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Preface

Studying from this book will help both electrical
technology and electrical engineering students learn circuit
analysis with, it is hoped, less effort and more
understanding. Since this book begins with the analysis of
dc resistive circuits and continues to that of ac circuits, as
do the popular circuit analysis textbooks, a student can,
from the start, use this book as a supplement to a circuit
analysis textbook.

The reader does not need a knowledge of differential or
integral calculus even though this book has derivatives in
the chapters on capacitors, inductors, and transformers, as
is required for the voltage-current relations. The few
problems with derivatives have clear physical explanations
of them, and there is not a single integral anywhere in the
book. Despite its lack of higher mathematics, this book can
be very useful to an electrical engineering reader since
most material in an electrical engineering circuit analysis
course requires only a knowledge of algebra. Where there
are different definitions in the electrical technology and
engineering fields, as for capacitive reactances, phasors,
and reactive power, the reader is cautioned and the various
definitions are explained.

One of the special features of this book is the
presentation of PSpice, which is a computer circuit analysis
or simulation program that is suitable for use on personal
computers (PCs). PSpice is similar to SPICE, which has
become the standard for analog circuit simulation for the
entire electronics industry. Another special feature is the



presentation of operational-amplifier (op-amp) circuits. Both
of these topics are new to this second edition. Another topic
that has been added is the use of advanced scientific
calculators to solve the simultaneous equations that arise in
circuit analyses. Although this use requires placing the
equations in matrix form, absolutely no knowledge of matrix
algebra is required. Finally, there are many more problems
involving circuits that contain dependent sources than there
were in the first edition.

| wish to thank Dr. R. L. Sullivan, who, while | was writing
this second edition, was Chairman of the Department of
Electrical Engineering at the University of Florida. He
nurtured an environment that made it conducive to the
writing of books. Thanks are also due to my wife, Lois Anne,
and my son Mathew for their constant support and
encouragement without which | could not have written this
second edition.

JOHN R. O"MALLEY
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Chapter 1
Basic Concepts

DIGIT GROUPING

To make numbers easier to read, some international scientific
committees have recommended the practice of separating digits
into groups of three to the right and to the left of decimal points,
as in 64 325.473 53. No separation is necessary, however, for
just four digits, and they are preferably not separated. For
example, either 4138 or 4 138 is acceptable, as is 0.1278 or
0.127 8, with 4138 and 0.1278 preferred. The international
committees did not approve of the use of the comma to separate
digits because in some countries the comma is used in place of
the decimal point. This digit grouping is used throughout this
book.

INTERNATIONAL SYSTEM OF UNITS

The International System of Units (Sl) is the international
measurement language. Sl has nine base units, which are shown
in Table 1-1 along with the unit symbols. Units of all other
physical quantities are derived from these.

Table 1-1



Physical

Quantity Unit Symbol
length meter m
mass kilogram kg
time second S
current ampere A
temperature kelvin K
amount of substance mole mol
luminous intensity candela cd
plane angle radian rad
solid angle steradian ST

There is a decimal relation, indicated by prefixes, among
multiples and submultiples of each base unit. An Sl prefix is a
term attached to the beginning of an Sl unit name to form either
a decimal multiple or submultiple. For example, since “kilo” is the
prefix for one thousand, a kilometer equals 1000 m. And because
“micro” is the Sl prefix for one-millionth, one microsecond equals
0.000 001 s.

The Sl prefixes have symbols as shown in Table 1-2, which also
shows the corresponding powers of 10. For most circuit analyses,
only mega, kilo, milli, micro, nano, and pico are important. The
proper location for a prefix symbol is in front of a unit symbol, as
in km for kilometer and cm for centimeter.

Table 1-2



— . .
Multiplier Prefix Symbol Multiplier Prefix Symbol
108 exa E 107! deci d
10'3 peta P 1072 centi C
1012 tera T 104 milli m
10° giga G " micro T}
10" mega M 10" nano n
10° kilo k jQr14 pico p
102 hecto h it femto f
10! deka da 10~ '8 atto a

ELECTRIC CHARGE

Scientists have discovered two kinds of electric charge:
positive and negative. Positive charge is carried by subatomic
particles called protons, and negative charge by subatomic
particles called electrons. All amounts of charge are integer
multiples of these elemental charges. Scientists have also found
that charges produce forces on each other: Charges of the same
sign repel each other, but charges of opposite sign attract each
other. Moreover, in an electric circuit there is conservation of
charge, which means that the net electric charge remains
constant—charge is neither created nor destroyed. (Electric
components interconnected to form at least one closed path
comprise an electric circuit or network.)

The charge of an electron or proton is much too small to be the
basic charge unit. Instead, the Sl unit of charge is the coulomb
with unit symbol C. The quantity symbol is Q for a constant
charge and g for a charge that varies with time. The charge of an
electron is -1.602 x 10712 C and that of a proton is 1.602 x 10-19
C. Put another way, the combined charge of 6.241 x 1018
electrons equals —1 C, and that of 6.241 x 1018 protons equals 1
C.

Each atom of matter has a positively charged nucleus
consisting of protons and uncharged particles called neutrons.
Electrons orbit around the nucleus under the attraction of the
protons. For an undisturbed atom the number of electrons equals
the number of protons, making the atom electrically neutral. But
if an outer electron receives energy from, say, heat, it can gain



enough energy to overcome the force of attraction of the protons
and become a free electron. The atom then has more positive
than negative charge and is a positive ion. Some atoms can also
“capture” free electrons to gain a surplus of negative charge and
become negative ions.

ELECTRIC CURRENT

Electric current results from the movement of electric charge.
The Sl unit of current is the ampere with unit symbol A. The
quantity symbol is I for a constant current and i for a time-
varying current. If a steady flow of 1 C of charge passes a given
point in a conductor in 1 s, the resulting current is 1 A. In general,

Q{couloibs]

Hseconds)

I{famperes) =

in which t is the quantity symbol for time.

Current has an associated direction. By convention the
direction of current flow is in the direction of positive charge
movement and opposite the direction of negative charge
movement. In solids only free electrons move to produce current
flow —the ions cannot move. But in gases and liquids, both
positive and negative ions can move to produce current flow.
Since electric circuits consist almost entirely of solids, only
electrons produce current flow in almost all circuits. But this fact
is seldom important in circuit analyses because the analyses are
almost always at the current level and not the charge level.

In a circuit diagram each [/ (or i) usually has an associated
arrow to indicate the current reference direction, as shown in Fig.
1-1. This arrow specifies the direction of positive current flow, but
not necessarily the direction of actual flow. If, after calculations, /
is found to be positive, then actual current flow is in the direction
of the arrow. But if | is negative, current flow is in the opposite
direction.
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Fig. 1-1

6A

Fig. 1-2

A current that flows in only one direction all the time is a direct
current (dc), while a current that alternates in direction of flow is
an alternating current (ac). Usually, though, direct current refers
only to a constant current, and alternating current refers only to a
current that varies sinusoidally with time.

A current source is a circuit element that provides a specified
current. Figure 1-2 shows the circuit diagram symbol for a current
source. This source provides a current of 6 A in the direction of
the arrow irrespective of the voltage (discussed next) across the
source.

VOLTAGE

The concept of voltage involves work, which in turn involves
force and distance. The SI unit of work is the joule with unit
symbol |, the SI unit of force is the newton with unit symbol N,



and of course the Sl unit for distance is the meter with unit
symbol m.

Work is required for moving an object against a force that
opposes the motion. For example, lifting something against the
force of gravity requires work. In general the work required in
joules is the product of the force in newtons and the distance
moved in meters:

W(joules) = F(newtons) x s(meters)

where W, F, and s are the quantity symbols for work, force, and
distance, respectively.

Energy is the capacity to do work. One of its forms is potential
energy, which is the energy a body has because of its position.

The voltage difference (also called the potential difference)
between two points is the work in joules required to move 1 C of
charge from one point to the other. The Sl unit of voltage is the
volt with unit symbol V. The quantity symbol is For v, although E
and e are also popular. In general,

Wi(joul
Fivolts) = —ﬂﬂﬂ

Q(coulombs)

The voltage quantity symbol V sometimes has subscripts to
designate the two points to which the voltage corresponds. If the
letter a designates one point and b the other, and if W joules of
work are required to move Q coulombs from point b to a, then
V. = W/Q. Note that the first subscript is the point to which the

charge is moved. The work quantity symbol sometimes also has
subscripts as in Vg, = W,,/0.

If moving a positive charge from b to a (or a negative charge
from a to b) actually requires work, the point a is positive with
respect to point b. This is the voltage polarity. In a circuit
diagram this voltage polarity is indicated by a positive sign (+) at
point a and a negative sign (-) at point b, as shown in Fig. 1-3a
for 6 V. Terms used to designate this voltage are a 6-V voltage or



potential rise from b to a or, equivalently, a 6-V voltage or
potential drop from a to b.

4 6 V __ + Vuh _
o- S o - 0
a b a b
(a) (b)
Fig. 1-3

If the voltage is designated by a quantity symbol as in Fig. 1-
3b, the positive and negative signs are reference polarities and
not necessarily actual polarities. Also, if subscripts are used, the
positive polarity sign is at the point corresponding to the first
subscript (a here) and the negative polarity sign is at the point
corresponding to the second subscript (b here). If after
calculations, V,, is found to be positive, then point a is actually

positive with respect to point b, in agreement with the reference
polarity signs. But if V;, is negative, the actual polarities are

opposite those shown.

A constant voltage is called a dc voltage. And a voltage that
varies sinusoidally with time is called an ac voltage.

A voltage source, such as a battery or generator, provides a
voltage that, ideally, does not depend on the current flow
through the source. Figure |-4a shows the circuit symbol for a
battery. This source provides a dc voltage of 12 V. This symbol is
also often used for a dc voltage source that may not be a battery.
Often, the + and - signs are not shown because, by convention,
the long end-line designates the positive terminal and the short
end-line the negative terminal. Another circuit symbol for a dc
voltage source is shown in Fig. 1-4b. A battery uses chemical
energy to move negative charges from the attracting positive
terminal, where there is a surplus of protons, to the repulsing
negative terminal, where there is a surplus of electrons. A voltage
generator supplies this energy from mechanical energy that
rotates a magnet past coils of wire.



7V 12V

(a) (b)

Fig. 1-4

DEPENDENT SOURCES

The sources of Figs. 1-2 and 1-4 are independent sources. An
independent current source provides a certain current, and an
independent voltage source provides a certain voltage, both
independently of any other voltage or current. In contrast, a
dependent source (also called a controlled source) provides a
voltage or current that depends on a voltage or current
elsewhere in a circuit. In a circuit diagram, a dependent source is
designated by a diamond-shaped symbol. For an illustration, the
circuit of Fig. 1-5 contains a dependent voltage source that
provides a voltage of 5V;, which is five times the voltage V; that

appears across a resistor elsewhere in the circuit. (The resistors
shown are discussed in the next chapter.) There are four types of
dependent sources: a voltage-controlled voltage source as shown
in Fig. 1-5, a current-controlled voltage source, a voltage-
controlled current source, and a current-controlled current
source. Dependent sources are rarely separate physical
components. But they are important because they occur in
models of electronic components such as operational amplifiers
and transistors.



Fig. 1-5

POWER

The rate at which something either absorbs or produces
enerqgy is the power absorbed or produced. A source of energy
produces or delivers power and a load absorbs it. The Sl unit of
power is the watt with unit symbol W. The quantity symbol is P
for constant power and p for time-varying power. If 1 J of work is
either absorbed or delivered at a constant rate in 1 s, the
corresponding power is 1 W. In general,

W(joules)

P(watts) =
(watts) H{seconds)

The power absorbed by an electric component is the product of
voltage and current if the current reference arrow is into the
positively referenced terminal, as shown in Fig. 1-6:

P(watts) = V(volts) x I{amperes)

I+V-_

Fig. 1-6



Such references are called associated references. (The term
passive sign convention is often used instead of “associated
references.”) If the references are not associated (the current
arrow is into the negatively referenced terminal), the power
absorbed is P = - VI.

If the calculated P is positive with either formula, the
component actually absorbs power. But if P is negative, the
component produces power--it is a source of electric energy.

The power output rating of motors is usually expressed in a
power unit called the horsepower (hp) even though this is not an
S| unit. The relation between horsepower and watts is 1 hp =
745.7 W.

Electric motors and other systems have an efficiency (n) of
operation defined by

o power output o
Efficiency = — ———— x 100% or n=——x 100%
power input P,

Efficiency can also be based on work output divided by work
input. In calculations, efficiency is usually expressed as a decimal
fraction that is the percentage divided by 100.

The overall efficiency of a cascaded system as shown in Fig. 1-
7 is the product of the individual efficiencies:

— P

P, m p— Mm

Y
=
|
I
]
=
3

Fig. 1-7

4]
o = Ry,

ENERGY

Electric energy used or produced is the product of the electric
power input or output and the time over which this input or



output occurs:

W{(joules) = P(watts) x t{seconds)

Electric energy is what customers purchase from electric utility
companies. These companies do not use the joule as an energy
unit but instead use the much larger and more convenient
kilowatthour (kWh) even though it is not an SI unit. The number
of kilowatthours consumed equals the product of the power
absorbed in kilowatts and the time in hours over which it is
absorbed:

W{kilowa'tthours] = P(kilowatts) x t(hours)

Solved Problems

1.1 Find the charge in coulombs of (a) 5.31 x 1020 electrons,
and (b) 2.9 x 1022 protons.

(a) Since the charge of an electron is -1.602 x 1012 C, the
total charge is

—1.60 1919
5.31 x 10%°eleetroms x —1—6—2 x _{],_ ’C‘_: —85.1C
1 gleetrom

(b) Similarly, the total charge is

1.602 x 1077 C
X
| proten

29 x 10*% pretors = 4.65kC

1.2 How many protons have a combined charge of 6.8 pC?

Because the combined charge of 6.241 x 1018 protons is
1 C, the number of protons is



6.241 x 10'® protons

1¢

1.3 Find the current flow through a light bulb from a steady
movement of (a) 60 Cin4 s, (b) 15C in 2 min, and (c) 1022
electrons in 1 h.

6.8 x 107 1? ¢ X = 4.24 x 107 protons

Current is the rate of charge movement in coulombs per
second. So,

60 C
(a)f:g=?—=15C;’s:15A
1 5

15C |

(b))l =——— x——=0.125C/s =0.125 A
2 60s

(c)

22 -19
O SO B e L8 L i SN CJs = —0.445 A
1| 3600 s | eleetrom
The negative sign in the answer indicates that the current
flows in a direction opposite that of electron movement. But
this sign is unimportant here and can be omitted because the
problem statement does not specify the direction of electron

movement.

1.4 Electrons pass to the right through a wire cross section at

the rate of 6.4 x 102! electrons per minute. What is the
current in the wire?

Because current is the rate of charge movement in
coulombs per second,

6.4 x 102! eleetroms 1 | i
I = . ¥ ——— — X —— = —171C/fs = —17.1 A
| emimr 6.241 x 10'% cleetrons 60 s

The negative sign in the answer indicates that the current is to
the left, opposite the direction of electron movement.

1.5 In a liquid, negative ions, each with a single surplus
electron, move to the left at a steady rate of 2.1 x 1029 jons
per minute and positive ions, each with two surplus protons,



move to the right at a steady rate of 4.8 x 1019 ions per
minute. Find the current to the right.

The negative ions moving to the left and the positive
ions moving to the right both produce a current to the right
because current flow is in a direction opposite that of
negative charge movement and the same as that of positive
charge movement. For a current to the right, the movement
of electrons to the left is a negative movement. Also, each
positive ion, being doubly ionized, has double the charge of

a proton. So,

21 x 10°°%eleetroms™  ~1.602 x 107 '°C Lmnr+ 2 x 48 x ]0“’,1;;9!-011'5' 1.602 x 10°**C
X X — -
| i 1 electronm 60s 1 | pretem

i
=0817 A
60s

x

1.6 Will a 10-A fuse blow for a steady rate of charge flow
through it of 45 000 C/h?

The current is

45000C 14

X =125A
IH 3600 s

which is more than the 10-A rating. So the fuse will blow.

1.7 Assuming a steady current flow through a switch, find the
time required for (a) 20 C to flow if the current is 15 mA, (b)

12 uC to flow if the current is 30 pA, and (c) 2.58 x 101>
electrons to flow if the current is -64.2 nA.

Since | = Q/t solved for tis t = Q/I,

(@)t = = 1.33 x 10* s = 22.2 min

1__><1u
2 x 10°°
(b) t = =4 x105s=111h
30 x 1012
'J:Rx][}”_e.leetfoﬂs' —1C

(c) ¢ = =644 x 10*s =1.79h

X
—642 x 10°°A 6.241 x 10'"eleetrons



1.8 The total charge that a battery can deliver is usually
specified in ampere-hours (Ah). An ampere-hour is the
quantity of charge corresponding to a current flow of 1 A for
1 h. Find the number of coulombs corresponding to 1 Ah.

Since from Q = It, 1 C is equal to one ampere second
(As),

3600 s
Q:lAHx-iDEq=36mAs=3ﬁﬂGC

1.9 A certain car battery is rated at 700 Ah at 3.5 A, which
means that the battery can deliver 3.5 A for approximately
700/3.5 = 200 h. However, the larger the current, the less
the charge that can be drawn. How long can this battery
deliver 2 A?

The time that the current can flow is approximately
equal to the ampere-hour rating divided by the current:

700 Ah

t = =350h

2K

Actually, the battery can deliver 2 A for longer than 350 h
because the ampere-hour rating for this smaller current is

greater than that for 3.5 A.

1.10 Find the average drift velocity of electrons in a No. 14
AWG copper wire carrying a 10-A current, given that copper
has 1.38 x 1024 free electrons per cubic inch and that the
cross-sectional area of No. 14 AWG wire is 3.23 x 103 in2.

The average drift velocity (v) equals the current divided
by the product of the cross-sectional area and the electron

density:




10¢ I 1 0.0254 m | eleetrorr

S X L LA, AT I X X — — il Y .
Is 323 x 10 *jaf 138 x 10%*cleetrons ~ 1jf  —1.602 x 1017 ¢
= —3.56 x 10 *m/s

The negative sign in the answer indicates that the electrons
move in a direction opposite that of current flow. Notice the
low velocity. An electron travels only 1.28 m in 1 h, on the
average, even though the electric impulses produced by the
electron movement travel at near the speed of light (2.998 x

108 m/s).

1.11 Find the work required to lift a 4500-kg elevator a vertical
distance of 50 m.

The work required is the product of the distance moved
and the force needed to overcome the weight of the
elevator. Since this weight in newtons is 9.8 times the mass
in kilograms.

W = Fs=(9.8 x 4500)(50) ] = 2.2 M)

1.12 Find the potential energy in joules gained by a 180-Ib man
in climbing a 6-ft ladder.

The potential energy gained by the man equals the work
he had to do to climb the ladder. The force involved is his
weight, and the distance is the height of the ladder. The
conversion factor from weight in pounds to a force in
newtons is 1 N = 0.225 |b. Thus,

12 0.0254
W = 180 K x 6 ft x —I-N—— X --K{x O—l & = 1.46 x 10° Nm = 1.46 kJ
0.225 165 1 f¥ | o

1.13 How much chemical energy must a 12-V car battery
expend in moving 8.93 x 1029 electrons from its positive
terminal to its negative terminal?

The appropriate formula is W= QV. Although the signs of
Q and V are important, obviously here the product of these



quantities must be positive because energy is required to
move the electrons. So, the easiest approach is to ignore the
signs of Q and V. Or, if signs are used, V is negative because
the charge moves to a more negative terminal, and of
course Q is negative because electrons have a negative
charge. Thus,

W= QV =893 x 10*" cleetrons x (—12V) x —— --7—lfc — =172 x 10°VC = 1.72kJ
6.241 x 10" eleetrons
1.14 If moving 16 C of positive charge from point b to point a
requires 0.8 J, find V,,, the voltage drop from point a to point

b.

W, 0.8
V= —2=-"=005V
0 16

1.15 In moving from point a to point b, 2 x 1012 electrons do 4
J of work. Find V,, the voltage drop from point a to point b.

Work done by the electrons is equivalent to negative
work done on the electrons, and voltage depends on work
done on charge. So, W, = -4 ], but W,, = - W,, = 4 J. Thus,

W, 4] 6.241 x 10'® eleetroms )

V= — = — X - — = —~125]J/C= —125V
Q 2 x 10'° eleetrons —1C

The negative sign indicates that there is a voltage rise from a

to b instead of a voltage drop. In other words, point b is more

positive than point a.

1.16 Find V,,, the voltage drop from point a to point b, if 24 |

are required to move charges of (a) 3 C, (b) - 4 C, and (c) 20
x 1012 electrons from point a to point b.

If 24 | are required to move the charges from point a to
point b, then — 24 ] are required to move them from point b to
point a. In other words, W,, = — 24 J. So,



W, -
(@) Vs 0 3
The negative sign in the answer indicates that point a is
more negative than point b —there is a voltage rise from a to b.

W —24
(D) Vip=-==——=6V

0 -4

W —241] 6.241 x 10" gleetrons
(VMoo 2T 621X 10 seetroms oy

0 20 x 10" eleetrony —-1C
1.17 Find the energy stored in a 12-V car battery rated at 650

Ah.

From W = QV and the factthat 1 As =1 C,

3600 s

W = 650 A{ x x 12V =234 x 10° As x 12V = 28.08 MJ

1.18 Find the voltage drop across a light bulb if a 0.5-A current
flowing through it for 4 s causes the light bulb to give off
240 ] of light and heat energy.

Since the charge that flowsisQ =1t =0.5%x 4 =2C,

W 240
V=—="—"—=120V
Q

-
=

1.19 Find the average input power to a radio that consumes
3600 J in 2 min.

W 36001 1w
P=_=_-__.“ X ——230.]{{3":30‘”
t 2t 60 s

1.20 How many joules does a 60-W light bulb consume in 1 h?

From rearranging P = W/t and from the fact that 1 Ws =
1],



3600

5
W=Pr=60W x|} x o = 216000 Ws = 216 kJ

1.21 How long does a 100-W light bulb take to consume 13 kJ?

From rearranging P = W/t,

W 13000
t=—=-—=130s
P 100

1.22 How much power does a stove element absorb if it draws
10 A when connected to a 115-V line?

P=VI=115x 10W = 1.I15kW

1.23 What current does a 1200-W toaster draw from a 120-V
line?

From rearranging P = VI,

P 1200
=10A

Vo120

1.24 Figure 1-8 shows a circuit diagram of a voltage source of
V volts connected to a current source of I amperes. Find the
power absorbed by the voltage source for

(@a)Vv=2V,I=4A
(b)V=3V,I=-2A
(c)Vv=-6V,I=-8A



Fig. 1-8

Because the reference arrow for I is into the positively
referenced terminal for V, the current and voltage references for
the voltage source are associated. This means that there is a
positive sign (or the absence of a negative sign) in the relation
between power absorbed and the product of voltage and current:
P = VI. With the given values inserted,

(@)P=VI=2%x4=8W
(b) P=VI =3 x (-2)= -6W
The negative sign for the power indicates that the voltage
source delivers rather than absorbs power.
(c)P=VI=-6 X (-8) =48 W

1.25 Figure 1-9 shows a circuit diagram of a current source of /
amperes connected to an independent voltage source of 8 V
and a current-controlled dependent voltage source that
provides a voltage that in volts is equal to two times the
current flow in amperes through it. Determine the power P,

absorbed by the independent voltage source and the power
P, absorbed by the dependent voltage source for (a) | = 4 A,

(b)=5mA, and (c) | = —3 A.



Fig. 1-9

Because the reference arrow for / is directed into the
negative terminal of the 8-V source, the power-absorbed
formula has a negative sign: P, = —8I. For the dependent

source, though, the voltage and current references are
associated, and so the power absorbed is P, = 2/ (/) = 2/
With the given current values inserted,
(@) P; = -8(4)= -32W and P, = 2(4)? = 32 W. The negative
power for the independent source indicates that it is
producing power instead of absorbing it.

(b) P = -8(5 x 1073)= -40 x 103 W = -40 mW
P, =2(5 x 1073)2 =50 x 10°® W = 50 pw

(c) P, = -8(-3) = 24 W and P, = 2(-3)2 = 18 W. The power
absorbed by the dependent source remains positive
because although the current reversed direction, the
polarity of the voltage did also, and so the actual current
flow is still into the actual positive terminal.

1.26 Calculate the power absorbed by each component in the
circuit of Fig. 1-10.



! 6V

+16V P, l“

P, 10 A P, = 22V P, 0.4/

Fig. 1-10

Since for the 10-A current source the current flows out of
the positive terminal, the power it absorbs is P, = — 16(10)

= — 160 W. The negative sign indicates that this source is
not absorbing power but rather is delivering power to other
components in the circuit. For the 6-V source, the 10-A
current flows into the negative terminal, and so P, = -6(10)
= -60 W. For the 22-V source, P3 = 22(6) = 132W. Finally, the
dependent source provides a current of 0.4(10) = 4 A. This
current flows into the positive terminal since this source also
has 22 V, positive at the top, across it. Consequently, P, =

22(4) = 88 W. Observe that

P,+P,+P;+P,=—160—60+132+88=0W

The sum of 0 W indicates that in this circuit the power
absorbed by components is equal to the power delivered.
This result is true for every circuit.

1.27 How long can a 12-V car battery supply 250 A to a starter
motor if the battery has 4 x 10° ] of chemical energy that
can be converted to electric energy?

The best approach is to use t = W/P. Here,

P=VI=12 x 250 = 3000 W

And so



W 4 x 10°
[=— = = 1333.33s = 22.2 min
P 3000

1.28 Find the current drawn from a 115-V line by a dc electric
motor that delivers 1 hp. Assume 100 percent efficiency of
operation.

From rearranging P = VI and from the fact that 1 W/V =1
A,

P | 7457 W
— = ﬂ = = 6.48 W;V = 648 A
V1SV Lhp

1.29 Find the efficiency of operation of an electric motor that
delivers 1 hp while absorbing an input of 900 W.

I 1 7457 W
n=-—x 100% = il X
| A 900 W~ Ly

x 100% = 82.9%

1.30 What is the operating efficiency of a fully loaded 2-hp dc
electric motor that draws 19 A at 100 V? (The power rating
of a motor specifies the output power and not the input
power.)

Since the input power is
P, = VI =100 x 19 = 1900 W
the efficiency is

Pou 2hy  745TW
=" x 100% = — x x 100% = 78.5%
P,. 1900W by

1.31 Find the input power to a fully loaded 5-hp motor that
operates at 80 percent efficiency.

For almost all calculations, the efficiency is better
expressed as a decimal fraction that is the percentage



divided by 100, which is 0.8 here. Then from n = Py t/Pin,

P, 5 7457 W
p. = Fou _OShO TASTW W

"g 0.8 1 by

1.32 Find the current drawn by a dc electric motor that delivers
2 hp while operating at 85 percent efficiency from a 110-V
line.

From Pio=V¥l=P,/n,

¢ o P 2 by MW _oc s
—_——— = —— e W ——— — .
nV 085 x 110V Lhy

1.33 Maximum received solar power is about 1 kW/m?Z. If solar
panels, which convert solar energy to electric energy, are 13
percent efficient, how many square meters of solar cell
panels are needed to supply the power to a 1600-W toaster?

The power from each square meter of solar panels is

Pﬂm=?]Pm=ﬂ_13 x “JOD: 130 W

So, the total solar panel area needed is

1 m?
Area = 1600.W x —— = 12.3 m?
130 W

1.34 What horsepower must an electric motor develop to
pump water up 40 ft at the rate of 2000 gallons per hour
(gal/h) if the pumping system operates at 80 percent
efficiency?

One way to solve for the power is to use the work done
by the pump in 1 h, which is the weight of the water lifted in
1 h times the height through which it is lifted. This work
divided by the time taken is the power output of the
pumping system. And this power divided by the efficiency is



the input power to the pumping system, which is the
required output power of the electric motor. Some needed
data are that 1 gal of water weighs 8.33 Ib, and that 1 hp =
550 (ft 2 Ib)/s. Thus,

2000 1 I 833 1h
g ’gﬂr {}}(x sl e s M e P—-—:[}.ﬂith
0.8  3600.s 1gal” 550 (§(: JB)¥

1.35 Two systems are in cascade. One operates with an
efficiency of 75 percent and the other with an efficiency of
85 percent. If the input power is 5 kW, what is the output
power?

P, = 11, P,, = 0.750.85(5000) W = 3.19 kW

1.36 Find the conversion relation between kilowatthours and
joules.

The approach here is to convert from kilowatthours to
watt-seconds, and then use the factthat 1 ] = 1 Ws:

1 kWh = 1000 W x 36005 = 3.6 x 10° Ws = 3.6 MJ

1.37 For an electric rate of 7¢/kilowatthour, what does it cost
to leave a 60-W light bulb on for 8 h?

The cost equals the total energy used times the cost per
energy unit:

1 k 7
Cost = 60 W 'x 80 x _ﬂ P f

T = 3.36¢

1000 WA 1 kWA

1.38 An electric motor delivers 5 hp while operating with an
efficiency of 85 percent. Find the cost for operating it
continuously for one day (d) if the electric rate is
6¢/kilowatthour.



The total energy used is the output power times the time
of operation, all divided by the efficiency. The product of this
energy and the electric rate is the total cost:

6¢ 0.7457 kW 244
x

|
Cost = 5.hp x ld™x — e 632¢ = $6.32

x S x ey ——rsrend
0.85 1 kWA 1 by~

Supplementary Problems

1.39 Find the charge in coulombs of (a) 6.28 x 102! electrons
and (b) 8.76 x 1029 protons.

Ans. (a) -1006 C, (b) 140 C
1.40 How many electrons have a total charge of -4 nC?
Ans. 2.5 x 1019 electrons

1.41 Find the current flow through a switch from a steady
movement of (a) 90 Cin 6 s, (b) 900 Cin 20 min, and (¢) 4 X
1023 electrons in 5 h.

Ans. (a) 15 A, (b) 0.75 A, (c) 3.56 A

1.42 A capacitor is an electric circuit component that stores
electric charge. If a capacitor charges at a steady rate to 10
mC in 0.02 ms, and if it discharges in 1 us at a steady rate,
what are the magnitudes of the charging and discharging
currents?

Ans. 500 A, 10 000 A

1.43 In a gas, if doubly ionized negative ions move to the right

at a steady rate of 3.62 x 1020 jons per minute and if singly
ionized positive ions move to the left at a steady rate of 5.83
x 1020 jons per minute, find the current to the right.

Ans. -3.49 A



1.44 Find the shortest time that 120 C can flow through a 20-A
circuit breaker without tripping it.

Ans. 6 s

1.45 If a steady current flows to a capacitor, find the time
required for the capacitor to (a) charge to 2.5 mC if the
current is 35 mA, (b) charge to 36 pC if the current is 18v A,

and (c) store 9.36 x 107 electrons if the current is 85.6 nA.
Ans. (a) 71.4 ms, (b) 2 us, (c) 20.3 d

1.46 How long can a 4.5-Ah, 1.5-V flashlight battery deliver
100 mA?

Ans. 45 h

1.47 Find the potential energy in joules lost by a 1.2-Ib book in
falling off a desk that is 31 in high.

Ans. 4.2 |

1.48 How much chemical energy must a 1.25-V flashlight
battery expend in producing a current flow of 130 mA for 5
min?

Ans. 48.8 |

1.49 Find the work done by a 9-V battery in moving 5 x 1020
electrons from its positive terminal to its negative terminal.

Ans. 721}

1.50 Find the total energy available from a rechargeable 1.25-V
flashlight battery with a 1.2-Ah rating.

Ans. 5.4 kJ

1.51 If all the energy in a 9-V transistor radio battery rated at
0.392 Ah is used to lift a 150-Ib man, how high in feet will he
be lifted?

Ans. 62.5 ft



1.52 If a charge of —4 C in moving from point a to point b
gives up 20 ] of energy, what is V4,?

Ans. -5V

1.53 Moving 6.93 x 1019 electrons from point b to point a
requires 98 ] of work. Find V.

Ans. -8.83 V

1.54 How much power does an electric clock require if it draws
27.3 mA from a 110-V line?

Ans. 3 W

1.55 Find the current drawn by a 1000-W steam iron from a
120-V line.

Ans. 8.33 A

1.56 For the circuit of Fig. 1-11, find the power absorbed by the
current sourcefor(a) V=4V, I=2mA; (b)V=-50V, | = -
150 YA; (c) V=10 mV, [ =-15mA; (d) V=-120 mV, | = 80
mA.

®- OF

Fig. 1-11

Ans. (a) -8 mW, (b) -7.5 mW, (c) 150 uWw, (d) 9.6 mW

1.57 For the circuit of Fig. 1-12, determine P4, P,, P3, which are

powers absorbed, for(a) I =2 A, (b) I =20 mA, and (¢) | = -
3 A.



P,

==
BV
| P, 6/
Py
1]}
ov
Fig. 1-12

Ans. (@) P, =16 W, P, = -24 W, P; = -20 W; (b) P; = 0.16 W,
P, =-2.4mW,P;=-0.2W; (c) P, =-24 W, P, = -54 W, P3 =
30 W

1.58 Calculate the power absorbed by each component in the
circuit of Fig. 1-13.

P, 0.51 P, =

Fig. 1-13

Ans.P; =16 W, P, = -48 W, P; = -48 W, P, = 80 W

1.59 Find the average input power to a radio that consumes
4500 J in 3 min.

Ans. 25 W

1.60 Find the voltage drop across a toaster that gives off 7500
J of heat when a 13.64-A current flows through it for 5 s.

Ans. 110V

1.61 How many joules does a 40-W light bulb consume in 1 d?



Ans. 3.46 MJ

1.62 How long can a 12-V car battery supply 200 A to a starter
motor if the battery has 28 MJ of chemical energy that can
be converted to electric energy?

Ans. 3.24 h

1.63 How long does it take a 420-W color TV set to consume
(a) 2 kWh and (b) 15 kJ?

Ans. (a) 4.76 h, (b) 35.7 s

1.64 Find the current drawn by a 110-V dc electric motor that
delivers 2 hp. Assume 100 percent efficiency of operation.

Ans. 13.6 A

1.65 Find the efficiency of operation of an electric motor that
delivers 5 hp while absorbing an input of 4190 W.

Ans. 89 percent

1.66 What is the operating efficiency of a dc electric motor
that delivers 1 hp while drawing 7.45 A from a 115-V line?

Ans. 87 percent

1.67 Find the current drawn by a 100-V dc electric motor that
operates at 85 percent efficiency while delivering 0.5 hp.

Ans. 4.39 A

1.68 What is the horsepower produced by an automobile
starter motor that draws 250 A from a 12-V battery while
operating at an efficiency of 90 percent?

Ans. 3.62 hp

1.69 What horsepower must an electric motor develop to
operate a pump that pumps water at a rate of 24 000 liters
per hour (L/h) up a vertical distance of 50 m if the efficiency
of the pump is 90 percent? The gravitational force on 1 L of
water is 9.78 N.



Ans. 4.86 hp

1.70 An ac electric motor drives a dc electric voltage
generator. If the motor operates at an efficiency of 90
percent and the generator at an efficiency of 80 percent,
and if the input power to the motor is 5 kW, find the output
power from the generator.

Ans. 3.6 kW

1.71 Find the cost for one year (365 d) to operate a 20-W
transistor FM-AM radio 5 h a day if electrical energy costs
8¢ /kilowatthour.

Ans. $2.92

1.72 For a cost of $5, how long can a fully loaded 5-hp electric
motor be run if the motor operates at an efficiency of 85
percent and if the electric rate is 6¢/kilowatthour?

Ans. 19 h

1.73 If electric energy costs 6¢kilowatthour, calculate the
utility bill for one month for operating eight 100-W light
bulbs for 50 h each, ten 60-W light bulbs for 70 h each, one
2-kW air conditioner for 80 h, one 3-kW range for 45 h, one
420-W color TV set for 180 h, and one 300-W refrigerator for
75 h.

Ans. $28.51.



Chapter 2
Resistance

OHM’S LAW

In flowing through a conductor, free electrons collide with
conductor atoms and lose some kinetic energy that is
converted into heat. An applied voltage will cause them to
regain energy and speed, but subsequent collisions will slow
them down again. This speeding up and slowing down occurs
continually as free electrons move among conductor atoms.

Resistance is this property of materials that opposes or
resists the movement of electrons and makes it necessary to
apply a voltage to cause current to flow. The SI unit of
resistance is the ohm with symbol Q, the Greek uppercase
letter omega. The quantity symbol is R.

In metallic and some other types of conductors, the
current is proportional to the applied voltage: Doubling the
voltage doubles the current, tripling the voltage triples the
current, and so on. If the applied voltage V and resulting
current / have associated references, the relation between V
and | is

V (volts

I{amperes) = R{ﬁhfnsj

in which R is the constant of proportionality. This relation is
known as Ohm’s law. For time-varying voltages and currents,



i = v/R. And for nonassociated references, | =-V/Rori = -
v/R.

From Ohm’s law it is evident that, the greater the
resistance, the less the current for any applied voltage. Also,
the electric resistance of a conductoris 1 Q if an applied
voltage of 1 V causes a current of 1 A to flow.

The inverse of resistance is often useful. It is called
conductance and its quantity symbol is G. The Sl unit of
conductance is the Siemens with symbol S, which is
replacing the popular non-Sl unit mho with symbol G
(inverted omega). Since conductance is the inverse of
resistance, G = 1/R. In terms of conductance, Ohm’s law is

I(amperes) = G(siemens) x V(volts)

which shows that the greater the conductance of a
conductor, the greater the current for any applied voltage.

RESISTIVITY

The resistance of a conductor of uniform cross section is
directly proportional to the length of the conductor and
inversely proportional to the cross-sectional area. Resistance
is also a function of the temperature of the conductor, as is
explained in the next section. At a fixed temperature the
resistance of a conductor is

[
R=p—
? 4

where [ is the conductor length in meters and A is the cross-
sectional area in square meters. The constant of
proportionality p, the Greek lowercase letter rho, is the
quantity symbol for resistivity, the factor that depends on
the type of material.



The Sl unit of resistivity is the ohm-meter with unit symbol
Q-m. Table 2-1 shows the resistivities of some materials at

20°C.
Table 2-1
Material Resistivity (£2'm at 20 C) Material Resistivity (£2:m at 20 C)

Silver 1.64 = 10" Nichrome 100 = 108
Copper, annealed 1.72 < 10°# Silicon 2500

Aluminum 283ix 107" Paper 1"

fron 123 = 10°° Mica 5 = 10
Constantan 49 = 10 ® Quartz 17

A good conductor has a resistivity close to 108 Q-m.
Silver, the best conductor, is too expensive for most uses.
Copper is a common conductor, as is aluminum. Materials
with resistivities greater than 1019 Q-m are insulators. They
can provide physical support without significant current
leakage. Also, insulating coatings on wires prevent current
leaks between wires that touch. Materials with resistivities in
the range of 10~ to 10~/ Q-m are semiconductors, from
which transistors are made.

The relationship among conductance, length, and cross-
sectional area is

G — A
__Jf

where the constant of proportionality o, the Greek lowercase
sigma, is the quantity symbol for conductivity. The Sl unit of
conductivity is the siemens per meter with symbol S-m-1.

TEMPERATURE EFFECTS



The resistances of most good conducting materials
increase almost linearly with temperature over the range of
normal operating temperatures, as shown by the solid line in
Fig. 2-1. However, some materials, and common
semiconductors in particular, have resistances that decrease
with temperature increases.

If the straight-line portion in Fig. 2-1 is extended to the
left, it crosses the temperature axis at a temperature T; at

which the resistance appears to be zero. This temperature T,
is the inferred zero resistance temperature. (The actual zero
resistance temperature is -273°C.) If Ty is known and if the
resistance R, at another temperature T, is known, then the
resistance R, at another temperature T, is, from straight-line

geometry,

L,-T

R, = —
T,-T,

1

Table 2-2 has inferred zero resistance temperatures for some
common conducting materials.

Table 2-2



Inferred
zero resistance
Material temperature ( C)

Tungsten —202
Copper —234.5
Aluminum —236

Stlver — 243
Constantan — 125000

Ry = Ry[1 + a(T; — T))]

A different but equivalent way of finding the resistance R,
is from
where x; with the Greek lowercase alpha, is the temperature
coefficient of resistance at the temperature T,. Often T; is

20°C. Table 2-3 has temperature coefficients of resistance at
20°C for some common conducting materials. Note that the
unit of a is per degree Celsius with symbol °C1,

Table 2-3



Temperature coefficient
Material (°C " at 20°C)

Tungsten 0.0045

Copper 0.003 93
Aluminum 0.003 91

Silver 0.0038
Constantan 0.000 008
Carbon —0.0005

RESISTORS

In a practical sense a resistor is a circuit component that is
used because of its resistance. Mathematically, a resistor is a
circuit component for which there is an algebraic relation
between its instantaneous voltage and instantaneous current
such as v = iR, the voltage-current relation for a resistor that
obeys Ohm'’s law—a linear resistor. Any other type of
voltage-current relation (v = 4i?2 + 6, for example) is for a
nonlinear resistor. The term “resistor” usually designates a
linear resistor. Nonlinear resistors are specified as such.
Figure 2-2a shows the circuit symbol for a linear resistor, and
Fig. 2-2b that for a nonlinear resistor.

(a) (b)

Fig. 2-2

RESISTOR POWER ABSORPTION



Substitution from V = IR into P = VI gives the power
absorbed by a linear resistor in terms of resistance:

VZ
P= - =]R
R

Every resistor has a power rating, also called wattage rating,
that is the maximum power that the resistor can absorb
without overheating to a destructive temperature.

NOMINAL VALUES AND TOLERANCES

Manufacturers print resistance values on resistor casings
either in numerical form or in a color code. These values,
though, are only nominal values: They are only
approximately equal to the actual resistances. The possible
percentage variation of resistance about the nominal value is
called the tolerance. The popular carbon-composition
resistors have tolerances of 20, 10, and 5 percent, which
means that the actual resistances can vary from the nominal
values by as much as £20, = 10, and %5 percent of the
nominal values.

COLOR CODE

The most popular resistance color code has nominal
resistance values and tolerances indicated by the colors of
either three or four bands around the resistor casing, as
shown in Fig. 2-3.



First Second Mumber of zeros
digit digit or multiplier Tolerance

Fig. 2-3

Each color has a corresponding numerical value as
specified in Table 2-4. The colors of the first and second
bands correspond, respectively, to the first two digits of the
nominal resistance value. Because the first digit is never
zero, the first band is never black. The color of the third
band, except for silver and gold, corresponds to the number
of zeros that follow the first two digits. A third band of silver
corresponds to a multiplier of 1072, and a third band of gold
to a multiplier of 10-1. The fourth band indicates the
tolerance and is either gold- or silver-colored, or is missing.
Gold corresponds to a tolerance of 5 percent, silver to 10
percent, and a missing band to 20 percent.

Table 2-4
Color Number Color Number

Black 0 Blue 6
Brown 1 Violet 7

Red 2 Gray 8
Orange 3 White 9
Yellow 4 Gold 0.1
Green 5 Silver 0.01




OPEN AND SHORT CIRCUITS

An open circuit has an infinite resistance, which means
that it has zero current flow through it for any finite voltage
across it. On a circuit diagram it is indicated by two terminals
not connected to anything—no path is shown for current to
flow through. An open circuit is sometimes called an open.

A short circuit is the opposite of an open circuit. It has zero
voltage across it for any finite current flow through it. On a
circuit diagram a short circuit is designated by an ideal
conducting wire—a wire with zero resistance. A short circuit
is often called a short.

Not all open and short circuits are desirable. Frequently,
one or the other is a circuit defect that occurs as a result of a
component failure from an accident or the misuse of a
circuit.

INTERNAL RESISTANCE

Every practical voltage or current source has an internal
resistance that adversely affects the operation of the source.
For any load except an open circuit, a voltage source has a
loss of voltage across its internal resistance. And except for a
short-circuit load, a current source has a loss of current
through its internal resistance.

In a practical voltage source the internal resistance has
almost the same effect as a resistor in series with an ideal
voltage source, as shown in Fig. 2-4a. (Components in series
carry the same current.) In a practical current source the
internal resistance has almost the same effect as a resistor
in parallel with an ideal current source, as shown in Fig. 2-4b.
(Components in parallel have the same voltage across
them.)
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Solved Problems

2.1 If an oven has a 240-V heating element with a
resistance of 24 Q, what is the minimum rating of a fuse
that can be used in the lines to the heating element?

The fuse must be able to carry the current of the
heating element:

R 24
2.2 What is the resistance of a soldering iron that draws
0.8333 Aat 120 Vv?

V 120
R=—=—— =140
I 08333

2.3 A toaster with 8.27 Q of resistance draws 13.9 A. Find
the applied voltage.

V=IR=139 x 827 =115V



2.4 What is the conductance of a 560-kQ resistor?

1
G=—=——-8=179u8
R 560 x 10¢

2.5 What is the conductance of an ammeter that indicates
20 A when 0.01 V is across it?

=

I 20
—=—=20008

Vo001

2.6 Find the resistance at 20°C of an annealed copper bus

bar 3 m in length and 0.5 cm by 3 cm in rectangular
cross section.

The cross-sectional area of the baris (0.5 x 102)(3
x 1072) = 1.5 x 10*mZ2. Table 2-1 has the resistivity of
annealed copper: 1.72 x 108 Q-m at 20°C. So,

| 1.72 x 107843
A 1.5 x 1074

2.7 Find the resistance of an aluminum wire that has a

length of 1000 m and a diameter of 1.626 mm. The wire
is at 20°C.

The cross-sectional area of the wire is rr?, in which r
=d/2 =1.626 x 1073/2 = 0.813 x 10-3m. From Table 2-1
the resistivity of aluminum is 2.83 x 108 Q-m. So,

[ (2.83 x 10~ %)(1000)

Rz i s L BT e
47 0813 x 103)?

2.8 The resistance of a certain wire is 15 Q. Another wire of
the same material and at the same temperature has a



diameter one-third as great and a length twice as great.
Find the resistance of the second wire.

The resistance of a wire is proportional to the length
and inversely proportional to the area. Also, the area is
proportional to the square of the diameter. So, the
resistance of the second wire is

15 x 2

- ~=270Q
(1/3)°

2.9 What is the resistivity of platinum if a cube of it 1 cm
along each edge has a resistance of 10 u Q across

opposite faces?

From R = pl/A and the fact that A = 102 x 1072 =
104 m2and / = 102m,

RA (10 x 107510 % s

2.10 A 15-ft length of wire with a cross-sectional area of
127 cmils has a resistance of 8.74 Q at 20°C. What
material is the wire made from?

The material can be found from calculating the
resistivity and comparing it with the resistivities given in
Table 2-1. For this calculation it is convenient to use the
fact that, by the definition of a circular mil, the
corresponding area in square inches is the number of

circular mils times n/4 x 10-%. From rearranging R =
pl/A,

AR [127(n/4 x 107%)x7}8.74Q) 1§ 00254 m
= ——— = ae— I . — —— — — W — ——

P - X —— — - =123 x 1073 Q'm
| 15 12 |



Since iron has this resistivity in Table 2-1, the material
must be iron.

2.11 What is the length of No. 28 AWG (0.000 126 in? in
cross-sectional area) Nichrome wire required for a 24-Q
resistor at 20°C?

From rearranging R = pl/A and using the resistivity
of Nichrome given in Table 2-1,

AR~ (0.000 126 jm*)24 ) ﬂnwy{ 00254m _
= = i M = L.¥Yam

P 100 x 10~ ® iy | in 1jd

2.12 A certain aluminum wire has a resistance of 5 Q at
20°C. What is the resistance of an annealed copper wire
of the same size and at the same temperature?

For the copper and aluminum wires, respectively,

R =p, and S=p,—

I

A A
Taking the ratio of the two equations causes the length
and area quantities to divide out, with the result that the

ratio of the resistances is equal to the ratio of the
resistivities:

R . )
__=P¢_ or R:I—EKS

3 P, Pa

Then with the insertion of resistivities from Table 2-1,



2.13 A wire 50 m in length and 2 mm? in cross section has
a resistance of 0.56 Q. A 100-m length of wire of the
same material has a resistance of 2 Q at the same
temperature. Find the diameter of this wire.

From the data given for the first wire, the resistivity
of the conducting material is

RA 0.56(2 x 10°°
p = T = _6[ Sn'—} =224 x 1078 Qm

Therefore the cross-sectional area of the second wire is

24 x 107 8)(1
A :%:9 X—z}(ﬂﬂ_}z 1.12 x 10" % m?

and, from A = 1 (d/2)?, the diameter is

A flizxios
d=2 [-=2 [———0 =119 x 10 *m = .19 mm

2.14 A wire-wound resistor is to be made from 0.2-mm-
diameter constantan wire wound around a cylinder that
is 1 cm in diameter. How many turns of wire are
required for a resistance of 50 Q at 20°C?

The number of turns equals the wire length divided
by the circumference of the cylinder. From R = pl/A and
the resistivity of constantan given in Table 2-1, the
length of the wire that has a resistance of 50 Q is

_RA Rnar? ~ 50m(0.1 x 107 4)?

| kil
7] I 49 x 107*%

=321 m



The circumference of the cylinder is 2mrr, in which r = 10

2/2 = 0.005 m, the radius of the cylinder. So, the number
of turns is

l 3.21

— = 102 turns
2ar  2n(0.005)

2.15 A No. 14 AWG standard annealed copper wire is

0.003 23 in? in cross section and has a resistance of
2.58 mQ/ft at 25°C. What is the resistance of 500 ft of
No. 6 AWG wire of the same material at 25°C? The
cross-sectional area of this wire is 0.0206 inZ.

Perhaps the best approach is to calculate the
resistance of a 500-ft length of the No. 14 AWG wire,

(2.58 x 107%)(500) = 1.29Q

and then take the ratio of the two R = pl/A equations.

Since the resistivities and lengths are the same, they
divide out, with the result that

R 0.003 23 0.003 23

= or R = x 1.29 = 0.202 Q2
1.29 00206 0.0206

2.16 The conductance of a certain wire is 0.5 S. Another
wire of the same material and at the same temperature
has a diameter twice as great and a length three times
as great. What is the conductance of the second wire?

The conductance of a wire is proportional to the
area and inversely proportional to the length. Also, the
area is proportional to the square of the diameter.
Therefore the conductance of the second wire is



0.5 x 22
G=—"t% 06678

2.17 Find the conductance of 100 ft of No. 14 AWG iron
wire, which has a diameter of 64 mils. The temperature
is 20°C.

The conductance formula is G = dA/l, in which o =1/

o and A = i1 (d/2)2. Of course, the resistivity of iron can
be obtained from Table 2-1. Thus,

=10.5548

A 1 S n(64 x 10 33/2)F LI 00254

G=0g—-= - : X . ,
/ 12.3x10'3m’ 100 12t 1t

2.18 The resistance of a certain copper power line is 100 Q
at 20°C. What is its resistance when the sun heats up
the line to 38°C?

From Table 2-2 the inferred absolute zero resistance
temperature of copper is -234.5°C, which is T, in the
formula R, = R1(T, - Tp)/(T7 - Ty). Also, from the given
data, T, = 38°C, R; = 100 Q, and T; = 20°C. So, the
wire resistance at 38°C is

T, — T, 38 — (—234.5)
- R, = — x 100 = 107 Q
e 20 — (—234.5)

R,

2.19 When 120 V is applied across a certain light bulb, a
0.5-A current flows, causing the temperature of the
tungsten filament to increase to 2600°C. What is the
resistance of the light bulb at the normal room
temperature of 20°C?

The resistance of the energized light bulb is 120/0.5
= 240 Q. And since from Table 2-2 the inferred zero



resistance temperature for tungsten is -202°C, the
resistance at 20°C is

R, = l x 240 = 19.Q
T -T, ' 2600 —(—202)

2.20 A certain unenergized copper transformer winding
has a resistance of 30 Q at 20°C. Under rated operation,
however, the resistance increases to 35 Q. Find the

temperature of the energized winding.
The formula R, = R{(T, - T)/(T7 - Ty) solved for T,
becomes

From the specified data, R, =35Q, T, =20C, and R =
30 Q. Also, from Table 2-2, T, = -234.5 C. So,

35[20 — (—234.5)
Pt 120 =(=2349] s 624C

a 30

2.21 The resistance of a certain aluminum power line is
150 Q at 20°C. Find the line resistance when the sun

heats up the line to 42"C. First use the inferred zero

resistance temperature formula and then the
temperature coefficient of resistance formula to show

that the two formulas are equivalent.

From Table 2-2 the zero resistance temperature of
aluminum is -236°C, Thus,



Rl:]; R - x 150 = 1630
1

T, T 20— (—236)

From Table 2-3 the temperature coefficient of resistance
of aluminum is 0.003 91°C-! at 20°C. So,

R, = R,[1 + 2,(Ty — T,)] = 150[1 + 0.00391{42 — 20)] = 163 Q

2.22 Find the resistance at 35°C of an aluminum wire that
has a length of 200 m and a diameter of 1 mm.

The wire resistance at 20°C can be found and used
in the temperature coefficient of resistance formula.
(Alternatively, the inferred zero resistance temperature
formula can be used.) Since the cross-sectional area of

the wire is i (d/2)2, where d = 103m, and since from
Table 2-1 the resistivity of aluminum is 2.83 x 108 Q-m,
the wire resistance at 20C is

[
R=p - =(283 x 10 H] x WP 721 0Q

£ [

The only other quantity needed to calculate the wire
resistance at 35°C is the temperature coefficient of
resistance of aluminum at 20°C. From Table 2-3 it is

0.003 91°C-L. So,
R, =R|[l +T, — T})] =721[1 + 0.003 91(35 — 20)} = 7.63 (

2.23 Derive a formula for calculating the temperature
coefficient of resistance from the temperature T; of a

material and T, its inferred zero resistance
temperature.



In Ry = R1[1 + a4(T, - T1)] select T, = Ty. Then R, =
0Q, by definition. The resultis 0 = R;[1 + a;(Ty - T7)1,
from which

2.24 Calculate the temperature coefficient of resistance of
aluminum at 30°C and use it to find the resistance of an
aluminum wire at 70°C if the wire has a resistance of 40

Q at 30°C.

From Table 2-2, aluminum has an inferred zero
resistance temperature of -236°C. With this value
inserted, the formula derived in the solution to Prob.

2.23 gives

1 I
=y == —— — — =0.003759°C"!
T, - T, 30— {-236)

I =

So
R, = R,[1+ 2,(T, — T,)] = 40[1 + 0.003 759(70 — 30)] = 46 Q
2.25 Find the resistance of an electric heater that absorbs

2400 W when connected to a 120-V line.
From P = V?/R,

V2o 1202
P 2400

2.26 Find the internal resistance of a 2-kW water heater
that draws 8.33 A.



From P = I°R,

_ P 2000 o
833 U

2.27 What is the greatest voltage that can be applied
across a +-W, 2.7-MQ resistor without causing it to
overheat?

From P = V/2/R,

V=RP =27 x 10°(}) = 581 V

2.28 If a nonlinear resistor has a voltage-current relation

of V = 3/%2 + 4, what current does it draw when
energized by 61 V? Also, what power does it absorb?

Inserting the applied voltage into the nonlinear
equation results in 61 = 3/2 + 4, from which

61 — 4
I:\/ —=436A

Then from P = VI,

P =61 x436=266W

2.29 At 20°C a pn junction silicon diode has a current-
voltage relation of I = 10-14(e*%V - 1). What is the diode
voltage when the current is 50 mA?

From the given formula,

50 x 1072 = 107 (™ — 1)



Multiplying both sides by 101% and adding 1 to both sides
results in

50 x 10T 4+ 1 ="

Then from the natural logarithm of both sides,

V=341n(50 x 10" + 1) = 073V

2.30 What is the resistance range for (a) a 10 percent,
470-Q resistor, and (b) a 20 percent, 2.7-MQ resistor?
(Hint: 10 percent corresponds to 0.1 and 20 percent to
0.2.)

(a) The resistance can be as much as 0.1 x 470 =47 Q
from the 470-Q nominal value. So, the resistance can
be as small as 470 - 47 = 423 Q or as great as 470 +
47 = 517 Q.

(b) Since the maximum resistance variation from the
nominal value is 0.2(2.7 + 10°) = 0.54 MQ, the
resistance can be as small as 2.7 - 0.54 = 2.16 MQ or
as great as 2.7 + 0.54 = 3.24 MQ.

2.31 A voltage of 110 V is across a 5 percent, 20-kQ
resistor. What range must the current be in? (Hint: 5
percent corresponds to 0.05.)

The resistance can be as much as 0.05(20 x 103) =
103Q from the nominal value, which means that the
resistance can be as small as 20 - 1 = 19 kQ or as great
as 20 + 1 = 21 kQ. Therefore, the current can be as
small as

110
e =524mA
21 x 103



or as great as

110
—— — =579mA
19 x 10°

2.32 What are the colors of the bands on a 10 percent,
5.6-Q resistor?

Since 5.6 = 56 x 0.1, the resistance has a first digit
of 5, a second digit of 6, and a multiplier of 0.1. From
Table 2-4, green corresponds to 5, blue to 6, and gold to
0.1. Also, silver corresponds to the 10 percent tolerance.
So, the color bands and arrangement are green-blue-
gold-silver from an end to the middle of the resistor
casing.

2.33 Determine the colors of the bands on a 20 percent,
2.7-MQ resistor.

The numerical value of the resistance is 2 700 000,
which is a 2 and a 7 followed by five zeros. From Table 2-
4 the corresponding color code is red for the 2, violet for
the 7, and green for the five zeros. Also, there is a
missing color band for the 20 percent tolerance. So, the
color bands from an end of the resistor casing to the
middle are red-violet-green-missing.

2.34 What are the nominal resistance and tolerance of a
resistor with color bands in the order of green-blue-
yellow-silver from an end of the resistor casing toward
the middle?

From Table 2-4, green corresponds to 5, blue to 6,
and yellow to 4. The 5 is the first digit and 6 the second
digit of the resistance value, and 4 is the number of
trailing zeros. Consequently, the resistance is 560 000 Q
or 560 kQ. The silver band designates a 10 percent
tolerance.



2.35 Find the resistance corresponding to color bands in
the order of red-yellow-black-gold.

From Table 2-4, red corresponds to 2, yellow to 4,
and black to 0 (no trailing zeros). The fourth band of
gold corresponds to a 5 percent tolerance. So, the
resistance is 24 Q with a 5 percent tolerance.

2.36 If a 12-V car battery has a 0.04-Q internal resistance,
what is the battery terminal voltage when the battery
delivers 40 A?

The battery terminal voltage is the generated
voltage minus the voltage drop across the internal
resistance:

V=12 IR =12 —40{0.04) = 104 V

2.37 If a 12-V car battery has a 0.1-Q internal resistance,
what terminal voltage causes a 4-A current to flow into
the positive terminal?

The applied voltage must equal the battery
generated voltage plus the voltage drop across the
internal resistance:

V=12 + IR =12 + 40.1) = 124 V

2.38 If a 10-A current source has a 100-Q internal
resistance, what is the current flow from the source
when the terminal voltage is 200 V?

The current flow from the source is the 10 A minus
the current flow through the internal resistance:

V 200
I=10—-—=10—-—=8A
R 100



Supplementary Problems
2.39 What is the resistance of a 240-V electric clothes
dryer that draws 23.3 A?
Ans. 10.3 Q

2.40 If a voltmeter has 500 kQ of internal resistance, find
the current flow through it when it indicates 86 V.

Ans. 172 uA

2.41 If an ammeter has 2 mQ of internal resistance, find
the voltage across it when it indicates 10 A.

Ans. 20 mV
2.42 \What is the conductance of a 39-Q resistor?
Ans. 25.6 mS

2.43 What is the conductance of a voltmeter that indicates
150 V when 0.3 mA flows through it?

Ans. 2 uS

2.44 Find the resistance at 20°C of an annealed copper
bus bar 2 m long and 1 cm by 4 cm in rectangular cross
section.

Ans. 86 u Q

2.45 What is the resistance of an annealed copper wire
that has a length of 500 m and a diameter of 0.404
mm?

Ans. 67.1 Q

2.46 The resistance of a wire is 25 Q. Another wire of the
same material and at the same temperature has a
diameter twice as great and a length six times as great.
Find the resistance of the second wire.

Ans. 37.5Q



2.47 What is the resistivity of tin if a cube of it 10 cm
along each edge has a resistance of 1.15 u Q across
opposite faces?

Ans. 11.5 x 108 O'm

2.48 A 40-m length of wire with a diameter of 0.574 mm
has a resistance of 75.7 Q at 20°C. What material is the
wire made from?

Ans. Constantan

2.49 What is the length of No. 30 AWG (10.0-mil diameter)
constantan wire at 20°C required for a 200-Q resistor?

Ans. 20.7 m

2.50 If No. 29 AWG annealed copper wire at 20°C has a
resistance of 83.4 Q per 1000 ft, what is the resistance
per 100 ft of Nichrome wire of the same size and at the
same temperature?

Ans. 485 Q per 100 ft

2.51 A wire with a resistance of 5.16 Q. has a diameter of
45 mils and a length of 1000 ft. Another wire of the
same material has a resistance of 16.5 Q and a
diameter of 17.9 mils. What is the length of this second
wire if both wires are at the same temperature?

Ans. 506 ft

2.52 A wirewound resistor is to be made from No. 30 AWG
(10.0-mil diameter) constantan wire wound around a
cylinder that is 0.5 cm in diameter. How many turns are
required for a resistance of 25 Q at 20°C?

Ans. 165 turns

2.53 The conductance of a wire is 2.5 S. Another wire of
the same material and at the same temperature has a
diameter one-fourth as great and a length twice as
great. Find the conductance of the second wire.



Ans. 78.1 mS

2.54 Find the conductance of 5 m of Nichrome wire that
has a diameter of 1 mm.

Ans. 157 mS

2.55 If an aluminum power line has a resistance of 80 Q at
30°C, what is its resistance when cold air lowers its
temperature to - 10°C?

Ans. 68 Q

2.56 If the resistance of a constantan wire is 2 MQ at -
150°C, what is its resistance at 200°C?

Ans. 2.006 MQ

2.57 The resistance of an aluminum wire is 2.4 Q at -5°C.
At what temperature will it be 2.8 Q7?

Ans. 33.5°C

2.58 What is the resistance at 90°C of a carbon rod that
has a resistance of 25 Q at 20°C?

Ans. 24.1 Q

2.59 Find the temperature coefficient of resistance of iron
at 20°C if iron has an inferred zero resistance
temperature of - 162°C.

Ans. 0.0055°C1

2.60 What is the maximum current that a 1-W, 56-kQ
resistor can safely conduct?

Ans. 4.23 mA

2.61 What is the maximum voltage that can be safely
applied across a 3-W, 91-Q resistor?

Ans. 6.75V

2.62 What is the resistance of a 240-V, 5600-W electric
heater?



Ans. 10.3 Q

2.63 A nonlinear resistor has a voltage-current relation of

V = 2/2 + 3/ + 10. Find the current drawn by this
resistor when 37 V is applied across it.

Ans. 3 A

2.64 If a diode has a current-voltage relation of | = 10~

14(g40V _ 1), what is the diode voltage when the current
is 150 mA?

Ans. 0.758 V

2.65 What is the resistance range for a 5 percent, 75-kQ
resistor?

Ans. 71.25 to 78.75 kQ

2.66 A 12.1-mA current flows through a 10 percent, 2.7-kQ
resistor. What range must the resistor voltage be in?

Ans. 29.4to 35.9V

2.67 What are the resistor color codes for tolerances and
nominal resistances of (a) 10 percent, 0.18 Q (b) 5
percent, 39 kQ; and (c¢) 20 percent, 20 MQ?

Ans. (a) Brown-gray-silver-silver, (b) orange-white-
orange-gold, (¢) red-black-blue-missing

2.68 Find the tolerances and nominal resistances
corresponding to color codes of (a) brown-brown-silver-
gold, (b) green-brown-brown-missing, and (c) blue-gray-
green-silver.

Ans. (a) 5 percent, 0.11 Q; (b) 20 percent, 510 Q; (¢) 10
percent, 6.8 MQ

2.69 A battery provides 6 V on open circuit and it provides
5.4 V when delivering 6 A. What is the internal
resistance of the battery?

Ans. 0.1 Q



2.70 A 3-hp automobile electric starter motor operates at
85 percent efficiency from a 12-V battery. What is the
battery internal resistance if the battery terminal
voltage drops to 10 V when energizing the starter
motor?

Ans. 7.60 mQ

2.71 A short circuit across a current source draws 20 A.
When the current source has an open circuit across it,
the terminal voltage is 600 V. Find the internal
resistance of the source.

Ans. 30 Q

2.72 A short circuit across a current source draws 15 A. If a
10-Q resistor across the source draws 13 A, what is the
internal resistance of the source?

Ans. 65 Q



Chapter 3
Series and Parallel DC
Circuits

BRANCHES, NODES, LOOPS, MESHES, SERIES- AND
PARALLEL-CONNECTED COMPONENTS

Strictly speaking, a branch of a circuit is a single
component such as a resistor or a source. Occasionally,
though, this term is applied to a group of components that
carry the same current, especially when they are of the
same type.

A node is a connection point between two or more
branches. On a circuit diagram a node is sometimes
indicated by a dot that may be a solder point in the actual
circuit. The node also includes all wires connected to the
point. In other words, it includes all points at the same
potential. If a short circuit connects two nodes, these two
nodes are equivalent to and in fact are just a single node,
even if two dots are shown.

A loop is any simple closed path in a circuit. A mesh is a
loop that does not have a closed path in its interior. No
components are inside a mesh.

Components are connected in series if they carry the
same current.

Components are connected in parallel if the same voltage
Is across them.



KIRCHHOFF’S VOLTAGE LAW AND SERIES DC CIRCUITS

Kirchhoff’s voltage law, abbreviated KVL, has three
equivalent versions: At any instant around a loop, in either a
clockwise or counterclockwise direction,

1. The algebraic sum of the voltage drops is zero.
2. The algebraic sum of the voltage rises is zero.

3. The algebraic sum of the voltage drops equals the
algebraic sum of the voltage rises.

In all these versions, the word “algebraic” means that the
signs of the voltage drops and rises are included in the
additions. Remember that a voltage rise is a negative
voltage drop, and that a voltage drop is a negative voltage
rise. For loops with no current sources, the most convenient
KVL version is often the third one, restricted such that the
voltage drops are only across resistors and the voltage rises
are only across voltage sources.

In the application of KVL, a loop current is usually
referenced clockwise, as shown in the series circuit of Fig. 3-
1, and KVL is applied in the direction of the current. (This is
a series circuit because the same current / flows through all
components.) The sum of the voltage drops across the
resistors, V; + V5, + V3, is set equal to the voltage rise V;

across the voltage source: V; + V5, + V3 = V.. Then the IR
Ohm’s law relations are substituted for the resistor voltages:




Vi=V,+Vo+ Vy=IR, + IR, +IR,=IR, + R, + R;) = IR,

from which | = V¢/Rr and R = R{ + R, + R3. This Ry is the
total resistance of the series-connected resistors. Another
term used is equivalent resistance, with symbol Rg.

From this result it should be evident that, in general, the
total resistance of series-connected resistors (series
resistors) equals the sum of the individual resistances:

RTZRI+R2+R3+

Further, if the resistances are the same (R), and if there are
N of them, then R+ = NR. Finding the current in a series

circuit is easier using total resistance than applying KVL
directly.

If a series circuit has more than one voltage source, then

I{Rl +R2+R3+]: lr‘f.;-l-F- VS:‘I' V53+"‘

in which each V. term is positive for a voltage rise and is
negative for a voltage drop in the direction of /.

KVL is seldom applied to a loop containing a current
source because the voltage across the current source is not
known and there is no formula for it.

VOLTAGE DIVISION

The voltage division or voltage divider rule applies to
resistors in series. It gives the voltage across any resistor in
terms of the resistances and the total voltage across the
series combination—the step of finding the resistor current
is eliminated. The voltage division formula is easy to find
from the circuit shown in Fig. 3-1. Consider finding the



voltage V,. By Ohm’s law, V, = IR,. Also, | = V//(R; + R, +
R3). Eliminating / results in

" R, + R, + R,

V Vs

In general, for any number of series resistors with a total
resistance of Ry and with a voltage of V. across the series

combination, the voltage V, across one of the resistors R, is

This is the formula for the voltage division or divider rule.
For this formula, V. and V, must have opposing polarities;

that is, around a closed path one must be a voltage drop
and the other a voltage rise. If both are rises or both are
drops, the formula requires a negative sign. The voltage V

need not be that of a source. It is just the total voltage
across the series resistors.

KIRCHHOFF’S CURRENT LAW AND PARALLEL DC
CIRCUITS

Kirchhoff’s current law, abbreviated KCL, has three
equivalent versions: At any instant in a circuit,

1. The algebraic sum of the currents leaving a closed
surface is zero.

2. The algebraic sum of the currents entering a closed
surface is zero.

3. The algebraic sum of the currents entering a closed
surface equals the algebraic sum of those leaving.



The word “algebraic” means that the signs of the currents
are included in the additions. Remember that a current
entering is a negative current leaving, and that a current
leaving is a negative current entering.

In almost all circuit applications, the closed surfaces of
interest are those enclosing nodes. So, there is little loss of
generality in using the word “node” in place of “closed
surface” in each KCL version. Also, for a node to which no
voltage sources are connected the most convenient KCL
version is often the third one, restricted such that the
currents entering are from current sources and the currents
leaving are through resistors.

In the application of KCL, one node is selected as the
ground or reference or datum node, which is often indicated
by the ground symbol ( < ). Usually, the node at the bottom
of the circuit is the ground node, as shown in the parallel
circuit of Fig. 3-2. (This is a parallel circuit because the same
voltage V is across all circuit components.) The voltages on
other nodes are almost always referenced positive with
respect to the ground node. At the nongrounded node in the
circuit shown in Fig. 3-2, the sum of the currents leaving
through resistors, /I; + I, + I3, equals the current /5 entering

this node from the current source: I; + I, + I3 = Is. The

substitution of the I = GV Ohm’s law relations for the
resistor currents results in

q} %ﬁ i lf: ih
Is Vv
G, G- G
ga

Fig. 3-2




Is=1,+1,+1;=G,V+GV+ G, V=(G, + G, + G3)V =GV

from which V = Is/Gyand Gy = G + G, + G3 = 1/R; + 1/R,
+ 1/Rs. This Gy is the total conductance of the circuit.

Another term used is equivalent conductance, with symbol

Geg:

From this result it should be evident that, in general, the
total conductance of parallel-connected resistors (parallel
resistors) equals the sum of the individual conductances:

{j]ﬂ:tjl"'G:""{.'_J"El'i"'1

If the conductances are the same (G), and if there are N of
them, then Gy = NG and Ry = 1/Gy = 1/NG = R/N. Finding

the voltage in a parallel circuit is easier using total
conductance than applying KCL directly.

Sometimes working with resistances is preferable to
conductances. Then from Ry = 1/Gt = 1/(G;+ G, + G3+ ...),

1

R;

An important check on calculations with this formula is that
R+ must always be less than the least resistance of the

parallel resistors.
For the special case of just two parallel resistors,

1 RyR,
I/R, + 1I/R, R, + R,

T

So, the total or equivalent resistance of two parallel
resistors is the product of the resistances divided by the



sum.
The symbol || as in R; || R, indicates the resistance of two

parallel resistors: Ry || R, = R1R5/(R; + R5). It is also

sometimes used to indicate that two resistors are in parallel.
If a parallel circuit has more than one current source,

(G, + Gy + Gy + W =1Ig + s + I +

in which each /s term is positive for a source current

entering the nongrounded node and is negative for a source
current leaving this node.

KCL is seldom applied to a node to which a voltage source
is connected. The reason is that the current through a
voltage source is not known and there is no formula for it.

CURRENT DIVISION

The current division or current divider rule applies to
resistors in parallel. It gives the current through any resistor
in terms of the conductances and the current into the
parallel combination—the step of finding the resistor voltage
is eliminated. The current division formula is easy to derive
from the circuit shown in Fig. 3-2. Consider finding the
current /,. By Ohm’s law, I, = G,V. Also, V = I5/(G1 + G, +
Gs). Eliminating V results in

I, = G, I
PG+ Gy + Gy

In general, for any number of parallel resistors with a total
conductance Gy and with a current /s entering the parallel

combination, the current /, through one of the resistors with
conductance G, is



This is the formula for the current division or divider rule.
For this formula, Is and I, must be referenced in the same

direction, with /, referenced away from the node of the
parallel resistors that /5 is referenced into. If both currents
enter this node, then the formula requires a negative sign.
The current Is need not be that of a source. It is just the
total current entering the parallel resistors.

For the special case of two parallel resistors, the current
division formula is usually expressed in resistances instead
of conductances. If the two resistances are R; and R,, the

current /; in the resistor with resistance R, is

G 1/R, R,
_ -1 = foi - I

I, = -
' 6, + G, I/R, +1/R, > R,+R, "

In general, as this formula indicates, the current flowing in
one of two parallel resistors equals the resistance of the
other resistor divided by the sum of the resistances, all
times the current flowing into the parallel combination.

KILOHM-MILLIAMPERE METHOD

The basic equations V=RI, I =GV, P = VI, P = V?/R, and P
= I?R are valid, of course, for the units of volts (V), amperes
(a), ohms (Q), siemens (S), and watts (W). But they are
equally valid for the units of volts (V), milliamperes (mA),
kilohms (kQ), millisiemens (mS), and milliwatts (mW), the
use of which is sometimes referred to as the kilohm-
milliampere method. In this book, this second set will be
used almost exclusively in the writing of network equations



when the network resistances are in the kilohm range,
because with it the writing of powers of 10 can be avoided.

Solved Problems

3.1 Determine the number of nodes and branches in the
circuit shown in Fig. 3-3.

L2 "‘|*3

B

P E:] o] [&

8 7 6 5

Fig. 3-3

Dots 1 and 2 are one node, as are dots 3 and 4 and
also dots 5 and 6, all with connecting wires. Dot 7 and
the two wires on both sides are another node, as are
dot 8 and the two wires on both sides of it. So, there
are five nodes. Each of the shown components A
through H is a branch—eight branches in all.

3.2 Which components in Fig. 3-3 are in series and which
are in parallel?

Components F, G, and H are in series because they
carry the same current. Components A and B, being
connected together at both ends, have the same
voltage and so are in parallel. The same is true for
components C, D, and E —they are in parallel. Further,
the parallel group of A and B is in series with the



parallel group of C, D, and E, and both groups are in
series with components F, G, and H.

3.3 Identify all the loops and all the meshes for the circuit
shown in Fig. 3-4. Also, specify which components are
in series and which are in parallel.

Fig. 3-4

There are three loops: one of components A, E, F, D,
and C; a second of components B, H, G, F, and E; and a
third of A, B, H, G, D, and C. The first two loops are also
meshes, but the third is not because components E and
F are inside it. Components A, C, and D are in series
because they carry the same current. For the same
reason, components E and F are in series, as also are
components B, H, and G. No components are in parallel.

3.4 Repeat Prob. 3.3 for the circuit shown in Fig. 3-5.




Fig. 3-5

The three loops of components A, B, and C; C, D,
and E; and F, D, and B are also meshes—the only
meshes. All other loops are not meshes because
components are inside them. Components A, B, D, and
E form one of these other loops; components A, F, and
E another one; components A, F, D, and C a third; and
components F, E, C, and B a fourth. The circuit has
three meshes and seven loops. No components are in

series or in parallel.

3.5 What is V across the open circuit in the circuit shown
in Fig. 3-67

. v - j,_

Fig. 3-6

The sum of the voltage drops in a clockwise
direction is, starting from the upper left corner,

60 — 40+ V —10+20=0 from which V=-30V

In the summation, the 40 and 10 V are negative
because they are voltage rises in a clockwise direction.
The negative sign in the answer indicates that the
actual open-circuit voltage has a polarity opposite the
shown reference polarity.



3.6 Find the unknown voltages in the circuit shown in Fig.
3-7. Find V4 first.

Fig. 3-7

The basic KVL approach is to use loops having only
one unknown voltage apiece. Such a loop for V;

includes the 10-, 8-, and 9-V components. The sum of
the voltage drops in a clockwise direction around this
loop is

0-8+9-V,=0 from which Vi=H V

Similarly, for V, the sum of the voltage drops clockwise
around the top mesh is

V,+8—10=0 from which V,=2V

Clockwise around the bottom mesh, the sum of the
voltage drops is

-8 4+9+V;=0 from which |

-1V



The negative sign for V3 indicates that the polarity of the
actual voltage is opposite the reference polarity.

3.7 What is the total resistance of 2-, 5-, 8-, 10-, and 17-Q

resistors connected in series?
The total resistance of series resistors is the sum of

the individual resistances: Rr =2 + 5+ 8+ 10 + 17 =
42 Q

3.8 What is the total resistance of thirty 6-Q resistors
connected in series?

The total resistance is the number of resistors times
the common resistance of 6 Q: Ry, = 30 X 6 = 180 Q

3.9 What is the total conductance of 4-, 10-, 16-, 20-, and
24-S resistors connected in series?

The best approach is to convert the conductances

to resistances, add the resistances to get the total
resistance, and then invert the total resistance to get

the total conductance:
Rr=3+75+176+70+25=05040

and

3.10 A string of Christmas tree lights consists of eight 6-
W, 15-V bulbs connected in series. What current flows

when the string is plugged into a 120-V outlet, and
what is the hot resistance of each bulb?

The total power is Pr =8 x 6 = 48 W. From Py = VI,
the currentis | = P/V = 48/120 = 0.4 A. And from P =



IR, the hot resistance of each bulb is R = P/I? = 6/0.42
=37.5Q

3.11 A 3-V, 300-mA flashlight bulb is to be used as the
dial light in a 120-V radio. What is the resistance of the
resistor that should be connected in series with the
flashlight bulb to limit the current?

Since 3 V is to be across the flashlight bulb, there
will be 120 - 3 = 117 V across the series resistor. The
current is the rated 300 mA. Consequently, the
resistance is 117/0.3 = 390Q.

3.12 A person wants to move a 20-W FM-AM transistor
radio from a junked car with a 6-V battery to a new car
with a 12-V battery. What is the resistance of the
resistor that should be connected in series with the
radio to limit the current, and what is its minimum

power rating?

From P = VI, the radio requires 20/6 = 3.33 A. The
resistor, being in series, has the same current. Also, it
has the same voltage because 12 - 6 = 6 V. As a result,
R = 6/3.33 = 1.8Q. With the same voltage and current,
the resistor must dissipate the same power as the
radio, and so has a 20-W minimum power rating.

3.13 A series circuit consists of a 240-V source and 12-,
20-, and 16-Q resistors. Find the current out of the
positive terminal of the voltage source. Also find the
resistor voltages. Assume associated references, as
should always be done when there is no specification of

references.

The current is the applied voltage divided by the
equivalent resistance:



240
s —5A
124204 16

Each resistor voltage is this current times the
corresponding resistance: V;, =5 x 12 =60V, V5,0 =5 X

20 =100V, and V;4 =5 x 16 = 80 V. As a check, the sum

of the resistor voltages is 60 + 100 + 80 = 240 V, the same
as the applied voltage.

3.14 A resistor in series with an 8-Q resistor absorbs 100
W when the two are connected across a 60-V line. Find
the unknown resistance R.

The total resistance is 8 + R, and thus the current is
60/(8 + R). From I°R = P,

60 2
( ) R = 100 or 3600R = 100(8 + R)?
8§ + R

which simplifies to R2 - 20R + 64 = 0. The quadratic
formula can be used to find R. Recall that for the equation
ax? + bx + ¢ - 0, this formula is

b+ 'h_z_ﬁi

X =

2a

SO
_ —(=20) £ J(—207 — 4(1)64) 20 £ 12
_ V2200 -2

R i T =16Qord4Q
21)

A resistor with a resistance of either 16 or 4 Q will
dissipate 100 W when connected in series with an 8-Q
resistor across a 60-V line.



This particular quadratic equation can be factored

without using the quadratic formula. By inspection, R? -
20R + 64 =(R-16)(R-4) =0, from whichR =16 Q or
R = 4 Q, the same as before.

3.15 Resistors Ry, Ry, and Rs are in series with a 100-V
source. The total voltage drop across R; and R, is 50 V,
and that across R, and R3 is 80 V. Find the three
resistances if the total resistance is 50 Q.

The current is the applied voltage divided by the
total resistance: | = 100/50 = 2 A. Since the voltage
across resistors R; and R, is 50 V, there must be 100 -
50 = 50 V across R3. By Ohm’S law, R3 = 50/2 = 25 Q.
Resistors R, and Rz have 80 V across them, leaving 100
- 80 = 20 V across Ry. Thus, R; 20/2 = 10 Q. The
resistance of R, is the total resistance minus the
resistances of R; and R3: R, =50 -10-25 =15 Q.

3.16 What is the maximum voltage that can be applied
across the series combination of a 150-Q, 2-W resistor
and a 100-Q, 1-W resistor without exceeding the power
rating of either resistor?

From P = I2R, the maximum safe current for the
150-Q resistor is I = \/P/R = /2/150 = 0.115 A. That for the
100-Q resistor is \/1/100 = 0.1 A. The maximum current
cannot exceed the lesser of these two currents and so
is 0.1 A. For this current, V =1 (R{ + R,) = 0.1(150 +

100) = 25 V.

3.17 In a series circuit, a current flows from the positive
terminal of a 180-V source through two resistors, one
of which has 30 Q of resistance and the other of which
has 45 V across it. Find the current and the unknown
resistance.




The 30-Q resistor has 180 - 45 = 135 V across it
and thus a 135/30 = 4.5-A current through it. The other
resistance is 45/4.5 = 10 Q.

3.18 Find the current and unknown voltages in the circuit

shown in Fig. 3-8.
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Fig. 3-8
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The total resistance is the sum of the resistances:
10+ 15+ 6+ 8+ 11 =50 Q. The total voltage rise
from the voltage sources in the direction of  is 12 — 5
+ 8 = 15 V. The current / is this voltage divided by the
total resistance: / = 15/50 = 0.3 A. By Ohm’S law, V;, =

0.3 x10=3V,V,=03x%x15=45V,V3=-03X6-=
-18V,V,;,=03x8=24V,andV; =-0.3 x 11 = -
3.3 V. The equations for V3, and Vs have negative signs
because the references for these voltages and the
reference for | are not associated.

3.19 Find the voltage V;, in the circuit shown in Fig. 3-8.

V,p is the voltage drop from node a to node b,

which is the sum of the voltage drops across the
components connected between nodes a and b either
to the right or to the left of node a. It is convenient to
choose the path to the right because this is the



direction of the | = 0.3-A current found in the solution of
Prob. 3.18. Thus,

Vy=(03x15+5+(03x6 +(03x8 —8=57V

Note that an IR drop is always positive in the direction of
I. A voltage reference, and that of V3, in particular here, has

no effect on this.
3.20 Find /; I, and V in the circuit shown in Fig. 3-9.

-
+
lh 25 ()
v
=30V
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Fig. 3-9

Since the 90-V source is across the 10-Q resistor, /4,

= 90/10 = 9 A. Around the outside loop in a clockwise
direction, the voltage drop across the two resistors is
(25 + 15)/, = 40I,. This is equal to the sum of the

voltage rises across the voltage sources in this outside
loop:



401, = —30 + 90 from which I,=60/40=15A

The voltage V is equal to the sum of the drops across
the 25-Q resistor and the 30-V source: V = (1.5 x 25) +
30 = 67.5 V. Notice that the parallel 10-Q resistor does
not affect /5. In general, resistors in parallel with voltage

sources that have zero internal resistances (ideal
voltage sources) do not affect currents or voltages
elsewhere in a circuit. They do, however, cause an
increase in current flow in these voltage sources.

3.21 A 90-V source is in series with five resistors having
resistances of 4, 5, 6, 7, and 8 Q. Find the voltage
across the 6-Q resistor. (Here “voltage” refers to the
positive voltage, as it will in later problems unless
otherwise indicated. The same is true for current.)

By the voltage division formula, the voltage across
a resistor in a series circuit equals the resistance of that
resistor times the applied voltage divided by the total
resistance. So,

6
— x 90 =18V

Vs =
44+54+6+7+8

3.22 Use voltage division to determine the voltages V,
and Vs in the circuit shown in Fig. 3-8.

The total voltage applied across the resistors equals
the sum of the voltage rises from the voltage sources,
preferably in a clockwise direction: 12 — 5+ 8 =15 V.
The polarity of this net voltage is such that it produces
a clockwise current flow. In this sum the 5 V is negative
because it is a drop, and rises are being added. Put
another way, the polarity of the 5-V source opposes the
polarities of the 12- and 8-V sources. The V, voltage



division formula should have a positive sign because V,

is a drop in the clockwise direction—it opposes the
polarity of the net applied voltage:

8 8
= X15=—x15=24YV
10+154+6+8 + 11 50

Va

The voltage division formula for V5 requires a negative
sigh because both Vs and the net source voltage are
rises in the clockwise direction:

1
Vi=— - x15=—33V
50

3.23 Find the voltage V,;, across the open circuit in the
circuit shown in Fig. 3-10.

400 102 nvy
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Fig. 3-10

The 10-Q resistor has zero current flowing through
it because it is in series with an open circuit. (Also, it
has zero volts across it.) Consequently, voltage division
can be used to obtain V7. The result is

60
60 + 40

x 100 =60V



Then, a summation of voltage drops around the right-
hand half of the circuit gives 0 - 30 + V,, + 10 - 60 = 0.

Therefore, V,, = 80 V.

3.24 For the circuit of Fig. 3-11, calculate I and the power
absorbed by the dependent source.

Fig. 3-11

A good first step is to solve for the controlling
quantity V; in terms of /. Applying Ohm’S law to the 4-Q

resistor gives V; = 41. Consequently, in the direction of

I, the voltage rise across the dependent source is
4.5(41) = 18I. Then by KVL,

4] + 21 — 181 =24 and so I =24/(=12)= =2 A

The negative sign indicates that the 2-A current flows
counterclockwise, opposite the reference direction for I.

Since the current and voltage references for the
dependent source are not associated, the power
absorbed formula has a negative sign:

P=—45V,(I)= —454I]) = — 181>

But/=-2A, andso P =-18(- 2)2=-72 W. The
presence of the negative sign means that the



dependent source is supplying power instead of
absorbing it.

3.25 In the circuit of Fig. 3-11, determine the resistance
“seen” by the independent voltage source.

The resistance “seen” by the source is equal to the
ratio of the source voltage to the current that flows out
of the positive terminal of the source:

&4
=—= —12€

The negative sign of the resistance is a result of the
action of the dependent source. It indicates that the
remainder of the circuit supplies power to the
independent source. Actually, it is the dependent source
alone that supplies this power, as well as the power to
the two resistors.

3.26 Find V; in the circuit of Fig. 3-12.

1610 I,
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Fig. 3-12

First observe that no current flows in the single wire
connecting the two halves of this circuit, as is evident
from enclosing either half in a closed surface. Then only
this single wire would cross this surface, and since the
sum of the currents leaving any closed surface must be
zero, the current in this wire must be zero. From



another point of view, there is no return path for a
current that would flow in this wire.

From KVL applied to the left-hand half of the circuit,
16/, + 4V, = 24. And for the right-hand half of the

circuit, Ohm’S law gives
Vi = —051(4) = =21, or I, = —0.5V,

Then, substituting for /1, in the KVL equation produces

16(—0.5V,) + 4V, = 24 and so Vi=—-6V

3.27 Calculate I and V, in the circuit of Fig. 3-13.
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Fig. 3-13

Because of the open circuit between nodes a and b,
the middle branch has no effect on the current I.
Consequently, I can be obtained by applying KVL to the
outside loop. The total resistance of this loopis 2 + 8 +
5+ 9 =24 Q. And in the direction of /, the sum of the



voltage rises from voltage sources is 100 + 20= 120 V.
So, | =120/24 =5 A.

From the summing of voltage drops across the
right-hand branch, the voltage drop, top to bottom,
across the middle branch is 5(5) - 20 + 5(9) = 50 V.
Consequently, Vg, - 50 - 30 = 20 V because there is

zero volts across the 10-Q resistor.

3.28 Determine the voltage drop V,, across the open

circuit in the circuit of Fig. 3-14.

18Q
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Fig. 3-14

Because of the open circuit, no current flows in the
9-Q and 13-Q resistors and so there is zero volts across
each of them. Also, then, all the 6-Q source current
flows through the 10-Q resistor and all the 8-A source
current flows through the 5-Q resistor, making V; = -
6(10) = - 60 V and V, spectively. So, V ,, the voltage

drop from node a to b, is from summing voltage drops,

V=V, 4+ V, +0—15+0= —60 + 40 — 15 = —35V



The 4-, 11-, 9-, 18-, and 13-Q resistors have no effect on
this result.

3.29 Find the unknown currents in the circuit shown in Fig.
3-15. Find /4, first.

L]

Fig. 3-15

The basic KCL approach is to find closed surfaces
such that only one unknown current flows across each
surface. In Fig. 3-15, the large dashed loop represents a
closed surface drawn such that /4 is the only unknown

current flowing across it. Other currents flowing across
it are the 10-, 8-, and 9-A currents. /; and the 9-A

currents leave this closed surface, and the 8-A and 10-A
currents enter it. By KCL, the sum of the currents
leaving is zero: I; + 9-8-10=0,0r/{,=9A. I, is
readily found from summing the currents leaving the
middle top node: /, -8 - 10 = 0, or/, = 18 A. Similarly,
at the right top node, I3+ 8-9=0,and /3 =1 A.
Checking at the left top node: 10-/; -/13=10-9-1 =
0, as it should be.

3.30 Find / for the circuit shown in Fig. 3-16.



Fig. 3-16

Since I is the only unknown current flowing across
the shown dashed loop, it can be found by setting to
zero the sum of the currents leaving this loop: / - 16 - 8
-9+ 3+2-10 =0, from which I = 38 A.

3.31 Find the short-circuit current /5 for the circuit shown
in Fig. 3-17.
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Fig. 3-17

The short circuit places the 100 V of the left-hand voltage

source across the 20-Q resistor, and it places the 200 V of
the right-hand source across the 25-Q resistor. By Ohm’S

law, I; = 100/20 =5 Aand |, = -200/25 = -8 A. The
negative sign occurs in the I, formula because of

nonassociated references.

From KCL applied at the top middle node, I3 =11 + I, =
5 -8 = —3 A. Of course the negative sign in the answer



means that 3 A actually flows up through the short
circuit, opposite the direction of the /5 current reference
arrow.

3.32 Calculate V in the circuit of Fig. 3-18.
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Fig. 3-18

The short circuit places all 36 V of the voltage
source across the 20-kQ resistor. So, by Ohm’S law, I; =

36/20 = 1.8 mA. (The kilohm-milliampere method was
used in finding /;.) Applying KCL to the top middle node
gives

I,=1,+10I, = 1.8 + 10I, and therefore I, =—-02mA

Finally, by Ohm’s law,

V=-510I,)= -5-2)=10V

3.33 Find the total conductance and resistance of four

parallel resistors having resistances of 1, 0.5, 0.25, and
0.125 Q.

The total conductance is the sum of the individual
conductances:



1 i 1
Goimp s +
71705 025 0125

=14+2+4+8=158

The total resistance is the inverse of this total
conductance: Ry = 1/Gy = 1/15 = 0.0667 Q

3.34 Find the total resistance of fifty 200-Q resistors
connected in parallel.

The total resistance equals the common resistance
divided by the number of resistors: 200/50 = 4 Q.

3.35 A resistor is to be connected in parallel with a 10-kQ
resistor and a 20-kQ resistor to produce a total
resistance of 12 kQ. What is the resistance of the
resistor?

Assuming that the added resistor is a conventional
resistor, no added parallel resistor will give a total
resistance of 12 kQ because the total resistance of
parallel resistors is always less than the least individual
resistance, which is 10 kQ. With transistors, however, it
is possible to make a component that has a negative
resistance and that in parallel can cause an increase in
total resistance. Generally, however, the term resistor
means a conventional resistor that has only positive
resistance.

3.36 Three parallel resistors have a total conductance of
1.75 S. If two of the resistances are 1 and 2 Q, what is
the third resistance?

The sum of the individual conductances equals the
total conductance:

1+3+G; =175 or G, =175-15=0258



The resistance of the third resistor is the inverse of this
conductance: R3 = 1/G3 = 1/0.25 =4 Q.

3.37 Without using conductances, find the total resistance
of two parallel resistors having resistances of 5 and 20
Q.

The total resistance equals the product of the

individual resistances divided by the sum: Ry = (5 X
20)/(5 + 20) = 100/25 = 4 Q.

3.38 Repeat Prob. 3.37 for three parallel resistors having
resistances of 12, 24, and 32 Q.
One approach is to consider the resistances two at
a time. For the 12- and the 24-Q resistances, the
equivalent resistance is

12 x 24 288

st
12+24 36

This combined with the 32-Q resistance gives a total
resistance of

8 x 32 256
8 +32 40

3.39 A 60-W, a 100-W, and a 200-W light bulb are
connected in parallel across a 120-V line. Obtain the
equivalent hot resistance of this combination from the

individual hot resistances of the bulbs.

From R = V2/P, the individual resistances are
1202/60 = 240 Q, 1202, 100 = 144 Q, and 1202%/200 =
72 Q. The 72- and 144-Q resistances have an
equivalent resistance of (72 x 144)/(72 + 144) = 48 Q.

The equivalent resistance of this and the 240-Q



resistance is the total equivalent hot resistance: (240 x
48)/(240 x 48) = 40 Q. As a check, from the total power

of 360 W, Ry, = V2/P = 1202%/360 = 40 Q.
3.40 Determine Ry, in Ry, = (4 + 24]|| 12)||6.

It is essential to start evaluating inside the
parentheses, and then work out. By definition, the term
24 || 12 = (24 x 12)/(24 + 12) = 8. This adds to the 4:
4 + 8 = 12. The expression reduces to 12[|6, which is
(12 x 6)/(12 + 6) = 4. Thus, Rt = 4 Q.

3.41 Find the total resistance Ry of the resistor ladder
network shown in Fig. 3-19.

24 11 §4!1
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Fig. 3-19

To find the equivalent resistance of a ladder
network by combining resistances, always start at the
end opposite the input terminals. At this end, the series
4- and 8-Q resistors have an equivalent resistance of 12
Q. This combines in parallel with the 24-Q resistance:
(24 x 12)/(24 + 12) = 8 Q. This adds to the 3 and the 9
Q of the series resistors forasumof 8 + 3 + 9 = 20 Q.
This combines in parallel with the 5-Q resistance: (20 %
5)/(20 + 5) = 4 Q. Ry, is the sum of this resistance and

the resistances of the series 16- and 14-Q resistors: Rt
=4+ 16 + 14 = 34 Q.



3.42 In the circuit shown in Fig. 3-20 find the total
resistance Ry with terminals a and b (a) open-circuited,

and (b) short-circuited.

40 0
Cr a
R: o0 0}
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Fig. 3-20

(a) With terminals a and b open, the 40- and 90-Q
resistors are in series, as are the 60- and 10-Q
resistors. The two series combinations are in parallel;
SO

(40 + 90x60 + 10)

= -~ - =455
40 + 90 + 60 + 10

T

(b) For terminals a and b short-circuited, the 40- and 60-Q
resistors are in parallel, as are the 90- and 10-Q
resistors. The two parallel combinations are in series,
making

_40x6[] gﬂx]ﬂ_

= — 4+ ———— =330
40 + 60 90 + 10

T

3.43 A 90-A current flows into four parallel resistors
having resistances of 5, 6, 12, and 20 Q. Find the
current in each resistor.



The total resistance is

{
TS5 4+ 1/6 + 1/12 + 1/20

=20

Ry

This value times the current gives the voltage across
the parallel combination: 2 x 90 = 180 V. Then by
Ohm’s law, Is = 180/5 = 36 A, I = 180/6 = 30 A, I, =
180/12 = 15 A, and /5,5 = 180/20 = 9 A.

3.44 Find the voltage and unknown currents in the circuit
shown in Fig. 3-21.

R JI__._ ——— "I_ — r'- —e -
(%w“ ;ﬂ @ﬁu ¥ I.:-ni %:-n @m\ E%
TIPSR, PRI LI e |

Fig. 3-21

Even though it has several dots, the top line is just
a single node because the entire line is at the same
potential. The same is true of the bottom line. Thus,
there are just two nodes and one voltage V. The total
conductance of the parallel-connected resistors is G = 6
+ 12 + 24 + 8 = 50 S. Also, the total current entering
the top node from current sources is 190 - 50 + 60 =
200 A. This conductance and current can be used in the
conductance version of Ohm’S law, | = GV, to obtain
the voltage: V= I/G - 200/50 = 4 V. Since this is the
voltage across each resistor, the resistor currents are I;

=6xXx4=24A,1,=-12%x4=-48A,I3=24 x4 =
96 A, and I, = -8 x 4 = -32 A. The negative signs are

the result of non-associated references. Of course, all
the actual resistor currents leave the top node.



Note that the parallel current sources have the
same effect as a single current source, the current of
which is the algebraic sum of the individual currents
from the sources.

3.45 Use current division to find the currents I, and /5 in
the circuit shown in Fig. 3-21.

The sum of the currents from current sources into
the top node is 190 - 50 + 60 = 200 A. Also, the sum of
the conductancesis 6 + 12 + 24 + 8 = 50 S. By the
current division formula,

12 2

‘-4
I, = ——x200=—48 A and [;=—x200=96A
50 50

The formula for I, has a negative sign because I, has a

reference into the top node, and the sum of the currents
from current sources is also into the top node. For a
positive sign, one current in the formula must be into a
node and the other current must be out of the same
node.

3.46 A 90-A current flows into two parallel resistors
having resistances of 12 and 24 Q. Find the current in
the 24-Q resistor.

The current in the 24-Q resistor equals the
resistance of the other parallel resistor divided by the
sum of the resistances, all times the input current:

12
——— X 90 =30 A

* T 124+ 24

As a check, this current results in a voltage of 30 x 24 =
720 V, which is also across the 12-Q resistor. Thus, /1, =



720/12 = 60 A, and I, + I;, = 30 + 60 = 90 A, which is
the input current.

3.47 Calculate V; and V; in the circuit of Fig. 3-22.

¥, 9A 50 o 3

Fig. 3-22

A good first step is to solve for the controlling
current / in terms of Vy: 1 = V;/5. Thus, the dependent

source current is, in terms of V4, 3(V4,/5) = 0.6V,

directed downward. Then, KCL applied at the top right-
hand node gives

I
—;- + .lfl} + 0.6V, =9 from which V=10V

The voltage drop across the 12-Q resistor is 9(12)
108 V. Finally, KVL applied around the outside loop
results in V, = 108 + 10 = 118 V. Observe that the 12-

Q resistor has no effect on V;, but it does have an effect
on V2,

3.48 Calculate I and V in the circuit of Fig. 3-23.
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L.f
— 00V

-

g 5k ? 200 k02
4

V@ 40 mA
N -

Fig. 3-23

The source current of 40 mA flows into the parallel
resistors. So, by current division,

20
= » 40 = 32 mA

20+ 5

Then by KVL, V = -900 + 32(5) = -740 V. Observe that
although the voltage-source voltage has an effect on the
current-source voltage, it has no effect on the resistor

current /.
3.49 Use voltage division twice to find V; in the circuit
shown in Fig. 3-24.

16 0 54 0
— W\ 1

+

=380V V.36 02 1802V,

Fig. 3-24

Clearly, V; can be found from V, by voltage
division. And V;, can be found from the source voltage



by voltage division used with the equivalent resistance
to the right of the 16-Q resistor. This resistance is

(54 + 18)(36)

= 24 Q)
54 + 18 + 36

By voltage division,

24 , 18
= — x 80 =48V and V, = ——-
16 + 24 54 + 18

X 48 = 12V

F

A common error in finding V, is to neglect the loading of
the resistors to the right of the V, node.

3.50 Use current division twice to find /; in the circuit
shown in Fig. 3-25.

AVAYAY,
36 A
—_— 20 0 o
A AAY;
I 60N
Jf' 50

ANV

Fig. 3-25

Obviously /; can be found from I, by current

division. And, if the total resistance of the bottom three
branches is found, current division can be used to find
I, from the input current. The needed total resistance is



20 x 5

6+ =10Q
20 +5

By the two-resistance form of the current division
formula,

20
x 36=16A and I':’_',.!.G__'S_x 16 =128 A
U +

I, =
7 10+8

Supplementary Problems

3.51 Determine the number of nodes, branches, loops,
and meshes in the circuit shown in Fig. 3-26.

13V 18V 15V

Fig. 3-26

Ans. 6 nodes, 8 branches, 7 loops, 3 meshes
3.52 Find V4, V5, and V5 for the circuit shown in Fig. 3-26.

Ans. V; =26V, V,=-21V,V3=2V

3.53 Four resistors in series have a total resistance of 500
Q. If three of the resistors have resistances of 100, 150,



and 200 Q, what is the resistance of the fourth resistor?
Ans. 50 Q

3.54 Find the total conductance of 2-, 4-, 8-, and 10-S
resistors connected in series.

Ans. 1.03 S

3.55 A 60-W, 120-V light bulb is to be connected in series
with a resistor across a 277-V line. What is the
resistance and minimum power rating of the resistor
required if the light bulb is to operate under rated
conditions?

Ans. 314 Q, 785 W

3.56 A series circuit consists of a dc voltage source and
4-, 5-, and 6-Q resistors. If the current is 7 A, find the
source voltage.

Ans. 105V

3.57 A 12-V battery with a 0.3-Q internal resistance is to
be charged from a 15-V source. If the charging current
should not exceed 2 A, what is the minimum resistance
of a series resistor that will [imit the current to this safe
value?

Ans. 1.2 Q

3.58 A resistor in series with a 100-Q resistor absorbs 80
W when the two are connected across a 240-V line.
Find the unknown resistance.

Ans. 20 or 500 Q

3.59 A series circuit consists of a 4-V source and 2-, 4-,
and 6-Q resistors. What is the minimum power rating of
each resistor if the resistors are available in power
ratings of § W, 1 W, and 2 W?



Ans. P, =1 W, P, =W, Pg=1W
3.60 Find V, in the circuit shown in Fig. 3-27.

10 10 BV

AN —AAN————{l|—
+ l ia
W0V= Ve § n

. N:j«,‘ 1.1>.ji—|.1._

40 oV 15V

Fig. 3-27

Ans. 20V

3.61 Use voltage division to find the voltage V, in the
circuit shown in Fig. 3-27.

Ans. -8V

3.62 A series circuit consists of a 100-V source and 4-, 5-,
6-, 7-, and 8-Q resistors. Use voltage division to
determine the voltage across the 6-Q resistor.

Ans. 20V
3.63 Determine I in the circuit of Fig. 3-28.

2Q 6




Fig. 3-28

Ans. 3 A
3.64 Find V across the open circuit in the circuit of Fig. 3-
29.
—AM—
3kQ 10 kQ Sk
A e VWV 4ma O
.+
g .| 3.’ 5kQ ( ) %
ISV _
I
i B
Fig. 3-29
Ans. -45V

3.65 Find the indicated unknown currents in the circuits

shown in Fig. 3-30.
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Fig. 3-30

Ans. Iy =2A, I, = -6A, I3 = -5A, I, = 3 A

3.66 Find the short-circuit current / in the circuit shown in

Fig. 3-31.
2 ()

— \\N\N—

.
8 A 1 Q y =1V
s
Fig. 3-31
Ans. 3 A

3.67 Calculate V; in the circuit of Fig. 3-32.



2 kQ
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f
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Fig. 3-32

Ans. 96V

3.68 What are the different resistances that can be
obtained with three 4-Q resistors?

Ans. 1.33, 2, 2.67,4,6,8,and 12 Q

3.69 A 100-Q resistor and another resistor in parallel have
an equivalent resistance of 75 Q. What is the resistance
of the other resistor?

Ans. 300 Q

3.70 Find the equivalent resistance of four parallel
resistors having resistances of 2, 4, 6, and 8 Q.

Ans. 0.96 Q

3.71 Three parallel resistors have a total conductance of
2 mS. If two of the resistances are 1 and 5 kQ, what is
the third resistance?

Ans. 1.25 kQ

3.72 The equivalent resistance of three parallel resistors
is 10 Q. If two of the resistors have resistances of 40
and 60 Q, what is the resistance of the third resistor?



Ans. 17.1 Q
3.73 Determine Ry in Ry = (24]|48 + 24) || 10.

Ans. 8 Q
3.74 Determine Ry in Ry = (6| 12 + 10||40) || (6 + 2).

Ans. 4.8 Q

3.75 Find the total resistance Ry of the resistor ladder
network shown in Fig. 3-33.

15 kQ 6 ki) 3 ki)

4 k2

6 ki) 2 ki) 5 k(1

Fig. 3-33

Ans. 26.6 kQ
3.76 Repeat Prob. 3.75 with all resistances doubled.
Ans. 53.2 kQ

3.77 In the circuit shown in Fig. 3-34, find Ry with

terminals a and b (a) open-circuited, and (b) short-
circuited.



74
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Fig. 3-34

Ans. (a) 18.2 Q, (b) 18.1 Q

3.78 A 15-mA current flows into four parallel resistors
having resistances of 4, 6, 8, and 12 kQ. Find each
resistor current.

Ans. I, =06mA,lg=4mA,Ig=3mA,l;,=2mA
3.79 Repeat Prob. 3.78 with all resistances doubled.
Ans. Same currents

3.80 Find the unknown currents in the circuit shown in Fig.
3-35.

24 01

24




Fig. 3-35

Ans. I{ = -10A, I, = -8A, I3 = 6SA, I, = -2A, I = 12A
3.81 Find Ry and R, for the circuit shown in Fig. 3-36.

| S
2 A
20}
-‘-_l:- 12V
R,
R>
0.4 Al
L
Fig. 3-36

Ans. R; = 20Q, R, = 5Q

3.82 In the circuit shown in Fig. 3-36, let R;, = 6 Q and R,

= 12 Q. Then use current division to find the new
current in the R, resistor.



Ans. 1.33 A

3.83 A 60-A current flows into a resistor network
described by Ry = 40][(12 + 40]|10). Find the current in

the 10-Q resistor.
Ans. 32 A

3.84 A 620-V source connected to a resistor network
described by R+ = 50 + R||20 provides 120 V to the 20-

Q resistor. What is R?
Ans. 30 Q
3.85 Find / in the circuit shown in Fig. 3-37.

12 {1

Fig. 3-37

Ans. 4 A

3.86 In the circuit shown in Fig. 3-38 there is a 120-V, 60-
W light bulb. What must be the supply voltage V. for

the light bulb to operate under rated conditions?
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Fig. 3-38

Ans. 285V

3.87 In the circuit of Fig. 3-39, calculate I and also the
power absorbed by the dependent source.

*

6 A ; 1402 21 g 700

I

Fig. 3-39

Ans. 2 A, 560 W

3.88 Use voltage division twice to find the voltage V in
the circuit shown in Fig. 3-40.

16 1} 150

-




Fig. 3-40

Ans. 36 V

3.89 In the circuit shown in Fig. 3-41, use current division
twice to calculate the current / in the R, for (a) R, = 0Q,

(b) R, = 5Q, and (c) R, = 20 Q.

LR

6

Fig. 3-41

Ans. (a) 16 A, (b) 9.96 A, (c) 4.67 A

3.90 Use repeated current division in finding I in the
circuit of Fig. 3-42.
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Fig. 3-42

Ans. 4 mA




Chapter 4
DC Circuit Analysis

CRAMER'’S RULE

A knowledge of determinants is necessary for using
Cramer’s rule, which is a popular method for solving the
simultaneous equations that occur in the analysis of a circuit.
A determinant is a square arrangement of numbers between
two vertical lines, as follows:

|

dyy Ay Ay,
(37 W2 di;
3y di3x; 4z,

in which each a is a number. The first and second subscripts
indicate the row and column, respectively, that each number
is in.

A determinant with two rows and columns is a second-
order determinant. One with three rows and columns is a
third-order determinant, and so on.

Determinants have values. The value of the second-order
determinant




IS @17877 — @181, Which is the product of the numbers on the

principal diagonal minus the product of the numbers on the
other diagonal:

For example, the value of

g -2
-
is 8(-4) -6(-2) = -32 + 12 = -20.

A convenient method for evaluating a third-order
determinant is to repeat the first two columns to the right of
the third column and then take the sum of the products of
the numbers on the diagonals indicated by downward
arrows, as follows, and subtract from this the sum of the
products of the numbers on the diagonals indicated by
upward arrows. The result is

11032033 + Ay305305¢ + A 305,037 — A3,055013 — 320730 — A3305,d,;

For example, the value of



from

280 —80 —162

180 —168 =120
is 180 - 168 - 120 - (280 - 80 - 162) = -146.
Evaluations of higher-order determinants require other

methods that will not be considered here.

Before Cramer’s rule can be applied to solve for the
unknowns in a set of equations, the equations must be
arranged with the unknowns on one side, say the left, of the
equal signs and the knowns on the right-hand side. The
unknowns should have the same order in each equation. For
example, I; may be the first unknown in each equation, /5

the second, and so on. Then, by Cramer’s rule, each
unknown is the ratio of two determinants. The denominator
determinants are the same, being formed from the
coefficients of the unknowns. Each numerator determinant
differs from the denominator determinant in only one
column. For the first unknown, the numerator determinant
has a first column that is the right-hand side of the
equations. For the second unknown, the numerator
determinant has a second column that is the right-hand side
of the equations, and so on. As an illustration, for



—21, + 121, — 9I, = —43

—4I, — 91,4+ 151, = 13

32 -2 -4 10 32 —4 10 -2 32

-43 12 -9 2 —43 -9 -2 12 -43
113 -9 15 pol=4 1B 158l (-4 -9 13
1 10 —2 —4 27010 =2 —4 3T 10 =2 —4
-2 12 -9 ~2 12 -9 —2 12 -9

-4 -9 15 —4 -9 15 —4 -9 15

CALCULATOR SOLUTIONS

Although using Cramer’s rule is popular, a much better

way to solve the simultaneous equations of interest here is
to use an advanced scientific calculator. No programming is
required, the equations are easy to enter, and solutions can

be obtained just by pressing a single key. Typically the
equations must be first placed in matrix form. But no
knowledge of matrix algebra is required.

To be placed in matrix form, the equations must be
arranged in exactly the same form as for using Cramer’s
rule, with the unknowns being in the same order in each
equation. Then, three matrices are formed from these
equations. As an illustration, for the following previously
considered equations,

101, — 21, — 4, = 32
21, + 121, — 91, = —43
—4I, — 91, + 15, = 13

the corresponding matrix equation is




10 -2 —471, 32
—4 -9 151, 13

Incidentally, a matrix comprising a single column is usually
referred to as a vector.

The elements of the three-by-three matrix are just the
coefficients of the unknowns and are identical to the
elements in the denominator determinant of Cramer’s rule.
The adjacent vector has elements that are the unknowns
being solved for, and the vector on the right-hand side has
elements that consist of the right-hand sides of the original
equations.

The elements of the vector on the right-hand side and the
elements of the coefficient matrix are then entered into a
calculator. The exact method of entering the elements
depends on the calculator used but should be simple to do.
Typically, the solutions are returned in a vector,.and they
appear in the same order as the corresponding quantity
symbols in the vector of unknowns.

The calculator method cannot be too strongly
recommended. The decrease in errors and the time saved
will quickly compensate the user for the little additional cost
that was required to purchase such a calculator. The
calculator should also be capable of solving simultaneous
equations that have complex, instead of just real,
coefficients, as will be required later for the analysis of
sinusoidally excited circuits.

SOURCE TRANSFORMATIONS

Depending on the type of analysis, a circuit with either no
voltage sources or no current sources may be preferable.
Because a circuit may have an undesired type of source, it is
convenient to be able to transform voltage sources to



equivalent current sources, and current sources to
equivalent voltage sources. For a transformation, each
voltage source should have a series internal resistance, and
each current source a parallel internal resistance.

Figure 4-la shows the transformation from a voltage source
to an equivalent current source, and Fig. 4-1b the
transformation from a current source to an equivalent
voltage source. This equivalence applies only to the external
circuit connected to these sources. The voltages and
currents of this external circuit will be the same with either
source. Internally, the sources are usually not equivalent.

R R
] — r%’ %R Q:)I R —_— _J:"?
Lﬂb k O b # O b Lb
{a) (b}
Fig. 4-1

As shown, in the transformation of a voltage source to an
equivalent current source, the same resistor is in parallel
with the current source, and the source current equals the
original source voltage divided by the resistance of this
resistor. The current source arrow is directed toward the
terminal nearest the positive terminal of the voltage source.
In the transformation from a current source to an equivalent
voltage source, the same resistor is in series with the voltage
source, and the source voltage equals the original source
current times the resistance of this resistor. The positive
terminal of the voltage source is nearest the terminal toward
which the arrow of the current source is directed. This same
procedure applies to the transformations of dependent
sources.



MESH ANALYSIS

In mesh analysis, KVL is applied with mesh currents, which
are currents assigned to meshes, and preferably referenced
to flow clockwise, as shown in Fig. 4-2a.

R. Rz

R,
i (_I) (‘) A
V= =v R
L TV
Mesh 1 T Vs Mesh 2 I R
() (b)
Fig. 4-2

KVL is applied to each mesh, one at a time, using the fact
that in the direction of a current /, the voltage drop across a
resistor is IR, as shown in Fig. 4-2b. The voltage drops across
the resistors taken in the direction of the mesh currents are
set equal to the voltage rises across the voltage sources. As
an illustration, in the circuit shown in Fig. 4-2a, around mesh
1 the drops across resistors R; and R are I;R; and (/; - I5)R3,

respectively, the latter because the current through R3 in the
direction of /1 is I; - I, The total voltage rise from voltage
sources is V; - V3, in which V3 has a negative sign because it
is a voltage drop. So, the mesh equation for mesh 1 is

LRy +U; —1,)R; =V, -V or (Ry + R} —R31, =V, = 1]

Notice that R; + R3, the coefficient of /4, is the sum of the

resistances of the resistors in mesh 1. This sum is called the
self-resistance of mesh 1. Also, -R3, the coefficient of /5, is



the negative of the resistance of the resistor that is common
to or mutual to meshes 1 and 2. R3 is called the mutual

resistance. In mesh equations, mutual resistance terms
always have negative signs because the other mesh currents
always flow through the mutual resistors in directions
opposite to those of the principal mesh currents.

It is easier to write mesh equations using self-resistances
and mutual resistances than it is to directly apply KVL. Doing
this for mesh 2 results in

—"RQ_I] + {Rz + Rs}jz — V3 — Vz

In @ mesh equation, the voltage for a voltage source has a
positive sign if the voltage source aids the flow of the
principal mesh current—that is, if this current flows out of the
positive terminal—because this aiding is equivalent to a
voltage rise. Otherwise, a source voltage has a negative
sign.

For mesh analysis, the transformation of all current
sources to voltage sources is usually preferable because
there is no formula for the voltages across current sources.

If, however, a current source is positioned at the exterior of a
circuit such that only one mesh current flows through it, that
current source can remain because the mesh current through
it is known—it is the source current or the negative of it,
depending on direction. KVL is not applied to this mesh.

The number of mesh equations equals the number of
meshes minus the number of current sources, if there are
any.

LOOP ANALYSIS

Loop analysis is similar to mesh analysis, the principal
difference being that the current paths selected are loops
that are not necessarily meshes. Also, there is no convention



on the direction of loop currents; they can be clockwise or
counterclockwise. As a result, mutual terms can be positive
when KVL is applied to the loops.

For loop analysis, no current source need be transformed
to a voltage source. But each current source should have
only one loop current flowing through it so that the loop
current is known. Also, then KVL is not applied to this loop
because the current source voltage is unknown.

Obviously, the loops for the loop currents must be selected
such that every component has at least one loop current
flowing through it. The number of these loops equals the
number of meshes if the circuit is planar —that is, if the
circuit can be drawn on a flat surface with no wires crossing.
In general, the number of loop currents required is B - N + 1,
where B is the number of branches and N is the number of
nodes.

If the current through only one component is desired, the
loops should be selected such that only one loop current
flows through this component. Then, only one current has to
be solved for. In contrast, for mesh analysis, finding the
current through an interior component requires solving for
two mesh currents.

NODAL ANALYSIS

For nodal analysis, preferably all voltage sources are
transformed to current sources and all resistances are
converted to conductances. KCL is applied to all nodes but
the ground node, which is often indicated by a ground
symbol at the bottom node of the circuit, as shown in Fig. 4-
3a. As mentioned in Chap. 3, almost always the bottom node
Is selected as the ground node even though any node can
be. Conventionally, voltages on all other nodes are
referenced positive with respect to the ground node. As a
consequence, showing node voltage polarity signs is not
necessary.
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Fig. 4-3

In nodal analysis, KCL is applied to each nongrounded
node, one at a time, using the fact that in the direction of a
voltage drop V, the current in a resistor is GV, as shown in
Fig. 4-3b. The currents leaving a node through resistors are
set equal to the currents entering the node from current
sources. As an illustration, in the circuit shown in Fig. 4-3a,
the current flowing down through the resistor with
conductance Gy, is G; V7. The current to the right through

the resistor with conductance Gs is G3(V; - V5). This current
is equal to the conductance times the voltage at the node at
which the current enters the resistor minus the voltage at
the node at which the current leaves the resistor. The
quantity (V4, - V5) is, of course, just the resistor voltage

referenced positive at the node at which the current enters
the resistor and negative at the node at which the current
leaves the resistor, as is required for associated references.
The current entering node 1 from current sources is /{ - I3, in
which /5 has a negative sign because it is actually leaving

node 1. So, the nodal equation for node 1 is



GV, + GV, = Vo) =1, — I or (G, + GV, — GV, =1,—1,

Notice that the V; coefficient of G; + G5 is the sum of the

conductances of the resistors connected to node 1. This sum
is called the self-conductance of node 1. The coefficient of V,

is - G3, the negative of the conductance of the resistor
connected between nodes 1 and 2. G5 is called the mutual

conductance of nodes 1 and 2. Mutual conductance terms
always have negative signs because all nongrounded node
voltages have the same reference polarity—all are positive.

It is easier to write nodal equations using self-
conductances and mutual conductances than it is to directly
apply KCL. Doing this for node 2 results in

~G.V, +(G, + Gy)Vy =1, + I3

The transformation of all voltage sources to current
sources is not absolutely essential for nodal analysis, but is
usually preferable for the shortcut approach with self-
conductances and mutual conductances. The problem with
voltage sources is that there is no formula for the currents
flowing through them. Nodal analysis, though, is fairly easy
to use with circuits having grounded voltage sources, each of
which has a terminal connected to ground. Such voltage
sources give known voltages at their nongrounded terminal
nodes, making it unnecessary to apply KCL at these nodes.
Other voltage sources—floating voltage sources—can be
transformed to current sources.

The number of nodal equations equals the number of
nongrounded nodes minus the number of grounded voltage
sources.

DEPENDENT SOURCES AND CIRCUIT ANALYSIS



Mesh, loop, and nodal analyses are about the same for
circuits having dependent sources as for circuits having only
independent sources. Usually, though, there are a few more
equations. Also, positive terms may appear in the circuit
equations where only negative mutual resistance or
conductance terms appear for circuits having no dependent
sources. Almost always, a good first step in the analysis of a
circuit containing dependent sources is to solve for the
dependent source controlling quantities in terms of the mesh
or loop currents or node voltages being solved for.

Solved Problems

4.1 Evaluate the following determinants:
1 -2 —5 6

b
@ 13 4' '1}‘ 7 —8‘

(a) The product of the numbers on the principal diagonal
is1 X 4 =4, and for the numbers on the other diagonal
is -2 X 3 =-6. The value of the determinant is the
first product minus the second product: 4 -(-6) = 10.

(b) Similarly, the value of the second determinant is - 5(-
8)-7(6) =40-42 = -2.

4.2 Evaluate the following determinant:

8 -9 4
3 -2 1
6 5 —4

One method of evaluation is to repeat the first two
columns to the right of the third column and then find



the products of the numbers on the diagonals, as
indicated:

The value of the determinant is the sum of the products
for the downward-pointing arrows minus the sum of the
products for the upward-pointing arrows:

(64 — 54 + 60) — (—48 + 40 + 108) = — 30

4.3 Use Cramer’s rule to solve for the unknowns in

5Vl + 4V2 = 31
—4V, + 8V, = 20

The first unknown V; equals the ratio of two

determinants. The denominator determinant has
elements that are the coefficients of V; and V5. The

numerator determinant differs only in having the first
column replaced by the right-hand sides of the
equations:

31
20 8|  318)—204) 168

— = =3V
S8) —(—4)4) 56




The denominator determinant for V5 has the same
value of 56. In the numerator determinant the second
column, instead of the first, is replaced by the right-
hand sides of the equations:

‘ 5 31\

—4 20| 520) —(—4)31) 224

V, = = (20) — (X ]= =4V
56 56 56

4.4 Use Cramer’s rule to solve for the unknowns in

—4I, — 6l,+ 14, = 40

All three unknowns have the same denominator
determinant of coefficients, which evaluates to

192 360 56

1680 —48 48
1680 — 48 — 48 — (192 + 360 + 56) = 976

In the numerator determinants, the right-hand sides
of the equations replace the first column for /1, the

second column for /5, and the third column for /5:



10 -2 —4 10 10 -4
~34 12 -6 2 34 —6
4 —6 14| 1952 —4 40 14| —976
I, = =——=2A IL,= 0 - = —1A
976 976 976 976
10 -2 10
~2 12 —34
—4 —6 40| 2928
I, = =34
976 976

4.5 Transform the voltage sources shown in Fig. 4-4 to
current sources.

in 810 20
—NNVN—0a ‘[—'\/\/\I—JDE a
V= NV = 8,
ob T Ob Obh
(a) (b) (e)
Fig. 4-4

(a) The current of the equivalent current source equals the
voltage of the original voltage source divided by the
resistance: 21/3 = 7 A. The current direction is toward
node a because the positive terminal of the voltage
source is toward that node. The parallel resistor is the
same 3-Q resistor of the original voltage source. The
equivalent current source is shown in Fig. 4-5a.
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(c)

Fig. 4-5

(b) The current of the current source is 40/8 =5 A. It is
directed toward node b because the positive terminal
of the voltage source is toward that node. The parallel
resistor is the same 8-Q resistor of the voltage source.
Figure 4-5b shows the equivalent current source.

(c) The current of the current source is 8/1/2 = 4/, with a

direction toward node a because the positive terminal
of the voltage source is toward that node. The parallel
resistor is the same 2-Q resistor of the voltage source.
Figure 4-5¢ shows the equivalent current source.

4.6 Transform the current sources shown in Fig. 4-6 to
voltage sources.



5A gdﬂ 6 A gsn

(a) (b)

3, 6Q

(c)
Fig. 4-6

(a) The voltage of the equivalent voltage source equals
the current of the original current source times the
resistance: 5 x 4 = 20 V. The positive terminal is
toward node a because the direction of the current of
the original current source is toward that node. Of
course, the source resistance remains 4 Q, but is in
series instead of in parallel. Figure 4-7a shows the
equivalent voltage source.
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Fig. 4-7

(b) The voltage is 6 x 5 = 30 V, positive toward node b
because the direction of the current of the original
current source is toward that node. The source
resistance is the same 5 Q, but is in series. The
equivalent voltage source is shown in Fig. 4-7b.

(c) The voltage is 3/, x 6 = 18/, positive toward node a

because the direction of the current of the current
source is toward that node. The source resistance is the
same 6 Q but is in series. The equivalent voltage

source is shown in Fig. 4-7c.

4.7 Find the currents down through the resistors in the
circuit shown in Fig. 4-8. Then transform the current
source and 2-Q resistor to an equivalent voltage source
and again find the resistor currents. Compare results.



ORNE &

Fig. 4-8

By current division, the current down through the 2-
Q resistor is

6
— x 16=12A
2+ 6

The remainder of the source current (16 - 12 = 4 A) flows
down through the 6-Q resistor.

Transformation of the current source produces a
voltage source of 16 x 2 = 32 V in series with a 2-Q
resistor, all in series with the 6-Q resistor, as shown in
the circuit of Fig. 4-9. In this circuit, the same current
32/(2 + 6) = 4 A flows through both resistors. The 6-Q
resistor current is the same as for the original circuit,
but the 2-Q resistor current is different. This result
illustrates the fact that although a transformed source
produces the same voltages and currents in the circuit
exterior to the source, the voltages and currents inside
the source usually change.

20
NV

— 32V 6 11




Fig. 4-9

4.8 For the circuit of Fig. 4-10, use repeated source
transformations to obtain a single mesh circuit, and
then find the current /.

50 50 I
ANV =
l :
T- 378V 200 ;1', kIS
Fig. 4-10

The first step is to transform the voltage source and
series resistor into a current source and parallel resistor.
The resistance does not change, but the source current
is 37.5/5 = 7.5 A directed upward. The 5-Q resistor from
the source transformation is in parallel with the 20-Q
resistor. Consequently, the combined resistance is (5 X
20)/(5 + 20) = 4 Q. The next step is to transform the
7.5-A current source and the parallel 4-Q resistor into a
series voltage source and resistor. The resistance
remains the same, and the voltage of the voltage source
is 4(7.5) = 30V, positive upward, as shown in the circuit
of Fig. 4-11, which is a single mesh circuit.

4 Q)




Fig. 4-11

The KVL equation for this circuit is 3/2 + 9/ - 30 = 0,

from which the current / can be obtained by applying
the quadratic formula:

9+ /5 4BN-30
2(3)

[ =

The solutionsare/ =2 Aand/ =-5A. Only thel = 2A is
physically possible. The current must be positive since in
the circuit of Fig. 4-11 there is only one source, and

current must flow out of the positive terminal of this
source.

4.9 Find the mesh currents in the circuit shown in Fig. 4-12.

50 16 V
=6V (zl\ 6R(E#>4A
‘[V i 2
Fig. 4-12

The self-resistance of mesh 1is5 + 6 =11 Q, and
the resistance mutual with mesh 2 is 6 Q. The sum of
the source voltage rises in the direction of /; is 62 - 16 =

46 V. So, the mesh 1 KVL equation is 11/; - 6/, = 46.

No KVL equation is needed for mesh 2 because /5 is

the only current flowing through the 4-A current source,
with the result that /, = -4 A. The current /, is negative

because its reference direction is down through the



current source, but the 4-A source current actually flows
up. Incidentally, a KVL equation cannot be written for
mesh 2 without introducing a variable for the voltage
across the current source because this voltage is
unknown.

The substitution of I, = - 4 A into the mesh 1
equation results in

22

111, — 6(—4) = 46 and 11=—1-1=2A

4.10 Determine the mesh currents in the circuit shown in
Fig. 4-13.

6 1 12101
AAA% r

AVAVAV
410
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Fig. 4-13

The self-resistance of mesh 1is 6 + 4 = 10 Q, the
mutual resistance with mesh 2 is 4 Q, and the sum of
the source voltage rises in the direction of /; is 40 - 12 =

28 V. So, the mesh 1 KVL equation is 10/;, - 4/, = 28.

Similarly, for mesh 2 the self-resistance is 4 + 12 =
16 Q, the mutual resistance is 4Q, and the sum of the
voltage rises from voltage sources is 24 + 12 = 36 V.
These give a mesh 2 KVL equation of -4/; + 16/, = 36.

Placing the two mesh equations together shows the
symmetry of coefficients (here -4) about the principal
diagonal as a result of the common mutual resistance:



101, —~ 41, =28
—41, + 161, = 36

A good way to solve these two equations is to add four
times the first equation to the second equation to
eliminate /5. The result is

148
401, — 41, = 112 + 36 from which I, = -q—t—_!—:4.llA

This substituted into the second equation gives

—4(4.11) + 161, = 36 and == —=328A

4.11 Obtain the mesh currents in the circuit of Fig. 4-14,

B4 241

A" * NV
60 ane v,
sy, 1, I -
T 120V .T—m v

Fig. 4-14

A good first step is to solve for the controlling
quantity V, in terms of the mesh current /. Clearly, V, =

4/,, and consequently the voltage of the dependent
source is 0.5 V,, = 0.5(4/,) = 2/,. Then, the application of
KVL to the meshes gives

8 +6)], — 6, — 21, = —120



and

6 +2+4),—-6l =120—-60

In matrix form, these simplify to

14 —87 1, [—120
—6 12Jl,] [ 60
In the matrix of coefficients, the lack of symmetry about
the principal diagonal is the result of the action of the

dependent source. The solutions can be obtained by

using Cramer’s rule or, preferably, by using a calculator.
The mesh currents are/; =-8 Aand [/, = 1A,

4.12 Find the mesh currents in the circuit shown in Fig. 4-
15.

410 610
—AAN +—AAA
’l I Iz
1 ki 2

Fig. 4-15

One analysis approach is to transform the 13-A
current source and parallel 5-Q resistor into a voltage
source, as shown in the circuit of Fig. 4-16.
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Fig. 4-16

The self-resistance of mesh 1is4 + 5 =9Q, and
that of mesh 2 is 6 + 5 = 11 Q. The mutual resistance is
5 Q. The voltage rises from sources are 75 -65 =10V
for mesh 1 and 65 - 13 = 52 V for mesh 2. The
corresponding mesh equations are

9of, — SI,=10

Multiplying the first equation by 5 and the second by 9
and then adding them eliminates /;:

518

—251, + 991, = 50 + 468 from which ' IJ_H_

TA

This substituted into the first equation produces

"10+35_

9, — 57) =10 or I .

SA

From the original circuit shown in Fig. 4-15, the
current through the current source is I,-I3 = 13 A, and so



L=, —13=7—13= —6A

Another approach is to use the so-called supermesh
method, which is applicable when a circuit contains
internal current sources. Mesh currents are used, but for
each internal current source, KVL is applied to the loop
that would be a mesh if the current source were
removed. For the circuit of Fig. 4-15, this loop
(supermesh) comprises the 5-Q and 6-Q resistors and
the 13-V source. The KVL equation is 5(/5 - 1;) + 6/, = -

13. This, with the mesh 1 equation of 9/, - 5/53 = 75,

comprises two equations with three unknowns. The
required third equation can be obtained by applying KCL
to either node of the current source, or, more simply, by
noting that the current up through the current source in
terms of mesh currents is /5 - /5. This current must, of
course, be equal to the 13 A of the source. So, the two
KVL equations are augmented with the single KCL
equation /5 - I3 = 13. In matrix form these equations are

-5 6 sl —13
9 0 —s|,|=| 75
0 1 -1 1 13

The solutions are the same as obtained before: I; = 5 A,
I, =7A,and /3 =-6 A

In general, for the supermesh approach, the K.VL
equations must be augmented with KCL equations, the
number of which is equal to the number of internal
current sources.

4.13 Find the mesh currents in the circuit shown in Fig. 4-
17.
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Fig. 4-17
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The self-resistancesare 3+ 4 =7 Q. formesh 1, 4 +
54+6=15Qformesh 2,and 6 + 7 = 13 Q for mesh 3.
The mutual resistances are 4 Q for meshes 1 and 2, 6 Q
for meshes 2 and 3, and 0 Q for meshes 1 and 3. The
aiding source voltages are 42 + 25 =67 V for mesh 1, -
25-57-70 =-152V for mesh 2, and 70 + 4 = 74 V for
mesh 3. So, the mesh equations are

Notice the indicated symmetry of the mutual coefficients
about the principal diagonal, shown as a dashed line.
Because of the common mutual resistances, this
symmetry always occurs—unless a circuit has
dependent sources. Also, notice for each mesh that the
self-resistance is equal to or greater than the sum of the
mutual resistances because the self-resistance includes
the mutual resistances.

By Cramer’s rule,



67 —4 0 7 67 O
~152 15 —6 =4 ={5¢ =f

74 —6 13| 4525 0 74 13| —7240

I1= = :5 f2= — = e A

7 —4 0] 905 905 905
—4 15 —6

0 =& 9

7 —4 67
-4 15 —152]

0 —6 741 1810

905 905

4.14 Find the mesh currents in the circuit shown in Fig. 4-
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Fig. 4-18

The self-resistancesare 3 + 4 + 5 =12 Q for mesh
1,5+46+7=18Qformesh2,and6+4+8=18Q
for mesh 3. The mutual resistances are 5 Q for meshes 1
and 2, 6 Q for meshes 2 and 3, and 4 Q for meshes 1
and 3. The aiding source voltages are 150 - 100 - 74 = -
24V formesh 1,74 + 15 + 23 =112 V for mesh 2, and
100 -191 - 15 =-106 V for mesh 3. So, the mesh
equations are



12, — SI, - 4l,= —24
~SI, + 18], — 61, = 112
—4f, — 6I,+ 181, = —106

For a check, notice the symmetry of the coefficients
about the principal diagonal.
By Cramer’s rule,

| -4 -5 —4 12 =24 —4
| 112 18 —6 5 112 -6
—106 —6 18| —4956 -4 —106 18] 9912
11= = =-=2A fz = - .
| R, R | 2478 2478 T 478
)—5 1B
-4 —6 18
12 -5 24
—5 18 112’
—4 -6 —106| —12390
[3=—— — == —5A
2478 2478

4.15 Use mesh analysis in determining the power
absorbed by the dependent voltage source in the circuit

of Fig. 4-19.




Fig. 4-19

In terms of mesh currents, the dependent source
controlling quantity I, is I, = I; - I;. So, the dependent

source provides a voltage of 20/, - 20(/; - I5). In writing

mesh equations for a circuit that has dependent
sources, a good approach is to temporarily ignore the
dependent sources, write the mesh equations using the
self- and mutual-resistance approach, and then add the
dependent source expressions to the pertinent
equations. The result of doing that here is

701, — 351, — 151, + 20(I, — I,) = 10 + 16
~ 351, + 641, — 181, = 7 — 16 — 20
— 151, = 181, + 4614 = 20(I, — I,) = 20 — 14

which simplify to

90 —S55 —15| I, 26
~35 64 —18|1,|=|—29
35 2 461, 6

The solutions are /; = 0.148 A, I, =-0.3 A, and I3 =
0.256 A. Finally, the power absorbed by the dependent

source is equal to the source voltage times the current
flow into the positive-referenced terminal:

50 —40 301, 20
—40 45 250 1,|=] 0
1.5 —05 —1{1, 0



4.16 Use mesh analysis in finding V, in the circuit of Fig.
4.20.

As always for a circuit containing dependent
sources, a good first step is to solve for the dependent
source controlling quantities in terms of the quantities
being solved for, which are mesh currents here.
Obviously, I, = I; - I, and Vy = 5/5. So, the dependent
current source provides a current of 1.5/, = 1.5(/1 - /,)
and the dependent voltage source provides a voltage of

The KVL equation for mesh 1 is (10 + 40)/; - 40/, +
30/5 = 20. Preferably, KVL should not be applied to

meshes 2 and 3 because of the dependent current
source that is in these meshes. But a good approach to
use is the supermesh method presented in Prob. 4.12.
Applying KVL to the mesh obtained by deleting this
current source gives the equation -30/5 + 40(/, - 1) +

5/, + 5/3 = 0. The necessary third independent
equation, 1.5(/; - ;) = I3 - I, is obtained by applying



KCL at a terminal of the dependent current source.
These three equations simplify to, in matrix form,

50 —40 301, 20
—40 45 250 1,|=] ©
1.5 —05 —11, 0

Then Cramer’s rule or, preferably, a calculator can be
used to obtain the current /5 = 0.792 A. Finally, V, = 5/5

= 5(0.792) = 3.96 V.
4.17 Use loop analysis to find the current flowing to the

right through the 5-kQ resistor in the circuit shown in
Fig. 4-21.

Fig. 4-21

Three loop currents are required because the circuit
has three meshes. Only one loop current should flow
through the 5-kQ resistor so that only one current needs
to be solved for. The paths for the two other loop
currents can be selected as shown, but there are other
suitable paths.

As has been mentioned, since working with kilohms
is inconvenient, a common practice is to drop those
units—to divide each resistance by 1000. But then the



current answers will be in milliamperes. With this
approach, and from self-resistances, mutual resistances,
and aiding source voltages, the loop equations are

18.51, — 131, + 13513 = 0
1351, — 151, 4+ 19.5, = 0

I

i

Notice the symmetry of the I coefficients about the
principal diagonal, just as for mesh equations. But there
is the difference that some of these coefficients are
positive. This is the result of two loop currents flowing
through a mutual resistor in the same direction—
something that cannot happen in mesh analysis if all
mesh currents are selected in the clockwise direction, as
is conventional.

From Cramer’s rule,

0 —13 135
26 16 —15
o0 15 19 =I3?ﬁ=2]]]ﬁ
185 —13 135| 663
fy  f =15
1135 —15 195

4.18 Use loop analysis to find the current down through
the 8-Q resistor in the circuit shown in Fig. 4-22.
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Because the circuit has three meshes, the analysis
requires three loop currents. The loops can be selected
as shown, with only one current /; flowing through the 8-

Q resistor so that only one current needs to be solved
for. Also, only one loop current should flow through the
7-A source so that this loop current is known, making it
unnecessary to apply KVL to the corresponding loop.
There are other ways of selecting the loop current paths
to satisfy these conditions.

The self-resistance of the first loopis 6 + 8 = 14 Q,
and the resistance mutual with the second loop is 6 Q.
The 7-A current flowing through the 6-Q resistor
produces a 42-V drop in the first loop. The resulting loop
equation is

141, + 61, + 42 =8 or 141, + 61, = —34

The 6 coefficient of /, is positive because I, flows
through the 6-Q resistor in the same direction as /;.

For the second loop, the self-resistance is 6 + 10 =
16 Q, of which 6 Q is mutual with the first loop.

The second loop equation is



6f, +161, +42=8+6 or 6l, + 161, = —28

The two loop equations together are

141, + 61, = —34

Multiplying the first equation by 8 and the second by -3
and then adding them eliminates /5:

188
1121, — 181, = —272 + 84 from which [i= = —==2A
! : 94

4.19 Two 12-V batteries are being charged from a 16-V
generator. The internal resistances are 0.5 and 0.8 Q for
the batteries and 2 Q for the generator. Find the
currents flowing into the positive battery terminals.

The arrangement is basically parallel, with just two
nodes. If the voltage at the positive node with respect to
the negative node is called V, the current flowing away
from the positive node through the sources is

V—12 V-12 V-16
S — _I_ — + i e e U
0.5 0.8 2

Multiplying by 4 produces

- 188
BV —96 +5V—-60+2V—32=0 or 15 = |88 and V=—=12533V

-

15

Consequently, the current into the 12-V battery with 0.5-
Q internal resistance is (12.533 -12)/0.5 = 1.07 A, and

the current into the other 12-V battery is (12.533 -
12)/0.8 = 0.667 A.



4.20 Determine the node voltages in the circuit shown in
Fig. 4-23,

Fig. 4-23

Using self-conductances and mutual conductances is
almost always best for getting the nodal equations. The
self-conductance of node 1is 5 + 8 = 13 S, and the
mutual conductance is 8 S. The sum of the currents from
current sources into this node is 36 + 48 = 84 A. So, the
node 1 KCL equation is 13V; - 8V, = 84.

No KCL equation is needed for node 2 because a
grounded voltage source is connected to it, making V, =

-5 V. Anyway, a KCL equation cannot be written for this

node without introducing a variable for the current

through the 5-V source because this current is unknown.
The substitution of V, = - 5 V into the node 1

equation results in

44
13V, — 8(—35) = 84 and Vlzﬁ:3.38v



4.21 Find the node voltages in the circuit shown in Fig. 4-
24.

Fig. 4-24

The self-conductance of node 1is6 + 4 = 10S. The
conductance mutual with node 2 is 6 S, and the sum of
the currents into node 1 from current sources is 57 - 15
= 42 A. So, the node 1 KCL equation is 10V; - 6V, = 42.

Similarly, for node 2 the self-conductance is 6 + 8 =
14 S, the mutual conductance is 6 S, and the sum of the
input currents from current sources is 39 + 15 = 54 A.
These give a node 2 KCL equation of -6V; + 14V, = 54.

Placing the two nodal equations together shows the
symmetry of the coefficients (- 6 here) about the
principal diagonal as a result of the same mutual
conductance coefficient in both equations:

10V, — 6V, =42
—6V, + 14V, = 54

Three times the first equation added to five times the
second eliminates V;. The result is



396
— 18V, + 70V, = 126 + 270 from which V, = = = 762V

This substituted into the first equation gives

7.7
10V, — 6{7.62) = 42 and V= El—ﬂ =877V
4.22 Use nodal analysis in finding I in the circuit of Fig. 4-
25.
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Fig. 4-25

The controlling quantity / in terms of node voltages
is | = V,/6. Consequently, the dependent current source

provides a current of 0.5/ = 0.5(V,/6) = V,/12, and the

dependent voltage source provides a voltage of 12/ =

Because of the presence of the dependent sources,
it may be best to apply KCL at nodes 1 and 2 on a
branch-to-branch basis instead of attempting to use a
shortcut method. Doing this gives



- oW o h-h ] =V W V-2 _
= — — o an T —
2 12 6 6 6 18

These simplify to

WV, ~3V, = =72 and —3V, + 5V, = 108

Adding these equations eliminates V; and results in 2V,
= 36 or V, = 18 V. Finally,

J=2=—=3A

V, 18
6 6

4.23 Find the node voltages in the circuit shown in Fig. 4-
26.

Fig. 4-26

One analysis approach is to transform the voltage
source and series resistor to a current source and
parallel resistor, as shown in the circuit of Fig. 4-27.
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Fig. 4-27

The self-conductance ofnode lis4 + 5 =95, and
thatof node 2is5 + 6 = 11 S. The mutual conductance
is 5 S. The sum of the currents into node 1 from current
sources is 75 - 65 = 10 A, and that into node 2 is 65 -
13 = 52 A. Thus, the corresponding nodal equations are

9V, — 5V, =10
—5V, + 11V, = 52

Except for V's instead of I's, these are the same
equations as for Prob. 4.12. Consequently, the answers
are the same: V; = 5V and V, = 7 V. Circuits having
such similar equations are called duals.

From the original circuit shown in Fig. 4-26, the 13-V
source makes V3 13 V more negative than V,: V3 =V, -
13=7-13 =-6V.

Another approach is to apply the so-called
supernode method, which is applicable for the nodal
analyses of circuits that contain floating voltage
sources. (A voltage source is floating if neither terminal
is connected to ground.) For this method, each floating
voltage source is enclosed in a separate loop, or closed
surface, as shown in Fig. 4-26 for the 13-V source. Then
KCL is applied to each closed surface as well as to the



nongrounded nodes to which no other voltage sources
are connected.

For the circuit of Fig. 4-26, KCL can be applied to
node 1 in the usual fashion. The result is 9V; - 5V3 = 75.

For a supernode, it is best not to use any shortcuts but
instead to consider each branch current. For the
supernode shown this gives 6V, + 5(V3 - V;) = -13.
Another independent equation is needed. It can be
obtained from the voltage drop across the floating
voltage source: V, - V3 = 13. So, the two KCL equations

are augmented with a single KVL equation. In matrix
form these equations are

9 0 -5||w 75
56 S|v,|=|-13
01 —1|n 13

The solutions are, of course, the same: V; =5V, V, =7
V,and V3 =-6 V.

In general, for the supernode approach, the KCL
equations must be augmented with KVL equations, the
number of which is equal to the number of floating
voltage sources.

4.24 Use nodal analysis to obtain the node voltages V;
and V, in the circuit of Fig. 4-28.
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Fig. 4-28

The controlling current I, expressed in terms of node
voltages is I, = (V7 - 6V,)/40. So, the dependent current
source provides a current of 1.5/, = 1.5(V; - 6V>)/40.
Applying KCL to nodes 1 and 2 produces

bedl, Nt Hole g ond Sl ot e T g
10 5 40 5 40 5
These simplify to
13V, — 14V, = 80 and —9.5V, 4+ 25V, =0

which have solutions of V; = 10.4 Vand V, = 3.96 V, as
can easily be obtained.

The circuit of Fig. 4-28 is the same as that of Fig. 4-
20 of Prob. 4.16 in which mesh analysis was used.
Observe that nodal analysis is easier to apply than mesh
analysis since there is one less equation and the
eguations are easier to obtain. Often, but not always,
one analysis method is best. The ability to select the
best analysis method comes mostly from experience.



The first step should always be to check the number of
required equations for the various analysis methods:
mesh, loop, and nodal.

4.25 Obtain the nodal equations for the circuit shown in
Fig. 4-29.
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Fig. 4-29

The self-conductances are 3+ 4 =7 S fornode 1, 4
+ 54+ 6 =13 S for node 3. The mutual conductances
are 4S for nodes 1 and 2, = 15S for node 2, and 6 + 7 =
6S for nodes 2 and 3, and 0 S for nodes 1 and 3. The
currents flowing into the nodes from current sources are
42 + 25 =67 Afornode 1, -25-57-70 = -152 A for
node 2, and 70 + 4 = 74 A for node 3. So, the nodal
equations are

W, — 4V, — OV, = 67
OV, — 6V, + 13V, = 74

Notice the symmetry of coefficients about the principal
diagonal. This symmetry always occurs for circuits that
do not have dependent sources.

Since this set of equations is the same as that for
Prob. 4.13, except for having V’s instead of I's, the



answers are the same: V; =5V, V,=-8V,and V3 =2
V.

4.26 Obtain the nodal equations for the circuit shown in
Fig. 4-30.

150 A 191 A

Fig. 4-30

The self-conductances are 3 + 4 + 5 =12 S for node
1,5+46+7=18Sfornode 2,and 6+ 4 + 8 =185 for
node 3. The mutual conductances are 5 S for nodes 1
and 2, 6 S for nodes 2 and 3, and 4 S for nodes 1 and 3.
The currents into the nodes from current sources are
150-100-74 =-24 Afornode 1,74 + 15 + 23 =112
A for node 2, and 100 - 191 - 15 = -106 A for node 3.
So, the nodal equations are

_5V, +18V,— 6V, = 112
—4V, — 6V, + 18V, = —106

As a check, notice the symmetry of the coefficients
about the principal diagonal.



Since these equations are basically the same as
those in Prob. 4.14, the answers are the same: V; = -2

V,V,=4V,and V3 =-5V.

4.27 Figure 4-31 shows a transistor with a bias circuit. If /.
= 5OIB and |f VBE = 07 V, ﬁnd VCE'

Fig. 4-31

Perhaps the best way to find V¢ is to first find /5 and
I., and from them the voltage drops across the 1.5-kQ
and 250-Q resistors. Then, use KVL on the right-hand
mesh and obtain V- from 9 V minus these two drops.

Ig can be found from the two left-hand meshes. The
current through the 250-Q resistoris /. + Iz = 50/ + Ip
= 51I/g, giving a voltage drop of (51/5)(250). This drop
added to Vg is the drop across the 700-Q resistor. Thus,
the current through this resistor is [0.7 + (51/p)

(250)1/700. From KCL applied at the left-hand node, this
current plus /g is the total current flowing through the 3-
kQ resistor. The voltage drop across this resistor added
to the drop across the 700-Q resistor equals 9 V, as is
evident from the outside loop:



0.7 + (5115)(250)
st [(3000) + 07 + (511,)250) = 9

From this, Ig = 75.3 pA. So, I. = 50/ = 3.76 mA and

Supplementary Problems

4.28 Evaluate the following determinants:

4 3 8 —30
ol wle

—2 —6 42 56

Ans. (a) -18, (b) 1708
4.29 Evaluate the following determinants:

16 0 =25 ~27 33 —45
@ | =32 15 —19 () |—52 64 -73
13 21 —18 18 —92 46

Ans, (a) 23 739, (b) -26 022
4.30 Use Cramer’s rule to solve for the unknowns in

26V, - 18V, = —124 161, — 120 = 560

(a) )
— 18V, + 30V, = 156 —121, + 211, = —708

Ans. (@) V= -2V, Vo, =4V; (b) I, =17 A, I, = -24 A

4.31 Without using Cramer’s rule or the matrix-calculator
approach, solve for the unknowns in



41, - 28I, = =704 62V, — 42V, =694

@) — 281, + 371, = 659 ( —42V, + 77V, = 161

Ans. (@)l =-9A, I, =11A; (b)V; =20V, V, =13V

4.32 Use Cramer’s rule to solve for the unknowns in

26V, — 11V, — 9V, = —166
~11V, + 45V, — 23V, = 1963
—9V, — 23V, + 56V, = — 2568

Ans. V;-11V,V, =21V, V3=-39V

4.33 What is the current-source equivalent of a 12-V
battery with a 0.5-Q internal resistance?
Ans. 1 =24 A,R=05Q

4.34 What is the voltage-source equivalent of a 3-A
current source in parallel with a 2-kQ resistor?

Ans. V = 6kV, R = 2 kQ

4.35 Use repeated source transformations in obtaining I in
the circuit of Fig. 4-32.

i 40 I
— AW — A
+
=18V 4A géﬁ' Jg}::ﬂ
+
Fig. 4-32

Ans. 2 A



4.36 Find the mesh currents in the circuit shown in Fig. 4-
33.

>

M PO
T

Fig. 4-33

Ans. Iy =3A, 1, =-8A,I3=7A

4.37 Solve for the mesh currents in the circuit shown in
Fig. 4-34.

0V=

t2
.:‘"

Fig. 4-34

Ans.l{; =5 mA, [, = -2 mA

4.38 Repeat Prob. 4.37 with the 24-V source changed to -
1V.

Ans.l{ =7 mA, I, =1 mA



4.39 Two 12-V batteries in parallel provide current to a
light bulb that has a hot resistance of 0.5 Q. If the
battery internal resistances are 0.1 and 0.2 Q, find the
power consumed by the light bulb.

Ans. 224 W
4.40 Determine /, in the circuit of Fig. 4-35.

Fig. 4-35

Ans. -4.86 mA
4.41 Calculate the mesh currents in the circuit of Fig. 4-36.

2kQ Ik
ANN * AN\
NV = C) §4kﬂ \f) TmA 1 ‘_;l‘_'w
—IV +

Fig. 4-36

Ans.l{ =2mA, I, =-3mA, I3 =4 mA

4.42 Find the mesh currents in the circuit shown in Fig. 4-
37.
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Fig. 4-37

Ans. l{ = -2mA, I, = 6mA, I3 =4 mA

4.43 Double the voltages of the voltage sources in the
circuit shown in Fig. 4-37 and redetermine the mesh
currents. Compare them with the original mesh
currents.

Ans.l; = -4 mA, I, = 12mA, I3 = 8 mA, double

4.44 Double the resistances of the resistors in the circuit
shown in Fig. 4-37 and redetermine the mesh currents.
Compare them with the original mesh currents.

Ans. |l = -1mA, I, = 3 mA, I3 = 2 mA, half

4.45 Repeat Prob. 4.42 with the three voltage-source
changes of 176 to 108 V, 112 to 110 V, and 48 to 66 V.

Ans. Iy =3 mA, I, =4 mA,I3=5mA

4.46 For a certain three-mesh circuit, the self-resistances
are 20, 25, and 32 Q for meshes 1, 2, and 3,
respectively. The mutual resistances are 10 Q for
meshes 1 and 2, 12 Q for meshes 2 and 3, and 6 Q for
meshes 1 and 3. The aiding voltages from voltage
sources are -74, 227, and -234 V for meshes 1, 2, and
3, respectively. Find the mesh currents.



Ans. 1y = -3A, I, = 5A, I3 = -6A

4.47 Repeat Prob. 4.46 for the same self-resistances and
mutual resistances, but for aiding source voltages of
146, -273, and 182 V for meshes 1, 2, and 3,
respectively.

Ans.l; = 5A, 1, = -T7A, I3 = 4A
4.48 Obtain the mesh currents in the circuit of Fig. 4-38.

4k 60 v
AN —ls
¥,
2k0 WV k2 Vv
R A il +—AN—|I———4
]
g 6 kG kil i?’ kG
Ly I.
= S0V L] ¥ () =380V
Fig. 4-38

Ans.l{; =-0.879 mA, I, = -6.34 mA, I3 =-10.1ImA

4.49 Determine the mesh currents in the circuit of Fig. 4-
39.



20V 6 k2
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Fig. 4-39

Ans. |l =-3.26 mA, I, = -1.99 mA, I3 =1.82 mA

4.50 Use loop analysis to find the current flowing down
through the 6-Q resistor in the circuit shown in Fig. 4-33.

Ans. 11 A

4.51 Use loop analysis to find the current flowing to the
right through the 8-kQ resistor in the circuit shown in
Fig. 4-37.

Ans. 2 mA

4.52 Use loop analysis to find the current / in the circuit
shown in Fig. 4-40.



Ans. 0.375 A

4.53 Obtain the node voltages in the circuit shown in Fig.
4-41.

V) 6S V, 88 Vi

ANNN—9

- B 28 40 A TV =
Fig. 4-41

Ans.V,=-8V,V,=3V,V3=7V

4.54 Find the node voltages in the circuit shown in Fig. 4-
42.



IR A

45
20 A 28 758 24 A
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Fig. 4-42

Ans. V=5V, V,=-2V

4.55 Double the currents from the current sources in the
circuit shown in Fig. 4-42 and redetermine the node
voltages. Compare them with the original node
voltages.

Ans. V; = 10V, V, = -4V, double

4.56 Double the conductances of the resistors in the
circuit shown in Fig. 4-42 and redetermine the node
voltages. Compare them with the original node
voltages.

Ans.V; =25V, V,=-1V, half

4.57 Repeat Prob. 4.54 with the 24-A source changed to -
1A

Ans.V;=7V,V,=1V
4.58 Find V,, for the circuit shown in Fig. 4-43.



03V= 0.004V, 251 40 k0 0kaS v,

Fig. 4-43

Ans. -50V
4.59 Find V in the circuit shown in Fig. 4-44.

in r 100

+

il sV

Fig. 4-44

Ans. 180V
4.60 Calculate the node voltages in the circuit of Fig. 4-45.

20 k02

12 mA

b
10 k2 081
é % 30 kQ




Ans. V{ = -63.5V, V, = 105.9 V

4.61 Find the voltages V;, V5, and V3 in the circuit shown

in Fig. 4-46.
65 iV Vs 105 v
AN il : il
e
3T A 45 125 24 A
-4 Y
1
=
Fig. 4-46

Ans.V, =5V, V, =-2V, V3 =3V

4.62 Find the node voltages in the circuit shown in Fig. 4-
47.

45
176 A

W o . &8 v
L AAA—]
65
JMAC‘ID 25

112 A %ms r 48 A

+—AMAN

Fig. 4-47
Ans.V;=-2V,V, =6V, V3=4V

4.63 Repeat Prob. 4.62 with the three current-source

changes of 176 to 108 A, 112 to 110 A, and 48 to 66 A.
Ans. V=3V, V, =4V, V3=5V



4.64 For a certain four-node circuit, including a ground
node, the self-conductances are 40, 50, and 64 S for
nodes 1, 2, and 3, respectively. The mutual
conductances are 20 S for nodes 1 and 2, 24 S for
nodes 2 and 3, and 12 S for nodes 1 and 3. Currents
flowing in current sources connected to these nodes are
74 A away from node 1, 227 A into node 2, and 234 A
away from node 3. Find the node voltages.

Ans.V{=-15V,V, =25V, V3=-3V

4.65 Repeat Prob. 4.64 for the same self-conductances
and mutual conductances, but for source currents of
292 A into node 1, 546 A away from node 2, and 364 A
into node 3.

Ans.V;=5V,V,=-7V,V3=4V

4.66 In the circuit shown in Fig. 4-48, find Vg if I. = 30/g
and VBE = 07 V.

4 ki)

I k)

Fig. 4-48

Ans. 3.68 V

4.67 Repeat Prob. 4.66 with the dc voltage source
changed to 9 V and the collector resistor changed from



2 kQ to 2.5 kQ.
Ans. 2.89V



Chapter 5
DC Equivalent Circuits, Network
Theorems, and Bridge Circuits

INTRODUCTION

Network theorems are often important aids for network
analyses. Some theorems apply only to linear, bilateral circuits, or
portions of them. A linear electric circuit is constructed of linear
electric elements as well as of independent sources. A linear
electric element has an excitation-response relation such that
doubling the excitation doubles the response, tripling the
excitation triples the response, and so on. A bilateral circuit is
constructed of bilateral elements as well as of independent
sources. A bilateral element operates the same upon reversal of
the excitation, except that the response also reverses. Resistors
are both linear and bilateral if they have voltage-current relations
that obey Ohm’s law. On the other hand, a diode, which is a
common electronic component, is neither linear nor bilateral.

Some theorems require deactivation of independent sources.
The term deactivation refers to replacing all independent sources
by their internal resistances. In other words, all ideal voltage
sources are replaced by short circuits, and all ideal current sources
by open circuits. Internal resistances are not affected, nor are
dependent sources. Dependent sources are never deactivated in
the application of any theorem.

THEVENIN’S AND NORTON’S THEOREMS

Thévenin’s and Norton’s theorems are probably the most
important network theorems. For the application of either of them,
a network is divided into two parts, A and B, as shown in Fig. 5-la,



with two joining wires. One part must be linear and bilateral, but
the other part can be anything.

Thévenin’s theorem specifies that the linear, bilateral part, say
part A, can be replaced by a Thévenin equivalent circuit consisting
of a voltage source and a resistor in series, as shown in Fig. 5-1b,
without any changes in voltages or currents in part B. The voltage
V1, of the voltage source is called the Thévenin voltage, and the

resistance Ry, of the resistor is called the Thévenin resistance.

As should be apparent from Fig. 5-Ib, V¢, is the voltage across
terminals a and b if part B is replaced by an open circuit. So, if the
wires are cut at terminals a and b in either circuit shown in Fig. 5-1,
and if a voltmeter is connected to measure the voltage across
these terminals, the voltmeter reading is V. This voltage is
almost always different from the voltage across terminals a and b
with part B connected. The Thévenin or open-circuit voltage V,, is

sometimes designated by V.

a R a
A b V“J: 8

.

Ll

(a) [1:3]

Fig. 5-1

With the joining wires cut, as shown in Fig. 5-2a, Ry, is the

resistance of part A with all independent sources deactivated. In
other words, if all independent sources in part A are replaced by
their internal resistances, an ohmmeter connected to terminals a
and b reads Thévenin’s resistance.

4 A

Independent sources Independent sources
deactivated S deactivated

() (b)



Fig. 5-2

If in Fig. 5-2a the resistors in part A are in a parallel-series
configuration, then Ry, can be obtained readily by combining

resistances. If, however, part A contains dependent sources
(remember, they are not deactivated), then, of course, resistance
combination is not applicable. But in this case the approach shown
in Fig. 5-2b can be used. An independent source is applied, either
voltage or current and of any value, and Ry, obtained from the

resistance “seen” by this source. Mathematically,

£
Ry = 1.

So, if a source of voltage V. is applied, then [ is calculated for this
ratio. And if a source of current I is applied, then V is calculated.

The preferred source, if any, depends on the configuration of part
A.

Thévenin’s theorem guarantees only that the voltages and
currents in part B do not change when part A is replaced by its
Thévenin equivalent circuit. The voltages and currents in the
Thévenin circuit itself are almost always different from those in the
original part A, except at terminals a and b where they are the
same, of course.

Although Ry, is often determined by finding the resistance at
terminals a and b with the connecting wires cut and the
independent sources deactivated, it can also be found from the
current /. that flows in a short circuit placed across terminals a
and b, as shown in Fig. 5-3a. As is apparent from Fig. 5-3b, this
short-circuit current from terminal a to b is related to the Thévenin
voltage and resistance. Specifically,



b b
(a) (b)
Fig. 5-3
|2
Ry, = -
sC

So, Rty is equal to the ratio of the open-circuit voltage at terminals
a and b and the short-circuit current between them. With this
approach to determining Ry, no sources are deactivated.

From V1, = IRy, it is evident that the Thévenin equivalent can
be obtained by determining any two of the quantities V¢, /., and
Rt Common sense dictates that the two used should be the two
that are the easiest to determine.

The Norton equivalent circuit can be derived by applying a
source transformation to the Thévenin equivalent circuit, as
illustrated in Fig. 5-4a. The Norton equivalent circuit is sometimes
illustrated as in Fig. 5-4b, in which Iy = Vy/R1, and Ry = Ry,
Notice that, if a short circuit is placed across terminals a and b in
the circuit shown in Fig. 5-4b, the short-circuit current /. from
terminalato b is

R
r.ﬁ,h.—ga " —0 a 1 -0 a
Vi = — :—:T:' %Rm Iy (D Ru

b 1 —0Oh + —a b
{a) (h)




equal to the Norton current /. Often in circuit diagrams, the
notation Ig¢ is used for the source current instead of /. Also, often
R+, is used for the resistance instead of Ry,.

In electronic circuit literature, an electronic circuit with a load is
often described as having an output resistance R, If the load is

disconnected and if the source at the input of the electronic circuit
is replaced by its internal resistance, then the output resistance
Rt Of the electronic circuit is the resistance “looking in” at the

load terminals. Clearly, it is the same as the Thévenin resistance.
An electronic circuit also has an input resistance R;,, which is the

resistance that appears at the input of the circuit. In other words, it
is the resistance “seen” by the source. Since an electronic circuit
typically contains the equivalent of dependent sources, the input
resistance is determined in the same way that a Thévenin
resistance is often obtained—by applying a source and
determining the ratio of the source voltage to the source current.

MAXIMUM POWER TRANSFER THEOREM

The maximum power transfer theorem specifies that a resistive
load receives maximum power from a linear, bilateral dc circuit if
the load resistance equals the Thévenin resistance of the circuit as
“seen” by the load. The proof is based on calculus. Selecting the
load resistance to be equal to the circuit Thévenin resistance is
called matching the resistances. With matching, the load voltage is
Ktn/2, and so the power consumed by the load is (V11,/2)? / Ry =

V27h/4R1,

SUPERPOSITION THEOREM

The superposition theorem specifies that, in a linear circuit
containing several independent sources, the current or voltage of a
circuit element equals the algebraic sum of the component
voltages or currents produced by the independent sources acting
alone. Put another way, the voltage or current contribution from
each independent source can be found separately, and then all the
contributions algebraically added to obtain the actual voltage or
current with all independent sources in the circuit.



This theorem applies only to independent sources—not to
dependent ones. Also, it applies only to finding voltages and
currents. In particular, it cannot be used to find power in dc
circuits. Additionally, the theorem applies to each independent
source acting alone, which means that the other independent
sources must be deactivated. In practice, though, it is not essential
that the independent sources be considered one at a time; any
number can be considered simultaneously.

Because applying the superposition theorem requires several
analyses, more work may be done than with a single mesh, loop,
or nodal analysis with all sources present. So, using the
superposition theorem in a dc analysis is seldom advantageous. It
can be useful, though, in the analyses of some of the operational-
amplifier circuits of the next chapter.

MILLMAN’s THEOREM

Millman’s theorem is a method for reducing a circuit by
combining parallel voltage sources into a single voltage source. It
is just a special case of the application of Thévenin's theorem.

Figure 5-5 illustrates the theorem for only three parallel voltage
sources, but the theorem applies to any number of such sources.
The derivation of Millman’s theorem is simple. If the voltage
sources shown in Fig. 5-5a are transformed to current sources (Fig.
5-5b) and the currents added, and if the conductances are added,
the result is a single current source of G;V; + G, V, + G3V3 in
parallel with a resistor having a conductance of G; + G, + G5 (Fig.
5-5¢). Then, the transformation of this current source to a voltage
source gives the final result indicated in Fig. 5-5d. In general, for N
parallel voltage sources the Millman voltage source has a voltage
of
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Fig. 5-5
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and the Millman series resistor has a resistance of

I
S G4 Gy 4+ Gy

Ry

Note from the voltage source formula that, if all the sources have
the same voltage, this voltage is also the Millman source voltage.

Y-A AND A-Y TRANSFORMATIONS

Figure 5-6a shows a Y (wye) resistor circuit and Fig. 5-6b a A
(delta) resistor circuit. There are other names. If the Y circuit is
drawn in the shape of a T, it is also called a T (tee) circuit. And if
the A circuit is drawn in the shape of a m, it is also called a 1t (pi)
circuit.



AC

(a)

Fig. 5-6

It is possible to transform a Y to an equivalent A and also a A to
an equivalent Y. The corresponding circuits are equivalent only for
voltages and currents external to the Y and A circuits. Internally,
the voltages and currents are different.

Transformation formulas can be found from equating resistances
between two lines to a A and a Y when the third line to each is
open. This equating is done three times, with a different line open
each time. Some algebraic manipulation of the results produces
the following A-to-Y transformation formulas:

B R,R, _ RyR, B R,R,
"R, + R, +R, R, +R,+R, “" R, + R, + R,

A

Also produced are the following Y-to-A transformation formulas:

R, = RaRp+ R4Rc + RyRc R, — RaRs + RyRe + RyRc R. - RaRs+ RyRc + RyRc
i Ry ’ R : R,

Notice in the A-to-Y transformation formulas that the
denominators are the same: Ry + R, + R3, the sum of the A

resistances. In the Y-to-A transformation formulas, the numerators
are the same: R4,Rg + R4,R- + RgR the sum of the different

products of the Y resistances taken two at a time.

Drawing the Y inside the A, as in Fig. 5-7, is a good aid for
remembering the numerators of the A-to-Y transformation



formulas and the denominators of the Y-to-A transformation
formulas. For each Y resistor in the A-to-Y transformation formulas,
the two resistances in each numerator product are those of the
two A resistors adjacent to the Y resistor being found. In the Y-to-A
transformation formulas, the single Y resistance in each
denominator is that of the Y resistor opposite the A resistor being
found.

If it happens that each Y resistor has the same value Ry, then
each resistance of the corresponding A is 3Ry, as the formulas
give. And if each A resistance is R, then each resistance of the
corresponding Y is Ry/3. So, in this special but fairly common case,
R, = 3Ry and, of course, Ry = R)/3.

C

R,.q. Rz RH
AAAY

Fig. 5-7

BRIDGE CIRCUITS

As illustrated in Fig. 5-8a, a bridge resistor circuit has two joined
A’s or, depending on the point of view, two joined Y's with a shared
branch. Although the circuit usually appears in this form, the forms
shown in Fig. 5-8b and ¢ are also common. The circuit illustrated in
Fig. 5-8c is often called a lattice. If a A part of a bridge is
transformed to a Y, or a Y part transformed to a A, the circuit



becomes series-parallel. Then the resistances can be easily
combined, and the circuit reduced.

(b) {c)

Fig. 5-8

A bridge circuit can be used for precision resistance
measurements. A Wheatstone bridge has a center branch that is a
sensitive current indicator such as a galvanometer, as shown in
Fig. 5-9. Three of the other branches are precision resistors, one of
which is variable as indicated. The fourth branch is the resistor
with the unknown resistance R, that is to be measured.

Fig. 5-9

For a resistance measurement, the resistance R, of the variable

resistor is adjusted until the galvanometer needle does not deflect
when the switch in the center branch is closed. This lack of
deflection is the result of zero voltage across the galvanometer,
and this means that, even with the switch open, the voltage across



R; equals that across R,, and the voltage across R3 equals that
across R,. In this condition the bridge is said to be balanced. By
voltage division,

R,V R,V q RyV R,V
—_— i ——— an —— T ———
R,+R; R, + Ry R, +R; R,+ Ry

Taking the ratio of the two equations produces the bridge balance
equation:

Presumably, R; and R3 are known standard resistances and a dial
connected to R, gives this resistance so that R, can be solved for.
Of course, a commercial Wheatstone bridge has dials that directly
indicate R, upon balance.

A good way to remember the bridge balance equation is to
equate products of the resistances of opposite branch arms: R; R,
= R,R3. Another way is to equate the ratio of the top and bottom
resistances of one side to that of the other: R;/R3 = R5/R,.

Solved Problems

5.1 A car battery has an open-circuit terminal voltage of 12.6 V.
The terminal voltage drops to 10.8 V when the battery
supplies 240 A to a starter motor. What is the Thévenin
equivalent circuit for this battery?

The Thévenin voltage is the 12.6-V open-circuit voltage
(V1 = 12.6 V). The voltage drop when the battery supplies
240 A is the same drop that would occur across the Thévenin

resistor in the Thévenin equivalent circuit because this resistor
is in series with the Thévenin voltage source. From this drop,
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5.2 Find the Thévenin equivalent circuit for a dc power supply
that has a 30-V terminal voltage when delivering 400 mA and
a 27-V terminal voltage when delivering 600 mA.

For the Thévenin equivalent circuit, the terminal voltage is
the Thévenin voltage minus the drop across the Thévenin
resistor. Consequently, from the two specified conditions of

operation,

V,, — (400 x 10™ 3R, = 30
VTh — (600 x 10’3]!{1'[1 = 27

Subtracting,
— (400 x 107 3Ry, + (600 x 10" )Ry, = 30 — 27

from which

Reyp= ————=150

200 x 1074

This value of Ry, substituted into the first equation gives

Vi, — (400 x 107315} = 30 or Vip =36V

5.3 Find the Thévenin equivalent circuit for a battery box
containing four batteries with their positive terminals
connected together and their negative terminals connected
together. The open-circuit voltages and internal resistances of
the batteries are 12.2Vand 0.5Q, 12.1Vand 0.1 Q, 124V
and 0.16 Q, and 12.4 V and 0.2 Q.

The first step is to transform each voltage source to a
current source. The result is four ideal current sources and
four resistors, all in parallel. The next step is to add the
currents from the current sources and also to add the



conductances of the resistors, the effect of which is to
combine the current sources into a single current source and
the resistors into a single resistor. The final step is to
transform this source and resistor to a voltage source in series
with a resistor to obtain the Thévenin equivalent circuit.

The currents of the equivalent sources are

12.2 12.1 124 124

—— =244 A — =121 A =TT5A — =0/ A
0.5 0.1 .16 0.2
which add to

244 + 121 + 77.5 + 62 = 2849 A

The conductances add to

L T L

+ -+
0.5 01 016 02

From this current and conductance, the Thévenin voltage and
resistance are

Th

284.9 I
:r' = . =123V and Ry, =——=00430Q
G 2325 23.25

5.4 Find the Norton equivalent circuit for the power supply of
Prob. 5.2 if the terminal voltage is 28 V instead of 27 V when

the power supply delivers 600 mA.
For the Norton equivalent circuit, the load current is the

Norton current minus the loss of current through the Norton
resistor. Consequently, from the two specified conditions of

operation,



30 ,‘
Iy — — =400 x 107
bl

4

hE‘ o
Iy — = =600 x 1073

Ry
Subtracting,
30 28
— T+ 222400 x 107 — 600 x 103
™ RN
or
2 :
—— = =200 x 10"* °  from which Ry=———=100Q
Ry, 200 x 10~ 3

Substituting this into the first equation gives

30
IN—TG=4GIG>< 10 * and so Iy=34A

5.5 What resistor draws a current of 5 A when connected across
terminals a and b of the circuit shown in Fig. 5-107

50 60
ATAYAY + AN Oa
00V = 200
i ob
Fig. 5-10

A good approach is to use Thévenin’s theorem to simplify
the circuit to the Thévenin equivalent of a V44, voltage source

in series with an Ry, resistor. Then the load resistor R is in
series with these, and Ohm'’s law can be used to find R:



V; V,
TR from which ; TSR . (5
Ry, + R 5

The open-circuit voltage at terminals a and b is the
voltage across the 20-Q resistor since there is 0 V across the
6-Q resistor because no current flows through it. By voltage
division this voltage is

-

Fa

20 +5

x 100 =80V

Fin =

R+, is the resistance at terminals a and b with the 100-V
source replaced by a short circuit. This short circuit places the
5-and 20-Q resistors in parallel for a net resistance 5||20 = 4Q.
So. Ry, = 6 + 4 =10Q.

With V1, and Ry, known, the load resistance R for a 5-A
current can be found from the previously derived equation:

" .
5 5
5.6 In the circuit shown in Fig. 5-11, find the base current Iy if /.
= 30/g. The base current is provided by a bias circuit

consisting of 54- and 9.9-kQ resistors and a 9-V source. There
is a 0.7-V drop from base to emitter.




Fig. 5-11

One way to find the base current is to break the circuit at
the base lead and determine the Thévenin equivalent of the
bias circuit. For this approach it helps to consider the 9-V
source to be two 9-V sources, one of which is connected to the
1.6-kQ collector resistor and the other of which is connected
to the 54-kQ bias resistor. Then the bias circuit appears as
illustrated in Fig. 5-12a. From it, the voltage V4, is, by voltage
division,

9.9
9.9 + 54

Replacing the 9-V source by a short circuit places the 54- and
9.9-kQ resistors in parallel for an Ry, of

99 x 54
9.9 + 54

and the circuit simplifies to that shown in Fig. 5-12b.

i

9V

LIV

!

(a) (b)

Fig. 5-12

From KVL applied to the base loop, and from the fact that
Ic + Ig = 31lg flows through the 540-Q emitter resistor,

1.394 = 8371, + 0.7 + 0.54 x 311,



from which

0.694
[B = -7_5-]_ =0.0277 mA = 27.7 IHA

e w

Of course, the simplifying kilohm-milliampere method was
used in some of the calculations.

5.7 Find the Thévenin equivalent circuit at terminals a and b of
the circuit with transistor model shown in Fig. 5-13.

L kQ B c
—AN\N\N——O0— r—O0—0a
V= fe) <> 30Is 500 O
E
I O - Ob
Fig. 5-13

The open-cirCuit voltage is 500 x 30/ = 15 000/, positive
at terminal b. From the base circuit, Iz = 10/1000 A = 10 mA.
Substituting in for Iz gives

Vi = 15000010 x 1073) = 150 V

The best way to find Ry, is to deactivate the independent

10-V source and determine the resistance at terminals a and
b. With this source deactivated, Iz = 0 A, and so 30/ = 0 A,

which means that the dependent current source acts as an
open circuit—it produces zero current regardless of the
voltage across it. The result is that the resistance at terminals
a and b is just the shown 500 Q.

The Thévenin equivalent circuit is a 500-Q resistor in

series with a 150-V source that has its positive terminal
toward terminal b, as shown-in Fig. 5-14.



500 ©2

—\\N\—0a
150 V=
Ob
Fig. 5-14

5.8 What is the Norton equivalent circuit for the transistor circuit
shown in Fig. 5-157

2kl B Is C
e B o v O—0a
+
=1V 0.0004 V- 2515 40 k0 Ve
T ) _
O—4& . O b
Fig. 5-15

A good approach is to first find /., which is the Norton
current Iy; next find V,., which is the Thévenin voltage Vq;
and then take their ratio to obtain the Norton resistance Ry,
which is the same as Ry,

Placing a short circuit across terminals a and b makes V. =
0 V, which in turn causes the dependent voltage source in the
base circuit to be a short circuit. As a result, Ig = 1/2000 A =
0.5 mA. This short circuit also places 0 V across the 40-kQ
resistor, preventing any current flow through it. So, all the 25/

= 25 X 0.5 = 12.5 mA current from the dependent current
source flows through the short circuit in a direction from
terminal b to terminal a: I, = Iy = 12.5 mA.



The open-circuit voltage is more difficult to find. From the
collector circuit, V. = (-25/5)(40 000) = — 10°/5. This
substituted into the KVL equation for the base circuit produces
an equation in which /g is the only unknown:

I = 20001 + 0.0004V, = 20001, + 0.0004(— 10°1 ;) = 16001,

So, Ig = 1/1600 A = 0.625 mA, and V. = -10%; = - 10%(0.625 x
10-3) = -625 V. The result is that V,. = 625 V, positive at
terminal b.

In the calculation of Ry, signs are important when, as
here, a circuit has dependent sources that can cause Ry to be
negative. From Fig. 5-3b, Ry, = Ry is the ratio of the open-

circuit voltage referenced positive at terminal a and the short-
circuit current referenced from terminal a to terminal b.
Alternatively, both references can be reversed, which is
convenient here. So,

Vo 625
Ry= X = — = 50 kQ
Iy 125x 1073

The Norton equivalent circuit is a 50-kQ resistor in parallel
with a 12.5-mA current source that is directed toward terminal

b, as shown in Fig. 5-16.

12.5 mA 50 k{1

Fig. 5-16



5.9 Directly find the output resistance of the circuit shown in Fig.
5-15.
Figure 5-17 shows the circuit with the 1-V independent

source deactivated and a 1-A current source applied at the
output a and b terminals. From Ohm'’s law applied to the base

circuit,

0.0004V,. o
= - — = -2 x 1077V,

I, = - = -2

2000

2kt B s C a

0.0004V, 251, 40 ki) Ve (T) 1A

Om
E=alls ]

Fig. 5-17

Nodal analysis applied to the top node of the collector circuit
gives

- L.I-
S+ 250, =1 or o+ 25(=2x 1077V =1
40000 40000

upon substitution for Ig. The solution is V. = 50 000 V, and so
Routr = Rtn = 50 kQ. This checks with the Ry = Ry, answer from
the Prob. 5.8 solution in which the Ry = Ry, = Vo lsc approach
was used.
5.10 Find the Thévenin equivalent of the circuit shown in Fig. 5-
18.
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5N 40 1}
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Fig. 5-18

The Thévenin or open-circuit voltage, positive at terminal
a, is the indicated V plus the 30 V of the 30-V source. The 8-Q
resistor has no effect on this voltage because there is zero
current flow through it as a result of the open circuit. With zero
current there is zero voltage. V can be found from a single

nodal equation:

Multiplying by 40 and simplifying produces

5V = 400 — 800 from which V= -80V

So, V¢, = - 80 + 30 = — 50 V. Notice that the 5-Q and 4-Q
resistors have no effect on Vy,
Figure 5-19a shows the circuit with the voltage sources

replaced by short circuits and the current source by an open
circuit. Notice that the 5-Q resistor has no effect on Ry,

because it is shorted, and neither does the 4-Q resistor
because it is in series with an open circuit. Since the resistor
arrangement in Fig. 5-19a is series-parallel, Ry, is easy to

calculate by combining resistances: Ry, = 8 + 40 || 10 = 16Q.



AN AIA—0a ——ANN~—0C 0
410
5101 00 sov =
S 3 1
'l o0 b
(a) (b)
Fig. 5-19

The fact that neither the 5-Q nor the 4-Q resistor has an
effect on V4, and Ry, leads to the generalization that resistors
in parallel with ideal voltage sources, and resistors in series
with ideal current sources, have no effect on voltages and
currents elsewhere in a circuit.

.11 Obtain the Thévenin equivalent of the circuit of Fig. 5-20a.

By inspection, V, = 0 V because the circuit does not
contain any independent sources. For a determination of Ry,

it is necessary to apply a source and calculate the ratio of the
source voltage to the source current. Any independent source
can be applied, but often a particular one is best. Here, if a 12-
V voltage source is applied positive at terminal a, as shown in
Fig. 5-20b, then | = 12/12 = 1 A, which is the most convenient
current. As a result, the dependent source provides a voltage
of 8/ = 8 V. So, by KCL,

Finally,



40 40 Ig

AN Oa A T
81 60 120 81 60 120 an
[ . [, ]
{a) (b) ’
Fig. 5-20

5.12 For the circuit of Fig. 5-21, obtain the Thévenin equivalent
to the left of the a-b terminals. Then use this equivalent in
determining /.

W\

a !
r » . ]
,<_._>; +
_f_
24 A V_,,g 10Q V =8I+ 16/
0.05V;
* O

b

Fig. 5-21

The Thévenin equivalent can be obtained by determining
any two of V44, Ry, and I,.. By inspection, it appears that the

two easiest to determine are V3, and Ky, .
If the circuit is opened at the a-b terminals, all 24 A of the

independent current source must flow through the 10-Q
resistor, making V, = 10(24) = 240 V. Consequently, the

dependent current source provides a current of 0.05 V,, =

0.05(240) = 12 A, all of which must flow through the 12-Q
resistor. As a result, by KVL,

Vin = Voo = ~12(12) + 240 =96 V



Because of the presence of the dependent source, Ry,

must be found by applying a source and determining the ratio
of the source voltage to the source current. The preferable
source to apply is a current source, as shown in Fig. 5-22a. If
this source is 1 A, then V, = 10(1)= 10 V, and consequently

the dependent current source provides a current of 0.05(10)
0.5 A. Since this is one-half the source current, the other half
must flow through the 12-Q resistor. And so, by KVL,

V, =0.5(12) + (10} = 16 V
Then,

et ity
"

i

Figure 5-22b shows the Thévenin equivalent connected to
the nonlinear load of the original circuit. The current | is much
easier to calculate with this circuit. By KVL,

161 + 8]% + 161 = 96 or P +41-12=0

',

;T[ i ;ﬁ 81 4 161

Fig. 5-22

Applying the quadratic formula gives

—4+ /16448 —4+8
S0, okl .2 N or —6A

2 <
S L



Only the 2-A current is physically possible because current
must flow out of the positive terminal of the Thévenin voltage

source, which means that /| must be positive. So, I = 2 A.

5.13 Figure 5-23a shows an emitter-follower circuit for obtaining
a low output resistance for resistance matching. Find R,

Because the circuit has a dependent source but no
independent sources, R, must be found by applying a source
at the output terminals, preferably a 1-A current source as
shown in Fig. 5-23b.

1 kil

Fig. 5-23

From KCL applied at the top node,

But from Ohm’s law applied to the I-kQ resistor, Iz = — V/1000.
With this substitution the equation becomes

v ( v ) V
50— =
1000 1000/ 250
from which V = 18.2 V. Then R, = V/1 = 18.2 Q, which is

much smaller than the resistance of either resistor in the

circuit.
5.14 Find the input resistance R,, of the circuit shown in Fig. 5-

24.



Rlﬂ
el 251 1.51 g S0 11

Fig. 5-24

Since this circuit has a dependent source but no
independent sources, the approach to finding the input
resistance is to apply a source at the input. Then the input
resistance is equal to the input voltage divided by the input
current. A good source to apply is a 1-A current, as shown in
Fig. 5-25.

il

+0Q

A

1A v 2501 1.51 50 0

Q|

Fig. 5-25

By nodal analysis,

¥ V
—— 153+ —==1
25 50

But from the right-hand branch, I = V/50. With this substitution
the equation becomes

% VoV
R W il
25 50 50

the solution to which is V = 33.3 V. So, the input resistance is



V333
in IT :—1— = 33.3ﬂ

5.15 Find the input resistance of the circuit shown in Fig. 5-24 if
the dependent current source has a current of 5/ instead of

1.51.

For a 1-A current source applied at the input terminals, the
nodal equation at the top node is

But, from the right-hand branch, I = V/50. With this
substitution the equation is

V S 4
— 5 4 — = 1
25 50 50

from which V = —25 V. Thus, the input resistance is R;, =

.25/1 = — 25 Q.

A negative resistance may be somewhat disturbing to the
mind when first encountered, but it is physically real even
though it takes a transistor circuit, an operational amplifier, or
the like to obtain it. Physically, a negative input resistance
means that the circuit supplies power to whatever source is
applied at the input, with the dependent source being the
source of power.

5.16 Figure 5-26a shows an emitter-follower circuit for obtaining
a large input resistance for resistance matching. The load is a
30-Q. resistor, as shown. Find the input resistance Ry,.

Because the circuit has a dependent source and no
independent sources, the preferable way to find R;, is from the

input voltage when a 1-A current source is applied, as shown
in Fig. 5-26b. Here, I, = 1 A, and so the total current to the

parallel resistors is Ig + 100/ = 101/ = 101 A, and the
voltage V is



V = 101(25030) V = 2.7 kV

The input resistance is R, = V/1 = 2.7 kQ, which is much
greater than the 30 Q of the load.

I B E
Is B E -
o——T oo '
Ra 1 ACD v 100 [ g 250 01 gmﬂ
— 100l 225000 23010
c = C
o o : J
(a) ih)
Fig. 5-26

5.17 What is the maximum power that can be drawn from a 12-
V battery that has an internal resistance of 0.25 Q?

A resistive load of 0.25 Q draws maximum power because
it has the same resistance as the Thévenin or internal
resistance of the source. For this load, half the source voltage
drops across the load, making the power 670.25 = 144 W.

5.18 What is the maximum power that can be drawn by a
resistor connected to terminals a and b of the circuit shown in
Fig. 5-157?

In the solution to Prob. 5.8, the Thévenin resistance of the
circuit shown in Fig. 5-15 was found to be 50 ki and the Norton
current was found to be 12.5 mA. So, a load resistor of 50 kQ
absorbs maximum power. By current division, half the Norton
current flows through it, producing a power of

12.5 .
('T % m--‘-) (50 x 10°) =195 W

5.19 In the circuit of Fig. 5-27, what resistor R; will absorb
maximum power and what is this power?
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Fig. 5-27

For maximum power transfer, R, = Ry, and pyax =
V21,/(4R1y). So, it is necessary to obtain the Thévenin

equivalent of the portion of the circuit to the left of the a and
b terminals.

If R, is replaced by an open circuit, then the current I is, by
current division,

x 8=064A

=
40 + 10

Consequently, the dependent voltage source provides a
voltage of 10(6.4) = 64 V. Then, by KVL,

Vip = Vi, = 64 + 10(6.4) = 128 V
It is convenient to use the short-circuit current approach in
determining R,,. If a short circuit is placed across terminals a

and b, all components of the circuit of Fig. 5-27 are in parallel.
Consequently, the voltage drop, top to bottom, across the 10-
X resistor of 10/ is equal to the —10/ voltage drop across the
dependent voltage source. Since the solution to 10/ = —10/ is
I = 0 A, there is a zero voltage drop across both resistors,
which means that all the 8 A of the current source must flow
down through the short circuit. So, I, = 8 A and



Thus, R, = 16 Q for maximum power absorption. Finally, this
power is

Vi, 1282
T T 056 W
4Ry,  4(16)

max

5.20 In the circuit of Fig. 5-28, what resistor R, will absorb
maximum power and what is this power?

Fig. 5-28

It is, of course, necessary to obtain the Thévenin
equivalent to the left of the a and b terminals. The Thévenin
voltage V1, will be obtained first. Observe that the voltage

drop across the 4-Q resistor is V,, and that this resistor is in

series with an 8-Q resistor. Consequently, by voltage division
performed in a reverse manner, the open-circuit voltage is V¢,

= V4 = 3Vy. Next, with R, removed, applying KCL at the node
that includes terminal a gives

W, -9 ¥,
B L RIS )
6 4 |

the solution to which is V, = 24 V. So, V7, = 3V = 3(24) = 72
V.

By inspection of the circuit, it should be fairly apparent
that it is easier to use /. to obtain Ry, than it is to determine
Rt directly. If a short circuit is placed across terminals a and
h, then V, = 0V, and so no current flows in the 4-Q resistor



and there is no current flow in the dependent current source.
Consequently, I = 90/6 = 15 A. Then,

Vo, T2
H-Ih: e iy —_"4.8Q
o 18

which is the resistance that R should have for maximum
power absorption. Finally,

Vi o 722
== 20w
4Ry,  44.8)

max

5.21 Use superposition to find the power absorbed by the 12-Q
resistor in the circuit shown in Fig. 5-29.

6 {1 I

AN
00V = 6 A 120
Fig. 5-29

Superposition cannot be used to find power in a dc circuit
because the method applies only to linear quantities, and
power has a squared voltage or current relation instead of a
linear one. To illustrate, the current through the 12-Q resistor
from the 100-V source is, with the 6-A source replaced by an
open circuit, 100/(12 + 6) = 5.556 A. The corresponding
power is 5.5562 x 12 = 370 W. With the voltage source
replaced by a short circuit, the current through the 12-Q
resistor from the 6-A current source is, by current division,
[6/(12 + 6)]1(6) = 2 A. The corresponding power is 22 x 12 =
48 W. So, if superposition could be applied to power, the result
would be 370 + 48 = 418 W for the power dissipated in the
12-Q resistor.



Superposition does, however, apply to currents. So, the
total current through the 12-Q resistor is 5.556 + 2 = 7.556 A,
and the power consumed is 7.5562 x 12 = 685 W, which is

much different than the 418 W found by erroneously applying
superposition to power.

5.22 In the circuit shown in Fig. 5-29, change the 100-V source
to a 360-V source, and the 6-A current source to an 18-A
source, and use superposition to find the current /.

Figure 5-30a shows the circuit with the current source
replaced by an open circuit. Obviously, the component /, of |

from the voltage source is /|, = -360/(6 + 12) = -20 A. Figure
5-30/b shows the circuit with the voltage source replaced by a
short circuit. By current division, /., the current-source
component of /,is I, = [12/(12 + 6)](18) = 12 A. The total
current is the algebraic sum of the current components: | = |,
+ /. =-20 + 12 = -8 A

611 Iy 6 1} Ir
l AN N *‘l AN
mVT 120 | 18 A glm
(a) [L:r]
Fig. 5-30

5.23 For the circuit shown in Fig. 5-18, use superposition to find
V7, referenced positive on terminal a.

Clearly, the 30-V source contributes 30 V to V4, because

this source, being in series with an open circuit, cannot cause
any currents to flow. Zero currents mean zero resistor voltage

drops, and so the only voltage in the circuit is that of the
source.

Figure 5-31a shows the circuit with all independent
sources deactivated except the 100-V source. Notice that the



voltage across the 40-Q resistor appears across terminals a
and b because there is a zero voltage drop across the 8-Q
resistor. By voltage division this component of V4, is

40
Viyy = ——— X 100 =80V
40 + 10

Figure 5-31b shows the circuit with the current source as
the only independent source. The voltage across the 40-Q
resistor is the open-circuit voltage since there is a zero voltage
drop across the 8-Q resistor. Note that the short circuit
replacing the 100-V source prevents the 5-Q resistor from
having an effect, and also it places the 40- and 10-Q resistors
in parallel for a net resistance of 40|| 10 = 8 Q. So, the
component of V;, from the current source is Vq, = - 20 X 8 =

- 160 V.

10 52 810 100 81

(b}

Fig. 5-31

V1, is the algebraic sum of the three components of
voltage:

Vi = 30 + 80 — 160 = —50 V

Notice that finding V14, by superposition requires more
work than finding it by nodal analysis, as was done in the
solution to Prob. 5.10.

5.24 Use superposition to find V4 for the circuit shown in Fig. 5-
15.



Although this circuit has three sources, superposition
cannot be used since two of the sources are dependent. Only
one source is independent. The superposition theorem does

not apply to dependent sources.

5.25 Use Millman’s theorem to find the current flowing to a 0.2-
Q resistor from four batteries operating in parallel. Each
battery has a 12.8-V open-circuit voltage. The internal
resistances are 0.1, 0.12, 0.2, and 0.25 Q.

Because the battery voltages are the same, being 12.8 V,
the Millman voltage is V), = 12.8 V. The Millman resistance is

the inverse of the sum of the conductances:

1
e e -——--D‘_::}ﬁ_ﬁmﬂ

R, = | s
O+ 170,12 + 1/0.2 + 1/0.25

Of course, the resistor current equals the Millman voltage
divided by the sum of the Millman and load resistances:

v, 12.8
M T~ 541A

}' = = = =
Ry+ R 0.2+ 00366

5.26 Use Millman’s theorem to find the current drawn by a 5-Q

resistor from four batteries operating in parallel. The battery
open-circuit voltages and internal resistances are 18 V and 1

Q,20Vand2Q,22Vand5Q,and 24V and 4 Q.
The Millman voltage and resistance are

IMI8) 4+ (1/2)020 1/5)22 [/4)24
VM =(_H_ ] (_’_“_ _Jii_][ }+{ _ E_i = 107V

4+ 124 1/5 414

I
AT N A ={.5130Q

Ry = -
L+ 124+ 1/5+1/4

The current is, of course, the Millman voltage divided by the
sum of the Millman and load resistances:



Vig 19.7
. = =357 A
Ry+ R 0513 +5

5.27 Use Millman’s theorem to find / for the circuit shown in Fig.

5-32.
lf
50 0 10 0
25 0
L L |

200V = i‘{lﬂ‘i.-' 150V -_?SV

-

Fig. 5-32
The Millman voltage and resistance are

1/50%200 + 1/25) — 100 1/40)(150 1100 —75
b, = (/500200) + (1/25(—100) + (1/4OKISO) + (/1K=T5) oo
1/50 + 1/25 + 1/40 + 1/10

1
R, = =541 0
1/50 + 1/25 + 1/40 + 1/10

And so

Vi —20.27
TRy+R 541425

= —0.667 A

5.28 Transform the A shown in Fig. 5-33a to the Y shown in Fig.
5-33bfor(a) R; =R, =R3=36Q,and (b) R, =20Q, R, = 30
Cl, and R3 = 50 Q.

(a) For A resistances of the same value, R, = Rp/3. S0, here, Ry
= Rg =R.=36/3 =12 Q.
(b) The denominators of the Ry formulas are the same: R; + R,

+ R3 =20 + 30 + 50 = 100 Q. The numerators are products

of the adjacent resistor resistances if the Y is placed inside
the A:



_R,Ry 30x50 R,R, 20 x 50

R,=—2=""""-6Q Rg=—_= =150 Re = =100
100 100 100 100 100 100
A
R, R;
R
C o 4 NAN—
Bo
(a) (b)
Fig. 5-33

5.29 Transform the Y shown in Fig. 5-33b to the A shown in Fig.
5-33afor(a) R, =Rg=R.=50Q,and (b) R, =10Q, Rg=5Q,
R, =20 Q.

(a) For Y resistances of the same value: Ry = 3R,. So, here, R; =
R2R3=3><=5=15Q

(b) The numerators of the R, formulas are the same: R,Rg +
RARc + Rg R =10 x5+ 10 x 20 + 5 x 20 = 350. The
denominators of the R, formulas are the resistances of the Y

arms opposite the A arms if the Y is placed inside the A.
Thus,

350 350 350 350 350
Ri=-"-=""=700 R,="—=""2=1750Q Wi WL

_ — =350
Ry 5 R. 20 R, 10

5.30 Use a A-to-Y transformation in finding the currents /4, /5,
and /5 for the circuit shown in Fig. 5-34.
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The A of 15-Q resistors transforms to a Y of 15/3 = 5-Q
resistors that are in parallel with the Y of 20-Q resistors. It is
not obvious that they are in parallel, and in fact they would
not be if the resistances for each Y were not all the same
value. When, as here, they are the same value, an analysis
would show that the middle nodes are at the same potential,
just as if a wire were connected between them. So,
corresponding resistors of the two Y’'s are in parallel, as shown
in Fig. 5-35a. The two Y’s can be reduced to the single Y
shown in Fig. 5-35b, in which each Y resistance is 5||20 = 4 Q.
With this Y replacing the A-Y combination, the circuit is as
shown in Fig. 5-35c.

0

(a) (b)

Fig. 5-35



With the consideration of /; and /5 as loop currents, the
corresponding KVL equations are

30 = 181, + 101, and 40 = 101, + 221,

the solutions to which are/, = 0.88 A and I3 = 1.42 A. Then,
from KCL applied at the right-hand node, I, = -I; - I3 = -2.3 A.

5.31 Using a Y-to-A transformation, find the total resistance Ry of

the circuit shown in Fig. 5-36, which has a bridged-T
attenuator.

800
AN\
200 0} 200 1}
o A AAY, AN
Ry
— 1.6 kQ 1 k0
(o7 &
Fig. 5-36
800 )
AN N
425 01
o A AAY,
3.4 k1 314 kQ gl kQ
o . :
(a) (b)
Fig. 5-37

Figure 5-37a shows the T part of the circuit inside a A as
an aid in finding the A resistances. From the Y-to-A
transformation formulas,



200(200) + 200(1600) + 200(1600) 680 000

R, =R, —Q =34kQ
200 200

680 000
y=—— = 4250
1600

As a result of this transformation, the circuit becomes
series-parallel as shown in Fig. 5-37b, and the total resistance
is easy to find:

Ry = 3400((800/425 + 3400(1000) = 34001050 = 802 Q

5.32 Find / for the circuit shown in Fig. 5-38 by using a A-Y
transformation.

19 V=

Fig. 5-38

The bridge simplifies to a series-parallel configuration
from a transformation of either the top or bottom Atoa, or
the left- or right-hand Y to a A. Perhaps the most common
approach is to transform one of the A’s to a Y, although the
work required is about the same for any type of
transformation. Figure 5-39a shows the top A enclosing a Y as
a memory aid for the transformation of this A to a Y. All three Y
formulas have the same denominator: 14 + 10 + 6 = 30. The
numerators, though, are the products of the resistances of the
adjacent A resistors:

10 x 14



With this transformation the circuit simplifies to that shown in
Fig. 5-39b in which all the resistors are in series-parallel. From
it,

196
I = —=12A
8+ 467 + (2.8 + 1.6){2 + 20)

80 I 467 Q
-

14 0 1o 0

6 £}

(a) (b)

Fig. 5-39

5.33 In the circuit shown in Fig. 5-38, what resistor R replacing
the 20-Q resistor causes the bridge to be balanced? Also,
what is | then?

For balance, the product of the resistances of opposite
bridge arms are equal:

16
Rxlil4=16 % 10 from which R=I—4== 1.14 Q

With the bridge in balance, the center arm can be
considered as an open circuit because it carries no current.
This being the case, and because the bridge is a series-
parallel arrangement, the current / is

196

l=—— — =135A
R +{14 + 1.6p)(10 + 1.14)




Alternatively, the center arm can be considered to be a short
circuit because both ends of it are at the same potential. From
this point of view,

196
R A, | 1
8 + 1410 + 1.6/ 1.14

which is, of course, the same.

5.34 The slide-wire bridge shown in Fig. 5-40 has a uniform
resistance wire that is 1 m long. If balance occurs with the
slider at 24 cm from the top, what is the resistance of R,?

Let R, be the total resistance of the resistance wire. Then

the resistance from the top of the wire to the slider is
(24/100)R,,. = 0.24R,,. That from the slider to the bottom of

the wire is (76/100)R,,. = 0.76R,,. So, the bridge resistances
are 0.24R,,., 0.76R,,, 30 Q, and R,. These inserted into the
bridge balance equation give

0.76R,, -
W L 30=950

X -

~ 0.24R,,

<
[
Resistance wire

Fig. 5-40

Supplementary Problems



5.35 A car battery has a 12.1-V terminal voltage when supplying
10 A to the car lights. When the starter motor is turned over,
the extra 250 A drawn drops the battery terminal voltage to
10.6 V. What is the Thévenin equivalent circuit of this battery?

Ans. 6 mQ, 12.16 V

5.36 In full sunlight a 2- by 2-cm solar cell has a short-circuit
current of 80 mA, and the current is 75 mA for a terminal
voltage of 0.6 V. What is the Norton equivalent circuit?

Ans. 120 Q, 80 mA

5.37 Find the Thévenin equivalent of the circuit shown in Fig. 5-
41. Reference Vq, positive toward terminal a.

8 N
AAA—O @
6 0
S A 12 Q
=48V
4 —ob
Fig. 5-41

Ans. 12 Q, 12V

5.38 In the circuit shown in Fig. 5-41, change the 5-A current
source to a 7-A current source, the 12-Q resistor to an 18-Q
resistor, and the 48-V source to a 96-V source. Then find the
Norton equivalent circuit with the current arrow directed
toward terminal a.

Ans. 12.5Q, 3.24 A

5.39 For the circuit shown in Fig. 5-42, find the Norton
equivalent with / referenced positive toward terminal a.



6 () 40

60%'::,:: 12 01 80 8 A

Fig. 5-42

Ans. 4 Q, -3 A

5.40 Find the Norton equivalent of the circuit of Fig. 5-43.
Reference Iy up.

400}

5 ki

C:) LR § L1} 1000 v é [i}4]

b A

Fig. 5-43

Ans. 8 Q, 8 A

5.41 Determine the Norton equivalent of the circuit of Fig. 5-44.
Reference Iy up.

404 5141 BV




Ans. 78 n, 1.84 A

5.42 Find the Thévenin equivalent of the grounded-base
transistor circuit shown in Fig. 5-45. Reference V¢, positive

toward terminal a.

Fig. 5-45

Ans. 4 kQ, 3.9V

5.43 In the transistor circuit shown in Fig. 5-46, find the base
current Iz if I. = 40lg. There is a 0.7-V drop from base to

emitter.

Fig. 5-46

Ans. 90.1 6A

5.44 Find the Thévenin equivalent of the transistor circuit shown
in Fig. 5-47. Reference V¢, positive toward terminal a.



01, >5kQ Ve

Ans. 5.88 kQ, -29.4V

5.45 Find / in the circuit shown in Fig. 5-48, which contains a
nonlinear element having a V-/ relation of V = 3/2. Use
Thévenin’s theorem and the quadratic formula.

40 3o I
Jj“ﬁVV ' — "N
+
22 VT ¢4A 6 1 _g;=3fl‘
Fig. 5-48

Ans. 2 A

5.46 Find the Thévenin equivalent of the circuit of Fig. 5-49,
Reference V7, positive toward terminal a.

BY g 10V
if———¢ | —k

1614}

?Iﬁﬂ

8

50




Fig. 5-49

Ans. 18.7 Q, 26V
5.47 Obtain the Thévenin equivalent of the circuit of Fig. 5-50.

40 250
AN T T AN Oa
.+
V. S 4Q 0.75V,
+ - O h
Fig. 5-50

Ans. -1.5Q,0V

5.48 Find the input resistance at terminals 1 and 1’ of the
transistor circuit shown in Fig. 5-51 if a 2-kQ resistor is
connected across terminals 2 and 2'.

Is B | ki E
| o—————0—AAN o Q2
60 Is 5 ki
1'C wc # o
Fig. 5-51
Ans. 88.1 kQ

5.49 Find the output resistance at terminals 2 and 2’ of the
transistor circuit shown in Fig. 5-51 if a source with a 1-kQ
internal resistance is connected to terminals 1 and 1'. In
finding the output resistance remember to replace the source
by its internal resistance.



Ans. 32.6 Q

5.50 Find the input resistance at terminals 1 and 1’ of the
transistor circuit shown in Fig. 5-52 if a 5-kQ load resistor is
connected between terminals 2 and 2’, from collector to
emitter.

i
o . B 1 k0 |
OMJV; 20 Iﬂ 2“ kﬂ V(
E =
I'e . O . s =0

Fig. 5-52

+ 0y
6
ra

Ans. 760 Q

5.51 Find the output resistance at terminals 2 and 2’ of the
transistor circuit shown in Fig. 5-52 if a source with a 500-Q
internal resistance is connected to terminals 1 and 1'.

Ans. 100 kQ

5.52 What resistor connected between terminals a and b in the
bridge circuit shown in Fig. 5-53 absorbs maximum power and
what is this power?

20 V=

Ans. 2.67 kQ, 4.25 mW



5.53 What will be the reading of a zero-resistance ammeter
connected across terminals a and b of the bridge circuit
shown in Fig. 5-537 Assume that the ammeter is connected to
have an upscale reading. What will be the reading if a 1-kQ
resistor is in series with the ammeter?

Ans. 2.52 mA, 1.83 mA

5.54 Some solar cells are interconnected for increased power
output. Each has the specifications given in Prob. 5.36. What
area of solar cells is required for a power output of 1 W?
Assume a matching load.

Ans. 20.8 cm?

5.55 In the circuit of Fig. 5-54, what resistor R; will absorb
maximum power, and what is this power?

50

150

=120V : 0.2V, R,
V250

Fig. 5-54

Ans. 3.33 Q, 480 W

5.56 In the circuit of Fig. 5-55, what resistor connected across
terminals a and b will absorb maximum power, and what is
this power?
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Fig. 5-55

Ans. 100 kQ, 62.5 6W

5.57 For the circuit shown in Fig. 5-41, use superposition to find
the contribution of each source to Vy if it is referenced

positive toward terminal a.
Ans. 32 V from the 48-V source, — 20 V from the 5-A source

5.58 For the circuit shown in Fig. 5-42, use superposition to find
the contribution of each source to the current in a short circuit
connected between terminals a and b. The short-circuit
current reference is from terminal a to terminal b.

Ans. 5 A from the 60-V source, — 8 A from the 8-A source

5.59 In the circuit shown in Fig. 5-48, replace the nonlinear
resistor with an open circuit and use superposition to find the
contribution of each source to the open-circuit voltage
referenced positive at the top.

Ans. 13.2 V from the 22-V source, 9.6 V from the 4-A source

5.60 An automobile generator operating in parallel with a
battery energizes a 0.8-Q load. The open-circuit voltages and
internal resistances are 14.8 V and 0.4 Q for the generator,
and 12.8 V and 0.5 Q for the battery. Use Millman’s theorem
to find the load current.

Ans. 13.6 A

5.61 For the automobile circuit of Prob. 5.60 use superposition to
find the load current contribution from each source.



Ans. 8.04 A from the generator, 5.57 A from the battery

5.62 Transform the A shown in Fig. 5-56a to the Y in Fig. 5-56b
for R; = 2kQ, R, = 4 kQ, and Ry = 6kQ.

Ans. Ry = 667 Q, Rg = 2 kQ, R, =1 kQ
5.63 Repeat Prob. 5.62 forR{ =8 Q,R, =5Q,and R3 =7 Q.
Ans. R, =2Q,Rg=1.75Q,R.=2.8Q

¢ (b) B

Fig. 5-56
5.64 Transform the Y shown in Fig. 5-56b to the A in Fig. 5-56a
for R, = 12Q, Rg = 15Q, and R, = 18 Q.
Ans.R; =444 Q,R, =37Q,R3=555Q

5.65 Repeat Prob. 5.64 for R, = 10 kQ, Kg = 18kQ, and R, = 12
kQ.

Ans. Ry = 28.7 kQ, R, = 43 kQ, R3 = 51.6 kQ

5.66 For the lattice circuit shown in Fig. 5-57, use a A-Y
transformation to find the V that makes | = 3 A.

Ans. 177V



1 10 ) 40 N
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Fig. 5-57

5.67 Use a A-Y transformation to find the currents in the circuit
shown in Fig. 5-58.

I 60

‘)' I
= AN

Fig. 5-58

Ans.ly=7.72A,1,=-0.36 A, I3=-7.36 A

5.68 Use a A-to-Y transformation in finding the voltage V that
causes 2 A to flow down through the 3-Q resistor in the circuit
shown in Fig. 5-59.
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Fig. 5-59

Ans. 17.8V

5.69 In the lattice circuit shown in Fig. 5-57, what resistor
substituted for the top 40-Q resistor causes zero current flow
in the 50-Q resistor?

Ans. 90 Q

5.70 If in the slide-wire bridge shown in Fig. 5-40, balance occurs
with the slider at 67 cm from the top, what is the resistance
R,?

Ans. 14.8 Q.

5.71 Use a A-Y transformation to find / in the circuit shown in Fig.
5-60. Remember that for a A-Y transformation, only the
voltages and currents external to the A and Y do not change.

20
AVAVAY.
51 51
v =
40 in

Fig. 5-60



Ans. 0.334 A

5.72 In the circuit of Fig. 5-61, what resistor R; will absorb
maximum power, and what is this power?

Ans. 12 Q, 192 W

5.73 In the circuit of Fig. 5-62, what resistor R, will absorb
maximum power, and what is this power?

00

120V =

Fig. 5-62

Ans. 30Q, 1.48 W



Chapter 6
Operational-Amplifier Circuits

INTRODUCTION

Operational amplifiers, usually called op amps, are
important components of electronic circuits. Basically, an op
amp is a very high-gain voltage amplifier, having a voltage
gain of 100 000 or more. Although an op amp may consist of
more than two dozen transistors, one dozen resistors, and
perhaps one capacitor, it may be as small as an individual
resistor. Because of its small size and relatively simple
external operation, for purposes of an analysis or a design an
op amp can often be considered as a single circuit element.

Figure 6-la shows the circuit symbol for an op amp. The
three terminals are an inverting input terminal a (marked —),
a noninverting input terminal b (marked +), and an output
terminal c. But a physical operational amplifier has more
terminals. The extra two shown in Fig. 6-1b are for dc power
supply inputs, which are often +15 V and —15 V. Both
positive and negative power supply voltages are required to
enable the output voltage on terminal c to vary both
positively and negatively with respect to ground.
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Fig. 6-1

OP-AMP OPERATION

The circuit of Fig. 6-2a, which is a model for an op amp,
illustrates how an op amp operates as a voltage amplifier. As
indicated by the dependent voltage source, for an open-
circuit load the op amp provides an output voltage of vy = A

(v, — v.), which is A times the difference in input voltages.

This A is often referred to as the open-loop voltage gain.
From A (v, — v_), observe that a positive voltage v , applied

to the noninverting input terminal b tends to make the
output voltage positive, and a positive voltage v_ applied to

the inverting input terminal a tends to make the output
voltage negative.

The open-loop voltage gain A is typically so large (100 000
or more) that it can often be approximated by infinity («), as
is shown in the simpler model of Fig. 6-2b. Note that Fig. 6-
2b does not show the sources or circuits that provide the
input voltage v, and v. with respect to ground. Instead, just

the voltages v, and V. are shown. Doing this simplifies the
circuit diagrams without any loss of information.

In Fig. 6-2a, the resistors shown at the input terminals
have such large resistances (megohms) as compared to
other resistances (usually kilohms) in a typical op-amp
circuit, that they can be considered to be open circuits, as is



shown in Fig. 6-2b. As a consequence, the input currents to
an op amp are almost always negligibly small and assumed
to be zero. This approximation is important to remember.

The output resistance Ry, may be as large as 75 Q or more,

and so may not be negligibly small. When, however, an op
amp is used with negative-feedback components (as will be
explained), the effect of R, is negligible, and so R, can be

replaced by a short circuit, as shown in Fig. 6-2b. Except for
a few special op-amp circuits, negative feedback is always
used.
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Fig. 6-2

The simple model of Fig. 6-2b is adequate for many
practical applications. However, although not indicated,
there is a limit to the output voltage: It cannot be greater
than the positive supply voltage or less than the negative
supply voltage. In fact, it may be several volts less in
magnitude than the magnitude of the supply voltages, with
the exact magnitude depending upon the current drawn from



the output terminal. When the output voltage is at either
extreme, the op amp is said to be saturated or to be in
saturation. An op amp that is not saturated is said to be
operating linearly.

Since the open-loop voltage gain A is so large and the
output voltage is limited in magnitude, the voltage v, — v_

across the input terminals has to be very small in magnitude
for an op amp to operate linearly. Specifically, it must be less
than 100 pV in a typical op-amp application. (This small
voltage is obtained with negative feedback, as will be
explained.) Because this voltage is negligible compared to
the other voltages in a typical op-amp circuit, this voltage
can be considered to be zero. This is a valid approximation
for any op amp that is not saturated. But if an op amp is
saturated, then the voltage difference v, — v_can be

significantly large, and typically is.
Of less importance is the limit on the magnitude of the
current that can be drawn from the op-amp output terminal.

For one popular op amp this output current cannot exceed
40 mA.

The approximations of zero input current and zero voltage
across the input terminals, as shown in Fig. 6-3, are the
bases for the following analyses of popular op-amp circuits.
In addition, nodal analysis will be used almost exclusively.

Fig. 6-3

POPULAR OP-AMP CIRCUITS



Figure 6-4 shows the inverting amplifier, or simply
inverter. The input voltage is vy and the output voltage is vy.

As will be shown, vy = Gv; in which G is a negative constant.
So, the output voltage v, is similar to the input voltage v, but
is amplified and changed in sign (inverted).

Ry

Fig. 6-4

As has been mentioned, it is negative feedback that
provides the almost zero voltage across the input terminals
of an op amp. To understand this, assume that in the circuit
of Fig. 6-4 v; is positive. Then a positive voltage appears at

the inverting input because of the conduction path through
resistor R;. As a result, the output voltage v, becomes

negative. Because of the conduction path back through
resistor Ry, this negative voltage also affects the voltage at

the inverting input terminal and causes an almost complete
cancellation of the positive voltage there. If the input voltage
v; had been negative instead then the voltage fed back

would have been positive and again would have produced
almost complete cancellation of the voltage across the op-
amp input terminals.

This almost complete cancellation occurs only for a
nonsaturated op amp. Once an op amp becomes saturated,



however, the output voltage becomes constant and so the
voltage fed back cannot increase in magnitude as the input
voltage does.

In every op-amp circuit in this chapter, each op amp has a
feedback resistor connected between the output terminal
and the inverting input terminal. Consequently, in the
absence of saturation, all the op amps in these circuits can
be considered to have zero volts across the input terminals.
They can also be considered to have zero currents into the
input terminals because of the large input resistances.

The best way to obtain the voltage gain of the inverter of
Fig. 6-4 is to apply KCL at the inverting input terminal. Before
doing this, though, consider the following. Since the voltage
across the op-amp input terminals is zero, and since the
noninverting input terminal is grounded, it follows that the
inverting input terminal is also effectively at ground. This
means that all the input voltage v; is across resistor R; and

that all the output voltage v, is across resistor Ry.

Consequently, the sum of the currents entering the inverting
input terminal is

v, v
L4+ 2 =9 and therefore bp= — 2 U
R, R; R;

I
So, the voltage gain is G = -(R#R;), which is the negative of
the resistance of the feedback resistor divided by the
resistance of the input resistor. This is an important formula
to remember for analyzing an op-amp inverter circuit or for
designing one. (Do not confuse this gain G of the inverter
circuit with the gain A of the op amp itself.)

It should be apparent that the input resistance is just R;.
Additionally, although the load resistor R, affects the current

that the op amp must provide, it has no effect on. the
voltage gain.



The summing amplifier, or summer, is shown in Fig. 6-5.
Basically, a summer is an inverter circuit with more than one
input. By convention, the sources for providing the input
voltages v,, v, and v, are not shown. If this circuit is
analyzed with the same approach used for the inverter, the
result is

R, R R, °
v, = — ( / v, + L v, + L l?:.)
R, R, R

e

For the special case of all the resistances being the same,
this formula simplifies to

v,= —{(v,+ v, + v,)

There is no special significance to the inputs being three in
number. There can be two, four, or more inputs.

R,
0 AN
+ % l
0 ANN ¢
+ R
't':.. i
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Fig. 6-5

Figure 6-6 shows the noninverting voltage amplifier.
Observe that the input voltage v; is applied at the

noninverting input terminal. Because of the almost zero



voltage across the input terminals, v; is also effectively at the

inverting input terminal. Consequently, the KCL equation at
the inverting input terminal is

: , R,
=0 which results in v, =11+ R v,

a

Fig. 6-6

Since the voltage gain of 1/(1 + R#R,) does not have a

negative sign, there is no inversion with this type of
amplifier. Also, for the same resistances, the magnitude of
the voltage gain is slightly greater than that of the inverter.
But the big advantage that this circuit has over the inverter
is @ much greater input resistance. As a result, this amplifier
will readily amplify the voltage from a source that has a large
output resistance. In contrast, if an inverter is used, almost
all the source voltage will be lost across the large output
resistance of the source, as should be apparent from voltage
division.

The buffer amplifier, also called the voltage follower or
unity-gain amplifier, is shown in Fig. 6-7. It is basically a
noninverting amplifier in which resistor R, is replaced by an



open circuit and resistor Rs by a short circuit. Because there
is zero volts across the op-amp input terminals, the output
voltage is equal to the input voltage: v, = v;. Therefore, the
voltage gain is 1. This amplifier is used solely because of its
large input resistance, in addition to the typical op-amp low
output resistance.

o— + 0

Fig. 6-7

There are applications, in which a voltage signal is to be
converted to a proportional output current such as, for
example, in driving a deflection coil in a television set. If the
load is floating (neither end grounded), then the circuit of
Fig. 6-8 can be used. This is sometimes called a voltage-to-
current converter. Since there is zero volts across the op-
amp input terminals, the current in resistor R, is iy = vi/R,,

and this current also flows through the load resistor R;.
Clearly, the load current /; is proportional to the signal
voltage v;.



Fig. 6-8

The circuit of Fig. 6-8 can also be used for applications in
which the load resistance R, varies but the load current j;

must be constant. v; is made a constant voltage and v; and
R, are selected such that v/R, is the desired current j, .
Consequently, when R, varies, the load current j; does not

change. Of course, the load current cannot exceed the
maximum allowable op-amp output current, and the load
voltage plus the source voltage cannot exceed the maximum
obtainable output voltage.

CIRCUITS WITH MULTIPLE OPERATIONAL AMPLIFIERS

Often, op-amp circuits are cascaded, as shown, for
example, in the circuit of Fig. 6-9. In a cascade arrangement,
the input to each op-amp stage is the output from a
preceding op-amp stage, except, of course, for the first op-
amp stage. Cascading is often used to improve the
frequency response, which is a subject beyond the scope of
the present discussion.
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Fig. 6-9

Because of the very low output resistance of an op-amp
stage as compared to the input resistance of the following
stage, there is no loading of the op-amp circuits. In other
words, connecting the op-amp circuits together does not
affect the operation of the individual op-amp circuits. This
means that the overall voltage gain G is equal to the

product of the individual voltage gains G;, G,, Gg, ...; that is,
GT = Gl Gz G3

To verify this formula, consider the circuit of Fig. 6-9. The
first stage is an inverting amplifier, the second stage is a
noninverting amplifier, and the last stage is another

inverting amplifier. The output voltage of the first inverter is
- (6/2)v; = - 3v;, which is the input to the noninverting

amplifier. The output voltage of this amplifier is (1 + 4/2)(-
3v;) = -9v;. And this is the input to the inverter of the last

stage. Finally, the output of this stage is vy = -9v;,(-10/5) =
18v;. So, the overall voltage gain is 18, which is equal to the
product of the individual voltage gains: Gy = (-3)(3)(-2) =
18.

If a circuit contains multiple op-amp circuits that are not
connected in a cascade arrangement, then another approach
must be used. Nodal analysis is standard in such cases.



Voltage variables are assigned to the op-amp output terminal
nodes, as well as to other nongrounded nodes, in the usual
manner. Then nodal equations are written at the
nongrounded op-amp input terminals to take advantage of
the known zero input currents. They are also written at the
nodes at which the voltage variables are assigned, except
for the nodes that are at the outputs of the op amps. The
reason for this exception is that the op-amp output currents
are unknown and if nodal equations are written at these
nodes, additional current variables must be introduced,
which increases the number of unknowns. Usually, this is
undesirable. This standard analysis approach applies as well
to a circuit that has just a single op amp.

Even if multiple op-amp circuits are not connected in
cascade, they can sometimes be treated as if they were. This
should be considered especially if the output voltage is fed
back to op-amp inputs. Then the output voltage can often be
viewed as another input and inserted into known voltage-
gain formulas.

Solved Problems

6.1 Perform the following for the circuit of Fig. 6-10.
Assume no saturation for parts (a) and (b). (a) Let Ry =

12 kQ, V, =2V, and V, = 0 V. Determine V, and /,. (b)
Repeat part (a) for R,=9 kQ, V=4V, and V, =2 V. (c)
Let V, =5V and V, = 3V and determine the minimum
value of R that will produce saturation if the saturation
voltage levels are V, = = 14 V.
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(a) Since for V,, = 0 V the circuit is an inverter, the inverter
voltage-gain formula can be used to obtain V.

Then KCL applied at the output terminal gives

[,=—%—8 = _267mA

(b) Because of the zero voltage across the op-amp input
terminals, V_ =V, = 2 V. Then, by KCL applied at the

inverting op-amp input terminal,

4-2 V=2
IS R i, L e |
3 9
The solution is Vy = - 4 V. Another approach is to use

superposition. Since the circuit is an inverter as regards
V, and is a noninverting amplifier as regards V,, the

output voltage is



V= =534+ (1 +352)= —12+8=—4V

a

With V, known, KCL can be applied at the output
terminal to obtain
4 —4-2

[,=——+ "= _167mA
4 9

(c) By superposition,

Vo= =51 01+ [ 1+ )3) =3 0667R,

Since R must be positive, the op amp can saturate only
at the specified — 14-V saturation voltage level. So,

—14 =3 — 0.667R,

the solution to which is R = 25.5 kQ. This is the
minimum value of Ry that will produce saturation.
Actually the op amp will saturate for R = 25.5 kQ.

6.2 Assume for the summer of Fig. 6-5 that R, = 4 kQ.
Determine the values of Ry, R, and R¢that will provide
an output voltage of Vy = — (3v, + 5v;, + 2v,).

First, determine Ry The contribution of Vj to V) is -
(R#/R,)v,. Consequently, for a voltage gain of —3 and
with R, = 4 kQ,

RJ-
- = -3 and thus R, =12kQ

4



Next, determine Ry,. The contribution of v, to V is —
(R#/Rp)Vy. SO, with R = 12kQ and for a voltage gain of —
5,

12 12

——= =5 and therefore R,=—

R, 5

Finally, the contribution of v. to v, is —(R#R./)v.. So, with
R = 12 kQ and for a voltage gain of — 2,

12
== = =2 which gives R.=6kQ

3

6.3 In the circuit of Fig. 6-11, first find V, and /I, for V, = 4
V. Then assume op-amp voltage saturation levels of V,
= = 12 V and determine the range of V, for linear
operation.

12kQ
4 kQ AN
AN l
- I,
6 ki) { —
v, = J_ ANN ¥ "
- 10V 10 kﬂg ¥,

Fig. 6-11

Because this circuit is a summer,



Vo= —['E@) + Z(=10)] =8V

Now, finding the range of V, for linear operation,

+12 = —[FV) + @10 = -3V, + 20

Therefore, V, = (20 = 12)/3. So, for linear operation, V,

must be less than (20 + 12)/3 = 10.7 V and greater than
(20 -12)/3 =2.67V:2.67V <V, <10.7 V.

6.4 Calculate V, and / in the circuit of Fig. 6-12.

12k
2k AN\~
AYAYAY,

4kQ \ LA
12V = A /
J. 6kQ< 1,

ol ') 5V
-"L I-

Fig. 6-12

Because of the zero voltage drop across the op-amp
input terminals, the voltage with respect to ground at
the inverting input terminal is the same 5 V that is at
the noninverting input terminal. With this voltage
known, the voltage V, can be determined from summing

the currents flowing into the inverting input terminal:



2-5 —6-5 V-5
e T .|_ P + = =
2 4 12

Thus, Vy = -4 V. Finally, applying KCL at the output
terminal gives

—4 —4-5
6 12

6.5 In the circuit of Fig. 6-13a, a 10-kQ load resistor is
energized by a source of voltage v, that has an internal

resistance of 90 kQ. Determine v;, and then repeat this
for the circuit of Fig. 6-13b.

90 k0

i) k) ATATAY A
dTATAY O
1 - +
._ 10k 2 1y " [ 0k 1
il 4

b)
Fig. 6-13

Voltage division applied to the circuit of Fig. 6-13a
gives

So, only 10 percent of the source voltage reaches the load.
The other 90 percent is lost across the internal resistance of
the source.



For the circuit of Fig. 6-13ft, no current flows in the
signal source because of the large op-amp input
resistance. Consequently, there is a zero voltage drop
across the source internal resistance, and the entire
source voltage appears at the noninverting input
terminal. Finally, since there is zero volts across the op-
amp input terminals, v| = v¢ So, the insertion of the
voltage follower results in an increase in the load
voltage from 0.1 v, to v.

Note that although no current flows in the 90-kQ
resistor in the circuit of Fig. 6-13b, there is current flow
in the 10-kQ resistor, the path for which is not evident
from the circuit diagram. For a positive v, this current

flows down through the 10-kQ resistor to ground, then
through the op-amp power supplies (not shown), and
finally through the op-amp internal circuitry to the op-
amp output terminal.

6.6 Obtain the input resistance R;, of the circuit of Fig. 6-
14a.

The input resistance R;, can be determined in the usual

way, by applying a source and obtaining the ratio of the
source voltage to the source current that flows out of the
positive terminal of the source. Figure 6-14b shows a source
of voltage V. applied. Because of the zero current flow into

the op-amp noninverting input terminal, all the source
current /; flows through Ry, thereby producing a voltage of

IRracross it, as shown. Since the voltage across the op-amp
input terminals is zero, this voltage is also across R, and
results in a current flow to the right of I;R#/R,. Because of the

zero current flow into the op-amp inverting input terminal,
this current also flows up through Rj, resulting in a voltage

across it of I.RR,/R,, positive at the bottom. Then, KVL
applied to the left-hand mesh gives



IR, R,

Vo+ 0+ =) and so R,=—=—

iR . & ]

The input resistance being negative means that this op-
amp circuit will cause current to flow into the positive
terminal of any voltage source that is connected across the
input terminals, provided that the op amp is not saturated.
Consequently, the op-amp circuit supplies power to this
voltage source. But, of course, this power is really supplied
by the dc voltage sources that energize the op amp.

6.7 For the circuit of Fig. 6-14a, let Rf = 6 kQ, Ry = 4 kQ,
and R, = 8 kQ, and determine the power that will be
supplied to a 4.5-V source that is connected across the
input terminals.

From the solution to Prob. 6.6,



R.R 4
R 8

i

Therefore, the current that flows into the positive
terminal of the source is 4.5/3 = 1.5 mA. Consequently,
the power supplied to the source is 4.5(1.5) = 6.75 mW.

6.8 Obtain an expression for the voltage vg in the circuit of
Fig. 6-15.

& TS
e e

R F

‘A4AM—
'_?:

Fig. 6-15

Clearly, in terms of v, this circuit is a noninverting

amplifier. So,
R
v, = (] + —‘r)p),
R,

The voltage v, can be found by applying nodal analysis
at the noninverting input terminal.

1,11 — l-‘+ 112 Bt f,-’+ F_} - 1:4.

+ +
R R R

=0 from which vy =3, + vy + vy)

Finally, substituting for v, yields



Y+ 20 o, 40y 4 0)
v, = — v v U
3 Ra 1 2 3

From this result it is evident that the circuit of Fig. 6-15 is

a noninverting summer. The number of inputs is not
limited to three. In general,

1 R}.
E:r Db ] + R {Fl ot v.'-! + L\rr}

mn

in which n is the number of inputs.

6.9 In the circuit of Fig. 6-15, assume that R = 6 kQ and

then determine the values of the other resistors
required to obtain vy = 2(v; + v, + v3).

From the solution to Prob. 6.8, the multiplier of the
voltage sum is

1 6
E(I + = ) =2 the solution to which is R = 1.2k0

a

As long as the value of R is reasonable, say in the kilohm
range, it does not matter much what the specific value
is. Similarly, the specific value of R, does not affect v,

provided R, is in the kilohm range or greater.

6.10 Obtain an expression for the voltage gain of the op-
amp circuit of Fig. 6.16.



Fig. 6-16

Superposition is a good approach to use here. If v, =0V,

then the voltage at the noninverting input terminal is zero,
and so the amplifier becomes an inverting amplifier.
Consequently, the contribution of v, to the output voltage v,

-(R#/R5)v,. On the other hand, if v, = 0 V, the circuit

becomes a noninverting amplifier that amplifies the voltage
at the noninverting input terminal. By voltage division, this
voltage is R.vp/(Rp + R.). Therefore, the contribution of v, to

the output voltage v, is

U

R, ( Rf-) R{R, + R;)
1+, =
f{h . R.: 'Rua Rﬂ{R s R }

Finally, by superposition the output voltage is

R(R, +R} Ry
R(R,,+R;

l-{.l



This voltage-gain formula can be simplified by the
selection of resistances such that R/Rf = Rp/R.. The
result is

S
o = Uy — i"Ir,r}
L R (U
in which case the output voltage v, is a constant times
the difference v, - v, of the two input voltages. This

constant can, of course, be made 1 by the selection of R¢

= R,. For obvious reasons the circuit of Fig. 6-16 is called
a difference amplifier.

6.11 For the difference amplifier of Fig. 6-16, let R, = 8 kQ.

and then determine values of R, Ry, and R, to obtain v,
= 4(vy - Vy).

From the solution to Prob. 6.10, the contribution of -
4v, to v, requires that R/R, = 8/R; =4, and so R, = 2
kQ For this value of R, and for R = 8 kQ, the multiplier
of v, becomes

R, 8 R, 4
—|14+-]=4 or —_—— = —
R, + R, 2, R,+R. 5

b

Inverting results in

E +_ ] —_ or s
R, 4 R, 4

Therefore, R. = 4R, gives the desired response, and
obviously there is no unique solution, as is typical of the



design process. So, if R, is selected as 1 kQ, then R, = 4
kQ. And for R, = 2 kQ, R, = 8 kQ, and so on.

6.12 Find V, in the circuit of Fig. 6-17.

2k

[ 'A%
4kQ V_
__I_ NN~ > | o

}
S kQ

6V —

Fig. 6-17

By nodal analysis at the noninverting input terminal,

which simplifies to V; = 3V + - 8. But by voltage
division,

And so,

V,=3(3V)— 8 from which V=8V



6.13 For the op-amp circuit of Fig. 6-18, calculate V. Then
assume op-amp saturation voltages of £ 14 V, and find
the resistance of the feedback resistor Ry that will result
in saturation of the op amp.

Fig. 6-18
By voltage division,

4
V,= —— x5=2V
4+ 6

Then since V_=V_ = 2 V, the node-voltage equation at
the inverting input terminal is

5—2 ¥V, -2

ey — =1 which results in V,=—-10V
3 12

Now, R is to be changed to obtain saturation at one

of the two voltage saturation levels. From KCL applied at
the inverting input terminal,



— =0 or R, +V,-2=0

So, Ry = 2 - V). Clearly, for a positive resistance value of
Ry, the saturation must be at the negative voltage level
of — 14 V. Consequently, Rf= 2 — (— 14) = 16 kQ.

Actually, this is the minimum value of R; that gives
saturation. There is saturation for Ry = 16 kQ.

6.14 For the circuit of Fig. 6-19, calculate the voltage V,
and the current /.

akQ ]
V.,
S,

6v —

+

"
12 KO Illkilg o

—
-

Fig. 6-19

In Fig. 6-19, observe the lack of polarity references
for V_and V +. Polarity references are not essential

because these voltages are always referenced positive
with respect to ground. Likewise the polarity reference
for V, could have been omitted.

By voltage division,



I
V,=V_. =—

-
r

-V, =06V,
8

4+ | 2

With V_ = 0.6 V,, the node-voltage equation at the
inverting input terminal is

6-- 0.6V, V,—06V, I
= + T 0 which simplifies to V.

I
b
<

The current I, can be obtained from applying KCL at the
op-amp output terminal:

12 12 12 —0.6(12)

= — 4 = 2.1 mA
10 8412 16

@

6.15 Determine V; and /g in the circuit of Fig. 6-20.

The voltage V, can be found by writing nodal
equations at the inverting input terminal and at the V;

node and using the fact that the inverting input terminal
is effectively at ground. From summing currents

20 kQ y 4kQ




Fig. 6-20

into the inverting input terminal and away from the
V; node, these equations are

2
—+—=10 and — 4+ — + =0
10 20 20 5 4

which simplify to

V, = -4V and 10V, — 5V, =0

Consequently,

V=2V, =2—4)= —8V

Finally, I is equal to the sum of the currents flowing

away from the op-amp output terminal through the 8-kQ
and 4-kQ resistors:

~8 8 (-4
[,=—— 4 — = —2mA
8 4

6.16 Find V|, in the circuit of Fig. 6-21.



\
s | 9 kQ
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Fig. 6-21

The node-voltage equation at the V; node is

(l 1 1 1 l 4
5 4 25475 8 8 4

which upon multiplication by 40 becomes 27V; - 5V, = 40,
Also, by voltage division,

7.5
V+ = ——— Vl = 04?5 Vl
154+ 25

Further, since the op amp and the 9-kQ and 3-kQ resistors
form a noninverting amplifier,

V, = (1 + $)(0.75V)) = 3V, or V

[

[
L
o



Finally, substitution for V; in the node-voltage equation
yields

V
2?(;")*&1,:40 and so V=10V

6.17 Determine V, in the circuit of Fig. 6-22.

+ O

o

6 kQ
12kQ)
B k() ) 4 kO Vv
1
&
N /
SV = 2kQ
Fig. 6-22

Since V_ = 0V, the node-voltage equations at the V3,
and inverting-input terminal nodes are

+ + =0 and +-2=0

Vi
5 +

&=
=

I
Lo =]
=

|
-
==

—
[ o I

Multiplying the first equation by 24 and the second
equation by 12 gives



25V, — 4V, = 24 and W, 4+ V,=0

from which V, can be readily obtained: V, = -1.95 V.

6.18 Assume for the op amp in the circuit of Fig. 6-23 that
the saturation voltages are Vy = = 14 V and that R, = 6

kQ. Then determine the maximum resistance of R, that
results in the saturation of the op amp.
The circuit of Fig. 6-23 is a noninverting amplifier,

the voltage gain of whichisG =1 + 6/2 = 4.
Consequently, V, = 4V, and for saturation at the

positive level (the only saturation possible), V. = 14/4 =
3.5 V. The resistance of R, that will result in this voltage
can be obtained by using voltage division:

Vi=———x49=35 or 49 = 35 + 35R,

—ANA— NG )
./Rr :

49V = 10 k€2 v,

—l— -0

Fig. 6-23

and thus



14
R,=— =4kQ
3.5
This is the maximum value of resistance for R, for which

there is saturation. Actually, saturation occurs for R, = 4
kQ.

6.19 In the circuit of Fig. 6-23, assume that R, = 2 kQ, and
then find what the resistance of R must be for the op
amp to operate in the linear mode. Assume saturation
voltages of Vy = = 14 V.

With R, = 2 kQ, the voltage V., is, by voltage division,

10
/= x 49 =408 V
10 + 2

Then for V, = 14 V, the output voltage equation is

R.
14:4%(L+;)=4ﬂ3+1mnf

Therefore,

14 — 4.08
Ry = = =486k

Clearly, then, for V, to be less than the saturation

voltage of 14 V, the resistance of the feedback resistor
R; must be less than 4.86 kQ.

6.20 Obtain the Thévenin equivalent of the circuit of Fig.
6-24 with V4, referenced positive at terminal a.



1.5V —=

—

225k
2.5kQ

Fig. 6-24

By inspection, the part of the circuit comprising the op
amp and the 2.5-kQ and 22.5-kQ resistors is a noninverting
amplifier. Consequently,

22.5
V, =(1 +:__—-)>< 15=15V

Since Vy, = V,,, the node voltage equation at terminal a is

Viw Vip— 1.5 Vi — 15
2 I 4

=0 and so Vip =3V

If a short circuit is placed across terminals a and b, then



Consequently,

WV +“:
6 k2 Eﬂkﬂg
‘ I
Fig. 6-25

Although nodal analysis can be applied, it is simpler to
view this circuit as a summer cascaded with a noninverting
amplifier. The summer has two inputs, V, and 4 V.

Consequently, through use of the summer and noninverting
voltage formulas,

7 7 18 '
V, = —(-_x4+—1»;, (1 +—)= —32 -7V,
1.5 4 6

So,



8V, = —32 and V,=—4V

6.22 Find V|, in the circuit of Fig. 6-26.

The circuit of Fig. 6-26 can be viewed as two
cascaded summers, with V, being one of the two inputs

to the first summer. The other input is 3 V. Then, the
output V, of the first summer is

V, = —[20) + 2V,] = —18 =2V,
6 k02
AN
12 k2 24 k2
1 4'A"A"
2kQ
AMNN = 12k =
AN
+ + +

It

1y
] g 16 mg Vv,

Fig. 6-26

The output V, of the second summer is

L]
&

V, = —[3(=2) +

¥ H

(=
b

Substituting for V; gives

V,=6—2—18 — 2V,) = 6 + 36 + 4V,



Finally, v, = — % = —-14 V.
6.23 Determine V, in the circuit of Fig. 6-27.

i
=

T &
*
Fig. 6-27

In this cascaded arrangement, the first op-amp
circuit is an inverting amplifier. Consequently, the op-
amp output voltage is — (6/2)(— 3) = 9 V. For the
second op amp, observe that V_ = V_ = 2 V. Thus, the

nodal equation at the inverting input terminal is

3+ -2 =0 and so V,=—12V

Perhaps a better approach for the second op-amp circuit is
to apply superposition, as follows:

V= =39 +{1+3H2)=—-18+6=—-12V

6.24 Find V;, and V5, in the circuit of Fig. 6-28.
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Fig. 6-28

Before starting the analysis, observe that because of the
zero voltages across the op-amp input terminals, the
inverting input voltages arev;_ =8V and V,_ =4 V. The

two equations needed to relate the output voltages can be
obtained by applying KCL at the two inverting input
terminals. These equations are

§—-V, 8-V, §&8§-4 4-V,, 4 4-38
+ + = {) and —_— 4+ — =0
10 20 40 50 100 40

These equations simplify to

The solutions to these equations are V5 = 12.5 V and V,,
=1V

6.25 For the circuit of Fig. 6-29, calculate V4, V5q, 11, and

I,. Assume that the op-amp saturation voltages are *+
14 V.



— - I, 1244
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Fig. 6-29

.|]_4

Observe that op amp 1 has no negative feedback
and so is probably in saturation, and it is saturated at 14
V because of the 5 V applied to the noninverting input
terminal. Assume this is so. Then this 14 V is an input to
the circuit portion containing op amp 2, which is an
inverter. Consequently, V,, = -(3/12)(14) = -3.5 V. And,

by voltage division,

12
V.= (=35 = —2625V
12 + 4

Since this negative voltage is applied to the inverting
input of op amp 1, both inputs to this op amp tend to
make the op-amp output positive. Also, the voltage
across the op-amp input terminals is not approximately
zero. For both of these reasons, the assumption is
confirmed that op amp 1 is saturated at the positive

saturation level. Therefore, Vo = 14V and V,5 =-3.5 W
Finally, by KCL,
14 -35 =35
I,=—=117TmA and [, =—— + = — 1.39 mA
12 3 4+ 12



Supplementary Problems

6.26 Obtain an expression for the load current j, in the

circuit of Fig. 6-30 and show that this circuit is a
voltage-to-current converter, or a constant current
source, suitable for a grounded-load resistor.

Fig. 6-30

Ans. i; = -v;/R; i is proportional to v; and is independent
of R,

6.27 Find V, in the circuit of Fig. 6-31.

6 k0

10k

12 kit
AN Ay
4 ki
2 £ kit
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e




Fig. 6-31

Ans. -4V

6.28 Assume for the summer of Fig. 6-5 that R, = 12 kQ,
and obtain the values of R,, R., and R that will result in
an output voltage of vy = - (8v, + 4v, + 6Vv,).

Ans. R, = 6 kQ, R, = 8 kQ, Rf = 48 kQ

6.29 In the circuit of Fig. 6-32, determine V, and I, for V, =
6VandV,=0VW.

Ans. -5V, -0.625 mA
6.30 Repeat Prob. 6.29 for V, =16 Vand V, =4 V.

o "A"A", A
F k0
l AN - L
v= 12k0 . .
EVT “,:,-[ L,*__:'_[_J t:kn%v,
i SR |
=
Fig. 6-32

Ans. 10V, 1.08 mA

6.31 For the circuit of Fig. 6-32, assume that the op-amp
saturation voltages arc = 14 V and that V, = 0 V.

Determine the range of V, for linear operation.
Ans. -6.67V <V,< 12V

6.32 For the difference amplifier of Fig. 6-16, let R =12kQ,
and determine the values of R, Ry, and R, to obtain v



= Vp - 2Vp.

Ans. R, = 6 kQ; Ry and R, have resistances such that R,
= 2RC

6.33 In the circuit of Fig. 6-33, let V. = 4 V and calculate
Vo and [g.

W\
"
——NN h i
V= o +
9 k0 § ¥,
b k02 =
Fig. 6-33

Ans. 7.2V, 1.8 mA

6.34 For the op-amp circuit of Fig. 6-33, find the range of
V. for linear operation if the op-amp saturation voltages

are Vo = x14 V.
Ans. -7.78V <V, < 7.78V

6.35 For the circuit of Fig. 6-34, calculate V, and I, for V, =
OVandV,=12V.



Fig. 6-34

Ans. -12 V, -7.4 mA
6.36 Repeat Prob. 6.35forV, =4 VandV, =8V

Ans. 8V, 3.27 mA

6.37 Determine V, and /, in the circuit of Fig. 6-35 for
V,Fig. 6-35forV,=1.5Vand V, =0V

12k0) BkQ

AN ' AN
6 ke “ﬂ%
L+ +
HIT— v, ;—L_/ [ 21::1% v,
Fig. 6-35

Ans. -11V, -6.5 mA
6.38 Repeat Prob. 6.37 for V, =5V and V, = 3 V.



Ans. -5.67 sV, -3.42 mA

6.39 Obtain V, and /j in the circuit of Fig. 6-36 for V, = 12
VandV,=0V.

2kQd

g k0 6 ki)

—AA——AA \L
/
V= nng
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Fig. 6-36

Ans. 10.8 'V, 4.05 mA
6.40 Repeat Prob. 6.39 for V, =4 Vand V, =2 V.

Ans. -14.8 V, -7.05 mA
6.41 In the circuit of Fig. 6-37, calculate V, if V; = 4 V.
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Fig. 6-37




Ans. -3.10V
6.42 Assume for the circuit of Fig. 6-37 that the op-amp
saturation voltages are V, = £14V. Determine the
minimum positive value of V; that will produce
saturation.

Ans. 18.1V
6.43 Assume for the op-amp in the circuit of Fig. 6-38 that
the saturation voltages are V, = = 14 V and that Ry =

12 kQ. Calculate the range of values of R, that will
result in saturation of the op amp.

Fig. 6-38

Ans. Ry = 7 kQ

6.44 Assume for the op-amp circuit of Fig. 6-38 that R, =
10 kQ and that the op-amp saturation voltages are V, =
+ 13 V. Determine the range of resistances of Rs that
will result in linear operation.

Ans. 0 Q = Ry = 8.625 kQ

6.45 Obtain the Thévenin equivalent of the circuit of Fig.
6-39 for V. = 4 V and Rf = 8 kQ. Reference V4, positive



toward terminal a.

2k

J AN
+ 6 k) I
Ry
Vo= VWV likﬂg
4 k02
- _l_ - {:b
Fig. 6-39

Ans. 5.33V, 1.33 kQ
6.46 Repeat Prob. 6.45 for V. =5 V and Ry = 6 kQ.

Ans. 6.11V, 1.33 kQ

6.47 Calculate V, in the circuit of Fig. 6-40 with R replaced
by an open circuit.

Ans. 8V
6.48 Repeat Prob. 6.47 for Ry = 4 kQ.
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Fig. 6-40

Ans. -4.8V

6.49 Calculate V, in the circuit of Fig. 6-41 forV, =2V

andV,=0V.

BV*—I'__

Fig. 6-41

Ans. 1.2V
6.50 Repeat Prob. 6.49 for V, =3 Vand V, =2 V.



Ans. 2.13V
6.51 Determine V;4 and V,q in the circuit of Fig 6-42.

20 k02
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Fig. 6-42

Ans. Vlo = 16V, K20 = 105 V



Chapter 7
PSpice DC Circuit Analysis

INTRODUCTION

PSpice, from MicroSim Corporation, is a computer
program that can be used on many personal computers
(PCs) for the analyses of electric circuits. PSpice is a
derivative of SPICE which is a circuit simulation program
that was developed in the 1970s at the University of
California at Berkeley. SPICE is an acronym for Simulation
Program with Integrated Circuit Emphasis. PSpice was the
first derivative of SPICE that was suitable for use on PCs.
PSpice and SPICE, which are similar in use, are both used
extensively in industry. There are various versions of each.

Principally, only the creation of a PSpice circuit file (also
called source file) is presented in this chapter. (But much of
this material applies as well to the creation of a SPICE circuit
file.) This creation requires the use of a text editor. Typically
there are two text editors that can be used, one of which is
in what is called the PSpice Control Shell.

The PSpice Control Shell is a menu system that includes a
built-in text editor. The Control Shell can be run by simply
typing PS at the DOS prompt (perhaps C: >), and then
pressing the Enter key. After a few seconds, a menu
appears. Menu items can be selected by using either the
keyboard, mouse, or arrow keys to move horizontally and
vertically within the menus. Running PSpice interactively
using the Control Shell requires some study, at least for
most PSpice users. The MicroSim Corporation has a User’s



Guide that includes an explanation of the Control Shell,
among many other features. And there are circuit analysis
textbooks that explain its use. But no explanation will be
given here.

Instead of editing via the Control Shell, some PSpice users
may prefer to use an ASCII text editor, assuming one has
been installed to be accessed from PSpice. In this case, the
first step to utilizing PSpice might be at the DOS prompt to
type CD PSPICE and then press the Enter key to change to
the PSpice directory. Then, depending on the particular
ASCI| text editor, the next step may be to just type ED
EEL.CIR and enter it. The ED is the code for edit, and
EEL.CIR is the name of the circuit file. Another name such as
EE.CIR is as suitable, but the extension. CIR must be
included. Now the editing process can be begun and the
circuit file created.

After the creation of the circuit file, the computer must be
instructed to run the PSpice program with the particular
circuit file. If the Control Shell is being used, then the
Analysis menu item can be selected for doing this. If it is not
being used, then all that is necessary is to type PSPICE
followed by the name of the circuit file. The computer then
runs the program and places the results in an output file
that has the same name as the circuit file except that the
extension. OUT replaces the extension. CIR.

Assuming no error notification, the final step is to print
the output file. If the Control Shell is being used, this
printing can be obtained via the Quit menu item. If it is not
being used, then the printout can be obtained by typing
PRINT followed by the name of the output file.

BASIC STATEMENTS

A specific PSpice circuit file will be presented before a
general consideration of the basic statements. Below is the



circuit file for the circuit of Fig. 7-1.
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Fig. 7-1

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-1
Vi
R1
I1
R2
R3
R4
V2
R5
I2
« END

L D WMk D
o B o I - PE O TS W
oo 00 W =) Oh AN 00

[

In this circuit file, the first line, which is called a title line,
identifies the circuit being analyzed. The last line is an.END
line and is required complete with the period. The lines in
between define the circuit, with one component per line.
Each of these lines begins with a unigue component name,
the first letter of which identifies the type of component.
Following each name are the numbers of the two nodes
between which the component is connected. And following
these node numbers is the electrical value of the
component.

If PSpice is run with this circuit file, the following appears
in the output file:



HODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1} 8.0000 (2} B. 4080 {3} -16.0690 {4) -g.o000

VOLTAGE SOURCE CURRENTS
HAME CURRENT

Wi 1.020E-01
V2 B.965E-01

TOTAL POWER DISSIPATION -7.99E+00 WATTS

This printed output includes node voltages and voltage-
source currents. The directions of these currents are into the
first specified nodes of the voltage sources. The specified
total power dissipation is the total power provided by the
two voltage sources. Since this power is negative, these
sources absorb the indicated 7.99 W. The E designates a
power of 10, as often does a D in a SPICE output. In a SPICE
output, though, the total power dissipation is the net power
generated by all the independent sources, both voltage and
current.

Now consider PSpice circuit file statements in general.
The first line in the circuit file must be a title statement. Any
comments can be put in this line. For future reference,
though, it is a good idea to identify the circuit being
analyzed. No other such line is required, but if another is
desired, one can be obtained by starting the line with an
asterisk (*) in column 1. Although not recommended, the
title line can be left blank. But the circuit description (the
component lines) cannot start in the first line.

Between the title line and the. END line are the
component or element lines, which can be in any order.
Each consists of three fields: a name field, a node field, and
a value field. Spaces must appear between the fields and
also between the node numbers within the node field. The
number of spaces is not critical.

In the name field the first letter designates the type of
component: R for resistor, V for independent voltage source,
and | for independent current source. The letters do not
have to be capitalized. Each R, V, or | designator is followed
by some label to identify the particular component. A label



can consist of letters as well as numbers, with a limit of
seven in SPICE.

Each node field comprises two nonnegative integers that
identify the two nodes between which the particular circuit
component is connected. For a resistor, it does not matter
which node label is placed first. For a voltage source, the
first node label must be the node at which the voltage
source has its positive polarity marking. For a current
source, the first node label must be for the node at which
the current enters the current source. Note that this node
arrangement pertains when positive voltages or currents are
specified, as is usual. If negative values are specified, the
node arrangement is reversed.

As regards node numbers, there must be a 0 node. This is
the node which PSpice considers to be the ground node. The
other nodes are preferably identified by positive integers,
but these integers need not be sequential.

The value field is simply the value—positive or negative—
of the component in ohms, volts, or amperes, whichever
applies. The resistances must be nonzero. Note that the
values must not contain commas.

A comment can be inserted in a component line by
placing a semicolon after the value field, then the comment
is inserted after the semicolon.

As another illustration, consider the circuit of Fig. 7-2. A
suitable circuit file is

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-2
Vi 4 0 2E3

Rl 4 9 30K
R2 0 5 40MEG
Il 0 9% 70OM



1 A
VI = 2kV R2 < 40 MQ 11<>?onm

0

Fig. 7-2

In this circuit file, observe the use of suffix letters in the
value field to designate powers of 10. The 2E3 for the VI
statement could as well be 2K. Following is a complete
listing of PSpice suffix letters and scale factors.

F 10°13 u 10 MEG 10°
P 10 12 M 103 G 10°
N 10°° K 10° T 10!2

These suffix letters do not have to be capitalized; PSpice
makes no distinction between uppercase and lowercase
letters.

DEPENDENT SOURCES

All four dependent sources are available in PSpice. Their
identifiers are E for a voltage-controlled voltage source, F for
a current-controlled current source, G for a voltage-
controlled current source, and H for a current-controlled
voltage source.



For an illustration of dependent source statements,
consider the circuit of Fig. 7-3, and the corresponding circuit

file below.
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Fig. 7-3

In Fig. 7-3 the two “dummy” voltage sources VD1 and
VD2, with zero in the value field, are needed because of the
PSpice requirement that for a current to be a controlling
quantity, it must flow through an independent voltage
source. If no such source is present, then a “dummy”
voltage source of zero volts must be inserted. The voltage is
made zero to avoid affecting the circuit operation. The 0
need not be specified, though, because PSpice will use a

default of 0 V.



CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-=3

Gl 01 40 B8M
R1 10 6K

VDl 2 1 0

R2 3 2 12K

H1 3 4 VD2 2K
R3 4 5 17K

R4 5 0 12K

F1 4 0 VD1 3
R5 4 & 13K

El 6 7 5 0 3
R6 8 7 15K.
vD2z 0 8 ]

R7 7 9 14K

VS 9 0 30

- END

For each dependent source statement, the first two nodes
specified are the nodes between which the dependent
source is positioned. Further, the arrangement of these
nodes is the same as for an independent source with regard
to voltage polarity or current direction.

For a voltage-controlled dependent source, there is a
second pair of specified nodes. These are the nodes across
which the controlling voltage occurs, with the first node
being the node at which the controlling voltage is
referenced positive. For a current-controlled dependent
source, there is an independent voltage source designator
instead of a second pair of nodes. This is the name of the
independent voltage source through which the controlling
current flows from the first specified node of the voltage
source to the second. The last field in each dependent
source statement is for the scale factor or multiplier.

PSpice does not have a built-in component for an ideal
operational amplifier. From the model shown in Fig. 6-2b,
though, it should be apparent that all that is required to
effectively obtain an ideal op amp is a single voltage-
controlled voltage source with a huge voltage gain, say 500
000 or more. If a nonideal op amp is desired, resistors can
be included as shown in Fig. 6-2a.



.DC AND. PRINT CONTROL STATEMENTS

So far, the only voltages and currents obtained have been
node voltages and independent voltage source currents.
Obtaining others requires the inclusion of a. DC control
statement, and also a. PRINT statement in the source file.

If a circuit had, say, a 30-V dc voltage source named VI, a
suitable. DC control statement would be

.DC vl 30 30 1

(VI was selected for purposes of illustration, but any
independent voltage or current source can be used as a. DC
control statement.) Note that two value specifications are
necessary, which are both 30 here. The reason for having
two of them is to allow for a variation in voltage. If, for
example, three analyses were desired, one for VI = 30 V,
another for VI = 35V, and a third for VI = 40 V, the
statement would be

. DC vli 30 40 5

where 30 is the first voltage variation, 40 is the last one,
and 5 is the voltage increment between the variations.

Now, suppose it is desired to obtain the voltage on node 4
with respect to ground, the voltage across nodes 2 and 3
with node 2 referenced positive, the voltage across resistor
R6 with the positive reference at the first specified node of
that resistor, and the current through resistor R2 with the
reference direction of the current being into the first
specified node of that resistor. The required. PRINT
statement would be

.PRINT DC Vv{4) Vv(2,3) V(R6) I(R2)



When a. PRINT statement is used, only the voltages and
currents specified in that statement will appear in the
output.

The DC must be included in the.PRINT statement to
specify the type of analysis. Further, although optional, a DC
specification is often included in each dc independent
source statement between the node and value fields as in,
for example,

vi 3 4 DC 10.

With some versions of SPICE, only currents flowing
through voltage sources can be specified as in, for example,
I(V2). Also, voltages must be specified across nodes and not
components.

RESTRICTIONS

PSpice requires a dc path to ground from each node. This
is seldom a problem for dc circuits, but must be considered
for some other circuits, as will be seen. Resistors and
voltage sources (and also inductors) provide dc paths, but
current sources (and capacitors) do not. A resistor of huge
resistance can always be inserted between a node and
ground to provide a dc path. The resistance should be large
enough that the presence of the resistor does not
significantly affect the circuit operation.

Each node must have at least two circuit components
connected to it. This restriction poses a slight problem at an
open circuit. One simple solution is to insert a resistor of
huge resistance across the open circuit.

Finally, PSpice will not allow a loop of voltage sources (or
of inductors). The insertion of a resistor in series with one of
the voltage sources will eliminate this problem. The



resistance should be small enough that the presence of the
resistor does not significantly affect the circuit operation.

Solved Problems

7.1 Repeat Prob. 4.11 using PSpice. Specifically, find the
mesh currents /; and /5 in the circuit of Fig. 4-14.

Figure 7-4 is Fig. 4-14 (redrawn and labeled for
PSpice). Such a circuit will be referred to as a PSpice
circuit. Following are the corresponding circuit file and
the printed output obtained from running PSpice with
this circuit file. Observe that/; = I(R1) =-8 Aand/, =1

(R3) = 1 A are in agreement with the answers to Prob.

4.11.
| RI i R3 4
A"AAY AA'AY
80 20 +
40
R4S
0.5V, 1, 5
n.-_ 120V V2 =60V

Fig. 7-4



CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-4
El 0 45 0.5

Rl 8

R2 [

V1 120

R3 2

R4 4

va 60

.DC V1 120 120 1

.FRINT DC I(R1) I(R3)

- EHD
d g g e ok o gk gk ok ok ok o ok ok ok gk ok gk o o ok ok ok ok ok ok o ok o ok ok ok ok ok ok ok ok e o ok ol ok ol ke o o o e e ok ok ok ok o ok e e ok ok ok o o o o

o B L B
L RS I JE VR 8

V1 I(R1) I(R3)
1.200E+02 =8.000E+00  1.000E+00

7.2 Repeat Prob. 4.15 using PSpice. Specifically, find the
power absorbed by the dependent source in the circuit
of Fig. 4-19.

Figure 7.5 is the PSpice circuit corresponding to the
circuit of Fig. 4-19.

130 9 14V
A . i ——————
RO V6
Is
6 18 Q2
——e—AAA——4 7
R4
Vs =7V
I 8
R5 116

Since PSpice does not provide a power output except for
the total power produced by independent voltage sources,



the power absorbed by the dependent source must be
calculated by hand after PSpice is used to obtain the voltage
across the dependent source and the current flowing into
the positive terminal of this source.

In the following circuit file, observe in the V2 statement
(V2 50 -16) that node 5 is the first specified node, which in
turn means that the specified voltage must be negative
since node 5 is not the positive node. Node 5 should be the
first specified node because the controlling current /, flows

into it. Remember that a controlling current must flow
through an independent voltage source.

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-5
R1 20
Vi 10
R2 15
H1 v2 20
R3 35
V2 -16
V3 20
R4 18
Vs 7
RS 11
R6 13
V6 14
.DC V1 10 10 1
.PRINT DC WV(H1) I(H1)
.END
ke ek ke ek ke k kR kR k ok k ok ok

LC N I O T -SR-S T
=W D ) =] DN B LD D

V1 V(H1) I(H1)
1.000E+01 8.965E+00 -1.080E-01

The power absorbed by the dependent source can
be obtained from the printed output:

P = V(HI1)} x I(H1) = 8.965(—0.108) = —0.968 W
which agrees with the answer to Prob. 4.15.

7.3 Repeat Prob. 4.22 using PSpice. Specifically,
determine the current / in the circuit of Fig. 4-25.



Figure 7-6 is the PSpice circuit corresponding to the
circuit of Fig. 4-25. This PSpice circuit, though, has an
added dummy voltage source VD. It is the current in
this source that is the controlling current for the two
dependent sources. Again, remember that a controlling
current must flow through an independent voltage
source.

R2

1 f il 2

T LI
( ) RI60) Hi 121
1-'1<1> 0.51 RICI20 6 A 3 ' 4

VD=0V RAS 180

LH]

Fig. 7-6
Below is the corresponding circuit file along with the
printed output obtained when this file is run with PSpice.
The output I(R3) = 3 A agrees with the answer to Prob. 4.22.

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-6

F1 01 VD 0.5
Rl 1 0 12
R2 1 2 6
I1 1 2 6
R3 2 3 6
VD 3 0
H1 2 4 VD 12
R4 4 0 18
.DC I1 & 6 1
.PRINT DC I(R3)
- END

sk ok e o e ok ok o ok e e o o ok ok ok ok ok e e ok ok o o ok ok ok e e ok o e ok ok ok ke e e ok ol o gk ok ok ok e ok ok ke e ok ok ko e ok ok e ok e
I1 I(R3)

6.000E+00 3.000E+00



7.4 Repeat Prob. 4.49 using PSpice. Specifically,
determine the mesh currents /; I,, and /5 in the circuit

of Fig. 4-39.

Figure 7-7 is the PSpice circuit corresponding to the
circuit of Fig. 4-39. A dummy voltage source V2 has
been included for the controlling current /, to flow
through.

Following is the corresponding circuit file along with
the printed output obtained when this file is run with
PSpice. The currents / (R1) =/; = - 3.260 mA, | (R4) =
I, =-1.989 mA, and / (R3) = /5 = 1.823 mA agree
within three significant digits with the answers to Prob.
4.49.
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Fig. 7-7



CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7=7

Vi 1 0 10

Rl 1 2 5K

R2 2 3 BK

El1 3 4 & 0 2
V2 4 0

F1 &6 0 Wwv2 3
R3 6 0 10K

vi 2 5 20

R4 5 6 6K

.DC V1 10 10 1
.PRINT DC TI(Rl) I(R4) I(R3)

END

.

T % ok o ok e ok ok vk ok o o o ok ok ok ok ok e ok e o o % o ok e ok o o o ok o e o o o ok o ok 9k o ok o o o o i ok ke o o o o o de o e e ok o ke e ke o
V1 I(R1) I(R4) I(R3)

1.000E+01 -3.260E-03 -1,989E-03 1.823E-03

7.5 Repeat Prob. 5.11 using PSpice. In other words, obtain
the Thévenin equivalent of the circuit of Fig. 5-20a.

Figure 7-8 is the PSpice circuit corresponding to the
circuit of Fig. 5-20a. This PSpice circuit has a dummy
voltage source VI inserted for sensing the controlling

current /.
1 4Q 2
NN O a
R1
R1S 120
Hl 81 R2 260 3 44/
Vi= 0OV
0

Fig. 7-8



CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-8
H1 1 0 V1 8

L.TF WV(2,0)}) V1

EEREARRRAR KRR A ERRRR AR A A ARKAR AR A A AR ARARAAAA A AR A AR A AR A A A A AR AR A A AT AR A AR AL X

NODE  VOLTAGE NODE  VOLTAGE NODE  VOLTAGE
(1) 0.0000 (2) 0.0000 (3) 0.0000
* kK SMALL-SIGNAL CHARACTERISTICS

V(2,0)/V1 = -2.500E-01

INFPUT RESISTANCE AT V1 = 9.600E+00

OUTPUT RESISTANCE AT V(2,0) = 3.000E+00

Above is the corresponding circuit file along with
the PSpice output. In the circuit file a. TF statement has
been included to obtain the Thévenin resistance. The
format of this statement is

.TF (output variable) (independent source)

The resulting output consists of three parts:

1. The ratio of the output variable to the specified source
quantity. For example, in the case in which the
independent source provides an input voltage and the
output is the output voltage, this ratio is the voltage
gain of the circuit.

2. The second is the resistance “seen” by the
independent source. It is the ratio of the source
voltage to the source current flowing out of the
positive source terminal with the other independent
sources deactivated. In an electronic circuit, this
resistance may be the input resistance.



3. The final output part consists of the output resistance
at the terminals of the output variable, and includes
the resistance of any resistor connected across these
terminals. For the present case, this output resistance
is the Thévenin resistance, which is the desired
quantity.

The voltage gain and the input resistance parts of the
output are not of interest. The printed output resistance
of 3 Q, the Thévenin resistance, agrees with the answer
to Prob. 5.11. The Thévenin voltage is zero, of course,
as is specified by the printed node 2 voltage.

7.6 Repeat Prob. 5.46 using PSpice. Specifically, obtain
the Thévenin equivalent of the circuit of Fig. 5-49 to the
left of terminals a and b.

1‘|— "'|— a
a8 10V
1< 10MQ

Fig. 7-9

Figure 7-9 is the PSpice circuit corresponding to the
circuit of Fig. 5-49. A resistor R3 has been inserted
across the open circuit at terminals a and b to satisfy
the PSpice requirement that at least two components
must be connected to each node. However, the



resistance of R3 is so large that the presence of this
resistor will not significantly affect the circuit operation.

Below is the corresponding circuit file along with
the resulting output. A.TF statement has been included
in the circuit file to obtain the Thévenin resistance. No
.DC or .PRINT statements have been included because
the node voltages will be printed out automatically.
Observe that node voltage 4 is essentially the same as
the voltage across terminals 4 and 5, the Thévenin
voltage, because the voltage drop across resistor R4 is
negligible. The obtained node 4 voltage value of 26 V
and the output resistance value of 18.67 Q, which are
the Thévenin quantities, agree with the answers to
Prob. 5.46.

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-9
R1 1 16
Vi 1 =48
rR2 2 la
H1 O Vi B
v 4 10
R3 4 1OMEG
R4 &5 8
.TF V(4,5) V1
. END
dede o de ot e ek e ok e e ke ek e ok ok ok o ok v ok ok o ol ol ke v ol e e ol e o e o e e e e e e e e ok ok ki ok ok o iy e e ok o e ok e e e

(=T SN S =]

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1) =32.0000 (2) 16.0000 (3) =16.0000 (4) 26.0000

(5) 20.80E-06

VOLTAGE SOURCE CURRENTS

HAME CURRENT
V1 2.000E+00
vz =2.600E-06

TOTAL POWER DISSIPATION 9.60E+01 WATTS

%k ok SMALL-SIGNAL CHARACTERISTICS

V(4,5)/V1 = =3.333E-01
INPUT RESISTANCE AT V1 = 2.400E+01

QUTPUT RESISTANCE AT V(4,5) = 1.867E+01



7.7 Repeat the first part of Prob. 6.13 using PSpice.
Specifically, compute V, in the circuit of Fig. 6-18.

Figure 6-18 is redrawn in Fig. 7-10a, for
convenience. Figure 7-10b shows the corresponding
PSpice circuit. Observe that the op amp has been
deleted, and a model for it included. This model El is
simply a voltage-controlled voltage source connected
across the terminals that were the op-amp output
terminals. The 10° voltage gain of this source is not
critical.

Following is the corresponding circuit file along with
the pertinent part of the output obtained when PSpice
is run with this circuit file. Here, Vo = V(4) = —10 V,
which is the same as the answer to the first part of
Prob. 6.13.
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CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-10b

Vi 10 5

Rl 1 2 6K

R2Z 2 0 4K

R3 1 3 IK

RF 3 4 12K

R4 4 0 20K

El 4 0 2 3 1MEG

.END
kkddkkk ke bkttt hetdd ettt hhdt kRt dhhdh kbt bdrrhtdhtthd
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1) 5.0000 (2) 2.0000 (3) 2.0000 (4) -10.0000

7.8 Repeat Prob. 6.20 using PSpice. Specifically, obtain
the Thévenin equivalent of the circuit of Fig. 6-24.

Figure 7-1 la is the same as Fig. 6-24, and is
included here for convenience. Figure 7-1 |b is the
corresponding PSpice circuit in which the op amp has
been replaced by a model El that is a voltage-controlled
voltage source.

Below is the corresponding circuit file along with
the pertinent portion of the output file. Node voltage
V(3) = 3 Vis the Thévenin voltage, and the output
resistance of 571.4 Q is the Thévenin resistance. Both
values agree with the answers to Prob. 6.20.
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CIRCUIT FILE FOR FIG. 7-11b
Vi o1 1.5

R1 1K

R2 2.5K

R3 22.5K

El 1 2 1MEG

R4 4K

R5 2K

TR W(3) Wi

. END
kkkkkkbkkkkhkhkkkbhkhhdhkbdh bk hdt itk hkhkhkkdhk btk hhhtddkhkdhdddhk bkt b hh kbt hht

L e e B B
QWO ED WD

NODE  VOLTAGE NODE  VOLTAGE NODE  VOLTAGE NODE VOLTAGE
(1) 1.5000 (2) 1.5000 (3) 3.0000 (4 ) 15,0000
OUTPUT RESISTANCE AT V(3) = 5.714E+02

7.9 Repeat Prob. 6.24 using PSpice. Specifically, obtain
the voltages V4 and V5, in the circuit of Fig. 6-28.

Figure 7-12a is the same as Fig. 6-28 and is
included solely for convenience. Figure 7-12b is the
corresponding PSpice circuit in which the two op amps
have been replaced by models El and E2, which are
voltage-controlled voltage sources.

Following is the corresponding circuit file and the
pertinent part of the output file. The results of V(3)=
Vig = 12.5V and V(4) = V,5 = 1 V agree with the

answers to Prob. 6.24.
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CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-12b

V1 B

R1 10MEG

R2 40K

R3 10K

R4 20K

RS 50K

R& 100K

R7 10MEG

v

El

E2

. END
L e T T T e T T 2T

4
12 1MEG
6 5 1MEG

L oOh U B B L B
(=N === =T0 R L )

NODE  VOLTAGE NODE  VOLTAGE NODE VOLTAGE NODE  VOLTAGE
(1) 8§.0000 (2)°  8.0000 (3) 12.5000 (4) 1.0000
(5) 4.0000 (6) 4.0000

Supplementary Problems

7.10 Use PSpice to compute /, in the circuit of Fig. 4-28.
Ans. -0.333 A

7.11 Use PSpice to determine I in the circuit of Fig. 4-45,
Ans. -3.53 mA

7.12 Use PSpice to find the Thévenin voltage at terminals
a and b in the circuit of Fig. 5-44. Reference V,

positive at terminal a.
Ans. 143.3V

7.13 Use PSpice to obtain V, in the circuit of Fig. 6-21.
Ans. 10V

7.14 Use PSpice to find V, in the circuit of Fig. 6-22.
Ans. -1.95V

7.15 Use PSpice to determine V;, and V5, in the circuit of
Fig. 6-42.

Ans. 1.6V, 105V



7.16 Without using PSpice, determine the output
corresponding to the following circuit file.

CIRCUIT FILE FOR PROB. 7.16

Vvi 1 0 12
Rl 1 2 2
R2 2 3 3
vz 3 0 10
R3 2 4 4
Vvi 0 4 20

.DC V1 12 12 1
.PRINT DC I(R1)
.END

Ans. 4 A

7.17 Without using PSpice, determine the output
corresponding to the following circuit file.

CIRCUIT FILE FOR PROB. 7.17

vi 1 0 27
R1 1 2 3
R2 2 3 4
vz 3 0 29
R3 2 4 5
R4 4 5 6
Vi 05 653
I1L. 0 4 5

.DC V1 27 27 1
.PRINT DC TI(R3)
. END

Ans. 4 A

7.18 Without using PSpice, determine the output
corresponding to the following circuit file.



CIRCUIT FILE FOR PROB. 7.18
Vi 1 0 45

Rl 1 2 3
R2 2 3 2
R3 3 0 4
Réd 2 0 2.4
Gl 02 23 0.25

.DC V1 45 45 1
.PRINT DC V(R2)
.END

Ans. 6V

7.19 Without using PSpice, determine the output
corresponding to the following circuit file.

CIRCUIT FILE FOR PROB. 7.19
I1 1 4

R1 5

V1
R2
H1
R3 8

.DC T1 4 4 1
.PRINT DC 1I(R1)
.END

vl b5

W= o= O

2
0
0 20
1
0
1

Ans. 1.6 A

7.20 Without using PSpice, determine the output
corresponding to the following circuit file.



CIRCUIT FILE FOR PROB. 7.20

F1 01 V1 0.5
RL 10 6

R2 12 3

I1 12 6

R3 23 9

H1I 30 V1 6
Vi 2 4

R4 4 0 3

.DC I1 66 1
.PRINT DC I(R4)
. END

Ans. 3 A

7.21 Without using PSpice, determine the output
corresponding to the following circuit file.

CIRCUIT FILE FOR PROB. 7.21

Vi 1 0 20
Rl 1 2 &K
R2 2 3 3K
vz 3 4 40
R3 4 5 2K
Vi 5 0 &0
R4 4 6 BK
V4 7 6 30
E5 7 8 S5SK
V6 0 8 45
Ee 2 9 9K
ve 9 7 15

.DC V1 20 20 1
.PRINT DC I(R4) - I(R3) I(RS)
. END

Ans. I[(R4) = 6.95 mA, I(R3) = -14.6 mA, I(R5) = 10.0 mA

7.22 Without using PSpice, determine the output
corresponding to the following circuit file.

Ans. -2V



CIRCUIT
Il 1
R1
R2
I2
I3
R3
R4
RS
R6
.DC I

HWNNNRDE RO

2
1
0
0
3
0
3
1

FILE

FOR PROB. 7.22
60
0.14286
0.2

22

34

0.25
0.16667
0.16667
0.125

60 60 1

.PRINT DC V(2)

. END

7.23 Without using PSpice, determine the output
corresponding to the following circuit file. (Hint:
Consider an op-amp circuit.)

CIRCUIT FILE FOR PROB.

V1
R1
V2
R2
R3
El
.DC V1

0

B WO e

2
3
2
4
0

7.23
6

4K

15

6K
12K
0 2 1MEG
6 6 1

.PRINT DC V(4)

. END

Ans. 12V

7.24 Without using PSpice, determine the output
corresponding to the following circuit file. (Hint:
Consider an op-amp circuit.)



CIRCUIT FILE FOR PROB. 7.24
Vi 1 0 9

Rl 1 2 9K
R2 2 0 18K
R3 2 3 12K
R4 4 O 6K
R5 4 3 3K
El 3 0 2 4 1MEG

.DC V1 9 9 1
.PRINT DC WV(3)
. END

Ans. 12V



Chapter 8
Capacitors and Capacitance

INTRODUCTION

A capacitor consists of two conductors separated by an
insulator. The chief feature of a capacitor is its ability to store
electric charge, with negative charge on one of its two
conductors and positive charge on the other. Accompanying
this charge is energy, which a capacitor can release. Figure 8-1
shows the circuit symbol for a capacitor

I
O 1y -O
Fig. 8-1

CAPACITANCE

Capacitance, the electrical property of capacitors, is a
measure of the ability of a capacitor to store charge on its two
conductors. Specifically, if the potential difference between the
two conductors is V volts when there is a positive charge of Q
coulombs on one conductor and a negative charge of the same
amount on the other, the capacitor has a capacitance of

c=3
V

where C is the quantity symbol of capacitance.



The Sl unit of capacitance is the farad, with symbol F.
Unfortunately, the farad is much too large a unit for practical
applications, and the microfarad (uF) and picofarad (pF) are
much more common.

CAPACITOR CONSTRUCTION

One common type of capacitor is the parallel-plate capacitor
of Fig. 8-2a. This capacitor has two spaced conducting plates
that can be rectangular, as shown, but that often are circular.
The insulator between the plates is called a dielectric. The
dielectric is air in Fig. 8-2a, and is a slab of solid insulator in
Fig. 8-2b

T L T i

Dielectric
l
e
|

] )

(a) (b)

Fig. 8-2

A voltage source connected to a capacitor, as shown in Fig.
8-3, causes the capacitor to become charged. Electrons from
the top plate are attracted to the positive terminal of the
source, and they pass through the source to the negative
terminal where they are repelled to the bottom plate. Because
each electron lost by the top plate is gained by the bottom
plate, the magnitude of charge Q is the same on both plates.
Of course, the voltage across the capacitor from this charge
exactly equals the source voltage. The voltage source did work
on the electrons in moving them to the bottom plate, which
work becomes energy stored in the capacitor.
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Fig. 8-3

For the parallel-plate capacitor, the capacitance in farads is

C=¢
“d

where A is the area of either plate in square meters, d is the
separation in meters, and € is the permittivity in farads per
meter (F/m) of the dielectric. The larger the plate area or the
smaller the plate separation, or the greater the dielectric
permittivity, the greater the capacitance.

The permittivity € relates to atomic effects in the dielectric.
As shown in Fig. 8-3, the charges on the capacitor plates
distort the dielectric atoms, with the result that there is a net
negative charge on the top dielectric surface and a net positive
charge on the bottom dielectric surface. This dielectric charge
partially neutralizes the effects of the stored charge to permit
an increase in charge for the same voltage.

The permittivity of vacuum, designated by &, is 8.85 pF/m.

Permittivities of other dielectrics are related to that of vacuum
by a factor called the dielectric constant or relative
permittivity, designated by &,. The relation is € = £,£5. The

dielectric constants of some common dielectrics are 1.0006 for



air, 2.5 for paraffined paper, 5 for mica, 7.5 for glass, and 7500
for ceramic.

TOTAL CAPACITANCE

The total or equivalent capacitance (Cr or C,q) of parallel

capacitors, as seen in Fig. 8-4a, can be found from the total
stored charge and the Q = CV formula. The total stored charge
Q+ equals the sum of the individual stored charges: Q = Qq, +

Q, + Q7. With the substitution of the appropriate Q = CV for
each Q, this equation becomes C;V = C;V + C,V + C3V. Upon
division by V, it reduces to C; = C; + C, + C5. Because the

number of capacitors is not significant in this derivation, this
result can be generalized to any number of parallel capacitors:

CT=(.“1—.-—C_-3+(73+C4+‘“

Cy

iH
<
0

"
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Fig. 8-4

So, the total or equivalent capacitance of parallel capacitors is
the sum of the individual capacitances.

For series capacitors, as shown in Fig. 8-4b, the formula for
the total capacitance is derived by substituting Q/C for each V
in the KVL equation. The Q in each term is the same. This is
because the charge gained by a plate of any capacitor must
have come from a plate of an adjacent capacitor. The KVL



equation for the circuit shown in Fig. 8-4b is Vg = V; + V5 + V3.

With the substitution of the appropriate Q/C for each V, this
equation becomes

l I I 1
2=2+Q+g or — =+ — + =

I

upon division by Q. This can also be written as

Generalizing,

€1 1/C, +1/C, + 1/C3 4+ 1/Cy + -

which specifies that the total capacitance of series capacitors
equals the reciprocal of the sum of the reciprocals of the
individual capacitances. Notice that the total capacitance of
series capacitors is found in the same way as the total
resistance of parallel resistors.

For the special case of N series capacitors having the same
capacitance C, this formula simplifies to C+ = C/N. And for two

capacitors in series it is C+ = C1C,/(Cq + Cy).

ENERGY STORAGE

As can be shown using calculus, the energy stored in a
capacitor is

We = $CV2



where W, is in joules, C is in farads, and V is in volts. Notice

that this stored energy does not depend on the capacitor
current.

TIME-VARYING VOLTAGES AND CURRENTS

In dc resistor circuits, the currents and voltages are constant
—never varying. Even if switches are included, a switching
operation can, at most, cause a voltage or current to jump
from one constant level to another. (The term “jump” means a
change from one value to another in zero time.) When
capacitors are included, though, almost never does a voltage
or a current jump from one constant level to another when
switches open or close. Some voltages or currents may initially
jump at switching, but the jumps are almost never to final
values. Instead, they are to values from which the voltages or
currents change exponentially to their final values. These
voltages and currents vary with time—they are time-varying.

Quantity symbols for time-varying quantities are
distinguished from those for constant quantities by the use of
lowercase letters instead of uppercase letters. For example, v
and i are the quantity symbols for time-varying voltages and
currents. Sometimes, the lowercase t, for time, is shown as an
argument with lowercase quantity symbols as in v(t) and i(t).
Numerical values of v and i are called instantaneous values, or
instantaneous voltages and currents, because these values
depend on (vary with) exact instants of time.

As explained in Chap. 1, a constant current is the quotient of
the charge Q passing a point in a wire and the time T required
for this charge to pass: | = Q/T. The specific time T is not
important because the charge in a resistive dc circuit flows at a
steady rate. This means that doubling the time T doubles the
charge Q, tripling the time triples the charge, and so on,
keeping | the same.

For a time-varying current, though, the value of /i usually
changes from instant to instant. So, finding the current at any
particular time requires using a very short time interval At. If



Aq is the small charge that flows during this time interval, then
the current is approximately Aq/At. For an exact value of
current, this quotient must be found in the limit as At
approaches zero (At - 0):

A |
i=lim -4
a0 A dt

This limit, designated by dq/dt, is called the derivative of
charge with respect to time.

CAPACITOR CURRENT

An equation for capacitor current can be found by
substituting g = Cv into i = dq/dt:

But C is a constant, and a constant can be factored from a
derivative. The result is

j=(C—
dt

with associated references assumed. If the references are not
associated, a negative sign must be included. This equation
specifies that the capacitor current at any time equals the
product of the capacitance and the time rate of change of
voltage at that time. But the current does not depend on the
value of voltage at that time.

If @ capacitor voltage is constant, then the voltage is not
changing and so dv/dt is zero, making the capacitor current
zero. Of course, from physical considerations, if a capacitor
voltage is constant, no charge can be entering or leaving the



capacitor, which means that the capacitor current is zero. With
a voltage across it and zero current flow through it, the
capacitor acts as an open circuit: a capacitor is an open circuit
to dc. Remember, though, it is only after a capacitor voltage
becomes constant that the capacitor acts as an open circuit.
Capacitors are often used in electronic circuits to block dc
currents and voltages.

Another important fact from i = C dv/dt or i = C Av/At is that
a capacitor voltage cannot jump. If, for example, a capacitor
voltage could jump from 3 V to 5 V or, in other words, change
by 2 V in zero time, then Av would be 2 and At would be 0,
with the result that the capacitor current would be infinite. An
infinite current is impossible because no source can deliver this
current. Further, such a current flowing through a resistor
would produce an infinite power loss, and there are no sources
of infinite power and no resistors that can absorb such power.
Capacitor current has no similar restriction.. It can jump or
even change directions, instantaneously. Capacitor voltage not
jumping means that a capacitor voltage immediately after a
switching operation is the same as immediately before the
operation. This is an important fact for resistor-capacitor (RC)
circuit analysis.

SINGLE-CAPACITOR DC-EXCITED CIRCUITS

When switches open or close in a dc RC circuit with a single
capacitor, all voltages and currents that change do so
exponentially from their initial values to their final constant
values, as can be shown from differential equations. The
exponential terms in a voltage or current expression are called
transient terms because they eventually become zero in
practical circuits.

Figure 8-5 shows these exponential changes for a switching
operation at t = 0 s. In Fig. 8-5a the initial value is greater than
the final value, and in Fig. 8-5b the final value is greater.
Although both initial and final values are shown as positive,



both can be negative or one can be positive and the other
negative.

The voltages and currents approach their final values
asymptotically, graphically speaking, which means that they
never actually reach them. As a practical matter, however,
after five time constants (defined next) they are close enough
to their final values to be considered to be at them.

Time constant, with symbol T, is a measure of the time
required for certain changes in voltages and currents. For a
single-capacitor RC circuit, the time constant of the circuit is
the product of the capacitance and the Thévenin resistance as
“seen” by the capacitor:

RC time constant = T = R1,C

The expressions for the voltages and currents shown in Fig.
8-5 are

o(t) = v() + [L0+) — v(xc)]e™ "V
i(t) = i(oc) + [i(0+) —i(c)]e " A

v oori voori

Initial Final |
value value

Initial
value

{a) (b}

Final |
value

Fig. 8-5

for all time greater than zero (t > 0 s). In these equations, v
(0+) and i (0+) are initial values immediately after switching; v



(o) and i () are final values; e = 2.718, the base of natural
logarithms; and T is the time constant of the circuit of interest.
These equations apply to all voltages and currents in a linear,
RC, single-capacitor circuit in which the independent sources, if
any, are all dc.

By letting t = T in these equations, it is easy to see that, in a
time equal to one time constant, the voltages and currents
change by 63.2 percent of their total change of v (») - v (0+)
ori(e)-j(0+). And by letting t = 57, it is easy to see that,
after five time constants, the voltages and currents change by
99.3 percent of their total change, and so can be considered to
be at their final values for most practical purposes.

RC TIMERS AND OSCILLATORS

An important use for capacitors is in circuits for measuring
time—timers. A simple timer consists of a switch, capacitor,
resistor, and dc voltage source, all in series. At the beginning
of a time interval to be measured, the switch is closed to cause
the capacitor to start charging. At the end of the time interval,
the switch is opened to stop the charging and “trap” the
capacitor charge. The corresponding capacitor voltage is a
measure of the time interval. A voltmeter connected across the
capacitor can have a scale calibrated in time to give a direct
time measurement.

As indicated in Fig. 8-5, for times much less than one time
constant, the capacitor voltage changes almost linearly.
Further, the capacitor voltage would get to its final value in
one time constant if the rate of change were constant at its
initial value. This linear change approximation is valid if the
time to be measured is one-tenth or less of a time constant, or,
what amounts to the same thing, if the voltage change during
the time interval is one-tenth or less of the difference between
the initial and final voltages.

A timing circuit can be used with a gas tube to make an
oscillator —a circuit that produces a repeating waveform. A gas
tube has a very large resistance—approximately an open



circuit—for small voltages. But at a certain voltage it will fire
or, in other words, conduct and have a very low resistance—
approximately a short circuit for some purposes. After
beginning to conduct, it will continue to conduct even if its
voltage drops, provided that this voltage does not drop below a
certain low voltage at which the tube stops firing
(extinguishes) and becomes an open circuit again.

The circuit illustrated in Fig. 8-6a is an oscillator for
producing a sawtooth capacitor voltage as shown in Fig. 8-6b.
If the firing voltage V¢ of the gas tube is one-tenth or less of

the source voltage V the capacitor voltage increases almost
linearly, as shown in Fig. 8-6b, to the voltage V at which time

T the gas tube fires. If the resistance of the conducting gas
tube is small and much less than that of the resistor R, the
capacitor rapidly discharges through the tube until the
capacitor voltage drops to Vg the extinguishing voltage, which
is not great enough to keep the tube conducting. Then the
tube cuts off, the capacitor starts charging again, and the
process keeps repeating indefinitely. The time T for one
charging and discharging cycle is called a period.
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Fig. 8-6

Solved Problems

8.1 Find the capacitance of an initially uncharged capacitor
for which the movement of 3 x 101> electrons from one



capacitor plate to another produces a 200-V capacitor
voltage.

From the basic capacitor formula C = Q/V, in which Q
is in coulombs,

—3 x 10"° eleetroms” — L€

X =24 x 10°°F =24 uF
200V 6.241 x 10'% gleetrons

8.2 What is the charge stored on a 2-uF capacitor with 10 V
across it?

From C = Q/V,
Q0 =CV=(2x10°10)C =20 uC

8.3 What is the change of voltage produced by 8 x 10°
electrons moving from one plate to the other of an initially

charged 10-pF capacitor?

Since C = Q/V is a linear relation, C also relates
changes in charge and voltage: C = AQ/AV In this
equation, AQ is the change in stored charge and AV is the
accompanying change in voltage. From this,

AQ -8 x 10° —1C |
Tk O e Lo i i - 128 V

C 10x 10 12F 6241 x 10'® clectroms
8.4 Find the capacitance of a parallel-plate capacitor if the
dimensions of each rectangular plate is 1 by 0.5 cm and
the distance between plates is 0.1 mm. The dielectric is
air. Also, find the capacitance if the dielectric is mica
instead of air.
The dielectric constant of air is so close to 1 that the

permittivity of vacuum can be used for that of air in the
parallel-plate capacitor formula:



A (885 x 107 12H1072H0.5 x 1072)

d- 0rx1073 S

C=c¢

Because the dielectric constant of mica is 5, a mica
dielectric increases the capacitance by a factor of 5: C =5
X 4,43 = 22.1 pF.

8.5 Find the distance between the plates of a 0.01-uF
parallel-plate capacitor if the area of each plate is 0.07 m?
and the dielectric is glass.

From rearranging C = €A/d and using 7.5 for the
dielectric constant of glass,

&A ?:-{8 85 x 10 '*)0.07)
_ —m = 0.465 mm
C Uf}l 10-°

8.6 A capacitor has a disk-shaped dielectric of ceramic that
has a 0.5-cm diameter and is 0.521 mm thick. The disk is
coated on both sides with silver, this coating being the
plates. Find the capacitance.

With the ceramic dielectric constant of 7500 in the
parallel-plate capacitor formula,

A 7500(8.85 x 107 '3[ x (0.25 x 107 %)7]
=g -

d_ 0520 x 1070

F = 2500 pF

8.7 A 1-F parallel-plate capacitor has a ceramic dielectric 1
mm thick. If the plates are square, find the length of a
side of a plate.

Because each plate is square, a length / of a side is
I'= A From this and C = € A/d,

lac f 103 <1
! = =123m
T500(8.85 % 10719




Each side is 123 m long or, approximately, 1.3 times the
length of a football field. This problem demonstrates that
the farad is an extremely large unit.

8.8 What are the different capacitances that can be obtained
with a 1- and a 3-uF capacitor?

The capacitors can produce 1 and 3 uF individually; 1
+ 3 = 4 uF in parallel; and (1 x 3)/(l + 3) = 0.75 yF in
series

8.9 Find the total capacitance Cy of the circuit shown in Fig.
8-7.

uF 30 uF
I( I
119

S U T
RN I |

Fig. 8-7

At the end opposite the input, the series 30- and 60-uF
capacitors have a total capacitance of 30 x 60/(30 + 60)
= 20 uF. This adds to the capacitance of the parallel 25-uF
capacitor for a total of 45 uF to the right of the 90-uF
capacitor. The 45- and 90-uF capacitances combine to 45
x 90/(45 + 90) = 30 uF. This adds to the capacitance of
the parallel 10-uF capacitor for a total of 30 + 10 = 40 uF
to the right of the 60-uF capacitor. Finally,

. 60 x40
p = = 24 uF
60 + 40

8.10 A 4-uF capacitor, a 6-uF capacitor, and an 8-uF
capacitor are in parallel across a 300-V source. Find (a)



the total capacitance, (b) the magnitude of charge stored
by each capacitor, and (c) the total stored energy.

(a) Because the capacitors are in parallel, the total or
equivalent capacitance is the sum of the individual
capacitances: Cr =4 + 6 + 8 = 18 uF.

(b) The three charges are, from Q = CV. (4 x 107°)(300) C =
1.2 mC, (6 x 107%)(300) C = 1.8 mC, and (8 x 107%)(300)
C = 2.4 mC for the 4-, 6-, and 8-uF capacitors,
respectively.

(c) The total capacitance can be used to obtain the total
stored energy:

W=1C,V? =058 x 107*4300)* = 0.81)

8.11 Repeat Prob. 8.10 for the capacitors in series instead of
in parallel, but find each capacitor voltage instead of each
charge stored.

(a) Because the capacitors are in series, the total
capacitance is the reciprocal of the sum of the reciprocals
of the individual capacitances:

]
Cq=———-——— = 1846 puF
1'd 4+ 16+ 1/8

(b) The voltage across each capacitor depends on the
charge stored, which is the same for each capacitor. This

charge can be obtained from the total capacitance and
the applied voltage:

Q= CyV =(1.846 x 107°)300) C = 554 uC

From V = Q/C, the individual capacitor voltages are



554X 1070 oy 554 x 1070 554107
ax10c 6x10c 7 gx 100 7

for the 4-, 6-, and 8-uF capacitors, respectively,
(c) The total stored energy is

W=1C,V?=0.5(1.846 x 107 °)300)* J = 83.1 mJ

8.12 A 24-V source and two capacitors are connected in
series. UF one capacitor has 20 uFof capacitance and has
16 V across it, what is the capacitance of the other
capacitor?

By KVL, the other capacitor has 24 - 16 = 8 V across
it. Also, the charge on it is the same as that on the other
capacitor: Q = CV = (20 x 107°)(16) C = 320uC. So, C =
Q/V = 320 x 107%/8 F = 40 uF.

8.13 Find each capacitor voltage in the circuit shown in Fig.

8-8.
6 uF 12 uF
i Il
I T I T 7
V| Vz
=100V SuFA< Vo =K1 uF
| _
Fig. 8-8

The approach is to find the equivalent capacitance, use it to
find the charge, and then use this charge to find the voltages
across the 6- and 12-uF capacitors, which have this same
charge because they are in series with the source.



At the end opposite the source, the two parallel
capacitors have an equivalent capacitanceof 5+ 1 =6
UF. With this reduction, the capacitors are in series,

making

|

= — — =24 uF
1/6 +1/12 4+ 1/6

"
The desired charge is

Q= CV=(24 x 1079(100) C = 240 uC
which is the charge on the 6-uF capacitor as well as on the
12-uF capacitor. From V = Q/C,

240 x 107 240 x 10°©
O i, =— =20V

=40V V, = i B
LT 6 x107¢ 2T 2% 1076

8.14 Find each capacitor voltage in the circuit shown in Fig.

8-9.
20 uF
It
+ Vi - I

i » - +“ =

E Vi
+ +
—

Fig. 8-9

A good analysis method is to reduce the circuit to a
series circuit with two capacitors and the voltage source,
find the charge on each reduced capacitor, and from it



find the voltages across these capacitors. Then the
process can be partially repeated to find all the capacitor
voltages in the original circuit.

The parallel 20- and 40-uF capacitors reduce to a
single 60-uF capacitor. The 30- and 70-uF capacitors
reduce to a 30 x 70/(30 + 70) = 21-uF capacitor in
parallel with the 9-uF capacitor. So, all three of these
capacitors reduce to a 21 + 9 = 30-uF capacitor that is in
series with the reduced 60-uF capacitor, and the total
capacitance at the source terminals is 30 x 60/(30 + 60)
= 20 uF. The desired charge is

Q=C;V=(20x 10"°}400) C = 8 mC

This charge can be used to obtain V; and V5:

8 x 1073 8 x 10°°
= — =133V and V= ——-=267V
60 x 10°° 30 x 10°°

i

Alternatively, V, = 400 - V; = 400 - 133 = 267 V.

The charge on the 30-uF capacitor and also on the
series 70-uF capacitor is the 8 mC minus the charge on
the 9-uF capacitor:

8 x 107% — (9 x 107°)}267)C = 5.6 mC

Consequently, from V = Q/C,

56 x 1073
V, = - =187V and V, =

5.6
= i = 80V
30 x 107°

x
0x107°

102

As a check V3 =V, =187 + 80 = 267V = V,.

8.15 A 3-uF capacitor charged to 100 V is connected across
an uncharged 6-uF capacitor. Find the voltage and also



the initial and final stored energies.

The charge and capacitance are needed to find the
voltage from V = Q/C. Initially, the charge on the 3-uF
capacitoris Q = CV = (3 x 107%)(100) C = 0.3 mC. When
the capacitors are connected together, this charge
distributes over the two capacitors, but does not change.
Since the same voltage is across both capacitors, they arc
in parallel. So, C+ =3 + 6 = 9 uF, and

0.3 x 100
po @030y
Cr, 9x10°°

The initial energy is all stored by the 3-uF capacitor: z
CV2 = 0.5(3 x 107%)(100)2 ] = 15 mJ. The final energy is
stored by both capacitors: 0.5(9 x 1079)(33.3)2] = 5 m).

8.16 Repeat Prob. 8.15 for an added 2-kQ series resistor in
the circuit.

The resistor has no effect on the final voltage, which is
33.3V, because this voltage depends only on the
equivalent capacitance and the charge stored, neither of
which are affected by the presence of the resistor. Since
the final voltage is the same, the final energy storage is
the same: 5 mJ. Of course, the resistor has no effect on
the initial 15 mJ stored. The resistor will, however, slow
the time taken for the voltage to reach its final value,
which time is five time constants after the switching. This
time is zero uF the resistance is zero. The presence of the
resistor also makes it easier to account for the 10-m]
decrease in stored energy—it is dissipated in the resistor.

8.17 A 2-uF capacitor charged to 150 V and a 1-uF capacitor
charged to 50 V are connected together with plates of
opposite polarity joined. Find the voltage and the initial
and final stored energies.



Because of the opposite polarity connection, some of
the charge on one capacitor cancels that on the other. The
initial charges are (2 x 107°)(150) C = 300 uC for the 2-uF
capacitor and (1 x 107°)(50) C = 50 uC for the 1-uF
capacitor. The final charge distributed over both
capacitors is the difference of these two charges: 300 - 50
= 250 uC. It produces a voltage of

0 250 x 107° ,
B —— T R Y
Cr 2x107¢+1x 107

The initial stored energy is the sum of the energies
stored by both capacitors:

0.5(2 x 107°)150)* + 0.5(1 x 107 °)50)* = 23.8 m)

The final stored energy is

LCpV2E=0503 x 107 °¥83.3)2 ] = 104 m)

8.18 What is the current flowing through a 2-uF capacitor
when the capacitor voltage is 10 V?

There is not enough information to find the capacitor
current. This current depends on the rate of change of

capacitor voltage and not the voltage value, and this rate
is not given.

8.19 If the voltage across a 0.1-uF capacitor is 3000t V, find
the capacitor current.

The capacitor current equals the product of the
capacitance and the time derivative of the voltage. Since
the time derivative of 3000t is 3000,

JI'
i C% — (0.1 x 10-#)(3000) A = 0.3 mA
il



which is a constant value.

The capacitor current can also be found from j = C Ar/
At because the voltage is increasing linearly. If At is taken
as, say, 2 s, from 0 to 2 s, the corresponding At is 3000At
= 3000(2 - 0) = 6000 V. So.

CAr (0.1 x 107 °)6000)

i=C A =03mA
At 2

8.20 Sketch the waveform of the current that flows through
a 2-uF capacitor when the capacitor voltage is as shown
in Fig. 8-10. As always, assume associated references
because there is no statement to the contrary.

v (V)

0 -

m-—

10 =

Fig. 8-10

Graphically, the dv/dt in i = C dv/dt is the slope of the
voltage graph. For straight lines this slope is the same as
Av/At. For this voltage graph, the straight line for the
interval of t = 0stot =1 us has a slope of (20 - 0)/(1 %



107 - 0) V/s = 20 MV/s, which is the voltage att = 1 us
minus the voltage ati = 0 s, divided by the time att =1
Us minus the time at t = 0 s. As a result, during this time
interval the currentis i = C dv/dt = (2 x 107%)(20 x 10°) =
40 A.

Fromt=1ustot =4 us, the voltage graph is
horizontal, which means that the slope and, consequently,
the current are zero: i = 0 A.

For the time interval fromt =4 ustot = 6 us, the
straight line has a slope of (- 20 -20)/(6 x 10°° -4 x 107°)
V/s = —20 MV/s. This change in voltage produces a
current of i = C dv/dt = (2 x 1076)(—20 x 10%) = -40 A.

Finally, from t = 6 us to t — 8 us, the slope of the
straight line is [0 - (-20)]/(8 x 107 -6 x 107°) V/s = 10
MV/s and the capacitor current is i = C dv/dt = (2 x 107°)
(10 x 10°) = 20 A.

Figure 8-11 is a graph of the capacitor current. Notice
that, unlike capacitor voltage, capacitor current can jump,
as it does at 1, 4, and 6 us. In fact, at 6 us the current
reverses direction instantaneously.

i (A)

40

30—

zﬂ_ —

10 —

0

10—




Fig. 8-11

8.21 Find the time constant of the circuit shown in Fig. 8-12.

30 k2 9 kQ
—\VV AAAY
8 ki
250 V= 70 kQ 20 k(1
-[ I 6 uF
Fig. 8-12

The time constant is T = Ry,C, where Ry, is the
Thévenin resistance at the capacitor terminals.

Here,
Ry =8+ 200(9 + 701 30) = 8 + 2030 = 20 kQ

and so the time constant is T = R;,C = (20 x 103)(6 x 10-

6) = 0.12 s.

8.22 How long does a 20-uF capacitor charged to 150 V take
to discharge through a 3-MQ resistor? Also, at what time
does the maximum discharge current occur and what is

its value?
The discharge is considered to be completed after five
time constants:

5t = 5RC = 5(3 x 10°)20 x 107°%) =300s

Since the current decreases as the capacitor
discharges, it has a graph as shown in Fig. 8-5a with a



maximum value at the time of switching, t = 0 s here. In
this circuit the current has an initial value of 150/(3 x 10°)
A = 50 uA because initially the capacitor voltage of 150V,
which cannot jump, is across the 3-MQ resistor.

8.23 Att=0s, a 100-V source is switched in series with a 1-
kQ resistor and an uncharged 2-uF capacitor. What are (a)
the initial capacitor voltage, (b) the initial current, (c) the
initial rate of capacitor voltage increase, and (d) the time
required for the capacitor voltage to reach its maximum
value?

(a) Since the capacitor voltage is zero before the switching,
it is also zero immediately after the switching—a
capacitor voltage cannot jump: v (0+) = 0 V.

(b) By KVL, at t = 0+ s the 100 V of the source is all across
the 1-kQ resistor because the capacitor voltage is 0 V.
Consequently, i (0+) = 100/103 A = 100 mA.

(c) As can be seen from Fig. 8-5b, the initial rate of capacitor
voltage increase equals the total change in capacitor
voltage divided by the circuit time constant. In this circuit
the capacitor voltage eventually equals the 100 V of the
source. Of course, the initial value is 0 V. Also, the time
constant is T = RC = 103(2 x 107%)s = 2 ms. So, the
initial rate of capacitor voltage increase is 100/(2 x 1073)
= 50 000 V/s. This initial rate can also be found from i =
C dv/dt evaluated at t = 0+ s:

dv i0+) 100 x 10°° .
_ {[] +)=—— =- —— = 50000 V,-"S
dt C 2 x 107°

(d) It takes five time constants, 5 x 2 = 10 ms, for the
capacitor voltage to reach its final value of 100 V.

8.24 Repeat Prob. 8.23 for an initial capacitor charge of 50
UC The positive plate of the capacitor is toward the
positive terminal of the 100-V source.



(a) The initial capacitor voltage is V = Q/C = (50 x 107°)/(2
x 107%) = 25 V.

(b) At t = 0+ s, the voltage across the resistor is, by KVL,
the source voltage minus the initial capacitor voltage.
This voltage difference divided by the resistance is the
initial current: i (0 +) = (100 - 25)/103 A = 75 mA.

(c) The initial rate of capacitor voltage increase equals the
total change in capacitor voltage divided by the time

constant: 75/(2 x 1073) = 37 500 V/s.

(d) The initial capacitor voltage has no effect on the circuit
time constant and so also not on the time required for
the capacitor voltage to reach its final value. This time is
10 ms, the same as for the circuit discussed in Prob. 8.23.

8.25 In the circuit shown in Fig. 8-13, find the indicated
voltages and currents at t = 0+ s, immediately after the
switch closes. The capacitors are initially uncharged. Also,
find these voltages and currents “a long time” after the
switch closes.

I 25 1} iy ia 50 10N
— - — -
' ANA ’ AAA~
s + + -
v l iy
+I Fa +
10 0 vy /=1 pF ve =3 uF
li = 100V
Fig. 8-13

At t = 0+ s, the capacitors have 0 V across them
because the capacitor voltages cannot jump from the 0-V
values that they have at t = 0- s, immediately before the
switching: v;(0+) = 0 V and = v4(0+) = 0 V. Further, with
0 V across them, the capacitors act like short circuits at t
= 0+ s, with the result that the 100 V of the source is



across both the 25-Q and 50-Q resistors: v,(0+) = v3(0+)

= 100 V. Three of the initial currents can be found from
these voltages:

: 0 . 100 _ 100
10 ; 25 50

The remaining initial current, i»(0+), can be found by
applying KCL at the node at the top of the 1-uF capacitor:

H04) = iy0+) — i (0+)=4 —0=4A

A “long time” after the switch closes means more than five
time constants later. At this time the capacitor voltages are
constant, and so the capacitors act like open circuits, blocking
I> and iy: in(o) = is(0) = 0 A. With the 1-uF capacitor acting like
an open circuit, the 10-Q and 25-Q resistors are in series
across the 100-V source, and so ij(») = i3(«) = 100/35 = 2.86
A. From the resistances and the calculated currents, v;(») = 10
X 2.86 =28.6V, vy(o) =25 x 2.86 =71.4V, and v3(») =0 X
50 = 0 V. Finally, from the right-hand mesh,

pa() = 100 — v5(%) = 100 — 0 = 100 V

8.26 A 2-uF capacitor, initially charged to 300V, is
discharged through a 270-kQ resistor. What is the
capacitor voltage at 0.25 s after the capacitor starts to
discharge?

The voltage formulais v = v (o) + [v (0+) - v (=]e 7T,
Since the time constantis T = RC = (270 x 103)(2 x 1079)
= 0.54 s, the initial capacitor voltage is v (0+) = 300 V,
and the final capacitor voltage is v («) = 0 V, it follows
that the equation for the capacitor voltage is

v (t) = 0 +(300 - 0)e 1054 = 300e 18tV fort=0s



From this, v (0.25) = 300e1:85(0:25) = 189 V.

8.27 Closing a switch connects in series a 200-V source, a 2-
MQ resistor, and an uncharged 0.1-uF capacitor. Find the

capacitor voltage and current at 0.1 s after the switch
closes.

The voltage formula is v = v (») + [v (0+) - v (®)]e T,
= Here, v () =200V, v (0+) =0V, and T = (2 x 109)(0.1
x 107°) = 0.2 s. So,

v (t) = 200 + [0 - 200]et0-2 = 200 - 200e™tV fort>0s
Substitution of 0.1 to t gives v (0.1):

v (0.1) = 200 - 200e 9> =78.7 V

Similarly, i =i () + [i (0+) - i ()]e t’T, in which i (0
+) = 200/(2 x 10°) A = 0.1 mA, i (») = 0 A, and of course
T = 0.2 s. With these values inserted,

i(t)=0+ (0.1-0)e>t=0.1letmAfort>0s

From this. i (0.1) = 0.1e79-> mA = 60.7 pA. This current can
also be found by using the voltage across the resistor at t
= 0.1s:i(0.1) = (200 - 78.7)/(2 x 10% A = 60.7 uA.

8.28 For the circuit used in Prob. 8.27, find the time required
for the capacitor voltage to reach 50 V. Then find the time
required for the capacitor voltage to increase another 50
V, from 50 to 100 V. Compare times.

From the solution to Prob. 8.27, v(t) = 200 - 200e™>t V.
To find the time at which the voltage is 50 V, it is only
necessary to substitute 50 for v(t) and solve for t: 50 =
200 - 200e™>t or et = 150/200 = 0.75. The exponential

can be eliminated by taking the natural logarithm of both
sides:



In et = In 0.75 from which -5t = -0.288 and t =
0.288/5s =57.5 ms

The same procedure can be used to find the time at
which the capacitor voltage is 100 V: 100 = 200 - 200e->t
or et = 100/200 = 0.5. Further,

In et = In 0.5 from which -5t = -0.693 and t =
0.693/5s =138.6 ms

The voltage required 57.5 ms to reach 50 V, and 138.6
- 57.5 = 81.1 ms to increase another 50 V, which verifies
the fact that the rate of increase becomes less and less as
time increases.

8.29 In the circuit shown in Fig. 8-14, the switch closes at t =
0s.Findv.andifort>0sifv.(0) =100 V.

40 O . 16 Q
M r ANA———
+
_+_
300 V= v § 60 £ ve 5= 2.5 mF
_ li
A
Fig. 8-14

All that are needed for the v and i formulas are v, (0
+), V. (), i (0 +), i (). and T = Ry,C. Of course, v, (0 +)
= 100 V because the capacitor voltage cannot jump. The
voltage v, (x) is the same as the voltage across the 60-Q

resistor a long time after the switch closes, because at this
time the capacitor acts like an open circuit. So, by voltage
division,



velt) = vl ) + [red04) = vdx)]e ™" = 180 + {100

- x 300 = 180V
60 + 40
Also, i («) = v, («)/60 = 180/60 = 3 A. It is easy to obtain i

(0 +) from v (0 +), which can be solved for using a nodal
equation at the middle top node for the time t = 0+ s:

e{04+) — 300 (0+) of0+)— 100
e .|.. + =

0
40 60 16

from which v (0 +) =132 V. So, i (0 +) = 132/60 = 2.2 A.

Since the Thévenin resistance at the capacitor terminals is

16 + 60||40 = 40 Q, the time constant is T = RC = 40(2.5
x 1073) = 0.1 s.

With these quantities substituted into the rand i
formulas,

180)e ' = 180 — 80¢ 1™V

for f=0s
3422 = Yt

i =i=)+ [M0+) —ix)]e "

I—-08s 1" for r=0s

8.30 The switch is closed at t = 0 s in the circuit shown in

100 V

Fig. 8-15. Find i for t > 0 s. The capacitor is initially
uncharged.

40 kit

v, 6 k2 40 k0 -
50 uF
_;_— H}kﬂ I mkﬂ lﬁmh
J g
) 4
Fig. 8-15

The quantities i (0 +), i (), and T are needed for the

current formula



i = i(o0) + [i(0+) — i(oc)]Je ™"

At t = 0+ s, the short-circuiting action of the capacitor
prevents the 20-mA current source from affecting i (0 +).
Also, it places the 6-kQ resistor in parallel with the 60-kQ
resistor. Consequently, by current division,

6 100
001= (% %) =o2mm
60 + 6,/140 + 6160

in which the simplifying kilohm-milliampere method is
used.

After five time constants the capacitor no longer
conducts current and can be considered to be an open

circuit and so neglected in the calculations. By nodal
analysis,

o+ o+ ag(2) = v = 0 — () + s Fen(0) = —20

from which v;(e) = -62.67 V. So, i (») = -62.67/(60 x 103)
A = -1.04 mA.

The Thévenin resistance at the capacitor terminals is

(6 + 40]|60)||(40 + 20) = 20 kQ This can be used to find
the time constant:

T = RT']‘LC = {20 = IUEHSU x ID_(‘} = l 3

Now thati (0 +), i («), and T are known, the current i
can be found:

i=—104+[02—(—104)]e "= —1.04 + 1.24e " "mA for t>0s

8.31 After a long time in position 1, the switch in the circuit
shown in Fig. 8-16 is thrown to position 2 att = 0 s for a
duration of 30 s and then returned to position 1. (a) Find



the equations forvfort=0s. (b) Findvatt=5sandatt
= 40 s. (c) Make a sketch of vfor0s =t = 80 s.

SMOQ 2 20 M}
— VWA d\e AN

20V = - =70V
-( v == 2 uF :
—
Fig. 8-16

(a) At the time that the switch is thrown to position 2, the
initial capacitor voltage is 20 V, the same as immediately
before the switching; the final capacitor voltage is 70 V,
the voltage of the source in the circuit; and the time
constant is (20 x 10°)(2 x 10-°) = 40s. Consequently,
while the switch is in position 2,

v =70 + (20 — 70)e "4 = 70 — 50¢ ™02V

Of course, the capacitor voltage never reaches the “final
voltage” because a switching operation interrupts the
charging, but the circuit does not “know” this ahead of
time.

When the switch is returned to position 1, the circuit
changes, and so the equation for t changes. The initial
voltage at this t = 30-s switching can be found by
substituting 30 for t in the equation for v that was just
calculated: v (30) = 70 - 50e70-025(30) = 46.4 V. The final
capacitor voltage is 20 V, and the time constant is (5 x
10°)(2 x 107%) = 10s. For these values, the basic voltage



formula must be modified since the switching occurs at t
= 30 s instead of at t = 0+ s. The modified formula is

v(f) = o) + [t(30+) — o{x)]e” O30TV for t=30s

The t - 30 is necessary in the exponent to account for the
time shift. With the values inserted into this formula, the
capacitor voltage is

o(t) = 20 + (464 — 20)e 173 = 20 + 26,47 0N TIOY for t=>30s

(b) For v att =5 s, the first voltage equation must be used
because it is the one that is valid for the first 30 s: v (5)
= 70 - 50e70-025(5) = 29,7 V. For v at t = 40s, the second
equation must be used because it is the one that is valid
after 30 s: v (5) = 70 - 50e70:1(40-30) = 29 7 V.

(c) Figure 8-17 shows the voltage graph which is based on
the two voltage equations. The voltage rises
exponentially to 46.4 V at t = 30 s, heading toward 70 V.
After 30 s, the voltage decays exponentially to the final
value of 20 V, reaching it at 80 s, five time constants
after the switch returns to position 1.




8.32 A simple RC timer has a switch that when closed
connects in series a 300-V source, a 16-MQ resistor, and
an uncharged 10-uF capacitor. Find the time between the
closing and opening of the switch if the capacitor charges
to 10 V during this time.

Because 10 V is less than one-tenth of the final
voltage of 300 V, a linear approximation can be used. In
this approximation the rate of voltage change is
considered to be constant at its initial value. Although not
needed, this rate is the quotient of the possible total
voltage change of 300 V and the time constant of RC =
(16 x 10%)(10 x 107%) = 160 s. Since the voltage that the
capacitor charges to is 1/30th of the possible total voltage
change, the time required for this charging is
approximately 1/30th of the time constant: t = 160/30 =
5.33 s.

This time can be found more accurately, but with
more effort, from the voltage formula. For it, v (0 +) = 0V,
v (o) =300V, and T = 160 s. With these values inserted,
the capacitor voltage equation is v = 300 - 300e%/160, For v
=10V, it becomes 10 = 300 - 300et160, from which t =
160 In(300/290) = 5.42 s. The approximation of 5.33 s is
within 2 percent of this formula value of 5.42 s.

8.33 Repeat Prob. 8.32 for a capacitor voltage of 250 V.

The approximation cannot be used since 250 V is
more than one-tenth of 300 V. The exact formula must be
used. From the solution to Prob. 8.32, t = 300 - 300e-t/160,
For v = 250V, it becomes 250 = 300 - 300e %160, which
simplifies to t = 160 In(300/50) = 287 s. By comparison,
the linear approximation gives t = (250/300)(160) = 133
s, which is considerably in error.

8.34 For the oscillator circuit shown in Fig. 8-18, find the
period of oscillation if the gas tube fires at 90 V and
extinguishes at 10 V. The gas tube has a 50-Q resistance
when firing and a 1019-Q resistance when extinguished.
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Fig. 8-18

When extinguished, the gas tube has such a large
resistance (1010 Q) compared to the 1-MQ resistance of
the resistor that it can be considered to be an open circuit
and neglected during the charging time of the capacitor.
During this time, the capacitor charges from an initial 10 V
toward the 1000 V of the source, but stops charging when
its voltage reaches 90 V, at which time the tube fires.
Although this voltage change is 90 - 10 = 80 V, the initial
circuit action is as if the total voltage change will be 1000
- 10 =990 V. Since 80 V is less than one-tenth of 990 V, a
linear approximation can be used to find the proportion
that the charging time is of the time constant of 109(2 x
10-°) = 2 s. The proportionality is t/2 = 80/990, from
which t = 160/990 = 0.162 s. If an exact analysis is made,
the result is 0.168 52 s.

When the tube fires, its 50-Q resistance is so small
compared to the 1-MQ resistance of the resistor that the
resistor can be considered to be an open circuit and
neglected along with the voltage source. So, the
discharging circuit is essentially an initially charged 2-uF
capacitor and a 50-Q resistor, until the voltage drops from
the 90-V initial voltage to the 10-V extinguishing voltage.
The time constant of this circuit is just (2 x 107%)(50) s =
0.1 ms. This is so short compared to the charging time
that the discharging time can usually be neglected even if
five time constants are used for the discharge time. If an
exact analysis is made, the result is a time of 0.22 ms for
the capacitor to discharge from 90 to 10 V.



In summary, by approximations the period is T =
0.162 + 0 = 0.162 s, as compared to the exact-method
result of T = 0.168 52 + 0.000 22 = 0.168 74 s or 0.169 s
to three significant digits. Note that the approximate
result is within about 4 percent of the actual result. This is
usually good enough, especially in view of the fact that in
the actual circuit the component values probably differ
from the specified values by more than this.

8.35 Repeat Prob. 8.34 with the source voltage changed
from 1000 V to 100 V.

During the charge cycle the capacitor charges toward
100 V from an initial 10 V, the same as if the total voltage
change will be 100 - 10 = 90 V. Since the actual voltage
change of 90 - 10 = 80 V is considerably more than one-
tenth of 90 V, a linear approximation is not valid. The
exact method must be used. For this, v («) =100V, v (0
+) =10V, and T = 2 s. The corresponding voltage formula
is

r =100+ (10 — 100e "2 = 100 — 90¢ "2V

The desired time is found by letting v = 90 V, and solving
for t: 90 = 100 - 90et2, which simplifiestot = 2 In
(90/10) = 4.39 s. This is the period because the discharge
time, which is the same as that found in the solution to
Prob. 8.34, is negligible compared to this time.

Supplementary Problems

8.36 What electron movement between the plates of a 0.1-
UF capacitor produces a 110-V change of voltage?

Ans. 6.87 x 1013 electrons



8.37 If the movement of 4.68 x 1014 electrons between the
plates of a capacitor produces a 150-V change in
capacitor voltage, find the capacitance.

Ans. 0.5 uF

8.38 What change in voltage of a 20-uF capacitor is
produced by a movement of 9 x 1014 electrons between
plates?

Ans. 7.21V

8.39 A tubular capacitor consists of two sheets of aluminum
foil 3 cm wide and 1 m long, rolled into a tube with
separating sheets of waxed paper of the same size. What
is the capacitance if the paper is 0.1 mm thick and has a
dielectric constant of 3.57

Ans. 9.29 nF

8.40 Find the area for each plate of a 10-uF parallel-plate
capacitor that has a ceramic dielectric 0.5 mm thick.

Ans. 0.0753 m?

8.41 Find the thickness of the mica dielectric of a 10-pF
parallel-plate capacitor if the area of each plate is 104
m?.

Ans. 0.443 mm

8.42 Find the diameter of a disk-shaped 0.001-uF capacitor
that has a ceramic dielectric 1 mm thick.

Ans. 4.38 mm

8.43 What are the different capacitances that can be
obtained with a 1-uF capacitor, a 2-uF capacitor, and a 3-
UF capacitor?

Ans. 0.545 uF, 0.667 uF, 0.75 uF, 1 uF, 1.2 uF, 2 uF, 2.2 ufF,
2.75 uF, 3 uF, 3.67 uF, 4 uF, 5 uF, 6 uF

8.44 Find the total capacitance C; of the circuit shown in Fig.
8-19.
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Fig. 8-19

Ans. 2.48 uF

8.45 A 5-, a 7-, and a 9-uF capacitor are in parallel across a
200-V source. Find the magnitude of charge stored by
each capacitor and the total energy stored.

Ans. Qs =1 mC, Q; =1.4mC, Qg = 1.8 mC, 0.42 |

8.46 A 6-, a 16-, and a 48-uF capacitor are in series with a
180-V source. Find the voltage across each capacitor and
the total energy stored.

Ans. Vg =120V, Vi =45V, V5 =15V, 64.8 m]
8.47 Two capacitors are in series across a 50-V source. If one

is @ 1-uF capacitor with 16 V across it, what is the
capacitance of the other?

Ans. 0.471 uF

8.48 Find each capacitor voltage in the circuit shown in Fig.
8-20.
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Ans. v, =200V,v,=100V,v3=40V,v, =60V

8.49 A 0.1-uF capacitor charged to 100 V and a 0.2-uF
capacitor charged to 60 V are connected together with
plates of the same polarity joined. Find the voltage and
the initial and final stored energies.

Ans. 73.3V, 860 uJ, 807 uj
8.50 Repeat Prob. 8.49 for plates of opposite polarity joined.
Ans. 6.67 V, 860 uJ, 6.67 yJ

8.51 Find the voltage across a 0.1-uF capacitor when the
capacitor current is 0.5 mA.

Ans. There is not enough information to determine a
unique value.

8.52 Repeat Prob. 8.51 if the capacitor voltageis6 Vatt =0
s and if the 0.5-mA capacitor current is constant. Of
course, assume associated references.

Ans. 6 + 5000tV

8.53 If the voltage across a 2-uF capacitoris 200tV fort =1
s,200Vforls=1=<5s,and 3200 - 600tV fort = 5 s,
find the capacitor current.

Ans. 0.4 mAfort<ls, OAforls<t<5s,-1.2mAfort
>5¢s

8.54 Find the time constant of the circuit shown in Fig. 8-21.
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Ans. 60 us
8.55 Find the time constant of the circuit shown in Fig. 8-22.

4 ki) 9 k()
— V'V AN\NN—
+
,_T_,:_"* gy 6k 0.0003v v =<10 uF
Fig. 8-22
Ans. 66.3 ms

8.56 How long does it take a 10-uF capacitor charged to 200
V to discharge through a 160-kQ resistor, and what is the
total energy dissipated in the resistor?

Ans. 8s,0.2]

8.57 At t = 0 s. the closing of a switch connects in series a
150-V source, a 1.6-kQ resistor, and the parallel
combination of a 1-kQ resistor and an uncharged 0.2-uF
capacitor. Find (a) the initial capacitor current, (b) the
initial and final 1-kQ resistor currents, (c¢) the final
capacitor voltage, and (d) the time required for the
capacitor voltage to reach its final value.



Ans. (a) 93.8 mA, (b) 0 Aand 57.7 mA, (c) 57.7 V (d) 0.615
ms

8.58 Repeat Prob. 8.57 for a 200-V source and an initial
capacitor voltage of 50 V opposed in polarity to that of
the source.

Ans. (a) 43.8 mA, (b) 50 mA and 76.9 mA, (c) 76.9V, (d)
0.615 ms

8.59 In the circuit shown in Fig. 8-23, find the indicated
voltages and currents at t = 0+ s, immediately after the
switch closes. Notice that the current source is active in
the circuit before the switch closes.

30 41 iy 50 0 is

+
1 A (t) gzﬂﬂ 'I'."1_".:=2 uF v; == 3 pF

Fig. 8-23
pf0+)=1,00+)=20V iy{0+)= —0.106 A
Ans. i{{0+)=1A iJJ0+)=017A
L0+)=0.106 A is(0+) = 63.8 mA

8.60 In the circuit shown in Fig. 8-23, find the indicated
voltages and currents a long time after the switch closes.

Ans
v (o) =222V if(x)=L11A )= —0111A iflx)=0A
ra(c) =256V i(x)=0A i)y =0111A

8.61 A 0.1-uF capacitor, initially charged to 230V, is
discharged through a 3-MQ resistor. Find the capacitor



voltage 0.2 s after the capacitor starts to discharge.

Ans. 118V

8.62 For the circuit described in Prob. 8.61, how long does it
take the capacitor to discharge to 40 V?

Ans. 0.525 s

8.63 Closing a switch connects in series a 300-V source, a
2.7-MQ resistor, and a 2-uF capacitor charged to 50 V with
its positive plate toward the positive terminal of the
source. Find the capacitor current 3 s after the switch
closes. Also, find the time required for the capacitor
voltage to increase to 250 V.

Ans. 53.1 uA, 8.69 s

8.64 The switch is closed at t = 0 s in the circuit shown in
Fig. 8-24. Find v and / for t > 0 s. The capacitor is initially
uncharged.

30 k) 30 k()

Fig. 8-24

Ans. 60(1 - e2Y) V, 1 -0.4e2t mA

8.65 Repeat Prob. 8.64 for v (0 +) = 20 V and for the 60-kQ
resistor replaced by a 70-kQ resistor.

Ans. 63 - 43e712%1 v, 0.9 - 0.253e71:961 mA

8.66 After a long time in position 1, the switch in the circuit
shown in Fig. 8-25 is thrown to position 2 for 2 s, after



which it is returned to position 1. Find v fort = 0 s.

0.5MQ | 2 1MQ

100 V = + =200V

Fig. 8-25

Ans. -200 + 300e 01tV for0s <t =2s; 100 - 54.4¢70-2(t-
2) =100 -81.1e02tVfort=2s

8.67 After a long time in position 2, the switch in the circuit
shown in Fig. 8-25 is thrown at t = 0 s to position 1 for 4 s,
after which it is returned to position 2. Find v for t = 0 s.

Ans. 100 - 300e %2tV forOs =t=4s; -200 + 165e0-1(t-
4) = -200 + 246e 01tV fort =4s

8.68 A simple RC timer has a 50-V source, a switch, an
uncharged 1-uF capacitor, and a resistor, all in series.
Closing the switch and then opening it 5 s later produces
a capacitor voltage of 3 V. Find the resistance of the
resistor.

Ans. 83.3 M Q approximately, 80.8 M Q more exactly
8.69 Repeat Prob. 8.68 for a capacitor voltage of 40 V.
Ans. 3.11 M Q

8.70 In the oscillator circuit shown in Fig. 8-18, replace the
1-MQ resistor with a 4.3-MQ resistor and the 1000-V
source with a 150-V source and find the period of
oscillation.

Ans. 7.29 s



Chapter 9
Inductors, Inductance, and
PSpice Transient Analysis

INTRODUCTION

The following material on inductors and inductance is
similar to that on capacitors and capacitance presented in
Chap. 8. The reason for this similarity is that, mathematically
speaking, the capacitor and inductor formulas are the same.
Only the symbols differ. Where one has v, the other has J,
and vice versa; where one has the capacitance quantity
symbol C, the other has the inductance quantity symbol L;
and where one has R, the other has G. It follows then that
the basic inductor voltage-current formula is v = L di/dt in
place of i = C dv/dt, that the energy stored is iLi? instead of 3
Cv?, that, inductor currents, instead of capacitor voltages,
cannot jump, that inductors are short circuits, instead of
open circuits, to dc, and that the time constant is LG = L/R
instead of CR. Although it is possible to approach the study
of inductor action on the basis of this duality, the standard
approach is to use magnetic flux.

This chapter also includes material on using PSpice to
analyze transient circuits.

MAGNETIC FLUX

Magnetic phenomena are explained using magnetic flux,
or just flux, which relates to magnetic lines of force that, for



a magnet, extend in continuous lines from the magnetic
north pole to the south pole outside the magnet and from
the south pole to the north pole inside the magnet, as is
shown in Fig. 9-la. The Sl unit of flux is the weber, with unit
symbol Wb. The quantity symbol is ® for a constant flux and
@ for a time-varying flux.
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Fig. 9-1

Current flowing in a wire also produces flux, as shown in
Fig. 9-1b. The relation between the direction of flux and the
direction of current can be remembered from one version of
the right-hand rule. If the thumb of the right hand is placed
along, the wire in the direction of the current flow, the four
fingers of the right hand curl in the direction of the flux about
the wire. Coiling the wire enhances the flux, as does placing
certain material, called ferromagnetic material, in and
around the coil. For example, a current flowing in a coil
wound on an iron cylindrical core produces more flux than
the same current flowing in an identical coil wound on a
plastic cylinder.

Permeability, with quantity symbol u, is a measure of this
flux-enhancing property. It has an Sl unit of henry per meter



and a unit symbol of H/m. (The henry, with unit symbol H, is
the Sl unit of inductance.) The permeability of vacuum,
designated by g, is 0.47m uH/m. Permeabilities of other

materials are related to that of vacuum by a factor called the
relative permeability, with symbol u,. The relationis u =

U Mo Most materials have relative permeabilities close to 1,

but pure iron has them in the range of 6000 to 8000, and
nickel has them in the range of 400 to 1000. Permalloy, an
alloy of 78.5 percent nickel and 21.5 percent iron, has a
relative permeability of over 80 000.

If a coil of N turns is linked by a ¢ amount of flux, this coil
has a flux linkage of N¢. Any change in flux linkages induces
a voltage in the coil of

AN i d
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This is known as Faraday’s law. The voltage polarity is such
that any current resulting from this voltage produces a flux
that opposes the original change in flux.

INDUCTANCE AND INDUCTOR CONSTRUCTION

For most coils, a current i produces a flux linkage N¢ that
is proportional to i. The equation relating N¢ and i has a
constant of proportionality L that is the quantity symbol for
the inductance of the coil. Specifically, Li = Np and L = Ng/i.
The SI unit of inductance is the henry, with unit symbol H. A
component designed to be used for its inductance property
is called an inductor. The terms “coil” and “choke” are also
used. Figure 9-2 shows the circuit symbol for an inductor.
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Fig. 9-2

The inductance of a coil depends on the shape of the caoil,
the permeability of the surrounding material, the number of
turns, the spacing of the turns, and other factors. For the
single-layer coil shown in Fig. 9-3, the inductance is
approximately L = N2uA/l, where N is the number of turns of
wire, A is the core cross-sectional area in square meters, [ is
the coil length in meters, and u is the core permeability. The
greater the length to diameter, the more accurate the
formula. For a length of 10 times the diameter, the actual
inductance is 4 percent less than the value given by the

formula.
2 l——
[ 1G5
Core O

Fig. 9-3

INDUCTOR VOLTAGE AND CURRENT RELATION

Inductance instead of flux is used in analyzing circuits
containing inductors. The equation relating inductor voltage,
current, and inductance can be found from substituting N¢ =
Li into v = d(N¢)/dt. The result is v = L di/dt, with associated
references assumed. If the voltage and current references
are not associated, a negative sign must be included. Notice
that the voltage at any instant depends on the rate of
change of inductor current at that instant, but not at all on
the value of current then.



One important fact from v = L di/dt is that if an inductor
current is constant, not changing, then the inductor voltage
is zero because di/dt = 0. With a current flowing through it,
but zero voltage across it, an inductor acts as a short circuit:
An inductor is a short circuit to dc. Remember, though, that
it is only after an inductor current becomes constant that an
inductor acts as a short circuit.

The relation v = L di/dt = L Ai/At also means that an
inductor current cannot jump. For a jump to occur, Ai would
be nonzero while At was zero, with the result that Ai/At would
be infinite, making the inductor voltage infinite. In other
words, a jump in inductor current requires an infinite inductor
voltage. But, of course, there are no sources of infinite
voltage. Inductor voltage has no similar restriction. It can
jump or even change polarity instantaneously. Inductor
currents not jumping means that inductor currents
immediately after a switching operation are the same as
immediately before the operation. This is an important fact
for RL (resistor-inductor) circuit analysis.

TOTAL INDUCTANCE

The total or equivalent inductance (Ly or Lgq) of inductors

connected in series, as in the circuit shown in Fig. 9-4a, can
be found from KVL: v = v; + v, + v3. Substituting from v =L

di/dt results in
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Fig. 9-4
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which upon division by di/dt reduces to L+ = L; + L, + Ls.

Since the number of series inductors is not significant in this
derivation, the result can be generalized to any number of
series inductors:

LT=L|+L2+L3+L4+"'

which specifies that the total or equivalent inductance of
series inductors is equal to the sum of the individual
inductances.

The total inductance of inductors connected in parallel, as
in the circuit shown in Fig. 9-4b, can be found starting with
the voltage-current equation at the source terminals: v =
Lrdig/dt, and substituting in is = iy + i, + i3:



J di, di, di
L‘-=LTE“1 +f2+i3}=LT(d_:+d_f2+d_:)

Each derivative can be eliminated using the appropriate di/dt
= v/L:

(v v u) | 1 1 |
v=L}{—+—+— or —_—=— 4 — 4 —

which can also be written as

1
B ].,."JLI + ll.l'llLZ + II.I-"IILE

Ly
Generalizing,

!
ULy + ULy + 1Ly + 1/Ly + -

Ly

which specifies that the total inductance of parallel inductors
equals the reciprocal of the sum of the reciprocals of the
individual inductances. For the special case of N parallel
inductors having the same inductance L, this formula
simplifies to L+ = L/N. And for two parallel inductors itis Ly =

L,L,/(L; + L,). Notice that the formulas for finding total

inductances are the same as those for finding total
resistances.

ENERGY STORAGE

As can be shown by using calculus, the energy stored in
an inductor is



in which w; is in joules, L is in henries, and i is in amperes.

This energy is considered to be stored in the magnetic field
surrounding the inductor.

SINGLE-INDUCTOR DC-EXCITED CIRCUITS

When switches open or close in an RL dc-excited circuit
with a single inductor, all voltages and currents that are not
constant change exponentially from their initial values to
their final constant values, as can be proved from differential
equations. These exponential changes are the same as those
illustrated in Fig. 8-5 for capacitors. Consequently, the
voltage and current equations are the same: v =v (») + [v
(0+)-v(o)]e¥TVandi=i(wo)+[i(0+)-i(x)]e?TA The
time constant T, though, is different. It is T = L/Rt,, in which
R+ is the circuit Thévenin resistance at the inductor

terminals. Of course, in one time constant the voltages and
currents change by 63.2 percent of their total changes, and
after five time constants they can be considered to be at
their final values.

Because of the similarity of the RL and RC equations, it is
possible to make RL timers. But, practically speaking, RC
timers are much better. One reason is that inductors are not
nearly as ideal as capacitors because the coils have
resistances that are seldom negligible. Also, inductors are
relatively bulky, heavy, and difficult to fabricate using
integrated-circuit techniques. Additionally, the magnetic
fields extending out from the inductors can induce unwanted
voltages in other components. The problems with inductors
are significant enough that designers of electronic circuits
often exclude inductors entirely from their circuits.

PSPICE TRANSIENT ANALYSIS



The PSpice statements for inductors and capacitors are
similar to those for resistors but instead of an R, they begin
with an L for an inductor and a C for a capacitor. Also,
nonzero initial inductor currents and capacitor voltages must
be specified in these statements. For example, the
statement

L1 3 4 5M 1IC = 6M

specifies that inductor LI is connected between nodes 3 and
4, that its inductance is 5 mH, and that it has an initial
current of 6 mA that enters at node 3 (the first specified
node). The statement

c2z 7 2 8u 1IC =9

specifies that capacitor C2 is connected between nodes 7
and 2, that its capacitance is 8 uF, and that it has an initial
voltage of 9 V positive at node 7 (the first specified node).

For PSpice to perform a transient analysis, the circuit file
must include a statement having the form

. TRAN TSTEP TSTOP UIC

in which TSTEP and TSTOP specify times in seconds. This
statement might be, for example,

.TRAN 0.02 4 UIC

in which 0.02 corresponds to TSTEP, 4 to TSTOP, and UIC to
UIC, which means “use initial conditions.” The TSTEP of 0.02
s is the printing or plotting increment for the printer output,
and the TSTOP of 4 s is the stop time for the analysis. A good
value for TSTOP is four or five time constants. For the



specified TSTEP and TSTOP times, the first output printed is
fort = 0 s, the second for t = 0.02 s, the third for t = 0.04 s,
and so on up to the last one fort = 4 s.

The. PRINT statement for a transient analysis is the same
as that for a dc analysis except that TRAN replaces DC. The
resulting printout consists of a table of columns. The first
column consists of the times at which the outputs are to be
specified, as directed by the specifications of the. TRAN
statement. The second column comprises the values of the
first specified output quantity in the. PRINT statement, which
values correspond to the times of the first column. The third
column comprises the values of the second specified output
quantity, and so on.

With a plot statement, a plot of the output quantities
versus time can be obtained. A plot statement is similar to a
print statement except that it begins with.PLOT instead
of.PRINT.

Improved plots can be obtained by running the graphics
postprocessor Probe which is a separate executable program
that can be obtained with PSpice. Probe is one of the menu
items of the Control Shell. If the Control Shell is not being
used, the statement. PROBE must be included in the circuit
file for the use of Probe. Then, the PROBE mode may be
automatically entered into after the running of the PSpice
program.

With Probe, various plots can be obtained by responding to
the menus that appear at the bottom of the screen. These
menus are fairly self-explanatory and can be mastered with a
little experimentation and trial-and-error.

For transient analysis, PSpice has five special time-
dependent sources, only two of which will be considered
here: the periodic-pulse source and the piecewise-linear
source.

Figure 9-5 shows the general form of the pulse for the
periodic-pulse source. This pulse can be periodic, but does



not have to be and will not be for present purposes. The
parameters signify VI for the initial value, V2 for the pulsed
value, TD for time delay, TR for rise time, TF for fall time, PW
for pulse width, and PER for period. For a pulse voltage
source VI that is connected between nodes 2 and 3, with the
positive reference at node 2, the corresponding PSpice
statement has the form

L
PER

V1

-TI}-E TR | PW

Tl 2

Fig. 9-5

Vi 2 3 PULSE(V1l, V2, TD, TR, TF, PW, PER)

The commas do not have to be included. Also, if a pulse is
not periodic, no PER parameter is specified. PSpice then
assigns a default value, which is the TSTOP value in the.
TRAN statement.

If a zero rise or fall time is specified, PSpice will use a
default value equal to the TSTEP value in the. TRAN
statement. Since this value is usually too large, nonzero but
insignificant rise and fall times should be specified, such as
one-millionth of a time constant.

The piecewise-linear source can be used to obtain a
voltage or a current that has a waveform comprising only
straight lines. It applies, for example, to the pulse of Fig. 9-5.
The corresponding PSpice statement for it is



vli 2 3 ewL(o, v, T, Vv1, T2, V2, T3, V2, T4, V1)

Again, the commas are optional. The entries within the
parentheses are in pairs specifying the corners of the
waveform, where the first specification is time (0, Tl, T2, etc.)
and the second is the voltage at that time (VI, V2, V3, etc.).
The times must continually increase, even if by very small
increments—no two times can be exactly the same. If the
last time specified in the PWL statement is less than TSTOP
in the. TRAN statement, the pulse remains at its last
specified value until the TSTOP time.

PWL statements can be used to obtain sources of voltage
and current that have a much greater variety of waveforms
than those that can be obtained with PULSE statements.
However, PULSE statements apply to periodic waveforms
while PWL statements do not.

Solved Problems

9.1 Find the voltage induced in a 50-turn coil from a

constant flux of 104 Wb, and also from a changing flux
of 3 Wb/s.

A constant flux linking a coil does not induce any
voltage—only a changing flux does. A changing flux of 3
Wb/s induces a voltage of v = N dg/dt = 50 x 3 = 150 W

9.2 What is the rate of change of flux linking a 200-turn
coil when 50 V is across the coil?

This rate of change is the de/dt in v = N dg/dt:
d¢ L 50

4 nE = 2—& = {.25 Wb,"lﬁ
I



9.3 Find the number of turns of a coil for which a change of
0.4 Wb/s of flux linking the coil induces a coil voltage of
20 V.

This number of turns is the N in v = N dg/dt:
v 20

N = — = -— = 50 turns
de/di 0.4

9.4 Find the inductance of a 100-turn coil that is linked by
3 x 10™* Wb when a 20-mA current flows through it.

The pertinent formula is Li = N¢. Thus,

N 100(3 < 1074
L = —F? — -—-——[-—E——_‘—‘—] - IS H
i 20 % 1074

9.5 Find the approximate inductance of a single-layer coil
that has 300 turns wound on a plastic cylinder 12 cm
long and 0.5 cm in diameter.

The relative permeability of plastic is so nearly 1
that the permeability of vacuum can be used in the
inductance formula for a single-layer cylindrical coil:

NiuA  300%(0.47 x 10™°)[n x (0.25 x 10%)?]
i 12 x 1072

H=185uH

9.6 Find the approximate inductance of a single-layer 50-
turn coil that is wound on a ferromagnetic cylinder 1.5
cm long and 1.5 mm in diameter. The ferromagnetic
material has a relative permeability of 7000.

NZgA  S0HT7000 x 047 x 107 %) = (0.75 x 1077)*]
L:_I_ e — T - 1[_]“_ — — H = 2.59mH
JOX B



9.7 A 3-H inductor has 2000 turns. How many turns must
be added to increase the inductance to 5 H?

In general, inductance is proportional to the square
of the number of turns. By this proportionality,

5 N2 "
b N O or N = 2000 {- = 2582 turns
320002 V3

So, 2582 - 2000 = 582 turns must be added without
making any other changes.

9.8 Find the voltage induced in a 150-mH coil when the
current is constant at 4 A. Also, find the voltage when
the current is changing at a rate of 4 A/s.

If the current is constant, di/dt = 0 and so the coil
voltage is zero. For a rate of change of di/dt = 4 A/s,

i1
v = L—Il-—== (150 x 10" )4) =06V
ol

9.9 Find the voltage induced in a 200-mH coil att = 3 ms if
the current increases uniformly from 30 mA att =2 ms
to 90 mA att = 5 ms.

Because the current increases uniformly, the
induced voltage is constant over the time interval. The
rate of increase is Ai/At, where Ai is the current at the
end of the time interval minus the current at the
beginning of the time interval: 90 - 30 = 60 mA. Of
course, Ai is the time interval: 5 - 2 = 3 ms. The voltage

IS

Al (200 x 10260 x 107
r=lL -=-—— —-— — —— — =4V rDl' Ems-::f-r':ﬁms

At 3x 1077



9.10 What is the inductance of a coil for which a changing
current increasing uniformly from 30 mA to 80 mA in
100 us induces 50 mV in the coil?

Because the increase is uniform (linear), the time
derivative of the current equals the quotient of the
current change and the time interval:

di Ai 80 x107%~30x10"°

s e = 500 A/s
dt At 100 x 10°° '

Then, from v = L di/dt,

v 50 x 1079
L=——="—————H=100uH
di/dt 500

9.11 Find the voltage induced in a 400-mH coil from 0 s to

8 ms when the current shown in Fig. 9-6 flows through
the coil.

i (mA)

Fig. 9-6



The approach is to find di/dt, the slope, from the
graph and insert it into v = L di/dt for the various time
intervals. For the first millisecond, the current decreases
uniformly from 0 A to —40 mA. So, the slope is (—40 X
10—3 —0)/(1 x 10—3) = —40 A/s, which is the change in
current divided by the corresponding change in time.
The resulting voltage is v = L di/dt = (400 x 10—3)(—40)
= —16 V. For the next three milliseconds, the slope is
[20 x 1073 — (—40 x 1073)1/(3 x 10—3) = 20 A/s and
the voltage is v = (400 x 10—3)(20) = 8 V. For the next
two milliseconds, the current graph is horizontal, which
means that the slope is zero. Consequently, the voltage
is zero: v = 0 V. For the last two milliseconds, the slope
is (0 — 20 x 10—3)/(2 x 10—3) = —10 A/s and v = (400
X 1073)(—10) = -4 V.

Figure 9-7 shows the graph of voltage. Notice that
the inductor voltage can jump and can even
instantaneously change polarity.

v (V)

Fig. 9-7



9.12 Find the total inductance of three parallel inductors
having inductances of 45, 60, and 75 mH.

|
- - = 19,1 miH
1/45 + 1/60 + 1/75

L

9.13 Find the inductance of the inductor that when
connected in parallel with a 40-mH inductor produces a
total inductance of 10 mH.

As has been derived, the reciprocal of the total
inductance equals the sum of the reciprocals of the
inductances of the individual parallel inductors:

I
A —- = 19.1 mH
1/45 + 160 + 1/75

9.14 Find the total inductance L+ of the circuit shown in

Fig. 9-8.
S mH 9 mH
|
Ly
. 60 mH 70 mH 30 mH
8 mH T
O"M

Fig. 9-8



The approach, of course, is to combine inductances
starting with inductors at the end opposite the terminals
at which Ly is to be found. There, the parallel 70- and

30-mH inductors have a total inductance of 70(30)/(70 +
30) = 21 mH. This adds to the inductance of the 9-mH
series inductor: 21 + 9 = 30 mH. This combines with the
inductance of the parallel 60-mH inductor: 60(30)/(60 +
30) = 20 mH. And, finally, this adds with the
inductances of the series 5- and 8-mH inductors: L+ = 20

+ 5+ 8 =33 mH.

9.15 Find the energy stored in a 200-mH inductor that has
10 V across it.

Not enough information is given to determine the
stored energy. The inductor current is needed, not the
voltage, and there is no way of finding this current from
the specified voltage.

9.16 A current i = 0.32t A flows through a 150-mH
inductor. Find the energy stored att =4 s.

At t = 4 s the inductor currentisi = 0.32 x 4 = 1.28
A, and so the stored energy is

w=1Li? =0.5(150 x 1073)1.28)% = 0.123 J

9.17 Find the time constant of the circuit shown in Fig. 9-9.

50 k2 14 kQ
—AAN AN
0oV = 20 k0 75 k2 150 k2
30 kQ 50 mH
L AAAN— 2aan




Fig. 9-9

The time constant is L/Rty,, where Ry, is the

Thévenin resistance of the circuit at the inductor
terminals. For this circuit,

Ry, = (50 + 30)[20 + 14 + 751150 = 80 kO

and so T = (50 x 10—3)/(80 x 103) s = 0.625 us.

9.18 What is the energy stored in the inductor of the
circuit shown in Fig. 9-97?

The inductor current is needed. Presumably, the
circuit has been constructed long enough (5t =5 X
0.625 = 3.13 us) for the inductor current to become
constant and so for the inductor to be a short circuit.
The current in this short circuit can be found from
Thévenin’s resistance and voltage. The Thévenin
resistance is 80 kQ, as found in the solution to Prob.
9.17. The Thévenin voltage is the voltage across the 20-
kQ resistor if the inductor is replaced by an open circuit.
This voltage will appear across the open circuit since the
14-, 75-, and 150-kQ resistors will not carry any current.
By voltage division, this voltage is

20

——— % 100 =20V

Ve =
™20 4+ 50 + 30

Because of the short-circuit inductor load, the inductor
current is V¢,/(Rt, + 0) = 20/80 = 0.25 mA, and the

stored energy is 0.5(50 x 1073)(0.25 x 1073)2 ] = 1.56 n).

9.19 Closing a switch connects in series a 20-V source, a
2-Q resistor, and a 3.6-H inductor. How long does it take



the current to get to its maximum value, and what is
this value?

The current reaches its maximum value five time
constants after the switch closes: 5L/R = 5(3.6)/2 = 9 s.
Since the inductor acts as a short circuit at that time,
only the resistance limits the current: j («) = 20/2 = 10
A.

9.20 Closing a switch connects in series a 21-V source, a
3-Q resistor, and a 2.4H inductor. Find (a) the initial and
final currents, (b) the initial and final inductor voltages,
and (c¢) the initial rate of current increase.

(a) Immediately after the switch closes, the inductor
current is O A because it was 0 A immediately before
the switch closed, and an inductor current cannot jump.
The current increases from OA until it reaches its
maximum value five time constants (5 X 2.4/3 = 4 s)
after the switch closes. Then, because the current is
constant, the inductor becomes a short circuit, and so i
(0) =V/R=21/3=T7A.

(b) Since the current is zero immediately after the switch
closes, the resistor voltage is 0 V, which means, by
KVL, that all the source voltage is across the inductor:
The initial inductor voltage is 21 V. Of course, the final
inductor voltage is zero because the inductor is a short
circuit to dc after five time constants.

(c) As can be seen from Fig. 8-5b, the current initially
increases at a rate such that the final current value
would be reached in one time constant if the rate did
not change. This initial rate is

i[z*:}—HUH_T—U

T

=875 A/s




Another way of finding this initial rate, which is di/dt at
t = 0 +, is from the initial inductor voltage:

di 1, (0 21
o4y =00 _ 21 s
dt L 24

di |
0,04) = LE0+) or
dt

9.21 A closed switch connects a 120-V source to the field
coils of a dc motor. These coils have 6 H of inductance
and 30 Q of resistance. A discharge resistor in parallel
with the coil limits the maximum coil and switch
voltages at the instants at which the switch is opened.
Find the maximum value of the discharge resistor that
will prevent the coil voltage from exceeding 300 V.

With the switch closed, the current in the coils is
120/30 = 4 A because the inductor part of the coils is a
short circuit. Immediately after the switch is opened, the
current must still be 4 A because an inductor current
cannot jump—the magnetic field about the coil will
change to produce whatever coil voltage is necessary to
maintain this 4 A. In fact, if the discharge resistor were
not present, this voltage would become great enough—
thousands of volts—to produce arcing at the switch
contacts to provide a current path to enable the current
to decrease continuously. Such a large voltage might be
destructive to the switch contacts and to the coil
insulation. The discharge resistor provides an alternative
path for the inductor current, which has a maximum
value of 4 A. To limit the coil voltage to 300V, the
maximum value of discharge resistance is 300/4 = 75 Q.
Of course, any value less than 75 Q will limit the voltage
to less than 300 V, but a smaller resistance will result in
more power dissipation when the switch is closed.

9.22 In the circuit shown in Fig. 9-10, find the indicated
currents a long time after the switch has been in
position 1.
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Fig. 9-10

The inductor is, of course, a short circuit, and shorts
out the 20-Q resistor. As a result, i; = 0 A. This short

circuit also places the 18-Q resistor in parallel with the
12-Q) resistor. Together they have a total resistance of
18(12)/(18 + 12) = 7.2 Q. This adds to the resistance of
the series 6.8-Q resistor to produce 7.2 + 6.8 = 14 Q at
the source terminals. So, the source current is 140/14 =
10 A. By current division,

12 ‘ 8
x10=4A and iy =
12 + 18 12 + 18

i x10=6A
9.23 For the circuit shown in Fig. 9-10, find the indicated
voltage and currents immediately after the switch is

thrown to position 2 from position 1, where it has been
a long time.

As soon as the switch leaves position 1, the left-
hand side of the circuit is isolated, becoming a series
circuit in which i3 = 140/(6.8 + 12) = 7.45 A. In the

other part of the circuit, the inductor current cannot
jump, and is 4 A, as was found in the solution to Prob.
9.22: i, = 4 A. Since this is a known current, it can be

considered to be from a current source, as shown in Fig.



9-11. Remember, though, that this circuit is valid only
for the one instant of time immediately after the switch
is thrown to position 2. By nodal analysis,

18 1
60 .
20 () v 4 A
SOV = l"' B
Fig. 9-11
v v—230 :
— + +4=0 from which v= =209V
20 6+18

And i; = v/20 = -20.9/20 = -1.05 A.

This technique of replacing inductors in a circuit by
current sources is completely general for an analysis at
an instant of time immediately after a switching
operation. (Similarly, capacitors can be replaced by
voltage sources.) Of course, if an inductor current is
zero, then the current source carries 0 A and so is
equivalent to an open circuit.

9.24 A short is placed across a coil that at the time is
carrying 0.5 A. If the coil has an inductance of 0.5 H and
a resistance of 2 Q, what is the coil current 0.1 s after
the short is applied?

The current equation is needed. For the basic
formula i =i (o) + [i (0 +) - i ()]etT, the initial current
isi (0 +) = 0.5 A because the inductor current cannot
jump, the final current is j («) = 0 A because the current



will decay to zero after all the initially stored energy is
dissipated in the resistance, and the time constantis T
=L/R = 0.5/2 = 0.25 s. So,

i) =04+ (0.5 —0)e "2 = 0.5¢ "+ A

and i (0.1) = 0.5 4(0-1) = 0,335 A,

9.25 A coil for a relay has a resistance of 30 Q and an
inductance of 2 H. If the relay requires 250 mA to
operate, how soon will it operate after 12 V is applied to

the coil?

For the current formula, i (0 +) = 0 A, i () = 12/30
= 0.4 A, and T = 2/30 = 1/15 s. So,

i=04+(0—04e " =041 —e 13 A

The time at which the current is 250 mA = 0.25 A can be
found by substituting 0.25 for i and solving for t:

0.25 =041 — e 139 or e 1 =0.375

Taking the natural logarithm of both sides results in

Ine % = |n 0.375 from which — 15t = —0.9809 and t =654 ms

9.26 For the circuit shown in Fig. 9-12, find vand i fort > 0
s if at t = 0 s the switch is thrown to position 2 after

having been in position 1 for a long time.
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Fig. 9-12

The switch shown is a make-before-break switch
that makes contact at the beginning of position 2 before
breaking contact at position 1. This temporary double
contacting provides a path for the inductor current
during switching and prevents arcing at the switch
contacts. To find the voltage and current, it is only
necessary to get their initial and final values, along with
the time constant, and insert these into the voltage and
current formulas. The initial current j (0O +) is the same
as the inductor current immediately before the
switching operation, with the switch in position 1: 7 (0 +)
= 50/(4 + 6) = 5 A. When the switch is in position 2, this
current produces initial voltage drops of 5 x 6 = 30 V
and 14 x 5 = 70 V across the 6- and 14-Q resistors,
respectively. By KVL, 30 + 70 + v (0 +) = 20, from
which v (0 +) = = - 80 V. For the 