impedances. Each numerator is the product of the two

Δ impedances shown in Fig. 14-2 that are adjacent to the Y

impedance being found.

If all three Y impedances are the same ZY, the Y-to-Δ

transformation formulas are the same: ZΔ = 3Zy. And if all

three Δ impedances are the same ZΔ, the Δ-to-Y

transformation formulas are the same: ZY = ZΔ/3.

Fig. 14-2

AC BRIDGE CIRCUITS

An ac bridge circuit, as shown in Fig. 14-3, can be used’ to

measure inductance or capacitance in the same way that a

Wheatstone bridge can be used to measure resistance, as

explained in Chap. 5. The bridge components, except for the

unknown impedance Zx, are typically just resistors and a



capacitance standard—a capacitor the capacitance of which

is known to.great precision. For a measurement, two of the

resistors are varied until the galvanometer in the center arm

reads zero when the switch is closed.

Fig. 14-3

Then the bridge is balanced, and the unknown impedance Zx

can be found from the bridge balance equation Zx Z2Z3/Z1

which is the same as that for a Wheatstone bridge except for

having Z’s instead of R’s.

Solved Problems

In those Thévenin and Norton equivalent circuit problems

in which the equivalent circuits are not shown, the

equivalent circuits are as shown in Fig. 14-1g and h with VTh

referenced positive at terminal a and IN = Isc referenced

toward the same terminal. The Thévenin impedance is, of

course, in series with the Thévenin voltage source in the

Thévenin equivalent circuit, and is in parallel with the Norton

current source in the Norton equivalent circuit.

14.1 Find ZTh, VTh, and IN for the Thévenin and Norton

equivalents of the circuit external to the load impedance



ZL in the circuit shown in Fig. 14-4.

Fig. 14-4

The Thévenin impedance ZTh is the impedance at

terminals a and b with the load impedance removed and

the voltage source replaced by a short circuit. From

combining impedances,

Although either VTh or IN can be found next, VTh

should be found because the — J4-Ω series branch

makes IN more difficult to find. With an open circuit at

terminals a and b, this branch has zero current and so

zero voltage. Consequently, VTh is equal to the voltage

drop across the j8-Ω impedance. By voltage division,

Finally,



14.2 If in the circuit shown in Fig. 14-4 the load is a resistor

with resistance R, what value of R causes a 0.1-A rms

current to flow through the load?

As is evident from Fig. 14-1g, the load current is

equal to the Thévenin voltage divided by the sum of the

Thévenin and load impedances:

Since only the rms load current is specified, angles are

not known, which means that magnitudes must be used.

Substituting VTh = 0.8 V from the solution to Prob. 14.1,

Also from this solution, 

Because the magnitude of a complex number is equal to

the square root of the sum of the squares of the real and

imaginary parts,

Squaring and simplifying,



R2 + 7.68R + 16 = 64 or R2 7.68R.48=0

Applying the quadratic formula,

The positive sign must be used to obtain a physically

significant positive resistance. So,

Note in the solution that the Thévenin and load

impedances must be added before and not after the

magnitudes are taken. This is because |Z
Th

|+|Z
L
|

≠|Z
L
+Z

Th
|.

14.3 Find ZTh, VTh, and IN for the Thévenin and Norton

equivalents of the circuit shown in Fig. 14-5.

Fig. 14-5

The Thévenin impedance ZTh is the impedance at

terminals a and b with the current source replaced by an

open circuit. By circuit reduction,



Multiplying the numerator and denominator by 3 — j4

gives

The short-circuit current is easy to find because, if a

short circuit is placed across terminals a and b, all the

source current flows through this short circuit: 

 None of the source current can flow

through the impedances because the short circuit places

a zero voltage across them. Finally,

14.4 Find ZTh, VTh, and IN for the Thévenin and Norton

equivalents of the circuit shown in Fig. 14-6.

Fig. 14-6



The Thévenin impedance ZTh is the impedance at

terminals a and b, with the current source replaced by

an open circuit and the voltage source replaced by a

short circuit. The 100-Ω resistor is then in series with the

open circuit that replaced the current source.

Consequently, this resistor has no effect on ZTh. The j’3-

and 4-Ω impedances are placed across terminals a and h

by the short circuit that replaces the voltage source. As

a result, 

The short-circuit current Isc = IN will be found and

used to obtain VTh. If a short circuit is placed across

terminals a and b, the current to the right through the

j3-Ω impedance is

because the short circuit places all the  of the

voltage source across the 4- and j3-Ω impedances. Of

course, the current to the right through the 100-Ω

resistor is the  source current. By KCL applied at

terminal a, the short-circuit current is the difference

between these currents:

Finally,

The negative signs for IN and Vth can, of course, be

eliminated by reversing the references—that is, by



having the Thévenin voltage source positive toward

terminal b and the Norton current directed toward

terminal b.

As a check, VTh can be found from the open-circuit

voltage across terminals a and b. Because of this open

circuit, all the  source current must flow through

the 4- and j3-Ω impedances. Consequently, from the

right-hand half of the circuit, the voltage drop from

terminal a to b is

which checks.

14.5 Find ZTh and VTh for the Thévenin equivalent of the

circuit shown in Fig. 14-7.

Fig. 14-7

The Thevenin impedance ZTh can be found easily by

replacing the voltage sources with short circuits and

finding the impedances at terminals a and b. Since the

short circuit places the right- and left-hand halves of the

circuit in parallel,



A brief inspection of the circuit shows that the short-

circuit current is easier to find than the open-circuit

voltage. This current from terminal a to b is

Finally,

14.6 Find ZTh and VTh for the Thevenin equivalent of the

circuit shown in Fig. 14-8.

Fig. 14-8

If the voltage source is replaced by a short circuit,

the impedance ZTh at terminals a and b is, by circuit

reduction,



The Thevenin voltage can be found from I2, and I2

can be found from mesh analysis. The mesh equations

are, from the self-impedance and mutual-impedance

approach,

If Cramer’s rule is used to obtain I2, then

And

14.7 Find ZTh and IN for the Norton equivalent of the circuit

shown in Fig. 14-9.

When the current source is replaced by an open

circuit and the voltage source is replaced by a short

circuit, the impedance at terminals a and b is

Because of the series arm connected to terminal a

and the voltage source in it, the Norton current is best

found from the Thévenin voltage and impedance. The

Thévenin voltage is equal to the voltage drop



Fig. 14-9

across the parallel components plus the voltage of the

voltage source:

And

14.8 Find ZTh and VTh for the Thévenin equivalent of the

circuit shown in Fig. 14-10.

Fig. 14-10



When the voltage source is replaced by a short

circuit and the current source by an open circuit, the

admittance at terminals a and b is

The inverse of this is ZTh

Because of the generally parallel configuration of

the circuit, it may be better not to find VTh directly, but

rather to obtain IN first and then find VTh from VTh =

INZTh. If a short circuit is placed across terminals a and

b, the short-circuit current is  since the short

circuit prevents any current flow through the two

parallel impedances. The current I can be found from

the source voltage divided by the sum of the series

impedances since the short circuit places this voltage

across these impedances:

And so

Finally,



14.9 Using Thévenin’s or Norton’s theorem, find I in the

bridge circuit shown in Fig. 14-11 if Is = 0 A.

Fig. 14-11

Since the current source produces 0 A, it is

equivalent to an open circuit and can be removed from

the circuit. Also, the 2-Ω and j3-Ω impedances need to

be removed in finding an equivalent circuit because

these are the load impedances. With this done, ZTh can

be found after replacing the voltage source with a short

circuit. This short circuit places the 3-Ω and j5-Ω

impedances in parallel and also the — j4-Ω and 4-Ω

impedances in parallel. Since these two parallel

arrangements are in series between terminals a and b,

The open-circuit voltage is easier to find than the

short-circuit current. By KVL applied at the bottom half



of the bridge, VTh is equal to the difference in voltage

drops across the j5- and 4-Ω impedances, which drops

can be found by voltage division. Thus,

As should be evident from the Thévenin discussion

and also from Fig. 14-lg, I is equal to the Thévenin

voltage divided by the sum of the Thévenin and load

impedances:

14.10 Find I for the circuit shown in Fig. 14-11 if IS= 

The current source does not affect ZTh, which has

the same value as found in the solution to Prob. 14.9: 

. The current source does, however,

contribute to the Thévenin voltage. By superposition, it

contributes a voltage equal to the source current times

the impedance at terminals a and b with the load

replaced by an open circuit. Since this impedance is ZTh,

the voltage contribution of the current source is 

, which is a voltage

drop from terminal b to a because the direction of the

source current is into terminal b. Consequently, the

Thévenin voltage is, by superposition, the Thévenin

voltage obtained in the solution to Prob. 14.9 minus this

voltage:



and

14.11 Find the output impedance of the circuit to the left

of terminals a and b for the circuit shown in Fig. 14-12.

Fig. 14-12

The output impedance is the same as the Thévenin

impedance. The only way of finding ZTh is by applying a

source and finding the ratio of the voltage and current

at the source terminals. This impedance cannot be

found from ZTh = VTh/IN because VTh and IN are both zero

since there are no independent sources to the left of

terminals a and b. And, of course, circuit reduction

cannot be used because of the presence of the

dependent source. The most convenient source to apply

is a  current source with a current direction into

terminal a, as shown in Fig. 14-12. Then, 

The first step in calculating ZTh is to find the control

voltage V1. It is  with the initial

negative sign occurring because the capacitor voltage

and current references are not associated (The 



current is directed into the negative terminal of V1,). The

next step is to find the current flowing down through the

j4-Ω impedance. This is the  current from the

independent current source plus the 1.5V1 = 1.5(j2)=j3-

A current from the dependent current source, a total of

1 +j3A. With this current known, the voltage Vab can be

found from the sum of the voltage drops across the

three impedances:

which, as mentioned, means that ZTh = — 9 +j2Ω The

negative resistance (— 9 Ω) is the result of the action of

the dependent source. In polar form this impedance is

14.12 Find ZTh and IN for the Norton equivalent of the

circuit shown in Fig. 14-13.

Fig. 14-13

Because of the series arm with dependent source

connected to terminal a, VTh is easier to find than IN.

This voltage is equal to the sum of the voltage drops

across the j8Ω impedance and the 3V1 dependent



voltage source. (Of course, the 4-Ω resistor has a 0-V

drop.) It is usually best to first solve for the controlling

quantity, which here is the voltage V1 across the 6-Ω

resistor. By voltage division,

Since there is a 0-V drop across the 4-Ω resistor, KVL

applied around the outside loop gives

The Thévenin impedance can be found by applying

a current source of  at terminals a and b, as shown

in the circuit in Fig. 14-14, and finding the voltage Vat.

Then, Z
Th

 = Vvb/1  = Vab. The control voltage V1,

must be found first, as to be expected. It has a different

value than in the VTh calculation because the circuit is

different. The voltage V, can be found from the current I

flowing through the 6-Ω resistor across which V1 is

taken. Since the 6- and j8-Ω impedances are in parallel,

and since  from the current source flows into this

parallel arrangement, I is, by current division,



Fig. 14-14

And, by Ohm’s law,

The negative sign is needed because the V1 and I

references are not associated.

With V1 known, vab can be found by summing the

voltage drops from terminal a to terminal b:

from which

Finally,



14.13 Find ZTh and IN for the Norton equivalent of the

transistor circuit shown in Fig. 14.15.

Fig. 14-15

The Thévenin impedance ZTh can be found directly

by replacing the independent voltage source by a short

circuit. Since with this replacement there is no source of

voltage in the base circuit, IB = 0 A and so the 50IB of

the dependent current source is also 0 A. And this

means that this dependent source is equivalent to an

open circuit. Notice that the dependent source was not

deactivated, as an independent source would be.

Instead, it is equivalent to an open circuit because its

control current is 0 A. With this current source replaced

by an open circuit, ZTh can be found by combining

impedances:

The current IN can be found from the current flowing

through a short circuit placed across terminals a and b.

Because this short circuit places the 10-kΩ and —j10-kΩ



impedances in parallel, and since IN is the current

through the — j10-kΩ impedance, then by current

division IN is

The initial negative sign is necessary because both 50IB

and IN have directions into terminal b. The 2-kΩ

resistance across terminals a and b does not appear

because it is in parallel with the short circuit. From the

base circuit,

Finally,

14.14. Use PSpice to obtain the Thévenin equivalent of

the circuit of Fig. 14-16.



Fig. 14-16

In general, using PSpice to obtain a Thévenin

equivalent involves running PSpice twice to obtain two

of the three quantities VTh, RTh, and IN. It does not

matter, of course, which two are found.

Figure 14-17 shows the corresponding PSpice circuit

for determining the open-circuit voltage. Following is the

circuit file along with the open-circuit voltage from the

output file.

Fig. 14-17



So,

Obtaining ZTh directly requires deactivating the

independent voltage source, which in turn requires

changing the node 1 specification of resistor Rl to node

0. Also, a current source of  A can be applied at the

a-b terminals with the current directed into node a.

Then, the voltage across this source has the same

numerical value as ZTh. Following is the modified circuit

file along with the source voltage from the output file.



So,

14.15 What is the maximum average power that can be

drawn from an ac generator that has an internal

impedance of  and an rms open-circuit voltage

of 12.5 kV? Do not be concerned about whether the

generator power rating may be exceeded.

The maximum average power will be absorbed by a

load that is the conjugate of the internal impedance,

which is also the Thévenin impedance. The formula for

this power is 12.5 kV and RTh =

150 cos 60° =75Ω So,

14.16 A signal generator operating at 2 MHz has an rms

open-circuit voltage of 0.5 V and an internal impedance

of  If it energizes a capacitor and parallel



resistor, find the capacitance and resistance of these

components for maximum average power absorption by

this resistor. Also, find this power.

The load that absorbs maximum average power has

an impedance Z, that is the conjugate of the internal

impedance of the generator. So,  since the

conjugate has the same magnitude and an angle that

differs only in sign. Being in parallel, the load resistor

and capacitor can best be determined from the load

admittance, which is

But

So

and

The maximum average power absorbed by the 57.7-

Ω resistor can be found from  in which RTh

is the resistance of 



Of course, 43.3 Ω is used instead of the 57.7 Ω of the

load resistor because 43.3 Ω is the Thévenin resistance

of the source as well as the resistance of the impedance

of the parallel resistor-capacitor load.

14.17 For the circuit shown in Fig. 14-18, what load

impedance ZL absorbs maximum average power, and

what is this power?

Fig. 14-18

The Thévenin equivalent of the source circuit at the load

terminals is needed. By voltage division,

The Thévenin impedance is



For maximum average power absorption, 

 the resistive part of which is RTh

8.46 cos 2.81° = 8.45Ω Finally, the maximum average

power absorbed is

14.18 In the circuit shown in Fig. 14-19, find R and L for

maximum average power absorption by the parallel

resistor and capacitor load, and also find this power.

Fig. 14-19

A good first step is to find the load impedance. Since

the impedance of the capacitor is

the impedance of the load is

Since for maximum average power absorption there

should be no reactance limiting the current to the



resistive part of the load, the inductance L should be

selected such that its inductive reactance cancels the

capacitive reactance of the load. So, ωL = 3.9 Ω, from

which L = 3.9/106 H = 3.9 μH. With the cancellation of

the reactances, the circuit is essentially the voltage

source, the resistance R, and the 4.88 Ω of the load, all

in series. As should be apparent, for maximum average

power absorption by the 4.88 Ω of the load, the source

resistance should be zero: R = 0 Ω. Then, all the source

voltage is across the 4.88 Ω and the power absorbed is

Notice that the source impedance is not the conjugate of

the load impedance. The reason is that here the load

resistance is fixed while the source resistance is a variable.

The conjugate result occurs in the much more common

situation in which the load impedance can be varied but the

source impedance is fixed.

14.19 Use superposition to find V in the circuit shown in

Fig. 14-20.

Fig. 14-20



The voltage V can be considered to have a

component V’ from the  source and another

component V” from the  source such that V = V–

+ V”. The component V– can be found by using voltage

division after replacing the  source with a short

circuit:

Similarly, V” can be found by using voltage division after

replacing the  source with a short circuit:

Adding,

14.20 Use superposition to find i in the circuit shown in

Fig. 14-21.

Fig. 14-21



It is necessary to construct the corresponding

phasor-domain circuit, as shown in Fig. 14-22. The

current I can be considered to have a component I’ from

the current source and a component I” from the voltage

source such that I = I’ + I”. The component I’ can be

found by using current division after replacing the

voltage source with a short circuit:

Fig. 14-22

And I” can be found by using Ohm’s law after replacing

the current source with an open circuit:

The negative sign is necessary because the voltage and

current references are not associated. Adding,

Finally, the corresponding sinusoidal current is



14.21 Use superposition to find i for the circuit shown in

Fig. 14-21 if the voltage of the voltage source is

changed to 

The current i can be considered to have a

component i– from the current source and a component

i” from the voltage source. Because these two sources

have different frequencies, two different phasor-domain

circuits are necessary. The phasor-domain circuit for the

current source is the same as that shown in Fig. 14-22,

but with the voltage source replaced by a short circuit.

As a result, the current phasor I’ is the same as that

found in the solution to Prob.  A. The

corresponding current is

The phasor-domain circuit for the voltage source and

ω = 2000 rad/s is shown in Fig. 14-23. By Ohm’s law.

Fig. 14-23



from which

Finally,

Notice in this solution that the phasors I’ and I”

cannot be added, as they could be in the solution to

Prob. 14-20. The reason is that here the phasors are for

different frequencies, while in the solution to Prob. 14.20

they are for the same frequency. When the phasors are

for different frequencies, the corresponding sinusoids

must be found first, and then these added. Also, the

sinusoids cannot be combined into a single term.

14.22 Although superposition does not usually apply to

power calculations, it does apply to the calculation of

average power absorbed when all sources are sinusoids

of different frequencies. (A dc source can be considered

to be a sinusoidal source of zero frequency.) Use this

fact to find the average power absorbed by the 5-Ω.

resistor in the circuit shown in Fig. 14-24.

Fig. 14-24



Consider first the dc component of average power

absorbed by the 5-Q resistor. Of course, for this

calculation the ac voltage sources are replaced by short

circuits. Also, the inductor is replaced by a short circuit

because an inductor is a short circuit to dc. So,

This 0.5-A current produces a power dissipation in the 5-

Ω resistor of Pdc = 0.52(5) = 1.25 W. The rms current

from the 6000-rad/s voltage source is, by superposition,

It produces a power dissipation of P6000 =0.42(5)=0.8w

in the 5-Ω resistor. And the rms current from the 9000-

rad/s voltage source is

It produces a power dissipation of P9000 = 0.2492(5) =

0.31 W in the 5-Ω resistor.

The total average power Pav absorbed is the sum of

these powers:

14.23 Use superposition to find V in the circuit shown in

Fig. 14-25.



Fig. 14-25

If the independent current source is replaced by an

open circuit, the circuit is as shown in Fig. 14-26, in

which V is the component of V from the voltage source.

Because of the open-circuited terminals, no part of I can

flow through the 2-Ω resistor and the 31 dependent

current source. Instead, all of I flows through the j4-Ω.

impedance as well as through the 3-Ω resistance. Thus,

Fig. 14-26

With this I known, V’ can be found from the voltage

drops across the 2- and j4-Ω impedances:



If the voltage source in the circuit of Fig. 14-25 is

replaced by a short circuit, the circuit is as shown in Fig.

14-27, where V” is the component of V from the

independent current source. As a reminder, the current

to the left of the parallel resistor and dependent-source

combination is shown as , the same as the

independent source current, as it must be. Because this

current flows into the parallel 3-Ω and j4-Ω combination,

the current I in the 3-Q resistor can be found by current

division:

Fig. 14-27

With I known, V” can be found from the voltage drops Vi

and V2 across the 2-Ω resistor and the parallel 3-Ω and

j4-Ω impedances. Since the 2-Ω resistor current is 

Also, since the current in the 3-Ω and j4-Ω parallel

combination is  A,



So

Finally, by superposition,

The main purpose of this problem is to illustrate the

fact that dependent sources are not deactivated in using

superposition. Actually, using superposition on the

circuit shown in Fig. 14-25 requires much more work

than using loop or nodal analysis.

14.24 Transform the Δ shown in Fig. 14-28a to the Y in Fig.

14-28b for (a) Z1 = Z2 = Z3 = 

Fig. 14-28

(a) Because all three Δ impedances are the same, all three

Y impedances are the same and each is equal to one-

third of the common Δ impedance:



(b) All three Δ-to-Y transformation formulas have the

same denominator, which is

By these formulas,

14.25 Transform the Y shown in Fig. 14-28b to the Δ in Fig.

14-28a for (a) ZA = ZB = ZC = 4 - j7 Ω, and (b) ZA = 10

Ω, ZB = 6 – j8 Ω2, and Zc = 

(a) Because all three Y impedances are the same, all three

Δ impedances are the same and each is equal to three

times the common Y impedance. So,

(b) All three Y-to-A transformation formulas have the

same numerator, which here is



By these formulas,

14.26 Using a Δ-to-Y transformation, find I for the circuit

shown in Fig. 14-29.

Fig. 14-29

Extending between nodes A, B, and C there is a Δ,

as shown in Fig. 14-30, that can be transformed to the

shown Y, with the result that the entire circuit becomes

series-parallel and so can be reduced by combining

impedances. The denominator of each Δ-to-Y

transformation formula is 3 + 4 — j4 — 1 — j4 = 

 And by these formulas,



Fig. 14-30

With this A-to-Y transformation, the circuit is as

shown in Fig. 14-31. Since this circuit is in series-parallel

form, the input impedance Zin can be found by circuit

reduction. And then Zin can be divided into the

Fig. 14-31

applied voltage to get the current I:



Finally,

Incidentally, the circuit shown in Fig. 14-29 can also

be reduced to series-parallel form by transforming the Δ

of the -;2-, 4-, and jl-Ω impedances to a Y, or by

transforming to a Δ either the Y of the 3-, -j2-, and 4-Ω

impedances or that of the —j4-, 4-, and j l-Ω

impedances.

14.27 Find the current I for the circuit shown in Fig. 14-32.

Fig. 14-32



As the circuit stands, a considerable number of

mesh or nodal equations are required to find I. But the

circuit, which has a Δ and a Y, can be reduced easily to

just two meshes by using AΔ-Y transformations.

Although these transformations do not always lessen

the work required, they do here because they are so

simple as a result of the common impedances of the Y

branches and also of the Δ branches.

One way to reduce the Δ-Y configuration is shown in

Fig. 14-33. If the Y of 9 + jl2-Ω impedances is

transformed to a Δ, the result is a Δ of 3(9 +j’12) = 27

+J36-Ω impedances in parallel with the –j’36-Ω

impedances of the original Δ, as shown in Fig. 14-33«.

Combining the parallel impedances produces a Δ with

impedances of

as shown in Fig. 14-33b. Then, if this is transformed to a

Y, the Y has impedances of (48 –j36)/3 = 16 –j12 Ω, as

shown in Fig. 14-33c.

Figure 14-34 shows the circuit with this Y replacing

the Δ-Y combination. The self-impedances of both

meshes are the same: 4 + 16 – j12 – j12 + 16 + 4 = 40

–j24Ω, and the mutual impedance is 20 — 712 Ω. So, the

mesh equations are



Fig. 14-33

By Cramer’s rule.

In reducing the Δ-Y circuit, it would have been easier

to transform the Δ of —j36-Ω impedances to a Y of –

j36/3 = –j12-Ω impedances. Then, although not obvious,

the impedances of this Y would be in parallel with

corresponding impedances of the other Y as a result of

the two center nodes being at the same potential, which

occurs because of equal impedance arms in each Y. If

the parallel impedances are combined, the result is a Y

of equal impedances of

the same as shown in Fig. 14-33r.



Fig. 14-34

14.28 Assume that the bridge circuit of Fig. 14-3 is balanced

for Zi = 5 Ω,  and Z3 = 8.2 Ω, and for a

source frequency of 2 kHz. If branch Zx consists of two

components in series, what are they?

The two components can be determined from the

real and imaginary parts of Zx. From the bridge balance

equation,

which corresponds to a 5.68-Ω resistor and a series

inductor that has a reactance of 3.28 Ω. The

corresponding inductance is

14.29 The bridge circuit shown in Fig. 14-35 is a capacitance

comparison bridge that is used for measuring the

capacitance Cx of a capacitor and any resistance Rx



inherent to the capacitor or in series with it. The bridge

has a standard capacitor, the capacitance Cs of which is

known. Find Rx and Cx if the bridge is in balance for R1 =

500 Ω, R2 = 2 kΩ, R3 = 1 kΩ, Cs = 0.02 μF, and a source

radian frequency of 1 krad/s.

Fig. 14-35

The bridge balance equation can be used to

determine Rx and Cx. From a comparison of Figs. 14-3

and 14-35, Z1 = 500 Ω Z2 = 2000 Ω,

and

From the bridge balance equation Zx = Z2Z3/Z1,



For two complex quantities in rectangular form to be

equal, as here, both the real parts must be equal and

the imaginary parts must be equal. This means that Rx

= 4000 Ω and

14.30 For the capacitance comparison bridge shown in Fig.

14-35, derive general formulas for Rx and Cx in terms of

the other bridge components.

For bridge balance, Z1Zx = Z2Z3, which in terms of the

bridge components is

From equating real parts, R1Rx = R2R3, or Rx = R2R3/R1.

And from equating imaginary parts, —R1/(ωCx) = —

R2/(ωCs), or Cx = R1Cs/R2.

14.31 The bridge circuit shown in Fig. 14-36, called a Maxwell

bridge, is used for measuring the inductance and

resistance of a coil in terms of a capacitance standard.

Find Lx and Rx if the bridge is in balance for R1 = 500kΩ,

R2 = 6.2 kΩ, R3 = 5kΩ, and Cs = 0.1 μF.



Fig. 14-36

First, general formulas will be derived for Rx and Lx

in terms of the other bridge components. Then, values

will be substituted into these formulas to find Rx and Lx

for the specified bridge. From a comparison of Figs. 14-3

and 14-36, Z2 = R2, Z3 = R3, Zx = Rx + jωLx, and

Substituting these into the bridge balance equation Z1Zx

= Z2Z3 gives

which, upon being multiplied by R1ωCs — j1 and

simplified, becomes



From equating real parts,

and from equating imaginary parts,

which are the general formulas for Lx and Rx. For the

values of the specified bridge, these formulas give

Supplementary Problems

14.32 Find VTh and ZTh for the Thévenin equivalent of the

circuit shown in Fig. 14-37.

Ans. 

14.33 What resistor will draw an 8-A rms current when

connected across terminals a and b of the circuit shown

in Fig. 14-37?



Fig. 14-37

Ans. 8.44 Ω

14.34 Find IN and ZTh for the Norton equivalent of the circuit

shown in Fig. 14-38.

Fig. 14-38

Ans. 

14.35 Find VTh and ZTh for the Thévenin equivalent of the

circuit shown in Fig. 14-39 for R = 0 Ω.

Fig. 14-39

Ans. 



14.36 Find IN and ZTh for the Norton equivalent of the circuit

shown in Fig. 14-39 for R = 2 Ω

Ans. 

14.37 Find VTh and ZTh for the Thévenin equivalent of the

circuit shown in Fig. 14-40 for R1 = R2 = 0Ω and Vs = 0 V.

Fig. 14-40

Ans. 

14.38 Find VTh and ZTh for the Thévenin equivalent of the

circuit shown in Fig. 14-40 for R1 = 5 Ω, R2 4 Ω, and 

Ans. 

14.39 Find VTh and ZTh for the Thévenin equivalent of the

circuit shown in Fig. 14-41.

Fig. 14-41



Ans. 

14.40 What resistor will draw a 2-A rms current when

connected across terminals a and b of the circuit shown

in Fig. 14-41?

Ans. 1.21 Ω

14.41 Using Thévenin’s or Norton’s theorem, find 1 for the

bridge circuit shown in Fig. 14-42 if Is = 0 A and ZL =

60∠30° Ω.

Ans. 

14.42 Find I for the bridge circuit shown in Fig. 14-42 if 

 and 

Fig. 14-42

Ans. 

14.43 Find the output impedance of the circuit shown in Fig.

14-43.



Fig. 14-43

Ans. 

14.44 Find the output impedance of the circuit shown in Fig.

14-43 with the I reference direction reversed--being up

instead of down.

Ans. 

14.45 Find VTh and ZTh for the Thévenin equivalent of the

circuit shown in Fig. 14-44.

Fig. 14-44

Ans. 

14.46 In the circuit shown in Fig. 14-44, reverse the I

reference direction—have it up instead of down—and



find IN and ZTh for the Norton equivalent circuit.

Ans. 

14.47 Find the output impedance at 104 rad/s of the circuit

shown in Fig. 14-45.

Fig. 14-45

Ans. 

14.48 Use PSpice to obtain the Thévenin equivalent at the a

and b terminals of the phasor-domain circuit

corresponding to the time-domain circuit of Fig. 14-46.

Fig. 14-46

Ans. 

14.49 What is the maximum average power that can be

drawn from an ac generator that has an internal



impedance of  and an open-circuit voltage of 25

kV rms?

Ans. 1.66 MW

14.50 A signal generator operating at 5 MHz has an rms

short-circuit current of 100 mA and an internal

impedance of . Ω If it energizes a capacitor and a

parallel resistor, find the capacitance and resistance for

maximum average power absorption by the resistor.

Also, find this power.

Ans. 136 pF, 85.1 Ω, 0.213 W

14.51 For the circuit shown in Fig. 14-47, what ZL draws

maximum average power and what is this power?

Fig. 14-47

Ans. 

14.52 In the circuit shown in Fig. 14-47, move the —j8-Ω.

impedance from in series with the current source to in

parallel with it. Find the ZL that absorbs maximum

average power and find this power.

Ans. 



14.53 Use superposition to find I for the circuit shown in Fig.

14-48.

Fig. 14-48

Ans. 

14.54 For the circuit shown in Fig. 14-49, find the average

power dissipated in the 3-Ω resistor using superposition

and then without using superposition. Repeat this with

the 10° phase angle changed to 40° for the one voltage

source. (This problem illustrates the fact that

superposition can be used to find the average power

absorbed by a resistor from two sources of the same

frequency only if these sources produce resistor currents

that have a 90° difference in phase angle.)

Fig. 14-49



Ans. 34.7 W using superposition and without using

superposition; an incorrect 34.7 W with superposition and

a correct 20.3 W without using superposition

14.55 Find v for the circuit shown in Fig. 14-50.

Fig. 14-50

Ans. 5.24 sin (5000t — 61.6°) — 4.39 sin (8000t — 34.6°)

V

14.56 Find the average power dissipated in the 5-Q resistor of

the circuit shown in Fig. 14-50.

Ans. 5.74 W

14.57 Find i for the circuit shown in Fig. 14-51.

Fig. 14-51

Ans. —2 sin (5000t + 23.1°) — 4.96 sin (104t — 2.87°) A



14.58 Find the average power absorbed by the 200-Ω resistor

in the circuit shown in Fig. 14-51.

Ans. 523 W

14.59 Transform the T shown in Fig. 14-52a to the Π in Fig.

14-52b for (a)  and (b) 

Fig. 14-52

Ans. (a)  (b) 

14.60 Transform the Π shown in Fig. 14-52b to the T in Fig.

14-52a for (a)  and (b) 

Ans. (a)  (b) 

14.61 Using a Δ-Y transformation, find I for the circuit shown

in Fig. 14-53.



Fig. 14-53

Ans. 

14.62 Using a Δ-Y transformation, find I for the circuit shown

in Fig. 14-54.

Fig. 14-54

Ans. 

14.63 Assume that the bridge circuit shown in Fig. 14-3 is

balanced for  and Z3 = 9.1 Ω,

and for a source frequency of 5 kHz. If branch Zx consists

of two components in parallel, what are they?

Ans. A 39.9-Ω resistor and a 462-μH inductor



14.64 Find Cx and Rx for the capacitor comparison bridge

shown in Fig. 14-35 if this bridge is balanced for R1 = 1

kΩ, R2 = 4 kΩ, R3 = 2 kΩ, and Cs = 0.1 μF.

Ans. 25 nF, 8 kΩ

14.65 Find Lx and Rx for the Maxwell bridge shown in Fig. 14-

36 if this bridge is balanced for R1 = 50 kΩ, R2 = 8.2 kΩ,

R3 = 4 kΩ, and Cs = 0.05 μF.

Ans. 1.64 H, 656 Ω



Chapter 15


Power in AC Circuits

INTRODUCTION

The major topic of this chapter is the average power absorbed

over a period by ac components and circuits. Consequently, it will

not be necessary to always use the adjective “average” with

power to avoid misunderstanding. Also, it is not necessary to use

the subscript notation “av” with the symbol P. Similarly, since the

popular power formulas have only effective or rms values of

voltage and current, the subscript notation “eff” can be deleted

from Veff and Ieff (or “rms” from Vrms and Irms) and just the

lightface V and I used to designate effective or rms values.

As a final introductory point, in the following text material and

problems the specified voltages and currents always have

associated references unless there are statements or

designations to the contrary.

CIRCUIT POWER ABSORPTION

The average power absorbed by a two-terminal ac circuit can

be derived from the instantaneous power absorbed. If the circuit

has an applied voltage v = Vm sin (ωt + 0) and an input current i

= Im sin ωt, the instantaneous power absorbed by the circuit is

This can be simplified by using the trigonometric identity



and the substitutions A = ωt + θ and B = ωt. The result is

Since

the instantaneous power can be expressed as

The average value of this power is the sum of the average values

of the two terms. The second term, being sinusoidal, has a zero

average value over a period. The first term, though, is a constant,

and so must be the average power absorbed by the circuit over a

period. So,

It is important to remember that in this formula the angle θ is the

angle by which the input voltage leads the input current. For a

circuit that does not contain any independent sources, this is the

impedance angle.

For a purely resistive circuit, θ = 0° and cos 0° = 1 and so P =

VI cos θ = VI. For a purely inductive circuit, θ = 90° and cos θ =

cos 90° = 0, and so P = 0 W, which means that a purely inductive

circuit absorbs zero average power. The same is true for a purely

capacitive circuit since, for it, 0 = –90° and cos(–90°) = 0.

The term “cos 0” is called the power factor. It is often

symbolized as PF, as in P = VI × PF. The angle 0 is called the

power factor angle. As mentioned, it is often also the impedance

angle.



The power factor angle has different signs for inductive and

capacitive circuits, but since cos θ = cos (— θ), the sign of the

power factor angle has no effect on the power factor. Because the

power factors of inductive and capacitive circuits cannot be

distinguished mathematically, they are distinguished by name.

The power factor of an inductive circuit is called a lagging power

factor and that of a capacitive circuit is called a leading power

factor. These names can be remembered from the fact that for an

inductive circuit the current lags the voltage, and for a capacitive

circuit the current leads the voltage.

Another power formula can be obtained by substituting V = IZ

into P = VI cos θ

Of course, R = Z cos θ is the input resistance, the same as the

real part of the input impedance. The formula P = I2R may seem

obvious from dc considerations, but remember that R is usually

not the resistance of a physical resistor. Rather, it is the real part

of the input impedance and is usually dependent on inductive

and capacitive reactances as well as on resistances.

Similarly, with the substitution of I = YV,

in which G = Y cos θ is the input conductance. In using this

formula P = V2G, remember that, except for a purely resistive

circuit, the input conductance G is not the inverse of the input

resistance R. If, however, V is the voltage across a resistor of R

ohms, then P = V2G = V2/R.

WATTMETERS

Average power can be measured by an instrument called a

wattmeter, as shown in Fig. 15-1. It has two pairs of terminals: a

pair of voltage terminals on the left-hand side and a pair of

current terminals on the right-hand side. The bottom terminal of



each pair has a ± designation for aiding in connecting up the

wattmeter, as will be explained.

Fig. 15-1

For a measurement of power absorbed by a load, the voltage

terminals are connected in parallel with the load and the current

terminals are connected in series with the load. Because the

voltage circuit inside the wattmeter has a very high resistance

and the current circuit has a very low resistance, the voltage

circuit can be considered an open circuit and the current circuit a

short circuit for the power measurements of almost all loads. As a

result, inserting a wattmeter in a circuit seldom has a significant

effect on the power absorbed. For convenience, in circuit

diagrams the voltage circuit will be shown as a coil labeled “pc”

(for potential coil) and the current circuit will be shown as a coil

labeled “cc” (for current coil), as shown in Fig. 15-2. One type of

wattmeter, the electrodynamometer wattmeter, actually has

such coils.



Fig. 15-2

The ± designations help in making wattmeter connections so

that the wattmeter reads upscale, to the right in Fig. 15-1, for

positive absorbed power. A wattmeter will read upscale with the

connection in Fig. 15-2 if the load absorbs average power. Notice

that, for the associated voltage and current references, the

reference current enters the ± current terminal and the positive

reference of the voltage is at the ± voltage terminal. The effect is

the same, though, if both coils are reversed. If a load is active—a

source of average power—then one coil connection, but not both,

should be reversed for an upscale reading. Then, the wattmeter

reading is considered to be negative for this connection.

Incidentally, in the circuit shown in Fig. 15-2, the wattmeter reads

essentially the same with the potential coil connected on the

source side of the current coil instead of on the load side.

REACTIVE POWER

For industrial power considerations, a quantity called reactive

power is often useful. It has the quantity symbol Q and the unit of

voltampere reactive, the symbol for which is VAR. Reactive

power, which is often referred to as vars, is defined as

for a two-terminal circuit with an input rms voltage V and an

input rms current I. This Q is absorbed reactive power. The θ is

the angle by which the input voltage leads the input current—the



power factor angle. The quantity “sin θ” is called the reactive

factor of the load and has the symbol RF. Notice that it is

negative for capacitive loads and is positive for inductive loads. A

load that absorbs negative vars is considered to be producing

vars—that is, it is a source of reactive power.

As was done for real power P, other formulas for Q can be

found by substituting from V = IZ and I = YV into Q = VI sin θ.

These formulas are

where X is the reactance or imaginary part of the input

impedance and B is the susceptance or imaginary part of the

input admittance. (Remember that B is not the inverse of X.)

Additionally, if V is the voltage across an inductor or capacitor

with reactance X, then Q = V2/X. So, Q = V2ωL for an inductor

and Q = —ωCV2 for a capacitor.

COMPLEX POWER AND APPARENT POWER

There is a relation among the real power of a load, the reactive

power, and another power called the complex power. For the

derivation of this relation, consider the load impedance triangle

shown in Fig. 15-3a. If each side is multiplied by the square of the

rms current I to the load, the result is the triangle shown in Fig.

15-3b. Notice that this multiplication does not affect the

impedance angle θ since each side is multiplied by the same

quantity. The horizontal side is the real power P = I2R, the vertical

side is j1 times the reactive power, jI2X = jQ, and the hypotenuse

I2Z is the complex power of the load. Complex power has the

quantity symbol S and the unit of Voltampere with symbol VA.

These power quantities are shown in Fig. 15-3c, which is known

as the power triangle. From this triangle, clearly S = P + jQ.



Fig. 15-3

The length of the hypotenuse |S| = S, is called the apparent

power. Its name comes from the fact that it is equal to the

product of the input rms voltage and current:

and from the fact that in dc circuits this product VI is the power

absorbed. The substitution of V = IZ and I = V/Z into S = VI

produces two other formulas: S = I2Z and S = V2/Z.

The VI formula for apparent power leads to another popular

formula for complex power. Since , and S = VI, then 

.

A third formula for complex power is S = VI*, where I* is the

conjugate of the input current I. This is a valid formula since the

magnitude of VI* is the product of the applied rms voltage and

current, and, consequently, is the apparent power. Also, the angle

of this product is the angle of the voltage phasor minus the angle

of the current phasor, with the subtraction occurring because of

the use of the conjugate of the current phasor. This difference in

angles is, of course, the complex power angle 0—the angle by

which the input voltage leads the input current—and also the

power factor angle.

One use of complex power is for obtaining the total complex

power of several loads energized by the same source, usually in

parallel. It can be shown that the total complex power is the sum

of the individual complex powers, regardless of how the loads are



connected. It follows that the total real power is the sum of the

individual real powers, and that the total reactive power is the

sum of the individual reactive powers. To repeat for emphasis:

Complex powers, real powers, and reactive powers can be added

to obtain the total complex power, real power, and reactive

power, respectively. The same is not true for apparent powers. In

general, apparent powers cannot be added to obtain a total

apparent power any more than rms voltages or currents can be

added to obtain a total rms voltage or current.

The total complex power can be used to find the total input

current, as should be apparent from the fact that the magnitude

of the total complex power, the apparent power, is the product of

the input voltage and current. Another use for complex power is

in power factor correction, which is the subject of the next

section.

POWER FACTOR CORRECTION

In the consumption of a large amount of power, a large power

factor is desirable—the larger the better. The reason is that the

current required to deliver a given amount of power to a load is

inversely proportional to the load power factor, as is evident from

rearranging P = VI cos θ to

So, for a given power P absorbed and applied voltage V, the

smaller the power factor the greater the current I to the load.

Larger than necessary currents are undesirable because of the

accompanying larger voltage losses and I2R power losses in

power lines and other power distribution equipment.

As a practical matter, low power factors are always the result

of inductive loads because almost all loads are inductive. From a

power triangle viewpoint, the vars that such loads consume make

the power triangle have a large vertical side and so a large angle

θ. The result is a small cos θ, which is the power factor. Improving

the power factor of a load requires adding capacitors across the



power line at the load to provide the vars consumed by the

inductive load. From another point of view, these capacitors

supply current to the load inductors, which current, without the

capacitors, would have to come over the power line. More

accurately, there is a current interchange between these

capacitors and the load inductors.

Although adding sufficient capacitance to increase the power

factor to unity is possible, it may not be economical. For finding

the minimum capacitance required to improve the power factor

to the amount desired, the general procedure is to first calculate

the initial number of vars Qi being consumed by the load. This

can be calculated from Qi = P tan θi, which formula should be

apparent from the power triangle shown in Fig. 15-3c. Of course,

θiis the load impedance angle. The next step is to determine the

final impedance angle θf from the final desired power factor: θf =

cos–1 PFf. This angle is used in Qf = P tan θf to find the total

number of vars Qf for the combined load. This formula is valid

since adding the parallel capacitor or capacitors does not change

P. The next step is to find the vars that the added capacitors must

provide: ΔQ = Qf = Qi. Finally, ΔQ is used to find the required

amount of capacitance:

If ΔQ is defined as Qi = Qf, the negative sign can be eliminated in

the formula for C; then, C = ΔQ/ωV2. All this procedure can be

done in one step with

Although calculating the capacitance required for power factor

correction may be a good academic exercise, it is not necessary

on the job. Manufacturers specify their power factor correction

capacitors by operating voltages and the kilovars the capacitors



produce. So, for power factor correction, it is only necessary to

know the voltages of the lines across which the capacitors will be

placed and the kilovars required.

Solved Problems

15.1 The instantaneous power absorbed by a circuit is p = 10

+ 8 sin (377t + 40°) W. Find the maximum, minimum, and

average absorbed powers.

The maximum value occurs at those times when the sinusoidal

term is a maximum. Since this term has a maximum value of 8,

pmax = 10 + 8 = 18 W. The minimum value occurs when the

sinusoidal term is at its minimum value of –8: pmin = 10 – 8 = 2

W. Because the sinusoidal term has a zero average value, the

average power absorbed is P = 10 + 0 = 10 W.

15.2 With v = 300 cos(20t + 30°) V applied, a circuit draws I =

15 cos (20t – 25°) A. Find the power factor and also the

average, maximum, and minimum absorbed powers.

The power factor of the circuit is the cosine of the power

factor angle, which is the angle by which the voltage leads

the current:

It is lagging because the current lags the voltage.

The average power absorbed is the product of the rms

voltage and current and the power factor:

The maximum and minimum absorbed powers can be found

from the instantaneous power, which is



This can be simplified by using the trigonometric identity

and the substitutions A = 20t + 30° and B = 20t – 25. The

result is

Clearly, the maximum value occurs when the first cosine

term is 1 and the minimum value when this term is –1:

The negative minimum absorbed power indicates that the

circuit is delivering power instead of absorbing it.

15.3 For each following load voltage and current pair find the

corresponding power factor and average power absorbed:

(a) v = 277  sin (377t + 30°) V, i = 5.1 sin(377t – 10°) A

(b) v = 679 sin (377t + 50°) V, I = 13 cos (377t + 10°) A

(c) v = –170 sin(377t – 30°)V, i = 8.1 cos (377t + 30°) A

(a) Since the angle by which the voltage leads the current is θ

= 30° – (–10°) = 40°, the power factor is PF = cos 40° =

0.766. It is lagging because the current lags the voltage, or,

in other words, because the power factor angle θ is positive.

The average power absorbed is the product of the rms

voltage and current and the power factor:

(b) The power factor angle θ can be found by phase angle

subtraction only if v and i have the same sinusoidal form,



which they do not have here. The cosine term of i can be

converted to the sine form of v by using the identity cos x =

sin (x + 90°):

So, the power factor angle is θ = 50° – 100° = –50°, and the

power factor is PF = cos (– 50°) = 0.643. It is a leading power

factor because the current leads the voltage, and also because θ

is negative, which is equivalent. The average power absorbed is

(c) The voltage sinusoid will be put in the same sinusoidal form

as the current sinusoid as an aid in finding θ. The negative

sign can be eliminated by using –sin x = sin (x ± 180°):

Then the identity sin x = cos (x – 90°) can be used:

The positive sign of ±180° should be selected to make the

voltage and current phase angles as close together as

possible:

So, θ = 60° – 30° = 30°, and the power factor is PF = cos

30° = 0.866. It is lagging because θ is positive. Finally, the

average power absorbed is



15.4 Find the power factor of a circuit that absorbs 1.5 kW for a

120-V input voltage and a 16-A current.

From P = VI × PF, the power factor is

There is not enough information given to determine

whether this power factor is leading or lagging.

Note that the power factor is equal to the average power

divided by the apparent power. Some authors of circuit analysis

books use this for the definition of power factor because it is

more general than PF = cos θ.

15.5 What is the power factor of a fully loaded 10-hp induction

motor that operates at 80 percent efficiency while drawing

28 A from a 480-V line?

The motor power factor is equal to the power input

divided by the apparent power input. And, the power input is

the power output divided by the efficiency of operation:

in which 1 hp = 745.7 W is used. So,

This power factor is lagging because induction motors are

inductive loads.



15.6 Find the power absorbed by a load of 6∠30° Ω when 42 V

is applied.

The rms current needed for the power formulas is equal

to the rms voltage divided by the magnitude of the

impedance: I = 42/6 = 7 A. Of course, the power factor is the

cosine of the impedance angle: PF = cos 30° = 0.866. Thus,

The absorbed power can also be obtained from P = I2R, in

which R = Z cos θ = 6 cos 30° = 5.2 Ω:

The power cannot be found from P = V2/R, as is evident

from the fact that V2/R = 422/5.2 = 339 W, which is

incorrect. The reason for the incorrect result is that the 42 V

is across the entire impedance and not just the resistance

part. For P = V2/R to be valid, the V used must be that across

R.

15.7 What power is absorbed by a circuit that has an input

admittance of 0.4 + j0.5 S and an input current of 30 A?

The formula P = V2G can be used after the input voltage V is

found. It is equal to the current divided by the magnitude of the

admittance:

So P = V2G = (46.85)20.4 = 878 W

Alternatively, the power formula P = VI cos θ can be

used. The power factor angle θ is the negative of the

admittance angle: θ = –tan–1 (0.5/0.4) = – 51.34°. So,



15.8 A resistor in parallel with a capacitor absorbs 20 W when

the combination is connected to a 240-V, 60-Hz source. If

the power factor is 0.7 leading, what are the resistance and

capacitance?

The resistance can be found by solving for R in P = V2/R:

One way to find the capacitance is from the susceptance B,

which can be found from B = G tan φ after the conductance G

and admittance angle φ are known. The conductance is

For this capacitive circuit, the admittance angle is the

negative of the power factor angle: φ = –(–cos–1 0.7) = 45.6°.

So,

Finally, since B = wC,

15.9 A resistor in series with a capacitor absorbs 10 W when

the combination is connected to a 120-V, 400-Hz source. If

the power factor is 0.6 leading, what are the resistance and

capacitance?

Because this is a series circuit, impedance should be

used to find the resistance and capacitance. The impedance

can be found by using the input current, which from P = VI ×

PF is



The magnitude of the impedance is equal to the voltage

divided by the current, and the impedance angle is, for this

capacitive circuit, the negative of the arccosine of the power

factor:

From the real part the resistance is R = 518 Ω, and from the

imaginary part and X = –1/ωC, the capacitance is

15.10 If a coil draws 0.5 A from a 120-V, 60-Hz source at a 0.7

lagging power factor, what are the coil resistance and

inductance?

The resistance and inductance can be obtained from the

impedance. The impedance magnitude is Z = V/I = 120/0.5

= 240 Q, and the impedance angle is the power factor angle:

θ = cos–1 0.7 = 45.57°. So, the coil impedance is Z =

240∠45.57° = 168 + j171.4 Ω. From the real part, the coil

resistance is R = 168 Ω, and from the imaginary part the coil

reactance is 171.4 Ω. The inductance can be found from X =

ωL. It is L = X/ω = 171.4/2π(60) = 0.455 H.

15.11 A resistor and parallel capacitor draw 0.2 A from a 24-V,

400-Hz source at a 0.8 leading power factor. Find the

resistance and capacitance.

Since the components are in parallel, admittance should

be used to find the resistance and capacitance. The

admittance magnitude is Y = I/V = 0.2/24 = 8.33 mS, and

the admittance angle is, for this capacitive circuit, the



arccosine of the power factor: cos –1 0.8 = 36.9°. Thus, the

admittance is

From the real part, the conductance of the resistor is 6.67

mS, and so the resistance is R = 1/(6.67 × 10–3) = 150 Ω.

From the imaginary part the capacitive susceptance is 5 mS,

and so the capacitance is

15.12 Operating at maximum capacity, a 12 470-V alternator

supplies 35 MW at a 0.7 lagging power factor. What is the

maximum real power that the alternator can deliver?

The limitation on the alternator capacity is the maximum

voltamperes—the apparent power, which is the real power

divided by the power factor. For this alternator, the

maximum apparent power is P/PF = 35/0.7 = 50 MVA. At

unity power factor all of this would be real power, which

means that the maximum real power that this alternator can

supply is 50 MW.

15.13 An induction motor delivers 50 hp while operating at 80

percent efficiency from 480-V lines. If the power factor is

0.6, what current does the motor draw? If the power factor is

0.9, instead, what current does this motor draw?

The current can be found from P = VI × PF, where P is

the motor input power of 50 × 745.7/0.8 = 46.6 kW. For a

power factor of 0.6, the current to the motor is

And, for a power factor of 0.9, it is



This 54-A decrease in current for the same output power shows

why a large power factor is desirable.

15.14 For the circuit shown in Fig. 15-4, find the wattmeter

reading when the ± terminal of the potential coil is

connected to node a, and also when it is connected to node

b.

Fig. 15-4

The wattmeter reading is equal to VI cos θ, where V is the rms

voltage across the potential coil, 7 is the rms current flowing

through the current coil, and θ is the phase angle difference of

the corresponding voltage and current phasors when they are

referenced as shown with respect to the ± markings of the

wattmeter coils. These three quantities must be found to

determine the wattmeter reading.

The phasor current I is

With the ± terminal of the potential coil at node a, the phasor

voltage drop V across this coil is the 200∠0° -V source

voltage minus the drop across the 5-Ω resistor:



The wattmeter reading is

With the ± terminal of the potential coil at node b, V is equal to

the voltage drop across the j10-Ω impedance and the 100∠30°-V

source:

And so the wattmeter reading is

Probably the wattmeter cannot directly give a negative reading. If

not, then the connections to one wattmeter coil should be

reversed so that the wattmeter reads upscale. And, the reading

should be interpreted as being negative.

15.15 In the circuit shown in Fig. 15-5, find the total power

absorbed by the three resistors. Then find the sum of the

readings of the two wattmeters. Compare results.



Fig. 15-5

The powers absorbed by the resistors can be found by using P

= I2R. The current through the resistors

Of course, only the rms values of these currents are used in P =

I2R:

The currents I1 and I2 are needed in finding the wattmeter

readings since these are the currents that flow through the

current coils:



Obviously, the potential coil voltages are V1 = 30∠50° V and V2

= –40∠–20 = 40∠160 V. These potential coil voltages and current

coil currents produce wattmeter readings that have a sum of

Observe that this sum of the two wattmeter readings is equal

to the total power absorbed. This should not be expected, since

each wattmeter reading cannot be associated with powers

absorbed by certain resistors. It can be shown, though, that this

result is completely general for loads with three wires and for the

connections shown. This use of wattmeters is the famous two-

wattmeter method that is popular for measuring power to three-

phase loads, as will be considered in Chap. 17.

15.16 What is the reactive factor of an inductive load that has

an apparent power input of 50 kVA while absorbing 30 kW?

The reactive factor is the sine of the power factor angle θ,

which is

So 

15.17 With v = 200 sin (377t + 30°) V applied, a circuit draws i

= 25 sin (377t – 20°) A. What is the reactive factor and what

is the reactive power absorbed?

The reactive factor is the sine of the power factor angle

θ, which is the phase angle of the voltage minus the phase

angle of the current: θ = 30 – (– 20°) = 50°. So, RF = sin 50°

= 0.766. The reactive power absorbed can be found from Q

= VI × RF, where V and I are the rms values of the voltage

and current:



15.18 What is the reactive factor of a circuit that has an input

impedance of 40∠50° Ω? Also, what reactive power does the

circuit absorb when the input current is 5 A?

The reactive factor is the sine of the impedance angle: RF = sin

50° = 0.766. An easy way to find the reactive power is with the

formula Q = I2X, where X, the reactance, is equal to 40 sin 50° =

30.64 Ω:

15.19 What is the reactive factor of a circuit that has an input

impedance of 20∠–40° Q? What is the reactive power

absorbed with 240 V applied?

The reactive factor is the sine of the impedance angle:

RF = sin (– 40) = –0.643. Perhaps the easiest way to find the

reactive power absorbed is from Q = VI × RF. The only

unknown in this formula is the rms current, which is equal to

the rms voltage divided by the magnitude of impedance: I =

VIZ = 240/20= 12 A. Then,

The negative sign indicates that the circuit delivers vars, as

should be expected from this capacitive circuit.

As a check, the formula Q = I2X can be used, in which X,

the imaginary part of the impedance, is X = 20 sin (–40°)= –

12.86 Ω: Q = 122(–12.86) = – 1.85 kVAR, the same.

15.20 When 3 A flows through a circuit with an input

admittance of 0.4 +/0.5 S, what reactive power does the

circuit consume?

The reactive power consumed can be found from Q = I2X after

X is found from the admittance. Of course X is the imaginary part



of the input impedance Z. Solving for Z,

So, x = –1.22 Ω and

The negative sign indicates that the circuit delivers reactive

power.

A check can be made by using Q = – V2B, where V = IZ

= 3(1.56) = 4.68 V. (Of course, B = 0.5 S from the input

admittance.) So,

15.21 Two circuit elements in series consume 60 VAR when

connected to a 120-V, 60-Hz source. If the reactive factor is

0.6, what are the two components and what are their

values?

The two components can be found from the input

impedance. The angle of this impedance is the arcsine of the

reactive factor: θ = sin–1 0.6 = 36.9°. The magnitude of the

impedance can be found by substituting I = V/Z into Q = VI

× RF:

So 

From this impedance, the two elements must be a resistor

with a resistance of R = 115 Ω and an inductor with a

reactance of 86.4 Ω. The inductance is



15.22 What resistor and capacitor in parallel present the same

load to a 480-V, 60-Hz source as a fully loaded 20-hp

synchronous motor that operates at a 75 percent efficiency

and a 0.8 leading power factor?

The resistance can be found from the motor input power,

which is

From Pin = v2/R,

The corresponding conductance and the admittance angle,

which is the negative of the power factor angle, can be used

to find the capacitive susceptance. And then the capacitance

can be found from this susceptance. The conductance is G =

1/11.6 = 0.0863 S, and the admittance angle is φ = cos–1 0.8

= 36.9°. So, the susceptance is

Finally, the capacitance is this susceptance divided by the

radian frequency:

15.23 A 120-mH inductor is energized by 120 V at 60 Hz. Find

the average, peak, and reactive powers absorbed.



Since the power factor is zero (PF = cos 90° = 0), the inductor

absorbs zero average power: P = 0 W. The peak power can be

obtained from the instantaneous power. As derived in this

chapter, the general expression for instantaneous power is

For an inductor, θ = 90°, which means that the first term is

zero. Consequently, the peak power is the peak value of the

second term, which is VI: pmax = VI. The voltage V is given: V

= 120 V. The current I can be found from this voltage divided

by the inductive reactance:

So pmax = VI = 120(2.65) = 318 W

The reactive power absorbed is

which has the same numerical value as the peak power

absorbed by the inductor. This is generally true because Q =

I2X = (IX)I = VI, and VI is the peak power absorbed by the

inductor.

15.24 What are the power components resulting from a 4-A

current flowing into a load of 30∠40° Ω? In other words,

what are the complex, real, reactive, and apparent powers

of the load?

From Fig. 15-3b, the complex power S is

The real power is the real part, P = 368 W, the reactive

power is the imaginary part, Q = 309 VAR, and the apparent



power is the magnitude, S = 480 VA.

15.25 Find the power components of an induction motor that

delivers 5 hp while operating at an 85 percent efficiency and

a 0.8 lagging power factor.

The input power is

The apparent power, which is the magnitude of the complex

power, is the real power divided by the power factor: S =

4.386/0.8 = 5.48 kVA. The angle of the complex power is the

power factor angle: θ = cos–1 0.8 = 36.9°. So, the complex

power is

The reactive power is, of course, the imaginary part: Q = 3.29

kVAR.

15.26 Find the power components of a load that draws 20∠–

30° A with 240∠20° V applied.

The complex power can be found from S = VI*. Since I =

20∠– 30° A, its conjugate is I* = 20∠30° A, and the complex

power is

From the magnitude and real and imaginary parts, the apparent,

real, and reactive powers are S = 4.8 kVA, P = 3.09 kW, and Q =

3.68 kVAR.

15.27 A load, connected across a 12 470-V line, draws 20 A at

a 0.75 lagging power factor. Find the load impedance and

the power components.



Since the impedance magnitude is equal to the voltage divided

by the current, and the impedance angle is the power factor

angle, the load impedance is

From S = I2Z, the complex power is

From the magnitude and the real and imaginary parts, S =

249.4 kVA, P = 187kW, and Q = 165kVAR.

15.28 A 20-μF capacitor and a parallel 200-Ω resistor draw 4 A

at 60 Hz. Find the power components.

Once the impedance is found, the complex power can be

obtained from S = I2Z. The capacitive reactance is

and the impedance of the parallel combination is

Substitution into S = I2Z results in a complex power of

So, S = 1.77kVA, P = 0.98kW, and Q = –1.47kVAR.

15.29 A fully loaded 10-hp induction motor operates from a

480-V, 60-Hz line at an efficiency of 85 percent and a 0.8



lagging power factor. Find the overall power factor when a

33.3-μF capacitor is placed in parallel with the motor.

The power factor can be determined from the power

factor angle, which is θ = tan–1 (QT/Pin). For this, the input

power Pin and the total reactive power QT are needed. The

capacitor does not change the real power absorbed, which is

The total reactive power is the sum of the motor and

capacitive reactive powers. As is evident from power triangle

considerations, the reactive power QM of the motor is equal

to the power times the tangent of the motor power factor

angle, which is the arccosine of the motor power factor:

The reactive power absorbed by the capacitor is

And the total reactive power is

With QT and Pin known, the power factor angle θ can be

determined:

And the overall power factor is PF = cos 22.8° = 0.922. It is

lagging because the power factor angle is positive.



15.30 A 240-V source energizes the parallel combination of a

purely resistive 6-kW heater and an induction motor that

draws 7 kVA at a 0.8 lagging power factor. Find the overall

load power factor and also the current from the source.

The power factor and current can be determined from

the total complex power ST, which is the sum of the complex

powers of the heater and motor:

The overall power factor is the cosine of the angle of the total

complex power: PF = cos 19.9° = 0.94. It is lagging, of

course, because the power factor angle is positive. The

source current is equal to the total apparent power divided by

the voltage:

Notice that the total apparent power of 12.34 kVA is not

the sum of the load apparent powers of 6 and 7 kVA. This is

generally true except in the unusual situation in which all

complex powers have the same angle.

15.31 A 480-V source energizes two loads in parallel, supplying

2 kVA at a 0.5 lagging power factor to one load and 4 kVA at

a 0.6 leading power factor to the other load. Find the source

current and also the total impedance of the combination.

The current can be found from the total apparent power,

which is the magnitude of the total complex power:

The power factor angle for the 4-kVA load is negative

because the power factor is leading, which means that the

current leads the voltage.



The current is equal to the apparent power divided by

the voltage:

From S = I2Z, the impedance is equal to the complex power

divided by the square of the current:

15.32 Three loads are connected across a 277-V line. One is a

fully loaded 5-hp induction motor operating at a 75 percent

efficiency and a 0.7 lagging power factor. Another is a fully

loaded 7-hp synchronous motor operating at an 80 percent

efficiency and a 0.4 leading power factor. The third is a 5-kW

resistive heater. Find the total line current and the overall

power factor.

The line current and power factor can be determined

from the total complex power, which is the sum of the

individual complex powers. The complex power of the

induction motor has a magnitude that is equal to the input

power divided by the power factor, and an angle that is the

power factor angle. The same is true for the synchronous

motor. The complex power for the heater is, of course, the

same as the real power. So,

The total line current is equal to the apparent power divided

by the line voltage: I = (19.23 × 103)/277 = 69.4 A. And, the

overall power factor is the cosine of the angle of the total



complex power: PF = cos (– 30.9°) = 0.858. It is leading

because the power factor angle is negative.

15.33 In the circuit shown in Fig. 15-6, load 1 absorbs 2.4 kW

and 1.8 kVAR, load 2 absorbs 1.3 kW and 2.6 kVAR, and load

3 absorbs 1 kW and generates 1.2kVAR. Find the total power

components, the source current I1, and the impedance of

each load.

Fig. 15-6

The total complex power is the sum of the individual

complex powers:

From the total complex power, the total apparent power is ST

= 5.69 kVA, the total real power is PT = 4.7 kW, and the total

reactive power is QT = 3.2 kVAR. The source current

magnitude I1 is equal to the apparent power divided by the

source voltage: I1 = (5.69 × 103)/600 = 9.48 A. And the angle

of I1 is the angle of the voltage minus the power factor angle:

20° – 34.2° = –14.2°. So, I1 = 9.48∠–14.2° A.

The angle of the load 1 impedance Zt is the load power

factor angle, which is also the angle of the complex power

S1. Since S1 = 2400 + j1800 = 3000∠36.9° VA, this

impedance angle is θ = 36.9°. Because the load 1 voltage is

known, the magnitude Z, can be found from S1 = V2/Z1:



So, Z1 = Z1∠θ = 120∠36.9° Ω. The impedances Z2 and Z3 of

loads 2 and 3 cannot be found in a similar manner because

the load voltages are not known. But the rms current I2 can

be found from the sum of the complex powers of loads 2 and

3, and used in S = I2Z to find the impedances. This sum is

The apparent power S23 can be used to obtain I2 from S23 =

VI2:

Since S2 = 1300 + j2600 VA = 2.91∠63.4° kVA, the

impedance of load 2 is

Similarly, S3 = 1000 – j1200 VA = 1.562∠–50.2° kVA, and

15.34 A load that absorbs 100-kW at a 0.7 lagging power

factor has capacitors placed across it to produce an overall

power factor of 0.9 lagging. The line voltage is 480 V. How

much reactive power must the capacitors produce, and what

is the resulting decrease in line current?



The initial reactive power is Qip tan θi where θi is the

initial power factor angle: θi = cos–1 0.7 = 45.6°. Therefore

The final reactive power is

Consequently, the capacitors must supply 102 — 48.4 = 53.6

kVAR.

The initial and final currents can be obtained from P = VI

× PF:

The resulting decrease in line current is 297.6 – 231.5 = 66.1

A.

15.35 A synchronous motor that draws 20 kW is in parallel with

an induction motor that draws 50 kW at a lagging power

factor of 0.7. If the synchronous motor is operated at a

leading power factor, how much reactive power must it

provide to cause the overall power factor to be 0.9 lagging,

and what is its power factor?

Since the total power input is PT = 20 + 50 = 70 kW, the

total reactive power is

Because the reactive power absorbed by the induction motor

is



the synchronous motor must supply Qm – QT = 51 – 33.9 =

17.1 kVAR. Thus, QSM = – 17.1 kVAR.

The resulting power factor of the synchronous motor is

cos θSM in which θSM, the synchronous motor power factor

angle, is

So, PFSM = cos (–40.5°) = 0.76 leading.

15.36 A factory draws 100 A at a 0.7 lagging power factor from

a 12 470-V, 60-Hz line. What capacitor placed across the line

at the input to the factory increases the overall power factor

to unity? Also, what are the final currents for the factory,

capacitor, and line?

The capacitance can be determined from the reactive

power that the capacitor must provide to cause the power

factor to be unity. The reactive power absorbed by the

factory is the apparent power times the reactive factor,

which is the sine of the arccosine of the power factor: RF =

sin (cos–1 0.7) = 0.714. Thus

For a unity power factor, the capacitor must supply all this

reactive power. Since the formula for generated capacitor

reactive power is Q = ωCV2, the required capacitance is

Adding the capacitor in parallel does not change the

current input to the factory since there is no change in the

factory load. This current remains at 100 A. The current to

the capacitor can be found from Q = VIC × RF with RF = – 1



since the power factor angle is –90° for the capacitor. The

result is

The total final line current IfL can be found from the input

power, which is

Adding the capacitor does not change this power, but it does

change the power factor to 1. So, from P = VIfL × PFf

Notice that the 70-A rms final line current is not equal to

the sum of the capacitor 71.4-A rms current and the factory

100-A rms current. This should not be surprising because, in

general, rms quantities cannot be validly added since the

phasor angles are not included.

15.37 A 240-V, 60-Hz source energizes a load of 30∠50° Ω.

What capacitor in parallel with this load produces an overall

power factor of 0.95 lagging?

Although powers could be used in the solution, it is often

easier to use admittance when a circuit or its impedance is

specified. The initial admittance is

Adding the capacitor changes only the susceptance, which

becomes



This formula B – G tan (– θ) should be evident from

admittance triangle considerations and the fact that the

admittance angle is the negative of the power factor angle.

From ΔB = wC,

15.38 At 60 Hz, what is the power factor of the circuit shown in

Fig. 15-7? What capacitor connected across the input

terminals causes the overall power factor to be 1 (unity)?

What capacitor causes the overall power factor to be 0.85

lagging?

Fig. 15-7

Because a circuit is specified, the power factor and

capacitor are probably easier to find using impedance and

admittance instead of powers. The power factor is the cosine

of the impedance angle. Since the reactance of the inductor

is 2π(60)(0.03) = 11.3 Ω, the impedance of the circuit is

And the power factor is PF = cos 37.38° = 0.795 lagging.



Because the capacitor is to be connected in parallel, the

circuit admittance should be used to determine the

capacitance. Before the capacitor is added, this admittance

is

For unity power factor, the imaginary part of the

admittance must be zero, which means that the added

capacitor must have a susceptance of 51.1 mS.

Consequently, its capacitance is

A different capacitor is required for a power factor of

0.85 lagging. The new susceptance can be found from B = G

tan (–θ) where G is the conductance, which does not change

by adding a parallel capacitor, and θ is the new power factor

angle:

Because the added capacitor provides the change in

susceptance, its capacitance is

Naturally, less capacitance is required to improve the power

factor to 0.85 lagging than to 1.

15.39 An induction motor draws 50 kW at a 0.6 lagging power

factor from a 480-V, 60-Hz source. What parallel capacitor

will increase the overall power factor to 0.9 lagging? What is

the resulting decrease in input current?



The pertinent capacitance formula is

So, here,

From P = VI × PF, the decrease in input current is

15.40 A factory draws 30 MVA at a 0.7 lagging power factor

from a 12 470-V, 60-Hz line. Find the capacitance of the

parallel capacitors required to improve the power factor to

0.85 lagging. Also, find the resulting decrease in line current.

The power absorbed by the factor is P = 30(0.7) = 21

MW. So, from the capacitance formula specified in Prob.

15.39, the capacitance required is

The decrease in line current is equal to the decrease in

apparent power divided by the line voltage. The initial

apparent power is the specified 30 MVA, and the final

apparent power is P/PFf = 21 × 106/0.85 = 24.7 × 106 VA.

So,



15.41 A 20-MW industrial load supplied from a 12 470-V, 60-Hz

line has its power factor improved to 0.9 lagging by the

addition of a 230-μF bank of capacitors. Find the power

factor of the original load.

The initial reactive power is needed. It is equal to the

final reactive power plus that added by the capacitors:

The real power and the initial reactive power can be used to

find the initial power factor angle:

Finally, the initial power factor is PFi = cos θ = cos 49.2° =

0.653 lagging.

15.42 A 480-V, 60-Hz source energizes a load consisting of an

induction motor and a synchronous motor. The induction

motor draws 50 kW at a 0.65 lagging power factor, and the

synchronous motor draws 10 kW at a 0.6 leading power

factor. Find the capacitance of the parallel capacitor required

to produce an overall power factor of 0.9 lagging.

The required change in reactive power is needed. The

initial absorbed reactive power is the sum of that of the two

motors, which from Q = P tan θ is

The final reactive power is, from Qf = PT tan (cos–1 PFf),



So the change ΔQ in reactive power is ΔQ = 45.12 – 29.06 =

16.1 kVAR and

Supplementary Problems

15.43 The instantaneous power absorbed by a circuit is p = 6

+ 4 cos2 (2t + 30°) W. Find the maximum, minimum, and

average powers absorbed.

Ans. pmax = 10W, Pmin = 6W, P = 8W

15.44 With 170sin(377i + 10°) V applied, a circuit draws 8 sin

(377t + 35°) A. Find the power factor and the maximum,

minimum, and average powers absorbed.

Ans. PF = 0.906 leading, pmax = 1.3kW, pmin = –63.7W, P

= 616W

15.45 For each following load voltage and current pair, find the

corresponding power factor and average power absorbed:

(a) v = 170 sin(50t – 40°)V, i = 4.3 sin (50t + 10°) A

(b) v = 340 cos (377t – 50°) V, i = 6.1 sin (377t + 30°) A

(c) v = 679 sin (377t + 40°) V, i = – 7.2 cos (377t + 50°) A

Ans. (a) 0.643 leading, 235 W; (b) 0.985 lagging, 1.02

kW; (c) 0.174 lagging, 424 W

15.46 Find the power factor of a fully loaded 5-hp induction

motor that operates at 85 percent efficiency while drawing

15 A from a 480-V line.

Ans. 0.609 lagging

15.47 What is the power factor of a circuit that has an input

impedance of 5∠ –25 Ω? Also, what is the power absorbed

when 50 V is applied?



Ans. 0.906 leading, 453 W

15.48 If a circuit has an input admittance of 40 + j20 S and an

applied voltage of 180 V, what is the power factor and the

power absorbed?

Ans. 0.894 leading, 1.3 MW

15.49 A resistor in parallel with an inductor absorbs 25 W when

the combination is connected to a 120-V, 60-Hz source. If

the total current is 0.3 A, what are the resistance and

inductance?

Ans. 576 Ω, 1.47 H

15.50 A coil absorbs 20 W when connected to a 240-V, 400-Hz

source. If the current is 0.2 A, find the resistance and

inductance of the coil.

Ans. 500 Ω, 0.434 H

15.51 A resistor and series capacitor draw 1 A from a 120-V,

60-Hz source at a 0.6 leading power factor. Find the

resistance and capacitance.

Ans. 72 Ω, 27.6 μF

15.52 A resistor and parallel capacitor draw 0.6 A from a 120-

V, 400-Hz source at a 0.7 leading power factor. Find the

resistance and capacitance.

Ans. 286 Ω, 1.42 μF

15.53 A 100-kW load operates at a 0.6 lagging power factor

from a 480-V, 60-Hz line. What current does the load draw?

What current does the load draw if it operates at unity

power factor instead?

Ans. 347 A, 208 A

15.54 A fully loaded 100-hp induction motor operates at 85

percent efficiency from a 480-V line. If the power factor is

0.65 lagging, what current does the motor draw? If the

power factor is 0.9 lagging, instead, what current does this

motor draw?

Ans. 281 A, 203 A



15.55 Find the wattmeter reading for the circuit shown in Fig.

15-8.

Fig. 15-8

Ans. 16 W

15.56 Find each wattmeter reading for the circuit shown in Fig.

15-9.



Fig. 15-9

Ans. WM1 = 1.54 kW, WM2 = 656 W

15.57 With 200 sin (754t + 35°) V applied, a circuit draws 456

sin (754f + 15°) mA. What is the reactive factor, and what is

the reactive power absorbed?

Ans. 0.342, 15.6 VAR

15.58 With 300 cos (377t – 75°) V applied, a circuit draws 2.1

sin (377f + 70°) A. What is the reactive factor, and what is

the reactive power absorbed?

Ans. –0.819, –258 VAR

15.59 What is the reactive factor of a circuit that has an input

impedance of 50∠35° Ω? What reactive power does the

circuit absorb when the input current is 4 A?

Ans. 0.574, 459 VAR

15.60 What is the reactive factor of a circuit that has an input

impedance of 600∠ – 30° Ω? What is the reactive power

absorbed when 480 V is applied?

Ans. –0.5, –192 VAR

15.61 When 120 V is applied across a circuit with an input

admittance of 1.23∠40° S, what reactive power does the

circuit absorb?

Ans. –11.4k VAR

15.62 When 4.1 A flows into a circuit with an input admittance

of 0.7 – j1.1 S, what reactive power does the circuit absorb?

Ans. 10.9 VAR

15.63 A load consumes 500 VAR when energized from a 240-V

source. If the reactive factor is 0.35, what current does the

load draw and what is the load impedance?

Ans. 5.95 A, 40.3∠20.5° Ω

15.64 Two circuit elements in parallel consume 90 VAR when

connected to a 120-V, 60-Hz source. If the reactive factor is



0.8, what are the two components and what are their

values?

Ans. A 213-Ω resistor and a 0.424-H inductor

15.65 Two circuit elements in series consume –80 VAR when

connected to a 240-V, 60-Hz source. If the reactive factor is

–0.7, what are the two components and what are their

values?

Ans. A 360-Ω resistor and a 7.52-μF capacitor

15.66 A 300-mA, 60-Hz current flows through a 10-μF

capacitor. Find the average, peak, and reactive powers

absorbed.

Ans. P = 0 W, pmax = 23.9 W, Q = –23.9 VAR

15.67 What are the power components resulting from a 3.6-A

current flowing through a load of 50∠ –30° Ω?

Ans. S = 648∠–30° VA, S = 648 VA, P = 561 W, Q = –324

VAR

15.68 Find the power components of a fully loaded 10-hp

synchronous motor operating at an 87 percent efficiency

and a 0.7 leading power factor.

Ans. S= 12.2∠–45.6°kVA, S = 12.2kVA, P = 8.57 kW, Q =

–8.74kVAR

15.69 A load draws 3 A with 75 V applied. If the load power

factor is 0.6 lagging, find the power components of the load.

Ans. S = 225∠53.1° VA, S = 225 VA, P = 135 W. Q = 180

VAR

15.70 Find the power components of a load that draws

8.1∠36° A with 480∠10° V applied.

Ans. S = 3.89∠ –26° kVA, S = 3.89 kVA, P = 3.49 kW, Q

= –1.7kVAR

15.71 A 120-mH inductor and a parallel 30-Ω resistor draw 6.1

A at 60-Hz. Find the power components.



Ans. S = 930/33.6° VA, S = 930 VA, P = 775 W, Q = 514

VAR

15.72 A fully loaded 15-hp induction motor operates from a

480-V, 60-Hz line at an efficiency of 83 percent and a 0.7

lagging power factor. Find the overall power factor when a

75-∠μF capacitor is placed in parallel with the motor.

Ans. 0.881 lagging

15.73 Two loads are connected in parallel across a 277-V line.

One is a fully loaded 5-hp induction motor that operates at

an 80 percent efficiency and a 0.7 lagging power factor. The

other is a 5-kW resistive heater. Find the overall power factor

and line current.

Ans. 0.897 lagging, 38.9 A

15.74 Two loads are connected in parallel across a 12 470-V

line. One load takes 23 kVA at a 0.75 lagging power factor

and the other load takes 10 kVA at a 0.6 leading power

factor. Find the total line current and also the impedance of

the combination.

Ans. 1.95 A, 6.39∠17.2°kQ

15.75 Three loads are connected across a 480-V line. One is a

fully loaded 10-hp induction motor operating at an 80

percent efficiency and a 0.6 lagging power factor. Another is

a fully loaded 5-hp synchronous motor operating at a 75

percent efficiency and a 0.6 leading power factor. The third

is a 7-kW resistive heater. Find the total line current and the

overall power factor.

Ans. 46 A, 0.965 lagging

15.76 In the circuit shown in Fig. 15-10, load 1 absorbs 6.3 kW

and 9.27 kVAR, and load 2 absorbs 5.26 kW and generates

2.17 kVAR. Find the total power components, the source

voltage V, and the impedance of each load.



Fig. 15-10

Ans.

15.77 How much reactive power must be supplied by parallel

capacitors to a 50-kVA load with a 0.65 lagging power factor

to increase the overall power factor to 0.85 lagging?

Ans. 17.9 kVAR

15.78 An electric motor delivers 50 hp while operating from a

480-V line at an 83 percent efficiency and a 0.65 lagging

power factor. If it is paralleled with a capacitor that increases

the overall power factor to 0.9 lagging, what is the decrease

in line current?

Ans. 40 A

15.79 A load energized from a 480-V, 60-Hz line has a power

factor of 0.6 lagging. If placing a 100-μF capacitor across the

line raises the overall power factor to 0.85 lagging, find the

real power of the load and the decrease in line current.

Ans. 12.2 kW, 12.4 A

15.80 A factory draws 90 A at a 0.75 lagging power factor from

a 25 000-V, 60-Hz line. Find the capacitance of a parallel

capacitor that will increase the overall power factor to 0.9

lagging.

Ans. 2.85 μF

15.81 A fully loaded 75-hp induction motor operates from a

480-V, 60-Hz line at an 80 percent efficiency and a 0.65

lagging power factor. The power factor is to be raised to 0.9



lagging by placing a capacitor across the motor terminals.

Find the capacitance required and the resulting decrease in

line current.

Ans. 551μF, 62.2 A

15.82 A load of 50∠60° Ω is connected to a 480-V, 60-Hz

source. What capacitor connected in parallel with the load

will produce an overall power factor of 0.9 lagging?

Ans. 33.1 μF

15.83 At 400 Hz, what is the power factor of the circuit shown

in Fig. 15-11 What capacitor connected across the input

terminals causes the overall power factor to be 0.9 lagging?

Fig. 15-11

Ans. 0.77 lagging, 8.06 μF

15.84 For a load energized by a 277-V, 60-Hz source, an added

parallel 5-μF capacitor improves the power factor from 0.65

lagging to 0.9 lagging. What is the source current both

before and after the capacitor is added?

Ans. 1.17 A, 0.847 A



Chapter 16


Transformers

INTRODUCTION

A transformer has two or more windings, also called coils,

that are magnetically coupled. As shown in Fig. 16-1, a typical

transformer has two windings wound on a core that may be

made from iron. Each winding encirclement of the core is

called a turn, and is designated by N. Here, winding 1 has N1

= 4 turns and winding 2 has N2 = 3 turns. (Windings of

practical transformers have many more turns than these.)

Circuit 1, connected to winding 1, is often a source, and circuit

2, connected to winding 2, is often a load. In this case,

winding 1 is called the primary winding or just primary, and

winding 2 is called the secondary winding or just secondary.

Fig. 16-1

In the operation, current i1 flowing in winding 1 produces a

magnetic flux φm1 that, for power transformers, is ideally



confined to the core and so passes through or couples

winding 2. The m in the subscript means “mutual”—the flux is

mutual to both windings. Similarly, current i2 flowing in

winding 2 produces a flux φm2 that couples winding 1. When

these currents change in magnitude or direction, they

produce corresponding changes in the fluxes and these

changing fluxes induce voltages in the windings. In this way,

the transformer couples circuit 1 and circuit 2 so that electric

energy can flow from one circuit to the other.

Although flux is a convenient aid for understanding

transformer operation, it is not used in the analyses of

transformer circuits. Instead, either transformer turns ratios or

inductances are used, as will be explained.

Transformers are very important electrical components. At

high efficiencies, they change voltage and current levels,

which is essential for electric power distribution. In electronic

applications they match load impedances to source

impedances for maximum power transfer. And they couple

amplifiers together without any direct metallic connections

that would conduct dc currents. At the same time they may

act with capacitors to filter signals.

RIGHT-HAND RULE

In Fig. 16-1 the flux φm1 produced by i1, has a clockwise

direction, but φm2 produced by i2 has a counterclockwise

direction. The direction of the flux produced by current flowing

in a winding can be determined from a version of the right-

hand rule that is different from that presented in Chap. 9 for a

single wire. As shown in Fig. 16-2, if the fingers of a right hand

encircle a winding in the direction of the current, the thumb

points in the direction of the flux produced in the winding by

the current.



Fig. 16-2

DOT CONVENTION

Using dots at winding terminals in agreement with the dot

convention is a convenient method for specifying winding

direction relations. One terminal of each winding is dotted,

with the dotted terminals selected such that currents flowing

into the dotted terminals produce adding fluxes. Because

these dots specify the transformer winding relations, they are

used in circuit diagrams with inductor symbols in place of

illustrated windings. A transformer circuit diagram symbol

consists of two adjacent inductor symbols with dots. If the

winding relations are not important, the dots may be omitted.

Figure 16-3 shows the use of dots. In a circuit diagram, the

more convenient transformer representation with dots in Fig.

16-3b is used instead of the one with windings in Fig. 16-3a.

But both are equivalent. An actual transformer may have

some marking other than dots. In Fig. 16-3b, the two vertical

lines between the inductor symbols designate the transformer

as either an iron-core transformer or an ideal transformer,

which is considered next.



Fig. 16-3

THE IDEAL TRANSFORMER

In most respects, an ideal transformer is an excellent model

for a transformer with an iron core—an iron-core transformer.

Power transformers, the transformers used in electric power

distribution systems, are iron-core transformers. Being a

model, an ideal transformer is a convenient approximation of

the real thing. The approximations are zero winding

resistance, zero core loss, and infinite core permeability.

Having windings of zero resistance, an ideal transformer has

no winding ohmic power loss (I2R loss) and no resistive

voltage drops. The second property, zero core loss, means

that there is no power loss in the core—no hysteresis or eddy-

current losses. And since there is no power loss in the

windings either, there is no power loss in the entire ideal

transformer—the power out equals the power in. The third

and last feature, infinite core permeability, means that no

current is required to establish the magnetic flux to produce

the induced voltages. It also means that all the magnetic flux

is confined to the core, coupling both windings. All flux is

mutual, and there is no leakage flux, which is flux that

couples only one winding.

In the analysis of a circuit containing an ideal transformer,

the transformer turns ratio, also called transformation ratio, is

used instead of flux. The turns ratio, with symbol a, is a =

N1/N2. This is the ratio of the number of primary turns to

secondary turns. In many electric circuits books, however, this



ratio is defined as the number of secondary turns to primary

turns, and sometimes the symbol n or N is used.

In a circuit diagram, the turns ratio of an iron-core or ideal

transformer is specified over the transformer symbol by a

designation such as 20:1, which means that the winding on

the left of the vertical bars has 20 times as many turns as the

winding on the right. If the designation were 1:25, instead, the

winding on the right would have 25 times as many turns as

the winding on the left.

The turns ratio is convenient because it relates the winding

voltages. By Faraday’s law, v1 = ±N1d(φ)/dt and v2 =

±N2d(φ)/dt. (The same flux φ is in both equations because an

ideal transformer has no leakage flux.) The ratio of these

equations is

The positive sign must be selected when both dotted

terminals have the same reference voltage polarity. Otherwise

the negative sign must be selected. The justification for this

selection is that, as can be shown by Lenz's law, at any one

time the dotted terminals of an ideal transformer always have

the same actual polarities—either both positive or both

negative with respect to the other terminals. Incidentally,

these actual polarities have nothing to do with the selection of

voltage reference polarities, which is completely arbitrary.

It is obvious from v1/v2 = ±a that if a transformer has a

turns ratio less than one (a < 1), the secondary rms voltage is

greater than the primary rms voltage. Such a transformer is

called a step-up transformer. But if the turns ratio is greater

than one (a > 1), the secondary rms voltage is less than the

primary rms voltage, and the transformer is called a step-

down transformer.



As can be shown from the property of infinite permeability,

or from zero power loss, the primary and secondary currents

have a relation that is the inverse of that for the primary and

secondary voltages. Specifically,

The positive sign must be selected if one current reference is

into a dotted terminal and the other current reference is out

of a dotted terminal. Otherwise the negative sign must be

selected. The reason for this selection is that, at any one time,

actual current flow is into the dotted terminal of one winding

and out of the dotted terminal of the other. So, only the

specified selection of signs will give the correct signs for the

currents. But this selection of signs has nothing to do with the

selection of current reference directions, which is completely

arbitrary.

It is important to remember that the winding with the

greater number of turns has more voltage but less current.

In the analysis of a circuit containing ideal transformers, a

common approach is to eliminate the transformers by

reflecting impedances and, if necessary, sources. This

approach applies only if there are no current paths between

the primary and secondary circuits, as is usually the case. For

an understanding of this reflecting approach, consider the

circuit shown in Fig. 16-4a. The impedance Zr “looking into”

the primary winding, is called the reflected impedance, which

is the turns ratio squared times the secondary circuit

impedance Z2. If Zr replaces the primary winding, as shown in

Fig. 16-4b, the primary current I1 is unchanged. As can be

proven by trying all different dot arrangements, the dot

locations have no effect on this reflected impedance.



Fig. 16-4

So if the primary circuit voltages and currents are of

interest, the transformer can be eliminated by replacing the

transformer primary winding with the reflected impedance of

the secondary circuit, assuming this circuit contains no

independent sources. The resulting primary circuit can be

analyzed in the usual manner. Then if the secondary winding

voltage and current are also of interest, they can be obtained

from the primary winding voltage and current.

If the secondary circuit is not a lumped impedance, but a

circuit with individual resistive and reactive components, the

total impedance can be found and reflected. Alternatively, the

whole secondary circuit can be reflected into the primary

circuit. In this reflection, the circuit configuration is kept the

same and each individual impedance is multiplied by the

square of the turns ratio. Of course, the transformer is

eliminated.

Reflection can also be from the primary to the secondary. To

see this, consider making cuts at terminals c and d in the

circuit shown in Fig. 16-4a and finding the Thévenin

equivalent of the circuit to the left. Because of the open

circuit created by the cuts, the secondary current is zero: I2 =

0 A, which in turn means that the primary current is zero: I1 =

0 A. Consequently, there is 0 V across Z1 and all the source



voltage is across the primary winding. As a result, the

Thévenin voltage referenced positive toward terminal c is VTh

= V2 = –V1/a = – Vs/a. From impedance reflection the

Thévenin impedance is ZTh = Z1/a2, with a2 being in the

denominator instead of the numerator because the winding

being “looked into” is the secondary winding. The result is

shown in the circuit of Fig. 16-4c. Note that the source voltage

polarity reverses because the dots are at opposite ends of the

windings. By use of Norton's theorem in a similar way, it can

be shown that a source of current Is would have reflected into

the secondary as aIs and would have been reversed in

direction because the dots are not at the same ends of the

windings. Whole circuits can be reflected in this way.

An alternative to the reflection analysis approach is to write

the circuit equations, which are usually mesh equations, with

the transformer voltages and currents as variables. Since the

number of unknowns will exceed the number of equations,

these equations must be augmented with the transformer

voltage and current turns-ratio equations. As an illustration,

for the circuit of Fig. 16-4a, these equations are

The fact that this approach requires more equations than does

the reflection approach is not a significant disadvantage if an

advanced scientific calculator is used in the calculations, and

this approach may be easier overall.

For ac voltages and currents, an ideal transformer gives

results that are within a few percent of those of the

corresponding actual power transformer. But for dc voltages

and currents, an ideal transformer gives incorrect results. The



reason is that an ideal transformer will transform dc voltages

and currents while an actual transformer will not.

THE AIR-CORE TRANSFORMER

The ideal transformer approximation is not valid for a

transformer with a core constructed of nonmagnetic material,

as may be required for operation at radio and higher

frequencies. A transformer with such a core is often called an

air-core transformer or a linear transformer.

Figure 16-5 shows two circuits coupled by an air-core

transformer. Current i1 produces a mutual flux (φ)m1 and a

leakage flux φi1, and current i2 produces a mutual flux φm2

and leakage flux φi2. As mentioned, a mutual flux couples

both windings, but a leakage flux couples only one winding.

Fig. 16-5

The coefficient of coupling, with symbol k, indicates the

closeness of coupling, which in turn means the fraction of

total flux that is mutual. Specifically,



Clearly k cannot have a value greater than 1 or less than 0.

And the greater each fraction of mutual flux, the greater the

coefficient of coupling. The coefficient of coupling of a good

power transformer is very close to 1, but an air-core

transformer typically has a coefficient of coupling less than

0.5.

The voltages induced by changing fluxes are given by

Faraday's law:

The positive signs in ±φm2 and. ±φm1 are selected if and only

if both mutual fluxes have the same direction in each winding.

For circuit analysis, it is better to use inductances instead of

fluxes. The self-inductances of the windings are

These are just the ordinary winding inductances as defined in

Chap. 9. There is, however, another inductance called the

mutual inductance with symbol M. It accounts for the flux

linkages of one winding caused by current flow in the other

winding. Specifically,

With these substitutions, the voltage equations become



in which the ± signs for the L di/dt terms have been deleted

because of the assumption of associated voltage and current

references. For a sinusoidal analysis the corresponding

equations are

In these equations, the negative signs of ± are used if one

current has a reference into a dotted terminal and the other

has a reference out of a dotted terminal. Otherwise the

positive signs are used. Put another way, if positive i1 and i2

or I1 and I2 produce adding mutual fluxes, then the L and M

terms add. As mentioned, these equations are based on

associated voltage and current references. If a pair of these

references are not associated, the v or V of the corresponding

equation should have a negative sign. Everything else,

though, remains the same.

In a time-domain circuit diagram the self-inductances are

specified adjacent to the corresponding windings in the usual

manner. The mutual inductances are specified with arrows to

designate which pair of windings each mutual inductance is

for. In a phasor-domain circuit, of course, jωL1, jωL2, and jωM

are used instead of L1 L2, and M.

If substitutions are made for the fluxes in the coefficient of

coupling equation, the result is k = 

Mesh and loop analyses are best for analyzing circuits

containing air-core transformers since nodal analysis is

difficult to use. Writing the KVL equations is the same as for

other circuits except for the necessity of including the jω MI

terms resulting from the magnetic coupling. Also, voltage

variables are not assigned to the windings.



If the secondary circuit contains no independent sources

and no current paths to the primary circuit, it is possible to

reflect impedances in a manner similar to that used for ideal

transformers. For an understanding of this reflection, consider

the circuit shown in Fig. 16-6. The mesh equations are

Fig. 16-6

The mutual terms are negative in both equations because one

winding current is referenced into a dotted terminal while the

other is referenced out of a dotted terminal. If I2 is solved for

in the second equation and a substitution made for I2 in the

first equation, the result is

which indicates that the secondary circuit reflects into the

primary circuit as an impedance ω2M2/(jωL2 + ZL) in series

with the primary winding. As can be found by trying different

dot locations, this impedance does not depend on those

locations. Some authors of circuits books call this impedance

a “reflected impedance.” Others, however, use the term

“coupled impedance.”



THE AUTOTRANSFORMER

An autotransformer is a transformer with a single winding

that has an intermediate terminal that divides the winding

into two sections. For an understanding of autotransformer

operation, it helps to consider the two sections of the winding

to be the two windings of a power transformer, as is done

next.

Consider a 50-kVA power transformer that has a voltage

rating of 10 000/200 V. From the kVA and voltage ratings, the

full-load current of the high voltage winding is 50 000/10 000

= 5 A and that of the low voltage winding is 50 000/200 =

250 A. Figure 16-7a shows such a transformer, fully loaded,

with its windings connected such that the dotted end of one

winding is connected to the undotted end of the other. As

shown, the 10 000-V secondary circuit can be loaded to a

maximum of 250 + 5 = 255 A without either of the windings

being current overloaded. Since the source current is 250 A,

the transformer can deliver 10 200 × 250 = 2550 kVA. This

can also be determined from the secondary circuit: 10 000 ×

255 = 2550 kVA. In effect, the autotransformer connection

has increased the transformer kVA rating from 50 to 2550

kVA.

Fig. 16-7



The explanation for this increase is that the original 50-kVA

transformer had no metallic connections between the two

windings, and so the 50 kVA of a full load had to pass through

the transformer by magnetic coupling. But with the windings

connected to provide autotransformer operation, there is a

metallic connection between the windings that passes 2550 —

50 = 2500 kVA without being magnetically transformed. So, it

is the direct metallic connection that provides the kVA

increase. Although advantageous in this respect, such a

connection destroys the isolation property that conventional

transformers have, which in turn means that autotransformers

cannot be used in every transformer application.

If the windings are connected as in Fig. 16-7b, the kVA

rating is just 10 200 × 5 = 200 × 255 = 51 kVA. This slight

increase of 2 percent in kVA rating is the result of the greatly

different voltage levels of the two circuits connected to the

autotransformer. In general, the closer the voltage levels are

to being the same, the greater the increase in kVA rating. This

is why autotransformers are used as links between power

systems usually only if the systems are operating at nearly

the same voltage levels.

In Fig. 16-7a, the load and the voltage source can be

interchanged. Then the load is connected across both

windings and the voltage source across just one. This

arrangement is used when the load voltage is greater than

the source voltage. The increase in kVA rating is the same.

In the analysis of a circuit containing an autotransformer,

an ideal transformer model can be assumed, and its turns

ratio used in much the same way as for a conventional

transformer connection. Along with this can be used the fact

that the lines with the lower voltage carry the sum of the two

winding currents. Also, part of the winding carries only the

difference of the source and load currents. This is the part

that is common to both the source and load circuits.

Contrary to what Fig. 16-7 suggests, autotransformers are

preferably purchased as such and not constructed from



conventional power transformers. An exception, however, is

the “buck and boost” transformer. A typical one can be used

to reduce 120 or 240 V to 12 or 24 V. The principal use,

though, is as an autotransformer with the primary and

secondary interconnected to give a slight adjustment in

voltage, either greater or lesser.

PSPICE AND TRANSFORMERS

PSpice does not have a built-in ideal transformer

component, but a model for one can be constructed with

dependent sources. To see how to do this, consider the ideal

transformer of Fig. 16-8a. There are, of course, just two

constraints on its operation: v1 = –av2 and i2 = yai1, as

obtained from the turns ratio and also the dot locations. As

shown in Fig. 16-8b, and also in Fig. 16-8c, these constraints

can be satisfied with two dependent sources: a voltage-

controlled voltage source to obtain the voltage constraint and

a current-controlled current source to obtain the current

constraint. Also needed is a dummy voltage source to sense

the controlling current. Naturally, if the dot locations are at

the same ends of the windings, instead of opposite ends as in

Fig. 16-8a, the polarity of the dependent voltage source and

the current direction of the dependent current source must be

reversed.

Fig. 16-8



PSpice does provide for an air-core transformer. Self-

inductance statements are used for the two windings in the

same manner as for ordinary inductors. The ordering of the

node numbers informs PSpice of the dot locations, with the

first node being at the dot location. The only other

requirement is a coefficient of coupling statement that has a

name beginning with the letter K. Following this name are the

names of the two coupled inductors, in either order. Last is

the coefficient of coupling. For example, the following

statements could be used for the air-core transformer of Fig.

16-9.

Fig. 16-9

The indicated coefficient of coupling of 0.5 is obtained from 

 where the inductances are

expressed in millihenries.

Solved Problems



16.1 For the winding shown in Fig. 16-10a, what is the

direction of flux produced in the core by current flowing

into terminal a?

Fig. 16-10

Current that flows into terminal a flows over the core

to the right, underneath to the left, then over the core to

the right again, and so on, as is shown in Fig. 16-10b. For

the application of the right-hand rule, fingers of a right

hand should be imagined grasping the core with the

fingers directed from left to right over the core. Then the

thumb will point up, which means that the direction of

the flux is up inside the core.

16.2 Supply the missing dots for the transformers shown in

Fig. 16-11.

Fig. 16-11



(a) By the right-hand rule, current flowing into dotted

terminal b produces clockwise flux. By trial and error it

can be found that current flowing into terminal c also

produces clockwise flux. So, terminal c should have a

dot.

(b) Current flowing into dotted terminal d produces

counterclockwise flux. Since current flowing into

terminal b also produces counterclockwise flux,

terminal b should have a dot.

(c) Current flowing into dotted terminal a produces flux to

the right inside the core. Since current flowing into

terminal d also produces flux to the right inside the

core, terminal d should have a dot.

16.3 What is the turns ratio of a transformer that has a 684-

turn primary winding and a 36-turn secondary winding?

The turns ratio a is the ratio of the number of primary

turns to secondary turns: a = 684/36 = 19.

16.4 Find the turns ratio of a transformer that transforms the

12 470 V of a power line to the 240 V supplied to a house.

Since the high-voltage winding is connected to the

power lines, it is the primary. The turns ratio is equal to

the ratio of the primary to secondary voltages: a = 12

470/240 = 51.96.

16.5 What are the full-load primary and secondary currents of

a 25 000/240-V, 50-kVA transformer? Assume, of course,

that the 25 000-V winding is the primary.

The current rating of a winding is the transformer kVA

rating divided by the winding voltage rating. So, the full-

load primary current is 50 000/25 000 = 2 A, and the full-

load secondary current is 50 000/240 = 208 A.

16.6 A power transformer with a voltage rating of 12 500/240

V has a primary current rating of 50 A. Find the



transformer kVA rating and the secondary current rating if

the 240 V is the secondary voltage rating.

The transformer has a kVA rating that is equal to the

product of the primary voltage rating and the primary

current rating: 12 500(50) = 625 000 VA = 625 kVA.

Since this is also equal to the product of the secondary

voltage and current ratings, the secondary current rating

is 625 000/240 = 2.6 × 103 A = 2.6 kA. As a check, the

secondary current rating is equal to the primary current

rating times the turns ratio, which is a = 12 500/240 =

52.1. So the secondary current rating is 52.1(50) = 2.6 ×

103A = 2.6kA, which checks.

16.7 A transformer has a 500-turn winding linked by flux

changing at the rate of 0.4 Wb/s. Find the induced

voltage.

If the polarity of the voltage is temporarily ignored,

then by Faraday's law, v = N dφ/dt. The quantity dφ/dt is

the time rate of change of flux, which is specified as 0.4

Wb/s. So, v = 500(0.4) = 200 V; the magnitude of the

induced voltage is 200 V. The voltage polarity can be

either positive or negative depending on the voltage

reference polarity, the direction of the winding, and the

direction in which the magnetic flux is either decreasing

or increasing, none of which are specified. So the most

that can be determined is that the magnitude of the

induced voltage is 200 V at the time that the flux is

changing at the rate of 0.4 Wb/s.

16.8 An iron-core transformer has 400 primary turns and 100

secondary turns. if the applied primary voltage is 240 V

rms at 60 Hz, find the secondary rms voltage and the

peak magnetic flux.

Since the transformer has an iron core, the turns ratio

can be used to find the secondary rms voltage: V2 =

(1/a)V1 = (100/400)(240) = 60 V rms. Because the



voltages vary sinusoidally, they are induced by a

sinusoidally varying flux that can be considered to be φ =

φm sin ωt, where φm is the peak value of flux and ω is the

radian frequency of ω = 2π(60) = 377 rad/s. The time

rate of change of flux is dφ/dt = d(φm sin ωt)/dt = ωφm

cos ωt, which has a peak value of wφm. Since the peak

voltage is Vrms it follows from v = N dφ/dt that the

peak voltage and flux values are related by 

If φm is solved for and primary quantities used, the result

is

Alternatively, the secondary voltage and turns could have

been used since the same flux is assumed to couple both

windings.

Incidentally, from Vrms = N ωφm, the voltage Vrms

can be expressed as

This is called the general transformer equation.

16.9 If a 50-turn transformer winding has a 120-V rms applied

voltage, and if the peak coupling flux is 20 mWb, find the

frequency of the applied voltage.

From rearranging the general transformer equation

defined in Prob. 16.8,



16.10 An iron-core transformer has 1500 primary turns and

500 secondary turns. A 12-Ω resistor is connected across

the secondary winding. Find the resistor voltage when the

primary current is 5 A.

Since no voltage or current references are specified,

only rms values are of interest and are to be assumed

without specific mention of them. The secondary current

is equal to the turns ratio times the primary current:

(1500/500)(5) = 15 A. When this current flows through

the 12-ω resistor, it produces a voltage of 15(12)= 180 V.

16.11 The output stage of an audio system has an output

resistance of 2 kΩ. An output transformer provides

resistance matching with a 6-Q speaker. If this

transformer has 400 primary turns, how many secondary

turns does it have?

The term “resistance matching” means that the

output transformer presents a reflected resistance of 2

kΩ to the output audio stage so that there is maximum

power transfer to the 6-Ω speaker. Since, in general, the

reflected resistance Rr is equal to the turns ratio squared

times the resistance RL of the load connected to the

secondary (Rr = a2RL), the turns ratio of the output

transformer is

and the number of secondary turns is

16.12 In the circuit shown in Fig. 16-12, find R for maximum

power absorption. Also, find I for R = 3 Ω. Finally,



determine if connecting a conductor between terminals d

and f would change these results.

Fig. 16-12

The value of R for maximum power absorption is that

value for which the reflected resistance a2R is equal to

the source resistance of 27 Ω. Since the primary winding

has 4 turns, and the secondary winding has 2 turns, the

turns ratio is a = N1/N2 = 4/2 = 2. And, from 27 = 22R,

the value of R for maximum power absorption is R = 27/4

= 6.75 Ω

For R = 3 Ω, the reflected resistance is 22(3) = 12 Ω.

So the primary current directed into terminal c is 

 If terminal c is dotted, then

terminal e should be dotted, as is evident from the right-

hand rule. And, since I is directed out of terminal e while

the calculated current is into terminal c, I is just the turns

ratio times the current entering terminal c: 

A conductor connected between terminals d and f

does not affect these results since current cannot flow in

a single conductor. For current to flow there would have

to be another conductor to provide a return path.

16.13 Find i1, i2, and i3 for the circuit shown in Fig. 16-13. The

transformers are ideal.



Fig. 16-13

A good procedure is to find i1 using reflected

resistances, then find i2 from i1, and last find i3 from i2.

The 8 Ωreflects into the middle circuit as 8/22 = 2 Ω,

making a total resistance of 2 + 3 = 5 Ω in the middle

circuit. This 5 Ω reflects into the source circuit as 32(5) =

45 Ω. Consequently,

Because i 1 and i2 both have reference directions into

dotted terminals of the first transformer, i2 is equal to the

negative of the turns ratio times i1: i2 = – 3(4 sin 2t) = –

12 sin 2t A. Finally, since i2 has a reference direction into

a dotted terminal of the second transformer, and i3 has a

reference direction out of a dotted terminal of this

transformer, i3 is equal to the turns ratio (1/2 = 0.5) times

i2: i3 = 0.5(– 12 sin 2t) = 6 sin 2t A.

16.14 Find I1 and I2 for the circuit shown in Fig. 16-14.



Fig. 16-14

Because the primary has 6 turns and the secondary

has 2 turns, the turns ratio is a = 6/2 = 3 and so the

impedance reflected into the primary circuit is 

 Thus,

If the upper primary terminal is dotted, the bottom

secondary terminal should be dotted. Then both I1 and I2

will be referenced into dots, and so I2 is equal to the

negative of the turns ratio times I1:

16.15 Find I1 and I2 for the circuit shown in Fig. 16-15a.



Fig. 16-15

The 1-Ω resistance and the j2-Ω inductive impedance

in the secondary circuit reflect into the primary circuit as

32(1) = 9Ω and 32(j2)=j18Ω in series with the 6-Ω

resistance, as shown in Fig. 16-15b. In

effect, these reflected elements replace the primary

winding. From the simplified circuit, the primary current is

Because I1 is referenced into a dotted terminal and I2 is

referenced out of a dotted terminal, I2 is equal to just the

turns ratio times It (no negative sign):

16.16 Find Il5 I2, and I3 for the circuit shown in Fig. 16-16a.

Fig. 16-16

The 12-Ω resistance and the j16-Ω inductive

impedance reflect into the primary circuit as a (1/2)2(12)

= 3-Ω resistance and a series (1/2)2(j16) = j4-Ω inductive

impedance in parallel with the –j5-Ω capacitive



impedance, as shown in Fig. 16-16b. The impedance of

the parallel combination is

So,

By current division,

Finally, since I2 and I3 both have reference directions into

dotted terminals, I3 is equal to the negative of the turns

ratio times I2:

16.17 Find V for the circuit shown in Fig. 16-17a.

Fig. 16-17



Although reflection can be used, a circuit must be

reflected instead of just an impedance because each

circuit has a voltage source. And, because a voltage in

the secondary circuit is desired, it is slightly preferable to

reflect the primary circuit into the secondary. Of course,

each reflected impedance is (1/a)2 times the original

impedance, and the voltage of the reflected voltage

source is 1/a times the original voltage. Also, the polarity

of the reflected voltage source is reversed because the

dots are located at opposite ends of the windings. The

result is shown in Fig. 16-17b. By voltage division,

16.18 Use PSpice to determine V in the circuit of Fig. 16-17a of

Prob. 16.17.

Figure 16-18 shows the corresponding PSpice circuit

for a frequency of ω = 1 rad/s. Following is the circuit file

and the answers obtained from the output file when this

circuit file is run with PSpice. The answer of 

 agrees with the answer obtained

in the solution to Prob. 16.17.

Fig. 16-18



16.19 Find I1 and I2 in the circuit of Fig. 16-19.

Fig. 16-19

Because the 5-Ω resistor directly couples both halves

of the circuit, the reflection approach cannot be used.

However, two mesh equations can be written, and then

these equations augmented with the voltage and current



transformer equations to obtain four equations in terms

of four unknowns:

In matrix form, these equations are

A scientific calculator can be used to solve for I1 and I2.

The results are I1 = 5.821 ∞–47.83° A and I2 = 2.910∞–

47.83° A.

16.20 Repeat Prob. 16.19 using PSpice.

Figure 16-20 is the PSpice circuit corresponding to the

circuit of Fig. 16-19, with the inductor and capacitor

values based on a frequency of w = 1 rad/s. Resistor R4

is inserted to prevent a capacitor (Cl) from being in series

with a current source (Fl), since PSpice does not allow

this. But the resistance of R4 is so large that the presence

of this resistor will not significantly affect the answer.

Dummy voltage source V2 is inserted, of course, to sense

the controlling current for dependent current source Fl.



Fig. 16-20

Following is the corresponding circuit file along with

the answers obtained from the output file when the

circuit file is run with PSpice. The answers of 

 and  agree with the

answers obtained in the solution to Prob. 16.19.

16.21 Determine the branch currents I1 I2, and I3 in the circuit

of Fig. 16-21.



Fig. 16-21

Reflection cannot be used here because of the

presence of the 10-Q resistor that along with the common

ground provides a current path between the two winding

circuits. For reflection to be applicable, the two windings

must be only magnetically coupled. KVL can, however, be

applied, and is best done around the two winding meshes

and the outside loop. The resulting three equations will

contain five variables, and must be augmented with the

voltage and current transformer equations. These five

equations are

In matrix form these are



If a scientific calculator is used to obtain solutions, the

results are  and 

16.22 Repeat Prob. 16.21 using PSpice.

Fig. 16-22

Figure 16-22 shows the PSpice circuit corresponding

to the circuit of Fig. 16-21. The inductor and capacitor

values are based on a frequency of ω = 1 rad/s. A

dummy voltage source V2 has been inserted to sense the

controlling current for the dependent current source Fl.

Following is the corresponding circuit file along with the

answers obtained from the output file when this circuit

file is run with PSpice. The answers agree with those

obtained in the solution to Prob. 16.21.



16.23 An air-core transformer has primary and secondary

currents of i1 = 0.2 A and i2 = 0.4 A that produce fluxes of

φm1 = 100 μμb, φl 1 = 250 wWb, and φl2 = 300 μWb. Find

φm2, M, L1, L2, and k if N1 = 25 turns and N2 = 40 turns.

By the mutual inductance formulas,

Also

From the self-inductance formulas,

and



The coefficient of coupling is

Alternatively,

16.24 What is the greatest mutual inductance that an air-core

transformer can have if its self-inductances are 0.3 and

0.7 H?

From  rearranged to  and the

fact that k has a maximum value of 1, 

16.25 For each of the following, find the missing quantity—

either self-inductance, mutual inductance, or coefficient of

coupling:

(a) L1 = 0.3 H, L2 = 0.4 H, M = 0.2 H

(b) L1 = 4 mH, M = 5 mH, k = 0.4

(c) L1 = 30 μH, L2 = 40μH, K= 0.5

(d) L2 = 0.4 H, M = 0.2 H, K = 0.2

(a) 

(b) 



(c) 

(d) 

16.26 An air-core transformer has an open-circuited secondary

winding with 50 V across it when the primary current is 30

mA at 3 kHz. If the primary self-inductance is 0.3 H, find

the primary voltage and the mutual inductance.

Since phasors are not specified or mentioned,

presumably the electric quantities specified and wanted

are rms. Because the secondary is open-circuited, I2 = 0

A, which means that to ωMI2 = 0 and ωL2I2 = 0 in the

voltage equations. So, the rms primary voltage is

Also, the secondary voltage equation is V2 = ωMIi, from

which

16.27 An air-core transformer has an open-circuited secondary

with 80 V across it when the primary carries a current of

0.4 A and has a voltage of 120 V at 60 Hz. What are the

primary self-inductance and also the mutual inductance?

Because the secondary is open-circuited, there is no

current in this winding and so no mutually induced

voltage in the primary winding. As a consequence, the

rms voltage and current of the primary are related by the

primary winding reactance: ωL1 = V1/I1 from which



With the open-circuited secondary carrying zero current,

the voltage of this winding is solely the mutually induced

voltage: V2 = ωMI1, from which

16.28 Find the voltage across the open-circuited secondary of

an air-core transformer when 35 V at 400 Hz is applied to

the primary. The transformer inductances are L1 = 0.75 H,

L2 = 0.83 H, and M = 0.47 H.

Because the secondary is open-circuited, I2 = 0 A,

which means that the rms primary voltage is V1 = ωL1Ii

and the rms secondary voltage is V2 = ωMI1. The ratio of

these equations is

16.29 An air-core transformer with an open-circuited

secondary has inductances of L1 = 20mH, L2 = 32 mH,

and M = 13 mH. Find the primary and secondary voltages

when the primary current is increasing at the rate of 0.4

kA/s.

With the assumption of associated references,

In the first equation, di2/dt is zero because of the open

circuit, and di1/dt is the specified 0.4 kA/s. So, v1 =(20 ×

103)(0.4 × 103) = 8 V. Similarly, the secondary voltage is



v2=±Mdi,tdt = ±(13 × 10-3)(0.4 × 103) = ±5.2 V. Since

the reference for v2 is not specified, the sign of v2 cannot

be determined.

16.30 A transformer with a short-circuited secondary has

inductances of Ll = 0.3 H, L2 = 0.4 H, and M = 0.2 H. Find

the short-circuit secondary current I2 when the primary

current is I1 = 0.5 A at 60 Hz.

Because of the short circuit,

V2 = j ω L2I2 ± j ω MI1 = 0 from which jωL2I2 = ±jωMIl and

L2I2 = ±MI1

Since only rms quantities are of interest, as must be

assumed from the problem specification, the angles of I1

and I2 can be neglected and the + sign of ± used, giving

L2I2 = MI1. From this, the short-circuit secondary current

I2 is

The same result would have been obtained by dividing

ωMIt, the rms induced generator voltage, by ω)L2, the

reactance that the short-circuit secondary current I2 flows

through.

16.31 When connected in series, two windings of an air-core

transformer have a total inductance of 0.4 H. With the

reversal of the connections to one winding, though, the

total inductance is 0.8 H. Find the mutual inductance of

the transformer.

Because the windings are in series, the same current

i’ flows through them during the inductance

measurement, producing a voltage drop of L1 di/dt ± M

di/dt = (L1 ± M) di/dt in one winding and a voltage drop



of L2 di/dt ± M di/dt = (L2 + M) di/dt in the other. If the

windings are arranged such that i flows into the dotted

terminal of one winding but out of the dotted terminal of

the other, both mutual terms are negative. But if i flows

into both dotted terminals or out of them, both mutual

terms are positive. Since the M di/dt terms have the

same sign, either both positive or both negative, the total

voltage drop is (L1 + L2 ± 2M) di/dt. The L1 + L2 ± 2M

coefficient of di/dt is the total inductance. Obviously, the

larger measured inductance must be for the positive sign,

L1 + L2 + 2M = 0.8 H, and the smaller measured

inductance must be for the negative sign, L1 + L 2 – 2M =

0.4 H. if the second equation is subtracted from the first,

the result is

from which 4M = 0.4 and M = 0.1 H.

Consequently, a method for finding the mutual

inductance of an air-core transformer is to connect the

two windings in series and measure the total inductance,

then reverse one winding connection and measure the

total inductance. The mutual inductance is one-fourth of

the difference of the larger measurement minus the

smaller measurement. Obviously, the self-inductance of a

winding can be measured directly if the other winding is

open-circuited.

16.32 An air-core transformer has 3-mH mutual inductance

and a 5-mH secondary self-inductance. A 5-Ω resistor and

a 100-μF capacitor are in series with the secondary

winding. Find the impedance coupled into the primary for

ω = 1 krad/s.

The coupled impedance is (ωM)2/Z2, where Z2 is the

total impedance of the secondary circuit. Here, ωM =



103(3 × 10–3) = 3 μ. and

and so the coupled impedance is

Notice that the capacitive secondary impedance

couples into the primary circuit as an inductive

impedance. This change in the nature of the impedance

always occurs on coupling because the secondary circuit

impedance is in the denominator of the coupling

impedance formula. In contrast, there is no such change

in reflected impedance with an ideal transformer.

16.33 A l-kΩ resistor is connected across the secondary of a

transformer for which L1 = 0.1 H, L2 = 2 H, and k = 0.5.

Find the resistor voltage when 250 V at 400 Hz is applied

to the primary.

A good approach is to first find ωMI1, which is the

induced mutual secondary voltage, and then use it to find

the voltage across the 1-kΩ resistor. Since both M and I1,

in (ωMI1 are unknown, they must be found. The mutual

inductance M is

With M known, the coupled impedance can be used to

obtain I1. This impedance is



The current It is equal to the applied primary voltage

divided by the magnitude of the sum of the coupled

impedance and the primary winding impedance:

Now, with M and Ii known, the induced secondary voltage

ωMl1 can be found:

Voltage division can be used to find the desired voltage

V2 from this induced voltage. The voltage V2 is equal to

this induced voltage times the quotient of the load

resistance and the magnitude of the total impedance of

the secondary circuit:

16.34 Find v for the circuit shown in Fig. 16-23a.

Fig. 16-23

The first step is the construction of the phasor-

domain circuit shown in Fig. 16-23b. Next, the mesh



equations are written:

Notice that the mutual terms are positive because both I1

and I2 have reference directions into dotted terminals. By

Cramer’s rule,

And  The corresponding voltage is

16.35 Find I2 for the circuit shown in Fig. 16-24.

Fig. 16-24

Before mesh equations can be written, the magnitude

wM of jwM must be determined. From multiplying both

sides of  by ω,



Now the mesh equations can be written:

Notice that the mutual voltage terms have an opposite

sign (negative) from that (positive) of the self-induced

voltage terms because one current reference direction is

into a dotted terminal and the other one is not. In matrix

form, these equations are

from which  can be obtained

by using a scientific calculator.

16.36 What is the total inductance of an air-core transformer

with its windings connected in parallel if both dots are at

the same end and if the mutual inductance is 0.1 H and

the self-inductances are 0.2 and 0.4 H?

Because of the mutual-inductance effects, it is not

possible to simply combine inductances. Instead, a

source must be applied and the total inductance found

from the ratio of the source voltage to source current,

which ratio is the input impedance. Of course a phasor-

domain circuit will have to be used. For this circuit the

most convenient frequency is ω = 1 rad/s, and the most

convenient source is  The circuit is shown in Fig.

16-25. The transformer impedances should be obvious

from the specified inductances and the radian frequency

of w = 1 rad/s. As shown, It of the  input current



flows through the left-hand winding, leaving a current of 

 for the right-hand winding.

The voltage drops across the windings are

Fig. 16-25

The mutual voltage terms have the same signs as the

self-induced voltage terms because both current

reference directions are into dotted ends. Upon

rearrangement and simplification, these equations

become

The unknown I1 can be eliminated by multiplying the first

equation by 3 and adding corresponding sides of the

equations. The result is

But



Finally, since ω = 1 rad/s, the total inductance is Lr

=0.175 H.

16.37 Find i2 for the circuit shown in Fig. 6-2a.

Fig. 16-26

The first step is the construction of the phasor-

domain circuit shown in Fig. 16-26b from which mesh

equations can be written. These are

In the first equation, the 4 + j3 coefficient of I1 is, of

course, the self-impedance of mesh 1, and the –j3

coefficient of I2 is the negative of the mutual impedance.

The – j2I2 term is the voltage induced in the left-hand

winding by I2 flowing in the right-hand winding. This term

is negative because I1 enters a dotted terminal but I2

does not. In the second equation, the –j3I1, term is the

mutual-impedance voltage, and –j2I1 is the voltage

induced in the right-hand winding by I1 flowing in the left-



hand winding. This term is negative for the same reason

that –j2I2 is negative in the first equation, as has been

explained. The j3 + j8 + 6 part of the coefficient of I2 is

the self-impedance of mesh 2. The 2(j2) part of this

coefficient is from a voltage j2I2 induced in each winding

by I2 flowing in the other winding. It is positive because I2

enters undotted terminals of both windings.

These equations simplify to

By Cramer’s rule,

The corresponding current is

16.38 Find V for the circuit shown in Fig. 16-27. Then replace

the 15-Ω resistor with an open circuit and find V again.



Fig. 16-27

The mesh equations are

All the terms should be apparent except, perhaps, those

for the mutually induced voltages. The j5I2 in the first

equation is the voltage induced in the vertical winding by

I2 flowing in the horizontal winding. It is positive because

both I1 and I2 enter dotted terminals. The j5I1 term in the

second equation is the voltage induced in the horizontal

winding by I1 flowing in the vertical winding. It is positive

for the same reason that j5I2 is positive in the first

equation. The – 2(j5)I2 term is the result of a voltage of

j’5I2, induced in each winding by I2 flowing in the other

winding. It is negative because I2 enters a dotted terminal

of one winding, but not of the other. These equations

simplify to

from which

Finally,



If the 15-Ω resistor is removed, then I2 = 0 A and V is

equal to the sum of the voltage drops across the two

windings. The only current that flows is I1; which is

Across the vertical winding, ll produces a self-inductive

voltage drop of

referenced positive on the dotted end. Across the

horizontal winding, It produces a mutually induced

voltage of

Like the other induced voltage, it also has a positive

reference on a dotted end since part of the same flux

produces it. (Actually, a changing flux produces the

corresponding voltages v1 and v2) Finally, since the

dotted ends of the two windings are adjacent, V is equal

to the difference in the two winding voltages:

16.39 Repeat the first part of Prob. 16.38 using PSpice.



Fig. 16-28

Figure 16-28 shows the PSpice circuit corresponding

to the phasor-domain circuit of Fig. 16-27. The inductance

values are based on a frequency of ω = 1 rad/s, which is

selected for convenience. The coefficient of coupling

needed for the circuit file is 

Following is the corresponding circuit file along with

the answer from the output file obtained when PSpice is

run with this circuit file. The answer of 

agrees to three significant digits with the first answer of

Prob. 16.38.



16.40 Determine the mesh currents in the circuit of Fig. 16-29.

Fig. 16-29

The mesh equations are

In the I1, mesh equation, the mutual term – j5I3 has a

negative sign because I, is directed into a dotted end of a

transformer winding but I3 is not. In the I2 mesh equation,

the mutual term j5I3 does not have a negative sign

because both I2 and I3 have directions into undotted ends

of the transformer windings. And in the I3 mesh equation,

the mutual term is j5(I2 – I2) because both I2 and I3 have

directions into undotted ends of the transformer windings

but I1 does not. When simplified and placed in matrix

form, these equations are



The solutions to these equations can be obtained by using

a scientific calculator. They are I1 = 

 and 

16.41 Repeat Prob. 16.40 using PSpice.

Fig. 16-30

Figure 16-30 shows the PSpice circuit corresponding

to the phasor-domain circuit of Fig. 16-29 of Prob. 16.40.

As usual, the inductances and capacitances are based on

the frequency ω = 1 rad/s. The coefficient of coupling

needed for the circuit file is 

Following is the corresponding circuit file along with

the answers from the output file obtained when PSpice is

run with this circuit file. The answers agree with those

obtained in the solution to Prob. 16.40.



16.42 What is the turns ratio of a two-winding transformer that

can be connected as a autotransformer of 500/350 kV?

As can be seen from Fig. 16-7, the lower voltage is

the voltage across one winding, and the higher voltage is

the sum of the winding voltages. So, for this transformer,

one winding voltage rating is 350 kV and the other is

500-350= 150 kV. The turns ratio is, of course, equal to

the ratio of these ratings: a = 350/150 = 2.33 or a =

150/350 = 0.429, depending upon which winding is the

primary and which is the secondary.

16.43 Compare the winding currents of a fully loaded 277/120-

V, 50-kVA two-winding transformer and an

autotransformer with the same rating.

The high-voltage winding of the conventional

transformer must carry 50 000/277 = 181 A, and the low-

voltage winding must carry 50 000/120 = 417 A. So, one

winding carries the source current and the other winding

carries the load current. In contrast, and as shown in the

circuit of Fig. 16-31, part of the autotransformer winding

must carry only the difference in the source and load

currents, which is 417 — 181 = 236 A, as compared to

the 417 A that the low-voltage winding of the

conventional transformer must carry. Consequently,



smaller wire can be used in the autotransformer, which

results in a savings in the cost of copper. Also, the

autotransformer can be smaller and lighter.

Fig. 16-31

16.44 A 12 470/277-V, 50-kVA transformer is connected as an

autotransformer. What is the kVA rating if the windings

are connected as shown in Fig. 16-7a? And what is this

rating if the windings are connected as shown in Fig. 16-

7b?

For either connection the maximum applied voltage

is the sum of the voltage ratings of the windings: 12 470

+ 277 = 12 747 V. Since, for the connection shown in Fig.

16-7b, the source current flows through the low-voltage

winding, the maximum input current is the current rating

of this winding, which is 50 000/277 = 181 A. So, the kVA

rating for this connection is 12 747 × 181 VA = 2300 kVA.

For the other connection, that illustrated in Fig. 16-7a, the

source current flows through the high-voltage winding.

Consequently, the maximum input current is the current

rating of this winding, which is 50 000/12 470 = 4.01 A,

and the kVA rating is only 12 747 × 4.01 VA = 51.1 kVA.

16.45 Find the three currents I1 I2, and I3 for the circuit shown

in Fig. 16-32.



Fig. 16-32

The resistor current is obviously I3 = 120/100 = 1.2 A.

And the resistor receives 120 × 1.2 = 144 VA. Since this

is also the voltamperes supplied by the source, then

277I1 = 144 and I1 = 144/277 = 0.52 A. Last, from KCL

applied at the transformer winding tap, I2 = I3 – I1 = 1.2 –

0.52 = 0.68 A. Scalar addition can be used here since all

three currents are in phase.

Supplementary Problems

16.46 In the transformer shown in Fig. 16-33, what is the

direction of flux produced in the core by current flow into

(a) terminal a, (b) terminal b, (c) terminal c, and (d)

terminal d

Ans. (a) Clockwise, (b) counterclockwise, (c)

counterclockwise, (d) clockwise



Fig. 16-33

16.47 Supply the missing dots for the transformers shown in

Fig. 16-34.

Ans. (a) Dot on terminal d; (b) dot on terminal b; (c) dots

on terminals b, c, and g.

Fig. 16-34

16.48 What is the turns ratio of a power transformer that has a

6.25-A primary current at the same time that it has a 50-A

secondary current?

Ans. a = 8

16.49 Find the turns ratio of a power transformer that

transforms the 12 470 V of a power line to the 480 V used

in a factory.



Ans. a = 26.

16.50 What are the full-load primary and secondary currents of

a 7200/120-V, 25-kVA power transformer? Assume that

the 7200-V winding is the primary.

Ans. 3.47-A primary current and 208-A secondary current

16.51 A power transformer with a 13 200/480-V rating has a

full-load primary current rating of 152 A. Find the

transformer kVA rating and the full-load secondary current

rating if the 480 V is the secondary voltage rating.

Ans. 2000 kVA, 4.18 kA

16.52 A 7200/120 V, 60-Hz transformer has 1620 turns on the

primary. What is the peak rate of change of magnetic

flux? (Hint: Remember that the voltage ratings are in

rms.)

Ans. 6.29 Wb/s

16.53 An iron-core transformer has 3089 primary turns and 62

secondary turns. if the applied primary voltage is 13 800

V rms at 60 Hz, find the secondary rms voltage and the

peak magnetic flux.

Ans. 277 V, 16.8 mWb

16.54 If a 27-turn transformer winding has 120 V rms applied,

and if the peak coupling flux is 20 mWb, what is the

frequency of the applied voltage?

Ans. 50 Hz

16.55 An iron-core transformer has 1620 primary turns and 54

secondary turns. A 10-Ω resistor is connected across the

secondary winding. Find the resistor voltage when the

primary current is 0.1 A.

Ans. 30 V

16.56 What should be the turns ratio of an output transformer

that connects a 4-Ω speaker to an audio system that has



an output resistance of 1600 Ω?

Ans. a = 20

16.57 In the circuit shown in Fig. 16-35, what should a and Xc

be for maximum average power absorption by the load

impedance, and what is this power?

Ans. 3.19, –4.52 Ω, 376 W

Fig. 16-35

16.58 Find i1, i2, and i3 in the circuit shown in Fig. 16-36.

Ans. i1 = 4 sin (3t – 36.9°) A

i2 = 8 sin (3t – 36.9°) A

i3 = –24 sin (3t – 36.9°) A

Fig. 16-36



16.59 Find V in the circuit shown in Fig. 16-37.

Ans. 

Fig. 16-37

16.60 Find I1, I2, and I3 in the circuit shown in Fig. 16-38.

Ans. 

Fig. 16-38

16.61 What is υ in the circuit shown in Fig. 16-39?

Ans. –23.7 sin (2t – 6.09°) V



Fig. 16-39

16.62 Find I in the circuit shown in Fig. 16-40.

Ans. 

Fig. 16-40

16.63 For the following PSpice circuit file, construct a

corresponding phasor-domain circuit diagram that

contains an ideal transformer. Then use this diagram to

calculate the answer that will appear in the output file

when PSpice is run with this circuit file.



Ans. 

16.64 Repeat Prob. 16.63 for the following PSpice circuit file.

Ans. 

16.65 Repeat Prob. 16.63 for the following PSpice circuit file.



Ans. 

16.66 An air-core transformer has a primary current of 0.2 A

and a secondary current of 0.1 A that produce fluxes of ϕn

= 40ΩWb, ϕm2 = 10ΩWb, and ϕ12 = 30 Ω Wb. Find Ωm1 L1,

L2, M, and k if N1, = 30 turns and N2 = 50 turns.

Ans. ϕm1 = 12 ΩWb, L1 = 7.8mH, L2 = 20 mH, M = 3mH, k

= 0.24

16.67 What is the greatest possible mutual inductance of an

air-core transformer that has self-inductances of 120 and

90 mH?

Ans. 104 mH

16.68 For each of the following, find the missing quantity—

either self-inductance, mutual inductance, or coefficient of

coupling.

(a) L1 = 130mH, L2 = 200mH, M = 64.5 mH

(b) L1 = 2.6ΩH, L2 = 3 ΩH, k = 0.4

(c) Ll = 350 mH, M = 100 mH, k = 0.3

Ans. (a) k = 0.4, (b) M = 1.12ΩH, (c) L2 = 317 mH



16.69 An air-core transformer has an open-circuited secondary

winding with 70 V induced in it when the primary winding

carries a 0.3-A current and has a 120-V, 600-Hz voltage

across it. What is the mutual inductance and the primary

self-inductance?

Ans. M = 61.9mH. L1 = 106 mH

16.70 An air-core transformer with an open-circuited

secondary has inductances of L1 = 200 mH, L2 = 320 mH,

and M = 130 mH. Find the primary and secondary

voltages, referenced positive at the dotted terminals,

when the primary current is increasing at the rate of 0.3

kA/s into the dotted terminal of the primary winding.

Ans. V1 = 60 V, v2 = 39 V

16.71 An air-core transformer has inductances of L1 = 0.3 H, L2

= 0.7 H, and M = 0.3 H. The primary current is increasing

into the dotted primary terminal at the rate of 200 A/s,

and the secondary current is increasing into the dotted

secondary terminal at the rate of 300 A/s. What are the

primary and secondary voltages referenced positive at

the dotted terminals?

Ans. v1 = 150V, v2 = 270V

16.72 An air-core transformer with a shorted secondary has a

90-mA short-circuit secondary current and a 150-mA

primary current when 50 V at 400 Hz is applied to the

primary. If the mutual inductance is 110 mH, find the self-

inductances.

Ans. L1 = 199 mH, L2 = 183 mH

16.73 An air-core transformer with a shorted secondary has

inductances of L1 = 0.6 H, L2 = 0.4 H, and M = 0.2 H. Find

the winding currents when a primary voltage of 50 V at 60

Hz is applied.



Ans. I1 = 265 mA, I2= 133 mA

16.74 A transformer has self-inductances of 1 and 0.6 H. One

series connection of the windings results in a total

inductance of 1 H. What is the coefficient of coupling?

Ans. k = 0.387

16.75 The transformer windings of a transformer are

connected in series with dotted terminals adjacent. Find

the total inductance of the series-connected windings if L1

= 0.6 H, L2 = 0.4 H, and k = 0.35.

Ans. 0.657 H

16.76 An air-core transformer has an 80-mH mutual

inductance and a 200-mH secondary self-inductance. A 2-

kΩ resistor and a 100-mH inductor are in series with the

secondary winding. Find the impedance coupled into the

primary for ω = 10 krad/s.

Ans. 

16.77 Find V in the circuit of Fig. 16-41.

Ans. 

Fig. 16-41

16.78 A 6.8-kΩ resistor is connected across the secondary of a

transformer having inductances of L1 = 150 mH, L2 = 300



mH, and M = 64 mH. What is the resistor current when 40

V at 10 krad/s is applied to the primary?

Ans. 2.33 mA

16.79 Find i in the circuit of Fig. 16-42.

Ans. 103 sin (l000t – 73.1°) mA

Fig. 16-42

16.80 What is the total inductance of the parallel-connected

windings of an air-core transformer if the dots are at

opposite ends and if the mutual inductance is 100 mH and

the self-inductances are 200 and 400 mH?

Ans. 87.5 mH

16.81 Find i in the circuit of Fig. 16-43.

Ans. 24 sin (2t – 76.6°) A

Fig. 16-43



16.82 Find V in the circuit of Fig. 16-44. Then switch the dot on

one winding and find V again.

Ans. 

Fig. 16-44

16.83 In the circuit shown in Fig. 16-44, place a short circuit

across terminals a and b and find the short-circuit current

directed from terminal a to terminal b.

Ans. 

16.84 For the circuit shown in Fig. 16-44, what load connected

to terminals a and b absorbs maximum power and what is

this power?

Ans. 

16.85 Find I in the circuit of Fig. 16-45.

Ans. 

Fig. 16-45



16.86 Calculate the answer that will appear in the output file

when PSpice is run with the following circuit file.

Ans. 

16.87 Calculate the answer that will appear in the output file

when PSpice is run with the following circuit file.

Ans. 

16.88 Calculate the answer that will appear in the output file

when PSpice is run with the following circuit file.



Ans. 

16.89 What is the turns ratio of a two-winding iron-core

transformer that can be connected as a 277/120 V

autotransformer?

Ans. a = 1.31 or a = 0.764

16.90 A 4800/240-V, 75-kVA power transformer is connected

as an autotransformer. What is the kVA rating of the

autotransformer for the connection shown in Fig. 16-7a?

What is the kVA rating for the connection shown in Fig.

16–7b

Ans. 1575 kVA, 78.75 kVA

16.91 Find the currents I1 I2, and I3 in the circuit of Fig. 16-46.

Ans. I1 = 800 A, I2 = 343 A, I3 = 1.14 kA



Fig. 16-46



Chapter 17


Three-Phase Circuits

INTRODUCTION

Three-phase circuits are important because almost all

electric power is generated and distributed three-phase. A

three-phase circuit has an ac voltage generator, also called an

alternator, that produces three sinusoidal voltages that are

identical except for a phase angle difference of 120°. The

electric energy is transmitted over either three of four wires,

more often called lines. Most of the three-phase circuits

presented in this chapter are balanced. In them, three of the

line currents are identical except for a phase angle difference of

120°.

SUBSCRIPT NOTATION

The polarities of voltages in three-phase circuits are

designated by double subscripts, as in VAB. As may be recalled

from Chap. 1, these subscripts identify the nodes that a voltage

is across. Also, the order gives the voltage reference polarity.

Specifically, the first subscript specifies the positively

referenced node and the second subscript the negatively

referenced node. So, VAB is a voltage drop from node A to node

B. Also, VAB = –VBA.

Double subscripts are also necessary for some current

quantity symbols, as in IAB. These subscripts identify the nodes

between which IAB flows, and the order of the subscripts

specifies the current reference direction. Specifically, the

current reference direction is from the node of the first



subscript to the node of the second subscript. So, the current

IAB has a reference direction from node A to node B. Also, IAB =

–IBA. Figure 17-1 illustrates the subscript convention for IAB and

also for IAB.

Double subscript notation is also used for some impedances,

as in ZAB. The subscripts identify the two nodes that the

impedance is connected between. But the order of the

subscripts has no significance. Consequently, ZAB = ZBA.

Fig. 17-1

THREE-PHASE VOLTAGE GENERATION

Figure 17-2a is a cross-sectional view of a three-phase

alternator having a stationary stator and a counterclockwise

rotating rotor. Physically displaced by 120° around the inner

periphery of the stator are three sets of armature windings with

terminals A and A ′, B and B ′, and C and C′. It is in these

windings that the three-phase sinusoidal voltages are

generated. The rotor has a field winding in which the flow of a

dc current produces a magnetic field.

As the rotor rotates counterclockwise at 3600 r/min, its

magnetic field cuts the armature windings, thereby inducing in

them the sinusoidal voltages shown in Fig. 17-2b. These

voltages have peaks at one-third of a period apart, or 120°

apart, because of the 120° spatial displacement of the

armature windings. As a result, the alternator produces three

voltages of the same rms value, which may be as great as 30

kV, and of the same frequency (60 Hz), but phase-shifted by

120°. These voltages might be, for example,



Fig. 17-2

and

If the voltages shown in Fig. 11-2b are evaluated at any one

time, it will be found that they add to zero. This zero sum can

also be shown by vector graphical addition of the phasors

corresponding to these voltages. Figure 17-3a is a phasor

diagram of the three phasors VAA′, VBB′, and VCC′, corresponding

to the generated voltages. These three phasors are added in

Fig. 17-3b by connecting the tail of VBB. to the tip of VAA′, and

the tail of VCC to the tip of VBB. Since the tip of VCC. touches the

tail of VAA, the sum is zero. And since the sum of the phasor

voltages is zero, the sum of the corresponding instantaneous

voltages is zero for all times.



Fig. 17-3

In general, three sinusoids have a sum of zero if they have

the same frequency and peak value but are phase-displaced by

120°. This is true regardless of what, if anything, that the

sinusoids correspond to. In particular, it is true for currents.

GENERATOR WINDING CONNECTIONS

The ends of the generator windings are connected together

to decrease the number of lines required for connections to

loads. The primed terminals can be connected together to form

the Y (wye) shown in Fig. 17-4a, or primed terminals can be

connected to unprimed terminals to form the Δ (delta) shown in

Fig. 17-4b). The primed letters are included this once to show

these connections. But since the terminals at which they are

located also have unprimed letters, the primed letters are not

necessary. These Y and Δ connections are not limited to

generator windings but apply as well to transformer windings

and load impedances. There are some practical reasons for

preferring the Y connection for alternator windings, but both

the Y and Δ connections are used for transformer windings and

for load impedances. Incidentally, in circuit diagrams,

sometimes circular ac generator symbols are used instead of

the coil symbols.



Fig. 17-4

In the Y connection shown in Fig. 17-4a, the primed terminals

are joined at a common terminal marked N for neutral. There

may be a line connected to this terminal, as shown, in which

case there are four wires or lines. If no wire is connected to the

neutral, the circuit is a three-wire circuit. The Δ connection

illustrated in Fig. 17-4b inherently results in a three-wire circuit

because there is no neutral terminal.

For the Y connection, the line currents, are also the winding

currents, also called phase currents. A line current is a current

in one of the lines and by convention is referenced from the

source to the load. A phase current is a current in a generator

or transformer winding or in a single load impedance, which is

also called a phase of the load.

A Y connection of windings or of impedances has two sets of

voltages. There are the voltages VAN, VBN, and VCA, from

terminals A, B, and C to the neutral terminal N. These are

phase voltages. These differ from the line-to-line voltages, or

just line voltages, VAB, VBC, and VCA, across terminals A, B, and

C. There are three other line voltages that have a 120° angle

difference. These are VAC, VBA, and VCB, which are the

negatives of the other line voltages. In each set of line

voltages, no two subscripts begin or end with the same letter.

Also, no two pairs of subscripts have the same letters.



For the Δ shown in Fig. 17-4b, the line voltages are the same

as the phase voltages. But the line currents IA, IB, and Ic differ

from the phase currents IAB, IBC, and ICA that flow through the

windings. There is another suitable set of phase currents: IAC,

IBA, and ICB, which are the negatives of the currents in the first

set.

PHASE SEQUENCE

The phase sequence of a three-phase circuit is the order in

which the voltages or currents attain their maxima. For an

illustration, Fig. 17-2b shows that vAA peaks first, then vBB, then

vcc, then vAA, etc., which is in the order of … ABC ABC AB ….

Any three adjacent letters can be selected to designate the

phase sequence, but usually the three selected are ABC. This is

sometimes called the positive phase sequence. If in Fig. 17-2a

the labels of two windings are interchanged, or if the rotor is

rotated clockwise instead of counterclockwise, the phase

sequence is ACB (or CBA or BAC), also called the negative

phase sequence. Although this explanation of phase sequence

has been with respect to voltage peaking, phase sequence

applies as well to current peaking.

Phase sequence can be related to the subscripts of voltage

and current phasors. If, for example, VAN has an angle 120°

greater than that of VBN, then vAN must lead vBN by 120°, and

so the phase sequence must be ABC. Incidentally, the terms

“lead” and “lag” are often applied to the voltage phasors as

well as to the corresponding instantaneous voltages. For

another example, if VCN leads VBN by 120°, then in the phase

sequence the first subscript C of VCN must be immediately

ahead of the first subscript B of VBN. Consequently, the phase

sequence is CBA, or ACB, the negative phase sequence.

Phase sequence can be related to either the first or second

subscripts of the line voltage phasors. This can be verified with

an example. Figure 17-5a shows a phasor diagram of phase



voltages VAN, VBN, and VCN for an ABC phase sequence. Also

included are terminals A, B, C, and N positioned such that lines

drawn between them give the correct corresponding phasors.

Drawn between terminals A, B, and C are a set of line voltage

phasors: VAB, VBC, and VCA, which are redrawn in the phasor

diagram shown in Fig. 17-5b. Note that VAB leads VBC by 120°

and that VBC leads VCA by 120°. On the basis of this leading,

the order of the first set of subscripts is ABC, in agreement with

the phase sequence. The order of the second set of subscripts

is BCA, which is equivalent to ABC, also in agreement with the

phase sequence. This order can also be found by using a

reference point R on the phasor diagram, as shown. If the

phasors are rotated counterclockwise about the origin, the first

subscripts pass the reference point in the order of the phase

sequence, as do the second subscripts.

Fig. 17-5

In a similar manner it can be shown for a balanced circuit

that the line current phasor subscripts correspond to the phase

sequence order in the same way as explained for the voltage

phasor subscripts. Also, the same is true for either the first or

the second subscripts of the phase current phasors for a



balanced Δ load. (A balanced Δ load has three equal

impedances.)

BALANCED Y CIRCUIT

Figure 17-6 shows a balanced Y circuit that has a balanced Y

load (a Y load of identical impedances) energized by a

generator having Y-connected windings. Instead of generator

windings, the windings could as well be the secondary windings

of a three-phase transformer. A neutral wire connects the two

neutral nodes.

A balanced three-phase circuit is easy to analyze because it

is, in effect, three interconnected but separate circuits in which

the only difference in responses is an angle difference of 120°.

The general analysis procedure is to find the desired voltage or

current in one phase, and use it with the phase sequence to

obtain the corresponding voltages or currents in the two other

phases. For example, in the circuit shown in Fig. 17-6, the line

current IA can be found from IA = VAN/ZY. Then, IB and Ic can be

found from VA and the phase sequence: They have the same

magnitude as IA, but lead and lag IA by 120° as determined

from the phase sequence.

Fig. 17-6



Since the three currents IA, IB, and Ic have the same

magnitude but a 120° angle difference, their sum is zero: IA +

IB + Ic = 0. And from KCL, IN = — (IA + IB + Ic) = 0 A. Because

the neutral wire carries no current, it can be eliminated to

change the circuit from a four-wire to a three-wire circuit. A

further consequence of the zero neutral current is that the two

neutral nodes are at the same potential, even without the

neutral wire. In practice, though, it may be a good idea to have

a small neutral wire to ensure balanced phase voltages in case

the load impedances are not exactly the same.

The set of phase voltages and either set of line voltages for a

balanced Y load have certain angle and magnitude relations

that are independent of the load impedance. These relations

can be obtained from one of the triangles shown in Fig. 17-5a.

Consider the triangle formed by VBN, VCN, and VBC. The largest

angle is 120°, leaving 180° — 120° = 60’ for the other two

angles. Since these two are opposite sides of equal length, they

must be equal and so 30° each as shown in Fig. 17-7a. It can be

seen that there is a 30° angle between line voltage VBC and

phase voltage VBN, as is better shown in Fig. 17-7b. As should

be evident from Fig. 17-5a, there is also a 30” angle difference

between VAB and VAN and between VCA and VCN. In general, in

the voltage phasor diagram for a balanced Y load, there is a

30” angle between each phase voltage and the nearest line

voltage. This 30° can be either a lead or a lag, depending on

the particular set of line voltages and also the phase sequence.

Fig. 17-7



Figure 17-8 has all the possible phasor diagrams that relate

the Y phase voltages and the two sets of line voltages for the

two phase sequences. Thus, all angle relations between the line

and Y phase voltages can be determined from them. From the

subscripts it should be apparent that Figs. 17-8a and b are for

an ABC phase sequence and Figs. 17-8c and d are for an ACB

phase sequence. Only relative angles are shown. For actual

angles, the appropriate diagram would have to be rotated until

any one phasor is at its specified angle, but this is seldom

necessary.

Fig. 17-8

There is also a relation between the magnitudes of the line

and phase voltages. From Fig. 17-7a and the law of sines,

or  In general, for a balanced Y load the line

voltage magnitude VL is  times Vp, the phase voltage

magnitude: 

Incidentally, in the description of a three-phase circuit the

specified voltage should be assumed to be the rms line-to-line

voltage.



BALANCED A LOAD

Figure 17-9 shows a balanced A load connected by three

wires to a three-phase source. As a practical matter, this source

is either a Y-connected alternator or, more probably, a Y- or Δ-

connected secondary of a three-phase transformer. There is, of

course, no neutral wire because a Δ load has only three

terminals.

Fig. 17-9

The general procedure for finding the A phase currents is to

first find one phase current and then use it with the phase

sequence to find the other two. For example, the phase current

IAB can be found from IAB = VAB/ZΔ and then IBC and VCA from

VAB and the phase sequence: These have the same magnitude

as IAB, but lead and lag IAB by 120° as determined from the

phase sequence.

The set of line currents and either set of phase currents for a

balanced Δ have certain angle and magnitude relations that are

independent of the load impedance. These can be found by

applying KCL at any terminal in the circuit shown in Fig. 17-9. If

done at terminal A, the result is IA = IAB — ICA. Figure 17-10a is

a graphical representation of this subtraction for an ABC phase

sequence. Since this is the same form of triangle as for the



phase and line voltages of a balanced Y load, the results are

similar: On a phasor diagram there is a 30° angle difference

between each phase current and the nearest line current, as

shown in Fig. 17-10b. This 30° can be either a lead or a lag,

depending on the particular set of phase currents and on the

phase sequence. Also, the line current magnitude IL is  times

Ip, the phase current magnitude: 

Fig. 17-10

Figure 17-11 has all the possible phasor diagrams that relate

the line currents and the two sets of phase currents of balanced

A loads for the two phase sequences. Thus all angle relations

between the line and A phase currents can be determined from

them. From the subscripts it should be evident that Figs. 17-1 la

and b are for an ABC phase sequence and that Figs. 17-1 lc and

d are for an ACB phase sequence. Only relative angles are

shown. For actual angles, the appropriate diagram would have

to be rotated until any one phasor is at its specified angle, but

this is seldom necessary.

Fig. 17-11



PARALLEL LOADS

If a three-phase circuit has several loads connected in

parallel, a good first step in an analysis is to combine the loads

into a single Y or Δ load. Then, the analysis methods for a

single Y or Δ load can be used. This combining is probably most

obvious for two A loads, as shown in Fig. 17-12a. Being in

parallel, corresponding phase impedances of the two Δ’s can be

combined to produce a single equivalent Δ.

Fig. 17-12

If there are two Y loads, as shown in Fig. 17-12b, and if there

is a neutral wire (not shown) connecting the two neutral nodes

of the loads, corresponding phase impedances of the two Δ’s

are in parallel and can be combined to produce a single

equivalent Y. Even if there is no neutral wire, the corresponding

phase impedances are in parallel provided that both Y loads are

balanced because then both neutral nodes are at the same

potential. If the loads are unbalanced and there is no neutral

wire, corresponding impedances of the two Y’s are not in

parallel. Then, the two Δ’s can be transformed to two Δ's, and

these combined into a single equivalent Δ.

Sometimes a three-phase circuit has a Y load and a Δ load,

as shown in Fig. 17-12c. If the loads are balanced, the A can be

transformed to a Y and then the two Y’s combined. If the loads

are unbalanced, the Y can be transformed to a Δ and then the

two Δ’s combined into a single equivalent Δ.

POWER



The average power absorbed by a balanced three-phase Y or

Δ load is, of course, just three times the average power

absorbed by any one of the phase impedances. For either a

balanced Δ or a Y load, this is P = 3 VpIp cos θ. The power

formula is usually expressed in terms of the rms line voltage VL

and the rms line current IL. For a Y load, Vp = VL/  and Ip = IL.

And for a A load, Vp = VL and Ip = IL/ . With either substitution

the result is the same:

which is the formula for the total average power absorbed by

either a balanced Y or Δ load. It is important to remember that

θ is the load impedance angle and not the angle between a line

voltage and line current.

Formulas for complex power S and reactive power Q can be

readily found using the relations with average power presented

in Chap. 15. For a balanced three-phase load, the result is

Three-phase power factor correction is obtained with a

balanced Y or Δ of capacitors, with each phase producing one-

third of the required reactive power. Consequently, for each

phase of a A the capacitance required is

But since for a Y the phase voltage is VL/ , the voltage factor

in the denominator is  So, the 3s divide out, with the result

that



Consequently, for a Y connection of power factor correction

capacitors, the capacitance required in each phase is three

times that required for a Δ. On the other hand, though, the

breakdown voltage requirement is less for the Y-connected

capacitors.

THREE-PHASE POWER MEASUREMENTS

If a three-phase load is balanced, the total average power

absorbed can be measured by connecting a wattmeter into a

single phase and multiplying the wattmeter reading by three.

For this, the wattmeter current coil should be connected in

series with a phase impedance and the wattmeter potential coil

should be connected across this impedance. If the-load is

unbalanced, three measurements can be made, one in each

phase.

Frequently, though, it is impossible to connect a wattmeter

into a phase. This is true, for example, for the common three-

phase electric motor that has just three wires extending from it.

For such an application, the two-wattmeter method can be

used, provided that there are just three wires to a load.

Figure 17-13 shows the wattmeter connections for the two-

wattmeter method. Notice that the current coils are in series in

two of the lines and that the respective potential coils are

connected between these two lines and the third line. The ±

terminals are connected such that each wattmeter is connected

as if to give an upscale reading for power absorbed by the load.



Fig. 17-13

It can be shown that the total average power absorbed by

the load is equal to the algebraic sum of the two wattmeter

readings. So, if one reading is negative, it is added, sign and

all, to the other wattmeter reading. (Of course, it may be

necessary to reverse a coil to obtain this reading.) This two-

wattmeter method is completely general. The load does not

have to be balanced. In fact, the circuit does not have to be

three-phase or even sinusoidally excited.

From the line voltage and current phasors, it can be

calculated that, for a balanced load with an impedance angle of

0, one wattmeter reading is VL IL cos (30° + 8) and the other is

VLIL cos (30° – 0). The wattmeter with the VLIL cos (30° + θ)

reading has a current coil in the line corresponding to the

phase sequence letter that immediately precedes the letter of

the line in which there is no current coil. If, for example, there

is no current coil in line C, and if the phase sequence is ABC,

then, since B precedes C in the phase sequence, the wattmeter

with its current coil in line B has the VL IL cos (30° + θ) reading.

The impedance angle for the phase impedance of a balanced

load can be found from the readings of wattmeters connected



for the two-wattmeter method. There are six formulas that

relate the tangent of the impedance angle to the power

readings. The appropriate formula depends on the phase

sequence and the lines in which the current coils are

connected. If PA, PB, and Pc are the readings of wattmeters with

current coils in lines A, B, and C, then, for an ABC phase

sequence,

For an ACB phase sequence, tan θ equals the negative of

these.

UNBALANCED CIRCUITS

If a three-phase circuit has an unbalanced load, none of the

shortcuts for the analysis of balanced three-phase circuits can

be used. Conventional mesh or loop analysis is usually

preferable. If the load is an unbalanced Y with a neutral wire,

then the voltage across each phase impedance is known, which

means that each phase current can be readily found. The same

is true for an unbalanced A load if there are no line

impedances. Otherwise, it may be preferable to transform the A

to a Y so that the line impedances are in series with the Y

phase impedances.

PSPICE ANALYSIS OF THREE-PHASE CIRCUITS

PSpice applies to the analysis of a three-phase circuit,

balanced or unbalanced, as to any ac circuit. There are,

however, three special considerations. First, if a Y load has a

series-connected capacitor in each phase and if there is no

neutral wire, then PSpice will not complete an analysis because

there is no dc path from the neutral node of this Y to the 0

node, assuming that this neutral node is not the 0 node. This

problem is easily solved by inserting between these two nodes



a resistor of extremely large resistance, thus providing the dc

path without significantly affecting the analysis.

Second, a Δ-Δ circuit has no convenient node for the 0 node,

which may or may not'be important. If it is important, a

balanced Y of resistors can be inserted and then the neutral

node of this Y used for the 0 node. The resistance of each

resistor should be large enough to avoid having the inserted Y

affect the results.

Finally, PSpice will not analyze a circuit that has a Δ of

voltage sources, inductors, or transformer windings, or a

mixture of these. Inserting into this Δ a single resistor of

negligibly small resistance will eliminate this problem as

regards obtaining external voltages or currents. But if currents

are of interest interior to a Δ of voltage sources, it is necessary

to insert two other resistors to achieve balance. Otherwise, the

obtained source currents will not even be approximately

accurate.

Incidentally, for a Δ of voltage sources, one voltage source

can be replaced by an open circuit to avoid having a loop of

voltage sources. This deletion will not change the line voltages.

It will, however, affect the currents flowing in the voltage

sources, and so cannot be done if these currents are of interest.

Similarly, for a three-phase transformer, if the windings are

connected Δ-Δ, one primary winding and the corresponding

secondary winding can be replaced by open circuits to avoid

having loops of inductors. Electric utilities sometimes use two

single-phase transformers in this manner to obtain three-phase

transformer action. This is called an open-delta installation, and

provides 57.7 percent of the capacity of a three-transformer

bank. Utilities often use an open-delta installation when they

know that the load will be increased in the future.

Solved Problems



17.1 What is the phase sequence of a balanced three-phase

circuit in which  and 

What is VBN?

Since VCN lags VAN by 120°, and the first subscripts are

C and A, respectively, C follows A in the phase sequence.

So, the phase sequence is ACB, the negative phase

sequence. Of course, VB/V leads VAN by 120°, but has the

same magnitude: .

17.2 What is the phase sequence of a balanced three-phase

circuit in which  and 

What is VAN?

Since VCN leads VBN by 120°, and the first subscripts

are C and B, respectively, C leads B in the phase

sequence, which must be CBA, or ACB, the negative phase

sequence. Of course, VAN has the same magnitude as VCN,

but has an angle that is 120° greater:

17.3 In a three-phase, three-wire circuit, find the phasor line

currents to a balanced Y load in which each phase

impedance is  Also, , and the

phase sequence is ABC.

The line current IA can be found by dividing the phase

voltage VAN by the phase impedance ZY:

The other line currents can be determined from IA and the

phase sequence. They have the same magnitude as IA, and



for the specified ABC phase sequence, the currents IB and

Ic, respectively, lag and lead IA by 120°. So,

17.4 What is the phase sequence of a three-phase circuit in

which  and  Also,

which line voltage has an angle that differs by 120° from

the angles of these voltages?

The phase sequence can be found from the voltage

angles and first subscripts. Since VBC leads VAB by 120°,

and since the first subscripts are B and A, respectively, B is

immediately ahead of A in the phase sequence. So the

phase sequence must be BAC or equivalently, ACB, the

negative phase sequence.

The third line voltage is either VCA or VAC because only

A and C of ABC have not been used together in subscripts.

The proper third line voltage—the voltage that has an

angle differing by 120° from those of VAB and VBC —is VCA

since no two line voltages of a set can have subscripts that

start with the same letter, as would be the case if VAC were

used. Thus,  This result is also obvious

from Fig. 17-8c.

17.5 A balanced three-phase Y load has one phase voltage of

 If the phase sequence is ACB, find the line

voltages VCA, VAB, and VBC.

From Fig. 17-8c, which is for an ACB phase sequence

and the specified line voltages, it can be seen that the line

voltage VCA has an angle that is 30° less than that of VCN.

Its magnitude is, of course, greater by a factor of  So, 

 Also, 

, from the same figure or

from the fact that VAB has an angle that is 120° greater



because its first subscript A is just ahead of the first

subscript C of VCA in the phase sequence ACB. Similarly,

VBC must lag VCA by 120°: 

17.6 What are the phase voltages for a balanced three-phase

Y load if  The phase sequence is ABC.

From Fig. 17-8b, which is for an ABC phase sequence

and the set of line voltages that includes VBA, it can be

seen that VBN leads VBA by 30°. Also, the magnitude of VBN

is less by a factor of . So,

Also from this figure, or from the phase sequence and first

subscript relation, VAN leads VBN by 120°, and VCN lagsitby

120°:

17.7 A balanced three-phase, three-wire circuit with an ABC

phase sequence has one line current of  Find

the other line currents.

Because the circuit is balanced, all three line currents

have the same magnitude of 20 A. And because the phase

sequence is ABC, and A precedes B in the sequence, IA

leads IB by 120°. For a similar reason, Ic lags IB by 120°.

Consequently,

17.8 What is the IB line current in an unbalanced three-

phase, three-wire circuit in which IA =  and 



By KCL, the sum of the three line currents is zero: IA, +

IB + Ic = 0, from which IB = – IA – Ic = 

17.9 A balanced Y load of 40-Ω resistors is connected to a

480-V, three-phase, three-wire source. Find the rms line

current.

Each line current is equal to the load phase voltage of 

 divided by the phase impedance of 40 Ω: IL

= 277/40 = 6.93 A.

17.10 A balanced Y load of  impedances is

energized by a 12 470-V, three-phase, three-wire source.

Find the rms line current.

Each line current is equal to the load phase voltage of 

 divided by the phase impedance

magnitude of 50 Ω: IL = 7200/50 = 144 A.

17.11 Find the phasor line currents to a balanced Y load of

impedances  energized by a three-phase

source. One phase voltage is  and the

phase sequence is ABC.

The line current IB can be found by dividing the phase

voltage VBJV by the phase impedance ZY. Then the other

line currents can be found from IB with the aid of the phase

sequence. The line current IB is

Since the phase sequence is ABC, the angle of IA is 120°

more than the angle of IB. Of course, the current

magnitudes are the same: 



Similarly, the angle of Ic is 120° less. So, 

17.12 In a three-phase, three-wire circuit, find the phasor

line currents to a balanced Y load for which 

and  The phase sequence is ABC.

From Fig. 17-8b, the phase voltage VCA, has an angle

that is 30° greater than that of VCB and, of course, has a

magnitude that is less by a factor of 1/3:

The line current Ic is

Since A follows C in the phase sequence, IA lags Ic by 120°:

. And because B precedes C in

the phase sequence, IB leads Ic by 120”:

17.13 What is the phase sequence of a balanced three-phase

circuit with a A load in which two of the phase currents are

 A and  A? What is IAC?

Since ICB, with a first subscript of C, has an angle 120°

greater than that of IBA, which has a first subscript of B,

the letter C precedes the letter B in the phase sequence.

Thus the phase sequence must be ACB, the negative

phase sequence. From this phase sequence, the current

IAC, with a first subscript of A, has an angle that is 120°



less than that of IBA. Of course, the magnitude is the same.

So. 

17.14 Find the phase currents IBC, IAB, and ICA of a balanced

three-phase Δ load to which one line current is 

 The phase sequence is ABC.

From Fig. 17-11a, which is for an ABC phase sequence

and the specified set of Δ phase currents, it can be seen

that IBC has an angle that is 30° greater than that of IB,

and, of course, has a magnitude that is less by a factor of

1/ . Consequently,

Also, from the same figure or from the fact that IAB has an

angle that is 120° greater because its first subscript A is

just ahead of the first subscript B of IBC in the phase

sequence ABC,  Then ICA must

have an angle that is 120° less than that of IBC. So, 

17.15 A balanced three-phase A load has one phase current

of  The phase sequence is ACB. Find the

other phasor phase currents and also the phasor line

currents.

The two other desired phase currents are those having

angles that differ by 120° from the angle of IBA. These are

IAC and ICB, as can be obtained from the relation of

subscripts: No two currents can have the same first or

second subscript letters, or the same two letters. This is

also obvious from Fig. 17-1 lc. Since the phase sequence is

ACB or negative, ICB must lead IBA by 120° because in the

phase sequence the letter C, the first subscript letter of



ICB, precedes the letter B, the first subscript letter of IBA.

Also, Fig. 17-1 lc shows this 120° lead. Therefore, 

 Then IAC must lag IBA by 120°:

IAC = 

From Fig. 17-11c, IA lags IAC by 30°, and since it has a

magnitude that is greater by a factor of , 

 Because the phase

sequence is ACB, currents IB and Ic, respectively, lead and

lag IA by 120°:

17.16 What are the phasor line currents to a balanced three-

phase A load if one phase current is  and if

the phase sequence is ABC?

From Fig. 17-11b, which is for an ABC phase sequence

and the set of phase currents that includes ICB, it can be

seen that Ic leads ICB by 30°. Of course, its magnitude is

greater by a factor of . So  A.

From the phase sequence, IB leads Ic by 120° and IA lags it

by 120°:

17.17 A 208-V three-phase circuit has a balanced A load of

50-Ω resistors. Find the rms line current.

The rms line current IL can be found from the rms

phase current Ip, which is equal to the 208-V line voltage

(and also phase voltage) divided by the 50-μ phase

resistance: Ip = 208/50 = 4.16 A. The rms line current IL is

greater by a factor of 



17.18 Find the phasor line currents to a balanced A three-

phase load of impedances  if one phase

voltage is  and if the phase sequence is

ACB.

A good first step is to find the phase current ICB:

From Fig. 17-1lc, which is for an ACB phase sequence and

the set of phase currents that includes ICB, the line current

Ic lags ICB by 30°. Of course, its magnitude is greater by a

factor of . So

Since the phase sequence is ACB, the line currents IA and

IB respectively lead and lag Ic by 120°:

17.19 A balanced Δ load of impedances  is

connected to the Y-connected secondary of a three-phase

transformer. The phase sequence is ACB and 

 Find the phasor line currents and load

phase currents.

One approach is to find the corresponding ZY and use

it to find IB from IB = VBN/ZY. The next step is to use the

phase sequence to obtain IA and Ic from IB. The last step is

to use either Fig. 17-1 lc or d to obtain the phase currents

from IB. This is the approach that will be used, although

there are other approaches just as short.



The corresponding Y impedance is 

Since the phase sequence is ACB, the line currents IA and Ic

respectively lag and lead IB by 120°:

Either set of load phase currents can be found: IAB, IBC,

and ICA, or IBA, IAC, and ICB. If the first set is selected, then

Fig. 17-1 Id can be used, which has these currents for an

ACB phase sequence. It can be seen that IAB, IBC, and ICA

lag IA, IB, and Ic respectively by 30°. The magnitude of

each load phase current is, of course,  Thus,

17.20 Find the rms line voltage VL at the source of the circuit

in Fig. 17-14. As shown, the rms load phase voltage is 100

V and each line impedance is 2 + j3 Ω.



Fig. 17-14

The rms line current IL can be used to find VL Of

course, IL, is equal to the 100-V load phase voltage divided

by the magnitude of the load phase impedance:

In flowing, this current produces a voltage drop from a

source terminal to the load neutral terminal N, which drop

is equal to the product of this current and the magnitude of

the sum of the impedances that the current flows through.

This voltage is

The line voltage at the source is equal to  times this: 

17.21 Find the rms line voltage VL at the source of the circuit

in Fig. 17-15. As shown, the rms line voltage at the load is

100 V and each line impedance is 2 + j3Ω.



Fig. 17-15

Perhaps the best approach is to transform the A to an

equivalent Y and then proceed as in the solution to Prob.

17.20. The equivalent Y impedance is (9 + j12)/3 = 3 +

j4Ω. Since the line voltage at the load is 100 V, the line-to-

neutral voltage for the equivalent Y load is 100/  = 57.74

V. The rms line current IL is equal to this voltage divided by

the magnitude of the Y phase impedance:

In flowing, this current produces a voltage drop from a

source terminal to the Y neutral terminal, which drop is

equal to the product of this current and the magnitude of

the sum of the impedances that the current flows through.

The voltage is

And the line voltage at the source is equal to  times

this: 



17.22 A 480-V, three-phase, three-wire circuit has two

parallel-connected balanced Δ loads, one of 5-Ω resistors

and the other of 20-Ω resistors. Find the total rms line

current.

Because the corresponding resistors of the Δ loads are

in parallel, the resistances can be combined to produce an

equivalent single A of 5||20 = 4-Ω resistors. The phase

current of this Δ is equal to the line voltage divided by the

4 Ω of resistance: Ip 480/4 = 120 A. And, of course, the line

current is  times greater. So, IL = (120) = 208 A.

17.23 A 208-V, three-phase, three-wire circuit has two

parallel-connected balanced Y loads, one of 6-Ω resistors

and the other of 12-Ω resistors. Find the total rms line

current.

Since the loads are balanced, the load neutral nodes

are at the same potential even if there is no connection

between them. Consequently, corresponding resistors are

in parallel and can be combined. The result is a net

resistance of 6||12 = 4Ω. This divided into the phase

voltage of  gives the total rms line current: IL

= 120/4 = 30 A

17.24 A 600-V three-phase circuit has two parallel-connected

balanced Δ loads, one of  impedances and the

other of  impedances. Find the total rms line

current and also the total average absorbed power.

Being in parallel, corresponding Δ impedances can be

combined to

The rms phase current for the combined Δ is equal to the

line voltage divided by the magnitude of this impedance:



And the rms line current is 

The total average power can be found using the phase

current and resistance for the combined Δ:

Alternatively, it can be found from the line quantities and

the power factor:

17.25 A 208-V three-phase circuit has two parallel-connected

balanced loads, one a Δ of  impedances and the

other a Y of  impedances. Find the total rms line

current and also the total average absorbed power.

The two loads can be combined if the Δ is transformed

to a Δ or if the Y is transformed to a A so that, in effect, the

loads are in parallel. If the Δ is transformed to a Y, the

equivalent Y has a phase impedance of (

Since the circuit now has two balanced Y loads,

corresponding impedances are in parallel and so can be

combined:

The rms line current is equal to the phase voltage of 

 divided by the magnitude of the

combined phase impedance:



Since this current effectively flows through the

resistance of the combined Y, the total average power

absorbed is

Alternatively, the line voltage and current power formula

can be used:

17.26 A balanced Y of  impedances and a parallel-

connected balanced Δ of  impedances are

connected by three wires to the secondary of a three-

phase transformer. If  V and if the phase

sequence is ABC, find the total phasor line currents.

A good approach is to obtain an equivalent single

combined Y impedance, and also a phase voltage, and

then find a line current by dividing this phase voltage by

this impedance. The other line currents can be obtained

from this line current by using the phase sequence. For

this approach the first step is find the equivalent Y

impedance for the Δ. It is  The next step

is to find a combined Y impedance ZY by using the parallel

combination formula:

From Fig. 17-8a, which is for an ABC phase sequence, VBN

has an angle that is 30° less than that of VBc and, of



course, it has a magnitude that is less by a factor of 1/ :

The line current IB is equal to this voltage divided by the

combined Y phase impedance:

From the phase sequence, the line currents IA and Ic

respectively lead and lag IB by 120°:  and 

17.27 A balanced Δ load of  impedances is

connected by three wires, with 4 Ω of resistance each, to

the secondary of a three-phase transformer. If the line

voltage is 480 V at the secondary terminals, find the rms

line current.

If the Δ is transformed to a Y, the Y impedances can be

combined with the line resistances, and the line current

found by dividing the magnitude of the total Y phase

impedance into the phase voltage. The Y equivalent of the

Δ has a phase impedance of

Being a Y impedance, this is in series with the line

resistance and so can be combined with it. The result is



And the rms line current is equal to the phase voltage of

480/  = 277 V divided by the magnitude of this

impedance: IL = 277/16.3 = 17 A

17.28 Find the average power absorbed by a balanced three-

phase load in an ABC circuit in which  and 

The formula  can be used if the power

factor PF can be found. Since it is the cosine of the

impedance angle, what is needed is the angle between a

load phase voltage and current. With IB known, the most

convenient phase voltage is VBA, because the desired

angle is that between VBN, and IB. This approach is based

on the assumption of a Y load, which is valid since any

balanced load can be transformed to an equivalent Y.

Figure 17-8b, which is for an ABC phase sequence, shows

that VB„ leads VCB by 150°, and so here has an angle of

15° + 150° = 165°. The power factor angle, the angle

between VBN and IB, is 165° — 110° = 55°. So the average

power absorbed by the load is

17.29 A three-phase induction motor delivers 20 hp while

operating at an 85 percent efficiency and at a 0.8 lagging

power factor from 480-V lines. Find the rms line current.

The current IL can be found from the formula 

 in which Pin is the input power to the

motor:

and



17.30 A three-phase induction motor delivers 100 hp while

operating at an efficiency of 80 percent and a power factor

of 0.75 lagging from 480-V lines. The power factor is to be

improved to 0.9 lagging by inserting a Δ bank of power-

factor correction capacitors. Determine the capacitance CΔ

required in each phase.

The input power to the motor is

17.31 In a 208-V three-phase circuit a balanced Δ load

absorbs 2 kW at a. 0.8 leading power factor. Find ZΔ.

From  the phase current is

Since the line voltage is also the phase voltage, the

magnitude of the phase impedance is

The impedance angle is the power factor angle: θ= —cos1

0.8 = —36.9°. So the phase impedance is 



17.32 Given that  in an ABC three-phase

circuit, find the phasor line currents to a balanced load

that absorbs 5 kW at a 0.6 lagging power factor.

From , the line current magnitude is

If, for convenience, a Y load is assumed, then from Fig. 17-

8a, VAB lags VAB by 30° and so has an angle of 30° — 30°

= 0°. Since IA lags VAN by the power factor angle of θ = cos

—1 0.6 = 53.1°, IA has an angle of 0° —53.1° = —53.1°.

Consequently,  and, from the ABC phase

sequence,

17.33 A 480-V three-phase circuit has two balanced loads

connected in parallel. One is a 5-k W resistive heater and

the other an induction motor that delivers 15 hp while

operating at an 80 percent efficiency and a 0.9 lagging

power factor. Find the total rms line current.

A good approach is to find the total complex power ST

and then solve for IL from |sT| = sT =  vL IL, the apparent

power. Since the heater is purely resistive, its complex

power is  The complex power of the motor has

a magnitude (the apparent power) that is equal to the

input power divided by the power factor, and it has an

angle that is the arccosine of the power factor:



The total complex power is the sum of these two complex

powers:

Since the apparent power is |Sr| = ST =20.15 kVA,

17.34 If in a three-phase, three-wire, ABC circuit, 

  and , find the reading of

a wattmeter connected with its current coil in line C and

its potential coil across lines B and C. The ± terminal of

the current coil is toward the source, and the ± terminal of

the potential coil is at line C.

From the specified wattmeter connections, the

wattmeter reading is equal to P = VL Ic cos (ang VCB — ang

Ic). Of course, VL = 208 V. Also,

From an inspection of Figs. 17-8« and b, it should be fairly

apparent that Vcs leads IAB by 60° and so here is 

 Therefore, the wattmeter

reading is



17.35 A balanced Y load of 25-Ω resistors is energized from a

480-V, three-phase, three-wire, ABC source. Find the

reading of a wattmeter connected with its current coil in

line A and its potential coil across lines A and B. The ±

terminal of the current coil is toward the source, and the ±

terminal of the potential coil is at line A.

With the specified connections, the wattmeter has a

reading equal to P = VL I L cos (ang VAB — ang IA), for

which IL and the angles of VAB and IA are needed. Since no

phasors are specified in the problem statement, the phasor

VAB can be conveniently assigned a 0° angle: VAB = 480/0°

V. The current IA can be found from the phase voltage VAN

and the phase resistance of 25 Ω. Of course, VAN has a

magnitude of 480/  = 277 v. Also, from Fig. 17-8«, it lags

VAB by 30” and so has an angle of 0° - 30° = -30°.

Consequently,  and

Since the magnitude of IA is the rms line current,

Incidentally, this wattmeter reading is just half the total

average power absorbed of  VLIL × PF =  (480)

(11.09)(1) = 9220 W. As should be evident from the two-

wattmeter formulas VL IL cos (30° + 0) and VL1L cos (30° —

θ), this result is generally true for a purely resistive

balanced load (0 = 0°) and a wattmeter connected as if it

is one of the two wattmeters of the two-wattmeter method.

17.36 A balanced Δ load of j40-Ω inductors is energized from

a 208-V, ACB source. Find the reading of a wattmeter

connected with its current coil in line B and its potential



coil across lines B and C. The ± terminal of the current coil

is toward the source, and the ± terminal of the potential

coil is at line B.

With the specified connections, the wattmeter has a

reading equal to P = VL IL cos (ang VBC — ang IB). for which

IL and the angles of VBC and IB are needed. Since no

phasors are specified, the phasor VAB can be conveniently

assigned a 0° angle:  Then 

as is apparent from the relation between the specified ACB

phase sequence and the first subscripts. It follows that

So the wattmeter reading is

This reading has, of course, no relation to the average

power absorbed by the load, which must be 0 W because

the load is purely inductive.

17.37 A 240-V ABC circuit has a balanced Y load of 

impedances. Two wattmeters are connected for the two-

wattmeter method with current coils in lines A and C. Find

the wattmeter readings. Also, find these readings for an

ACB phase sequence.

Since the line voltage magnitude and the impedance

angle are known, only the line current magnitude is

needed to determine the wattmeter readings. This current

magnitude is



For the ABC phase sequence, the wattmeter with its

current coil in line A has a reading of

because A precedes B in the phase sequence and there is

no current coil in line B. The other wattmeter reading is

Notice that one wattmeter reading is 0 W and the other is

the total average power absorbed by the load, as is

generally true for the two-wattmeter method for a

balanced load with a power factor of 0.5.

For the ACB phase sequence, the wattmeter readings

switch because C is before B in the phase sequence and

there is no current coil in line B. So, Pc = 1440 W and PA =

0 W.

17.38 A 208-V circuit has a balanced Δ load of 

impedances. Two wattmeters are connected for the two-

wattmeter method with current coils in lines A and B. Find

the wattmeter readings for an ABC phase sequence.

The rms line current is needed for the wattmeter

formulas. This current is  times the rms phase current:

Since there is no current coil in line C, and since B precedes

C in the phase sequence, the reading of the wattmeter

with its current coil in line B is



The other wattmeter reading is

17.39 A balanced Y load is connected to a 480-V three-phase

source. The two-wattmeter method is used to measure the

average power absorbed by the load. If the wattmeter

readings are 5 kW and 3 kW, find the impedance of each

arm of the load.

Since the phase sequence and wattmeter connections

are not given, only the magnitude of the impedance angle

can be found from the wattmeter readings. From the

angle-power formulas, this angle magnitude is

The magnitude of the phase impedance ZY can be found

from the ratio of the phase voltage and current. The phase

voltage is 480/  = 277 V. The phase current, which is also

the line current, can be found from the total power

absorbed, which is 5 + 3 = 8 kW:

From the ratio of the phase voltage and current, the

magnitude of the phase impedance is 277/10.5 = 26.4 Ω.

So the phase impedance is either  

17.40 Two wattmeters both have readings of 3 kW when

connected for the two-wattmeter method with current

coils in lines A and B of a 600-V, ABC circuit having a

balanced Δ load. Find the Δ phase impedance.



For an ABC phase sequence and current coils in lines A

and B, the phase impedance angle is given by

Because the load impedance angle is 0°, the load is purely

resistive. The phase resistance is equal to the phase

voltage of 600 V, which is also the line voltage, divided by

the phase current. From P = 3 V plp cos 0,

17.41 Two wattmeters are connected for the two-wattmeter

method with current coils in lines B and C of a 480-V, ACB

circuit that has a balanced A load. If the wattmeter

readings are 4 kW and 2 kW, respectively, find the Δ

phase impedance ZΔ.

The phase impedance angle is

The magnitude of the phase impedance can be found by

dividing the phase voltage of 480 V, which is also the line

voltage, by the phase current. From P = 3 VpIp cos θ, the

phase current is



This divided into the phase voltage is the magnitude of the

phase impedance. Consequently,

17.42 Two wattmeters are connected for the two-wattmeter

method with current coils in lines A and C of a 240-V, ACB

circuit that has a balanced Y load. Find the Y phase

impedance if the two wattmeter readings are — 1 kW and

2 kW, respectively.

The impedance angle is

The magnitude of the phase impedance can be found by

dividing the phase voltage of  by the phase

current, which is also the line current. From 

the line current is

17.43 A 240-V, ABC circuit has an unbalanced A load

consisting of resistors RAC = 45 Ω, RBA = 30 Ω, and RCB =

40 Ω. Two wattmeters are connected for the two-

wattmeter method with current coils in lines A and B.



What are the wattmeter readings and the total average

power absorbed?

From the wattmeter connections, the wattmeter readings

are equal to

For the calculations of these powers, the phasors VAC, VBC,

lA, and IB are needed. Since no angles are specified, the

angle of VAC can be conveniently selected as 0°, making 

 For an ABC phase sequence, VCB leads VAC

by 120° and so is  is needed:

Also, IBA lags VAC by 120° and is  The line

currents IA and IB can be determined from the phase

currents:

Now PA and PB can be determined:

Notice that the two wattmeter readings are not the same,

even though the load is purely resistive. The reason they

are not the same is that the load is not balanced.



The total power absorbed is PA + PB = 2.24 + 2.4 =

4.64 kW. This can be checked by summing the V2/R power

absorptions by the individual resistors:

17.44 For a four-wire, ACB circuit in which ,

find the four phasor line currents to a Y load of 

 and 

The three phase currents, which are also three of the

line currents, are equal to the phase voltages divided by

the phase impedances. One phase voltage is the specified

VAN. The others are VBN and VCN.

From the specified ACB phase sequence, the voltages IBN

and VCN respectively lead and lag IAN by 120°: 

 and  So the phase currents

are

By KCL the neutral line current is

17.45 For an ABC circuit in which  find the

phasor line currents to a Δ load of  and 

Each line current is the difference of two phase

currents, and each phase current is the ratio of a phase



voltage and impedance. One phase voltage is the given IAB

= 480/40° V. And from the given ABC phase sequence, the

other phase voltages,  respectively lag and

lead IAB by 120°:  and  So the

phase currents are

And, by KCL, the line currents are

As a check, the three line currents can be added to see

if the sum is zero, as it should be by KCL. This sum is zero,

but it takes more than three significant digits to show this

convincingly.

17.46 In a three-wire, ABC circuit in which 

find the phasor line currents to a Y load of 

 and 

Since the Y load is unbalanced and there is no neutral

wire, the load phase voltages are not known. And this

means that the line currents cannot be found readily by

dividing the load phase voltages by the load phase

impedances, as in the solution to Prob. 17.44. A Y-to-A

transformation is tempting so that the phase voltages will

be known and the approach in the solution to Prob. 17.45

can be used. But usually this is considerably more effort

than using loop analysis on the original circuit.



As shown in Fig. 17-16, loop analysis can be used to

find two of the three line currents, here IA and Ic. Of course,

after these are known, the third line current IB can be

found from them by KCL. Note in Fig. 17-16 that the VCA

generator is not shown. It is not needed because the

shown two generators illustrated supply the correct

voltage between terminals A and C. Of course, as shown,

VBC lags the given IAB by 120° because the phase

sequence is ABC.

The loop equations are

which simplify to

Fig. 17-16

By Cramer’s rule,



Of course, by KCL,

17.47 In the circuit of Fig. 17-16, include the third voltage

generator VCA and use PSpice to obtain the three generator

currents IAB, IBC, and ICA, as well as the line currents IA, IB,

and Ic.

The PSpice circuit is shown in Fig. 17.17. Resistors Rl,

R2, and R3 of the same negligibly small resistance have

been inserted to avoid having a loop of voltage sources,

which PSpice will not accept. There is nothing especially

significant about the node numbering or the particular

choice of the 0 node. Since



Fig. 17-17

inductances and capacitances must be specified instead of

impedances, the load impedances have been converted to

time-domain quantities, with the inductor and capacitor

values based on a radian frequency of 1 rad/s. Then since 

 the ZA impedance is obtained with a

resistor of 13.856 n in series with a capacitor of 

. Similarly, because  the ZB

impedance is obtained with a 9-Ü. resistor in series with a

10.725-H inductor. And since  = 9.1925 –

j7.7135 Ω the Zc impedance is obtained with a 9.1925-Í2

resistor in series with a capacitor of 1/7.7135 = 0.12964 F

capacitance.

Following is the corresponding PSpice circuit file and

the output obtained when PSpice is run with this circuit

file. This output, expressed in terms of the currents

specified in the circuit of Fig. 17.17 are



and

The line current values agree within three significant digits

with those obtained in the solution to Prob. 17.46.

17.48 In the circuit shown in Fig. 17-18, in which each line

has an impedance of 5 j8 Ω, determine IA and IB.

The loop equations are

In matrix form, these simplify to



The solutions are  and  Of

course .

Fig. 17-18

Notice in Fig. 17-18 the use of lowercase letters at the

source terminals to distinguish them from the load

terminals, as is necessary because of the line impedances.

17.49 In a three-wire, ACB circuit in which one phase voltage

at the Y-connected source is  determine

the phasor line currents to a Δ load in which 

 and  Each line has an

impedance of 4 + j7 Ω.

A good approach is to transform the Δ to a Y and then

use loop analysis. The three A-to-Y transformation formulas

have the same denominator of

With this inserted, the transformation formulas are



With the equivalent Y inserted for the A, the circuit is as

shown in. Fig. 17-19. Because of the ACB phase sequence,

VbM leads Van by 120° and Vcn lags Vam by 120°, as shown.

Fig. 17-19

The loop equations are

These simplify to



The solutions are  and  Of course

IA = — IB — Ic, from which 

Supplementary Problems

17.50 What is the phase sequence of a Y-connected three-

phase alternator for which  and 

 Also, what is VCN?

Ans. ABC, 

17.51 Find the phase sequence of a balanced three-phase

circuit in which  and . Also, find VBN.

Ans. ABC, 

17.52 For a three-phase, three-wire circuit, find the phasor

line currents to a balanced Y load in which each phase

impedance is  and for which . The

phase sequence is,4CB.

Ans. 

17.53 Find the phase sequence of a three-phase circuit in

which  and  Also, find the

third line voltage.

Ans. ACB, 

17.54 What is the phase sequence of a three-phase circuit

for which  and 

Ans. ACB

17.55 A balanced Y load has one phase voltage of 

 If the phase sequences is ABC, find the line

voltages VAC, VCB, and VBA.

Ans. 



17.56 What are the phase voltages for a balanced three-

phase Y load if  The phase sequence is

ACB.

Ans. 

17.57 A balanced three-wire, ACB circuit has one line current

of  Find the other line currents.

Ans. 

17.58 Find the Ic line current in an unbalanced three-wire,

three-phase circuit in which  and 

Ans. 

17.59 A balanced Y load of 100-Ω resistors is connected to a

208-V, three-phase, three-wire source. Find the rms line

current.

Ans. 1.2 A

17.60 A balanced Y load of  impedances is connected

to a 600-V, three-phase, three-wire source. Find the rms

line current.

Ans. 8.66 A

17.61 Find the phasor line currents to a balanced Y load of 

 impedances. One phase voltage is 

 the phase sequence is ACB, and there are

only three wires.

Ans. 

17.62 For a three-phase, three-wire circuit, find the phasor

line currents to a balanced three-phase Y load of 

 impedances if  and the phase

sequence is ACB.

Ans. 

17.63 Find the phase sequence of a three-phase circuit in

which two of the phase currents of a balanced A load are 



 and  Also, find the third phase

current.

Ans. ABC, 

17.64 Find the phase currents IAC, ICB, and IBA of a balanced

three-phase Δ load to which one line current is 

The phase sequence is ACB.

Ans. 

17.65 A balanced three-phase A load has one phase current

of . If the phase sequence is ABC, find the

phasor line currents and the other phasor phase currents.

Ans. 

17.66 Find the phasor line currents to a balanced three-

phase Δ load in which one phase current is 

The phase sequence is ACB.

Ans. 

17.67 Find the rms value of the line currents to a balanced Δ

load of 100-Ω resistors from a 480-V, three-phase, three-

wire source.

Ans. 8.31 A

17.68 Find the phasor line currents to a balanced three-

phase Δ load of  impedances if the phase

sequence is ABC and if one phase voltage is 

.

Ans. 

17.69 A balanced Δ load of  impedances is energized

from the Y-connected secondary of a three-phase

transformer for which  If the phase

sequence is ABC, find the phasor line and load currents.



Ans. 

17.70 A balanced Y load with impedances of 8 +j6 Ω is

connected to a three-phase source by three wires, each of

which has 3 + j4 Í1 of impedance. The rms load phase

voltage is 50 V. Find the rms line voltage at the source.

Ans. 129 V

17.71 A balanced Δ load with impedances of 15 — j9 Ω is

connected to a three-phase source by three wires, each of

which has 2 +j5Ω of impedance. The rms load phase

voltage is 120 V. Find the rms line voltage at the source.

Ans. 150V

17.72 A 600-V, three-phase, three-wire circuit has two

parallel-connected balanced Δ loads, one of 30-Ω resistors

and the other of 60-Ω resistors. Find the total rms line

current.

Ans. 52 A

17.73 A 480-V, three-phase, three-wire circuit has two

parallel-connected balanced Y loads, one of 40-Ω resistors

and the other of 120-Ω resistors. Find the total rms line

current.

Ans. 9.24 A

17.74 A 480-V three-phase circuit has two parallel-connected

balanced Δ loads, one of  impedances and the

other of 70/50°-Ω impedances. Find the total rms line

current and the total average power absorbed.

Ans. 16.8 A, 13.3 kW

17.75 A 600-V three-phase circuit has two parallel-connected

balanced loads, one a Δ of  impedances and the

other a Y of  impedances. Find the total rms line

current and the total average power absorbed.



Ans. 15.4 A, 15.4kW

17.76 A balanced Y load of  impedances and a

parallel-connected balanced Δ load of 

impedances are connected by three wires to the

secondary of a three-phase transformer.  and the

phase sequence is ACB, find the total phasor line currents.

Ans. 

17.77 A balanced Δ load of  impedances is connected

to the secondary of a three-phase transformer by three

wires that have 3 + j4 Ω. of impedance each. If the rms

line voltage is 480 V at the secondary terminals, find the

rms line current.

Ans. 11.1 A

17.78 Find the average power absorbed by a balanced three-

phase load in an ACB circuit in which one line voltage is 

 and one line current to the load is 

Ans. 1.34 kW

17.79 A three-phase induction motor delivers 100 hp while

operating at an 80 percent efficiency and a 0.7 lagging

power factor from 600-V lines. Find the rms line current.

Ans. 128 A

17.80 A three-phase induction motor delivers 150 hp while

operating at an efficiency of 75 percent and a power factor

of 0.8 lagging from 480-V lines. A Y bank of power factor

correction capacitors is to be inserted to improve the

overall power factor to 0.9 lagging. Determine the

capacitance required per phase.

Ans. 456 μF

17.81 In a 480-V three-phase circuit, a balanced Δ load

absorbs 5 kW at a 0.7 lagging power factor. Find the Δ

phase impedance.



Ans. 

17.82 Given that  in an ACB three-phase

circuit, find the phasor line currents to a balanced load

that absorbs 10 kW at a 0.8 lagging power factor.

Ans. 

17.83 A 600-V three-phase circuit has two parallel-connected

balanced loads. One is a synchronous motor that delivers

30 hp while operating at an 85 percent efficiency and a

0.7 leading power factor. The other is an induction motor

that delivers 50 hp while operating at an 80 percent

efficiency and a 0.85 lagging power factor. Find the total

rms line current.

Ans. 70.2 A

17.84 If  and  in a three-wire, ACB

circuit, find the reading of a wattmeter connected with its

current coil in line A and its potential coil across lines A

and B. The ± terminal of the current coil is toward the

source, and the ± terminal of the potential coil is at line A.

Ans. 13.6 kW

17.85 A balanced Y load of 50-Ω resistors is connected to a

208-V, ACB, three-wire, three-phase source. Find the

reading of a wattmeter connected with its current coil in

line B and its potential coil across lines A and C. The ±

terminal of the current coil is toward the source, and the ±

terminal of the potential coil is at line A.

Ans. 0 W

17.86 A balanced Δ load with impedances of 9 + jl2 Q is

connected to a 480-V, ABC source. Find the reading of a

wattmeter connected with its current coil in line A and its

potential coil across lines B and C. The ± terminal of the

current coil is toward the source, and the + terminal of the

potential coil is at line C.

Ans. -21.3 kW



17.87 A 600-V three-phase circuit has a balanced Y load of 

 impedances. Find the wattmeter readings for the

two-wattmeter method.

Ans. 5.2 kW, 2.6 kW

17.88 A 480-V, ACB circuit has a balanced Y load of 

impedances. Two wattmeters are connected for the two-

wattmeter method with current coils in lines B and C. Find

the wattmeter readings.

Ans. PB = 4.17 kW, Pc = 2.6 kW

17.89 A 600-V, ACB circuit has a balanced Δ load of 

 impedances. Two wattmeters are

connected for the two-wattmeter method with current

coils in lines B and C. Find the wattmeter readings.

Ans. PB = 6.68 kW, Pc = 10.2 kW

17.90 A balanced Y load is connected to a 208-V three-phase

source. The two-wattmeter method is used to measure the

average power absorbed by the load. If the wattmeter

readings are 8 kW and 4 kW, find the Y phase impedance.

Ans. Either 

17.91 Two wattmeters both have readings of 5 kW when

connected for the two-wattmeter method in a 480-V three-

phase circuit that has a balanced Δ load. Find the A phase

impedance.

Ans. 

17.92 Two wattmeters are connected for the two-wattmeter

method with current coils in lines A and B of a 208-V, ABC

circuit that has a balanced Δ load. If the wattmeter

readings are 6 kW and — 3 kW, respectively, find the 

 phase impedance.

Ans. 

17.93 Two wattmeters are connected for the two-wattmeter

method with current coils in lines B and C of a 600-V, ABC



circuit that has a balanced Y load. Find the Y phase

impedance if the two wattmeter readings are 3 kW and 10

kW, respectively.

Ans. 

17.94 A 480-V, ACB circuit has an unbalanced Δ load

consisting of resistors RAC = 60 Ω, RBA = 85 Ω, and RCB =

70 Ω. Two wattmeters are connected for the two-

wattmeter method with current coils in lines A and C.

What are the wattmeter readings?

Ans. PA = 4.63 kW, Pc = 5.21 kW

17.95. For a four-wire, ABC circuit in which , find

the four phasor line currents to a Y load of 

 and 

Ans. 

17.96 For an ACB circuit in which  find the

phasor line currents to a Δ load of 

 and 

Ans. 

17.97 In a three-wire circuit, find in which  find

the phasor line currents to a Y load of 

 and 

Ans 

17.98 In a three-wire, ACB circuit in which one source line

voltage is  find the phasor line currents to a

Y load of  and  Each

line has an impedance of 3 + j 4 Ω

Ans. 

17.99 In a three-wire, ABC circuit in which one source line

voltage is  find the phasor line currents to a Δ



load of  and 

Each line has an impedance of 8 + j9Ω

Ans. 

17.100 Determine the answers that will be printed in the output

file when PSpice is run with the following circuit file.

Ans. 
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ac (alternating current), 3, 194

ac circuit, 194

ac generator (alternator), 195, 384

ac PSpice analysis, 268–269

Admittance, 238

conductance of, 238

mutual, 267

self-, 267

susceptance of, 238

Admittance diagram, 238

Admittance triangle, 238

Air-core transformer, 352

Algebra, complex, 217–221

Alternating current (ac), 3, 194

Alternating current circuit, 194

Alternator (ac generator), 195, 384

Ampere, 2

Analysis:

loop, 57, 266

mesh, 56, 265



nodal, 58, 267

Angle, phase, 197

Angular frequency, 195

Angular velocity, 195

Apparent power, 327

Associated references, 5

Autotransformer, 354

Average power, 194, 324

Average value of periodic wave, 198

Balanced bridge, 87, 297

Balanced three-phase load, 387, 389

Branch, 31

Bridge balance equation, 87, 297

Bridge circuit, 86

capacitance comparison, 316

Maxwell, 317

Wheatstone, 86

Buffer, 116

Capacitance, 153

equivalent, 154

total, 154

Capacitance comparison bridge, 316

Capacitive circuit, 235

Capacitive reactance, 200

Capacitor, 153

energy stored, 155

sinusoidal response, 200

Cascaded op amps, 116



Charge, 1

conservation of, 2

electron, 1

proton, 1

Choke, 175

Circuit, 2

ac, 194

capacitive, 235

dc, 31

inductive, 235

phasor-domain, 232

three-phase, 384–414

time-domain, 232

Coefficient of coupling, 353

Coil, 175

Color code, resistor, 20

Complex algebra, 217–221

Complex number:

angle, 219

conjugate, 219

exponential form, 219

magnitude, 219

polar form, 219

rectangular form, 218

Complex plane, 218

Complex power, 326

Conductance, 17

of admittance, 238

equivalent, 33

mutual, 58

self-, 58



total, 33

Conductivity, 18

Conductor, 17

Conjugate, 219

Conservation of charge, 2

Controlled source, 4

Conventional current flow direction, 2

Cosine wave, 197

Coulomb, 2

Coupled impedance, 354

Coupling, coefficient of, 353

Cramer’s rule, 54

Current, 2

ac, 3, 194

dc, 3

loop, 57

mesh, 56

phase, 386

short-circuit, 83, 295

Current direction, 2

reference, 2

Current division rule, 34, 239

Current source, 3

controlled, 4

dependent, 4

independent, 4

Norton, 83, 295

Cycle, 194

dc (direct current), 3



dc circuit, 31

dc PSpice analysis, 136–140

dc source, 4

Delta (Δ) connection, 85, 296, 386

Δ-Y transformation, 85, 296

Dependent source, 4

PSpice, 138

Derivative, 155

Determinant, 54

Dielectric, 153

Dielectric constant, 154

Digit grouping, 1

Direct current (dc), 3

Direct current circuit, 31

Direction, current, 2

Dot convention, 350

Double-subscript notation, 3, 384

Drop, voltage, 3

Dual, 72

Effective value, 198

Efficiency, 5

Electron, 1

Electron charge, 2

Energy, 3, 5

stored by a capacitor, 155

stored by an inductor, 177

Equivalent circuit:

Norton's 83, 295

Thévenin’s, 82, 294



Equivalent sources, 56, 265

Euler's identity, 219

Exponential form of complex number, 219

Farad, 153

Faraday's law, 175

Ferromagnetic material, 174

Flux:

leakage, 350

magnetic, 174, 349

mutual, 349

Flux linkage, 175

Frequency, 194

angular, 195

radian, 195

General transformer equation, 358

Generator:

ac, 195, 384

Δ-connected, 386

Y-connected, 385

Giga-, 2

Ground, 33

Grouping of digits, 1

Henry, 175

Hertz, 194

Horsepower, 5



Ideal transformer, 350

Imaginary number, 217

Impedance, 234

coupled, 354

equivalent, 234

input, 235

mutual, 266

output, 303

reactance of, 235

reflected, 351, 354

resistance of, 235

self-, 266

Thévenin, 294

total, 234

Impedance angle, 235

Impedance diagram, 235

Impedance plane, 235

Impedance triangle, 236

Independent source, 4

Induced voltage, 175, 353

Inductance, 175

equivalent, 176

mutual, 353

self-, 353

total, 176

Inductive circuit, 235

Inductive reactance, 199

Inductor, 175

energy stored, 177

sinusoidal response, 199

Inferred zero resistance temperature, 18



Input impedance, 235

Input resistance, 84

Instantaneous current, 155

Instantaneous power, 198, 324

Instantaneous voltage, 155

Insulator, 17

Internal resistance, 20

International System of Units (SI), 1

Inverter, 114

Ion, 2

Iron-core transformer, 350

Kilo-, 2

Joule,3

Kilohm-milliampere method, 34

Kilowatthour, 5

Kirchhoff's laws:

current law (KCL), 32, 267

voltage law(KVL), 31, 265

Lagging power factor, 325

Lattice circuit, 86

Leading power factor, 325

Leakage flux, 350

Line current, 386

Line voltage, 386

Linear circuit, 82

Linear circuit element, 82

Linear transformer, 352



Load:

balanced, 387, 389

Δ-connected, 85, 296, 389

parallel three-phase, 390

unbalanced, 393

Y-connected, 85, 296, 387

“Long time,” 165

Loop, 31

Loop analysis, 57, 266

Loop current, 57

Magnetic flux, 174

Matching, resistance, 84, 359

Maximum power transfer theorem, 84, 295

Maxwell bridge, 317

Mega-, 2

Mesh, 31

Mesh analysis, 56, 265

Mesh current, 56

Mho, 17

Micro-, 2

Milli-, 2

Millman's theorem, 84

Model:

op amp, 112

PSpice op-amp, 139

transformer, 350

Mutual admittance, 267

Mutual conductance, 58

Mutual flux, 349



Mutual impedance, 266

Mutual inductance, 353

Mutual resistance, 57

Nano-, 2

Negative charge, 1

Negative phase sequence, 386

Network (see Circuit)

Network theorem (see Theorem)

Neutral, 386

Neutron, 2

Newton, 3

Nodal analysis, 58, 267

Node, 31

reference, 33

Node voltage, 33

Nominal value of resistance, 19

Noninverting voltage amplifier, 115

Norton's theorem, 83, 295

Ohm, 17

Ohm's law, 17

Op amp: (see Operational amplifier)

Open circuit, 20

Open-circuit voltage, 82, 294

Operational amplifier (op amp), 112

model, 112

open-loop voltage gain, 112

PSpice model, 139

Operational-amplifier circuits, 112-135



buffer, 116

cascaded op amps, 116

inverter, 114

noninverting voltage amplifier, 115

voltage follower, 116

voltage-to-current converter, 116

Oscillator, 157

Output impedance, 303

Output resistance, 82, 84

Parallel connection, 21, 31

Passive sign convention, 5

Period, 158, 194

Periodic quantity, 194

effective value, 198

Permeability, 174

Permittivity, 154

Phase angle, 197

Phase current, 386

Phase difference, 197

Phase relation, 197

Phase sequence, 386

Phase voltage, 386

Phasor, 221

Phasor diagram, 221

Phasor-domain circuit, 232

Pico-, 2

Plane, complex, 218

Polar form of complex number, 219

Polarity, reference voltage, 4



Polarity, voltage, 3

Positive charge, 1

Positive phase sequence, 386

Potential drop, 3

Potential rise, 3

Power, 5, 324

apparent, 327

average, 194, 324

complex, 326

instantaneous, 198, 324

maximum transfer of, 84, 295

reactive, 326

real, 326

resistor, 19

three-phase, 391

Power factor, 324

lagging, 325

leading, 325

Power factor angle, 324

Power factor correction, 327

Power measurement:

single-phase, 325

three-phase, 391

two-wattmeter method, 334, 392

Power triangle, 326

Primary winding, 349

Probe, 178

Proton, 1

PSpice analysis:

ac, 268–269

dc, 136–140



Probe, 178

transient, 177–179

three-phase circuits, 393

transformer circuits, 356

Radian, 195

Radian frequency, 195

Rationalizing, 218, 219

RC time constant, 156

RC timer, 157

Reactance:

capacitive, 200

of impedance, 235

inductive, 199

Reactive factor, 326

Reactive power, 326

Real number, 217

Rectangular form of complex number, 218

Reference current direction, 2

Reference node, 33

Reference voltage polarity, 4

References, associated, 5

Reflected impedance, 351, 354

Relative permeability, 175

Relative permittivity, 154

Resistance, 17

equivalent, 31

of impedance, 235

input, 84

internal, 20



mutual, 57

nominal value, 19

output, 82, 84

self-, 57

Thévenin, 82

tolerance, 19

total, 31

Resistance matching, 84, 359

Resistivity, 17

Resistor, 19

color code, 20

linear, 19

nonlinear, 19

sinusoidal response, 198

Resonant frequency, 240

Right-hand rule, 174, 349

Rise, voltage, 3

RL time constant, 177

rms (root-mean-square) value, 199

Secondary winding, 349

Self-admittance, 267

Self-conductance, 58

Self-impedance, 266

Self-inductance, 353

Self-resistance, 57

Semiconductor, 18

Series connection, 21, 31

Short circuit, 20

Short-circuit current, 83, 295



SI (International System of Units), 1

Siemens, 17

Sine wave, 194, 195

Sinusoid, 197

average value, 198

effective value, 199

Source:

ac, 194, 384

controlled, 4

current, 3

dc, 4

dependent, 4

equivalent, 56, 265

independent, 4

Norton, 83, 295

practical, 20

Thévenin, 82, 294

voltage, 4

Source transformation, 56, 265

SPICE program, 136

Step-down transformer, 351

Step-up transformer, 351

Subscript notation:

current, 384

voltage, 3, 384

Superposition theorem, 84, 295

Susceptance, 238

Temperature coefficient of resistance, 19

Tera-, 2



Theorem:

maximum power transfer, 84, 295

Millman's, 84

Norton's, 83, 295

superposition, 84, 295

Thévenin’s, 82, 294

Thévenin’s theorem, 82, 294

Three-phase circuits, 384–414

balanced, 384, 387, 389

PSpice analysis, 393

unbalanced, 393

Three-phase power, 391

Three-phase power measurement, 391

Time constant, 156

RC, 156

RL, 177

Time-domain circuit, 232

Time-varying voltages and currents, 155

Timer, RC, 157

Tolerance, resistance, 19

Transformation:

Δ-Y, 85, 296

source 56, 265

Transformation ratio, 350

Transformers, 349–383

air-core, 352

ideal, 350

iron-core, 350

linear, 352

PSpice models, 356

step-down, 351



step-up, 351

Transient, 156

Transient PSpice analysis, 177–179

Turns ratio, 350

Two-wattmeter method, 334, 392

Unbalanced three-phase circuit, 393

Unit symbol, 1

Units, SI, 1

VAR, 326

Volt, 3

Voltage, 3

induced, 175, 353

node, 33

open-circuit, 82, 294

phase, 386

Voltage difference, 3

Voltage division rule, 32, 236

Voltage drop, 3

Voltage follower, 116

Voltage polarity, 3

reference, 4

Voltage rise, 3

Voltage source, 4

controlled, 4

dependent, 4

independent, 4

Thévenin, 82, 294

Voltage-to-current converter, 116

Voltampere, 326



Voltampere reactive, 326

Watt, 5

Wattmeter, 325

Weber, 174

Wheatstone bridge, 86

Winding:

primary, 349

secondary, 349

Work, 3

Y (Wye) connection, 85, 296, 385

Y-Δ transformation, 85, 296
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