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Preface 
This book is intended as a senior-level undergraduate textbook on communication systems 
for Electrical Engineering majors. Its primary objective is to introduce the basic techniques 
used in modern communication systems and to provide fundamental tools and methodolo­
gies used in the analysis and design of these systems. Although the book is mainly written 
as an undergraduate-level textbook, it can be equally useful to the practicing engineer, or 
as a self-study tool. 

The emphasis of the book is on digital communication systems, which are treated 
in detail in Chapters 7 through 15. These systems are the backbone of modern commu­
nication systems, including new generations of wireless communication systems, satellite 

, communications, and data transmission networks. Traditional analog communication sys­
tems are also covered in due detail in Chapters 3, 4, and 6. In addition, the book provides 
detailed coverage of the background required for the course in two chapters, one on linear 
system analysis with emphasis on the frequency-domain approach and Fourier techniques, 
and one on probability, random variables, and random processes. Although these topics are 
now covered in separate courses in the majority of Electrical Engineering programs, it is 
the experience of the authors that the students frequently need to review these topics in a 
course on communications, and therefore it is essential to have quick access to the relevant 
material from these courses. It is also assumed that the students taking this course have a 
background in calculus, linear algebra, and basic electric circuits. 

NEW TO THIS EDITION 

The following are the major new features in the Second Edition of Fundamentals of Com­
munication Systems: 

Major reorganization of basic digital modulation methods based on geometric repre­
sentation of signals 

- Expanded coverage of carrier phase estimation and symbol synchronization 

New chapter on multicarrier modulation and OFDM 

- New and expanded coverage of iterative decoding of turbo codes and LDPC codes 

- New section on multiple antenna (MIMO) systems for radio channels 

- New chapter on spread spectrum signals and systems 

ORGANIZATION OF THE BOOK 

The book starts with a brief review of communication systems in Chapter 1, followed by 
methods of signal representation and system analysis in both time and frequency domains 

xvii 



xviii Preface 

in Chapter 2. Emphasis is placed on the Fourier series and the Fourier transform represen­
tation of signals and the use of transforms in linear systems analysis. 

Chapters 3 and 4 cover the modulation and demodulation of analog signals. In 
Chapter 3, amplitude modulation (AM) is covered. In Chapter 4, frequency modulation 
(FM) and phase modulation (PM) are covered. AM and FM radio broadcasting are also 
treated in these chapters. 

In Chapter 5, we present a review of the basic definitions and concepts in proba­
bility and random processes. Special emphasis is placed on Gaussian random processes, 
which provide mathematically treatable models for additive noise disturbances. Both time­
domain and frequency-domain representations of random signals are presented. 

Chapter 6 covers the effects of additive noise in the demodulation of amplitude­
modulated (AM) and angle-modulated (FM, PM) analog signals and a comparison of these 
analog signal modulations in terms of their signal-to-noise ratio performance. We also 
present the characterization of thermal noise and the effect of transmission losses in analog 
communication systems. 

Chapter 7 is devoted to analog-to-digital conversion. The sampling theorem and 
quantization techniques are treated first, followed by waveform encoding methods includ­
ing PCM, DPCM, and DM. This chapter concludes with brief discussion of LPC speech 
decoding and the JPEG standard for image compression. 

Chapter 8 treats basic digital modulation methods and their performance in AWGN 
channels. The methods described are binary antipodal and orthogonal signals, and M-ary 
pulse amplitude modulation (PAM), phase-shift keying (PSK), and quadrature amplitude 
modulation (QAM). These types of digital signals are characterized in terms of their geo­
metric representation. The optimum demodulation of these signals is derived based on 
the maximum a posteriori and maximum-likelihood criteria. In addition, we also describe 
methods for carrier phase estimation using a phase-locked loop (PLL), and symbol syn­
chronization. 

In Chapter 9, we treat multidimensional digital modulation signals based on a geo­
metric representation of such signals and derive their performance when transmitted in 
an AWGN channel. Signal types considered include orthogonal signals, biorthogonal sig­
nals, simplex signals, binary-coded signals, and frequency-shift keying (FSK). Continuous­
phase FSK (CPFSK) and its spectral characteristics are also treated. 

In Chapter 10, we consider the transmission of digital signals in bandlimited AWGN 
channels. The effect of channel distortion on the transmitted signals is shown to result 
in intersymbol inte1ference (ISi). Then, the design of signals that eliminate or control the 
effect of ISi is described. Finally, we treat the design of adaptive equalizers for suppressing 
ISi in the channel distorted received signal. 

The focus of Chapter 11 is on digital signal transmission via multicarrier modula­
tion and orthogonal frequency-division multiplexing (OFDM). The implementation of the 
OFDM modulator and demodulator, based on the use of the FFT algorithm, is described. 
Additional topics treated include the spectral characteristics of OFDM signals and methods 
for reducing the peak-to-average power ratio (PAR) in OFDM signals. Finally, we present 
several applications of OFDM in current digital communication systems. 
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In Chapter 12, we present the basic limits on communication of information, includ­
ing the information content of memoryless sources, efficient coding of the source out­
put, and the capacity of the AWGN channel. Two widely used algorithms for encoding 
the output of digital sources, namely, the Huffman coding algorithm and the Lempel-Ziv 
algorithm, are also described. 

In Chapter 13, we treat channel coding and decoding. Linear block codes and con­
volutional codes are described for enhancing the performance of a digital communication 
system in the presence of AWGN. Both hard-decision and soft-decision decoding of block 
and convolutional codes are treated. Coding for bandwidth-limited channels (trellis-coded 
modulation), turbo codes, and low-density parity check codes are also treated. 

In Chapter 14, we treat the characterization of physical wireless channels and the 
construction of mathematical models for time-varying, fading multipath channels. The per­
formance of binary modulation in Rayleigh fading channels is determined and the benefits 
of signal diversity for combating signal fading is demonstrated. The RAKE demodulator is 
�
described and its performance on frequency selective channels is evaluated. Also treated in 
this chapter is the use of multiple transmit and receive antennas for increasing the transmis­
sion rate and obtaining signal diversity in wireless communication systems. Methods for 
mapping digital signals for transmission on multiple antennas are also presented, including 
block coding methods such as the Alamouti code and trellis codes. The final topic treated 
in this chapter is link budget analysis for radio channels. 

The final chapter of this book introduces the reader to spread-spectrum digital com­
munication technJ.ques and their use in combating interference, both intentional Uamming) 
and unintentional, the latter arising from other users of the channel. In particular, we treat 
direct sequence (DS) spr,ead spectrum and frequency-hopping (FH) spread spectrum, and 
their performance characteristics in the presence of interference. Also treated is the gener­
ation of pseudo-noise (PN) sequences for use in spreading the spectrum of the transmitted 
signal. The final topic of this chapter describes the use of spread spectrum signals in digital 
cellular communication systems, including 2nd-, 3rd-, and 4th-generation (2G, 3G, 4G) 
cellular systems. 

Throughout the book many worked examples are provided to emphasize the use of 
the techniques developed in theory. Following each chapter are a large number of prob­
lems at different levels of difficulty. The problems are followed by a selection of com­
puter problems, which usually ask for simulation of vaiious algorithms developed in that 
chapter using MATLAB. The solutions to the MATLAB problems are made available at 
www.pearsonhighered.com. 
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Introduction 

�Every day, in our work and in our leisure time, we use and come in contact with a variety 
of modern communication systems and communication media, the most common being 
the telephone, radio, and television. Through these media, we are able to communicate 
(nearly) instantaneously with people on different continents, transact our daily business, 
and receive information about various developments and noteworthy events that occur all 
around the world. Electronic mail and facsimile transmission have made it possible to 
rapidly communicate written messages across great distances. 

Can you imagine a world without telephones, radios, and televisions? Yet, when you 
think about it, m©st of these modern communication systems were invented and developed 
during the past century. Here, we present a brief historical review of major developments 
within the last 200 years'that have had a major role in the development of modern commu­
nication systems. 

1.1 HISTORICAL REVIEW 

Telegraphy and Telephony. One of the earliest inventions of major significance 
to communications was the invention of the electric battery by Alessandro Volta in 1799. 
This invention made it possible for Samuel Morse to develop the electric telegraph, which 
he demonstrated in 1837. The first telegraph line linked Washington with Baltimore and 
became operational in May 1844. Morse devised the variable-length binary code given in 
Table 1.1, in which letters of the English alphabet were represented by a sequence of dots 
and dashes (code words). In this code, more frequently occurring letters are represented 
by sho1t code words, while less frequently occurring letters are represented by longer code 
words. 

The Morse code was the precursor to the variable-length source coding method, 
which is described in Chapter 12. It is remarkable that the earliest form of electrical com­
munications that was developed by Morse, namely, telegraphy, was a binary digital com­
munication system in which the letters of the English alphabet were efficiently encoded 
into corresponding variable-length code words with binary elements. 

1 
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TABLE 1 . 1  THE MORSE CODE 

A 

B 

c 
D 

E 

F 

G 

H 

I 

J · ---

K 

L 

M 

Period (.) 

Comma (,) 

Interrogation (?) 
Quotation Mark (") 

Colon (:) 

Semicolon (;) 

Parenthesis ( ) 

N 

0 

p 
Q 
R 

s 

T 

u 

v 

w 
x 

y 
z 

(a) Letters 

- --

- -· -

2 

3 

4 

5 

6 

7 
8 

-· - - 9 

--· · 0 

Wait sign (AS) 

Double dash (break) 

Error sign 

Fraction bar (/) 

Introduction 

· - ---

· · -- -

· · ·--

--· · ·  

---· · 

----· 

-----

(b) Numbers 

End of message (AR) 

End of transmission (SK) 

(c) Punctuation and special characters 
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Nearly 40 years later, in 1875, Emile Baudot developed a code for telegraphy in 
which each letter was encoded into fixed-length binary code words of length 5. In the 
Baudot code, the binary code elements have equal length and are designated as mark and 
space. 

An important milestone in telegraphy was the installation of the first transatlantic 
cable that linked the United States and Europe in 1858. This cable failed after about four 
weeks of operation. A second cable was laid a few years later and became operational in 
July 1866. 

Telephony came into being with the invention of the telephone in the 1870s. Alexan­
der Graham Bell patented his invention of the telephone in 1876; in 1877, established the 
Bell Telephone Company. Early versions of telephone communication systems were rela­
tively simple and provided service over several hundred miles. Significant advances in the 
quality and range of service during the first two decades of the twentieth century resulted 
from the invention of the carbon microphone and the induction coil. 



Section 1.1 Historical Review 3 

In 1906, the invention of the triode amplifier by Lee DeForest made it possible to 
introduce signal amplification in telephone communication systems and, thus, to allow for 
telephone signal transmission over great distances. For example, transcontinental telephone 
transmission became operational in 1915. 

The two world wars and the Great Depression during the 1930s must have been a 
deteITent to the establishment of transatlantic telephone service. It was not until 1953, when 
the first transatlantic cable was laid, that telephone service became available between the 
United States and Europe. 

Automatic switching was another important advance in the development of tele­
phony. The first automatic switch, developed by Strowger in 1897, was an electrome­
chanical step-by-step switch. This type of switch was used for several decades. With the 
invention of the transistor, electronic (digital) switching became economically feasible. 
After several years of development at the Bell Telephone Laboratories, a digital switch 
was placed in service in Illinois in June 1960. 

During the past 50 years, there have been significant advances in telephone commu­
nications. Fiber optic cables are rapidly replacing copper wire in the telephone plant, and 
electronic switches have replaced the old electromechanical systems. 

Wireless Communications. The development of wireless communications stems 
from the works of Oersted, Faraday, Gauss, Maxwell, and Hertz during the nineteenth cen­
tury. In 1820, Oersted demonstrated that an electric cuITent produces a magnetic field. On 
August 29, 1831� Michael Faraday showed that an induced cuITent is produced by moving 
a magnet in the vicinity of a conductor. Thus, he demonstrated that a changing magnetic 
field produces an electric field. With this early work as background, James C. Maxwell in 
1864 predicted the existence of electromagnetic radiation and formulated the basic theory 
that has been in use for over a century. Maxwell's theory was verified experimentally by 
Hertz in 1887. 

In 1894, a sensitive device that could detect radio signals, called the coherer, was 
used by its inventor, Oliver Lodge, to demonstrate wireless communication over a distance 
of 150 yards in Oxford, England. Guglialmo Marconi is credited with the development of 
wireless telegraphy. In 1895, Marconi demonstrated the transmission of radio signals at a 
distance of approximately 2 km. Two years later, in 1897, he patented a radio telegraph 
system and established the Wireless Telegraph and Signal Company. On December 12, 
1901, Marconi received a radio signal at Signal Hill in Newfoundland; this signal was 
transmitted from Cornwall, England, a city located about 1700 miles away. 

The invention of the vacuum tube was especially instrumental in the development 
of radio communication systems. The vacuum diode was invented by Fleming in 1904, 
and the vacuum triode amplifier was invented by DeForest in 1906, as previously indi­
cated. In the early part of the twentieth century, the invention of the triode made radio 
broadcast possible. The AM (amplitude modulation) broadcast was initiated in 1920 when 
the radio station KDKA, Pittsburgh, went on the air. From that date, AM radio broad­
casting grew very rapidly across the country and around the world. The superheterodyne 
AM radio receiver, as we know it today, was invented by Edwin Armstrong during World 
War I. Another significant development in radio communications was the invention of FM 
(frequency modulation), also by Armstrong. In 1933, Armstrong built and demonstrated 
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the first FM communication system. However, the use of FM was developed more slowly 
than the use of AM broadcast. It was not until the end of World War II that FM broadcast 
gained in popularity and developed commercially. 

The first television system was built in the United States by V. K. Zworykin and 
demonstrated in 1929. Commercial television broadcasting was initiated in London in 1936 
by the British Broadcasting Corporation (BBC). Five years later, the Federal Communica­
tions Commission (FCC) authorized television broadcasting in the United States. 

The Past 60 Years. The growth in communication services over the past 60 
years has been phenomenal. Significant achievements include the invention of the tran­
sistor in 1947 by Walter Brattain, John Bardeen, and William Shockley; the integrated 
circuit in 1958 by Jack Kilby and Robert Noyce; and the laser in 1958 by Townes and 
Schawlow. These inventions have made possible the development of small-size, low-power, 
low-weight, and high-speed electronic circuits that are used in the construction of satellite 
communication systems, wideband microwave radio systems, cellular communication sys­
tems, and light-wave communication systems using fiber optic cables. A satellite named 
Telstar I was launched in 1962 and used to relay TV signals between Europe and the United 
States. Commercial satellite communication services began in 1965 with the launching of 
the Early Bird satellite. 

Currently, most of the wireline communication systems are being replaced by fiber 
optic cables, which provide extremely high bandwidth and make possible the transmis­
sion of a wide variety of information sources, including voice, data, and video. Cellular 
radio has been developed to provide telephone service to people in automobiles, buses, and 
trains. High-speed communication networks link computers and a variety of peripheral 
devices, literally around the world. 

Today, we are witnessing a significant growth in the introduction and use of personal 
communication services, including voice, data, and video transmission. Satellite and fiber 
optic networks provide high-speed communication services around the world. Indeed, this 
is the dawn of the modern telecommunications era. 

There are several historical treatments in the development of radio and telecommuni­
cations covering the past century. We cite the books by McMahon, entitled The Making of 
a Profession-A Century of Electrical Engineering in America (IEEE Press, 1984); Ryder 
and Fink, entitled Engineers and Electronics (IEEE Press, 1984); and S. Millman, Edi­
tor, entitled A Histmy of Engineering and Science in the Bell System-Communications 
Sciences ( 1925-1980) (AT&T Bell Laboratories, 1984). 

1.2 ELEMENTS OF AN ELECTRICAL COMMUNICATION SYSTEM 

Electrical communication systems are designed to send messages or information from a 
source that generates the messages to one or more destinations. In general, a communica­
tion system can be represented by the functional block diagram shown in Figure 1.1. The 
information generated by the source may be of the form of voice (speech source), a picture 
(image source), or plain text in some particular language, such as English, Japanese, Ger­
man, and French. An essential feature of any source that generates information is that its 
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output is described in probabilistic terms, i.e., the output of a source is not deterministic. 
Otherwise, there would be no need to transmit the message. 

A transducer is usually required to convert the output of a source into an electrical 
signal that is suitable for transmission. For example, a microphone serves as the trans­
ducer that converts an acoustic speech signal into an electrical signal, and a video camera 
that converts an image into an electrical signal. At the destination, a similar transducer is 
required to convert the electrical signals that are received into a form that is suitable for the 
user, e.g., acoustic signals and images. 

The heart of the communication system consists of three basic parts, namely, the 
transmitter, the channel, and the receiver. The functions performed by these three elements 
are described next. 

The Transmitter. The transmitter converts the electrical signal into a form that 
is suitable for transmission through the physical channel or transmission medium. For 
example, in radio and TV broadcasts, the FCC specifies the frequency range for each 
transmitting station. Hence, the transmitter must translate the outgoing information sig­
nal into the appropriate frequency range that matches the frequency allocation assigned to 
the transmitter. Thus, signals transmitted by multiple radio stations do not interfere with 
one another. Similar functions are performed in telephone communication systems where 
the electrical speech signals from many users are transmitted over the same wire. 

In general, the transmitter matches the message signal to the channel via a process 
called modulation. Usually, modulation involves the use of the information signal to sys­
tematically vary either the amplitude or the frequency or the phase of a sinusoidal carrier. 
For example, in AM radio broadcast, the information signal that is transmitted is contained 
in the amplitude variations of the sinusoidal carrier, which is the center frequency in the 
frequency band allocated to the radio transmitting station. This is an example of amplitude 
modulation. In an FM radio broadcast, the information signal that is transmitted is con­
tained in the frequency variations of the sinusoidal carrier. This is an example of frequency 
modulation. Phase modulation (PM) is yet a third method for impressing the information 
signal on a sinusoidal carrier. 
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In general, carrier modulation such as AM, FM, and PM is performed at the trans­
mitter, as previously indicated, to convert the information signal to a form that matches 
the characteristics of the channel. Thus, through the process of modulation, the informa­
tion signal is translated in frequency to match the allocation of the channel. The choice 
of the type of modulation is based on several factors, such as the amount of bandwidth 
allocated, the types of noise and interference that the signal encounters in transmission 
over the channel, and the electronic devices that are available for signal amplification 
prior to transmission. In any case, the modulation process makes it possible to accom­
modate the transmission of multiple messages from many users over the same physical 
channel. 

In addition to modulation, other functions that are usually performed at the trans­
mitter are filtering of the information-bearing signal, amplification of the modulated signal 
and, in the case of wireless transmission, radiation of the signal by means of a transmitting 
antenna. 

The Channel. The communication channel is the physical medium that is used 
to send the signal from the transmitter to the receiver. In wireless transmission, the chan­
nel is usually the atmosphere (free space). On the other hand, telephone channels usually 
employ a variety of physical media, including wirelines, fiber optic cables, and wireless 
(microwave radio). Whatever the physical medium for signal transmission, the essential 
feature is that the transmitted signal is corrupted in a random manner by a variety of possi­
ble mechanisms. The most common form of signal degradation comes in the form of addi­
tive noise, which is generated at the front end of the receiver, where signal amplification 
is performed. This noise is often called thermal noise. In wireless transmission, additional 
additive disturbances are man-made noise and atmospheric noise picked up by a receiv­
ing antenna. Automobile ignition noise is an example of man-made noise, and electrical 
lightning discharges from thunderstorms is an example of atmospheric noise. Interference 
from other users of the channel is another form of additive noise that often arises in both 
wireless and wireline communication systems. 

In some radio communication channels, such as the ionospheric channel that is used 
for long-range, short-wave radio transmission, another form of signal degradation is mul­
tipath propagation. Such signal distortion is characterized as a nonadditive signal distur­
bance that manifests itself as time variations in the signal amplitude, usually called fading. 
This phenomenon is described in more detail in Section 1.3. 

Both additive and nonadditive signal distortions are usually characterized as random 
phenomena and described in statistical terms. The effect of these signal distortions must be 
considered in the design of the communication system. 

In the design of a communication system, the system designer works with mathe­
matical models that statistically characterize the signal distortion encountered on physical 
channels. Often, the statistical description that is used in a mathematical model is a result 
of actual empirical measurements obtained from experiments involving signal transmis­
sion over such channels. In such cases, there is a physical justification for the mathematical 
model used in the design of communication systems. On the other hand, in some commu­
nication system designs, the statistical characteristics of the channel may vary significantly 
with time. In such cases, the system designer may design a communication system that is 
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robust to the variety of signal distortions. This can be accomplished by having the system 
adapt some of its parameters to the channel distortion encountered. 

The Receiver. The function of the receiver is to recover the message signal con­
tained in the received signal. If the message signal is transmitted by carrier modulation, 
the receiver performs carrier demodulation to extract the message from the sinusoidal 
carrier. Since the signal demodulation is performed in the presence of additive noise and 
possibly other signal distortions, the demodulated message signal is generally degraded to 
some extent by the presence of these distortions in the received signal. As we shall see, 
the fidelity of the received message signal is a function of the type of modulation and the 
strength of the additive noise. 

Besides pe1forming the primary function of signal demodulation, the receiver also 
performs a number of peripheral functions, including signal filt

,
ering and noise suppression. 

1.2.1 Digital Communication System 

Up to this point, we have described an electrical communication system in rather broad 
terms based on the implicit assumption that the message signal is a continuous time-varying 
waveform. We refer to such continuous-time signal waveforms as analog signals and to the 
corresponding information sources that produce such signals as analog sources. Analog 
signals can be transmitted directly over the communication channel via carrier modulation 
and demodulated accordingly at the receiver. We call such a communication system an 
analog communication system. 

Alternatively, an analog source output may be converted into a digital form, and the 
message can be transmitted via digital modulation and demodulated as a digital signal 
at the receiver. There are some potential advantages to transmitting an analog signal by 
means of digital modulation. The most important reason is that signal fidelity is better 
controlled through digital transmission than through analog transmission. In particular, 
digital transmission allows us to regenerate the digital signal in long-distance transmission, 
thus eliminating effects of noise at each regeneration point. In contrast, the noise added in 
analog transmission is amplified along with the signal when amplifiers are periodically 
used to boost the signal level in long-distance transmission. Another reason for choosing 
digital transmission over analog is that the analog message signal may be highly redundant. 
With digital processing, redundancy may be removed prior to modulation, thus conserving 
channel bandwidth. Yet a third reason may be that digital communication systems are often 
cheaper to implement. 

In some applications, the information to be transmitted is inherently digital, e.g., in 
the form of English text and computer data. In such cases, the information source that 
generates the data is called a discrete (digital) source. 

In a digital communication system, the functional operations performed at the trans­
mitter and receiver must be expanded to include message signal discretization at the trans­
mitter and message signal synthesis or interpolation at the receiver. Additional functions 
include redundancy removal, as well as channel coding and decoding. 

Figure 1.2 illustrates the functional diagram and the basic elements of a digital com­
munication system. The source output may be either an analog signal, such as an audio 
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or video signal, or a digital signal, such as computer output, which is discrete in time and 
has a finite number of output characters. In a digital communication system, the messages 
produced by the source are usually converted into a sequence of binary digits. Ideally, we 
would like to represent the source output (message) with as few binary digits as possible. In 
other words, we seek an efficient representation of the source output that results in little or 
no redundancy. The process of efficiently converting the output of either an analog or a dig­
ital source into a sequence of binary digits is called source encoding or data compression. 
We shall describe source-encoding methods in Chapter 12. 

The source encoder outputs a sequence of binary digits, which we call the informa­
tion sequence; this is passed to the channel encoder. The purpose of the channel encoder is 
to introduce, in a controlled manner, some redundancy in the binary information sequence 
that can be used at the receiver to overcome the effects of noise and interference encoun­
tered in the transmission of the signal through the channel. Thus, the added redundancy 
serves to increase the reliability of the received data and improves the fidelity of the 
received signal. In effect, redundancy in the information sequence aids the receiver in 
decoding the desired information sequence. For example, a (trivial) form of encoding of 
the binary information sequence is simply to repeat each binary digit m times, where m is 
some positive integer. More sophisticated (nontrivial) encoding involves taking k informa­
tion bits at a time and mapping each k-bit sequence into a unique n-bit sequence, called 
a code word. The amount of redundancy introduced by encoding the data in this man­
ner is measured by the ratio n / k. The reciprocal of this ratio, namely, k / n, is called the 
rate of the code or, simply, the code rate. Channel coding and decoding are discussed in 
Chapter 13. 

The binary sequence at the output of the channel encoder is passed to the digital 
modulator, which serves as the interface to the communication channel. Since nearly all of 
the communication channels encountered in practice are capable of transmitting electrical 
signals (waveforms), the primary purpose of the digital modulator is to map the binary 
information sequence into signal waveforms. To elaborate on this point, let us suppose that 
the coded information sequence is to be transmitted one bit at a time at some uniform rate 
R bits/sec. The digital modulator may simply map the binary digit 0 into a waveform so(t) 
and the binary digit 1 into a waveform s1 (t). In this manner, each bit from the channel 
encoder is transmitted separately. We call this binary modulation. Alternatively, the modu­
lator may transmit b coded information bits at a time by using M = 2k distinct waveforms 
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Si (t), i = 0, I ,  . . . , M - I .  This provides one waveform for each of the 2k possible k-bit 
sequences. We call this M-ary modulation (M > 2). Note that a new k-bit sequence enters 
the modulator every k/ R seconds. Hence, when the channel bit rate R is fixed, the amount 
of time available to transmit one of the M waveforms corresponding to a k-bit sequence is 
k times the time period in a system that uses binary modulation. 

At the receiving end of a digital communication system, the digital demodulator pro­
cesses the channel-corrupted transmitted waveform and reduces each waveform to a sin­
gle number that represents an estimate of the transmitted data symbol (binary or M-ary). 
For example, when binary modulation is used, the demodulator may process the received 
waveform and decide whether the transmitted bit is a 0 or a I .  In such a case, we say the 
demodulator has made a binary decision or hard decision. As an alternative, the demod­
ulator may make a ternary decision; i.e., it decides that the transmitted bit is either a 0 or 
1 or it makes no decision at all, depending on the apparent quality of the received signal. 

"When no decision is made on a particular bit, we say that the demodulator has inserted an 
erasure in the demodulated data. Using the redundancy in the transmitted data, the decoder 
attempts to fill in the positions where erasures occurred. Viewing the decision process per­
formed by the demodulator as a form of quantization, we observe that binary and ternary 
decisions are special cases of a demodulator that quantizes to Q levels, where Q 2: 2. In 
general, if the digital communication system employs M-ary modulation, where M rep­
resents the M possible transmitted symbols, each corresponding to k = log2 M bits, the 
demodulator may make a Q-ary decision, where Q 2: M. In the extreme case where no 
quantization is p®formed, Q = oo. 

When there is no redundancy in the transmitted information, the demodulator must 
decide which of the M ,waveforms was transmitted in any given time interval. Conse­
quently Q = M, arid since there is no redundancy in the transmitted information, no 
discrete channel decoder is used following the demodulator. On the other hand, when there 
is redundancy introduced by a discrete channel encoder at the transmitter, the Q-ary output 
from the demodulator occurring every k / R seconds is fed to the decoder, which attempts 
to reconstruct the original information sequence from knowledge of the code used by the 
channel encoder and the redundancy contained in the received data. 

A measure of how well the demodulator and decoder perform is the frequency with 
which errors occur in the decoded sequence. More precisely, the average probability of a 
bit error at the output of the decoder is a measure of the performance of the demodulator­
decoder combination. In general, the probability of error is a function of the code char­
acteristics, the types of waveforms used to transmit the information over the channel, the 
transmitter power, the characteristics of the channel, i.e., the amount of noise, and the 
method of demodulation and decoding. 

These items and their effect on performance will be discussed in detail in Chapters 8 
through 10. 

As a final step, when an analog output is desired, the source decoder accepts the 
output sequence from the channel decoder and, from knowledge of the source encoding 
method used, attempts to reconstruct the original signal from the source. Due to channel 
decoding errors and possible distortion introduced by the source encoder and, perhaps, 
the source decoder, the signal at the output of the source decoder is an approximation to 
the original source output. The difference or some function of the difference between the 



1 0  Introduction Chapter 1 

original signal and the reconstructed signal is a measure of the distortion introduced by the 
digital communication system. 

1.2.2 Early Work in Digital Communications 

Although Morse is responsible for the development of the first electrical digital commu­
nication system (telegraphy), the beginnings of what we now regard as modern digital 
communications stem from the work of Nyquist ( 1924 ), who investigated the problem of 
determining the maximum signaling rate that can be used over a telegraph channel of a 
given bandwidth without intersymbol interference. He formulated a model of a telegraph 
system in which a transmitted signal has the general form 

s(t) = L an g(t - n T ), 
fl 

where g(t) represents a basic pulse shape and {a11 } is the binary data sequence of {± 1 }  
transmitted at a rate of 1 / T bits/sec. Nyquist set out to determine the optimum pulse shape 
that was bandlimited to W Hz and maximized the bit rate 1 / T under the constraint that the 
pulse caused no intersymbol interference at the sampling times k / T ,  k = 0, ± 1, ±2, . . . . 
His studies led him to conclude that the maximum pulse rate l / T  is 2W pulses/sec. This 
rate is now called the Nyquist rate. Moreover, this pulse rate can be achieved by using the 
pulses g(t) = (sin 2rcWt)/2rcWt. This pulse shape allows the recovery of the data without 
intersymbol interference at the sampling instants. Nyquist's result is equivalent to a ver­
sion of the sampling theorem for bandlimited signals, which was later stated precisely by 
Shannon ( 1948). The sampling theorem states that a signal of bandwidth W can be recon­
structed from samples taken at the Nyquist rate of 2W samples/sec using the interpolation 
formula 

� ( n ) sin 2rcW (t - n/2W) 
s(t) = L, s - . 

2W 2rcW (t - n/2W) II 

In light of Nyquist's work, Hartley ( 1928) considered the amount of data that can be 
reliably transmitted over a bandlimited channel when multiple amplitude levels are used. 
Due to the presence of noise and other interference, Hartley postulated that the receiver can 
reliably estimate the received signal amplitude to some accuracy, say A8• This investigation 
led Hartley to conclude that there is a maximum data rate that can be communicated reli­
ably over a bandlimited channel, when the maximum signal amplitude is limited to Amax 
(fixed power constraint) and the amplitude resolution is A8. 

Another significant advance in the development of communications was the work 
of Wiener ( 1942), who considered the problem of estimating a desired signal waveform 
s (t) in the presence of additive noise n (t) based on observation of the received signal 
r (t) = s(t) + n (t). This problem arises in signal demodulation. Wiener determined the 
linear filter whose output is the best mean-square approximation to the desired signal s(t). 
The resulting filter is called the optimum linear (Wiener) filter. 

Hartley's and Nyquist's results on the maximum transmission rate of digital informa­
tion were precursors to the work of Shannon ( 1948a,b), who established the mathematical 
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foundations for information theory and derived the fundamental limits for digital commu­
nication systems. In his pioneering work, Shannon formulated the basic problem of reliable 
transmission of information in statistical terms, using probabilistic models for information 
sources and communication channels. Based on this statistical formulation, he adopted a 
logarithmic measure for the information content of a source. He also demonstrated that 
the effect of a transmitter power constraint, a bandwidth constraint, and additive noise can 
be associated with the channel and incorporated into a single parameter, called the chan­
nel capacity. For example, in the case of an additive white (spectrally flat) Gaussian noise 
interference, an ideal bandlimited channel of bandwidth W has a capacity C given by 

C = W log2 (1 + �) bits/sec, 
WNo 

where P is the average transmitted power and No is the power-spectral density of the addi­
tive noise. The significance of the channel capacity is as follows: If the information rate R 
from the source is less than C (R < C), then it is theoretically possible to achieve reliable 
(error-free) transmission through the channel by appropriate coding. On the other hand, if 
R > C, reliable transmission is not possible regardless of the amount of signal process­
ing performed at the transmitter and receiver. Thus, Shannon established basic limits on 
communication of information and gave birth to a new field that is now called information 
theory. 

Initially, the fundamental work of Shannon had a relatively small impact on the 
design and development,of new digital communication systems. In part, this was due to 
the small demand for digital information transmission during the 1950s. Another reason 
was the relatively large complexity and, hence, the high-cost digital hardware required to 
achieve the high efficiency and the high reliability predicted by Shannon's theory. 

Another important contribution to the field of digital communications is the work 
of Kotelnikov ( 1947). His work provided a coherent analysis of the various digital com­
munication systems, based on a geometrical approach. Kotelnikov's approach was later 
expanded by Wozencraft and Jacobs ( 1965). 

The increase in the demand for data transmission during the last four decades, cou­
pled with the development of more sophisticated integrated circuits, has led to the devel­
opment of very efficient and more reliable digital communication systems. In the course of 
these developments, Shannon's original results and the generalization of his results on max­
imum transmission limits over a channel and on bounds on the performance achieved have 
served as benchmarks against which any given communication system design can be com­
pared. The theoretical limits, derived by Shannon and other researchers that contributed to 
the development of information theory, serve as an ultimate goal in the continuing efforts 
to design and develop more efficient digital communication systems. 

Following Shannon's publications came the classic work of Hamming (1950), which 
used error-detecting and error-correcting codes to combat the detrimental effects of channel 
noise. Hamming's work stimulated many researchers in the years that followed, and a 
variety of new and powerful codes were discovered, many of which are used today in the 
implementation of modern communication systems. 
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1 .3 COMMUNICATION CHANNELS AND THEIR CHARACTERISTICS 

As indicated in our preceding discussion, the communication channel provides the con­
nection between the transmitter and the receiver. The physical channel may be a pair of 
wires that carry the electrical signal, or an optical fiber that carries the information on a 
modulated light beam, or an underwater ocean channel in which the information is trans­
mitted acoustically, or free space over which the information-bearing signal is radiated by 
use of an antenna. Other media that can be characterized as communication channels are 
data storage media, such as magnetic tape, magnetic disks, and optical disks. 

One common problem in signal transmission through any channel is additive noise. 
In general, additive noise is generated internally by components, such as resistors and 
solid-state devices, used to implement system. This type of noise is usually called thermal 
noise. Other sources of noise and interference may arise externally to the system, such as 
interference from other users of the channel. When such noise and interference occupy the 
same frequency band as the desired signal, the effect can be minimized by proper design of 
the transmitted signal and the demodulator at the receiver. Other types of signal degradation 
may be encountered in transmission over the channel, such as signal attenuation, amplitude 
and phase distortion, and multipath distmtion. 

The effects of noise may be minimized by increasing the power in the transmitted 
signal. However, equipment and other practical constraints limit the power level in the 
transmitted signal. Another basic limitation is the available channel bandwidth. A band­
width constraint is usually due to the physical limitations of the medium and the electronic 
components used to implement the transmitter and the receiver. These two limitations result 
in constraining the amount of data that can be transmitted reliably over any communication 
channel. 

Next, we describe some of the important characteristics of several communication 
channels. 

Wireline Channels. The telephone network makes extensive use of wirelines for 
voice signal transmission, as well as data and video transmission. Twisted-pair wirelines 
and coaxial cable are basically guided electromagnetic channels that provide relatively 
modest bandwidths. Telephone wire generally used to connect a customer to a central office 
has a bandwidth of several hundred kilohertz (kHz). On the other hand, coaxial cable has 
a usable bandwidth of several megahertz (MHz). Figure 1 .3 illustrates the frequency range 
of guided electromagnetic channels, which include waveguides and optical fibers. 

Signals transmitted through such channels are distorted in both amplitude and phase, 
and they are further corrupted by additive noise. Twisted-pair wireline channels are also 
prone to crosstalk interference from physically adjacent channels. Because wireline chan­
nels carry a large percentage of our daily communications around the country and the 
world, much research has been performed on the characterization of their transmission 
properties and on methods for mitigating the amplitude and phase distortion encountered 
in signal transmission. In Chapter 1 0, we describe methods for designing optimum trans­
mitted signals and their demodulation, including the design of channel equalizers that com­
pensate for amplitude and phase distortion. 
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Figure 1.3 Frequency range for guided 
wireline channels. 

Fiber Optic Channels. Optical fibers offer the communication system designer 
a channel bandwidth that is several orders of magnitude larger than coaxial cable chan­
nels. During the past decade, researchers have developed optical fiber cables, which have 
a relatively low signal attenuation, and highly reliable photonic devices, which improve 
signal generation and signal detection. These technological advances have resulted in a 
rapid deployment of fiber optic channels both in domestic telecommunication systems 
as well as for transatlantic and transpacific communications. With the large bandwidth 
available on fiber optic channels, it is possible for the telephone companies to offer sub­
scribers a wide array of telecommunication services, including voice, data, facsimile, 
and video. 
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The transmitter or modulator in a fiber-optic communication system is a light source, 
either a light-emitting diode (LED) or a laser. Information is transmitted by varying (mod­
ulating) the intensity of the light source with the message signal. The light propagates 
through the fiber as a light wave and is amplified periodically (in the case of digital trans­
mission, it is detected and regenerated by repeaters) along the transmission path to compen­
sate for signal attenuation. At the receiver, the light intensity is detected by a photodiode, 
whose output is an electrical signal that varies in direct proportion to the power of the light 
impinging on the photodiode. 

It is envisioned that fiber optic channels will replace nearly all wireline channels in 
the telephone network in the next few years. 

Wireless Electromagnetic Channels. In radio communication systems, elec­
tromagnetic energy is coupled to the propagation medium by an antenna, which serves 
as the radiator. The physical size and the configuration of the antenna depend primar­
ily on the frequency of operation. To obtain efficient radiation of electromagnetic energy, 
the antenna must be longer than 1/ 10 of the wavelength. Consequently, a radio station 
transmitting in the AM frequency band, say, at 1 MHz (corresponding to a wavelength of 
A = c / fc = 300 m) requires an antenna of at least 30 meters. 

Figure 1.4 illustrates the various frequency bands of the electromagnetic spectrum. 
The mode of propagation of electromagnetic waves in the atmosphere and in free space 
may be subdivided into three categories, namely, ground-wave propagation, sky-wave 
propagation, and line-of-sight (LOS) propagation. In the very low frequency (VLF) and 
extremely low frequency bands where the wavelengths exceed 10 kilometers, the earth 
and the ionosphere act as a waveguide for electromagnetic wave propagation. In these fre­
quency ranges, communication signals practically propagate around the globe. For this 
reason, these frequency bands are primarily used to provide navigational aids from shore 
to ships around the world. The channel bandwidths available in these frequency bands are 
relatively small (usually 1 %-10% of the center frequency); hence, the information that is 
transmitted through these channels is relatively of slow speed and generally confined to 
digital transmission. A dominant type of noise at these frequencies is generated from thun­
derstorm activity around the globe, especially in tropical regions. Interference results from 
the many users of these frequency bands. 

Ground-wave propagation, illustrated in Figure 1.5, is the dominant mode of prop­
agation for frequencies in the medium frequency (MF) band (0.3-3 MHz). This is the 
frequency band used for AM broadcasting and maritime radio broadcasting. In AM broad­
cast, ground-wave propagation limits the range of even the most powerful radio stations to 
about 100 miles. Atmospheric noise, man-made noise, and thermal noise from electronic 
components at the receiver are dominant disturbances for signal transmission at MF. 

Sky-wave propagation, as illustrated in Figure 1.6, results from transmitted signals 
being reflected (bent or refracted) from the ionosphere, which consists of several layers 
of charged particles ranging in altitude from 30 to 250 miles above the surface of the 
earth. During the daytime hours, the heating of the lower atmosphere by the sun causes the 
formation of the lower layers at altitudes below 75 miles. These lower layers, especially the 
D-layer, absorb frequencies below 2 MHz; thus, they severely limit sky-wave propagation 
of AM radio broadcast. However, during the nighttime hours, the electron density in the 
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Figure 1.5 Illustration of ground-wave propagation. 
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Figure 1.6 Illustration of sky-wave propagation. 

lower layers of the ionosphere drops sharply and the frequency absorption that occurs 
during the day is significantly reduced. As a consequence, powerful AM radio broadcast 
stations can propagate over large distances via sky wave over the F-layer of the ionosphere, 
which ranges from 90 miles to 250 miles above the surface of the earth. 

A common problem with electromagnetic wave propagation via sky wave in the 
high frequency (HF) range is signal multipath. Signal multipath occurs when the transmit­
ted signal an-ives at the receiver via multiple propagation paths at different delays. Signal 
multipath generally results in intersymbol interference in a digital communication system. 
Moreover, the signal components an-iving via different propagation paths may add destruc­
tively, resulting in a phenomenon called signal fading. Most people have experienced this 
phenomenon when listening to a distant radio station at night, when sky wave is the dom­
inant propagation mode. Additive noise at HF is a combination of atmospheric noise and 
thermal noise. 

Sky-wave ionospheric propagation ceases to exist at frequencies above approxi­
mately 30 MHz, which is the end of the HF band. However, it is possible to have iono­
spheric scatter propagation at frequencies in the range of 30-60 MHz; this is a result of 
signal scattering from the lower ionosphere. It is also possible to communicate over dis­
tances of several hundred miles using tropospheric scattering at frequencies in the range 
of 40-300 MHz. Troposcatter results from signal scattering due to particles in the atmo­
sphere at altitudes of 10  miles or less. Generally, ionospheric scatter and tropospheric scat­
ter involve large signal propagation losses and require a large amount of transmitter power 
and relatively large antennas. 

Frequencies above 30 MHz propagate through the ionosphere with relatively little 
loss and make satellite and extraten-estrial communications possible. Hence, at frequencies 
in the VHF band and higher, the dominant mode of electromagnetic propagation is LOS 
propagation. For ten-estrial communication systems, this means that the transmitter and 
receiver antennas must be in direct LOS with relatively little or no obstruction. For this 
reason, television stations transmitting in the very high frequency (VHF) and ultra high 
frequency (UHF) bands mount their antennas· on high towers in order to achieve a broad 
coverage area. 

In general, the coverage area for LOS propagation is limited by the curvature of 
the earth. If the transmitting antenna is mounted at a height h feet above the surface of 
the earth, the distance to the radio horizon is approximately d = -/2ii miles (assuming 
no physical obstructions such as a mountain). For example, a TV antenna mounted on a 
tower of 1 000 feet in height provides a coverage of approximately 50 miles. As another 
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example, microwave radio relay systems used extensively for telephone and video trans­
mission at frequencies above 1 GHz have antennas mounted on tall towers or on the top of 
tall buildings. 

At frequencies above 1 0  GHz, atmospheric conditions play a major role in signal 
propagation. In particular, heavy rain introduces extremely high propagation losses that can 
result in service outages (total breakdown in the communication system). For example, at 
10 GHz, heavy rain results in a propagation loss of approximately 0.3 dB/km; at 30 GHz, 
the loss in approximately 2 dB/km; at 100 GHz, the loss is approximately 5 dB/km. 

At frequencies above the millimeter wave band, we have the infrared and visible light 
regions of the electromagnetic spectrum, which can be used to provide LOS optical com­
munication in free space. To date, these frequency bands have been used in experimental 
communication systems, such as satellite-to-satellite links. 

� Underwater Acoustic Channels. Over the past few decades, ocean exploration 
activity has been steadily increasing. Coupled with this increase in ocean exploration is the 
need to transmit data, which is collected by sensors placed underwater, to the surface of the 
ocean. From there, it is possible to relay the data via a satellite to a data collection center. 

Electromagnetic waves do not propagate over long distances underwater, except at 
extremely low frequencies. However, the transmission of signals at such low frequencies is 
prohibitively expensive because of the large and powerful transmitters required. The atten­
uation of electromagnetic waves in water can be expressed in terms of the skin depth, which 
is the distance a �ignal is attenuated by 1 / e. For seawater, the skin depth 8 = 250 / ,,JJ, 
where f is expressed in Hertz and 8 is in meters. For example, at 1 0  kHz, the skin depth is 
2.5 meters. In contrast, acoustic signals propagate over distances of tens and even hundreds 
of kilometers. 

A shallow-water acoustic channel is characterized as a multipath channel due to sig­
nal reflections from the surface and the bottom of the sea. Due to wave motion, the signal 
multipath components undergo time-varying propagation delays that result in signal fading. 
In addition, there is frequency-dependent attenuation, which is approximately proportional 
to the square of the signal frequency. 

Ambient ocean acoustic noise is caused by shrimp, fish, and various mammals. Addi­
tionally, man-made acoustic noise exists near harbors. 

In spite of this hostile environment, it is possible to design and implement efficient 
and highly reliable underwater acoustic communication systems for transmitting digital 
signals over large distances. 

Storage Channels. Information storage and retrieval systems constitute a signif­
icant part of our data-handling activities on a daily basis. Magnetic tape (including digital 
audio tape and video tape), magnetic disks (used for storing large amounts of computer 
data), and optical disks (used for computer data storage, music, and video) are examples of 
data storage systems that can be characterized as communication channels. The process of 
storing data on a magnetic tape, magnetic disk, or optical disk is equivalent to transmitting 
a signal over a telephone or a radio channel. The readback process and the signal process­
ing used to recover the stored information is equivalent to the functions performed by a 
telephone receiver or radio communication system to recover the transmitted information. 
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Additive noise generated by the electronic components and interference from adja­
cent tracks is generally present in the readback signal of a storage system. 

The amount of data that can be stored is generally limited by the size of the disk or 
tape and the density (number of bits stored per square inch) that can be achieved by the 
write/read electronic systems and heads. For example, a packing density of 109 bits/sq in 
has been achieved in magnetic disk storage systems. The speed at which data can be written 
on a disk or tape and the speed at which it can be read back is also limited by the associated 
mechanical and electrical subsystems that constitute an information storage system. 

Channel coding and modulation are essential components of a well-designed digital 
magnetic or optical storage system. In the readback process, the signal is demodulated and 
the added redundancy introduced by the channel encoder is used to correct errors in the 
readback signal. 

1.4 MATHEMATICAL MODELS FOR COMMUNICATION CHANNELS 

While designing communication systems to transmit information through physical chan­
nels, we find it convenient to construct mathematical models that reflect the most important 
characteristics of the transmission medium. Then the mathematical model for the channel is 
used in the design of the channel encoder and modulator at the transmitter and the demod­
ulator and channel decoder at the receiver. Next, we provide a brief description of three 
channel models that are frequently used to characterize many of the physical channels that 
we encounter in practice. 

The Additive Noise Channel. The simplest mathematical model for a commu­
nication channel is the additive noise channel, illustrated in Figure 1. 7. In this model, the 
transmitted signal s(t) is corrupted by the additive random-noise process n(t). Physically, 
the additive noise process may arise from electronic components and amplifiers at the 
receiver of the communication system, or from interference encountered in transmission, 
as in the case of radio signal transmission. 

If the noise is introduced primarily by electronic components and amplifiers at the 
receiver, it may be characterized as thermal noise. This type of noise is characterized sta­
tistically as a Gaussian noise process. Hence, the resulting mathematical model for the 
channel is usually called the additive Gaussian noise channel. Because this channel model 
applies to a broad class of physical communication channels and because it has mathemat­
ical tractability, this is the predominant channel model used in the analysis and design 
of communication systems. Channel attenuation is easily incorporated into the model. 

Channel 

s (t) 
1----1--,..._ r (t) = s (t) + n (t) 

n (t) 
Figure 1.7 The additive noise channel. 
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When the signal undergoes attenuation in transmission through the channel, the received 
signal is 

r (t) = as (t) + n(t), ( 1.4. l )  

where a represents the attenuation factor. 

The Linear Filter Channel. In some physical channels, such as wireline tele­
phone channels, filters are used to ensure that the transmitted signals do not exceed spec­
ified bandwidth limitations; thus, they do not interfere with one another. Such channels 
are generally characterized mathematically as linear filter channels with additive noise, as 
illustrated in Figure 1.8. Hence, if the channel input is the signal s(t), the channel output 
is the signal 

r (t) = s(t) * h(t) + n (t) 

= l:xo h(r)s(t - r) dr + n(t), ( 1.4.2) 

where h(t) is the impulse response of the linear filter and * denotes convolution. 

The Linear Time-Variant Filter Channel. Physical channels, such as underwa­
ter acoustic channels and ionospheric radio channels, which result in time-variant multipath 
propagation of th� transmitted signal, may be characterized mathematically as time-variant 
linear filters. Such linear filters are characterized by the time-variant channel impulse 
response h ( r ;  t) ,  where ,; ( r ;  t) is the response of the channel at time t ,  due to an impulse 
applied at time t - r. Thus, r represents the "age" (elapsed time) variable. The linear time­
variant filter channel with additive noise is illustrated in Figure 1.9. For an input signal 
s (t), the channel output signal is 

r - - - - - - - - - - - - - - - - - - - - 1 
I I 
I I 

s(t) 1 Linear 1 
_ ___,i,.......;� filter >---.1---i� r(t) = s(t) * h(t) + n(t) 

: h(t) 
I I 

: �0 I 

1 Channel : l - - - - - - - - - - - - - - - - - - - - �  

r - - - - - - - - - - - - - - - - - - - - 1 
I I 
I I 

( )  
1 

Linear 
1 

_s_t_i -.. time-variant >---r1---,� r (t) 

filter h ( r; t) : 
I 

Figure 1.8 The linear filter 

channel with additive noise. 

n (t) : 
I Channel 

l - - - - - - - - - - - - - - - - - - - - �  
Figure 1.9 Linear time-variant filter channel with 
additive noise. 
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r (t) = s(t) * h(r ;  t) + n (t) 

= 1: h(r ; t)s(t - r) dr + n (t) . ( l .4.3) 

Let us consider signal propagation through a multipath channel, such as the iono­
sphere (at frequencies below 30 MHz) and mobile cellular radio channels. For such chan­
nels, a good model for the time-variant impulse response has the form 

L 

h(r ;  t) = I >k(t)o(r - rk) ,  ( l.4.4) 
k= I 

where the { ak (t) } represents the possibly time-variant attenuation factor for the L multipath 
propagation paths. If Equation (l .4.4) is substituted into Equation ( l .4.3), the received 
signal has the form 

L 

r (t) = L ak (t)s (t - Tk) + n (t) . ( l.4.5) 
k= I 

Hence, the received signal consists of  L multipath components, where each component is 
attenuated by { ak} and delayed by { rk } .  

The three mathematical models previously described characterize a majority o f  phys­
ical channels encountered in practice. These three channel models are used in this text for 
the analysis and design of communication systems. 

1.5 SUMMARY AND FURTHER READING 

Following a brief historical review of telecommunication developments over the past two 
centuries, we presented an introduction of the basic elements of analog and digital commu­
nication systems and described several important advances in the development of digital 
communications in the first 60 years of the twentieth century. The second part of this 
chapter focused on the characteristics of different types of wireline and wireless commu­
nication channels, including their mathematical models which are used in the design and 
performance analysis of communication systems. 

We have already cited several historical books on radio and telecommunications pub­
lished in the past century. These include the books by McMahon ( 1984), Ryder and Fink 
( 1984), and Millman ( 1984). In addition, the classical works of Nyquist ( 1924), Hartley 
( 1928), Kotelnikov ( 1947), Shannon ( 1948), and Hamming ( 1950) are particularly impor­
tant because they lay the groundwork of modern communication systems engineering. 



Signals and Linear 
Systems 

In this chapter, we will review the basics of signals and linear systems. The motivation 
for studying these fundamental concepts stems from the basic role they play in modeling 
various types of communication systems. In particular, signals are used to transmit infor­
mation over a communication channel. Such signals are usually called information-bearing 
signals. Speech signals, video signals, and the output of an ASCII terminal are examples 
of information-bearing signals. 

When an information-bearing signal is transmitted over a communication channel, 
the shape of the signal is changed, or distorted, by the channel. In other words, the output 
of the communication channel, which is called the received signal, is not an exact replica 
of the channel input due to many factors, including channel distortion. The communication 
channel is an example of a system, i.e., an entity that produces an output signal when 
excited by an input signal. A large number of communication channels can be modeled 
closely by a subclass of systems called linear systems. Linear systems arise naturally in 
many practical applications and are rather easy to analyze. 

2.1 BASIC CONCEPTS 

In this book, we generally deal with communication signals that are functions of time, 
i.e., time is the independent variable. Examples of such signals are audio signals (speech, 
music), video signals, and data signals. Such signals are represented as mathematical func­
tions of the form s(t), or x(t), or f(t). As an example, a sample waveform of a speech 
signal is shown in Figure 2.1. 

2.1.1 Basic Operations on Signals 

Basic operations on signals involve time shifting, time reversal (flipping), and time scaling. 
In this section, we describe the effect of these operations on signals. 

Time Shifting. Shifting, or delaying, a signal x (t) by a given constant time to 
results in the signal x (t - t0). If to is positive, this action is equivalent to a delay of t0; thus, 

2 1  
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x(t to) 

to 

640 Figure 2.1 A sample speech 
waveform. 

the result is a shifted version of x(t) by to to the right. If to is negative, then the result is a 
shift to the left by an amount equal to I to I. A plot of a signal shift for positive to is shown 
in Figure 2.2. 

Time Reversal. Time reversal, or flipping, of a signal results in flipping the signal 
around the vertical axis, or creating the mirror image of the plot with respect to the vertical 
axis. We can visualize this flipping of a signal as playing an audio tape in reverse. As a 
result, positive times are mapped as negative times and vice versa. In mathematical terms, 
time reversal of x (t) results in x(-t). Figure 2.3 shows this operation. 

Time Scaling. Time scaling of a signal results in a change in the time unit against 
which the signal is plotted. Time scaling results in either an expanded version of the signal 
(if the new time unit is a fraction of the original time unit) or a contracted version of the 
original signal (if the new time unit is a multiple of the original time unit). In general, time 
scaling is expressed as x(at) for some a > 0. If a < 1, then the result is an expanded 
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x (t) 

x (-t) 

x (at) 

23 

Figure 2.3 Time reversal of a 
signal. 

Figure 2.4 Time scaling of a 
signal. 

version of the original signal (such as a tape which is played at a slower speed than it was 
recorded). If a > 1 ,  the result is a contracted form of the original signal (such as a tape that 
is played at a higher speed than it was recorded). The case of a > 1 is shown in Figure 2.4. 

In general, we may have a combination of these operations. For instance, x(-2t) is 
a combination of pipping the signal and then contracting it by a factor of 2. Also, x (2t - 3) 
is equal to x [2(t - 1 .5) ], which is equivalent to contracting the signal by a factor of 2 and 
then shifting it to the rigqt by 1 .5. 

2. 1 .2 Classification of Signals 

The classification of signals makes their study easier. Depending on the point of view, 
signals can be classified in a variety of ways. In this section, we present the most important 
ways to classify signals. 

Continuous-Time and Discrete-Time Signals. Based on the range of the inde­
pendent variable, signals can be divided into two classes: continuous-time signals and 
discrete-time signals. A continuous-time signal is a signal x(t) for which the independent 
variable t takes real numbers. A discrete-time signal, denoted by x [n], is a signal for which 
the independent variable n takes its values in the set of integers. 

By sampling a continuous-time signal x(t) at time instants separated by To, we can 
define the discrete-time signal x [n] = x (nT0). Figure 2.5 shows examples of discrete-time 
and continuous-time signals. 

Example 2.1.1 
Let 

x(t) = A  cos(2nfot + 8) .  

This i s  an example of  a continuous-time signal called a sinusoidal signal. A sketch of this 
signal is given in Figure 2.6. • 
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Figure 2.5 Examples of discrete-time and 
continuous-time signals. 

Figure 2.6 Sinusoidal signal. 

x [n] = A  cos(2n:fon + e),  

where n E Z (Z is the set of integers). A sketch of this discrete-time signal is given in 

Figure 2.7. • 

Real and Complex Signals. Signals are functions, and functions at a given value 
of their independent variable are just numbers, which can be either real or complex. A real 
signal takes its values in the set of real numbers, i.e., x(t) E R  A complex signal takes its 
values in the set of complex numbers, i.e., x (t) E C. 

In communications, complex signals are usually used to model signals that convey 
amplitude and phase information. Like complex numbers, a complex signal can be rep­
resented by two real signals. These two real signals can be either the real and imaginary 
parts or the absolute value (or modulus or magnitude) and phase. A graph of a complex 
signal can be given by graphs in either of these representations. However, the magnitude 
and phase graphs are more widely used. 
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Example 2.1.3 
The signal 

x (t) = Aej(2nfor+o) 

is a complex signal. Its real part is 

x,(t) = A cos(2nfot + 8)  

and its imaginary part is 

xi (t) = A sin(2nf0t + 8) ,  

where we have used Euler's relation eN = cos ¢ + j sin ¢. We could equivalently describe 

this signal in terms of its modulus and phase. The absolute value of x (t) is 

and its phase is 

Lx(t) = 2nfot + 8.  

Graphs of these functions are given in  Figure 2.8. • 

The real and complex components, as well as the modulus and phase of any complex 
signal, are represented by the following relations: 

x,(t) = Jx (t) J cos (Lx(t)) , 

Xi (t) = Jx (t) J sin (Lx(t)) , 

Jx (t) J = )x'f(t) + xi2(t) ,  

Xj (t) 
Lx(t) = arctan -- . 

x,(t) 

(2. 1 . l )  

(2. 1 .2) 

(2. 1 .3) 

(2. 1 .4) 
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Figure 2.8 Real-imaginary and 
magnitude-phase graphs of the complex 
exponential signal in Example 2.1.3. 

Deterministic and Random Signals. In a deterministic signal at any time instant 
t, the value of x (t) is given as a real or a complex number. In a random (or stochastic) sig­
nal at any given time instant t, x (t) is a random variable; i.e., it is defined by a probability 
density function. 

All of our previous examples were deterministic signals. Random signals are dis­
cussed in Chapter 5. 

Periodic and Nonperiodic Signals. A periodic signal repeats in time; hence, it 
is sufficient to specify the signal in a basic interval called the period. More formally, a 
periodic signal is a signal x (t) that satisfies the property 

x (t + To) = x (t) 

for all t, and some positive real number To (called the period of the signal). For discrete­
time periodic signals, we have 

x [n + No] = x [n] 

for all integers n, and a positive integer No (called the period). A signal that does not satisfy 
the conditions of periodicity is called non periodic. 

Example 2.1.4 
The signals 

x (t) = A cos(2nfot + 8) 

and 
x (t) = Aej(2rcfot+e) 

are examples of real and complex periodic signals. The period of both signals is To = To.  The 

signal 

t 2: 0 

t < 0 
(2. 1 .5) 
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Figure 2.9 The unit-step signal. 

illustrated in Figure 2.9 is an example of a nonperiodic signal. This signal is known as the 
unit-step signal. • 

Example 2.1.5 
The discrete-time sinusoidal signal shown in Figure 2.7 is not periodic for all values of f0. For 

this signal to be periodic, we must have 

2rr:fo(n + No) + e = 2rr:fon + e + 2mrr: (2. 1 .6) 

for all integers n, some positive integer N0, and some integer m. Thus, we conclude that 

or 

2rr:foNo = 2mn 

m 
Jo =  

No ' 

i.e., the discrete sinqsoidal signal is periodic only for rational values of f0• For instance, 
A cos(3rr:n + 8) is periodic, but A cos( ,,/2,rr:n + 8) is not periodic. • 

Causal and Noncausal Signals. Causality is an important concept in classifying 
systems. This concept has a close relationship to the realizability of a system. We will 
cover this issue later, during our discussion on various types of systems. Now we define 
the concept of causal signals, which is closely related to the concept of causal systems. A 
signal x (t) is called causal if for all t < 0, we have x (t) = O; otherwise, the signal is 
noncausal. Equivalently, a discrete-time signal is a causal signal if it is identically equal to 
zero for n < 0. 

Example 2.1.6 
The signal 

( ) _ { A cos(2rr:fot + e) 
x t - 0 

is a causal signal. Its graph is shown in Figure 2.10.  

for t :::: 
0 

otherwise 

• 

Similarly, we can define anticausal signals as signals whose time inverse is causal. 
Therefore, an anticausal signal is identically equal to zero for t > 0. 

Even and Odd Signals. Evenness and oddness are expressions of various types 
of symmetry present in signals. A signal x (t) is even if it has mirror symmetry with respect 
to the vertical axis. A signal is odd if it is antisymmetric with respect to the vertical axis. 
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The signal x ( t) is even if and only if, for all t ,  

x(-t) = x(t) ,  

Signals and Linear Systems Chapter 2 

Figure 2.10 An example of a causal 
signal. 

and is odd if and only if, for all t ,  

x (-t) = -x(t) . 

Figure 2. 1 1  shows graphs of even and odd signals. 
In general, any signal x (t) can be written as the sum of its even and odd parts as 

x (t) = Xe(t) + X0(t) ,  

x (t) 

0 

x (t) 

(2. 1 .7) 

Figure 2.11 Examples of even and 
odd signals. 
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where 

Example 2.1.7 

x (t) + x (-t) 
Xe (t) = 

2 , 
x (t) - x (-t) 

Xo (t) = 
2 

. 
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(2. 1 .8) 

(2. 1 .9) 

The sinusoidal signal x (t) = A cos(2rcf0t + e) is generally neither even nor odd. However, 
the special cases e = 0 and e = ±1 correspond to even and odd signals, respectively. In 
general, 

A A . . 
x (t) = 2 cos(e) cos(2rcf0t) - 2 sm(e) sm(2rcf0t) . 

Since cos(2rcf0t) is even and sin(2rcf0t) is odd, we conclude that 

A 
xe(t) = Z cos(e) cos(2rcf0t) 

and 

A 
xo(t) = - 2  sin(e) sin(2rcf0t). 

Example 2.1.8 

• 

From Figure 2.8, we can see that for e = 0 and x (t) = AejZnfor , the real part and the magni­

tude are evel,1 and the imaginary part and the phase are odd. • 

Hermitian S ymmetry for Complex Signals. For complex signals, another form 
of symmetry, called Hermitian symmetry, is also defined. A complex signal x (t )  is called 
Hermitian if its real part is even and its imaginary part is odd. In addition, we can easily 
show that its magnitude is even and its phase is odd. The signal x (t )  = AejZrrfor is an 
example of a Hermitian signal. 

Energy-Type and Power-Type Signals. This classification deals with the energy 
content and the power content of signals. Before classifying these signals, we need to define 
the energy content (or simply the energy) and the power content (or power). 

For any signal x (t ) ,  the energy content of the signal is defined by1 

f+
oo 

f T/2 

"&x = lx (t) l 2dt = lim lx (t) 12 dt .  
-
oo 

T--*OO -T/2 

The power content is defined by 

Px = lim - lx (t) l2dt.  
1 f T/2 

T-400 T -T/2 

For real signals, lx (t) l2 is replaced by x2(t) .  

(2. 1 . 10) 

(2. 1 . 1 1 )  

1 If x(t) indicates the voltage across a l  Q resistor, then the current flowing through the resistor i s  x(t) and 
the instantaneous power is x2(t). We can justify Equation (2. 1 . 1 0) by noting that energy is the integral of power. 
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A signal x (t) is an energy-type signal if and only if �x is finite. A signal is apower­
type signal if and only if Px satisfies 

0 < Px < oo. 

Example 2.1.9 
Find the energy in the signal described by 

Solution We have 

x(t) = {
o

3 !x i  < 3 

otherwise 

l+oo 13 �x = -oo lx(t) l2dt = _3 9 dt = 54. 

Therefore, this signal is an energy-type signal. 

Example 2.1.10 
The energy content of A cos(2rcf0t + B) is 

1T/2 
�x = lim A2 cos2(2rcfot + B) dt = oo. T-+oo -T/2 

• 

Therefore, this signal is not an energy-type signal. However, the power of this signal is 

1 1T/2 
Px = lim - A2 cos2(2rcfot + B) dt T-+oo T -T/2 

1 1T/2 A2 
= lim - - [1 + cos(4rcfot + W)] dt T-+oo T -T/2 2 

= lim 
[A2T 

+ [____£___ sin(4rcf0t + W)JT/2 ] T-+oo 2T SrcfoT -T/2 

A1 
= - < 00. 

2 

Hence, x(t) is a power-type signal and its power is f. 
Example 2.1.11 

For any periodic signal with period T0, the energy is 

1T/2 
�x = lim lx(t) J2dt T-+oo -T/2 

+� 
= lim 1 Jx(t) i2dt n_,,.oo -� 

+f 
= lim n 1 Jx(t) J2dt n_,,.oo _ !a.  2 

= 00. 

(2. 1 . 12) 

• 

(2. 1 . 13) 



Section 2.1 Basic Concepts 31 

Therefore, periodic signals are not typically energy type. The power content of any periodic 
signal is 

Px = Jim - lx(t) 12dt 1 1T/2 

T-+00 T -T/2 

1 1+� 2 = Jim - lx(t) l2dt 
n-+oo nTo -� 

.!o_ 
= Jim .!!:.._ 1+ 2 lx(t) l2dt 

n-+oo nTo -!J!. 

= 2_ l+!J!. Jx(t) l2dt. 
To -IJL (2.1 . 14) 

This means that the power content of a periodic signal is equal to the average power in one 
period. • 

2. 1 .3 Some Important Signals and Their Properties 

In our study of communication systems, certain signals appear frequently. In this section, 
we briefly introduce these signals and describe some of their properties. 

The Sinusoidal Signal. The sinusoidal signal is defined by 

x(t) = A  cos(2nJot + 8), 

where the parameters A, J0, and e are, respectively, the amplitude, frequency, and phase 
of the signal. A sinusoidal signal is periodic with the period To = 1 /Jo. For a graph of this 
signal, see Figure 2.6. 

The Complex Exponential Signal. The complex exponential signal is defined 
by x(t) = Aej<2rcfor+e). Again A, Jo, and e are, respectively, the amplitude, frequency, and 
phase of the signal. This signal is shown in Figure 2.8. 

The Unit-Step Signal. The unit-step signal, which is defined in Section 2.1 .2, is 
another frequently encountered signal. The unit step multiplied by any signal produces a 
"causal version" of the signal. The unit-step signal is shown in Figure 2.9. Note that for 
positive a, we have u_1 (at) = u_1 (t) .  
Example 2.1.12 

To plot the signal u_1 (t) +2u_1 (t - 1) - u_1 (t -2), we note that this is a result oftime shifting 
the unit-step function. The plot is shown in Figure 2. 12. • 

The Rectangular Pulse. This signal is defined as 

Il(t) = ! � _ l < t < l 
2 - - 2 

otherwise 

The graph of the rectangular pulse is shown in Figure 2.13.  

(2. 1 . 15) 
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x(t) 

3 - - - - ....---.... 

2 ,__ _ _ _  _ 

1 1-----1 
I 
I 
I 
I 
1 

II (t) 
1 

1 2 

2 Figure 2.12 The signal 

U_J (t) + 2u_I (t - 1) - U_J (t - 2). 

Figure 2.13 The rectangular pulse. 

Example 2.1.13 

x(t) 

2 

1 

To plot the signal 2IT ('�3 ) - IT ('�3 ) , we note that this signal is  the difference between two 
time-shifted and time-scaled versions of IT (t). Its plot is shown in Figure 2.14. • 

The Triangular Signal. This signal is defined as 

A(I) � { 

1 3 5 

t + 1 
-t + 1 

0 

6 

- l :S t :S O 

O :::; t :::; l 

otherwise 

Figure 2.14 The signal 
2IT ('·;;3) - IT ('�3 ) . 

(2. 1 . 1 6) 
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A (t) 

1 

1 
Figure 2.15 The triangular signal. 

Its plot is shown in Figure 2. 15.  It is not difficult to verify that2 

A (t) = Il (t) * Il (t) .  

Example 2.1.14 

33 

(2. 1 . 17) 

To plot IT (n + A (&), we use the time scaling of signals. The result is shown in Figure 2. 16 . 

The Sine Signal. The sine signal is defined as 
I sin(rrt) 

sinc(t) = 
1 

m t =F 0 

t = O  

• 

(2. 1 . 1 8) 

The waveform corresponding to this signal is shown in Figure 2. 17. From this figure, we 
can see that the sine signal achieves its maximum of 1 at t = 0. The zeros of the sine signal 
are at t = ±1 ,  ±2, ±3, . . . .  

x(t) 

2 

-2 2 
Figure 2.16 The signal 
n w  + A U). 

2Note that x(t) * y(t) denotes the convolution of two signals, which is defined by 

1+00 1+00 x(t) * y(t) = -oo x(-r)y(t - -r) d-r = -oo 
x(t - -r)y(-r) d-r = y(t) * x(t). 

For more details, see Section 2.1 .5. 
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sine (t) 1 

Signals and Linear Systems Chapter 2 

Figure 2.17 The sine signal. 

The Sign or the Signum Signal. The sign or the signum signal denotes the sign 
of the independent variable t and is defined by 

t > O  
t < 0 .  
t = O  

(2. 1 . 19) 

This signal is shown in Figure 2. 1 8. The signum signal can be expressed as the limit of the 
signal Xn (t), which is defined by 

x0 (t) � { 
0 

t > O  

t < 0 '  
t = O  

(2. 1 .20) 

when n --+ oo. We will later use this definition of the signum signal to find its Fourier 
transform. This limiting behavior is also shown in Figure 2. 1 8. 

sgn (t) 

0 

--------"1 -1 
Figure 2.18 
x. (t). 

The signum signal as the limit of 
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The Impulse or Delta Signal. The impulse or delta signal is a mathematical 
model for representing physical phenomena that occur in a very small time duration, are 
so small that they are beyond the resolution of the measuring instruments involved, and for 
all practical purposes, have a duration that can be assumed to be equal to zero. Examples 
of such phenomena are a hammer blow, a very narrow voltage or current pulse, and so on. 
In the precise mathematical sense, the impulse signal 8(t) is not a function (or signal)-it 
is a distribution or a generalized function. A distribution is defined in terms of its effect on 
another function (usually called the "test function") under the integral sign. The impulse 
distribution (or signal) can be defined by the relation 

1+00 -
oo 

</> (t)8 (t) dt = </>(0) , (2. 1 .21)  

which expresses the effect of the impulse distribution on the "test function" </> ( t), assumed 
to be continuous at the origin. This property is called the sifting property of the impulse 
signal. In other words, the effect of the impulse signal on the "test function" <f> (t) under the 
integral sign is to extract or sift its value at the origin. As shown, 8 (t) is defined in terms of 
its action on </> (t) and not defined in terms of its value for different values of t. 

Sometimes it is helpful to visualize 8 (t) as the limit of certain known signals. The 
most commonly used forms are 

and 

8 (t) = lim �TI (!_) E-),0 E E 

8 (t) = hm -smc - . . 1 . ( t ) 
E-),0 E E 

(2. 1 .22) 

(2. 1 .23) 

Figure 2. 19 shows graphs of these signals. (The symbol E -} 0 means that E tends to zero 
from above, i.e., it remains positive.) 

The following properties are derived from the definition of the impulse signal: 

1. 8 (t) = 0 for all t =f. 0 and 8(0) = oo. 
2. x (t)8(t - to) = x(to)8(t - to) .  
3 .  For any <f>(t) continuous at t0, 

1_: <f> (t)8 (t - to) dt = </> (to) .  

4. For any <f> (t) continuous at to, 

1_: <f> (t + t0)8 (t) dt = </> (to) .  

5. For all a =f. 0, 
1 8(at) = -8(t). 
la l 

(2.1 .24) 

(2. 1 .25) 

(2. 1 .26) 
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,...±. -
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1 

I I 
1 1 1 1 1 1 -2 -4 -3 8 4 2 

4 

' I  I. ' I  I. ' I  I .  I 2 

Figure 2.19 The impulse signal as a limit. 

6. The result of the convolution of any signal with the impulse signal is the signal itself: 

x(t) * o(t) = x(t) . (2.1 .27) 

Also, 

x(t) * o (t - to) = x(t - to) .  (2. 1 .28) 

7. The unit-step signal is the integral of the impulse signal, and the impulse signal is 
the generalized derivative of the unit-step signal, i.e., 

and 
d 

o(t) = -U-J (t) .  dt 

(2. 1 .29) 

(2.1 .30) 
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8. Similar to the way we defined 8 (t), we can define 8'(t), 8"(t) , . . .  , 8(n) (t) , the gen­
eralized derivatives of 8 (t), by the following equation: 

1+00 dn 
8<nl (t)</J (t) dt = (-It-</J(t) ' . 

-oo dtn t=O 

We can generalize this result to 

1+00 dn 
8(n) (t - to)</J (t) dt = (- It-</J(t) I · 

-oo dtn t=to 

(2. 1 .31 )  

(2. 1 .32) 

9. The result of the convolution of any signal with nth derivative of x(t) is the nth 
derivative of x (t), i.e., 

(2. 1 .33) 

and in particular 
x(t) * 81 (t) = x' (t) .  (2. 1 .34) 

10. The result of the convolution ofany signal x (t) with the unit-step signal is the integral 
of the signal x(t), i.e., 

x (t) * u-1 (t) = [
00 

x(r) dr. (2. 1 .35) 

11. For even values of n, 8(n) (t) is even; for odd values of n, it is odd. In particular, 8 (t) 
is even and 8' (t) is odd. 

A schematic representation of the impulse signal is given in Figure 2.20, where the 
integral of 8 (t) over all time (-oo < t < oo) is unity. 

Example 2.1.15 
Determine (cos t)o(t), (cos t)8 (2t - 3), and f: e-181(t - 1) dt. 

Solution To determine (cos t)o(t), we can use Property 2: 

(cos t)o(t) = (cos O)o(t) = o(t). 

To determine (cos t)8 (2t - 3), we can use Property 5:  

8 (2t _ 3) = �8 (t - D . 
8 (t) 

1 

0 Figure 2.20 The impulse signal. 



38 Signals and Linear Systems Chapter 2 

Then, from Property 1 ,  we have 

1 ( 3) cos 1 .5 ( 3) ( 3 ) 
(cos t)8(2t - 3) = 2ccos t)8 t - 2 = -

2
-8 t - 2 � 0.0358 t - 2 . 

Finally, to determine J�00 e-1 8' (t - 1) dt, we use Property 8 to obtain 

100 d e-181(t - l) dt = (- l) -e-1 1 = e-1 • 
-00 dt 1�1 

• 

2.1 .4 Classification of Systems 

A system is an interconnection of various elements or devices that, from a certain view­
point, behave as a whole. From a communication point of view, a system is an entity that 
is excited by an input signal and, as a result of this excitation, produces an output signal. 
From a communication engineer's point of view, a system is a law that assigns output sig­
nals to various input signals. For example, an electric circuit with some voltage source as 
the input and some current in a certain branch is a system. The most important point in the 
definition of a system is that its output must be uniquely defined for any legitimate input. 
This definition can be written mathematically as 

y(t) = 5[x (t)] , (2. 1 .36) 

where x(t) is the input, y(t) is the output, and 5 is the operation performed by the system. 
Figure 2.21 shows a pictorial representation of a system. 

Example 2.1.16 
The input-output relationship y(t) = 3x(t) + 3x2(t) defines a system. For any input x(t), the 
output y(t) is uniquely determined. • 

A system is defined by two characteristics: (1)  the operation that describes the system and 
(2) the set of legitimate input signals. In this text, we will use the operator 5 to denote the 
operation that describes the system. We will use 2e to denote the space of legitimate inputs 
to the system. 

Example 2.1.17 
The system described by the input-output relationship 

d 
y(t) = 5[x(t)] = 

dt
x(t), (2.1 .37) 

for which 2e is the space of all differentiable signals, describes a system. This system is 
referred to as the differentiator. • 

The space 2e is usually defined by the system operation; therefore, it is not usually given 
explicitly. 

x(t) � y(t) 
Figure 2.21 A system with an input and output. 
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As in the case of signals, systems can be classified according to their properties. 
Based on this point of view, various classifications are possible. We will now briefly intro­
duce some of the fundamental system classifications. 

Discrete-Time and Continuous-Time Systems. Systems are defined by the 
operation that the input signals use to produce the corresponding output signal. Systems 
can accept either discrete-time or continuous-time signals as their inputs and outputs. This 
is the basis of system classification into continuous-time and discrete-time systems. 

A discrete-time system accepts discrete-time signals as the input and produces discrete­
time signals as the output. For a continuous-time system, both input and output signals are 
continuous-time signals. 

Example 2.1.18 
The systems described in the two previous examples are both continuous-time systems. An 
example of a discrete-time system is the system described by 

y[n] = x[n] - x[n - 1] .  (2. 1 .38) 

This system is a discrete-time differentiator. • 

Linear and Nonlinear Systems. Linear systems are systems for which the super­
position property is satisfied, i.e., the system's response to a linear combination of the 
inputs is the linear combination of the responses to the corresponding inputs. 

A system 5 is linear if and only if, for any two input signals x1 (t) and x2(t) and for 
any two scalars a and fJ, we have 

A system that does not satisfy this relationship is called nonlinear. 
Linearity can also be defined in terms of the following two properties: li17[x1 (t) + x2(t)] = 5[x1 (t)] + 5 [x2(t)] . 

5 [ax(t)] · = atY[x(t)] 

(2. 1 .39) 

(2. 1 .40) 

A system that satisfies the first property is called additive, and a system that satisfies 
the second property is called homogeneous. From the second property, it is obvious that 
5 [0] = 0 in a linear system. In other words, the response of a linear system to a zero input 
is always zero (for linearity, this is a necessary but not a sufficient condition). 

Linearity is a very important property. In a linear system, we can decompose the 
input into a linear combination of some fundamental signals whose output can be derived 
easily, and then we can find the linear combination of the corresponding outputs. We denote 
the operation of linear systems by X, rather than by 5. 
Example 2.1.19 

The differentiator described earlier is an example of a linear system. This is true because if 
x1 (t) and x2 (t) are differentiable, ax1 (t) + f3x2 (t) must also be differentiable for any choice 
of a and {3, and 

d I ' ( ) - [ax1 (t) + f3x2(t)] = ax1 (t) + f3x2 t . dt 
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The system described by 
y(t) = ax2 (t) 

is nonlinear because its response to 2x(t) is 

5 [2x(t)] = 4x2(t) =I= 2x2(t) = 2.ff [x(t)] ; 

therefore, the system is not homogeneous. 

Example 2.1.20 
A delay system is defined by y(t) = x (t - t..),  i.e., the output is a delayed version of the input. 
(See Figure 2.22.) If x(t) = ax1 (t) + f3x2(t), then the response of the system is obviously 
ax1 (t - t..) + f3x2 (t - t..) .  Therefore, the system isJinear. • 

Time-Invariant and Time-Varying Systems. A system is called time invari­
ant if its input-output relationship does not change with time. This means that a delayed 
version of an input results in a delayed version of the output. 

A system is time invariant if and only if, for all x(t) and all values of t0, its response 
to x(t - to) is y(t - t0) ,  where y(t) is the response of the system to x(t). (See Figure 2.23.) 

Example 2.1.21 
The differentiator is a time-invariant system, since 

Example 2.1.22 

d I I -x(t - to) = x (t) . 
dt t=t-10 • 

The modulator, defined by y(t) = x (t) cos 2rcf0t, is an example of a time-varying system. 
The response ofthis system to x (t - to) is 

x (t - t0) cos(2rcfot), 

which is not equal to y(t - t0) .  

x(t) -0- y (t) = x(t - a) Figure 2.22 The input-output relation for the delay 
system. 

x(t) � y(t) 

x(t-to) t:rJ y(t-to) 

-"'---=-!•�� • 

Figure 2.23 A time-invariant system. 

to 

• 
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The class of linear time-invariant (LTI) systems is particularly important. The response 
of these systems to inputs can be derived simply by finding the convolution of the input 
and the impulse response of the system. We will discuss this property in more detail in 
Section 2.1 .5 .  

Causal and Noncausal Systems. Causality deals with the physical realizability 
of systems. Since no physical system can predict the values that its input signal will assume 
in the future, we can assume that in a physically realizable system, the output at any time 
depends only on the values of the input signal up to that time and does not depend on the 
future values of the input. 

A system is causal if its output at any time to depends on the input at times prior to 
to, i.e., 

y(to) = 5[x(t) : t :S to] . 

A necessary and sufficient condition for an LTI system to be causal is that its impulse 
response h(t) (i.e., the output when the input is 8(t), see Section 2.1 .5) must be a causal 
signal, i.e., for t < 0, we must have h(t) = 0. For noncausal systems, the value of the 
output at to also depends on the values of the input at times after to. Noncausal systems are 
encountered in situations where signals are not processed in real time.3 

Example 2.1.23 
A differentiator is an example of a causal system since it is LTI and its impulse response, 
h(t) = 8'(t), is zero for t < 0. A modulator is a causal but time-varying system since its 
output, y(t) = x (t) cos(2nf0t), at time t depends on the value of the input at time t and not 
on future values of x(t). The delay system defined in Example 2. 1 .20 is causal for Ll. :::: 0 and 
noncausal for Ll. < 0. (Why?), since its impulse response 8 (t - Ll.) is zero for t < 0 if Ll. > 0 
and nonzero if Ll. < 0. • 

2. 1 .5 Analysis of LTI Systems in the Time Domain 

The class of LTI systems plays an impo�ant role both in communication and system theory. 
For this class of systems, the input-output relationship is particularly simple and can be 
expressed in terms of the convolution integral. To develop this relationship, we first intro­
duce the concept of the impulse response of a system. 

The impulse response h (t) of a system is the response of the system to a unit impulse 
input 8 (t) : 

h(t) = 5[8(t)] . 

The response of the system to a unit impulse applied at time r, i.e., 8 (t - r), is denoted by 
h(t, r) . Obviously, for time-invariant systems, h(t, r) = h(t - r) .4 

3For instance, when the entire signal is recorded and then processed. In such a case when processing the 
signal at time t0 we have access to its future values. 

4Note that this notation is sloppy. It uses h to denote two different functions: h(t, r), which is a function 
of two variables, and h(t), which is a function of one variable. 
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The Convolution Integral. Now, we will derive the output y(t) of an LTI system 
to any input signal x(t). We will show that y(t) can be expressed in terms of the input x(t) 
and the impulse response h ( t) of the system. 

In Section 2.1 .3 we showed that, for any signal x (t), we have 

i+oo x(t) = x (t) * 8(t) = -
oo 

x (r)8(t - r) dr. (2. 1 .41) 

Now, if we denote the response of the LTI system to the input x(t) by y(t), we can write 

y(t) = � [x (t)] 

= � [i� x(r)8(t - r) dr J 
i+oo � -oo x (r)� [8(t - r)] dr 

,g, £:00 x(r)h(t - r) dr 

= x(t) * h(t) , (2. 1 .42) 

where (a) follows from the linearity of the system (note that an integral is basically the 
limit of a sum) and (b) follows from the time invariance. This shows that the response to 
x(t) is the convolution of x(t) and the impulse response h(t). Therefore, for the class of 
LTI systems, the impulse response completely characterizes the system. This means that 
the impulse response contains all the information we need to describe the system behavior. 

Example 2.1.24 
The system described by 

y(t) = j_�x(r) dr (2. 1 .43) 

is called an integrator. Since integration is linear, this system also is linear. Also, the response 
to x(t - t0) is 

Yt (t) = j_� x(r - to) dr 
= 
1_:10 x(u) du 

= y(t - to), (2. 1 .44) 

where we have used the change of variables u = r - t0 • We can see that the system is LTI. . 
The impulse response is obtained by applying an impulse at the input, i.e., 

h(t) = /_� 8(r) dr = u_1 (t). • 



Section 2.2 Fourier Series 43 

Example 2.1.25 
Let an LTI system have the impulse response h(t). Assume that this system has a com­
plex exponential signal as input, i.e., x(t) = Aej<2"fo1+

0>. The response to this input can 
be obtained by 

where 

l
+oo y(t) = -
oo 

h(r:)Aej(21tfo(t-r)+e)dr: 

= AejOej2"fot 1_:00 h(r:)e-j21rfo•dr: 
= A/H(fo) /ej(2"fot+e+LH(fo>) , 

l
+oo H(fo) = /H(fo) /ejLH(fo) = 
-oo 

h(r:)e-j2"fo•dr:. 

(2.1 .45) 

(2. 1 .46) 

This shows that the response of an LT! system to the complex exponential with frequency 
fo is a complex exponential with the same frequency. The amplitude of the response can be 
obtained by multiplying the amplitude of the input by /H(f0) / , and its phase is obtained by 
adding LH (f0) to the input phase. Note that H (f0) is a function of the impulse response and 
the input frequency. Because of this property, complex exponentials are called eigenfunctions 
of the class of LTI systems. The eigenfunctions of a system are the set of inputs for which the 
output is a scaling of the input. Because of this important property, finding the response of 
LTI systems to the class of complex exponential signals is particularly simple; therefore, it is 
desirable to find ways to express arbitrary signals in terms of complex exponentials. We will 
later explore ways to do this. • 

2.2 FOURIER SERIES 

A large number of building blocks in a communication system can be modeled by LTI 
systems. LTI systems provide good and accurate models for a large class of communica­
tion channels. Also, some basic components of transmitters and receivers, such as filters, 
amplifiers, and equalizers, are LTI systems. 

Our main objective is to develop methods and tools necessary to analyze LTI systems. 
When analyzing a system, we want to determine the output corresponding to a given input 
and, at the same time, provide insight into the behavior of the system. We have already 
seen that the input and output of an LTI system are related by the convolution integral, 
given by 

1+00 1+00 y(t) = -
oo 

·h (r:)x(t - r:) dr = -oo h(t - r)x(r) dr, (2.2.1)  

where h(t) denotes the impulse response of the system. The convolution integral provides 
the basic tool for analyzing LTI systems. However, there are major drawbacks in the direct 
application of the convolution integral. First, using the convolution integral to find the 
response of an LTI system may be straightforward, but it is not always an easy task. Second, 
even when the convolution integral can be performed with reasonable effort, it may not 
provide good insight into how the system behaves in response to other input signals. 
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In the next two sections, we will develop another approach to analyzing LTI systems. 
The basic idea is to expand the input as a linear combination of some basic signals whose 
output can be easily obtained, and then to employ the linearity properties of the system to 
obtain the corresponding output. This approach is much easier than a direct computation 
of the convolution integral; at the same time, it provides better insight into the behavior of 
LTI systems. This method is based on the close similarity between the expansion of signals 
in terms of a basic signal set and the expansion of vectors in Euclidean space in terms of 
unit vectors. 

2.2.1 Fourier Series and Its Properties 

The set of complex exponentials are the eigenfunctions of LTI systems. The response of 
an LTI system to a complex exponential is a complex exponential with the same frequency 
with a change in amplitude and phase. Example 2.1 .25 showed that the change in phase 
and amplitude are functions of the frequency of the complex exponential and the impulse 
response of the LTI system. So, which signals can be expanded in terms of complex expo­
nentials? To answer this question, we will give the conditions for a periodic signal to be 
expandable in terms of complex exponentials. The expansion of nonperiodic signals will 
be discussed later. 

Let the signal x(t) be a periodic signal with period T0. First, we need to determine 
whether the following Dirichlet conditions are satisfied: 

1. x(t) is absolutely integrable over its period, i.e., (o Jo lx (t) ldt < oo, 

2. The number of maxima and minima of x (t) in each period is finite, 
3. The number of discontinuities of x(t) in each period is finite. 

If these conditions are met, then x (t) can be expanded in terms of the complex exponential 
j2rr n t 

signals { e To } 
:�00 as 

where 

for some arbitrary a. 

+oo 

x(t) = I: 
n=-oo 

Xn = - x(t)e 1 To dt 1 1a+To - ·2rr 2L 1 
To a 

Some observations concerning this theorem are as follows: 

(2.2.2) 

(2.2.3) 

• The coefficients Xn are called the Fourier-series coefficients of the signal x(t). These 
are generally complex numbers (even when x(t) is a real signal). 

• The parameter a in the limits of the integral is arbitrary. It can be chosen to simplify 
the computation of the integral. Usually, a = 0 or a = -T0/2 are good choices. 
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• The Dirichlet conditions are sufficient conditions for the existence of the Fourier­
series expansion. For some signals that do not satisfy these conditions, we can still 
find the Fourier-series expansion. 

• The quantity Jo = :Jo is called the fundamental frequency of the signal x (t) . We 
observe that the frequencies of the complex exponential signals are multiples of this 
fundamental frequency. The nth multiple of Jo is called the nth harmonic. 

• Conceptually, this is a very important result. It states that the periodic signal x(t) can 
be described by the period To (or the fundamental frequency Jo) and the sequence 
of complex numbers {xn } . Thus, to describe x (t), we may specify a countable set 
of complex numbers. This considerably reduces the complexity of describing x(t), 
since to define x(t) for all values of t, we have to specify its values on an uncount­
able set of points. 

• The Fourier-series expansion can be expressed in terms of the angular frequency 
wo = 2nJo by 

(2.2.4) 

and 
+oo 

x(t) = L Xnejn{J)ot (2.2.5) 
n=-00 

• In general, Xn = lxn lej Lxn . Thus, lxn I gives the magnitude of the nth harmonic 
and Lxn gives its phase. Figure 2.24 shows a graph of the magnitude and phase of 
various harmonics in x (t) .  This type of graph is called the discrete spectrum of the 
periodic signal x (t). 

lxn l 

' ' ' ' 
I 

• I I • 
I I . I I 

-3 -2 - 1  0 1 2 3 n 

4Xn 

' 
I 

• • I 
-3 I -1 I 2 I 

I -2 I 0 1 I 3 n 
I • • 
I 
• Figure 2.24 The discrete spectrum of x ( t) . 
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Example 2.2.1 
Let x (t) denote the periodic signal depicted in Figure 2.25 and described analytically by +oo 

(
t - nTo) 

x(t) = I: n -
r
- , n=-oo (2.2.6) 

where r is a given positive constant (pulse width). Determine the Fourier-series expansion for 
this signal. 

· 

Solution We first observe that the period of the signal is To and 

Ill 1 1+ 2 - ·n 2nr , Xn = - x (t)e 1 To dt · 
To _Ill 2 . 

1 1+� ·n 2nr = - 1 e -1 To dt 
To -] 

= - --- e Tcl - e To 1 To [ -jn " +jnfil] 
T0 -jn2rr: 
1 . (

nrr:r
) = rr:n 

sm 
To 

r 
(
nr

) = 
To 

sine 
To 

n f= O, (2.2.7) 

where we have used the relation sin </> = ,N;_;-N . For n = 0, the integration is very simple 
and yields x0 = fo.  Therefore, +oo 

( ) r nr ·n 2nt x (t) = L -sine - e1 To .  n=-oo To To 
(2.2.8) 

A graph of these Fourier-series coefficients is shown in Figure 2.26. • 

Example 2.2.2 
Determine the Fourier-series expansion for the signal x (t) shown in Figure 2.27 and des­
cribed by 

- T -

-To 

x(t) 

- T 

T 
2 

I_ 
2 

+oo 
x(t) = L (- Ir nu - n) . n=-oo 

- T -

(2.2.9) 

Figure 2.25 Periodic signal x(t) in 
Equation (2.2.q). 
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-2 -1 
-512 -312 -1/2 

T To 

I 
I 
I 

1 

I 
I 

I 
I .I.. sine (rx) To To 

112 1 3/2 2 5/2 t 

x 
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Figure 2.26 The discrete spectrum of 
the rectangular-pulse train. 

-1 Figure 2.27 Signal x(t) in Equation (2.2.9). 

Solution Since T0 = 2, it is convenient to choose a = - �. First, we note that for n = 0, we 
can easily find the integral to be zero; therefore x0 = 0. For n f= 0, we have 

1 1 �· . x11 = - x(t)e-1"'" dt 2 -!  

1 (nn:) 1 j"" (nn: ) 
= 

nn: 
sin T - nn:

e- sin T 
1 (nn:) 

= - (1 - cos(nn:)) sin -
nn: 2 1 2. n = 4k + l  "" 

= --!;; n = 4k + 3 . 

0 n even 

(2.2.10) 
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From these values of Xn , we have the following Fourier-series expansion for x(t) : 

4 4 4 
= - cos(Tit) - - cos(3Tit) + - cos(5Tit) - · · · 

TI 3TI 5TI 

4 00 (- l)k 
= - '""' -- cos[(2k + l )Tit] . 

TI L., 2k + 1 k=O 

Example 2.2.3 

I 

-3 

Determine the Fourier-series representation ofan impulse train denoted by 

+oo 
x(t) = L 8(t - nT0) 

n=-oo 

and shown in Figure 2.28. 

Solution We have 
+ To 

1 1 2 - ·zn _.!!_ t 
Xn = - x(t)e 1 To dt To -f 

1 l+f · n 

= - 8(t)e -JZ"ro1 dt To -f 
To 

With these coefficients, we have the following expansion: 

+oo 
1 

+oo ·2 " t  L 8 (t - nT0) = - L e1 " To  . 
n=-oo To n=-oo 

This is a very useful relation, and we will employ it frequently. 

x(t) 

I I 

-2 - 1  1 2 3 

Chapter 2 

(2.2. 1 1) 

• 

(2.2. 12) 

(2.2. 13) 

(2.2.14) 

• 

Figure 2.28 An impulse train. 
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Positive and Negative Frequencies. We have seen that the Fourier-series expan­
sion of a periodic signal x(t) is expressed as 

00 

x (t) = :L 
n=-oo 

in which all positive and negative multiples of the fundamental frequency -:Jo are present. A 
positive frequency corresponds to a term of the form ejwt (for a positive w ), and a negative 
frequency corresponds to e-jwt. The term ejwt corresponds to a phasor rotating counter­
clockwise at an angular frequency of w, and e-jwt corresponds to a phasor rotating clock­
wise at the same angular frequency. A plot of these two phasors is shown in Figure 2.29. 

Note that if the two signals ejwt and e-jwt are added, their sum is 2 cos wt, which is 
a real signal with two frequency components at ± 2":r . We will soon see that this property 
holds for all real signals; i.e., in real signals, frequencies appear in positive and negative 
pall;s__with complex-valued amplitudes that are conjugates. 

Fourier Series for Real Signals. If the signal x (t) is a real signal satisfying the 
conditions of the

.
Fourier-series theorem, then there must be alternative ways to expand the 

signal. For real x(t), we have 

X-n = - x(t)e1 To dt 1 1a+To ·zrr .!!..t 
To a [ 1 ra+To ·zrr n t ] * = To la 

x (t)e -; To dt 

(2.2. 15) 

This means that for real x (t), the positive and negative coefficients are conjugates. Hence, 
lxn l has even symmetry ( Jxn l  = Ix - nl) and Lxn has odd symmetry (Lxn = -Lx_n) with 
respect to the n = 0 axis. An example of the discrete spectrum for a real signal is shown in 
Figure 2.30. 

I 
I 

I 
I 

I 
I 

I 
I 

/ I 

/ / / 

I 
\ 

\ 
' ' ' .... 

- - - -

.... _ _  

' 
\ 

\ 
I 
I 
I 

Figure 2.29 Phasors representing positive and negative 
frequencies. 
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lxnl 
' ' 

I 
• • I 

T I I I T ' I I ' I 
I I I I 

I I I I I I 

-4 -3 -2 -1 0 1 2 3 4 n 

Lxn 
• 
I 

• I 

' • I I 
-4 -2 -1 I I 3 I 

I -3 I I 0 1 2 I 4 n 
I I • • 

I • 
I 
• Figure 2.30 Discrete spectrum of a 

then 

real-valued signal. 

From X-n = x�, it follows that if we denote 

an - jbn Xn = 
2 

an +  jbn X-n = 
2 

therefore, for n 2: 1 ,  

an - jbn j2:rrjf-t an +  jbn -j2:rrjf-t 
----e o + e o 

2 2 

Since xo is real and given as xo = �, we conclude that 

(2.2. 16) 

This relation, which only holds for real periodic signals, is called the trigonometric Fourier­
series expansion. To obtain an and bn , we have 

an - jbn 1 1a+To -j2:rrfnt Xn = = - x(t)e o dt; 
2 To ,, 
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therefore, 

an - jbn 1 1a+To ( n ) j 1a+To ( n ) --- = - x(t) cos 2rc-t dt - - x(t) sin 2rc-t dt. 
2 � a � � a � 

Thus, we obtain 

2 1a+To ( n ) 
an = 

- x(t) cos 2rc-t dt, 
To a To 
2 1a+To ( n ) 

bn = - x(t) sin 2rc-t dt. 
To a To 

(2.2. 17) 

(2.2. 18) 

A third way exists to represent the Fourier-series expansion of a real signal. Note that 

(2.2.19) 

Substituting Equation (2.2.19) in Equation (2.2.2), we have 

x(t) = xo + 2 � lxn l  cos ( 2rc ;0 t + Lxn) . (2.2.20) 

In summary, for a real periodic signal x (t), we have three alternatives to represent 
the Fourier-series expansion 

+oo 
x(t) = :L 

n=-oo 

= ao + 
f [an cos 

(2rc
!:_
t) + bn sin 

(2rc
!:_
t)] 

2 · To To n=I 

where the corresponding coefficients are obtained from 

1 1a+To - ·zn..!L t an bn 
x = - x(t)e 1 To dt = - - j-n � a 2 2 ' 

2 1a+To ( n ) 
an = - x(t) cos 2rc-t dt, 

To a To 
2 1a+To ( n ) 

bn = - x(t) sin 2rc-t dt, 
To a To 

(2.2.21) 

(2.2;22) 

(2.2.23) 

(2.2.24) 

(2.2.25) 

(2.2.26) 
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Example 2.2.4 
Determine the sine and cosine coefficients in Example 2.2.1 .  

Solution We have previously seen that 

Therefore, 

and 

r .  (nr ) an - jbn 
Xn = -sine - = . 

To To .� 2 

{a = �sine (!!.!.) n To To 
bn = 0 

{ lxn l = \fosinc (¥o) \  
Lxn = 0 or TI 

Chapter 2 

(2.2.27) 

(2.2.28) 

• 

Fourier-Series Expansion for Even and Odd Signals. If, in addition to being 
real, a signal is either even or odd, then the Fourier-series expansion can be further simpli­
fied. For even x(t), we have 

2 1!?- ( n ) bn = - x(t) sin 2Jt -t dt = 0. To _.!Q To 2 
(2.2.29) 

Since x(t) sin(2Jtfot) is the product of an even and an odd signal, it will be odd and its · 
integral will be zero. Therefore, for even signals, the Fourier-series expansion has only 
cosine terms, i.e., we have 

x(t) = ao +f
an cos 

(
2Jt !!..-t) . 

2 To n=l 
(2.2.30) 

Equivalently, since Xn = an-,Jbn
, we conclude that for an even signal, every Xn is real (or 

all phases are either 0 or Jt, depending on the sign of Xn). 
For odd signals, we can conclude in a similar way that every an vanishes; there­

fore, the Fourier-series expansion only contains the sine terms or, equivalently, every Xn is 
imaginary. In this case, we have 

(2.2.31) 

Example 2.2.5 
Assuming T0 = 2, determine the Fourier-series expansion of the signal shown in Figure 2.31 .  

..... 
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Figure 2.31 An example of an 
odd-harmonic signal. 

Solution For n = 0, we can easily verify that x0 = 0. For n =!= 0, we have 

Using 

we have 

therefore, 

!I! 1 1 2  ·2,. n 
Xn = 

-
x(t)e -J To dt To -f 

Xn = _ _j__te-j"n']o 
2nn _ 1 

_l_e-j"n']o 
2n2n2 -I 

_ _i__e-j"n']o + _j__te-j"n'] I + �e-j"n'] I 
2nn _1 2nn 0 2n n 0 

= (cos(nn) - 1) (-2
1 
2 + _j__) 

Jt n 2nn { 2 j n odd 
= � ;;o;;r 

-
1m n even 

Noting that Xn = an -;bn , we have 

and 

{ - ,.2�2 an = 
0 

n odd 

n even 

{ 2 n odd 
bn = On;; n even 

53 
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The Fourier-series expansion is "" [ 2 4 J x(t) = L sin(2n + l)nt 
- 2(2 2 cos(2n + l)nt . 

n=O n(2n + 1) n n + 1) 

Chapter 2 

Obviously, this signal contains only the odd harmonics. No even harmonics are present in the 
Fourier-series expansion of this signal. • 

2.2.2 Response of L Tl Systems to Periodic Signals 

As we have already observed, the response of an L'I,'I system to a complex exponential is 
a complex exponential with the same frequency and a change in amplitude and phase. In 
particular, if h(t) is the impulse response of the system, then from Example 2. 1 .25, we 
know that the response to the exponential ej2rcfot is H (f0)ej2rcfot , where 

H(f) = 1_:00 h(t)e-j2rcftdt. 

Now let us assume that x ( t), the input to the LTI system, is periodic with period To and has 
a Fourier-series representation 

Then we have 

where 

+oo 

x(t) = I: n=-oo 

y(t) = ::E[x(t)] 

_ CD [� j2rcf.- t] - dJ L.., Xne o 
-00 

+oo 

= LXn::E [ej2rc'11Qt] 
-00 

_ � H (!!:__) j2rcf.-t - L__, Xn e o , 
-oo 

To 

H(f) = 1_:00 h(t)e-j2rcftdt. 

From this relation, we can draw the following conclusions: 

(2.2.32) 

• If the input to an LTI system is periodic with period T0, then the output is also peri­
odic. (What is the period of the output?) The output has a Fourier-series expansion 
given by 

+oo 

'°"" j2rc .1Lt y(t) = L.., Yne To 
n=-oo 
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where 

This is equivalent to 

and 

Lyn = Lxn + LH (;J . 
• Only the frequency components that are present at the input can be present at the 

output. This means that an LT! system cannot introduce new frequency components 
in the output, if these components are different from those already present at the 
input. In other words, all systems capable of introducing new frequency components 
are either nonlinear and/or time varying. 

• The amount of change in amplitude J H (-fo) I and phase /._ H (-fo) are functions of 
n, the harmonic order, and h(t), the impulse response of the system. The function 

f+oo H(f) = -oo h(t)e-j2rrftdt (2.2.33) 

is called the frequency response or frequency characteristics of the LTI system. In 
general, H (f) is a complex function that can be described by its magnitude I H (f) I 
and phase LH(f) . The function H(f), or equivalently h(t), is the only information 
needed to find the output of an LTI system for a given periodic input. 

Example 2.2.6 , 
Let x(t) denote the signal shown in Figure 2.27, but set the period equal to To = 10-5 sec. 
This signal is passed through a filter with the frequency response depicted in Figure 2.32. 
Determine the output of the filter. 

Solution We first start with the Fourier-series expansion of the input. This can be easily 
obtained as 

4 00 (- It x(t) = - L: -- cos (2n(2n + 1 ) 105t) 
Jt n=O 2n + 1 

= �ej2nI05t + �e-j2rrlo5t 
Jt Jt 
-�ej6rrI05t .:._ �e-j6rrlo5t 3Jt 3Jt 
+�ejIOrrloSt + �e-jIOrrIOst _ . . .

• 5Jt 5Jt (2.2.34) 
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JH(f)J 
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LH(f) 

1T 
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f 
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Figure 2.32 Frequency response of the filter. 

To find the output corresponding to each frequency, we must multiply the coefficient of each 
frequency component by the H (f) corresponding to that frequency. Therefore, we have 

H(l05) = lei¥  = ei ¥ ,  
H(-105) = le-i ¥  = e-H ,  

H(3 x 105) = 3ei ¥ ,  
H(-3 x 105) = 3e-H ,  
H(5 x 105) = 5ei ¥ ,  

H(-5 x 105) = 5e-H . 
For higher frequencies, H (f) = 0. Therefore, we have 

or, equivalently, 

y(t) = �ej(2,,1051+¥> + �ei(-2,,1D51-¥> 
1t 1t 

2 j(6,.1CJ51+K) 2 j(-6,.10s,_li) --e 2 - -e 2 
1t 1t 

+�ej(IOJr 105r+¥l + �ei(-10,.1D51-¥> 
1t 1t 

4 . 4 . 4 . y(t) = -- sm(2n 105t) + - sm(6n 105t) - - sm(10n 105t). 
1t 1t 1t 

(2.2.35) 

(2.2.36) 
• 

2.2.3 Parseval's Relation 

Parseval's relation says that the power content of a periodic signal is the sum of the power 
contents of its components in the Fourier-series representation of that signal. This relation 
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is a consequence of the orthogonality of the basis used for the Fourier-series expansion, 
i.e., the exponential signals. 

Let us assume that the Fourier-series representation of the periodic signal x(t) is 
given by +oo "\""""' j2rr_!!_t x(t) = � Xne To 

n=-oo 
Then, the complex conjugate of both sides of this relation is +oo 

"\""""' j2rr n t x
*
(t) = � x:e - To 

n=-oo 
By multiplying the two equations, we obtain +oo ·+oo 

1xct) 12 = 
I: I: 
n=-oom=-oo 

·zrr=t x x
* e
1 To n m 

Next, we integrate both sides over one period and note 

Thus, 

or, equivalently, 

1a+To j2rr nT,m t { To n = m 
" 

e o dt = To8mn = 
O 

-1.-n -r m  

n=-00 

1 1"+To ' 
+oo - lx(t) l2dt = L lxn l2 • To " n=-oo 

(2.2.37) 

(2.2.38) 

This is the formal statement of Parseval's relation. Note that by Equation (2. 1 . 14) the left­
hand side of this relation is Px , the power content of the signal x (t) , and lxn 12 is the power 
content of XnejZrr

-fo
, the nth harmonic. Therefore, Parseval's relation says that the power 

content of the periodic signal is the sum of the power contents of its harmonics. 
If we substitute Xn = an -1 bn in Parseval 's relation, we obtain 

1 1"+To a2 1 oo Px = - lx (t) l2dt = 
4
° + - L (a� + b�) .  

To " 2 n=I 
(2.2.39) 

Since the power content of an cos (2nfo-) and bn sin (2nfo-) are ¥ and � ' respectively, 
we see that the power content of x (t) is the sum of the power contents of its harmonics. 
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Example 2.2.7 
Determine the power contents of the input and output signals in Example 2.2.6. 

Solution We have 

Px = � 1: lx (t) l2dt = � [1 : ldt + 1f ldt] = 1 .  2 - ,  2 - :; 2 

We could employ Parseval's relation to obtain the same result. To do this, we have 

Equating the two relations, we obtain 
oo 1 · n2 L c2k + 1)2 = s· k=O 

To find the output power, we have 

p = - ly(t) l2dt = " _!!_ = - - + - + - = - . 
1 1"'+2 00 b2 1 [ 16 16 16] 24 

Y 2 L 2 2 n2 n2 n2 n2 

2.3 FOURIER TRANSFORM 

a n=l 

2.3.1 From Fourier Series to Fourier Transforms 

• 

As we have observed, the Fourier series may be used to represent a periodic signal in 
terms of complex exponentials. This Fourier-series representation considerably decreases 
the complexity of the description of the periodic signal. Simultaneously, the series rep­
resentation in terms of complex exponentials is particularly useful when analyzing LTI 
systems. This is because the complex exponentials are the eigenfunctions of LTI systems. 
Equivalent to any periodic signal is the sequence {xn} of the Fourier-series expansion coef­
ficients which, together with the fundamental frequency fo, completely describe the signal. 

In this section, we will apply the Fourier-series representation to nonperiodic signals. 
We will see that it is still possible to expand a nonperiodic signal in terms of complex 
exponentials. However, the resulting spectrum will no longer be discrete. In other words, 
the spectrum of nonperiodic signals covers a continuous range of frequencies. This result 
is the well-known Fourier transform given next. 

First, the signal x(t) must satisfy the following Dirichlet conditions: 

1. x(t) is absolutely integrable on the real line; i.e., 

1_:00 lx (t) ldt < oo. 

2. The number of maxima and minima of x(t) in any finite interval on the real line is 
finite. 

3. The number of discontinuities of x(t) in any finite interval on the real line is finite. 
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Then the Fourier transform (or Fourier integral) of x (t), defined by 

X(f) = 1_:00 x(t)e-j2nftdt, 

exists and the original signal can be obtained from its Fourier transform by 

x(t) = 1_:00 X(f)ej2nftdf. 

We make the following observations concerning the Fourier transform: 
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(2.3. 1) 

(2.3.2) 

• X(f) is generally a complex function. Its magnitude IX (f) I and phase LX(f) rep­
resent the amplitude and phase of various frequency components in x(t) . The func­
tion X (f) is sometimes referred to as the spectrum5 of the signal x (t) .  

• To denote that X(f) is the Fourier transform of x (t), we frequently employ the 
following notation: 

X(f) = 3[x (t)]. 
To denote that x(t) is the inverse Fourier transform of X(f), we use the following 
notation: 

x(t) = g;-1 [X(f)]. 
Sometimes we use a shorthand for both relations: 

x(t) � X(f) . 
• If the variable in the Fourier transform is w rather than f, then we have 

and 
l+oo X(w) = -oo x(t)e-jwt dt 

x(t) = -1- j+oo X(w)ejwt dw . . 2rr _00 
• The Fourier-transform and the inverse Fourier-transform relations can be written as 

X(f) 

x(t) = 1_:00 [f_:oo x(r)e-j2n/r dr J ej2nftdf 

= 1_:00 [f_:oo ej2nf(t-r) df J x(r) dr. (2.3.3) 
where in the last step we have exchanged the order of integration. On the other hand, 

l+oo x(t) = -oo o (t - r)x(r) dr. (2.3.4) 
5 Sometimes X CJ) is referred to as a voltage spectrum, as opposed to a power spectrum, which will be 

defined later. 
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Comparing Equation (2.3.3) with Equation (2.3.4), we obtain 

or 

1+00 8 (t - r) = -
oo 

ej2rcf(t-r)df 

8 (t) = 1_:00 ej2rcft df. 

Chapter 2 

(2.3.5) 

(2.3.6) 

• Equation (2.3 .1) is similar to Equation (2.2.3) and Equation (2.3.2) is similar to 
Equation (2.2.2). The difference is that the sum in Equation (2.2.2) is substituted 
by the integral. 

Example 2.3.1 
Determine the Fourier transform of the signal I1(t) given in Equation (2. 1 . 15) and shown in 
Figure 2.33. 
Solution We have 

Sine (f) 
1 

1+00 Sl'[IT(t)] = -oo IT(t)e-jZnftdt 

1 
2 

l
+
l 

= 
I 

2 
e-j2nftdt 

-, 

= __ I _ [e-jnf - ej"f] 
-j2n:f 
sin n:/ 

n:f 
= sine(/). 

f Figure 2.33 Il(t) and its Fourier 
transform. 

(2.3.7) 
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Therefore, 
§ [IT(t)] = sine(!). 

Figure 2.33 illustrates the Fourier-transform relationship for this signal. 

Example 2.3.2 
Determine the Fourier transform of an impulse signal x(t) = o (t). 

Solution The Fourier transform can be obtained by 

1
+
00 

§[o(t)] = _

00 

8(t)e-j2nf1dt 

= l  
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• 

(2.3.8) 

where we have used the sifting property of 8 (t). This shows that all frequencies are present in 
the spectrum of o(t) with unity magnitude and zero phase. The graphs of x(t) and its Fourier 
transform are given in Figure 2.34. Similarly, from the relation 

1
+
00 

-oo 8 (f)ej2nftdf = 1 , 

we conclude that 

§[I] = o(f) . • 

Example 2.3.3 
Determine the Fourier transform of signal sgn(t). 

Solution We begin with the definition of sgn(t) as a limit of an exponential, as shown in 
Figure 2. 18 and given by 

I I e-n 
Xn (t) = -ek 

" 0 

t > 0 
t < 0 
t = O  

f Figure 2.34 Impulse signal and its spectrum. 

(2.3.9) 
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For this signal, the Fourier transform is 

1 1 
= - + �---� - j2nf � + j2nf 

-j4n;f 
- _!__ + 4n;2j2 . n2 

Now, letting n --+ oo, we obtain 

8'[sgn(t)] = lim Xn (f) n->OO 
l. -j4n;f 

= lffi ..,.---­n->OO ;!I + 4n;2 j2 

jn;f 

The graphs of sgn(t) and its spectrum are shown in Figure 2.35. 

Chapter 2 

(2.3. 10) 

(2.3. 1 1) 

• 

Fourier Transform of Real, Even, and Odd Signals. 
relation can be generally written as 

The Fourier-transform 

1+00 § [x (t)] = -
oo 

x (t)e-j2rr.Jtdt 

= 1_:00 x (t) cos(2rr.ft) dt - j 1_:00 x (t) sin(2rr./t) dt. 

For real x (t), both integrals 

1+00 -
oo 

x (t) cos(2rr.ft) dt 

and 

1_:00 x (t) sin(2rr.f t) dt 

are real; therefore, they denote the real and imaginary parts of X(f), respectively. Since 
cos is an even function and sin is an odd function, we know that for real x (t) the real part 
of X (f) is an even function of f and the imaginary part is an odd function of f. Therefore, 
in general, for real x (t), the transform X (f) is a Hermitian function 

X(-f) = X*(f) . 
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sgn (t) 

l i--------

----------! -1 

f 

4-5[sgn (t)] 

1t 
--------1 2 

f 

1t -2 1---------- Figure 2.35 The signum signal and its 
spectrum. 

This is equivalent to the following relations: 

Re[X(-j)] = Re[X(f)] , 

lm[X(-f)] = -lm[X(f)], 

IX(-f) I  = IX(f) j , 

LX(-f) = -LX(f) . 

Typical plots of IX (f) I and LX (f) for a real x (t) are given in Figure 2.36. 
If, in addition to being real, x(t) is an even signal, then the integral 

1+00 -
oo 

x(t) sin(2nft) dt 
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vanishes because the integrand is the product of even and odd signals; therefore, it is odd. 
Hence, the Fourier transform X (f) will be real and even. Similarly, if x (t) is real and odd, 
the real part of its Fourier transform vanishes and X (f) will be imaginary and odd. 
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IX(f)I 

f 

LX(f) 

f 

Figure 2.36 Magnitude and phase of the spectrum 
of a real signal. 

Signal Bandwidth. The bandwidth of a signal represents the range of frequencies 
present in the signal. The higher the bandwidth, the larger the variations in the frequencies 
present. In general, we define the bandwidth of a real signal x(t) as the range of positive 
frequencies present in the signal. In order to find the bandwidth of x(t), we first find X(f), 
which is the Fourier transform of x (t); then, we find the range of positive frequencies that 
X(f) occupies. The bandwidth is BW = Wmax - Wmin• where Wmax is the highest positive 
frequency present in X (f) and W min is the lowest positive frequency present in X (f). 

2.3.2 Basic Properties of the Fourier Transform 

In this section, we will devekip the basic properties of the Fourier transform. ·With each 
property, we will present examples of its applications. 

Linearity. The Fourier-transform operation is linear. That is, if x1 (t) and x2 (t) 
are signals possessing Fourier transforms X 1 (f) and X 2 (f), respectively, the Fourier trans­
form of ax1 (t) + f3x2(t) is aX1 (f) + f3X2(f), where a and f3 are two arbitrary (real or 
complex) scalars. This property is a direct result of the linearity of integration. 

Example 2.3.4 
Determine the Fourier transform of u_1 (t), the unit-step signal. 
Solution Using the relation 

1 1 1 1 
u_1 (t) = 2 + 2sgn(t) = 2 x 1 + 2sgn(t) 

and the linearity theorem, we obtain 

.?i'[u_1 (t)] = 8i' [� x 1 + �sgn(t)J 
1 1 = 28(f) + 

j2rcf · (2.3. 12) 
• 
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Duality. If 
X(f) = §[x(t)], 

then 
x (f) = §[X(-t)] 

and 
x(-f) = §[X(t)]. 

To show this property, we begin with the inverse Fourier-transform relation 

x(t) = i:oo X(f)ej2rrftdf. 

Then, we introduce the change of variable u = -f to obtain 

l+oo x (t) = -
oo 

X(-u)e-jZrrutdu. 

Letting t = f, we have 

x(f) = /_:00 X(-u)e-jZrruf du; 

finally, substituting t for u, we get 

l+oo x(f) = -oo X(-t)e-jZrrtfdt 

or 
x(f) = §[X(-t)]. 

Using the same technique once more, we obtain 

x(-f) = §[X(t)] . 
Example 2.3.5 

Determine the Fourier transform of sinc(t). 
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(2.3.13) 

(2.3.14) 

Solution Noting that IT (t) is an even signal and, therefore, that IT (-f) = IT (f), we can 
use the duality theorem to obtain 

§ [sinc(t)] = IT (-f) = IT(f). (2.3. 15) 
• 

Example 2.3.6 
Determine the Fourier transform of � . 
Solution Here again, we apply the duality theorem to the transform pair derived in Example 2.3.3 

1 §[sgn(t)] = -:---! } rt  
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to obtain 

Signals and Linear Systems 

fif [-.1-] = sgn(-f) = -sgn(f) . }1tt 
Using the linearity theorem, we have 

§[fl = -jrtsgn(f). 

Chapter 2 

(2.3.16) 
• 

Shift in Time Domain. A shift of to in the time origin causes a phase shift of 
-2nfto in the frequency domain. In other words, _ 

/if [x (t - to)] = e-j2nfto [if [x(t)] . 

To see this, we start with the Fourier transform of x(t - to), namely, 

fif[x(t - to)] = l: x(t - t0)e-j2"f1dt. 

With a change of variable of u = t - to, we obtain 

fif[x(t - to)] = l: x(u)e-j2nftoe-j2nfudu 

= e-j2nfto 100 x (u)e-j2nfudu -00 (2.3. 17) 

Note that a change in the time origin does not change the magnitude of the transform. 
It only introduces a phase shift linearly proportional to the time shift (or delay). 

Example 2.3.7 
Determine the Fourier transform of the signal shown in Figure 2.37. 
Solution We have 

x(t) = IT (t - D . 
By applying the shift theorem, we obtain 

fif[x(t)] = e-jZrcfx � = e-i3rcfsinc(f) . 

x(t) 

1 - - - - - - -....------. 

1 2 
Figure 2.37 Signal x(t). 

(2.3. 18) 
• 

I 
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Example 2.3.8 
Determine the Fourier transform of the impulse train 00 

L 8(t - nTo). 
n=-oo 

Solution Applying the shift theorem, we have 

Therefore, 

§[8(t _ nTo)] = e-j2nfnTo§[8 (t)] = e-j2nfnTo . 

Using Equation (2.2.14) 
+oo 1 +

oo '2n n t L 8 (t - nT0) = 
- L e1 TO' 

n=-oo To n=-oo 
and substituting f for t and io for T0, we obtain 

or 

00 ( ) 00 00 
L 8 f - ;o = To L ej2nnfTo = To L e-j2nnfTo 
n=-oo n=-oo n=-oo 

f e-j2nnfTo = _.!._ f 8 (1 _ !!_) . n=-oo To n=-oo To 

This relation yields, 

The case of T0 = 1 is particularly interesting. For this case, we have 
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(2.3. 19) 

(2.3.20) 

(2.3.21) 

(2.3.22) 

That is, after substituting f for t, we find that the Fourier transform of r;:,_00 8(t - n) is 
itself. • 

Scaling. For any real a 'f=. 0, we have 

To see this, we note that 

dF[x(at)] = __!__X (L) . la l a 

dF[x (at)] = L: x(at)e-j2nftdt 
(2.3.23) 

(2.3.24) 
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and make the change in variable u = at. Then, 

87[x(at)] = - x(u)e-1Zrrfu/adu 1 100 . 
la l -oo 

where we have treated the cases a > 0 and a < 0 separately. 

(2.3.25) 

Note that in the previous expression, if a > 1, then x(at) is a contracted form of 
x(t), whereas if a < 1, x(at) is an expanded version of x (t) . Thus, if we expand a signal 
in the time domain, its frequency-domain representation (Fourier transform) contracts; if 
we contract a signal in the time domain, its frequency domain representation expands. This 
is exactly what we expect since contracting a signal in the time domain makes the changes 
in the signal more abrupt, thus increasing its frequency content. 

Example 2.3.9 
Determine the Fourier transform of the signal 

{3 0 < t < 4 
x(t) = - - . 

0 otherwise 

Solution Note that x(t) is a rectangular signal amplified by a factor of 3, expanded by a 
factor of 4, and then shifted to the right by 2. In other words, x(t) = 3IT ('�2). Using the 
linearity, time shift, and scaling properties, we have 

g; [3rr c�2)J = 387 [rr C� 2)] 
= 3e-4jrrf 87 [IT G) J 
= 12e-4jrrf sinc(4f) . • 

Convolution. If the signals x(t) and y(t) both possess Fourier transforms, then 

87[x(t) * y(t)] = 87[x(t)] · 87[y(t)] = X(f) · Y(f) . (2.3.26) 

For a proof, we have 

87[x(t) * y(t)] = 1_: [/_: x(r)y(t - r) dr J e-jZrrftdt 
= 1_: x(r) [/_: y(t - r)e-jZrrf(t-r) dt] e-jZrrfrdr. 
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Now with the change of variable u = t - r, we have 

therefore, 

1_: y(t - r)e-jZrcf(t-r)dt = 1_: y(u)e-jZrcfudu 
= §[y(t)] 
= Y(f); 

§[x(t) * y(t)] = 1_: x(r)Y(f)e-jZrcfrdr 
= X(f) · Y(f) . 
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(2.3.27) 

This theorem is very important and is a direct result of the fact that the complex 
exponentials are eigenfunctions of LTI systems (or, equivalently, eigenfunctions of the 
convolution operation) . Finding the response of an LTI system to a given input is much 
easier in the frequency domain than it is the time domain. This theorem is the basis of the 
frequency-domain analysis of LTI systems. 

Example 2.3.10 
Determine the Fourier transform of the signal A(t), shown in Figure 2. 15. 

Solution It is enough to note that A(t) = IT(t) * ll(t) and use the convolution theorem. 
Thus, we obtain 

§[A(t)] = §[IT(t)] · §[ll(t)] = sinc2(f). (2.3.28) 
• 

Example 2.3.11 
Determine the Fourier transform of the signal x(t) 
Figure 2. 16 and discussed in Example 2. 1 . 14. 

11 m + A (&}, which is shown in 

Solution Using scaling and linearity, we have 

X (f) = 4sinc(4f) + 2sinc2(2f). • 

Modulation. The Fourier transform of x(t)ejZrcfot is X(f - Jo) . To show this 
relation, we have 

$i[x(t)ej2rcfot] = 1_: x(t)ej2rcfote-j2rcftdt 
= 1_: x(t)e-j2rct<f-fo)dt 
= X(f - Jo) .  (2.3 .29) 

This theorem is the dual of the time-shift theorem. The time-shift theorem says that 
a shift in the time domain results in a multiplication by a complex exponential in the 
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frequency domain. The modulation theorem states that a multiplication in the time domain 
by a complex exponential results in a shift in the frequency domain. A shift in the frequency 
domain is usually called modulation. 

Example 2.3.12 
Determine the Fourier transform of x (t) = ej21tfo1 • 
Solution Using the modulation theorem, we have 

§[ej2nfot] = §[lej21tfot] 

= 8(f �fo). 

Note that, since x (t) is not a real signal, its Fourier transform does not have Hermitian sym­
metry. (The magnitude is not even and the phase is not odd.) • 

Example 2.3.13 
Determine the Fourier transform of the signal cos(2nJ0t). 

Solution Using Euler's relation, we have cos(2nJ0t) = �ejZnfot + �e-jZn/01• Now using the 
linearity property and the result of Example 2.3. 12, we have 

Example 2.3.14 

§[cos(2nJot)] = � §[ej2nfot] + � §[e-j2nfot] 2 2 
1 1 = 28(f - Jo) + 28(! + Jo). 

Determine the Fourier transform of the signal 

x (t) cos(2nJot). 

Solution We have 

§[x(t) cos(2nJ0t)] = § [�x(t)ejZnfot + �x(t)e-jZn/01] 
1 1 = 2.X(f - Jo) + 2.X(f + J0). 

• 

(2.3.30) 

Figure 2.38 shows a graph of this relation. In Chapter 3, we will see that this relation is the 
basis of the operation of amplitude modulation systems. • 

Example 2.3.15 
Determine the Fourier transform of the signal 

shown in Figure 2.39. 

{ cos(nt) l t l  ::: � x(t) = 
0 otherwise 

(2.3.31) 
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x (t) 
1 .--�������� 

0.8 

0.6 

0.4 f 

0 5 

x (t) cos 2n
f
0 t 

0.5 
1 1 2
XU

-
f
o
) + 2XCf + fo) 

0 

-0.5 -
f
o 

0 5 

Figure 2.38 Effect of modulation in both the time and frequency domain. 

-0.5 -0.3 -0.1 0 0.1 0.3 0.5 Figure 2.39 Signal x(t). 

Solution Note that x (t) can be expressed as 

x(t) = IT(t) cos(Tit). 
Therefore, 

§[IT(t) cos(nt)] = �sine (1 - D + �sine (1 + D ,  

where we have used the result of Example 2.3.14, with lo = 4 .  

f
o 

f 

(2.3.32) 

(2.3.33) 

• 

Parseval's Relation. If the Fourier transforms of the signals x(t) and y(t) are 
denoted by X(f) and Y(f), respectively, then 

1_: x(t)y* (t) dt = 1_: X(f)Y* (f) df. (2.3.34) 
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To prove Parseval's relation, we note that 

L: x(t)y*(t) dt = L: [L: X(f)ejZrrftdf J [L: Y(f')ejZrrf'tdf'r dt 
= L: [L: X(f)ejZrrftdf J [L: Y*(f')e-j2rrf'tdf'] dt 
= L: X(f) [L: Y*(f') [L: ejZrrt(f-f') dt] df'] df. 

Now using Equation (2.3.5), we have 

therefore, 

L: ej2rrt(f-f')dt = o (f - J') ; 

£: x (t)y
*
(t) dt = £: X(f) [£: Y*(f')o(f - J') df'] df 

= L: X(f)Y* (f) df, 
where we have employed the sifting property of the impulse signal in the last step. 

Note that if we let y(t) = x (t) , we obtain 

L: lx (t) l2dt = L: IX (f) l 2df. 

(2.3.35) 

(2.3.36) 

This is known as Rayleigh's theorem and is similar to Parseval's relation for periodic 
signals. 

Example 2.3.16 
Using Parseval's theorem, determine the values of the integrals 

i: sinc4 (t) dt 

and i: sinc3 (t) dt. 

Solution We have §[sinc2 (t)] = A(t). Therefore, using Rayleigh's theorem, we get 

i: sinc4 (t) dt = i: A2 (f) df 

= f_� (f + l )2df + [ (-f + l )2df 

2 - . 3 
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f 
Figure 2.40 Product of n and A. 

For the second integral, we note that §[sinc(t)] = TI (f); therefore, by Parseval's theorem, 
we have 1_: sinc2 (t)sinc(t) dt = 1_: TI(f)A(f) df. 
Figure 2.40 shows the product of TI(f) and A(f). From this figure, we see that 

therefore, 

100 1 1 1 
TI (f)A(f) df = 1 x - + - x - ; -00 2 2 2 

sinc3 (t) dt = - .  100 3 
-00 4 • 

Autocorrelation. The (time) autocorrelation function of the signal x(t) is denoted 
by Rx(r) and is defined by 

Rx (r) = 1_: x(t)x* (t - r) dt. (2.3.37) 

The autocorrelation theorem states that 

§[Rx(r)] = IX (f) J2 • (2.3 .38) 

We note that Rx (r) = x (r)*x*(-r). By using the convolution theorem, the autocorrelation 
theorem follows easily.6 

From this theorem, we conclude that the Fourier transform of the autocorrelation of 
a signal is always a real-valued, positive function. 

Differentiation. The Fourier transform of the derivative of a signal can be obtained 
from the relation 

§ [:
t
x(t)] = j2rcfX(f). (2.3.39) 

6The definition of the autocorrelation function for random signals is given in Chapter 5. 



74 

To see this, we have 

Thus, we conclude that 

or 

/ 

�r Systems 

-x(t) = - X(f)ej2rrftdf d d 100 

dt dt -00 = 1_: j2nfX(f)ej2rrftdf. 

d §-1 [j2nf X(f)] = -x(t) dt 

§ [:tx (t)J = j2nfX(f) . 

Chapter 2 

(2.3.40) 

With repeated application of the differentiation theorem, we obtain the relation 

§ [!!:_x(t)J = (j2nftX(f). dtn (2.3.41) 

Example 2.3.17 
Determine the Fourier transform of the signal shown in Figure 2.41 . 

Solution Obviously, x(t) = fr A(t). Therefore, by applying the differentiation theorem, we 
have 

§[x(t)] = § [:t A(t) J 

= j2rr,j §[A(t)] 
= j2rr:f sinc2(f) . 

Differentiation in Frequency Domain. We begin with 

.-----1 1 

-1 

j d §[tx(t)] = 2n df X(f). 

1 

-1 ---... 
Figure 2.41 Signal x(t). 

(2.3.42) 

• 

(2.3.43) 
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The proof is basically the same as the differentiation theorem in the time domain and is left 
as an exercise. Repeated use of this theorem yields 

Example 2.3.18 
Determine the Fourier transform of x(t) = t. 
Solution We have 

§[t] = §[t x 1] 
. d 

= _l___§[ l] 2n df 
j d 

= 2n d/Cf) 

= _j_8'(f). 2n 

(2.3.44) 

(2.3.45) 
• 

Integration. The Fourier transform of the integral of a signal can be determined 
from the relation 

§ [f 1 x(r) dr] = �(f) + �X(0)8 (f) . -oo 12nf 2 
To show this, we use the result of Problem 2. 15 to obtain 

/_100 x (r) dr = x(t) * u_1 (t) .  

Now using the convolution theorem and the Fourier transform of u_1 (t), we have 

§ [11 x (r) dr] = X(f) [-. 1- + �8(/)J -oo 12nf 2 

Example 2.3.19 

= �(f) + �X(0)8 (f) . 12nf 2 

Determine the Fourier transform of the signal shown in Figure 2.42. 
Solution Note that 

x(t) = J_� IT(r) dr. 
Therefore, by using the integration theorem, we obtain 

sinc(f) 1 
§[x(t)] = -.-- + -sinc(0)8(f) 

12nf 2 
sinc(f) 1 

= j2nf 
+ 
28(f) . 

(2.3.46) 

(2.3.47) 

(2.3.48) 
• 
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Figure 2.42 Signal x(t) in Example 
2.3.19. 

Moments. If §[x(t)] = X(f), then J�00 tnx(t) dt, the nth moment of x(t), can 
be obtained from the relation 

tnx(t) dt = j_ -X(f) . loo ( • )n dn I _00 2n djll f=O 
(2.3.49) 

This can be shown by using the differentiation in the frequency domain result. We have 

This means that 

tnx(t)e-i2rtftdt = j_ -X(f). loo ( · )n dn -
oo 2n djll 

Letting f = 0 on both sides, we obtain the desired result. 

(2.3.50) 

For the special case of n = 0, we obtain this simple relation for finding the area 
under a signal, i.e., 1_: x(t) dt = X(O) . 

Example 2.3.20 
Let a > 0 and x(t) = e-"' u_1 (t). Determine the nth moment of x(t). 
Solution First we solve for X (f) . We have 

X(f) = 1_: e-"'u-1 (t)e-jZrcftdt 
= 
100 e-t(a+j2rcft)dt 

1 
= - (0 - 1) Ci + j2rr.f 

Ci + j2rr.f 
By differentiating n times, we obtain 

(2.3.5 1) 

(2.3.52) 

(2.3.53) 
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hence, 

Example 2.3.21 
Determine the Fourier transform of x(t) = e-aJrl , where a > 0. (See Figure 2.43.) 

Solution We have 

x(t) = e-ar u_1 (t) + e"' u_1 (-t) = x1 (t) + x1 (-t) ,  

and we have already seen that 

By using the scaling theorem with a = -1 ,  we obtain 
1 §[x1 (-t)] = $l[e"'u_1 (-t)] = . a - 12rrf 

Hence, by the linearity property, we have 

1 

0 

1 1 §[e-altl ] = + ___ _ a + j2rrf a - j2rrf 
2ct 

a2 + 4rr2 J2 · 

77 

(2.3.54) 
• 

(2.3.55) 

(2.3.56) 
• 

0 
Figure 2.43 Signal e-afrl and its 

f Fourier transform. 
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TABLE 2.1 TABLE OF FOURIER-TRANSFORM PAIRS 

Time Domain 

8(t) 

8(t - to) 

cos(2:rrfot) 

sin(2:rrfot) 

n(t) 

sinc(t) 

A(t) 

sinc2(t) 

sgn(t) 

I::::: 8(t - nT0) 

Frequency Domain 

8 (f) 

8(f - fo) 
1 1 
28(f - Jo) + 28(f + fo) 

1 " 1 -
- 2j

8(f + Jo) + 
2j

8 (f - Jo) 
sinc(f) 

O(f) 

sinc2(f) 

A(f) 

Ct + j2:rrf 
1 

(a + j2:rrf)2 
2a 

j:rrf 
1 1 
28(f) + j2:rrf 

j2:rrf 

(j2:rrf)" 

-j:rrsgn(f) 

1 Ln=+oo ( n ) - 8 ! - -To n=-oo To 

Chapter 2 

Table 2.1 provides a collection of frequently used Fourier-transform pairs. Table 2.2 .. 
outlines the main properties of the Fourier transform. 

2.3.3 Fourier Transform for Periodic Signals 
� 

In this section, we extend our results to develop methods for finding the Fourier transform 
of periodic signals. We have already obtained the Fourier transform for some periodic sig­
nals (see Table 2. 1) .  These include ei2"for ,  cos(2n/0t), sin(2n/0t), and I:::�: 8 (t-nT0) .  
The Fourier transform of all these periodic signals have a common property: the Fourier 
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TABLE 2.2 TA'BLE OF FOURIER-TRANSFORM PROPERTIES 

Signal 

ax, (t) + {3x2 (t)1 
X(t) 

x(at) 

x(t - t0) 
ej2nfor x(t) 
x(t) * y(t) 
x(t)y(t) 
d 
dt x(t) 
d" 
dt" x(t) 

tx(t) 

t" x(t) 

[� x(r) dr 

Fourier Transform 

aX, (f) + f3X2(f) 
x(-f) 

1�1 x (f) 
e-jhfro X (f) 

X(f - Jo) 
X(f)Y(f) 

X(f) * Y(f) 

j2rr.fX(f) 

(j2rr.f)" X(f) 

( _j_) .!!_X(f) 2rr. df ( j )" d" 
2rr. df" X

(f) 

�(f) + �X(O)o(f) 
12rr.f 2 
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transform consists of impulse functions in the frequency domain. In this section, we will 
show that this property holds for all periodic signals; in fact, there exists a close relationship 
between the Fourier transform of a periodic signal and the Fourier-series representation of 
the signal. 

Let x(t) be a periodic signal with the period To. Let {xn} denote the Fourier-�eries 
coefficients corresponding to this signal. Then 

00 '""' j2rr.!l.t x(t) = L., Xne To n=-oo 
By taking the Fourier transform of both sides and using the fact that 

§[ej2rrro1] = 8 (i _ ;J , 
we obtain 

. X (f) = nt;oo XnO (1 - ;J ._ (2.3.57) 

From this relation, we observe that the Fourier transform of a periodic signal x (t) consists 
of a sequence of impulses in frequency at multiples of the fundamental frequency of the 
periodic signal. The weights of the impulses are simply. the Fourier-series coefficients of 
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the periodic signal. This relation gives a shortcut for computing ourier-series coefficients 
of a signal using the properties of the Fourier transform. If we d fine the trunc�ted signal 
xr0 (t) as 

we see that 

I 
x(t) -f < t :::; f xr0 (t) = 

. , 0 otherwise 

00 

x(t) = L xr0 (t - nTo) . n=-oo 
Noting that xr0 (t - nTo) = xr0 (t) * 8 (t - nTo), we have 

00 

x(t) = xr0 (t) * L 8 (t - nTo) .  n=-oo 
Therefore, using the convolution theorem and Table 2 . 1 ,  we obtain 

which simplifies to 

X(f) = Xr0 (f) [ ;0 n�oo 8 (1 - ;J J , 
X(f) = 

_!__ f: Xr0 (.!!:_) 8 (1 - .!!:_) . To n=-oo To To 

Comparing this result with 

we conclude that 

X(f) = n�oo XnD (1 - ;J ,  
Xn = 

_!__
Xr0 (.!!:_) · To To 

This equation gives an alternative way to find the Fourier-series coefficients. 
Given the periodic signal x(t), we can find Xn by using the following steps: 

1. First, we determine the truncated signal xr0 (t) using Equation (2.3.58). 

(2.3.58) 
' 

(2.3.59) 

(2.3.60) 

(2.3.61) 

(2.3.62) 

(2.3.63) 

(2.3.64) 

2. Then, we determine the Fourier transform of the truncated signal using Table 2 .1  and 
the Fourier-transform theorems and properties. 

3. Finally, we evaluate the Fourier transform of the truncated signal at l = fo and scale 
it by ,Jo. as shown in Equation (2.3.64). 
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Example 2.3.22 
Determine the Fourier-series coefficients of the signal x(t), as shown in Figure 2.25. 

Solution We follow the preceding steps. The truncated signal is 

and its Fourier transform is 
XT0 (f) = rsinc(rf) . 

Therefore, r (nr ) Xn = To sine To . • 

2.3.4 Transmission over L Tl Systems 

The convolution theorem is the basis for the analysis of LTI systems in the frequency 
domain. We have seen that the output of an LTI system is equal to the convolution of 
the input and the impulse response of the system. If we translate this relationship in the 
frequency domain using the convolution theorem, then X(f), H(f), and Y(f) are the 
Fourier transforms of the input, system impulse response, and the output, respectively. 
Thus, 

Y(f) = X(f)H(f) . 

Hence, the input-output relation for an LTI system in the frequency domain is much sim­
pler than the corresponding relation in the time domain. In the time domain, we have the 
convolution integral; however, in the frequency domain we have simple multiplication. 
This simplicity occurs because the signal's Fourier transformation represents it in terms 
of the eigenfunctions of LTI systems. Therefore, to find the output of an LTI system for 
a given input, we must find the Fouriei: transform of the input and the Fourier transform 
of the system impulse response. Then, we must multiply them to obtain the Fourier trans­
form of the output. To get the time-domain representation of the output, we find the inverse 
Fourier transform of the result. In most cases, computing the inverse Fourier transform is 
not necessary. Usually, the frequency-domain representation of the output_ provides enough 
information about the output. 

Example 2.3.23 
Let the input to an LTI system be the signal 

x(t) = sinc(W1t), 

and let the impulse response of the system be 

h(t) = sinc(W2t). 

Determine the output signal. 
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X(f) 

H(f) 

1 
W2 

Chapter 2 

f 

f 
Figure 2.44 Lowpass signal and lowpass 
filter. 

Solution First, we transform the signals to the frequency domain. Thus, we obtain 

and 

X(f) = -2.._rr (L) 
W1 W1 

H(f) = -2.._rr (L) . 
W2 W2 

Figure 2.44 shows X (f) and H (f). To obtain the output in the frequency domain, we have 

Y(f) = X(f)H(f) = 
W1

1

W2 
rr ( :J rr ( :J 

= I w1
1
w2 rr ( �1 ) W1 :s W2 

w1
1
w2 rr ( �z ) W1 > W2 

(2.3.65) 

From this result, we obtain 

• 

Signals such as x(t) in the preceding example are called lowpass signals. Lowpass 
signals are signals with a frequency domain representation that contains frequencies around 
the zero frequency and does not contain frequencies beyond some W1 • Similarly, an LTI 
system that can pass all frequencies less than some W and rejects all frequencies beyond 
W is called an ideal lowpass filter (LPF). An ideal lowpass filter will have a frequency 
response that is 1 for all frequencies -W S f s W and is 0 outside this interval. W 
is the bandwidth of the filter. Similarly, we can have ideal highpass filters. In a highpass 

' 
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LPF 

w 

IH(fl l  

I 

BPF 

- - - - - - - - " - - - - - - - - - - -1. 

Figure 2.45 Various filter types. 
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f 

f 

f 

filter (HPF), H (f), there is unity outside the interval -W :::; f :::; W and zero inside. Ideal 
bandpass filters (BPF) have a frequency response that is unity in some interval W1 :::; / f / :::; 
W2 and zero otherwise. In this case, the bandwidth of the filter is W2 - W1 • Figure 2.45 
shows the frequency-response functions of various filter types. 

For nonideal lowpass or bandpass filters, the bandwidth is usually defined as the 
bAnd of frequencies at which the power-transfer ratio of the filter is at least half of the 
maximum power-transfer ratio. This bandwidth is usually called the 3 dB bandwidth of the 
filter, because reducing the power by a factor of 2 is equivalent to decreasing it by 3 dB on 
the logarithmic scale. Figure 2.46 shows the 3 dB bandwidth of filters. 

It is worth emphasizing that the bandwidth of a filter is always the set of positive 
frequencies that a filter can pass. 

· 

Example 2.3.24 
The magnitude of the transfer function of a filter is given by 

IH(f) I = ----==== 
1 + ( w:Ooo r 

Determine the filter type and its 3 dB bandwidth. 
Solution At f = 0, we have I H (f) I = 1 and I H (f) I decreases and tends to zero as f tends 
to infinity. Therefore, this is a lowpass filter. Since power is proportional to the square of the 
amplitude, the equation must be 
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IH(f)I 
A 

3 dB bandwidth f 

IH(f)I 

A 

� 
3 dB bandwidth f 

Figure 2.46 3 dB bandwidth of filters in Example 2.3.24. 

-6 

IH(fo) l2 = __ (_.fi_o_)�2 1 + 10,000 

-

2 

This yields fo = ± 10, 000. Therefore, this is a lowpass filter with a 3 dB bandwidth of 10 kHz. 
A plot of IH(f) I  is shown in Figure 2.47. • 

1 

-4 -2 0 2 4 Figure 2.47 3 dB bandwidth of 
filter in Example 2.3.24. 
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2.4 FILTER DESIGN 

In communication systems, filters are widely used to separate desired signals from unde­
sired signals and interference. Usually, the desired signal characteristics are specified in 
the frequency domain, in terms of the desired magnitude and phase response of the filter. 
In the filter design process, we determine the coefficients of a causal filter that closely 
approximates the desired frequency response specifications. 

There are a variety of filter types, both analog and digital. We are particularly inter­
ested in the design of digital filters, because they are easily implemented in software on a 
computer. Digital filters are generally classified as having either a finite duration impulse 
response (FIR) or an infinite duration impulse response (IIR). An FIR filter is an all-zero 
filter that is characterized in the z-domain by the system function 

M-1 
H(z) = L h(k)z-k , 

k=O 

where { h (k) , 0 :::: k :::: M - 1}  is the impulse response of the filter. The frequency response 
of the filter is obtained by evaluating H (z) on the unit circle, i.e., by substituting z = ejw 
in H(z) to yield H(w) . In the discrete-time domain, the FIR filter is characterized by the 
(difference) equation 

M-I 
y(n) = L h(k)x (n - k), 

k=O 
where {x(n)} is the input sequence to the filter and y(n) is the output sequence. 

An UR filter has both poles and zeros, and it is generally characterized in the z-domain 
by the rational system function 

"'M-I b(k) -k 
H (z) = L.,k=O Z 

' 1, - L�=I a(k)z-k 

where {a (k)} and { b(k)} are the filter coefficients. The frequency response H ( w) is obtained 
by evaluating H (z) on the unit circle. In the discrete-time domain, the IIR filter is charac­
terized by the difference equation 

N M-1 
y(n) = L a (k)y(n - k) + L b(k)x(n - k)'. k=I 

In practice, FIR filters are employed in filtering problems where there is a require­
ment of a linear-phase characteristic within the passband of the filter. If there is no require­
ment for a linear-phase characteristic, either an IIR or an FIR filter may be employed. In 
general, if some phase distortion is either tolerable or unimportant, an IIR filter is prefer­
able, primarily because the implementation involves fewer coefficients and consequently 
has a lower computational complexity. In the communication systems that are considered 
in this text, phase distortion is very undesirable; hence, our focus will be on the design 
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81 - Passband ripple 
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wP - Passband-edge frequency 
ws - Stopband-edge frequency 

Stop band 

Figure 2.48 Magnitude characteristics of physically realizable filters. 
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of linear-phase FIR filters. A typical frequency-response specification for a causal digital 
filter is illustrated in Figure 2.48. 

The filter is a lowpass filter with the passband-edge frequency lP = wp/2rr., stopband­
edge frequency ls = ws/2rr., passband ripple 81 , and stopband ripple 82• The transition of 
the frequency response from passband to stopband defines the transition band of the filter. 
The width of the passband, 0 ::; l ::; l P , is usually called the bandwidth of the filter. 

Often, the graph of the frequency response of a filter has a large dynamic range, 
and to accommodate this range, it is. common practice to use a logarithmic scale for the 
magnitude IH(f) I . Consequently, the ripple in the passband is 20 log10 !��: , and the ripple 
in the stopband is 20 log10 82. 

In a filter design problem, we usually specify several filter parameters (1) the maxi­
mum tolerable passband ripple, (2) the maximum tolerable stopband ripple, (3) the 
passband-edge frequency lP , and (4) the stopband-edge frequency ls· On the basis of 
these specifications, we select the filter coefficients that are closest to the desired frequency 
response specifications. 

MATLAB provides several functions for designing digital filters based on various 
design methods. Our focus will be on the design and implementation of digital FIR filters 
(lowpass filters, Hilbert-transform filters, and differentiator filters) based on the Remez 
algorithm, which provides optimum equiripple, linear-phase FIR filters. The Remez algo­
rithm requires that we specify the length of the FIR filter, the critical frequencies l P and ls 
and the ratio 82/ 8 1 . However, it is more natural in filter design to specify lP, ls, 8i, and 82 
and to determine the filter length that satisfies the specifications. Given the specifications, 
a simple formula for approximating the filter length M is 

A -20 log 10 ( .J818i) - 13 
M =  + l  14.6.6.l ' 

where .6.l is the transition bandwidth .6.l = ls - lp· 

(2.4. 1) 
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Example 2.4.1 
Use the "remez" function to design an FIR-lowpass filter that meets the following specifica­
tions: 

Passband ripple :=:: 1 dB, 
Stopband attenuation :=: 40 dB, 
Passband-edge frequency = 0.2, 
Stopband-edge frequency = 0.35. 

1. Estimate the length of the FIR filter using Equation (2.4. 1 ). 
2. Plot the magnitude frequency response 20 log10 /H(f) / .  

Solution From the preceding data, the ripple in the passband is given by 20 log10 :�!: . This 
is equal to 1 dB, so we have 

1 + 81 1 = 20 log10 -- . 1 - 81 

Solving for 81 ,  we get 
81 = 0.0575. 

On the other hand, the attenuation in the stopband is measured with respect to the maximum 
passband gain, i.e., 1 + 81 • Therefore, we have 

82 20 log10 -- = -40. 1 + 81 

Substituting 81 = 0.0575 and solving for 82, we obtain 

82 = 0.0106. 

We can also determine the value of t:,.j to be 

C:,.f = fs - fp = 0.35 - 0.2 = 0.15 . 

Now that we know the values of 8i, 82, and C:,.f, we can use Equation (2.4. 1 ) to find the length 
of the filter M: 

A -20 log10 (� - 13 
M = 14.Mf 

+ 1 = 9.7491 . 

Therefore, we design a filter of length 10. 
The MATLAB command used pere is the reme z command, which has a syntax of the 

form 

h=remez ( M , f , m , w) 

where M is the order of the filter (note that the order of the filter is related to the length of 
the filter by M through M = M - 1) and f is a vector of frequencies (the first component is 
equal to 0 and the last component is equal to 1). The components off are in increasing order 
and specify the important frequencies, such as the end of the passband and the beginning of 
the stopband. Vector m is a vector whose size is equal to the size of vector f and contains 
the desired magnitude response of the filter corresponding to the values of f. Vector w is a 
weighting vector; in the passband, it is equal to � , and in the stopband, it is equal to 1 . In our 
example, we have 
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[0.0106 J w = 0575 ' 1 = [0. 1839 l ] . 

Using these results and calling 

>> [ h ] =remez ( M , f , m , w) 

Chapter 2 

at the MATLAB prompt returns the impulse response of the desired filter. Once we have the 
impulse response, we can use the MATLAB freqz command to determine the frequency 
response of the filter. MATLAB's complete set of commands for designing this filter are as 
follows: 

>> fp= 0 . 2 ;  

>> f s = 0 . 3 5 ;  

> >  df=f s - fp ; 

>> Rp=l ;  

> >  As=4 0 ;  

>> del tal= ( l O A ( Rp / 2 0 ) - 1 ) / ( l O A ( Rp / 2 0 ) +1 ) ; 

>> delta2 = ( l+delta1 ) * ( 1 0 A ( -As / 2 0 ) ) ;  

> >  Mhat=ceil ( ( - 2 0 * log10 ( sqrt ( deltal*delta2 ) ) - 13 } /  

( 1 4 .  6 *df ) + l ) ; 

>> f= [ O  fp fs 1 ] ; 

>> m= [ l  1 0 0 ] ; 

>> w= [ delta2 /deltal 1 ] ; 

>> h=remez ( Mhat+2 0 , f , m , w) ; 

>> [ H , W ] = f reqz ( h ,  [ l ] , 3 0 0 0 ) ; 

>> plot (W/pi , 2 0 * log1 0 ( abs ( H ) ) )  

The transfer function of the resulting filter, in decibels, is plotted in Figure 2.49. • 

Figure 2.49 Frequency response of 
0 0.2 0.4 0.6 0.8 1 the designed filter. 
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2.5 POWER AND ENERGY 

The concepts of power and energy, as well as power-type and energy-type signals, were 
defined in Section 2. 1 .2. In this section, we expand these concepts both in the time and 
frequency domains. 

The energy and power of a signal represent the energy or power delivered by the 
signal when it is interpreted as a voltage or current source feeding a 1 Q resistor. The 
energy content of a (generally complex-valued) signal x(t) is defined as 

'(gx = 1_: lx (t) l2dt, 

and the power content of a signal is 

1 +� 
Px = lim - 1 lx (t) J2dt. T->oo T T -2 

A signal is  energy-type if '(gx < oo, and it  is  power-type if 0 < Px < oo. A signal cannot 
be both power- and energy-type because Px = 0 for energy-type signals, and '(gx = oo for 
power-type signals. A signal can be neither energy-type nor power-type. An example of 
such a signal is given in Problem 2.10. However, most of the signals of interest are either 
energy-type or power-type. Practically, all periodic signals are power-type and have power 

1 1a+To 
Px = - lx (t) J2dt, To a 

where To is the period and a is any arbitrary real number. 

2.5.1 Energy-Type Signals 

For an energy-type signal x (t), we define the autocorrelation function 

Rx (r) = x(r) * X* (-r) 

= 1_: x (t)x* (t - r) dt 

= 100 x (t + r)x* (t) dt. 
-.po 

(2.5 .1) 

By setting r = 0 in the definition of the autocorrelation function of x(t), we obtain its 
energy content, i.e., 

' 

'(gx = 1_: Jx (t) l2dt 

= Rx(O) . (2.5.2) 

Using the auto,correlation property of the Fourier transform (see Section 2.3.2), we derive 
the Fourier transform of Rx (r) to be IX (f) l2 . Using this result, or employing Rayleigh's 
theorem, we have-
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�x = 1_: lx (t) l2dt 

= 1_: IX (f) l2df. 

Chapter 2 

(2.5.3) 

If we pass the signal x (t) through a filter with the (generally complex) impulse response 
h(t) and frequency response H(f), the output will be y(t) = x(t) * h(t) and in the fre­
quency domain Y (f) = X (f) H (f). To find the energy content of the output signal y ( t), 
we have 

�y = 1_: l y(t) l2dt 

= 1_: I Y<f) l2df 

= 1_: IX (f) l2 IH(f) l2df 

= Ry (O), (2.5.4) 

where Ry(r) = y(r) * y* (-r) is the autocorrelation function of the output. The inverse 
Fourier transform of I Y (f) 12 is 

Ry(r) = fFI [ IY (f) l2] 

= fFI [IX (f) l2 IH(f) l2] 

� 9'-I [ IX (f) l2] * 9'-I [ IH(f) l2] 

(2.5.5) 

where (a) follows from the convolution property and (b) follows from the autocorrelation 
property. Now let us assume that 

Then 

and 

1 1  W < f  < W + �W H(f) = . 0 otherwise 

I Y (f) l2 = 101x<J) l2 w < f < w + �w 
otherwise 

�Y = 1_: I Y (f) l2df 

� IX(W) l2�W. (2.5.6) 
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This filter passes the frequency components in a small interval around f = W, and rejects 
all the other components. Therefore, the output energy represents the amount energy located 
in the vicinity of f = W in the input signal. This means that IX (W) 1 2 AW is the amount 
of energy in x(t), which is located in the bandwidth [W, W + AW]. Thus, 

2 Energy in [W, W + AW] bandwidth 
IX (W) I = AW 

. 

This shows why IX (f) l2 is called the energy spectral density of a signal x (t) , and why 
it represents the amount of energy per unit bandwidth present in the signal at various fre­
quencies. Hence, we define the energy spectral density (or energy spectrum) of the signal 
x (t) as 

Wx (f) = IX (f) l2 

= 9'[Rx (r)]. (2.5.7) 

To summarize, 

1. For any energy-type signal x (t), we define the autocorrelation function Rx (r) = 
x(r) * x*(-r). 

2. The energy spectral density of x (t), denoted by Wx (f), is the Fourier transform of 
Rx(r). It is equal to IX (f) l2 • 

3. The energy content of x(t), 'i8x , is the value of the autocorrelation function evalu­
ated at r = 0 or, equivalently, the integral of the energy spectral density over all 
frequencies, i.e., 

'i8x = Rx (O) 

= 1_: <fJx (f) df. (2.5.8) 

4. If x(t) is passed through a filter with the impulse response h(t) and the output is 
denoted by y(t), we have 

Example 2.5.1 

y(t) = x(t) * h (t) 
Ry (r) = Rx (r) * Rh(r) 

Wy (f) = WxCf) Wh (f) = IX(f) l2 1H(f) l2 . 

Determine the autocorrelation function, energy spectral density, and energy content of the 
signal x(t) = e-ar u_1 (t), a > 0. 

Solution First we find the Fourier transform of x(t). From Table 2. 1 , we have 

Hence, 

1 X(f) = a + j2rtj " 

2 1 Wx (f) = IX (f) I = az + (2rtf)2 
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and 

To find the energy content, we can simply find the value of the autocorrelation function at 
zero: 

1 'i8x = Rx (O) = - .  2a • 

Example 2.5.2 
If the signal in the preceding example is passed through a filter with impulse response h(t) = 
e-Pt u_1 (t), f3 > 0, f3 =!= a, determine the autocorrelation function, the power spectral density, 
and the energy content of the signal at the output. 

Solution The frequency response of the filter is 

Therefore, 

1 
H(f) = f3 + j2rtf

. 

1 [ 1 1 J = f32 - a2 a2 + 4rc2 J2 - /32 + 4rc2 J2 . 

Note that in the last step we used partial fraction expansion. From this result, and using 
Table 2. 1 ,  we obtain 

and 

2af3(a + /3) 
• 

2.5.2 Power-Type Signals 

For the class of power-type signals, a similar development is possible. In this case, we 
define the time-average autocorrelation function of the power-type signal x(t) as 

1 1+-t Rx (r) = lim - x(t)x*(t - r) dt. 
T-'>00 T T 

-2 
(2.5.9) 
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Obviously, the power content of the signal can be obtained from 

1 +t Px = lim - 1 lx (t) l1dt T-+oo T T -2 
= Rx (O). 

93 

(2.5.10) 

We define Sx<J), the power-spectral density or the power spectrum of the signal x (t), to 
be the Fourier transform of the time-average autocorrelation function: 

(2.5 . 1 1 ) 

Subsequently, we will justify this definition. Now we can express the power content 
of the signal x(t) in terms of Sx(f) by noting that Rx (O) = J�00 Sx(f)ej1nfrdflr=O = 
f�oo Sx<J) df, i.e., 

Px = Rx (O) 

= 1_: Sx <J) df. (2.5. 12) 

If a power-type signal x(t) is passed through a filter with impulse response h(t), the 
output is 

y(t) = 1_: x(r)h(t - r)dr 

and the time-average autocorrelation function for the output signal is 

1 1+f Ry(r) = lim - y(t)y*(t - r) dt. T-+oo T _I. 
2 -

Substituting for y(t), we obtain 

Ry(r) = f�� � 1_:f [/_: h(u)x(t - u) du J [/_: h* (v)x* (t - r - v) dv J dt. 
2 ' 

By mal<ing a change of variables w = t - u and changing the order of integration, we 
obtain 

Ry(r) = 1_:1_: h(u)h* (v) 

1 f+u 
x lim - 1 [x (w)x*(u + w - r - v) dw] du dv T-+oo T -f-u 

� 1_:1_: Rx (r + v - u)h(u)h*(v) du dv 

,g, 1_: [Rx (r + v) * h(r + v)] h*(v) dv 

� Rx (r) * h(r) * h*(-r), (2.5. 13) 
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where (a) uses the definition of Rx , given in Equation (2.5.9), and (b) and (c) use the 
definition of the convolution integral. Taking the Fourier transform of both sides of this 
equation, we obtain 

Sy(f) = Sx(f)H(f)H*(f) 
= Sx(f) IH(f) l2 . (2.5. 14) 

This relation between the input-output power-spectral densities is the same as the relation 
between the energy-spectral densities at the input and the output of a filter. Now we can 
use the same arguments used for the case of energy-spectral density; i.e., we can employ an 
ideal filter with a very small bandwidth, pass the signal through the filter, and interpret the 
power at the output of this filter as the power content of the input signal in the passband of 
the filter. Thus, we conclude that Sx (f), as just defined, represents the amount of power at 
various frequencies. This justifies the definition of the power-spectral density as the Fourier 
transform of the time-average autocorrelation function. 

We have already seen that periodic signals are power-type signals. For periodic sig­
nals, the time-average autocorrelation function and the power-spectral density simplify 
considerably. Let us assume that the signal x(t) is a periodic signal with the period To and 
has the Fourier-series coefficients { Xn} . To find the time-average autocorrelation function, 
we have 

1 +f Rx (r) = lim - 1 x(t)x*(t - r) dt 
T-+oo T _ I.  

2 

1 l+k;o = lim. - x(t)x*(t - r) dt 
k-+oo kTo - �  

2 

k l+!f = lim - x(t)x* (t - r) dt 
k-+oo kTo - � 

2 

1 l+!f = - x(t)x*(t - r) dt. To - � 
2 

(2.5. 15) 

This relation gives the time-average autocorrelation function for a periodic signal. If we 
substitute the Fourier-series expansion of the periodic signal in this relation, we obtain 

Now, using the fact that 

To 
1 1+-z ·z n-m 
- e1 "101 dt = 8mn • To -f 

(2.5. 16) 
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we obtain 

Hilbert Transform and Its Properties 

00 

R ( ) " I 1 2 j2:n:f.-r x r = � Xn e o . 
n=-oo 

95 

(2.°5. 17) 

From this relation, we see that the time-average autocorrelation function of a periodic 
signal is itself periodic; it has the same period as the original signal, and its Fourier­
series coefficients are magnitude squares of the Fourier-series coefficients of the original 
signal. 

To determine the power-spectral density of a periodic signal, we can simply find the 
Fourier transform of Rx (r). Since we are dealing with a periodic function, the Fourier 
transform consists of impulses in the frequency domain. We expect this result, because a 
periodic signal consists of a sum of sinusoidal (or exponential) signals; therefore, the power 
is concentrated at discrete frequencies (the harmonics). Thus, the power spectral density of 
a periodic signal is given by 

(2.5. 18) 

To find the power content of a periodic signal, we must integrate this relation over the 
whole frequency spectrum. When we do this, we obtain 

n=-oo 

This is the same relation we obtained in Section 2.2.3. If this periodic signal passes through 
an LTI system with the frequency response H (/), the output will be periodic and the power 
spectral density of the output can be obtained by employing the relation between the power 
spectral densities of the input and the output of a filter. Thus, 

Sy (/) =  I H(/) 12 
f 

lxn l28 (1 - ;J 
r n=-00 

(2.5. 19) 

and the power content of the output signal is 

2.6 HILBERT TRANSFORM AND ITS PROPERTIES 

In this section, we will introduce the Hilbert transform of a signal and explore some of 
its properties. The Hilbert transform is unlike many other transforms because it does not 
involve a change of domain. In contrast, Fourier, Laplace, and z-transforms start from 
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the time-domain representation of a signal and introduce the transform as an equivalent 
frequency-domain (or more precisely, transform-domain) representation of the signal. The 
resulting two signals are equivalent representations of the same signal in terms of two 
different arguments, time and frequency. Strictly speaking, the Hilbert transform is not 
a transform in this sense. First, the result of a Hilbert transform is not equivalent to the 
original signal, rather it is a completely different signal. Second, the Hilbert transform 
does not involve a domain change, i.e., the Hilbert transform of a signal x (t) is another 
signal denoted by x (t) in the same domain (i.e., time domain with the same argument t). 

The Hilbert transform of a signal x (t) is a signal x(t) whose frequency compo­
nents lag the frequency components of x(t) by 90°. In other words, x(t) has exactly 
the same frequency components present in x (t) with the same amplitude-except there 
is a 90° phase delay. For instance, the Hilbert transform of x(t) = A cos(2nfot + 8) is 
A cos(2nf0t + 8 - 90°) = A sin(2nf0t + 8). 

A delay of ¥ at all frequencies means that ej2rcfot will become ej2rcfot-¥ = -j ej2rcfot 
and e-j2rcfot will become e-j(2rcfot-¥l = je-j2rcfot . In other words, at positive frequencies, 
the spectrum of the signal is multiplied by -j ;  at negative frequencies, it is multiplied by 
+ j .  This is equivalent to saying that the spectrum (Fourier transform) of the signal is mul­
tiplied by -j sgn(f). In this section, we assume that x (t) is real and has no DC component, 
i.e., X(f) lt=o = 0. 

Therefore, 

Using Table 2. 1 ,  we have 

Hence, 

§ [x (t)] = -jsgn(f)X(f) . 

1 
§ [-jsgn(f)] = - . nt 

A 1 1 100 x (r) x(t) = - *X (t) = - -- dr. nt n -oo t - r 

(2.6 .1)  

(2.6.2) 

Thus, the operation of the Hilbert transform is equivalent to a convolution, i.e., fil­
tering. 

Example 2.6.1 
Determine the Hilbert transform of the signal x (t) = 2sinc (2t). 

Solution We use the frequency-domain approach to solve this problem. Using the scaling 
property of the Fourier transform, we have 

§ [x(t)] = 2 x  �n (f) = n (f) = n (1 + D + n (1 - D · 
In this expression, the first term contains all the negative frequencies and the second term 
contains all the positive frequencies. 

To obtain the frequency-domain representation of the Hilbert transform of x (t), we use 
the relation §[x(t)] = -jsgn(f)§ [x(t)], which results in 

§ [x(t)l = jn (1 + D - jn (1 - D . 
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Taking the inverse Fourier transform, we. have 

x (t) = je-j'"sinc(t) - jej"' sinc(t) 

= -j (ej"' - e-j"') sinc(t) 

= -j x 2j sin(nt)sinc(t) 

= 2 sin(nt) sinc(t). 
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Obviously performing the Hilbert transform on a signal is equivalent to a 90° phase 
shift in all its frequency components. Therefore, the only change that the Hilbert transform 
performs on a signal is changing its phase. Most important, the amplitude of the frequency 
components of the signal, and, therefore the energy and power of the signal, do not change 
by performing the Hilbert-transform operation. On the other hand, since performing the 
Hilbert transform changes cosines into sines, it is not surprising that the Hilbert transform 
x(t) of a signal x(t) is orthogonal to x(t).1 Also, since the Hilbert transform introduces 
a 90° phase shift, carrying it out twice causes a 1 80° phase shift, which can cause a sign 
reversal of the original signal. These are some of the most important properties of the 
Hilbert transform. In all the following results, we assume that X (f) does not have any 
impulses at zero frequency. 

Evenness and Oddness. The Hilbert transform of an even signal is odd, and the 
Hilbert transform of an odd signal is even. 

Proof If x(t) is even, then X (f) is a real and even function; therefore, 
-j sgn(f)X (f) is an imaginary and odd function. Hence, its inverse Fourier transform 
x (t) will be odd. If x(t) is odd, then X (f) is imaginary and odd; thus -j sgn(f)X(f) is 
real and even. Therefore, x (t) is even. 

Sign Reversal. Applying the Hilbert-transform operation to a signal twice causes 
a sign reversal of the signal, i.e., 

i(t) = -x(t). (2.6.3) 
Proof Since 

.Y7[i(t)] = [-jsgn(f)]2X (f) , (2.6.4) 

it follows that 
-Y7[i (t)] = -X(f) , (2.6.5) 

where X (f) does not contain any impulses at the origin. 

Energy. The energy content of a signal is equal to the energy content of its Hilbert 
transform. 

Proof Using Rayleigh's theorem of the Fourier transform, we have 

(2.6.6) 

7 x(t) and y(t) are orthogonal if r�: x(t)y*(t) dt = 0. 
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and 
�x = 1_: lx (t) l2dt = 1_: I -jsgn(f)X(f) l2df. (2.6.7) 

Using the fact that I -jsgn(f) l2 = 1 except for f = 0, and the fact that X (f) does not 
contain any impulses at the origin completes the proof. 

Orthogonality. The signal x(t) and its Hilbert transform are orthogonal. 
Proof. Using Parseval's theorem of the Fourier transform, we obtain 

1_: x(t)x(t) dt = 1_: X(f)[-jsgn(f)X(f)]*df 

ro r+oo = -j Loo IX (f) l2d/ + j Jo IX (f) l2d/ 

= 0, (2.6.8) 

where, in the last step, we have used the fact that X (f) is Hermitian; therefore, IX(f) l2 

is even. 

2.7 LOWPASS AND BANDPASS SIGNALS 

A lowpass signal is a signal in which the spectrum (frequency content) of the signal is 
located around the zero frequency. A bandpass signal is a signal with a spectrum far from 
the zero frequency. The frequency spectrum of a bandpass signal is usually located around 
a frequency fc, which is much higher than the bandwidth of the signal (recall that the 
bandwidth of a signal is the set of the range of all positive frequencies present in the signal). 
Therefore, the bandwidth of the bandpass signal is usually much less than the frequency 
fc, which is close to the location of the frequency content. 

The extreme case of a bandpass signal is a single frequency signal whose frequency 
is equal to fc· The bandwidth of this signal is zero, and generally, it can be written as 

x (t) = A  cos(2nfct + fJ) .  

This is a sinusoidal signal that can be represented by a phasor 

xz = Aej8 . 

Note that A is assumed to be positive and the range of fJ is -Jt to n, as shown in Figure 2.50. 

Im 

Re Figure 2.50 Phasor corresponding to a sinusoid signal. 
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The phasor has a magnitude of A and a phase of e .  If this phasor rotates coun­
terclockwise with an angular velocity of We = 2nfe (equivalent to multiplying it by 
ei2nfc1), the result would be Aei<Znfct+IJ) . Its projection on the real axis (its real part) is 
x (t) = A cos(2nfet + B).  

We can expand the signal x(t) as 

x(t) = A  cos(2nfet + B) 

= A  cos(B) cos(2nfet) - A sin(B) sin(2nfet) 

= Xe COS(2nfet) - Xs sin(2rtfet) . 

(2.7.1) 

(2.7.2) 

(2.7.3) 

From our previous discussion, we can see that this single-frequency signal has two compo­
nents. The first component is Xe = A  cos(B), which is in the direction of cos(2nfet). This 
is called the in-phase component. The other component is Xs = A sin(B),  which is in the 
direction of - sin(2nfet). This is called the quadrature component. Note that we can also 
write 

X/ = Aej!J = Xe +  jx8 • (2.7.4) 

Now assume that instead of the phasor shown in Figure 2.50, we have a phasor with 
slowly varying magnitude and phase. This is represented by 

x1 (t) = A(t)ej!J(t) , (2.7.5) 

where A (t) and B (t) are slowly varying signals (compared to fe). In this case, similar to 
Equation (2.7.3), we have 

x (t) = Re [ A(t)ej(Znfct+IJ(t))] 
= A (t) cos(B(t)) cos(2nfet) - A sin(B(t)) sin(2nfet) 

= Xe(t) cos(2nfet) - X8 (t) sin(2nfet) .  

(2.7.6) 

(2.7.7) 

(2.7.8) 

Unlike the single frequency signal previously studied, this signal contains a range of fre­
quencies; therefore, its bandwidth is not zero. However, since the amplitude (also called the 
envelope) and the phase are slowly varying, this signal's frequency components constitute 
a small bandwidth around fe . The spectrum of the bandpass signal is shown in Figure 2.5 1 .  

In this case, the in-phase and quadrature components are 

-Jc - W -Jc -Jc + W 

Xe(t) = A(t) cos(B(t)) 

X8 (t) = A(t) sin(B (t)) 

Figure 2.51 Spectrum of the bandpass signal. 

f 

(2.7.9) 

(2.7.10) 
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and we have 
x(t) = Xc(t) cos(2n/ct) - Xs (t) sin(2nfct) . (2.7. 1 1) 

Note that both the in-phase and quadrature components of a bandpass signal are slowly 
varying signals; therefore, they are both lowpass signals. 

Equation (2.7. 1 1) is a very useful relation; it basically says that a bandpass signal 
can be represented in terms of two lowpass signals, namely, its in-phase and quadrature 
components. 

In this case, the complex lowpass signal 

Xz(t) = Xc(t) + }xs (t) (2.7. 12) 
is called the lowpass equivalent of the bandpass signal x(t). If we represent x1(t) in polar 
coordinates, we have 

J j arctan xs(t) Xz (t) = x�(t) + x}(t)e xc(tl . 

Now if we define the envelope and the phase of the bandpass signal as 

we can express xz(t) as 

{ lx1(t) I = A(t) = Jx�(t) + x}(t) 
Xs (t) Lx1(t) = 8 (t) = arctan -- ,  Xc(t) 

xz(t) = A(t)eje(t) . 

Using Equations (2. 7 . 14) and (2. 7 . 1 1  ), we have 

x (t) = Re [x1(t)ej2rrfct] 

= Re [ A(t)ej2rrfct+O(t)] 
= A(t) cos(2n/ct + 8 (t)) . 

(2.7. 13) 

(2.7.14) 

(2.7 . 15) 

(2.7. 16) 
(2.7. 17) 

Equations (2.7. 17) and (2.7 . 1 1) represent two methods for expressing a bandpass 
signal in terms of two lowpass signals. We can express the signal in terms of the in-phase 
and quadrature components or in terms of the envelope and phase of the bandpass signal. 

2.8 SUMMARY AND FURTHER READING 

This chapter provided a review of basic representation and classification of signals and the 
analysis of linear systems. Our treatment included the Fourier series representation of peri­
odic signals and the response of linear time-invariant (LTI) systems to periodic signals. Our 
treatment also included the Fourier transform, its properties, and its use in the frequency 
domain characterization of signals and LTI systems. Additional topics treated were the 
representation of lowpass and bandpass signals, power-type and energy-type signals, the 
design of digital filters using MATLAB, and the Hilbert transform and its properties. The 
Hilbert transform plays an important role in the modulation and demodulation of analog 
and digital signals. 
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Problems 101 

Numerous references cover the analysis of LTI systems in both the time and fre­
quency domains. The book by Oppenheim, Willsky, and Young (1983) contains wide cov­
erage of time- and frequency-domain analysis of both discrete-time and continuous-time 
systems. Papoulis (1962) and Bracewell ( 1965) provide in-depth analysis of the Fourier 
series and transform techniques. The book by Ingle and Proakis (2012) covers design tech­
niques for digital filters using MATLAB. 

PROBLEMS 

2.1 Plot the following signals: 

1. X1 (t) = I1 (2t + 5) 

2. x1(t) = L;:o A(t - n) 

3. x3 (t) = sgn(2t) - sgn(t) 

4. x4(t) = sinc( lOt) 

2.2 Plot the discrete version of the given signals. Assume they are sampled at multiples 
of To, i.e., x [n] = x(nTo).  

. 1 
1. x(t) = smc(3t) and To = 9 

(2t - 1) 1 
2. x(t) = TI -

3
- and To = 8 

1 
3. x(t) = tu_1  (t) - (t - l )u-1 (t - 1) and To = 4 

2.3 Two signals, x 1 (t) = 1 and x2(t) = cos 2nt, are sampled at t = 0 ±  1 ,  ±2, . . . .  The 
resulting discrete-time signals are denoted by x1 [n] and x2[n]. Verify that x1 [n] = 
x1[n]. What can you conclude from this observation? 

2.4 Show that the sum of two discrete periodic signals is periodic, whereas the sum of 
two continuous periodic signals is not necessarily periodic. Under what condition is 
the sum of two continuous periodic signals periodic? 

2.5 Determine whether the given signals are periodic. For periodic signals, determine the 
period. 

1. sin(4000nt) + cos( l 1 ,000nt) 

2. sin(4000nt) + cos(1 1 ,000t) 

3. sin(4000nn) + cos(l 1 ,000nn) 

4. sin(4000nn) + cos(1 1 ,000n) 

2.6 Classify the signals that follow into even signals, odd signals, and signals that are 
neither even nor odd. In the latter case, find the even and odd parts of the signals. 
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l. x1 (t) = {-::t : : �  
0 t = 0 

2. X2(t) = COS ( 120Jtt + �) 
3. X3(t) = e-ltl 

4. X4(t) = -{ t t > 0 
0 t < 0 

Signals and Linear Systems 

5. x5(t) = x1 (t) - x2(t), where x1 (t) is even and x2(t) is odd 

Chapter 2 

2.7 Classify these signals into energy-type signals, power-type signals, and signals that 
are neither energy-type nor power-type signals. For energy-type and power-type sig­
nals, find the energy or the power content of the signal. 

1. x1 (t) = (e-1 cos t) u-1 (t) 
2. X2(t) = e-t COS t 
3. x3(t) = sgn(t) 

4. x4(t) = A  cos 2nf1 t  + B cos 2nf2t 

2.8 Classify these signals into periodic and nonperiodic: 

"00 ( t - 4n) "00 
1. x1 (t) = 2 Lm=-oo A -2- - Lm=-oo A(t - 4n) 

2. x2(t) = sin t + sin 2nt 

3. x3[n] = sin n 

2.9 Using the definition of power-type and energy-type signals, 

1. Show that x(t) = Aej<21tfot+&) is a power-type signal and its power content 
is A2• 

A1 
2. Show that x(t) = A cos(2nf0t + 8) is power type and its power is 2. 
3. Show that the unit-step signal u_1 (t) is a power-type signal and find its power 

content. 

4. Show that the signal 

t > O  

t :::; 0 

is neither an energy-type nor a power-type signal. 

2.10 Find the even and odd parts of the signal x(t) = A(t)u_1 (t) .  
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2.11 Using the definition of even and odd signals, 

1. Show that the decomposition of a signal into even and odd parts is unique. 

2. Show that the product of two even or two odd signals is even, whereas the prod­
uct of an even and an odd signal is odd. 

3. Try to find an example of two signals that are neither even nor odd, but have an 
even product. 

2.12 Plot the following signals: 

1. X1 (t) = Il(t) + Il(-t) 

2. Xz(t) = A(t)Il(t) 

3. X3(t) = 2=:::_00 A(t - 2n) 

4. x4(t) = sgn(t) + sgn(l  - t) 

5. xs(t) = sinc(t) sgn(t) 

2.13 By using the properties of the impulse function, find the values of these expressions: 

1. x1 (t) = sinc(t) 8 (t) 

2. xz(t) = sinc(t) 8(t - 3) 

3. X3(t) = A(t) * 2=:::_00 8(t - 2n) 

4. X4(t) = A(t) * 8' (t) 

5. X5(t) = COS ( 2t + �) 8(3t) 

6. X6(t) = 8 (5t) * 8 (4t) 

7. J::"00 sinc(t) 8(t) dt 

8. J::"00 sinc(t + 1) 8 (t) dt , 
2.14 Show that the impulse signal is even. What can you say about evenness or oddness 

of its nth derivative? 

2.15 We have seen that x (t) * 8(t) = x (t). Show that 

and 

x(t) * U-1 (t) = [
00 

x(r) dr. 

2.16 Classify these systems into linear and nonlinear: 

1. y(t) = 2x(t) - 3 

2. y(t) = lx(t) I 
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3. y(t) = 0 

4. y(t) = 2x(t) 

S. (t) = { l x(t) > O  y 
0 x(t) _::: 0 

6. y(t) = e-1x(t) 
7. y(t) = x(t)U-1 (t) 
8. y(t) = x(t) + y(t - 1) 

Signals and Linear Systems 

9. y(t) = Algebraic sum of jumps in x(t) in the interval [-oo, t] 

Chapter 2 

2.17 Prove that a system is linear if and only if 

1. It is homogeneous, i.e., for all input signals x (t) and all real numbers a, we have 
5[ax(t)] = a.9T [x(t)] . 

2. It is additive, i.e., for all input signals x1 (t) and x2(t) , we have 

In other words, show that the two definitions of linear systems given by Equations 
(2. 1 .39) and (2. 1 .40) are equivalent. 

2.18 Verify whether any (or both) of the conditions described in Problem 2. 17 are satisfied 
by the systems given in Problem 2. 16. 

2.19 Prove that if a system satisfies the additivity property described in Problem 2.17, then 
it is homogeneous for all rational a. 

2.20 Show that the system described by { x2(t) 
y(t) = ;'(t) x' (t) =I- 0 

x'(t) = 0 

is homogeneous but nonlinear. Can you give another example of such a system? 

2.21 Show that the response of a linear system to the input which is identically zero is an 
output which is identically zero. 

2.22 The system defined by the input-output relation 

y(t) = x(t) cos(2nfot) , 

where Jo is a constant, is called a modulator. Is this system linear? Is it time 
invariant? 
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2.23 Are these statements true or false? Why? 

1. A system whose components are nonlinear is necessarily nonlinear. 

2. A system whose components are time variant is necessarily a time-variant 
system. 

3. The response of a causal system to a causal signal is itself causal. 

2.24 Determine whether the following systems are time variant or time invariant: 

1. y(t) = 2x(t) + 3 

2. y(t) = (t + 2)x(t) 

3. y(t) = x(-t) 

4. y(t) = x(t)u_1 (t) 

5. y(t) = J�00x(r) dr 
6. y(t) = x(t) + y(t - 1) 

2.25 Prove that if the response of an LTI system to x(t) is y(t), then the response of this 
system to 1tx(t) is 1ty(t). 

2.26 Prove that if the response of an LTI system to x(t) is y(t), then the response of this 
system to t00 x(r) dr is t00 y(r) dr. 

2.27 The response of an LTI system to the input x(t) = e-aru_1 (t) is 8 (t). Using time­
domain analysis and the result of Problem 2.25, determine the impulse response of 
this system. What is the response of the system to a general input x ( t)? 

2.28 Let a system be defined by 

Is this system causal? 

1 [t+T 
y(t) = - x(r) dr. 

. 2T t-T 
2.29 For an LTI system to be -causal, it is required that h(t) be zero for t < 0. Give an 

example of a nonlinear system which is causal, but its impulse response is nonzero 
for t < 0. 

2.30 Determine whether the impulse response of these LTI systems is causal: 

1. h(t) = sinc(t) (t - 3) 
2. h(t) = n -6-

2.31 Using the convolution integral, show that the response of an LTI system to u_1 (t) is 
given by J�00 h(r) dr. 
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2.32 What is the impulse response of a differentiator? Find the output of this system to an 
arbitrary input x (t) by finding the convolution of the input and the impulse response. 
Repeat for the delay system. 

2.33 The system defined by 

y(t) = f 1 x (r) dr. t-T 
(T is a constant) is a finite-time integrator. Is this system LTI? Find the impulse 
response of this system. 

2.34 Compute the following convolution integrals: 

1. e-1 u_1 (t) * e-1 u_1 (t) 
2. IT (t) * A(t) 

· 2.35 Show that in a causal LTI system, the convolution integral reduces to 

1+00 ft y(t) = x(t - r)h(r) dr = x(r)h(t - r) dr. 
0 -00 

2.36 Show that the set of signals 1/fn(t) = /*ej2rcTr/ constitutes an orthonormal set of 
signals on the interval [a, a +  To] , where a is arbitrary. 

2.37 In this problem, we present the proof of the Cauchy-Schwartz inequality. 

1. Show that for nonnegative {a; }/=1 and {/3; }/=1 ' 

What are the conditions for equality? 

2. Let {x; }/=1 and {y; }/=1 be complex numbers. Show that 

What are the conditions for equality? 

3. From (1) and (2), conclude that 

What are the conditions for equality? 
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4. Generalize the preceding results to integrals and prove the Cauchy-Schwartz 
inequality 

I I 

/ 1_: x(t)y
*
(t) dt / ::: [i: lx(t) l2 dtr [i: l y (t) l2 dtr 

What are the conditions for equality? 

2.38 Let {</>; (t) }f::1 be an orthogonal set of N signals, i.e., 

</>; (t)</>j(t) dt = � � 100 { I · =I= · 

0 0 l = J 
I :S i, j :S N, 

and letx (t) be an arbitrary signal. Letx (t) = 'L�
1 a;</J; (t) be a linear approximation 

of x (t) in terms of {</>; (t) }f::1 • Find a; 's such that 

is minimized. 

1. Show that the minimizing a; 's satisfy 

a; = 1_: x(t)</>!(t) dt. 

2. Show that with the preceding choice of a; 's, we have 

E�n = 1_: lx (t) l2 dt -t, la; 12 . 
2.39 Determine the Fourier-series expansion of the following signals: 

1. x(t) = cos(2nt) + cos(4nt) , 
2. x(t) = cos(2nt) - cos(4nt + n/3) 
3. x(t) = 2cos(2nt) - sin(4nt) 
4. x(t) = 'L::°

=-oo A(t - 2n) 
5. x (t) = I::,_00 A(t - n)u-1 (t - n) 
6. x(t) = I cos 2nfot l (full-wave rectifier output) 

2.40 Show that for a real, periodic x(t), the even and odd parts are given by 

Xe(t) = � + f
an cos (21t ;/) ; 

n=I 
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2.41 Let Xn and Yn represent the Fourier-series coefficients of x(t) and y(t), respectively. 
Assuming the period of x(t) is T0, express Yn in terms of Xn in each of the following 
cases: 

1. y(t) = x(t - to) 
2. y(t) = x(t)ePn:fot 
3. y(t) = x (at), a =F 0 

2.42 Let x (t) and y(t) be two periodic signals with the period To, and let Xn and Yn denote 
the Fourier-series coefficients of these two signals. Show that 

1 1a+To oo 

T, x(t)y* (t) dt = L Xny; . 0 a n=-oo 

2.43 Determine the Fourier-series expansion of each of the periodic signals shown in 
Figure P-2.43. For each signal, also determine the trigonometric Fourier series. 

- T  

T -2 

Figure P-2.43 

x (t) 

e-}J I I 
I I 
I I 

T 2T 
(a) 

x(t) 

2 

- .1 

T T T 
4 4 2 

(c) 

x(t) 

x(t) 

(b) 

x(t) 

(d) 

x(t) 

2 

T 2T T 
3 3 

2T T T 2T -3 -3 3 3 
(e) (f) 
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2.44 Determine the output of each LTI system when the signals in Problem 2.43 are the 
inputs: 

1. H(f) = lOTI ( �) 
2. { -j 0 < 1 ::::: 4 

H (f) = j -4 ::::; I < 0 

0 otherwise 

2.45 Show that for all periodic physical signals that have finite power, the coefficients of 
the Fourier-series expansion Xn tend to zero as n ---+ ±oo. 

2.46 Determine the Fourier transform of each of the following signals: 

i. x(t) = 1L2 
2. TI (t - 3) + TI (t + 3) 
3. 4TI (i) cos(2nlot) 
4. t sinct 
5. t cos 2nlot 

2.47 The Fourier transform of a signal is shown in Figure P-2.47. Determine and 
sketch the Fourier transform of the signal x1 (t) = -x(t) + x(t) cos(2000nt) + 
2x(t) cos2 (3000nt). 

X(f) 

4 

-500 500 f 

Figure P-2.47 

2.48 Show that the Fourier transform of �8 (t + D + �8 (t - �) is cos(nf) .  Prove the 
following transform pairs: 

3'" [cos(nt)] = �8 (1 + �) + �8 (1 - �) 
and 

§[sin(nt)] = �8 (1 + �) - �8 (1 - �) .  
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2.49 Determine the Fourier transform of the signals shown in Figure P-2.49. 

x
(t) x

(t) 

- - - - - -_2 _ _ _ _ _  

1 

-2 2 -2 -1 1 2 
(a) (b) 

x
(t) x

(t) 

1 
2 

(c
) 

(d) 

x
(t) x

(t) 

sin 
(2n

f
0t) 

1 

-2 -1 1 2 1 1 (
e
) -2

f
o (f) 2

f
o Figure P-2.49 

2.50 Use the convolution theorem to show that 

sinc(t) * sinc(t) = sinc(t) .  

2.51 Prove that convolution in the frequency domain is  equivalent to multiplication in the 
time domain. That is, 

§[x(t)y(t)] = X(f) * Y(f) . 

2.52 Let x(t) be an arbitrary signal and define x1 (t) = .L::-oo x(t - nTo). 

1. Show that x1 (t) is a periodic signal. 

2. How can you write x1 (t) in terms of x(t) and .L::-oo o (t - nTo)? 
3. Find the Fourier transform of x 1 ( t) in terms of the Fourier transform of x ( t). 

2.53 Using the properties of the Fourier transform, evaluate the following integrals (a is 
positive): 

1. J�00 sinc\t) dt 
2. J0

00 
e-"'1sinc(t) dt 

3. ft e-at cos(f3t) dt 
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2.54 An LTI system with impulse response h(t) e-ar u_1 (t) is driven by the input 
x (t) = e-f3ru_1 (t). Assume that a, f3 > 0. Using frequency-domain analysis, find 
the output of the system. Is the output power type or energy type? Find its power or 
energy. 

2.55 Let x(t) be periodic with period To, and let 0 ::;  a < T0. Define {x (t) a ::; t < a + To Xa(t) = . 0 otherwise 

and let XaCf) denote the Fourier transform of Xa (t) .  Prove that for all n, Xa(#c;) is 
independent of the choice of a. 

2.56 Using the identity 
00 00 "'\"' l "'\"' jn 2nr � o(t - nTs) = T. � e Ts , n=-oo s n=-oo 

show that for any signal x(t) and any Ts, the following identity holds 

00 l 00 ( n ) ·n 2nr 
n�oo 

x(t - nT,) = I's 
n�oo 

X Ts el TS ,  

From this, derive the following relation known as Poisson 's sumformula: 

L x(nT,) = - L X !!:_ . 
oo 1 00 ( )  

n=-oo Ts n=-oo Ts 

2.57 Using the Poisson's sum formula discussed in Problem 2.56, show that 

1 "00 2a - "00 e-alnl 
• L...,n=-oo a2+4rr2n2 - L...,n=-oo 

2. I::-oo sine(� ) = K for all K E  { 1 ,  2, . . .  } 

3. I::-oo sinc2 ( �) = K for all K E { 1 ,  2, . . .  } .  

2.58 The response of  an LTI system to e-ar u_1 (t), where (a > 0), is o (t) . Using 
frequency-domain analysis techniques, find the response of the system to x (t) 
e-at cos(f3t)u_1 (t) .  

2.59 Find the output of an LTI system with impulse response h(t) when driven by the 
input x (t) in each of the following cases: 

1. h_(t) = sinc(t) x (t) = sinc(t) 

2. h (t) = o (t) + o'(t) x (t) = e-altl , (a > 0) 

3. h (t) = e-"1u_1 (t) x (t) = e-f3tu_1 (t) , (a, f3 > 0) 
(treat the special case a = f3 separately) 
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2.60 Can the response of an LTI system to x(t) = sinc(t) be y(t) = sinc\t)? Justify your 
answer. 

2.61 Let the response of an LTI system to CT(t) be A(t). 

1. Can you find the response of this system to x(t) = cos 2nt from the preceding 
information? 

2. Show that h1 (t) = CT(t) and h2(t) = CT(t) + cos 2nt can both be impulse 
responses of this system, and therefore having the response of a system to CT(t) 
does not uniquely determine the system. 

3. Does the response of an LTI system to u_1 (t) uniquely determine the system? 
Does the response to e-atu_1 (t) for some a > O? In general, what conditions 
must the input x(t) satisfy so that the system can be uniquely determined by 
knowing its corresponding output? 

2.62 Show that the Hilbert transform of A sin(2nf0t + 8) is -A cos(2nfot + 8). 

2.63 Show that the Hilbert transform of the signal ejlnfot is equal to -j sgn(f0)ejlnfot. 

2.64 Show that 

2.65 Show that the Hilbert transform of the derivative of a signal is equal to the derivative 
of its Hilbert transform. 

2.66 The real narrowband signal x(t) , whose frequency components are in the neighbor­
hood of some fo (and -f0), is passed through a filter with the transfer function 
H(f), and the output is denoted by y(t) . The magnitude of the transfer function is 
denoted by A(f), and its phase is denoted by B(f) . Assume that the transfer function 
of the filter is so smooth that in the bandwidth of the input signal, the magnitude of 
the transfer function is essentially constant and its phase can be approximated by its 
first-order Taylor-series expansion, i.e., 

A(f) � A(fo) 
B (f) � B (fo) + (f - foW1U) 11=io · 

1. Show that Y1 (f), the Fourier transform of the lowpass equivalent of the output, 
can be written as 

2. Conclude that 

y(t) � A(fo) + Vx (t - tg) cos(2nfot - tp) , 
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where Vx (t) is the envelope of the input x(t) and 

1 dB(f) t - ----g 
- 2n  df I !=lo 

1 B (f) t - ----p 
- 2n ! I !=lo 

1 1 3  

3 .  The quantities tg and tp are called envelope delay (or group delay) and phase 
delay, respectively. Can you interpret their role and justify this nomenclature? 

2.67 We have seen that the Hilbert transform introduces a 90° phase shift in the compo­
nents of a signal and the transfer function of a quadrature filter can be written as 

f > 0 
f = 0 . 
f < 0 

We can generalize this concept to a new transform that introduces a phase shift of e 
in the frequency components of a signal, by introducing 

f > 0 
f = 0  
f < 0 

and denoting the result of this transform by xe (t), i.e., Xe (f) = X (f)He (f), where 
Xe (f) denotes the Fourier transform of xe (t) .  Throughout this problem, assume that 
the signal x (t) does not contain any DC components. 

1. Find he (t), the impulse response of the filter representing this transform. 
2. Show that xe(t) is a linear combination of x(t) and its Hilbert transform. 
3. Show that if x (t) is an energy-type signal, xe (t) will also be an energy-type 

signal and its energy content will be equal to the energy content of x(t). 

COMPUTER PROBLEMS 

2.1 Fourier Series 

The purpose of this problem is to evaluate and plot the Fourier-series coefficients of 
a periodic signal. The periodic signal x(t) , with period T0, is defined as 

x(t) = ATI - = -( t ) 
I
A, lt l < to 

2to 0 otherwise 

for l t l :::; To/2, where to < To/2. A plot of x(t) is shown in Figure CP-2. 1 .  Let 
A =  1 ,  To = 4, and to = 1 .  
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x t ( )  

A 
To To 

-2 2 
I I I I 

-To -to to To t 

Figure CP-2.1 Signal x(t). 

1. Demonstrate mathematically that the Fourier-series coefficients in the expansion 
of x(t) are given as 

Xn = �sine (�) = 
sin(nn/2)

. 
2 2 nn 

2. Use MATLAB to plot the original signal x(t) and the Fourier-series approxima­
tion of x(t) over one period for n = 1 ,  3, 5, 7, and 9. Note that as n increases, 
the approximation becomes closer to the original signal x (t) . 

3. Plot the discrete magnitude spectrum lxn I and the phase spectrum Lxn for 
ln l .::=: 20. 

2.2 Filtering of a Periodic Signal 

The objective of this problem is to demonstrate the effect of passing a periodic signal 
through an LTI system. The periodic signal x (t) is a triangular pulse train with period 
To = 2 and defined over a period as { t + 1 

A(t) = :-� + 1 
- 1 :::: t :::: 0 
0 :::: t :::: 1 
otherwise 

The frequency response characteristic of the LTI filter is 

1 
H(f) = � ·  

v l + f2 

1. Demonstrate mathematically that the Fourier-series coefficients in the expansion 
of x(t) are given as 

1 . 2 (n ) Xn = 2smc 2 . 

2. Use MATLAB to plot the spectrum {xn } for 0 S ln l  S 10. 

3. Since the fundamental frequency of the input signal x(t) is Fo = 1/To = 1/2, 
the Fourier-series coefficients of the filter output are Yn = xnH(n/2). Plot the 
discrete spectrum {Yn} of the filter output. 

4. On a single graph, plot the Fourier-series approximation of the filter output sig­
nal for n = 1 ,  3, . . .  , 9. Comment on the results. 
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2.3 Fourier Transform 

Plot the magnitude and the phase spectra of the two signals shown in Figure CP-2.3. 
Not� that the signal x2(t) is a time-shifted version of x1 (t) .  Therefore, we expect the 
two signals to have identical magnitude spectra. 

1 

-1 1 

Figure CP-2.3 Signals x1 (t) and x2(t). 

Xz(t) 

1 

2.4 LTI System Analysis in the Frequency Domain 

The signal 

x(t) = { �-i t 2:: 0 
t < O 

1 2 

is passed through a lowpass filter, whose frequency response is specified as 

H(f) = { �os(n://3) !f l  S 1 .5  Hz 
otherwise 

1. Determine the magnitude and phase spectra of the input signal x(t) and plot 
these on two separate graphs. 

2. Determine and plot the magnitude and phase spectra of the output signal y(t) .  

3. Use MATLAB to compute the inverse Fourier transform of the output signal and 
plot it. 

2.5. Bandpass to Lowpass Transformation 

The signal 
x(t) = sinc(lOOt) cos(400n:t) 

is a bandpass signal whose frequency content is centered at fo = 200 Hz. 

1. Plot x(t) and the magnitude spectrum JX(f) J .  
2. With fo = 200 Hz, determine the equivalent lowpass signal and plot its magni­

tude spectrum. Also, plot the in-phase and quadrature components of x(t) and 
the envelope of x (t). 
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2.6 FIR Filter Design 

Use the remez function in MATLAB to design the lowest order (smallest length) 
FIR lowpass filter that satisfies the following specifications: 

Passband: 0 :::; w :::; 0.4n 
Stopband: 0.5n :::; w :::; n 
Passband ripple: 0.5 dB 
Stopband attenuation: 40 dB. 

1. Plot the impulse response coefficients of the FIR filter. 

2. Plot the magnitude and phase of the frequency response of the filter. 

2.7 FIR Hilbert Transform Filter 

Use the remez function to design an FIR Hilbert-transform filter that satisfies the 
following specifications: 

Passband: 0. 1 n :::; lwl :::; 0.5n 
Stopband: 0.6n :S lwl :S n 
Passband ripple: 81 = 0.01 
Stopband attenuation: 82 = 0.01 .  

1 .  Plot the impulse-response coefficients of the FIR filter. 

2. Plot the magnitude of the frequency response of the filter. 

2.8 FIR Differentiator 

Use the reme z function to design a 25-tap FIR differentiator that has a passband in 
the range 0. l n  :::; w :::; 0.6n. 

1. Plot the impulse response of the filter. 

2. Plot the magnitude of the frequency response. 

3. Generate 100 samples of the sinusoid 

x(n) = 5 sin (�n) , n = 0, 1 ,  . . .  

and pass them through the differentiator. Plot the filter output y(n) and compare 
y(n) with x(n). Note that there is a 12-sample delay in the FIR filter. 



Amplitude 
Modulation 

A large number of information sources produce analog signals. Analog signals can be mod­
ulated and transmitted directly, or they can be converted into digital data and transmitted 
using digital-modulation techniques. The notion of analog-to-digital conversion will be 
examined in detail in Chapter 7. 

Speech, music, images, and video are examples of analog signals. Each of these 
signals is characterized by its bandwidth, dynamic range, and the nature of the signal. For 
instance, in the case of audio and black-and-white video, the signal has just one component, 
which measures air pressure or light intensity. But in the case of color video, the signal 
has four components, namely, the red, green, and blue color components, plus a fourth 
component for the intensity. In addition to the four video signals, an audio signal carries 
the audio information in color-TV broadcasting. Various analog signals exhibit a large 
diversity in terms of signal bandwidth. For instance, speech signals have a bandwidth of 
up to 4 kHz, music signals typically have a bandwidth of 20 kHz, and video signals have a 
much higher bandwidth, about 6 MHz. 

In spite of the general trend toward the digital transmission of analog signals, we 
still have a significant amount of analog signal transmission, especially in audio and video 
broadcast. In Chapters 3 and 4, we treat the transmission of analog signals by carrier mod­
ulation. (The treatment of the performance of these systems in the presence of noise is 
deferred to Chapter 6.) We consider the transmission of an analog signal by impressing it 
on the amplitude, the phase, or the frequency of a sinusoidal carrier. Methods for demod­
ulation of the carrier-modulated signal to recover the analog information signal are also 
described. This chapter is devoted to amplitude modulation (AM) systems, where the 
message signals change the amplitude of the carrier. Chapter 4 is devoted to phase- and 
frequency-modulation systems, in which either the phase or the frequency of the carrier is 
changed according to variations in the message signal. 

1 1 7  
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3.1 INTRODUCTION TO MODULATION 

The analog signal to be transmitted is denoted by m(t), which is assumed to be a lowpass 
signal of bandwidth W; in other words M (f) = 0, for I f  I > W. The power content of this 
signal is denoted by 

1 1T/2 
Pm = lim - lm (t) l2 dt. T--+oo T -T/2 

The message signal m(t) is transmitted through the communication channel by 
impressing it on a carrier signal of the form 

c(t) = Ac cos(2n:fct + </Jc), (3. 1 . 1) 

where Ac is the carrier amplitude, fc is the carrier frequency, and <Pc is the carrier phase. 
The value of <Pc depends on the choice of the time origin. Without loss of generality, we 
assume that the time origin is chosen such that <Pc = 0. We say that the message signal 

· m(t) modulates the carrier signal c(t) in either amplitude, frequency, or phase if after 
modulation, the amplitude, frequency, or phase of the signal becomes a function of the 
message signal. In effect, modulation converts the message signal m(t) from lowpass to 
bandpass, in the neighborhood of the carrier frequency fc· 

Modulation of the carrier c(t) by the message signal m(t) is performed to achieve 
one or more of the following objectives: 

(1)  To translate the frequency of the lowpass signal to the passband of the channel so 
that the spectrum of the transmitted bandpass signal will match the passband char­
acteristics of the channel. For instance, in transmission of speech over microwave 
links in telephony transmission, the transmission frequencies must be increased to 
the gigahertz range for transmission over the channel. This means that modula­
tion, or a combination of various modulation techniques, must be used to trans­
late the speech signal from the low-frequency range (up to 4 kHz) to the gigahertz 
range. 

(2) To simplify the structure of the transmitter by employing higher frequencies. For 
instance, in the transmission of information using electromagnetic waves, transmis­
sion of the signal at low frequencies requires huge antennas. Modulation helps trans­
late the frequency band to higher frequencies, thus requiring smaller antennas. This 
simplifies the structure of the transmitter (and the receiver). 

(3) To accommodate for the simultaneous transmission of signals from several message 
sources, by means of frequency-division multiplexing (FDM). (See Section 3.4.) 

(4) To expand the bandwidth of the transmitted signal in order to increase its noise and 
interference immunity in transmission over a noisy channel, as we will see in our 
discussion of angle modulation in Chapter 6. 

Objectives (1), (2), and (3) are met by all of the modulation methods described in this 
chapter. Objective (4) is met by employing angle modulation to spread the signal m(t) 
over a larger bandwidth, as discussed in Chapter 4. 

· 
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In the following sections, we consider the transmission and reception of analog sig­
nals by carrier AM. We will compare these modulation methods on the basis of their 
bandwidth requirements and their implementation complexity. Their performance in the 
presence of additive noise disturbances and their power efficiency will be discussed in 
Chapter 6. 

3.2 AMPLITUDE MODULATION 

In amplitude modulation, the message signal m(t) is impressed on the amplitude of the 
carrier signal c(t) = Ac cos(2nfct). This results in a sinusoidal signal whose amplitude 
is a function of the message signal m(t). There are several different ways of amplitude 
modulating the carrier signal by m ( t) ; each results in different spectral characteristics 
for the transmitted signal. We will describe these methods, which are called (a) double­
sideband suppressed-carrier (DSB-SC) AM, (b) conventional double-sideband AM, (c) 
single-sideband (SSB) AM, and (d) vestigial-sideband (VSB) AM. 

3.2.1 Double-Sideband Suppressed-Carrier AM 

A DSB-SC AM signal is obtained by multiplying the message signal m(t) with the carrier 
signal c(t) = Ac cos(2nfct). Thus, we have the amplitude-modulated signal 

u(t) = m(t)c(t) 

= Acm(t) cos(2nfct) . 

Examples of message signal m ( t), carrier signal c ( t), and modulated signal u ( t) are shown 
in Figure 3 . 1 .  This figure shows that a relatively slowly varying message signal m(t) is 
changed into a rapidly varying modulated signal u(t), and due to its rapid changes with 
time, it contains higher-frequency components. At the same time, the modulated signal 
retains the main characteristics of the message signal; therefore, it can be used to retrieve 
the message signal at the receiver. 

Spectrum of the DSB-SC AM Signal. The spectrum of the modulated signal 
can be obtained by taking the Fourier transform of u(t) and using the result of Example 
2.3. 14. Thus, we obtain 

A 
fj(f) = -f [M(f - fc) + M(f + fc)] · 

Figure 3.2 illustrates the magnitude and phase spectra, respectively, for M(f) and U(f) . 
The magnitude of the spectrum of the message signal m(t) has been translated 

or shifted in frequency by an amount fc · Furthermore, the bandwidth occupancy of the 
amplitude-modulated signal is 2W, whereas the bandwidth of the message signal m(t) is 
W. Therefore, the channel bandwidth required to transmit the modulated signal u(t) is 
Be = 2W. 
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m(t) 

u(t) = m(t)c(t) 

Figure 3.1 Examples of message, carrier, and DSB-SC-modulated signals. 

The frequency content of the modulated signal u (t) in the frequency band If I > fc 
is called the upper sideband of U ( f ), and the frequency content in the frequency band 
I l l < fc is called the lower sideband of U( f ) .  It is important to note that either one of 
the sidebands of U ( f )  contains all the frequencies that are in M ( f ) .  That is, the frequency 
content of U ( f ) for f > fc corresponds to the frequency content of M ( f ) for f > 0, and 
the frequency content of U ( f ) for f < - fc corresponds to the frequency content of M ( f )  
for f < 0. Hence, the upper sideband of U( f )  contains all the frequencies in M( f ) . A 
similar statement applies to the lower sideband of U ( f ) . Therefore, the lower sideband of 
U ( f ) contains all the frequency content of the message signal M ( f ) .  Since U ( f ) contains 
both the upper and the lower sidebands, it is called a double-sideband (DSB) AM signal. 

The other characteristic of the modulated signal u ( t) is that it does not contain a car­
rier component. That is, all the transmitted power is contained in the modulating (message) 
signal m(t) . This is evident from observing the spectrum of U ( f ) . As long as m(t) does 
not have any DC component, there is no impulse in U ( f ) at f = fc ; this would be the case 
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Figure 3.2 Magnitude and phase 
spectra of the message signal m(t) 
and the DSB AM-modulated signal 
u(t). 

if a carrier component was contained in the modulated signal u(t). For this reason, u (t) is 
called a suppressed-carrier signal. Therefore, u (t) is a DSB-SC AM signal. 

Example 3.2.1 
Suppose that the modulating signal m (t) is a sinusoid of the form 

m(t) = a cos 2rtJmt Jm « Jc.  

Determine the DSB-SC AM signal and its upper and lower sidebands. 

Solution The DSB-SC AM is expressed in the time domain as 

u(t) = m(t)c(t) = Aca cos(2rtJmt) cos(2rtJct) 

Aca Aca 
= 2 cos[2rt(fc - f,.)t] + 2 cos[2rtCfc + Jm)t]. 

Taking the Fourier transform, the modulated signal in the frequency domain will have the 
following form: 

A a  
U(f) = T [8(f - Jc +  Jm) + 8(f + Jc - Jm)] 

This spectrum is shown in Figure 3.3(a). The lower sideband of u (t) is the signal 

Aca 
ue(t) = 2 cos[2rt(fc - Jm)t], 
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U(f) 

et) · et) 
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�������������-'-��������������[ -fc - fm 0 fc + fm (c

) 

Figure 3.3 The (magnitude) spectrum of a DSB-SC AM signal for (a) a sinusoidal message signal and (b) its 
lower and (c) upper sidebands. 

and its spectrum is illustrated in Figure 3.3(b). Finally, the upper sideband of u(t) is the signal 

Aca 
Uu(t) = Z cos[2nCfc + fm)t] , 

and its spectrum is illustrated in Figure 3.3(c). • 

Example 3.2.2 
Let the message signal be m(t) = sinc(104t). Determine the DSB-SC-modulated signal and 
its bandwidth when the carrier is a sinusoid with a frequency of 1 MHz. 

Solution In this example, c(t) = cos(2n x 106t). Therefore, u(t) = sinc(104t) cos(2n x 
106t). A plot of u(t) is shown in Figure 3.4. To obtain the bandwidth of the modulated signal, 
we first need to have the bandwidth of the message signal. We have M (f) = §sinc(104t) = 
10-4 IT ( 10-4 f). The Fourier transform is constant in the frequency range from -5000 Hz to 
5000 Hz, and it is zero at other frequencies. Therefore, the bandwidth of the message signal 
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Figure 3.4 Plot of 
u(t) = sinc(l04t) cos(2n x 106t). 

is W = 5000 Hz, and the bandwidth of the modulated signal is twice the bandwidth of the 
message signal, i.e., 10,000 Hz or 10 kHz. • 

Power Content of DSB-SC Signals. In order to compute the power content of 
the DSB-SC signal, we employ the definition of the power content of a signal given in 
Equation (2. 1 . 1 1) .  Thus, 

Pu = lim - u2(t) dt 
1 1T/2 

T-+00 T -T/2 

1 1T/2 
= lim - A�m2(t) cos2 (2rtfct) dt T-+00 T -T/2, 

A2 1 1T/2 . 
= __£. lim - m2 (t) [ l  + cos(4rtfct)] dt 

2 T-+oo T -T/2 

A2 
= -fPm ,  

(3.2. 1) 

(3.2.2) 

where Pm indicates the power in the message signal m(t) . The last step follows from the 
fact that m2(t) is a slowly varying signal and when multiplied by cos(4rtfct), which is 
a high-frequency sinusoid, the result is a high-frequency sinusoid with a slowly varying 
envelope, as shown in Figure 3.5. 

Since the envelope is slowly varying, the positive and the negative halves of each 
cycle have almost the same amplitude. Hence, when they are integrated, they cancel each 
other. Thus, the overall integral of m2(t) cos(4nfct) is almost zero. This is depicted in 
Figure 3.6. Since the result of the integral is divided by T, and T becomes very large, the 
second term in Equation (3.2. 1 )  is zero. 
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x(t) 

Figure 3.5 Plot of m2 (t) cos(4nfct). 

x(t) 

Figure 3.6 This figure shows why the second term in Equation (3.2.l) is zero. 

Example 3.2.3 
In Example 3.2. l ,  determine the power in the modulated signal and the power in each of the 

sidebands. 

Solution The message signal is m(t) = a cos 2rrJ,nt. Its power was obtained in Example 

2. 1 . 10 and Equation (2. 1 . 12) as 

Therefore, 
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Because of the symmetry of the sidebands, the powers in the upper and lower sidebands, Pus 
and P1., are equal and given by 

• 

Demodulation of DSB-SC AM Signals. Suppose that the DSB-SC AM signal 
u(t) is transmitted through an ideal channel (with no channel distortion and no noise). Then 
the received signal is equal to the modulated signal, i.e., 

r (t) = u(t) 

= Acm(t) cos(2nfct). (3.2.3) 

Suppose we demodulate the received signal by first multiplying r (t) by a locally 
generated sinusoid cos(2nfct +¢), where ¢ is the phase of the sinusoid. Then, we pass the 
product signal through an ideal lowpass filter with the bandwidth W. The multiplication of 
r (t) with cos(2nfct + ¢) yields 

r (t) cos(2nfct + ¢) = Acm(t) cos(2nfct) cos(2nfct + ¢) 

1 1 . 
= 2Acm(t) cos(¢) + lAcm(t) cos(4nfct + ¢) . 

The spectrum of the signal is illustrated in Figure 3.7. Since the frequency content 
of the message signal m(t) is limited to W Hz, where W « fc, the lowpass filter can 
be designed to eliminate the signal components centered at frequency 2 fc and to pass 
the signal components centered at frequency f = 0 without experiencing distortion. An 
ideal lowpass filter that accomplishes this objective is also illustrated in Figure 3 .7. Conse­
quently, the output of the ideal lowpass filter is 

1 
Ye(t) = 2Acm(t) cos(¢). (3.2.4) 

Note that m(t) is multiplied by cos(¢); therefore, the power in the demodulated 
signal is decreased by a factor of cos2 ¢. Thus, the desired signal is scaled in amplitude by 
a factor that depends on the phase ¢ of the locally generated sinusoid. When ¢ f::. 0, the 
amplitude of the desired signal is reduced by the factor cos(¢). If ¢ = 45°, the amplitude 
of the desired signal is reduced by v'2 and the signal power is reduced by a factor of 2. If 
¢ = 90° , the desired signal component vanishes. 

Ideal lowpass filter 

� 

-2
/
c 2

f
c 

f Figure 3.7 Frequency-domain representation of 
the DSB-SC AM demodulation. 
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Figure 3.8 Addition of a pilot tone 
to a DSB-AM signal. 

Lowpass 1---m-;(�t) 
filter 

Figure 3.9 Use of a pilot tone to 
demodulate a DSB-AM signal. 

The preceding discussion demonstrates the need for a phase-coherent or synchronous 
demodulator for recovering the message signal m(t) from the received signal. That is, the 
phase <P of the locally generated sinusoid should ideally be equal to 0 (the phase of the 
received-carrier signal). 

A sinusoid that is phase locked to the phase of the received carrier can be generated 
at the receiver in one of two ways. One method is to add a carrier component into the trans­
mitted signal, as illustrated in Figure 3.8. We call such a carrier component "a pilot tone." 
Its amplitude Ap and its power A;/2 are selected to be significantly smaller than those of 
the modulated signal u(t). Thus, the transmitted signal is a double sideband, but it is no 
longer a suppressed carrier signal. At the receiver, a narrowband filter tuned to frequency 
fc filters out the pilot signal component; its output is used to multiply the received signal, 
as shown in Figure 3.9. We may show that the presence of the pilot signal results in a DC 
component in the demodulated signal; this must be subtracted out in order to recover m(t) . 

Adding a pilot tone to the transmitted signal has a disadvantage: it requires that a 
certain portion of the transmitted signal power must be allocated to the transmission of 
the pilot. As an alternative, we may generate a phase-locked sinusoidal carrier from the 
received signal r (t) without the need of a pilot signal. This can be accomplished by the use 
of a phase-locked loop, as described in Section 8.8. 1 .  

3.2.2 Conventional Amplitude Modulation 

A conventional AM signal consists of a large carrier component, in addition to the DSB 
AM-modulated signal. The transmitted signal is expressed mathematically as 

u(t) = Ac[l + m(t)] cos(2nfct) , (3.2.5) 
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Figure 3.10 A conventional AM signal in the time domain. 
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where the message waveform is constrained to satisfy the condition that Jm(t) J ::; 1 .  We 
observe that Acm(t) cos(2nJct) is a DSB-AM signal and Ac cos(2nJct) is the carrier com­
ponent. Figure 3 . 10 illustrates an AM signal in the time domain. As we will see later in 
this chapter, the existence of this extra carrier results in a very simple structure for the 
demodulator. That is why cornrnercial AM broadcasting generally employs this type of 
modulation. 

As long as Jm(t) J ::; 1, the amplitude Ac[l + m(t)] is always positive. This is the 
desired condition for conventional DSB AM that makes it easy to demodulate, as we will 
describe. On the other hand, if m ( t) < -1  for some t, the AM signal is overmodulated and 
its demodulation is rendered more complex. In practice, m(t) is scaled so that its magnitude 
is always less than unity. 

It is sometimes convenient to express m(t) as 

m(t) = amn(t) , 

where mn (t) is normalized such that its minimum value is -1 .  This can be done, e.g., by 
defining 

m(t) mn (t) = ---­
max Jm (t) J 

In this case, the scale factor a is called the modulation index, which is generally a constant 
less than 1 .  Since lmn (t) I ::; 1 and 0 < a < 1 ,  we have 1 + amn (t) > 0, and the modulated 
signal can be expressed as 

u(t) = Ac [1 + amn (t)] cos 2nJct, (3.2.6) 

which will never be overmodulated. 

Spectrum of the Conventional AM Signal. If m(t) is a message signal with 
Fourier transform (spectrum) M(f), the spectrum of the amplitude-modulated signal 
u (t) is 

U(f) = §[Acamn (t) cos(2nJct)] + §[Ac cos(2nJct)] 
A a  A = T [Mn (f - Jc) + Mn (f + Jc)] + T [o(f - Jc) + o (f + Jc)] . 
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-w w f 
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Figure 3.11 Conventional AM in both the time and frequency domain. 

A message signal m(t), its spectrum M(f), the corresponding modulated signal u(t), and 
its spectrum U (f) are shown in Figure 3. 1 1 . Obviously, the spectrum of a conventional 
AM signal occupies a bandwidth twice the bandwidth of the message signal. 

Example 3.2.4 
Suppose that the modulating signal m(t) is a sinusoid of the form 

m(t) = COS 2nfmt fm « fc. 

Determine the DSB-AM signal, its upper and lower sidebands, and its spectrum, assuming a 
modulation index of a. 

Solution From Equation (3.2.6), the DSB-AM signal is expressed as 

u(t) = Ac[l + a cos 2nfmt] cos(2nfct) 

Aca 
= Ac cos(2nfct) + 2 cos[2n(fc - fm)t] 

Aca 
+ 2 cos[2n(fc + fm)t]. 

The lower-sideband component is 
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while the upper-sideband component is 

Aca 
Uu (t) = 2 cos[2n<fc + fm)t] .  

The spectrum of the DSB-AM signal u(t) is 

U(f) = �c 
[o (f - fc) + o(f + fc)] 

A a  
+ + [o (f - !c + fm) + o(f + !c - fm)] 
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The magnitude spectrum I U(f) I  is shown in Figure 3.12. It is interesting to note that 
the power of the carrier component, which is A�/2, exceeds the total power (A�a2 /4) of the 
two sidebands because a < 1 .  • 

Power for the Conventional AM Signal. A conventional AM signal is similar 
to a DSB when m(t) is substituted with 1 +mn (t) .  As we have already seen in the DSB-SC 
case, the power in the modulated signal is [see Equation (3.2.2)] 

A2 
Pu = -f Pm ,  

where Pm denotes the power in  the message signal. For the conventional AM, 

1 1T/2 
Pm = lim - [1 + amn (t)]2 dt T-+oo T -T/2 

1 1T/2 
= lim - [1 + a2m� (t)] dt, T-+oo T �T/2 

where we have assumed that the average of mn (t) is zero. This is a valid assumption for 
many signals, including audio signals. T}1erefore, for conventional AM, 

hence, 

rt) (�c) 

[U(/JI 

(�a) � 

(�c) (�a) (At) 

Figure 3.12 Spectrum of a DSB-AM signal in Example 3.2.4. 
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The first component in the preceding relation applies to the existence of the carrier, and 
this component does not carry any information. The second component is the information­
carrying component. Note that the second component is usually much smaller than the first 
component (a < 1 ,  lmn (t) I < 1 ,  and for signals with a large dynamic range, Pmn « 1). 
This shows that the conventional AM systems are far less power efficient than the DSB-SC 
systems. The advantage of conventional AM is that it is easily demodulated. 

Example 3.2.5 
The signal m(t) = 3 cos(200nt) + sin(600nt) is used to modulate the carrier c(t) = cos(2 x 
105t). The modulation index is a = 0.85. Determine the power in the carrier component and 
in the sideband components of the modulated signal. 

Solution The message signal is shown in Figure 3. 13.  First, we determine mn(t), the nor­
malized message signal. In order to find mn(t), we have to determine max lm(t) i .  To determine 
the extrema of m (t), we find its derivative and make it equal to zero. We then have 

m' (t) = -600n sin(200nt) + 600n cos(600nt) 

= 0, 

which results in 

cos(600nt) = sin(200nt) 

= cos G· - 2oont) . 
One solution of this equation is 800nt = I ' or t = i

i
oo · Substituting this value into m(t), we 

obtain 

m ( 16

1

00) = 3.6955, 

which is the maximum value of the signal m(t). Therefore, 

3 cos(200nt) + sin(600nt) 
mn(t) = 

3.6955 

= 0.8 1 1 8  cos(200nt) + 0.2706 sin(600nt). 

4 .--�.--�.----.�--.�----.�----,�----,�--. 

3 

2 

1 

0 

-1 

-2 

-3 

0.005 0.01 0.015 0.02 O.Q25 O.Q3 O.Q35 0.04 
Figure 3.13 The message signal in 
Example 3.2.5. 
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The power in  the sum of two sinusoids with different frequencies is  the sum of powers 
in them. Therefore, 

1 2 2 Pmn = Z [0.8 1 18  + 0.2706 ] 

= 0.3661 .  

The power in the carrier component of the modulated signal is 

Az --t = 0.5, 

and the power in the sidebands is 

A� 2 1 2 2a Pmn = Z X 0.85 X 0.3661 

= 0. 1323. • 

Demodulation of Conventional DSB·AM Signals. The major advantage of 
conventional AM signal transmission is the ease in which the signal can be demodulated. 
There is no need for a synchronous demodulator. Since the message signal m(t) satisfies 
the condition lm (t) I < 1, the envelope (amplitude) 1 + m(t) > 0. If we rectify the received 
signal, we eliminate the negative values without affecting the message signal, as shown in 
Figure 3. 14. 

The rectified signal is equal to u(t) when u(t) > 0, and it is equal to zero when 
u (t) < 0. The message signal is recovered by passing the rectified signal through a lowpass 
filter whose bandwidth matches that of the message signal. The combination of the rectifier 
and the lowpass filter is called an envelope detector. 

Ideally, the output of the envelope detector is of the form 

d(t) ;:= 81 + 82m (t) , (3.2.7) 

where 8l represents a DC component and 8z is a gain factor due to the signal demodulator. 
The DC component can be eliminated by passing d(t) through a transformer, whose output 
is 82m (t) .  

Figure 3.14 Envelope detection of  a conventional AM signal. 

- - - Envelope 
z(t) ��;r�;rT--

ac 



1 32 Amplitude Modulation Chapter 3 

The simplicity of the demodulator has made conventional DSB AM a practical choice 
for AM radio broadcasting. Since there are literally billions of radio receivers, an inexpen­
sive implementation of the demodulator is extremely important. The power inefficiency of 
conventional AM is justified by the fact that there are few broadcast transmitters relative 
to the number of receivers. Consequently, it is cost-effective to construct powerful trans­
mitters and sacrifice power efficiency in order to simplify the signal. demodulation at the 
receivers. 

3.2.3 Single-Sideband AM 

In Section 3.2. 1 ,  we showed that a DSB-SC AM signal required a channel bandwidth of 
Be = 2 W Hz for transmission, where W is the bandwidth of the message signal. However, 
the two sidebands are redundant. We will demonstrate that the transmission of either side­
band is sufficient to reconstruct the message signal m(t) at the receiver. Thus, we reduce 
the bandwidth of the transmitted signal to that of the baseband message signal m ( t) .  

In the appendix at the end of this chapter, we will demonstrate that a single-sideband 
(SSB) AM signal is represented mathematically as 

u(t) = Acm(t) cos 2nfct =f Acm(t) sin 2nfct, (3.2.8) 

where m(t) is the Hilbert transform of m(t) that was introduced in Section 2.6, and the 
plus or minus sign determines which sideband we obtain. The plus sign indicates the lower 
sideband, and the minus sign indicates the upper sideband. Recall that the Hilbert transform 
may be viewed as a linear filter with impulse response h(t) = l /nt and frequency response { -j, f > O  

H (f) = j, f < 0 . 
0, f = 0 

(3.2.9) 

Therefore, the SSB-AM signal u(t) may be generated by using the system configuration 
shown in Figure 3 . 15 .  

m(t) 

Hilbert 
transform 

�
(t) 

Figure 3.15 Generation of a lower SSB-AM 
signal. 
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m(t) 
1----� Bandpass 

filter 

Figure 3.16 Generation of an SSB-AM signal by 
filtering one of the sidebands of a DSB-SC AM signal. 

The method shown in Figure 3 . 15  employs a Hilbert-transform filter. Another 
method, illustrated in Figure 3. 16, generates a DSB-SC AM signal and then employs a 
filter that selects either the upper sideband or the lower sideband of the DSB-AM signal. 

Example 3.2.6 
Suppose that the modulating signal is a sinusoid of the form 

m(t) = cos 2nlmt, Im « le· 

Determine the two possible SSB-AM signals. 

Solution The Hilbert transform of m (t) is 

m(t) = sin 2nlmt. 

Hence, 

If we take the upper (-) sign, we obtain the upper-sideband signal 

(3.2. 10) 

(3.2. 1 1) 

On the other hand, if we take the 10\".,er ( +) sign in Equation (3.2. 1 1  ), we obtain the lower­
sideband signal 

The spectra of Uu(t) and ue(t) were previously given in Figure 3.3. • 

Demodulation of SSB-AM Signals. To recover the message signal m(t) in the 
received SSB-AM signal, we require a phase-coherent or synchronous demodulator, as was 
the case for DSB-SC AM signals. Thus, for the upper single-sideband (USSB) signal given 
in Equation (3A. 7), we have 

r (t) cos(2rrfct + ¢) = u (t) cos(2rrfct + ¢) 
1 1 � . = 2Acm(t) cos ¢ +  lAcm(t) sm ¢  

+ double-frequency terms. (3.2. 12) 
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By passing the product signal in Equation (3.2. 12) through an ideal lowpass filter, the 
double-frequency components are eliminated, leaving us with 

(3.2.13) 

Note that the phase offset not only reduces the amplitude of the desired signal m(t) 
by cos ¢, but it also results in an undesirable sideband signal due to the presence of m(t) 
in Ye (t) . The latter component was not present in the demodulation of a DSB-SC signal. 
However, it is a factor that contributes to the distortion of the demodulated SSB signal. 

The transmission of a pilot tone at the carrier frequency is a very effective method 
for providing a phase-coherent reference signal for performing synchronous demodulation 
at the receiver. Thus, the undesirable sideband-signal component is eliminated. However, 
this means that a portion of the transmitted power must be allocated to the transmission of 
the carrier. 

The spectral efficiency of SSB AM makes this modulation method very attractive 
for use in voice communications over telephone channels (wirelines and cables). In this 
application, a pilot tone is transmitted for synchronous demodulation and shared among 
several channels. 

The filter method shown in Figure 3 . 16, which selects one of the two signal sidebands 
for transmission, is particularly difficult to implement when the message signal m(t) has a 
large power concentrated in the vicinity of f = 0. In such a case, the sideband filter must 
have an extremely sharp cutoff in the vicinity of the carrier in order to reject the second 
sideband. Such filter characteristics are very difficult to implement in practice. 

3.2.4 Vestigial-Sideband AM 

The stringent frequency-response requirements on the sideband filter in an SSB-AM sys­
tem can be relaxed by allowing vestige, which is a portion of the unwanted sideband, to 
appear at the output of the modulator. Thus, we simplify the design of the sideband filter 
at the cost of a modest increase in the channel bandwidth required to transmit the signal. 
The resulting signal is called vestigial-sideband (VSB) AM. This type of modulation is 
appropriate for signals that have a strong low-frequency component, such as video signals. 
That is why this type of modulation is used in standard TV broadcasting. 

To generate a VSB-AM signal, we begin by generating a DSB-SC AM signal and 
passing it through a sideband filter with the frequency response H(f), as shown in 
Figure 3 . 17 . In the time domain, the VSB signal may be expressed as 

u (t) = [Acm (t) cos 2nfct] * h(t) , (3.2. 14) 

where h(t) is the impulse response of the VSB filter. In the frequency domain, the corre­
sponding expression is 

U(f) = �c [M(f - fc) + M(f + fc)]H(f). (3.2. 15) 
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Figure 3.17 Generation of 
VSB-AM signal. 

Figure 3.18 Demodulation of VSB signal. 

To determine the frequency-response characteristics of the filter, we will consider the 
demodulation of the VSB signal u(t) . We multiply u(t) by the carrier component cos 2nfct 
and pass the result through an ideal lowpass filter, as shown in Figure 3 .18 . Thus, the 
product signal is 

v(t) = u(t) cos 2nfct, 

or equivalently, 
1 V(f) = 2 [U(f - fc) + U(f + fc)J . (3.2. 16) 

If we substitute U(f) from Equation (3.2. 15) into Equation (3.2. 16), we obtain 

V(f) = �c [M(f -,2fc) + M(f)]H(f - fc) 

A + 4
c [M(f) + M(f + 2fc)]H(f + Jc) · (3 .2. 17) 

The lowpass filter rejects the double-frequency terms and passes only the components in 
the frequency range I f  I S W. Hence, the signal spectrum at the output of the ideal lowpass 
filter is 

A 
Vi(f) = 4

c M(f)[H(f - fc) + H(f + fc)] .  (3 .2. 18) 

The message signal at the output of the lowpass filter must be undistorted. Hence, 
the VSB filter characteristic must satisfy the condition 

H(f - fc) + H(f + fc) = constant I l l S W. (3.2. 19) 

This condition is satisfied by a filter that has the frequency-response characteristics shown 
in Figure 3. 19. 
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Figure 3.19 VSB filter characteristics. 
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Figure 3.20 Frequency response of the VSB filter for selecting the lower sideband of the message signals. 

We note that H (f) selects the upper sideband and a vestige of the lower sideband. It 
has odd symmetry about the carrier frequency fc in the frequency range fc - fa < f < 

fc + fa , where fa is a conveniently selected frequency that is some small fraction of W, 
i.e., fa « W. Thus, we obtain an undistorted version of the transmitted signal. Figure '3.20 
illustrates the frequency response of a VSB filter that selects the lower sideband and a 
vestige of the upper sideband. 

In practice, the VSB filter is designed to have some specified phase characteristics. 
To avoid distortion of the message signal, the VSB filter should have a linear phase over 
its passband fc - fa :::; lf l  :::; fc + W. 

Example 3.2.7 
Suppose that the message signal is given as 

m(t) = 10 + 4 cos 2nt + 8 cos 4nt + 10 cos 20nt. 

Specify both the frequency-response characteristics of a VSB filter that passes the upper side­
band and the first frequency component of the lower sideband. 
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Figure 3.21 Frequency-response characteristics of the VSB filter in Example 3 .2. 7. 

Solution The spectrum of the DSB-SC AM signal u(t) = m(t) cos 2n:fct is 

U(f) = 5[8(f - Jc) + 8 (f + Jc)] +  2[8 (f - Jc - 1) + 8(J + Jc +  l)] 

f 

+4[8(f - Jc - 2) + 8(f + fc + 2)] + 5[8(f - Jc - 10) + 8(f + Jc +  10)] . 

1 37 

The VSB filter can be designed to have unity gain in the range 2 .:::: If -
!
c l .:::: 10, a gain of 

1 /2 at J = fc, a gain of 1 /2 + a at J = fc + 1, and a gain of 1 /2 - a at f = Jc - 1 ,  where a 
is some conveniently selected parameter that satisfies the condition 0 < a  < 1/2. Figure 3.21 
illustrates the frequency-response characteristic of the VSB filter. • 

3.3 IMPLEMENTATION OF AMPLITUDE MODULATORS AND DEMODULATORS 

There are several different methods for generating AM-modulated signals. In this section, 
we shall describe the methods most commonly used in practice. Since the process of mod­
ulation involves the generation of new frequency components, modulators are generally 
characterized as nonlinear and/or time-variant systems. 

Power-Law Modulation. Let us consider the use of a nonlinear device such as a 
P-N diode, which has voltage-current characteristic shown in Figure 3 .22. 

Suppose that the voltage input to such a device is the sum of the message signal m (t) 
and the carrier Ac cos 2rr.fct, as illustrated in Figure 3.23. The nonlinearity will generate a 
product of the message m(t) with the carrier, plus additional terms. The desired modulated 
signal can be filtered out by passing the output of the nonlinear device through a bandpass 
filter. 

To elaborate, suppose that the nonlinear device has an input-output (square-law) 
characteristic of the form 

vo(t) = a1 v; (t) + azv;(t) ,  (3.3 . 1 )  

0 v Figure 3.22 Voltage-current characteristic of P-N diode. 
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Figure 3.23 Block diagram of 
power-law AM modulator. 

where v; (t) is the input signal, vo(t) is the output signal, and the parameters (a1 ,  a2) are 
constants. Then, if the input to the nonlinear device is 

v; (t) = m(t) + Ac cos 2nfct, (3.3.2) 

its output is 

v0(t) = a1 [m(t) + Ac cos 2nfct] 
+ a2[m(t) + Ac cos 2n fctf 

= a1m(t) + a2m2 (t) + a2A� cos2 2nfct 

+ Acal [ 1 + 2;2 m(t) J cos 2nfct. (3.3 .3) 

The output of the bandpass filter with a bandwidth 2 W centered at f = fc yields 

u(t) = Acal [ 1 + ��2 m(t) J cos 2nfct, (3.3.4) 

where 2a2 Jm(t) J /a1 < 1 by design. Thus, the signal generated by this method is a conven­
tional AM signal. 

Switching Modulator. Another method for generating an AM-modulated signal 
is by means of a switching modulator. Such a modulator can be implemented by the system 
illustrated in Figure 3.24(a). The sum of the message signal and the carrier, which is given 
by Equation (3.3.2), are applied to a diode that has the input-output voltage characteristic 
shown in Figure 3.24(b), where Ac » m(t) . The output across the load resistor is simply 

( ) {v; (t) , Vo t = 
0, 

c(t) > 0 
c(t) < 0 

(3.3.5) 

This switching operation may be viewed mathematically as a multiplication of the 
input v; (t) with the switching function s (t), i.e., 

vo(t) = [m(t) + Ac cos 2nfct]s(t), (3.3.6) 

where s (t) is shown in Figure 3.24(c). 
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Figure 3.24 Switching modulator and periodic switching signal. 

Since s (t) is a periodic function, it is represented in the Fourier series as 

l 2 oo ( - l )n-1 
s (t) = - + - L cos[21tfct (2n - 1)] . 

2 Jt 2n - 1  n=I 

This is similar to Equation (2.2. 1 1 ).  
Hence, 

vo(t) = [m(t) + Ac cos 2Jtfct]s(t) 

Ac [ 4 ] = - 1 + --m (t) cos 2Jtfct + other terrns. 
2 JtAc 
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• 
t 

(3.3 .7) 

(3 .3.8) 

The desired AM-modulated signal is obtained by passing vo(t) through a bandpass filter 
with the center frequency f = fc and the bandwidth 2 W. At its output, we have the desired 
conventional AM signal 
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Ac [ 4 J u(t) = - 1 + -m(t) cos 2nfct .  
2 rt Ac (3.3.9) 

Balanced Modulator. A relatively simple method for generating a DSB-SC AM 
signal is to use two conventional AM modulators arranged in the configuration illustrated 
in Figure 3 .25 . 

For example, we may use two square-law AM modulators as previously described. 
Care must be taken to select modulators with approximately identical characteristics so 
that the carrier component cancels out at the summing junction. 

Ring Modulator. Another type of modulator for generating a DSB-SC AM sig­
nal is the ring modulator illustrated in Figure 3.26. 

The switching of the diodes is controlled by a square wave of frequency fc, denoted 
as c(t), which is applied to the center taps of the two transformers. When c(t) > 0, the 
top and bottom diodes conduct, while the two diodes in the crossarms are off. In this case, 
the message signal m(t) is multiplied by +l .  When c(t) < 0, the diodes in the crossarms 
of the ring conduct, while the other two diodes are switched off. In this case, the message 

AM Ac
[
l + m(t)] cos 2rc

f
ct 

modulator 

Ac cos 2rcfct 

-m(t) AM 

+ u(t) = 2Acm 
(t) cos 2rc

f
ct 

modulator Ac
[
l - m(t)] cos 2rc

f
ct 

m(t) 

Square-wave carrier 
at/ =  

f
c 

Figure 3.26 Ring modulator for generating a DSB-SC AM signal. 

Figure 3.25 Block diagram 
of a balanced modulator. 

Vout 
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signal m (t) is multiplied by - 1 .  Consequently, the operation of the ring modulator may be 
described mathematically as a multiplier of m(t) by the square-wave carrier c(t) , i.e., 

vo(t) = m(t)c(t) , 

as shown in Figure 3 .26. 
Since c(t) is a periodic function, it is represented by the Fourier series 

4 oo (-l)n-1 
c(t) = - L cos[2nfc (2n - l)t]. 

n 2n - l n=I 

(3.3 . 10) 

(3.3. 1 1) 

Again, this equation is similar to Equation (2.2. 1 1). Hence, the desired DSB-SC AM 
signal u(t) is obtained by passing v0(t) through a bandpass filter with the center frequency 
fc and the bandwidth 2W. 

From the preceding discussion, we observe that the balanced modulator and the ring 
modulator systems, in effect, multiply the message signal m(t) with the carrier to pro­
duce a DSB-SC AM signal. The multiplication of m(t) with Ac cos wet is called a mixing 
operation. Hence, a mixer is basically a balanced modulator. 

The method shown in Figure 3 . 15  for generating an SSB signal requires two mixers, 
i.e., two balanced modulators, in addition to the Hilbert transformer. On the other hand, 
the filter method illustrated in Figure 3 . 16  for generating an SSB signal requires a single 
balanced modulator and a sideband filter. 

Let us now consider the demodulation of AM signals. We begin with a description 
of the envelope detector. 

Envelope Detector. As previously indicated, conventional DSB-AM signals are 
easily demodulated by an envelope detector. A circuit diagram for an envelope detector is 
shown in Figure 3 .27. It consists of a diode and an RC circuit, which is basically a simple 
lowpass filter. 

During the positive half-cycle of the input signal, the diode conducts and the capaci­
tor charges up to the peak value of the input signal. When the input falls below the voltage 
on the capacitor, the diode becomes reverse-biased and the input disconnects from the out­
put. During this period, the capacitor discharges slowly through the load resistor R.  On 
the next cycle of the carrier, the diode again conducts when the input signal exceeds the 
voltage across the capacitor. The capacitor again charges up to the peak value of the input 
signal and the process is repeated. 

r(t) c 
1 
] Figure 3.27 An envelope detector. 
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The time constant RC must be selected to follow the variations in the envelope of the 
carrier-modulated signal. If RC is too small, then the output of the filter falls very rapidly 
after each peak and will not follow the envelope of the modulated signal closely. This 
corresponds to the case where the bandwidth of the lowpass filter is too large. If RC is too 
large, then the discharge of the capacitor is too slow and again the output will not follow 
the envelope of the modulated signal. This corresponds to the case where the bandwidth 
of the lowpass filter is too small. The effect of large and small RC values is shown in 
Figure 3.28. 

In effect, for good performance of the envelope detector, we should have 

, 
, 

, 

, 
, 

, 

, 
, 

(a) 

(b) 

1 1 
- « RC « -. Jc W 

' 
' 

' 

' 

' 
' 

' 
' 

Figure 3.28 Effect of (a) large and 
(b) small RC values on the 
performance of the envelope detector. 
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In such a case, the capacitor discharges slowly through the resistor; thus, the output of the 
envelope detector, which we denote as m (t), closely follows the message signal. 

Example 3.3.1 
An audio signal of bandwidth W = 5 kHz is modulated on a carrier of frequency 1 MHz using 
conventional AM. Determine the range of values of RC for successful demodulation of this 
signal using an envelope detector. 

Solution We must have l; « RC « � ; therefore, 10-6 « RC « 2 x 10-4_ In this case, 

RC = 10-5 is an appropriate choice. • 

Demodulation of DSB-SC AM Signals. As previously indicated, the demodu­
lation of a DSB-SC AM signal requires a synchronous demodulator. That is, the demod­
ulator must use a coherent phase reference, which is usually generated by means of a 
phase-locked loop (PLL) (see Section 8.8.1), to demodulate the received signal. 

The general configuration is shown in Figure 3.29. A PLL is used to generate a 
phase-coherent carrier signal that is mixed with the received signal in a balanced modula­
tor. The output of the balanced modulator is passed through a lowpass filter of bandwidth 
W that passes the desired signal and rejects all signal and noise components above W Hz. 
The characteristics and operation of the PLL are described in Section 8.8. 1 .  

Demodulation of SSB Signals. The demodulation of SSB-AM signals also 
requires the use of a phase-coherent reference. In the case of signals, such as speech, that 
have relatively little or no power content at DC, it is simple to generate the SSB signal, 
as shown in Figure 3.16.  Then, we can insert a small carrier component that is transmitted 
along with the message. In such a case, we may use the configuration shown in Figure 3.30 
to demodulate the SSB signal. We observe that a balanced modulator is used to convert the 
frequency of the bandpass signal to lowpass or baseband. 

Demodulation of VSB Signals. In VSB, a carrier component is generally trans­
mitted along with the message sidebands; The existence of the carrier component makes it 
possible to extract a phase-coherent reference for demodulation in a balanced modulator, 
as shown in Figure 3.30. 

In applications such as a TV broadcast, a large carrier component is transmitted along 
with the message in the VSB signal. In such a case, it is possible to recover the message 
by passing the received VSB signal through an envelope detector. 

r(t
) 

Phase-locked 
loop 

Balanced 
modulator 

Lowpass 
filter 

m(t
) 

Figure 3.29 Demodulator for 
a DSB-SC signal. 
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3.4 SIGNAL MULTIPLEXING 

Balanced 
modulator 

Lowpass 
filter 

Amplitude Modulation Chapter 3 

m(t) 

Figure 3.30 Demodulation of 
SSB-AM signal containing a 
carrier component. 

When we use a message signal m(t) to modulate the amplitude of a sinusoidal carrier, we 
translate the message signal by an amount equal to the carrier frequency fc. If we have 
two or more message signals to transmit simultaneously over the communication channel, 
we can have each message signal modulate a carrier of a different frequency, where the 
minimum separation between two adjacent carriers is either 2 W (for DSB AM) or W (for 
SSB AM), where W is the bandwidth of each of the message signals. Thus, the various 
message signals occupy separate frequency bands of the channel and do not interfere with 
one another during transmission. 

Combining separate message signals into a composite signal for transmission over 
a common channel is called multiplexing. There are two commonly used methods for sig­
nal multiplexing: (1)  time-division multiplexing and (2) frequency-division multiplexing 
(FDM). Time-division multiplexing is usually used to transmit digital information; this 
will be described in Section 7 .6. FDM may be used with either analog or digital signal 
transmission. 

3.4.1 Frequency-Division Multiplexing 

In FDM, the message signals are separated in frequency, as previously described. A typical 
configuration of an FDM system is shown in Figure 3.3 1 .  This figure illustrates the FDM 
of K message signals at the transmitter and their demodulation at the receiver. The lowpass 
filters (LPFs) at the transmitter ensure that the bandwidth of the message signals is limited 
to W Hz. Each signal modulates a separate carrier; hence, K modulators are required. 
Then, the signals from the K modulators are summed and transmitted over the channel. 

At the receiver of an FDM system, the signals are usually separated by passing 
through a parallel bank of bandpass filters (BPFs). There, each filter is tuned to one of 
the carrier frequencies and has a bandwidth that is wide enough to pass the desired signal. 
The output of each bandpass filter is demodulated, and each demodulated signal is fed to a 
lowpass filter that passes the baseband message signal and eliminates the double-frequency 
components. 

FDM is widely used in radio and telephone communications. In telephone commu­
nications, each voice-message signal occupies anominal bandwidth of 4 kHz. The messagf 
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Figure 3.31 Frequency-division multiplexing of multiple signals. 
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Demodulator m1(t) 

Demodulator 

Demodulator 

Receiver 

signal is single-sideband modulated for bandwidth-efficient transmission. In the first level 
of multiplexing, 12 signals are stacked in frequency, with a frequency separation of 4 kHz 
between adjacent carriers. Thus, a composite 48-kHz channel, called a group channel, 
transmits the 12 voice-band signals simultaneously. In the next level of FDM, a num­
ber of group channels (typically five or six) are stacked together in frequency to form a 
supergroup channel. Then the composite signal is transmitted over the channel. Higher­
order multiplexing is obtained by combining several supergroup channels. Thus, an FDM 
hierarchy is employed in telephone communication systems. 

3.4.2 Quadrature-Carrier Multiplexing 

Another type of multiplexing allows us to transmit two message signals on the same 
carrier frequency. This type of multiplexing uses two quadrature carriers, Ac cos 2nfct 
and Ac sin 2nfct. To elaborate, suppose that m1 (t) and m2(t) are two separate message 
signals to be transmitted over the channel. The signal m1 (t) amplitude modulates the 
carrier Ac cos 2nfct, and the signal m2(t) amplitude modulates the quadrature carrier 
Ac sin 2n fct .  The two signals are added together and transmitted over the channel. Hence, 
the transmitted signal is 

(3.4. 1) 

Therefore, each message signal is transmitted by DSB-SC AM. This type of signal multi­
plexing is called quadrature-carrier multiplexing. Quadrature-carrier multiplexing results 
in a bandwidth-efficient communication system that is comparable in bandwidth efficiency 
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Figure 3.32 Quadrature-carrier multiplexing. 

to SSB AM. Figure 3 .32 illustrates the modulation and demodulation of the quadrature­
carrier multiplexed signals. As shown, a synchronous demodulator is required at the 
receiver to separate and recover the quadrature-carrier-modulated signals. 

Demodulation of m1 (t) is done by multiplying u(t) by cos 2nfct and then passing 
the result through a lowpass filter. We have 

u(t) cos 2nfct = Acm1 (t) cos2 2nfct + Acm2(t) cos 2nfct sin 2nfct 
Ac Ac Ac . 

= 2m1 (t) + 2m1 (t) cos 4nfct + 2m2(t) sm4nfct. 

This signal has a lowpass component �cm1 (t) and two high-frequency components. The 
lowpass component can be separated using a lowpass filter. Similarly, to demodule m2(t) , 
we can multiply u(t) by sin 2nfct and then pass the product through a lowpass filter. 

3.5 AM RADIO BROADCASTING 

AM radio broadcasting is a familiar form of communication via analog signal transmission. 
Commercial AM radio broadcasting utilizes the frequency band 535-1605 kHz for the 
transmission of voice and music. The carrier-frequency allocations range from 540-1600 
kHz with 10 kHz spacing. 

Radio stations employ conventional AM for signal transmission. The baseband­
message signal m(t) is limited to a bandwidth of approximately 5 kHz. Since there are 
billions of receivers and relatively few radio transmitters, the use of conventional AM for 
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broadcast is justified from an economic standpoint. The major objective is to reduce the 
cost of implementing the receiver. 

The receiver most commonly used in AM radio broadcast is the so-called super­
heterodyne receiver shown in Figure 3.33. It consists of a radio-frequency (RF)-tuned 
amplifier, a mixer, a local oscillator, an intermediate-frequency (IF) amplifier, an envelope 
detector, an audio-frequency amplifier, and a loudspeaker. Tuning for the desired radio fre­
quency is provided by a variable capacitor, which simultaneously tunes the RF amplifier 
and the frequency of the local oscillator. 

In the superheterodyne receiver, every AM radio signal is converted to a common 
intermediate frequency of lw = 455 kHz. This conversion allows the use of a single-tuned 
IF amplifier for signals from any radio station in the frequency band. The IF amplifier is 
designed to have a bandwidth of 10 kHz, which matches the bandwidth of the transmitted 
signal. 

The frequency conversion to IF is performed by the combination of the RF amplifier 
and the mixer. The frequency of the local oscillator is 

Ao = le + lw, 

where le is the carrier frequency of the desired AM radio signal. The tuning range of 
the local oscillator is 995-2055 kHz. By tuning the RF amplifier to the frequency le and 
mixing its output with the local oscillator frequency lw = le + lw, we obtain two signal 
components; one is centered at the difference frequency lw, and the second is centered at 
the sum frequency 2le + lw. Only the first component is passed by the IF amplifier. 

At the input to the RF amplifier, we have signals that are picked up by the antenna 
from all radio stations. By limiting the bandwidth of the RF amplifier to the range Be < 

BRF < 2lw, where Be is the bandwidth of the AM radio signal (10 kHz), we can reject the 
radio signal transmitted at the so-called image frequency l; = lw + lw. When we mix 
the local oscillator output cos 2rr.lw t with the received signals 

r1 (t) = Ae[l + m1 (t)] COS 2rr.let 
r1 (t) = Ae[l + m2(t)] cos 2rr.l;t , 
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where le = Ao - lw and 1; = Ao + lw, the mixer output consists of the two signals 

YI (t) = Ac[ l  + m1 (t)] cos 2nlw(t) + double-frequency term, 

y2 (t) = Ac[ l  + m2(t)] cos 2nlw(t) + double-frequency term, 

where m 1 (t) represents the desired signal and m2 (t) is the signal sent by the radio station 
transmitting at the carrier frequency 1; = Ao + lw. To prevent the signal r1 (t) from 
interfering with the demodulation of the desired signal r1 (t) , the RF-amplifier bandwidth 
is sufficiently narrow so the image-frequency signal is rejected. Hence, BRF < 21w is the 
upper limit on the bandwidth of the RF amplifier. In spite of this constraint, the band­
width of the RF amplifier is still considerably wider than the bandwidth of the IF amplifier. 
Thus, the IF amplifier, with its narrow bandwidth, provides signal rejection from adjacent 
channels, and the RF amplifier provides signal rejection from image channels. Figure 3.34 
illustrates the bandwidths of both the RF and IF amplifiers and the requirement for rejecting 
the image-frequency signal. 

The output of the IF amplifier is passed through an envelope detector, which produces 
the desired audio-band message signal m(t). Finally, the output of the envelope detector is 
amplified, and this amplified signal drives a loudspeaker. Automatic volume control (AVC) 

0 f IF 

0 

0 

(a) 

fc = fw - !IF 
(b) 

fc Ao 

f 

f 

f� = f w + f IF f 
f---2 f IF ------! 
(c) 

Figure 3.34 Frequency-response 
characteristics of both IF and RF 
amplifiers. 
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is provided by a feedback-control loop, which adjusts the gain of the IF amplifier based on 
the power level of the signal at the envelope detector. 

3.6 SUMMARY AND FURTHER READING 

In this chapter, we covered amplitude modulation (AM) of analog signals. The AM meth­
ods treated were double-sideband, suppressed carrier (DSB-SC) AM, conventional AM, 
and single-sideband (SSB) AM. The implementation of different types of AM modulators 
and demodulators was also treated. In the final topic of this chapter, we described the use 
of AM in radio broadcasting. 

Amplitude modulation is treated in numerous books on basic communication sys­
tems, including the books by Shanmugam (1979), Carlson (1986), Strernler (1990), Couch 
(1993), Gibson (1993), Haykin (2000), and Ziemer and Tranter (2002). The implementa­
tion of analog communications systems is treated in detail by Clark and Hess (197 1). 

APPENDIX 3A: DERIVATION OF THE EXPRESSION FOR SSB-AM SIGNALS 

Let m ( t) be a signal with the Fourier transform (spectrum) M (f). An upper single-sideband 
amplitude-modulated (USSB AM) signal is obtained by eliminating the lower sideband 
of a DSB-AM signal. Suppose we eliminate the lower sideband of the DSB-AM signal, 
uosB (t) = 2Acm(t) cos 2nfct, by passing it through a highpass filter whose transfer func­
tion is given by 1 1 ,  

H(f) = 
0, 

Ii i > fc 
otherwise 

as shown in Figure 3.16.  Obviously, H(f) can be written as 

where u_1 (-) represents the unit-step function. Therefore, the spectrum of the USSB-AM 
signal is given by 

or equivalently, 

(3A.l )  

Taking the inverse Fourier transform of both sides of Equation (3A.1) and using the mod­
ulation and convolution properties of the Fourier transform, as shown in Example 2.3.14 
and Equation (2.3.26), we obtain 

Uu (t) = Acm(t) * g;-l [u- 1 Cf)] ej2Tifct 

(3A.2) 
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(3A.3) 

which follows from Equation (2.3. 12) and the duality theorem of the Fourier transform. 
Substituting Equation (3A.3) in Equation (3A.2), we obtain 

Uu (t) = Acm(t) * [�o(t) + l�t J ej2nfct 
+ Acm(t) * [�o (t) - _j__J e-j2nfct 2 2nt 

= Ac [m(t) + jm(t)] ej2nfct 2 
+ �c [ m(t) - jm(t) J e-j2n

f
ct , 

where we have used the identities 

m(t) * 8 (t) = m(t) , 
1 A m(t) * - = m(t). nt 

Using Euler's relations in Equation (3A.4), we obtain 

uu (t) = Acm(t) cos 2nfct - Acm(t) sin 2nfct, 

(3A.4) 

(3A.5) 

which is the time-domain representation of a USSB-AM signal. The expression for the 
LSSB-AM signal can be derived by noting that 

Uu (t) + ue (t) = UDSB (t) 

or 

Acm(t) cos 2nfct - Acm(t) sin 2nfct + ue (t) = 2Acm(t) cos 2nfct. 

Therefore, 

ue (t) = Acm(t) cos 2nfct + Acm(t) sin 2nfct. (3A.6) 

Thus, the time-domain representation of a SSB-AM signal can generally be expressed as 

(3A.7) 

where the minus sign corresponds to the USSB-AM signal, and the plus sign corresponds 
to the LSSB-AM signal. 
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PROBLEMS 

3.1 The message signal m (t) = 2 cos 400t + 4 sin(500t + } ) modulates the carrier sig­
nal c(t) = A cos(8000nt), using DSB amplitude modulation. Find the time-domain 
and frequency-domain representations of '1:he modulated signal and plot the spec­
trum (Fourier transform) of the modulated signal. What is the power content of the 
modulated signal? 

M In a DSB system, the carrier is c(t) = A cos 2nfct and the message signal is given 
V by m (t) = sinc(t) + sinc2(t) .  Find the frequency-domain representation and the 

bandwidth of the modulated signal. 

3.3 The two signals (a) and (b), shown in Figure P-3.3, DSB modulate a carrier signal 
c(t) = A cos 2n Jot. Precisely plot the resulting modulated signals as a function of 
time and discuss their differences and similarities. 

mi(t) 

1 2 

(
a
) 

(b) 

Figure P-3.3 

3.4 Suppose the signal x (t) = m (t) + cos 2nfct is applied to a nonlinear system whose 
output is y (t) = x (t) + 1x2 (t) .  Determine and sketch the spectrum of y (t) when 
M (f) is as shown in Figure P-3.4 and W « fc. 

M(f) 

-w w 
f 

Figure P-3.4 
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3.5 The modulating signal 

m (t) = 2 cos 4000nt + 5 cos 6000nt 

is multiplied by the carrier 

c (t) = 100 cos 2nlet, 

where le = 50 kHz. Determine and sketch the spectrum of the DSB signal. 

3.6 A DSB-modulated signal u (t) = Am(t) cos 2nlct is mixed (multiplied) with a local 
carrier XL(t) = cos(2nlet + 8), and the output is passed through a lowpass filter 
with a bandwidth equal to the bandwidth of the message m (t). The signal power at 
the output of the lowpass filter is denoted by Pout· The modulated signal power is 
denoted by Pu . Plot 1};;1 as a function of e for 0 :S e :S n .  

3.  7 An AM signal has the form 

u (t) = [20 + 2 cos 3000nt + 10 cos 6000nt] cos 2nlet, 

where le = 105Hz. 

1. Sketch the (voltage) spectrum of u (t). 

2. Determine the power in each of the frequency components. 

3. Determine the modulation index. 

4. Determine the sidebands' power, the total power, and the ratio of the sidebands' 
power to the total power. 

3.8 A message signal m (t) = cos 2000nt + 2 cos 4000nt modulates the carrier c (t) = 
100 cos 2nlet, where le = 1 MHz to produce the DSB signal m (t) c (t) . 

1. Determine the expression for the upper-sideband (USB) signal. 

2. Determine and sketch the spectrum of the USB signal. 

3.9 A DSB-SC signal is generated by multiplying the message signal m (t) with the 
periodic rectangular waveform (shown in Figure P-3.9), then filtering the product 
with a bandpass filter tuned to the reciprocal of the period Tp , with the bandwidth 
2W, where W is the bandwidth of the message signal. Demonstrate that the output 
u (t) of the bandpass filter (BPF) is the desired DSB-SC AM signal 

u (t) = m (t) sin 2nlet, 

where le = 1 / Tp .  



3.10 Show that while generating a DSB-SC signal in Problem 3 .9, it is not necessary for 
the periodic signal to be rectangular. This means that any periodic signal with the 
period Tp can substitute for the rectangular signal in Figure P-3.9. 

3.11 The message signal m(t) has the Fourier transform shown in Figure P-3. l l (a). This 
signal is applied to the system shown in Figure P-3. 1  l (b) to generate the signal y(t). 

1. Plot Y (f), the Fourier transform of y(t) . 
2. Show that if y(t) is transmitted, the receiver can pass it through a replica of 

the system shown in Figure P-3 . l l (b) to obtain m(t) back. This means that this 
system can be used as a simple scrambler to enhance communication privacy. 

M(f) 

- w +W 

(a) 

HPF LPF 
!cutoff = fc [ -W, W] 

A cos 2rrfct A cos2rr(fc + W)t 

(b) 

f 

Figure P-3.11 
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3.12 Show that in a DSB-modulated signal, the envelope of the resulting bandpass signal 
is proportional to the absolute value of the message signal. This means that an enve­
lope detector can be employed as a DSB demodulator if we know that the message 
signal is always positive. 

3.13 An AM signal is generated by modulating the carrier le = 800 kHz by the signal 

m (t) = sin 2000nt + 5 cos 4000nt. 

The AM signal 
u(t) = 100 [ l  + m (t)] cos 2nlct 

is fed to a 50-Q load. 

1. Determine and sketch the spectrum of the AM signal. 

2. Determine the average power in the carrier and in the sidebands. 

3. What is the modulation index? 

4. What is the peak power delivered to the load? 

3.14 The output signal from an AM modulator is 

u (t) = 5 cos 1800nt + 20 cos 2000nt + 5 cos 2200nt. 

1. Determine the modulating signal m (t) and the carrier c (t) . 
2. Determine the modulation index. 

3. Determine the ratio of the power in the sidebands to the power in the carrier. 

3.15 A DSB-SC AM signal is modulated by the signal 

m (t) = 2 cos 2000nt + cos 6000nt. 

The modulated signal is 

u (t) = l OOm (t) cos 2nlct, 

where le = 1 MHz. 

1. Determine and sketch the spectrum of the AM signal. 

2. Determine the average power in the frequency components. 

3.16 An SSB-AM signal is generated by modulating an 800 kHz carrier by the signal 
m (t) = cos 2000nt + 2 sin 2000nt. The amplitude of the carrier is Ac = 100. 

1. Determine the signal m (t) .  
2. Determine the (time-domain) expression for the lower sideband of the SSB-AM 

signal. 

3. Determine the magnitude spectrum of the lower-sideband-SSE signal. 
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3.17 Weaver's SSB modulator is illustrated in Figure P-3. 17. By taking the input signal as 
m (t) = cos 2nfmt where fm < W, demonstrate that by proper choice of Ji and Ji, 
the output is an SSB signal. 

m(t) 

90° 

Figure P-3.17 

LPF 
BW = W 

LPF 
BW = W  

90° 
+ 

SSB + 1-----;11o­
signal 

3.18 The message signal m(t), whose spectrum is shown in Figure P-3. 18,  is passed 
through the system shown in that figure. 

cos (2rcf0t) 

Figure P-3.18 

Square law Yi(t) = x2(t) Bandpass 
device filter 

M(f) 

-w 

cos (2rcf0t) 

w f 

Lowpass __ 
Y
_
i
.,.
t) 

filter 

The bandpass filter has a bandwidth of 2 W centered at f0, and the lowpass filter has 
a bandwidth of W. Plot the spectra of the signals x(t) , y1 (t) ,  y2(t) ,  y3 (t), and y4 (t) .  
What are the bandwidths of these signals? 
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3.19 The system shown in Figure P-3.19 is used to generate an AM signal. The modulat­
ing signal m (t) has zero mean and its maximum (absolute) value is Am =max Im (t) I .  
The nonlinear device has the input-output characteristic 

y (t) = ax (t) + bx1 (t) . 

1. Express y (t) in terms of the modulating signal m (t) and the carrier c (t) = 
cos 2nfct . 

2. What is the modulation index? 

3. Specify the filter characteristics that yield an AM signal at its output. 

Nonlinear y(t) 
memoryless 

system 

c(t) = cos (2nfot) 

Linear 
filter 

u(t) 

AM signal 

Figure P-3.19 

3.20 The signal m(t), whose Fourier transform M(f) is shown in Figure P-3.20, is to be 
transmitted from point A to point B. We know that the signal is normalized, meaning 
that - 1  :::; m(t) :::; 1 .  

M(f) 

-10,000 10,000 f 
Figure P-3.20 

1. If USSB is employed, what is the bandwidth of the modulated signal? 

2. If DSB is employed, what is the bandwidth of the modulated signal? 

3. If an AM scheme with a = 0.8 is used, what is the bandwidth of the modulated 
signal? 

3.21 A vestigial-sideband modulation system is shown in Figure P-3.21 .  The bandwidth 
of the message signal m (t) is W, and the transfer function of the bandpass filter is 
shown in the figure. 
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1. Determine h1 (t), which is the lowpass equivalent of h(t), where h(t) represents 
the impulse response of t�e bandpass filter. 

2. Derive an expression for the modulated signal u(t). 

H(f) 

1 

Figure P-3.21 

BPF 
H(f) 

VSB signal 

u(t) 

3.22 Find expressions for the in-phase and quadrature components, Xc(t) and Xs (t), as 
well as the envelope and phase, V(t) and E>(t), for DSB, SSB, conventional AM, 

USSB, and lower SSB (LSSB). 

3.23 The normalized signal mn (t) has a bandwidth of 10,000 Hz, and its power content is 
0.5 Watts. The carrier A cos 2nfot has a power content of 200 Watts. 

1. If mn (t) modulates the carrier using SSB amplitude modulation, what will be 
the bandwidth and the power content of the modulated signal? 

. 
. 

2. If the modulation scheme is DSB SC, what is the answer to Part 1 ?  

3. If the modulation scheme is AM with a modulation index of 0.6, what is the 
answer to Part 1 ?  

3.24 We wish to transmit 60 voice-band signals by SSB (upper-sideband) modulation and 
frequency-division multiplexing (FDM). Each of the 60 signals has a spectrum as 
shown in Figure P-3.24. Note that the voiceband signal is band limited to 3 kHz. 
If each signal is frequency translated separately, we require a frequency synthesizer 
that produces 60 carrier frequencies to perform the FDM. On the other hand, if we 
subdivide the channels into L groups of K subchannels each, such that LK = 60, 
we may reduce the number of frequencies from the synthesizer to L + K. 

1. Illustrate the spectrum of the SSB signals in a group of K subchannels. Assume 
that a 1 kHz guard band separates the signals in adjacent frequency subchannels 
and that the carrier frequencies are fci = 10 kHz, fc2 = 14 kHz, . . .  , etc. 
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2. Sketch L and K such that L K = 60 and L + K is a minimum. 
3. Determine the frequencies of the carriers if the 60 FDM signals occupy the 

frequency band 300-540 kHz, and each group of K signals occupies the band 
10 kHz to (10 + 4K) kHz. 

IM;(f) I 

-3000 0 3000 f 

Figure P-3.24 

COMPUTER PROBLEMS 

3.1 Double-sideband (DSB) AM 

The message signal m (t) is given by 

m (t) = 
{ sinc(l OOt) ,  0 ::; t ::; to 

0, otherwise ' 

where to = 0. 1 .  The message signal modulates the carrier c(t) = cos 2n:fct, where 
fc = 250 Hz, to produce a DSB-AM signal u (t). 

1. By selecting the sampling interval ts = 0.0001 ,  generate samples of m(t) and 
u (t) for 0 ::; t ::; to and plot them. 

2. Determine and plot the spectra of m (t) and u (t) .  

3 .  Repeat Parts 1 and 2 when to = 0.4, and comment on the results between 
to = 0.1  and to = 0.4. 

3.2 Conventional AM 

The message signal m (t), which is given in Problem CP-3. 1 ,  modulates the carrier 
c(t) = cos 2nfct using conventional AM. The carrier frequency is fc = 250 Hz and 
the modulation index is a = 0.80. 

1. Plot the message signal m (t) and the modulated signal u (t) using a sampling 
interval ts = 0.0001 .  

2. Determine and plot the spectra of the message signal m (t) and the modulated 
signal u (t). 
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3. Repeat Parts 1 and 2 when to = 0.4, and comment on the results between to = 
0. 1 and to = 0.4. 

3.3 Single-sideband AM 

The message signal m(t), which is given in Problem CP-3.1 ,  modulates the carrier 
c(t) = cos 2nlet and produces the lower SSB signal u(t). The carrier frequency is 
le = 250 Hz. 

1. Plot the message signal m(t), its Hilbert transform m(t), and the modulated 
LSSB signal u (t) . 

2. Determine and plot the spectra of the message signal m(t) and the modulated 
LSSB signal u(t). 

3. Repeat Parts 1 and 2 when to = 0.4, and comment on the results between 
to =  0. 1 and to =  0.4. 

3.4 Demodulation of the DSB-AM Signal 

The message signal m(t), which is given in Problem CP-3. 1 ,  modulates the carrier 
c(t) = cos 2nlet and results in the DSB-AM signal u(t) = m(t)c(t). The carrier 
frequency le = 250 Hz and to = 0. 1 .  

1 .  B y  selecting the sampling interval ts = 0.0001 ,  generate 1000 samples of the 
message signal m(t) and the modulated signal u(t), and plot both signals. 

2. Demodulate the sampled DSB-AM signal u(t) generated in Part 1 by using the 
demodulator shown in Figure CP-3.4. Perform the demodulation for ¢ = 0, 
n/8, n/4, and n/2, and plot the received message signal mr(t). The lowpass 
filter is a linear-phase FIR filter having 3 1  taps, a cutoff frequency (-3 dB) of 
100 Hz, and a stopband attenuation of at least 30 dB. 

3.  Comment on the results obtained in Part 2. 

4. Instead of using a time-domain lowpass filter to reject the frequency compo­
nents centered at 2le, compute the discrete-Fourier transform (DPT) of 1000 
samples of the mixer output, set to zero those frequency components centered 
at 2le and compute the inverse DPT to obtain the time-domain signal. Compare 
the results of this frequency-domain filtering with the time-domain filtering in 
Part 2. 

Received 
signal 

Cos (2nfct + </>) 
Lowpass 

filter 

m,(t) 
f-----'..,._ Output 

message signal 

Figure CP-3.4 Demodulation 
for DSB-SC AM signal. 
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3.5 Demodulation of the SSB-AM Signal 

The message signal m(t), which is given in Problem CP-3 . 1 ,  modulates the carrier 
c(t) = cos 2nlet and produces the lower SSB signal u(t) . The carrier frequency is 
le = 250 Hz. 

1. By selecting the sampling interval ts = 0.0001,  generate 1000 samples of the 
message signal m(t) , its Hilbert transform m(t), and the modulated LSSB signal 
u(t) . Plot these three signals. 

2. Demodulate the sampled LSSB signal u(t) generated in Part 1 by using the 
demodulator shown in Figure CP-3.4. Perform the demodulation for </> = 0, 
n/8, n/4, and n/2, and plot the demodulated received message signal m, (t) .  
The characteristics of the lowpass filter to be designed are given in Part 2 of 
Problem CP-3.4. 

3. Comment on the results obtained in Part 2. 
4. Instead of using the time-domain filter in Part 2, suppose the filtering of the 

frequency components centered at 2 le is performed in the frequency domain by 
using the DFT as described in Part 4 of Problem CP-3 .4. Perform the filtering in 
the frequency domain and compare the demodulated signal with that obtained 
by time-domain filtering. 

3.6 Demodulation of Conventional AM 

The message signal m(t), which is given in Problem CP-3 . 1 ,  modulates the carrier 
c(t) = cos 2nlet to produce a conventional AM signal. The carrier frequency is 
le = 250 Hz and the modulation index is a =  0.80. 

1. By selecting the sampling interval ts = 0.0001,  generate 1000 samples of the 
message signal m(t) and the modulated conventional AM signal u(t). Plot these 
two signals. 

2. Demodulate the sampled conventional AM signal u(t) generated in Part 1 by 
computing the envelope of u(t), i.e., by computing 

e(t) = ./[l + am(t)]2 = 1 1 + am(t) I 

and subtracting the DC value term to obtain the demodulated signal m, (t). Plot 
the demodulated received-message signal m,(t). 

3. Comment on the results obtained in Part 2. 



Angle M odulation 

In Chapter 3, we considered amplitude modulation (AM) of the carrier as a means for 
transmitting the message signal. Amplitude-modulation methods are also called linear­
modulation methods, although conventional AM is not linear in the strict sense. 

Another class of modulation methods includes frequency modulation (FM) and phase 
modulation (PM), which are described in this chapter. In FM systems, the frequency of the 
carrier fc is changed by the message signal; in PM systems, the phase of the carrier is 
changed according to the variations in the message signal. Both FM and PM are nonlin­
ear, and often they are jointly called angle-modulation methods. In the following sections, 
we will show that, angle modulation, due to its inherent nonlinearity, is more complex 
to implement and much more difficult to analyze. In mariy cases, only an approximate 
analysis can be done. Another property of angle modulation is its bandwidth-expansion 
property. The FM and PM systems generally expand the bandwidth such that the effective 
bandwidth of the modulated signal is 1,1sually many times the bandwidth of the message 
signal. 1 With a higher implementation complexity and a higher bandwidth occupancy, we 
would naturally question the usefulness of these systems. As our analysis in Chapter 6 
will show, the major benefit of these systems is their high degree of noise immunity. In 
fact, these systems sacrifice bandwidth for high-noise immunity. That is the reason that 
FM systems are widely used in high-fidelity music broadcasting and point-to-point com­
munication systems, where the transmitter power is quite limited. Another advantage of 
angle-modulated signals is their constant envelope, which is beneficial when the signal is 
amplified by nonlinear amplifiers. 

4.1 REPRESENTATION OF FM AND PM SIGNALS 

An angle-modulated signal generally can be written as 

u(t) = Ac cos(2nfct + ¢(t)), (4. 1 . 1) 

1 Strictly speaking, the bandwidth of the modulated signal is infinite. That is why we talk about the effective 

bandwidth. 
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where le denotes the carrier frequency and ¢ (t) denotes a time-varying phase. The instan­
taneous frequency of this signal is given by 

1 d f; (t) = le +  2n dt</>(t) . (4. 1 .2) 

If m(t) is the message signal, then in a PM system, the phase is proportional to the mes­
sage, i.e., 

¢(t) = kpm(t) , (4. 1 .3) 

and in an FM system, the instantaneous frequency deviation from the carrier frequency is 
proportional to the message signal, i.e., 

1 d l; (t) - le = k 1m(t) = 2Jt dt </>(t) , (4. 1 .4) 

where kp and kt are phase and frequency deviation constants. From the preceding rela­
tionships, we have {kpm(t) , 

¢ (t) = t 2nkt J_00 m(r)dr, 
PM 

FM 
(4. 1 .5) 

The foregoing expression shows a close and interesting relationship between FM and PM 
systems. This close relationship allows us to analyze these systems in parallel and only 
emphasize their main differences. First, note that if we phase modulate the carrier with the 
integral of a message, it is equivalent to the frequency modulation of the carrier with the 
original message. On the other hand, this relation can be expressed as 

d {kp !:_m(t) , PM 
-¢(t) = dt 
dt 2nk1m(t), FM 

(4. 1 .6) 

which shows that if we frequency modulate the carrier with the derivative of a message, the 
result is equivalent to the phase modulation of the carrier with the message itself. Figure 4. 1 
shows the above relation between FM and PM. Figure 4.2 illustrates a square-wave signal 
and its integral, a sawtooth signal, and their corresponding FM and PM signals. 

The demodulation of an FM signal involves finding the instantaneous frequency of 
the modulated signal and then subtracting the carrier frequency from it. In the demodula­
tion of PM, the demodulation process is done by finding the phase of the signal and then 
recovering m(t) . The maximum phase deviation in a PM system is given by 

!:!..¢max = kp max[lm(t) I ] ,  (4.1 .7) 

and the maximum frequency deviation in an FM system is given by 

Ill max = kt max[lm(t) I ] .  (4. 1 .8) 
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Figure 4.1 A comparison of frequency and 
phase modulators. 

Figure 4.2 Frequency and phase modulations of square and sawtooth waves. 
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Example 4.1.1 
The message signal 

m(t) = a  cos(2rr:fmt) 

is used to either frequency modulate or phase modulate the carrier Ac cos(2nfct) .  Find the 
modulated signal in each case. 

Solution In PM, we have 

</>(t) = kµm(t) = kpa cos(2rtfmt), 

and in FM, we have 

</> (t) = 2rr:k1 m (r) dr = _J_ sin(2rtfmt). 1
1 k a 

-oo fm 

Therefore, the modulated signals will be 

By defining 

and 

we have 

{Ac cos (2nfct + kµa cos(2rr:fmt)) , PM 
u(t) = ( k1a • ) Ac cos 2nfct + Im sm(2rr:J,nt) , FM 

{Ac cos (2nfct + {3p cos(2rtfmt)) , PM 
u (t) = ( ) · Ac cos 2nfct + f31 sin(2rtfmt) , FM 

(4. 1 .9) 

(4. 1 . 10) 

(4. 1 . 1 1) 

(4. 1 . 12) 

(4. 1 . 13) 

(4. 1 . 14) 

The parameters {3p and f31 are called the modulation indices of the PM and FM systems, 
respectively. • 

We can extend the definition of the modulation index for a general nonsinusoidal 
signal m (t) as 

/3p = kp max[ lm(t) I ] ;  

kt max[lm(t) I ]  /31 = w . ' 

(4. 1 . 15) 

(4. 1 . 16) 

where W denotes the bandwidth of the message signal m (t). In terms of the maximum 
phase and frequency deviation !l</Jmax and D.fmax' we have 

(4. 1 . 17) 

(4. 1 . 18) 
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Narrowband Angle Modulation2• Consider an angle-modulation system in 
which the deviation constants kp and kt and the message signal m (t) are such that for 
all t, we have </> (t) « 1 .  Then we can use a simple approximation to expand u (t) in 
Equation (4. 1 . 1 )  as 

u (t) = Ac cos 2nfct cos </> (t) - Ac sin 2nfct sin </> (t) 

(4. 1 . 19) 

where we have used the approximations cos </> ( t) � 1 and sin </> ( t) � </> ( t) for </> ( t) « 1 .  
Equation (4. 1 . 19) shows that in this case, the modulated signal is very similar to a con­
ventional AM signal given in Equation (3.2.5). The only difference is that the message 
signal m (t) is modulated on a sine carrier rather than a cosine carrier. The bandwidth of 
this signal is similar to the bandwidth of a conventional AM signal, which is twice the 
bandwidth of the message signal. Of course, this bandwidth is only an approximation of 
the real bandwidth of the FM signal. Phasor diagrams for this signal and the compara­
ble conventional AM signal are given in Figure 4.3. Compared to conventional AM, the 
narrowband angle-modulation scheme has far less amplitude variations. Of course, the 
angle-modulation system has constant amplitude and, hence, there should be no amplitude 
variations in the phasor-diagram representation of the system. These slight variations are 
due to the first-order approximation that we have used for the expansions of sin(</> (t)) and 
cos(</> (t)) .  As we will see later, the narrowband angle-modulation method does not pro­
vide better noise immunity than a conventional AM system. Therefore, narrowband angle 
modulation is seldom used in practice for communication purposes. However, these sys­
tems can be used as an intermediate stage for the generation of wideband angle-modulated 
signals, as we will discuss in Section 4.3. 

-sin ) 
I ·  

(a) 

(b) 

Vu(t) 
1' 1' ­· IAC am(t)

. 
/ '  cos 

2 Also known as low-index angle modulation. 

Figure 4.3 Phasor diagrams for the 
conventional AM and narrowband angle 
modulation. 
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4.2 SPECTRAL CHARACTERISTICS OF ANGLE-MODULATED SIGNALS 

Due to the inherent nonlinearity of angle-modulation systems, the precise characterization 
of their spectral properties, even for simple message signals, is mathematically intractable. 
Therefore, the derivation of the spectral characteristics of these signals usually involves 
the study of simple modulating signals and certain approximations. Then the results are 
generalized to the more complicated messages. We will study the spectral characteristics 
of an angle-modulated signal when the modulating signal is a sinusoidal signal. 

4.2.1 Angle Modulation by a Sinusoidal Signal 

Consider the case where the message signal is a sinusoidal signal (to be more precise, sine 
in PM and cosine in FM). As we have seen in Example 4.1 . 1 ,  in this case for both FM and 
PM we have 

u(t) = Ac cos(2nfct + f3 sin21tfmt) , (4.2.1) 

where f3 is the modulation index that can be either /3p or [31, and in PM sin2nfmt is 
substituted by cos 2nfmt. Using Euler's relation, the modulated signal can be written as 

(4.2.2) 

Since sin2nfmt is periodic with period Tm = Jm , the same is true for the complex expo­
nential signal 

Therefore, it can be expanded in a Fourier-series representation. The Fourier-series coeffi­
cients are obtained from the integral 

I 

Cn f m 1 Tm ej/3 sin2rcfmt e-jn2rcfmt dt 

u=2:1:.fmt _!_ f 2TI ej(/3 sinu-nu) du. 
21t Jo 

(4.2.3) 

This latter expression is a well-known integral called the Bessel function of the first kind 
of order n and is denoted by ln (/3) . Therefore, we have the Fourier series for the complex 
exponential as 00 

ejf3 sin2rcfmt = L ln ({3)ej2rcnfmt . 
n=-oo 

By substituting Equation (4.2.4) into Equation (4.2.2), we obtain 

U (t) = Re (Ac 
n'f;,oo 

ln ([3)ej2rcnfmt ej2rcfct) 
00 

= L Acln (/3) COS (21t(fc + nfm)t) . 
n=-oo 

(4.2.4) 

(4.2.s: 
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The preceding relation shows that, even in this very simple case where the modulating sig­
nal is a sinusoid of frequency fm , the angle-modulated signal contains all frequencies of 
the form fc + nfm for n = 0, ±1 ,  ±2, . . . .  Therefore, the actual bandwidth of the modu­
lated signal is infinite. However, the amplitude of the sinusoidal components of frequencies 
fc ± nfm for large n is very small. Hence, we can define a finite effective bandwidth for the 
modulated signal. For small f3, we can use the approximation 

(4.2.6) 

Thus, for a small modulation index {3, only the first sideband corresponding to n = 1 
is important. Also, we can easily verify the following symmetry properties of the Bessel 
function: 

n even 

n odd 
(4.2.7) 

Plots of In ({3) for various values of n are given in Figure 4.4. Table 4. 1 shows the 
number of harmonics required to include 80%, 90%, and 98% of the total power of the FM 
signals, respectively. 

Plots of Bessel functions ln(f3) 
1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6
0 1 2 3 4 

Figure 4.4 Bessel functions for various values of n. 

TABLE 4.1 REQUIRED NUMBER OF HARMONICS IN FM 

Power (%) 

80 
90 
98 

fJ = 0.5 fJ = I 

2 

fJ = 2 

2 
2 
3 

5 6 

(3 

fJ = 5 

4 
5 
6 

7 8 9 10 

fJ = 8 fJ = 10 fJ = 15 

7 9 14 
8 10 15 
9 1 1  16 
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Example 4.2.1 
Let the carrier be given by c(t) = 10 cos(2rcfct), and let the message signal be cos(20rct). 
Further assume that the message is used to frequency modulate the carrier with k 1 = 50. 
Find the expression for the modulated signal and determine how many harmonics should be 
selected to contain 99% of the modulated signal power. 

Solution The power content of the carrier signal is given by 

A� 100 
Pc = l = l = 50. 

The modulated signal is represented by 

u(t) = l 0 cos (2rcfct + 2rck1 f_100 cos(20rcr) dr) 
= 10 cos ( 2rcfct + �� sin(20rct)) 
= 10 cos(2rcfct + 5 sin(20rct)). 

The modulation index is given by Equation (4. 1 . 16) as 

f3 = kt 
max[lm(t) I] 

= 5; 
f m 

therefore, the FM-modulated signal is 00 
u(t) = L Acfn (/3) COS (2rc(fc + nfm)t) n=-oo 00 

= L 10ln (5) cos (2rc(fc + lOn)t) . n=-oo 

(4.2.8) 

(4.2.9) 

(4.2.10) 

(4.2. 1 1 )  

The frequency content of the modulated signal is  concentrated at frequencies of the form 
fc + lOn for various n.  To make sure that at least 99% of the total power is within the effective 
bandwidth, we must choose a k large enough such that n=k 10012(5) 

z= ; :::: o.99 x 5o. n=-k (4.2. 12) 

This is a nonlinear equation and its solution (for k) can be found by trial-and-error and by using 
tables of the Bessel functions. In finding the solution to this equation, we must employ the 
symmetry properties of the Bessel function given in Equation (4.2.7). Using these properties, 
we have 

(4.2. 13) 

Starting with small values of k and increasing it, we see that the smallest value of k for which 
the left-hand side exceeds the right-hand side is k = 6. Therefore, taking frequencies fc ± l Ok 
for 0 ::S k ::S 6 guarantees that 99% of the power of the modulated signal has been included 
and only 1 % has been left out. This means that if the modulated signal is passed through au 
ideal bandpass filter centered at fc with a bandwidth of at least 120 Hz, only 1 % of the signal 
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Be = 120 Hz 

-Jc 

f 

Figure 4.5 The harmonics present inside the effective bandwidth of Example 4.2. 1 .  

power will be eliminated. This gives us  a practical way to define the effective bandwidth of the 
angle-modulated signal as 120 Hz. Figure 4.5 shows the frequencies present in the effective 
bandwidth of the modulated signal. • 

In general, the effective bandwidth of an angle-modulated signal, which contains at 
least 98% of the signal power, is given by the relation 

Be = 2({3 + l)fm, (4.2. 14) 

where fJ is the modulation index and f m is the frequency of the sinusoidal message signal. It 
is instructive to study the effect of the amplitude and frequency of the sinusoidal message 
signal on the bandwidth and the number of harmonics in the modulated signal. Let the 
message signal be given by 

m(t) = a  cos(2rrfmt). (4.2. 15) 

Using Equations (4.2.14), (4. 1 . 12), and (4. 1 . 13), the bandwidth3 of the modulated 
signal is given by 

or 

PM 

FM 

(4.2. 16) 

(4.2.17) 

The preceding relation shows that increasing a, the amplitude of the modulating signal, 
in PM and FM has almost the same effect on increasing the bandwidth Be. On the other 
hand, increasing fm, the frequency of the message signal, has a more profound effect in 
increasing the bandwidth of a PM signal as compared to an FM signal. In both PM and FM, 

the bandwidth Be increases by increasing fm ; but in PM, this increase is a proportional 
increase, and in FM, this is only an additive increase which usually (for large {J) is not 

3For the remainder of the text, "bandwidth" refers to the effective bandwidth, unless otherwise stated. 
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Figure 4.6 The effect of doubling the bandwidth (frequency) of the message in FM and PM. 

substantial. Now if we look at the number of harmonics in the bandwidth (including the 
carrier) and denote it by Mc, we have { 2 Lkµaj + 3, PM 

Mc = 2 ( L.BJ + 1) + 1 = 2L.BJ + 3 = lkta j 2 
fm + 3, FM 

(4.2. 18) 

In both cases, increasing the amplitude a increases the number of harmonics in the band­
width of the modulated signal. However, increasing fm has no effect on the number of har­
monics in the bandwidth of the PM signal, and it almost linearly decreases the number of 
harmonics in the FM signal. This explains the relative insensitivity of the FM-signal band­
width to the message frequency. First, increasing fm decreases the number of harmonics in 
the bandwidth, and at the same time, it increases the spacing between the harmonics. The 
net effect is a slight increase in the bandwidth. In PM, however, the number of harmonics 
remains constant and only the spacing between them increases. Therefore, the net effect is 
a linear increase in bandwidth. Figure 4.6 shows the effect of increasing the frequency of 
the message in both FM and PM. 

4.2.2 Angle Modulation by an Arbitrary Message Signal 

The spectral characteristics of an angle-modulated signal for a general message signal m(t) 
is quite involved due to the nonlinear nature of the modulation process. However, there 
exists an approximate relation for the effective bandwidth of the modulated signal. This is 
known as Carson 's rule and is given by 

Be = 2(,8 + l ) W, (4.2. 19) 
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where f3 is the modulation index defined as {kp max[Jm(t) J ] ,  

f3 = k1 max[Jm(t) J] 
w 

, 

1 71 

PM 

(4.2.20) 
FM 

and W is the bandwidth of the message signal m (t) .  Since wideband FM has a f3 with a 
value that is usually around 5 or more, the bandwidth of an angle-modulated signal is much 
greater than the bandwidth of various amplitude-modulation schemes. This bandwidth is 
either W (in single sideband) or 2W (in double-sideband (DSB) or conventional AM). 

Example 4.2.2 
Assuming that m(t) = 10 sinc(l04t), determine the transmission bandwidth of an FM­
modulated signal with k 1 = 4000. 

Solution For FM, we have Be = 2(f3 + l ) W. To find W, we have to find the spectrum of 
m(t). We have M(f) = 10-3rr c10-4 f), which shows that m(t) has a bandwidth of 5000 Hz. 
Since the maximum amplitude of m(t) is 10, we have 

and 

f3 = 
k1 max[lm(t) I] = 4000 x IO 

= 8 
w 5000 

Be = 2(8 + 1) x 5000 = 90,000 Hz = 90 kHz. 

4.3 IMPLEMENTATION OF ANGLE MODULATORS AND DEMODULATORS 

• 

Any modulation and demodulation process involves the generation of new frequencies that 
were not present in the input signal. This is true for both amplitude- and angle-modulation 
systems. Thus, consider a modulator system with the message signal m(t) as the input 
and with the modulated signal u (t) as the output; this system has frequencies in its output 
that were not present in the input. Therefore, a modulator (and demodulator) cannot be 
modeled as a linear time-invariant (LTI) system, because an LTI system cannot produce 
any frequency components in the output that are not present in the input signal. 

Angle Modulators. Angle modulators are generally time-varying and nonlinear 
systems. One method for directly generating an FM signal is to design an oscillator whose 
frequency changes with the input voltage. When the input voltage is zero, the oscillator 
generates a sinusoid with frequency fc; when the input voltage changes, this frequency 
changes accordingly. There are two approaches to designing such an oscillator, usually 
called a VCO or voltage-controlled oscillator. One approach is to use a varactor diode. A 
varactor diode is a capacitor whose capacitance changes with the applied voltage. There­
fore, if this capacitor is used in the tuned circuit of the oscillator and the message signal is 
applied to it, the frequency of the tuned circuit and the oscillator will change in accordance 
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Lo To oscillator circuit 
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Figure 4.7 Varactor-diode implementation 
of an angle modulator. 

with the message signal. Let us assume that the inductance of the inductor in the tuned 
circuit of Figure 4. 7 is Lo and the capacitance of the varactor diode is given by 

C(t) = Co +  kom(t) . (4.3.1) 

When m (t) = 0, the frequency of the tuned circuit is given by fc = �. In general, 
2TC LoCo 

for nonzero m(t) , we have 

1 
f; (t) = -n

-
,Jr;;L=o (:;::;Co:=o =+

::::::;
k
=
om
==;=
(t;:::;=)) 

Assuming that 

and using the approximations 

and 

we obtain 

Hence, 

1 1 
2n,JLoCo J1 + ko m(t) Co 

1 = Jc . J1 + ��m(t) 

ko E = -m(t) « 1 Co 

1 -- � 1 - E 1 + E  ' 

1 E ---,, � 1 - -,JI+E 2 · 

f; (t) � fc (i - 2�0 m(t)) , 
which is the relation for a frequency-modulated signal. 

(4.3.2) 

(4.3.3) 

(4.3.4) 

(4.3.5) 

A second approach for generating an FM signal is to use a reactance tube. In 
reactance-tube implementation, an inductor whose inductance varies with the applied volt­
age is employed; the analysis is very similar to the analysis presented for the varactor 
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diode. Although we described these methods for the generation of FM signals, basically 
the same methods can be applied for the generation of PM signals (see Figure 4.1), due to 
the close relation between FM and PM signals. 

Another approach for generating an angle-modulated signal is to generate a nar­
rowband angle-modulated signal and then change it to a wideband signal. This method is 
usually known as the indirect method for the generation of FM and PM signals. Due to the 
similarity of conventional AM signals, the generation of narrowband angle-modulated sig­
nals is straightforward. In fact, any modulator for conventional AM generation can be eas­
ily modified to generate a narrowband angle-modulated signal. Figure 4.8 shows the block 
diagram of a narrowband angle modulator. Next, we use the narrowband angle-modulated 
signal to generate a wideband angle-modulated signal. Figure 4.9 shows the block diagram 
of such a system. The first stage of this system is to create a narrowband angle modula­
tor, such as the one shown in Figure 4.8. The narrowband angle-modulated signal enters 
a frequency multiplier which multiplies the instantaneous frequency of the input by some 
constant n. This is usually done by applying the input signal to a nonlinear element and 
then passing its output through a bandpass filter tuned to the desired central frequency. If 
the narrowband modulated signal is represented by 

Narrowband 
angle modulator 

Un (t) = Ac cos(2rtfct + </J (t)) , 

r-----�
Frequency 

n
f
c Frequency 

X n  

Local 
oscillator �---� Frequency f

w 

Figure 4.9 Indirect generation of angle-modulated signals. 

BP 
filter 

Output 

(4.3.6) 
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the output of the frequency multiplier (which is the output of the bandpass filter) is 
given by 

y(t) = Ac cos(2nnfct + n<f> (t)) .  (4.3.7) 

In general, this is a wideband angle-modulated signal. However, there is no guarantee that 
the carrier frequency of this signal, nfc. will be the desired carrier frequency. In the last 
stage, the modulator performs an up/down conversion to shift the modulated signal to the 
desired center frequency. This stage consists of a mixer and a bandpass filter. If the fre­
quency of the local oscillator of the mixer is Ao and we are using a down converter, the 
final wideband angle-modulated signal is given by 

u(t) = Ac cos (2n(nfc - fw)t + n<f>(t)) . (4.3.8) 

Since we can freely choose n and Ao. we can generate any modulation index at any desired 
carrier frequency using this method. 

Angle Demodulators. FM demodulators are implemented by generating an AM 
signal, whose amplitude is proportional to the instantaneous frequency of the FM signal, 
and then using an AM demodulator to recover the message signal. To implement the first 
step, i.e., to transform the FM signal into an AM signal, it is enough to pass the FM signal 
through an LTI system, whose frequency response is approximately a straight line in the 
frequency band of the FM signal. If the frequency response of such a system is given by 

IH (f) I = Vo +  k(f - fc) 

and if the input to the system is 

Be 
for If - !c l < 2 

u (t) = Ac cos (2nfct + 2nkf /_100 m(r) dr) , 

then the output will be the signal 

v0(t) = Ac CVo + kk1m(t)) cos ( 2nfct + 2nkf f :00 m(r) dr) . 

(4.3.9) 

(4.3. lOJ 

(4.3.n 

The next step is  to  demodulate this signal to obtain AcCVo + kk1m(t)) , from which th1 
message m (t) can be recovered. Figure 4. 10 shows a block diagram of these two steps. 

Many circuits can be used to implement the first stage of an FM demodulator, i.e. 
FM to AM conversion. One such candidate is a simple differentiator with 

FM signal 
FM to AM 
convertor 

IH(f) I = 2nf. 

.--------, 
Output 

AM signal AM signal 

demodulator 
Figure 4.10 A general FM 
demodulator. 

(4.3. 12 
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H(f) 

- - - - - - - - - - - - -)\- - � 
- - - - - - - - - - - - - - - I 

I 
I 
I 

Jc f 
Figure 4.11 A tuned circuit used in an 
FM demodulator. 

Another candidate is the rising half of the frequency characteristics of a tuned circuit, 
as shown in Figure 4. 1 1 .  Such a circuit can be easily implemented, but usually the linear 
region of the frequency characteristic may not be wide enough. To obtain linear charac­
teristics over a wide range of frequencies, usually two circuits tuned at two frequencies 
Ji and h are connected in a configuration, which is known as a balanced discrimina­
tor. A balanced discriminator with the corresponding frequency characteristics is shown in 
Figure 4. 12. 

These FM-demodulation methods, which transform the FM signal into an AM sig­
nal, have a bandwidth equal to the channel bandwidth Be occupied by the FM signal. 
Consequently, the noise that is passed by the demodulator is the noise contained within Be. 

A different approach to FM-signal demodulation is to use feedback in the FM demod­
ulator to narrow the bandwidth of the FM detector and, as will be seen in Chapter 6, to 
reduce the noise power at the output of the demodulator. Figure 4. 13 illustrates such a sys­
tem. In this figure, the FM discriminator is placed in the feedback branch of a feedback 
system that employs a VCO path. 

The bandwidth of the discriminator and the subsequent lowpass filter are designed 
to match the bandwidth of the message signal m(t) . The output of the lowpass filter is the 
desired message signal. This type of FM demodulator is called an FM demodulator with 
feedback (FMFB). An alternative to the FMFB demodulator is the use of a phase-locked 
loop (PLL), as shown in Figure 4.14 (PLLs are studied in detail in Section 8.8 .1) .  

The input to the PLL is the angle-modulated signal (we will neglect the presence of 
noise in this discussion) 

where, for FM, 

u (t) = Ae cos[2nfet + ¢ (t)] ,  

¢ (t) = 2nkt /_100 m(r) dr. 

(4.3 . 13) 

(4.3. 14) 

The VCO generates a sinusoid of a fixed frequency; in this case, it generates the carrier 
frequency fe, in the absence of an input control voltage. 

Now, suppose that the control voltage to the VCO is the loop filter's output, denoted 
as v(t) . Then, the instantaneous frequency of the VCO is 

fv (t) = fe + kvv(t), (4.3. 15) 
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Figure 4.13 Block diagram of an FMFB demodulator. 
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Figure 4.14 Block diagram of 
a PLL-FM demodulator. 

where kv is a deviation constant with units of Hz/Y. Consequently, the VCO output may be 
expressed as 

where 

Yv (t) = Av sin[2nfct + </>v (t)], 

</>v (t) = 2nkv lat v(r) dr. 

(4.3. 16) 

(4.3. 17) 

The phase comparator is basically a multiplier and a filter that rejects the signal 
component centered at 2fc · Hence, its output may be expressed as 

1 . e(t) = lAvAc sm[</>(t) - <f>v(t)] ,  (4.3. 18) 

where the difference </>(t) - <f>v(t) = ¢;(t) constitutes the phase error. The signal e(t) is 
the input to the loop filter. 

Let us assume that the PLL is in lock position, so the phase error is small. Then, 

sin[</> (t) - </>v(t)] � </>(t) - </>v(t) = </>e(t) (4.3 . 19) 

under this condition, so we may deal with the linearized model of the PLL, shown in 
Figure 4. 15.  

v(t) <f>(t) + ___ <P_e_(t_) __
_ Loop filter 

g(t) 

<f>v(t) 

......__ ______ -! 2nkvfo� (r) dr �---' 
Figure 4.15 Linearized PLL. 
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We may express the phase error as 

<Pe (t) = ¢(t) - 2nkv lat v(r) dr, 

or equivalently, either as 

or as 

d d 
-<Pe(t) + 2nkvv (t) = -¢(t) dt dt 

d roo d 
dt <Pe (t) + 2rckv Jo <Pe (r)g(t - r) dr = dt ¢ (t) . 

The Fourier transform of the integro-differential equation in Equation ( 4.3.22) is 

(j2rcf)c'Pe(f) + 2nkvc'Pe (f)G(f) = (j2rcf)c'P(f) ; 

hence, 
1 

c'Pe(f) = ( ) c'P(f). 
1 + �f G(f) 

The corresponding equation for the control voltage to the VCO is 

V(f) = <Pe(f)G(f) 
G(f) 

c'P (f) . 
1 + O!) G(f) 

Now, suppose that we design G(f) such that 

\k G(f) I »  1 v jf 

Chapter 4 

(4.3.20) 

(4.3.21) 

(4.3.22) 

(4.3.23) 

(4.3.24) 

(4.3.25) 

(4.3.26) 

in the frequency band \f l < W of the message signal. Then, from Equation (4.3.25), we 
have 

or equivalently, 

·2 f V(f) = �TC:v c'P
(f), 

1 d v(t) = 2nkv dt ¢ (t) 

= 
kt m(t) . kv 

(4.3.27) 

(4.3.28) 

Since the control voltage of the VCO is proportional to the message signal, v(t) is the 
demodulated signal. 

We observe that the output of the loop filter with the frequency response G(f) i� 
the desired message signal. Hence, the bandwidth of G (f) should be the same as the 
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bandwidth W of the message signal. Consequently, the noise at the output of the loop 
filter is also limited to the bandwidth W. On the other hand, the output from the VCO 
is a wideband FM signal with an instantaneous frequency that follows the instantaneous 
frequency of the received FM signal. 

The major benefit of using feedback in FM-signal demodulation is to reduce the 
threshold effect that occurs when the input signal-to-noise-ratio to the FM demodulator 
drops below a critical value. The threshold effect is treated in Chapter 6. 

4.4 FM RADIO BROADCASTING 

Commercial FM radio broadcasting utilizes the frequency band 88-108 MHz for the trans­
mission of voice and music signals. The carrier frequencies are separated by 200 kHz 
and the peak frequency deviation is fixed at 75 kHz. Preemphasis is generally used, as 
described in Chapter 6, to improve the demodulator performance in the presence of noise 
in the received signal. 

The receiver most commonly used in FM radio broadcasting is a superheterodyne 
type. The block diagram of such a receiver is shown in Figure 4. 16. 

As in AM radio reception, common tuning between the RF amplifier and the local 
oscillator allows the mixer to bring all FM radio signals to a common IF bandwidth of 
200 kHz, centered at fw = 10.7 MHz. Since the message signal m (t) is embedded in 
the frequency of the carrier, any amplitude variations in the received signal are a result of 
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Figure 4.16 Block diagram of a superheterodyne FM radio receiver. 
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additive noise and interference. The amplitude limiter removes any amplitude variations in 
the received signal at the output of the IF amplifier by hardlimiting the signal amplitude. 
A bandpass filter, which is centered at /IF = 10.7 MHz with a bandwidth of 200 kHz, 
is included in the limiter to remove higher-order frequency components introduced by the 
nonlinearity inherent in the hard limiter. 

A balanced frequency discriminator is used for frequency demodulation. The result­
ing message signal is then passed to the audio-frequency amplifier, which performs the 
functions of deemphasis and amplification. The output of the audio amplifier is further fil­
tered by a lowpass filter to remove out-of-band noise, and this output is used to drive a 
loudspeaker. 

FM Stereo Broadcasting. Many FM radio stations transmit music programs in 
stereo by using the outputs of two microphones placed on two different parts of the stage. 
Figure 4.17 shows a block diagram of an FM stereo transmitter. The signals from the left 
and right microphones, m1 (t) and mr(t) , are added and subtracted as shown. The sum signal 
m1(t) + mr(t) is left unchanged and occupies the frequency band 0-15 kHz. The difference 
signal m1 (t) - mr(t) is used to AM modulate (DSB-SC) a 38-kHz carrier that is generated 
from a 19-kHz oscillator. A pilot tone at the frequency of 19  kHz is added to the signal for 
the purpose of demodulating the DSB-SC AM signal. We place the pilot tone at 19  kHz 
instead of 38 kHz because the pilot is more easily separated from the composite signal at 
the receiver. The combined signal is used to frequency modulate a carrier. 

By configuring the baseband signal as an FDM signal, a monophonic FM receiver 
can recover the sum signal m1 (t) + mr(t) by using a conventional FM demodulator. Hence, 

0 

Preemphasis 1----.i 

Frequency 
doubler 

DSB-SC 
AM 

modulator 

FM stereo transmitter 

15 19 23 38 
Baseband signal spectrum 

Figure 4.17 FM stereo transmitter and signal spacing. 

53 /(kHz) 

FM 
modulator 



Section 4.5 Summary and Further Reading 

Signal 
from IF �---� 

amplifier FM 
discriminator 

Lowpass 
filter 

0--15 kHz 

Narrowband 
tuned filter 

19 kHz 

Bandpass 
filter 

23-53 kHz 

Fignre 4.18 FM-stereo receiver. 

Frequency 
doubler 

38 kHz 

Synchronous 
demodulator 

To stereo 
indicator 

181 

To audio­
band 
amplifier 

FM stereo broadcasting is compatible with conventional FM. In addition, the resulting FM 
signal does not exceed the allocated 200-kHz bandwidth. 

The FM demodulator for FM stereo is basically the same as a conventional FM 
demodulator down to the limiter/discriminator. Thus, the received signal is converted to 
baseband. Following the discriminator, the baseband message signal is separated into the 
two signals, m1(t) + mr(t) and m1(t) - mr(t), and passed through de-emphasis filters, as 
shown in Figure 4.18 .  The difference signal is obtained from the DSB-SC signal via a syn­
chronous demodulator using the pilot tone. By taking the sum and difference of the two 
composite signals, we recover the two signals, m1(t) and mr(t) . These audio signals are 
amplified by audio-band amplifiers, and the two outputs drive dual loudspeakers. As indi­
cated, an FM receiver that is not configured to receive the FM stereo sees only the baseband 
signal m1(t) + mr(t) in the frequency range 0-15 kHz. Thus, it produces a monophonic 
output signal that consists of the sum of the signals at the two microphones. 

4.5 SUMMARY AND FURTHER READING 

This chapter covered frequency modulation (FM) and phase modulation (PM) for analog 
signal transmission. The spectral characteristics of FM and PM signals were described, as 
well as their bandwidth occupancy. The implementation of FM and PM modulators and 
demodulators was also covered. In the final topic of this chapter, we described the use of 
FM in radio broadcasting. 

As in the case of amplitude modulation, angle modulation (FM and PM) is treated in 
numerous books on communication systems, including those that were previously cited in 
Section 3.6. 
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PROBLEMS 

4.1 The message signal m (t) = 10 sinc(400t) frequency modulates the carrier 
c(t) = 100 cos 2nfct. The modulation index is 6. 

1. Write an expression for the modulated signal u (t). 

2. What is the maximum frequency deviation of the modulated signal? 

3. What is the power content of the modulated signal? 

Q 4. Find the bandwidth of the modulated signal. 

; signal m (t) is shown in Figure P-4.2; this signal is used once to frequency modulate 
a carrier and once to phase modulate the same carrier. 

m(t) 
1 

0 1 2 3 

-1 - - - - - - - - - - - - ....... ��� Figure P-4.2 

1. Find a relation between kp and k f such that the maximum phase of the modu­
lated signals in both cases are equal. 

2. If kp = fd = 1 ,  what is the maximum instantaneous frequency in each case? 
" iLt-

4.3 Determine the in-phase and quadrature components as well as the envelope and the 
phase of FM- and PM-modulated signals. 

4.4 An angle-modulated signal has the form 

u(t) = lOO cos [2nfct + 4 sin 2000nt] , 

where fc = 10 MHz. 

1. Determine the average transmitted power. 

2. Determine the peak-phase deviation. 

3. Determine the peak-frequency deviation. 

4. Is this an FM or a PM signal? Explain. 

4.5 Find the smallest value of the modulation index in an FM system that guarantees 
that all the modulated-signal power is contained in the sidebands and no power is 
transmitted at the carrier frequency when the modulating signal is a sinusoid. 
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4.6 To generate wideband FM, we can first generate a narrowband FM signal, and then 
use frequency multiplication to spread the signal bandwidth. Figure P-4.6 illustrates 
such a scheme, which is called an Armstrong-type FM modulator. The narrowband 
FM signal has a maximum angular deviation of 0.10 radians to keep distortion under 
control. 

1. If the message signal has a bandwidth of 15 kHz and the output frequency from 
the oscillator is 100 kHz, determine the frequency multiplication that is neces­
sary to generate an FM signal at a carrier frequency of fc = 104 MHz and a 
frequency deviation of f =  75 kHz. 

2. If the carrier frequency for the wideband FM signal is to be within ±2 Hz, deter­
mine the maximum allowable drift of the I 00 kHz oscillator. 

Narrowband 
FM modulator 

A cos 
(2n
f
0t
) 

J
o = lOO kHz 

Figure P·4.6 Armstrong-type FM modulator. 

Frequency 
multipliers 

Frequency 
multipliers 

4.7 Determine the amplitude and phase of the various frequency components of a PM 
signal with kp = 1 and with m(t) a periodic signal given by { 1 ,  

m(t) = 
-1 ,  

in one period. 

4.8 An FM signal is given as 

0 < t < Tm 
- 2 

T,n < t < T. 2 - - m 

u(t) = 100 cos [ 2nfct + 100 /_100 m (r) dr J , 

where m(t) is shown in Figure P-4.8. 

1. Sketch the instantaneous frequency as a function of time. 

2. Determine the peak-frequency deviation. 
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m(t) 

5 

-1 1 2 

-5 
Figure P-4.8 

4.9 The carrier c(t) = 100 cos 2nlet is frequency modulated by the signal m (t) = 
5 cos 20,000nt, where le = 108 Hz. The peak-frequency deviation is 20 kHz. 

1. Determine the amplitude and frequency of all signal components that have a 
power level of at least 10% of the power of the unmodulated carrier component. 

2. From Carson's rule, determine the approximate bandwidth of the FM signal. 

4.10 The carrier c(t) = A cos 2n l06t is angle modulated (PM or FM) by the sinu­
soid signal m (t) = 2 cos 2000nt. The deviation constants are kp = 1 .5 rad/V and 
k f = 3000 HzN. 

1. Determine f3t and f3p· 

2. Determine the bandwidth in each case using Carson's rule. 

3. Plot the spectrum of the modulated signal in each case. (Plot only those fre­
quency components that lie within the bandwidth derived in Part 2.) 

4. If the amplitude of m (t) is decreased by a factor of 2, how would your answers 
to Parts 1-3 change? 

5. If the frequency of m ( t) is increased by a factor of 2, how would your answers 
to Parts 1-3 change? 

4.11 The carrier c(t) = 100 cos 2nlet is phase modulated by the signal m (t) = 
5 cos 2000nt. The PM signal has a peak-phase deviation of n/2. The carrier fre­
quency is le = 108 Hz. 

1. Determine the magnitude spectrum of the sinusoidal components and sketch the 
results. 

2. Using Carson's rule, determine the approximate bandwidth of the PM signal and 
compare the result with the analytical result in Part 1 .  
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4.12 An angle-modulated signal has the form 

u (t) = lOO cos [2nfct + 4 sin 2nfmt] , 

where fc = 10 MHz and f m = 1000 Hz. 

1. Assuming that this is an FM signal, determine the modulation index and the 
transmitted-signal bandwidth. 

2. Repeat Part I if f m is doubled. 

3. Assuming that this is a PM signal, determine the modulation index and the 
transmitted-signal bandwidth. 

4. Repeat Part 3 if fm is doubled. 

4.13 It is easy to demonstrate that amplitude modulation satisfies the superposition princi­
ple, whereas angle modulation does not. To be specific, let m1 (t) and m2 (t) represent 
two message signals and let u1 (t) and u2 (t) represent the corresponding modulated 
versions. 

1. Show that when the combined message signal m 1 (t) + m2(t) DSB modulates a 
carrier Ac cos 2n Jct, the result is the sum of the two DSB amplitude-modulated 
signals u1 (t) + u2 (t) .  

2.  Show that if m1 (t) + m2 (t) frequency modulates a carrier, the modulated signal 
is not equal to u1 (t) + u2 (t) .  

4.14 An FM discriminator is shown in Figure P-4. 14. The envelope detector is assumed 
to be ideal and has an infinite input impedance. Select the values for L and C if the 
discriminator is to be used to demodulate an FM signal with a carrier fc = 80 MHz 
and a peak frequency deviation of 6 MHz. 

L C 

� 
Envelope 
detector 

u (t) lO kf! m (t) 

Figure P-4.14 

4.15 An angle-modulated signal is given as 

u (t) = 100 cos [2000nt + </>(t)] , 

where (a) <f> (t) = 5 sin 20nt and (b) </>(t) = 5 cos 20nt. Determine and sketch the 
amplitude and phase spectra for (a) and (b), and compare the results. 
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4.16 The message signal m(t) into an FM modulator with a peak frequency deviation 
fd = 25 HzN is shown in Figure P-4. 16. Plot the frequency deviation in Hz and the 
phase deviation in radians. 

m (t) 

2 - - - - - - - - - - - - - - - - - -

1 - - - - - - - - -

- 1  

-2 - - - - - - - - - - - - - - - - -
Figure P-4.16 

4.17 A message signal m(t) has a bandwidth of 10 kHz and a peak magnitude jm(t) J 
of 1 volt. Estimate the bandwidth of the signal u(t) obtained when m(t) frequency 
modulates a carrier with a peak-frequency deviation of (a) fd = 10 HzN, (b) 100 
HzN, and ( c) 1000 HzN. 

4.18 The modulating signal that is the input into an FM modulator is 

m(t) = 10 cos 16nt. 

The output of the FM modulator is 

u(t) = l O cos [ 4000nt + 2nkf i� m (r) dr] , 

where k f = 10. (See Figure P-4. 18.) If the output of the FM modulator is passed 
through an ideal BPF centered at Jc = 2000 with a bandwidth of 62 Hz, determine 
the power of the frequency components at the output of the filter. What percentage 
of the transmitter power appears at the output of the BPF? 

BPF 
FM 

m (t) demodulator u (t) -1 62 Hz I- Output 

Jc = 2000 Hz 1 
k1= 10 

2000 f 

Figure P-4.18 

4.19 The message signal m1 (t) is shown in Figure P-4.19 and the message signal m2(t) = 

sinc(2 x 104t) volts. 
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0 1 3 4 t(sec
) 

Figure P-4.19 

1. If m1 (t) is frequency modulated on a carrier with frequency 106 Hz and a 
frequency-deviation constant (k 1) equal to 5 HzN, what is the maximum instan­
taneous frequency of the modulated signal? 

2. If m1 (t) is phase modulated with a phase-deviation constant kp = 3 radN, what 
is the maximum instantaneous frequency of the modulated signal? What is the 
minimum instantaneous frequency of the modulated signal? 

3. If m2(t) is frequency modulated with k1 = 103 HzN, what is the maximum 
instantaneous frequency of the modulated signal? What is the bandwidth of the 
modulated signal? 

4.20 A superheterodyne FM receiver operates in the frequency range of 88-108 MHz. 
The IF and local-oscillator frequencies are chosen such that /IF < Ao. We require 
that the image frequency f; fall outside of the 88-108 MHz region. Determine the 
minimum required fw and the range of variation in Ao. 

COMPUTER PROBLEMS 

4.1 Frequency Modulation 

The message signal { 1 0 .:::: t < t0/3 
m(t) = -2 to/3 .:::: t < 2to/3 

0 otherwise 

frequency modulates the carrier c(t) = cos 2nfct, where fc = 200 Hz and to = 
0.15 sec. The frequency-deviation constant is k I = 50. Therefore, the frequency­
modulated signal is 

1. Plot the message signal m(t) and its integral on two separate graphs. The sam­
pling interval is ts = 0.0001 .  



1 88 Angle Modulation Chapter 4 

2. Plot the FM signal u(t). 
3. Use MATLAB's Fourier-transform routine to compute and plot the spectra of 

m(t) and u (t) on separate plots. 
4. Suppose we define the bandwidth W of m(t) as the width of the main lobe 

of its spectrum. Determine the modulation index fJ and the modulation-signal 
bandwidth Be using Carson's rule. 

4.2 Frequency Modulation 

The message signal 

m(t) = { �nc( lOOt) l t l  ::::; to 
otherwise 

frequency modulates the carrier c(t) = cos(2rclet), when le = 250 Hz and to = 0. 1 .  
The frequency-deviation constant i s  k 1 = 100. Therefore, the frequency-modulated 
signal is 

u (t) = cos (2rclet + 2rck1 1:00 
m(r) dr) . 

1. Plot the message signal and its integral on two separate graphs. The sampling 
interval is ts = 0.0001.  

2. Plot the FM signal u(t) .  
3. Use MATLAB's Fourier-transform routine to compute and plot the spectra of 

m(t) and u (t) on separate graphs. 
4. Demodulate the FM signal u (t) to obtain the message signal and compare the 

result with the original message signal. The FM signal can be demodulated by 
first finding the phase of u (t), i.e., the integral of m(t), which can be differenti­
ated and divided by 2rck1 to yield m(t) .  Use MATLAB function unwrap . m  to 
undo the effect of 2rc-phase foldings. Comment on how well the demodulated 
message signal matches the original message signal m(t) . 

4.3 Frequency Modulation 

The message signal { t O < t < l  
m(t) = -t + 2 1 :::: t < 2 

0 otherwise 

frequency modulates the carrier c(t) = cos(2rclet), when le 
frequency-deviation constant is k f = 25. 

1. Plot the message signal and its integral on two separate graphs. 
2. Plot the FM signal 

1000 Hz. The 
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3. Use MATLAB's Fourier-transform routine to compute and plot the spectra of 
m(t) and u(t) on separate graphs. 

4. Determine the modulation index, the bandwidth, and the range of the instanta­
neous frequency of u(t) . 

5. Demodulate the FM signal u (t) to obtain the message signal and compare the 
result with the original message signal. The FM signal can be demodulated by 
first finding the phase of u (t), i.e., the integral of m(t), which can be differenti­
ated and divided by 2rtk / to yield m(t) . Use the MATLAB function unwrap . m 
to undo the effect of 2rc-phase foldings. Comment on how well the demodulated 
message signal matches the original message signal m(t) . 



Probabi lity and 
Random Processes 

This chapter is devoted to a review of the basics of probability arid the study of random 
processes and their properties. Random processes provide good models for both informa­
tion sources and noise. When a signal is transmitted through a communication channel, 
there are two types of imperfections that cause the received signal to be different from the 
transmitted signal. One class of imperfections is deterministic in nature, such as linear and 
nonlinear distortion, intersymbol interference, and so on. The second class is nondetermin­
istic, such as the addition of noise, multipath fading, and so on. For a quantitative study of 
these phenomena, we model them as random processes. 

The information that is to be transmitted is best modeled as a random process. This is 
because any signal that conveys information must have some uncertainty in it, otherwise its 
transmission is of no interest. We will explore this aspect in greater detail in Chapter 12. In 
this chapter, we will briefly review the basics of probability theory and random variables, 
then we will introduce the concept of a random process and the basic tools used in analysis 
of random processes. 

5.1 REVIEW OF PROBABILITY AND RANDOM VARIABLES 

In this section, we will briefly review some basics of probability theory that are needed 
for our treatment of random processes. Throughout the text, we assume that the reader 
has already been exposed to probability theory elsewhere; therefore, our treatment in this 
section will be brief. 

5.1 . 1  Sample Space, Events, and Probability 

The fundamental concept in any probabilistic model is the concept of a random experi­
ment, which is any experiment whose outcome cannot be predicted with certainty. Flipping 
a coin, throwing a die, and drawing a card from a deck of cards are examples of random 
experiments. What is common in all these cases is that the result (or outcome) of the exper­
iment is uncertain. A random experiment has certain outcomes, which are the elementary 

190 
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results of the experiment. In flipping of a coin, "head" and "tail" are the possible outcomes. 
In throwing a die, 1 ,2,3,4,5, and 6 are the possible outcomes. The set of all possible out­
comes is called the sample space and is denoted by Q. Outcomes are denoted by cv's, and 
each cv lies in Q, i.e., cv E Q. 

A sample space is discrete if the number of its elements are finite or countably infi­
nite, 1 otherwise it is a nondiscrete sample space. All the random experiments given above 
have discrete sample spaces. If we randomly choose a number between 0 and 1 ,  then the 
sample space corresponding to this random experiment is the set of all numbers between 0 
and 1, which is infinite and uncountable. Such a sample space is nondiscrete. 

Events are subsets of the sample space; in other words, an event is a collection of 
outcomes. For instance, in throwing a die, the event "the outcome is odd" consists of out­
comes 1 ,  3, and 5; the event "the outcome is greater than 3" consists of outcomes 4, 5,  and 
6; and the event "the outcome is a multiple of 4" consists of the single outcome 4. For the 
experiment of picking a number between 0 and 1 ,  we can define an event as "the outcome 
is less than 0.7," or "the outcome is between 0.2 and 0.5," or "the outcome is 0.5." Events 
are disjoint if their intersection is empty. For instance, in throwing a die, the events "the 
outcome is odd" and "the outcome is a multiple of 4" are disjoint. 

We define a probability P as a set function assigning nonnegative values to all events 
E such that the following conditions are satisfied: 

1. 0 :=:: P(E) :=:: 1 for all events. 
2. P(Q) = 1 .  
3 .  For disjoint events E1 , E2, E3, · • · (i.e., events for which E; n Ej = 0 for all i f= j ,  

where 0 i s  the empty set), we have P(U�1 E;) = I::;:, P(E;) . 

Some basic properties of probability follow easily from the set theoretical properties 
of events combined with the above three conditions. Some of the most important properties 
are as follows: 

1. P(Ec) = 1 - P(E), where Ee denotes the complement of E. 
2. P(0) = 0. 
3. P(E1 U E2) = P(E1) + P(E2) - P(E1 n E2) .  
4.  If E1 c E2 then P(E1) :S P(Ez) .  

5.1 .2 Conditional Probability 

Let us assume that the two events, E1 and £2, have probabilities P(E1) and P(Ez). If an 
observer knows that the event £2 has occurred, then the probability that event E 1 will occur 
will not be P(E1) anymore. In fact, the information that the observer receives changes the 

1 Countably infinite means infinite but enumerable, i.e., the number of outcomes is infinite but it can be 
put in one-to-one correspondence with the set of natural numbers, i.e., it can be counted. 
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probabilities of various events; thus, new probabilities, called conditional probabilities, are 
defined. The conditional probability of the event Ei . given the event E2, is defined by 

(5. 1 . 1) 
otherwise 

If it happens that P (E1 IE2) = P (E1),  then the knowledge of E2 does not change the prob­
ability of E 1 .  In this case, the events E 1 and £2 are said to be independent. For independent 
events, P (E1 n E2) = P (E1)P (E2). 

Example 5.1.1 

In throwing a fair die, the probability of 

is 

The probability of 

is 

In this case, 

A = {The outcome is greater than 3} 

P(A) = P(4) + P(5) + P(6) = �-
B = {The outcome is even} 

P(B) = P(2) + P(4) + P(6) = �-
P(AIB) = 

P(A n B) 
= 

P (4) + P(6) 
= 

� -
P(B) � 3 

• 

If the events {E; }7=1 are disjoint and their union is the entire sample space, then 
they make a partition of the sample space Q. Then, if for an event A, we have the condi­
tional probabilities {P (A ! E;) }7=1 , P (A) can be obtained by applying the total probability 
theorem stated as 

n . 
P (A) = L P (E; ) P (A IE;) .  

i=l 

Bayes 's rule gives the conditional probabilities P (E; I A) by the following relation: 

Example 5.1.2 

P (E;) P (A I E;)  
P (E; IA) = -L��=

-1_P_(_E1
-.)-P-(A-I E_1

_-) ° 

(5. 1 .2) 

(5. 1 .3) 

In a certain city, 50% of the population drive to work, 30% take the subway, and 20% take the 
bus. The probability of being late for those who drive is 10%, for those who take the subway 
is 3%, and for those who take the bus is 5%. 

1. What is the probability that an individual in this city will be late for work? 
2. If an individual is late for work, what is the probability that he drove to work? 
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Solution Let D, S, and B denote the events of an individual driving, taking the subway, or 
taking the bus. Then P(D) = 0.5, P(S) = 0.3, and P(B) = 0.2. If L denotes the event of 
being late, then, from the assumptions, we have 

P(L /D) = 0. 1 ;  

P(L/S) = 0.03; 

P(L /B) = 0.05. 

1. From the total probability theorem, 

P(L) = P(D)P(L/D) + P(S)P(L /S) + P(B)P(L /B) 

= 0.5 x 0. 1 + 0.3 x 0.03 + 0.2 x 0.05 

= 0.069. 

2. Applying Bayes's rule, we have 

P(D)P(L /D) 
P(D/L) = 

P(D)P(L /D) + P(S)P(L /S) + P(B)P (L /B) 
0.05 

0.069 

� 0.725. 

Example 5.1.3 

• 

In a binary communication system, the input bits transmitted over the channel are either 0 or 1 
with probabilities 0.3 and 0.7, respectively. When a bit is transmitted over the channel, it can 
be either received correctly or incorrectly (due to channel noise). Let us assume that if a 0 is 
transmitted, the probability of it being received in error (i.e., being received as 1) is 0.01, and if 
a 1 is transmitted, the probability of it being received in error (i.e., being received as 0) is 0. 1 .  

1 .  What is the probability that the output of this channel is 1?  
2 .  Assuming we have observed a 1 at the output of  this channel, what i s  the probability that 

the input to the channel was a 1?  

Solution Let X denote the input and Y denote the output. From the problem assumptions, 
we have 

P(X = 0) = 0.3; 

P(Y = 0/X = 0) = 0.99; 

P(Y = O/X = 1) = 0. 1 ;  

P(X = 1) = 0.7; 

P(Y = l /X  = 0) = 0.01 ;  

P(Y = l /X  = 1) = 0.9. 

1. From the total probability theorem, we have 

P(Y = 1)  = P(Y = 1 ,  X = 0) + P(Y = 1 ,  X = 1) 

= P(X = O)P(Y = l/X = 0) + P(X = l)P(Y = l/X = 1)  

= 0.3 x 0.01 + 0.7 x 0.9 

--= 0.003 + 0.63 

= 0.633. 
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2. From the Bayes rule, we have 

P(X = l )P(Y = l lX = 1) 
P (X = l l Y  = l )  = 

P (X = O)P (Y = l lX = 0) + P(X = l )P(Y = l l X  = 1 )  

0.7 x 0.9 
0.3 x 0.01 + 0.7 x 0.9 

0.63 
0.633 

� 0.995. • 

5.1 .3 Random Variables 

A random variable is a mapping from the sample space Q to the set of real numbers. 
In other words, a random variable is an assignment of real numbers to the outcomes of 
a random experiment. A schematic diagram representing a random variable is given in 
Figure 5 .1 .  

Example 5.1.4 

In throwing dice, the player wins the amount that the die shows if the result is even and loses 
that amount if it is odd; then the random variable denoting his gain is 

X(w) = { w w : 2, 4, 6
_ 

-(1) (1) - 1, 3, 5 
• 

Random variables are denoted by capital letters, i.e., X, Y, and so on, and individual 
values of the random variable X are X ( w) . A random variable is discrete if the range of 
its values is either finite or countably infinite. This range is usually denoted by {x; }. A 
continuous random variable is one in which the range of values is a continuum. 

The cumulative distribution function or CDF of a random variable X is defined as 

Fx (x) = P{w E Q :  X (w) ::S x}, 

which can be simply written as 

Fx(x) = P (X ::S x) 

Figure 5.1 A random variable as a 
mapping from Q to R 
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and has the following properties: 

1. 0 S Fx(x) S 1 .  
2.  F x (x) is  nondecreasing. 
3. limx->-oo Fx(x) = 0 and limx....,.+oo Fx(x) = 1 .  
4. Fx(x) i s  continuous from the right, i.e., lill4.J,o F(x + E) = F(x). 
5. P(a < X S b) = Fx(b) - Fx(a). 
6. P(X = a) = Fx(a) - Fx(a-) .  

For discrete random variables, Fx(x) i s  a staircase function. A random variable i s  contin­
uous if F x (x) is a continuous function. A random variable is mixed if it is neither discrete 
nor continuous. Examples of CDFs for discrete, continuous, and mixed random variables 
are shown in Figures 5.2, 5.3, and 5 .4, respectively. 

The probability density function, or PDF, of a continuous random variable X is 
defined as the derivative of its CDP. It is denoted by fx(x) ,  i.e., 

d fx(x) = -Fx(x) .  dx 
The basic properties of PDF are as follows: 

1. fx(x) 2: 0. 
2. J�00 fx(x) dx = 1 .  

Fx(x) 

1 - - - - - - - - - .... ������-

I 
...._. 
I ___, 

I 

Fx(x) 

' .....__. 
I 

(5. 1 .4) 

Figure 5.2 CDF for a discrete 
x random variable. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - ·  

Figure 5.3 CDF for a 
x continuous random variable. 
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Fx(x) 

1 �------- - - - - -
I 

___/ 

3. J: fx(x) dx = P (a < X :S b) . 
4. In general, P(X E A) =  JA fx (x) dx. 

Jx+ 5. Fx(x) = _00 fx(u) du. 

Figure 5.4 CDF for a mixed 
x random variable. 

For discrete random variables, we generally define the probability mass function, or PMF 
which is defined as {p; } ,  where p; = P(X = x;) .  Obviously, for all i ,  we have p; '.:'.'.: 0 anc 
Li Pi =  1 .  

Important Random Variables. In communications, the most commonly usec 
random variables are the following: 

Bernoulli random variable. This is a discrete random variable taking two values 
1 and 0, with probabilities p and 1 - p. A Bernoulli random variable is a good model fo 
a binary-data generator. When binary data is transmitted over a communication channel 
some bits are received in error. We can model an error by modulo-2 addition of a 1 to tht 
input bit; thus, we change a 0 into a 1 and a 1 into a 0. Therefore, a Bernoulli randon 
variable can also be employed to model the channel errors. 

Binomial random variable. This is a discrete random variable giving the numbe 
of 1 's in a sequence of n-independent Bernoulli trials. The PMF is given by 

(5. 1 .5 
otherwise 

This random variable models, e.g., the total number of bits received in error when . 
sequence of n bits is transmitted over a channel with a bit-error probability of p. 

Example 5.1.5 

Assume 10,000 bits are transmitted over a channel in which the error probability is 10-3. Whi 
is the probability that the total number of errors is less than 3? 
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Solution In this example, n = 10,000, p = 0.001 , and we are looking for P (X < 3). We 
have 

P (X < 3) = P (X = 0) + P(X = 1) + P (X = 2) 
= (10,g00)0.001°c1 - 0.001) 10·000 

+ co,�00)0.001 1  (1 - 0.001 )10,000-1 

+ co,�00)0.0012 ( 1 - 0.001)10,000-2 
� 0.0028. • 

Uniform random variable. This is a continuous random variable taking values 
between a and b with equal probabilities for intervals of equal length. The density function 
is given by { 1 

-- , a < x < b 
fx(x) = b - a  . 

0, otherwise 

This is a model for continuous random variables whose range is known, but nothing else is 
known about the likelihood of the values that the random variable can assume. For example, 
when the phase of a sinusoid is random, it is usually modeled as a uniform random variable 
between 0 and 2n. 

Gaussian or normal random variable. The Gaussian, or normal, random variable 
is a continuous random variable described by the density function 

1 (x-m)2 
fx(x) = --e ----:z;;z- . J2IT,a (5. 1 .6) 

There are two parameters involved in the definition of the Gaussian random variable. The 
parameter m is called the mean and can assume any finite value. The parameter a is called 
the standard deviation and can assume any finite and positive value. The square of the 
standard deviation, i.e., a2, is called the variance. A Gaussian random variable with mean 
m and variance a2 is denoted by N(m, a2) .  The random variable J\((0, 1)  is usually called 
standard normal. 

The Gaussian random variable is the most important and frequently encountered 
random variable in communications. The reason is that thermal noise, which is the major 
source of noise in communication systems, has a Gaussian distribution. The properties of 
Gaussian noise will be investigated in more detail later in this chapter. 

We have graphed the PDF and PMF of the above random variables. They are given 
in Figures 5 .5-5.8. 

Assuming that X is a standard normal random variable, we define the function Q (x) 
as P(X > x). The Q-function is given by the relation 100 1 ,2 Q(x) = P(X > x) = rr.=e-2 dt. 

x -v2n 
(5. 1 .7) 
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Figure 5.6 The PMF for the binomial random variable. 
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Figure 5.5 The PMF for the 
x Bernoulli random variable. 

8 10 12 x 

Figure 5.7 The PDF for the uniform random 
x variable. 
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o �---""""------1--------'=--� Figure 5.8 The PDF for the 

f x
(
x) 

0 

m x Gaussian random variable. 

x 

Figure 5.9 The Q-function as the area 
under the tail of a standard normal random 
variable. 

This function represents the area under the tail of a standard normal random variable, 
as shown in Figure 5 .9. From this figure, it is clear that the Q-function is a decreasing 
function. This function is well tabulated and frequently used in analyzing the performance 
of communication systems. It is easy to see that Q(x) satisfies the following relations: 

Q(-x) = 1 - Q(x); 
1 

Q(O) = 2 ; 
Q(oo) = 0 .  
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TABLE 5.1 TABLE OF THE Q-FUNCTION 

0 5.000000e-01 2.4 8.197534e-03 4.8 7.933274e-07 

0. 1 4.601722e-01 2.5 6.209665e-03 4.9 4.791830e-07 

0.2 4.207403e-01 2.6 4.66 1 189e-03 5.0 2.866516e-07 

0.3 3.820886e-01 2.7 3.466973e-03 5 . 1  1 .698268e-07 

0.4 3.445783e-01 2.8 2.555 13 le-03 5.2 9.964437e-06 

0.5 3 .085375e-01 2.9 l .865812e-03 5.3 5.790128e-08 

0.6 2.742531e-01 3.0 l .349898e-03 5.4 3.332043e-08 

0.7 2.419637e-01 3 . 1  9.676035e--04 5.5 l .898956e-08 

0.8 2. 1 1 8554e-Ol 3.2 6. 871378e-04 5.6 1 .  0717 60e-08 

0.9 l .840601e-01 3.3 4.834242e-04 5.7 5.990378e-09 

1.0 l.586553e-01 3.4 3 .369291e-04 5.8 3.315742e-09 
1 . 1  l .356661e-01 3.5 2.326291e-04 5.9 1 .8 17507e-09 
1 .2 l . 150697e-01 3.6 l .591086e-04 6.0 9.865876e-10 
1 .3 9.680049e-02 3.7 l .077997e-04 6.1 5.303426e-10 

1 .4 8.075666e-02 3.8 7.234806e-05 6.2 2.823 161e-10 
1 .5 6.680720e-02 3.9 4.809633e-05 6.3 l .488226e-1 C 
1 .6 5.479929e-02 4.0 3.167124e-05 6.4 7.768843e-11  

1 .7 4.456546e-02 4.1 2.065752e-05 6.5 4.016001e-1 1 
1 .8 3.593032e-02 4.2 1 .334576e-05 6.6 2.055790e-1 l 
1.9 2.871656e-02 4.3 8.539898e-06 6.7 1 .042099e-1 l 
2.0 2.275013e-02 4.4 5.412542e-06 6.8 5.230951e-1" 
2.1 l .786442e-02 4.5 3.397673e-06 6.9 2.600125e-1; 
2.2 l .390345e-02 4.6 2.1 12456e-06 7.0 1 .279813e-1; 
2.3 l .072411e-02 4.7 1 .300809e-06 

Table 5 . 1  gives the values of this function for various values of x .  Two important uppe1 
bounds on the Q-function are widely used to find bounds on the error probability of variom 
collllllunication systems. These bounds are given as 

1 x2 Q(x) ::: 2e-T for all x 2: 0 

and 

1 x2 Q(x) < --e-T 
.Jlix 

for all x 2: 0 . 

A frequently used lower bound is 

Q(x) > -1
- (1 - 2-) e-4-

.Jlix x2 

A plot of Q(x) and its bounds is given in Figure 5 . 10. 

for all x > 1 .  

(5 . 1 .8 

(5. 1 .9 

(5. 1 . 10 

For an N(m, a2) random variable, a simple change of variable in the integral thi 
computes P(X > x) results in P(X > x) = Q (x�m) .  This gives the so-called ta 
probability in a Gaussian random variable. 
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Figure 5.10 Bounds on the Q-function. 

Example 5.1.6 

1.5 2 2.5 
x 
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3 3.5 4 4.5 5 

X is a Gaussian random variable with mean I and variance 4. Find the probability that X is 
between 5 and 7. 

Solution We have m = I and CY = v'4 = 2. Thus, 

P (5 < X < 7) = P(X > 5) - P(X > 7) 

� Q (5; 1 ) - Q (7; 1 ) 
= Q(2) - Q(3) 
� 0.0214. 

5.1 .4 Functions of a Random Variable 

• 

A function of a random variable Y = g(X) is itself a random variable. In general, to find 
,. the CDF of Y = g(X), we can use the definition of the CDF to obtain 

Fy(y) = P{w E Q :  g(X(w)) S x} . 

In the special case that, for all y, the equation g (x) = y has a countable number of solutions 
{x; } ,  and for all these solutions, g'(x;) exists and is nonzero, we can find the PDF of the 
random variable Y = g(X) with the following relation: 

Example 5.1. 7 

'°' fx(x;) fy (y) = � lg'(x;) I . l 

Assuming X is a Gaussian random variable with m = 0 and CY 
density function of the random variable y given by y = ax + b. 

(5. 1 . 1 1) 

I, find the probability 



i f  I I  
i i  I I 

202 Probability and Random Processes Chapter 5 

Solution In this case, g(x) = ax + b; therefore, g'(x) = a. The equation ax + b = y has 
only one solution, which is given by x1 = y�b . Using these results, we obtain 

f ( ) = 
fx (�) 

Y y la l  

1 - (y-b)2 
= --e 2a2 

.J2na2 

It is observed that Y is a Gaussian random variable N(b, a2) .  

(5. 1 . 12) 

• 

Using an approach similar to the one used in the preceding example, we can show 
that if X is N(m, o-2) ,  then Y = aX + b is also a Gaussian random variable of the form 
N(am + b, a2o-2) .  

Example 5.1.8 

Assume X is a N(3, 6) random variable. Find the density function of Y = -2X + 3. 

Solution We know Y is a Gaussian random variable with the mean m = -2 x 3 + 3 = -3 
and variance u2 = 4 x 6 = 24. Therefore, Y is a N(-3, 24) random variable and 

1 (y+3)2 f (y) = --e- 48 • v'48i • 

From this example, we arrive at the important conclusion that a linear function of a Gaus­
sian random variable is itself a Gaussian random variable. 

Statistical Averages. The mean, expected value, or expectation of the random 
variable X is defined as 

E(X) = i: xfx(x) dx (5. 1 . 13) 

and is also denoted by m x .  The expected value of a random variable is a measure of the 
average of th� values that the random variable takes in a large number of experiments. 
Note that E(X) is just a real number. In general, the nth moment of a random variable X 
is defined as 

(n) def 100 n mx = -oo x fx(x) dx. (5. 1 . 14) 

The expected value of Y = g(X) is 

E(g(X)) = i: g(x)fx(x) dx . (5. 1 . 15) 

For discrete random variables, these equations become 

E(X) = Lx;P (X = x;) (5. 1 . 16: 

and 
E(g(X)) = L g(x; )P(X = x;) .  (5. 1 . 17: 
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In the special case where g(X) = (X - E(X)),2 E(g(X)) is called the variance of 
X, which is a measure of the spread of the density function of X. If the variance is small, 
it indicates that the random variable is very concentrated around its mean, and in a sense is 
"less random." However, if the variance is large, then the random variable is highly spread; 
hence, it is less predictable. The variance is denoted by ai and its square root, ax , is called 
the standard deviation. The relation for the variance can also be written as 

For any constant c, the following relations hold: 

1. E(cX) = cE(X) . 
2. E(c) = c. 
3. E(X + c) = E(X) + c. 

It is also easy to verify that the variance has the following properties: 

1. VAR(cX) = c2VAR(X) . 
2. VAR(c) = 0. 
3. VAR(X + c) = VAR(X). 

For the important random variables we introduced earlier, we have the following relations 
for the mean and the variance: 

Bernoulli random variable. 

Binomial random variable. 

Uniform random variable. 

Gaussian random variable. 

5.1 .5 Multiple Random Variables 

E(X) = p 

E(X) = np 

E(X) = a ; b 

E(X) = m  

VAR(X) = p(l - p). 

VAR(X) = np (l - p). 

VAR(X) = (b - a)2 
12 

VAR(X) = a2• 

Let X and Y represent two random variables defined on the same sample space Q. For 
these two random variables, we can define the joint CDF as 

Fx,Y (X , y) = P{w E Q :  X(w) :S x, Y (w) :S y} , 

or simply as 
Fx,Y (x, y) = P (X :S x, Y :S y). 

The joint PDF denoted as fx,y (x , y) is defined by 

a2 
fXY (X , y) = axay FXY(X , y) . (5. 1 . 18) 
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The basic properties of the joint and marginal CDFs and PDFs can be summarized with 
the following relations: 

1. Fx(x) = Fx,y (x , oo). 
2. Fy (y) = Fx,y (oo, y). 
3. fx(x) = J�00 fx,y (X , y) dy. 
4. fy(y) = J�00 fx, y (x, y) dx. 
5. J�00J�00 fx,Y(X , y) dx dy = 1. 
6. P((X, Y) E A) =  Jf (x,y)EAfx,y (X, y) dx dy. 
7. Fx,y (x, y) = J�00 J�00 fx,y (u, v) du dv. 

The conditional probability density function of the random variable Y, given that the 
value of the random variable X is equal to x, is denoted by !Yix (y lx) and defined as 

fytx (y lx) = fx(x) ' fx(x) =/:- O { fx,y (X , y) 
0, otherwise 

(5. 1 . 19) 

If the density function after the knowledge of X is the same as the density function before 
the knowledge of X, then the random variables are said to be statistically independent. For 
statistically independent random variables, 

fx,y (x , y) = fx(x)fy (y) . (5. 1 .20) 

Example 5.1.9 

Let X be N(3, 4) and Y be N(-2, 6) . Assuming X and Y are independent, determine 
fx,y (X, y). 

Solution We have 

f(x, y) = fx(x)fy(y) 
1 _ (x-3)2 1 _ (y+Jl2 = --e s x --e ' J81t vTITI 
1 _ (x-3)2 _ (y+2)2 

= --e s 12 
4n.J6 

I 

The expected value of g(X, Y), where g(X, Y) is a function of X and Y, is obtained from 

E(g(X, Y)) = 1_:1_: g(x , y)fx,y (x , y) dx dy. (5. 1 .21; 

E(XY) is called the correlation of X and Y. Note that if X and Y are independent, ther 
E(XY) = E(X)E(Y). The covariance of X and Y is defined as 

COV(X, Y) = E (XY) - E(X)E(Y). 
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If COV(X, Y) = 0, i.e., if E(XY) = E(X)E(Y) , then X and Y are called uncorrelated 
random variables. The normalized version of the covariance, called the correlation coeffi­
cient, is denoted by Px,r and is defined as 

COV(X, Y) 
Px,r = 

Using the Cauchy-Schwartz inequality (see Problem 2.37), we can see that IPx,r I :::; 1 and 
p = ±1 indicates a first-order relationship between X and Y, i.e., a relation of the form 
Y = aX + b. The case p = 1 corresponds to a positive a ,  and p = - 1 corresponds to a 
negative a. 

It is obvious that if X and Y are independent, then COV(X, Y) = 0 and X and Y 
will be uncorrelated. In other words, independence implies lack of correlation. It should be 
noted that lack of correlation does not generally imply independence. That is, the covari­
ance (or p) might be zero, but the random variables may still be statistically dependent. 

Some properties of the expected value and variance applied to multiple random vari­
ables are as follows: 

1. E(L; c;X;) = Li c;E(Xi) .  
2. VAR(Li c;Xi) = Li cfVAR(Xi) + L; LHi c;cjCOV(X; , Xj) · 
3. VAR(L; c;X;) = Li cfVAR(X;),  if Xi and Xj are uncorrelated for i f=. j . 

In these relations, the c; 's are constants. 

Example 5.1.10 

Assuming that X is N(3, 4), Y is N(-1 ,  2), and X and Y are independent, determine the 
covariance of the two random variables Z = X - Y and W = 2X + 3Y. 

Solution We have 

and 

Therefore, 

E(Z) = E(X) - E(Y) = 3 + 1 = 4, 

E(W) = 2E(X) + 3E(Y) = 6 - 3 = 3, 

E (X2) = VAR(X) + (E(X))2 = 4 + 9 = 13, 

E(Y2) = VAR(Y) + (E(Y))2 = 2 + 1 = 3, 

E(XY) = E(X)E(Y) = -3. 

COV(W, Z) = E(WZ) - E(W)E(Z) 

= E(2X2 - 3Y2 + XY) - E(Z)E(W) 

= 2 x 13 - 3 x 3 - 3 - 4 x 3 

= 2  • 
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Multiple Functions of Multiple Random Variables. If we define two fo�ctions 
of the random variables X and Y by { Z = g(X, Y) 

W = h(X, Y) ' 

then the joint CDF and PDF of Z and W can be obtained directly by applying the definition 
of the CDF. However, if it happens that for all z and w, the set of equations { g(x,  y) = z 

h(x, y) = w 

has a countable number of solutions { (x; , y; )} ,  and if at these points the determinant of the 
Jacobian matrix 

is nonzero, then we have 

J(x ,  y) = 

l oz oz ] 
ax oy 
aw aw - -
ax ay 

'°' f(x; , y;) fz.w (z, w) = � I det J (x; , y;) I ' 
l 

where det J denotes the determinant of the matrix J. 

Example 5.1.11 

(5. 1 .22: 

The two random variables X and Y are independent and identically distributed, each with 1 
Gaussian density function with the mean equal to zero and the variance equal to a2• If thes1 
two random variables denote the coordinates of a point in the plane, find the probability densit: 
function of the magnitude and the phase of that point in polar coordinates. 

Solution First, we have to find the joint probability density function of X and Y. Since ) 
and Y are independent, their joint PDF is the product of their marginal PDFs; i.e., 

fx,Y (X, y) = fx(x)fy(y) 

(5. 1 .23 

The magnitude of the point with coordinates (X, Y) in the polar plane is given by V = 

./X2 + Y2, and its phase is given by e = arctan f. We begin by deriving the joint probabilit 
density function of V and e. In this case, g(X, Y) = ./X2 + Y2 and h(X, Y) = arctan � 
The Jacobian matrix is given by [Jx2x+ y2 Jx2

y
+ y2] J(x, y) = . 

y x 
-x2 + y2 x2 + y2 

(5. 1 .2' 
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The determinant of the Jacobian matrix can be easily determined to be equal to 

The set of equations 

/ det l(x, y) / = � 
y X2 + y2 
1 
v 

{Jx2 + y2 = v 
arctan l = e x 

has only one solution, which is given by {x = v cos e 
y = v sine · 

207 

(5. 1 .25) 

(5. 1 .26) 

(5. 1 .27) 

Substituting these results into Equation (5. 1 .22), we obtain the joint probability density func­
tion of the magnitude and the phase as 

fv.e (v, e) = vfx,r (v cos e, v sine) 
v _ 2_  = --e 2"2 . 

2mr2 (5. 1 .28) 

To derive the marginal probability density functions for the magnitude and the phase, we have 
to integrate the joint probability density function. To obtain the probability density function of 
the phase, we have 

fe(e) = ['" fv,e(v, e) dv 

= - -e- 2a2 dv 
1 100 v .2 

2rc 0 a2 

= 
2� [ - e-�

2 r 
2rc 

(5. 1 .29) 

Hence, the phase is uniformly distributed on [0, 2rc]: To obtain the marginal probability density 
function for the magnitude, we have 

[2" 
fv (V) = lo fv,e (V, e) de 

This relation holds only for positive v. For negative v, fv (v) = 0. Therefore, l _!!__e -£, v :?: 0 
fv(v) = a2 ' 

0, v < 0 
(5. 1 .31) 
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This probability density function is known as the Rayleigh probability density function, and 
it has widespread applications in the study of the fading communication channels. It is also 
interesting to note that in the preceding example 

fv.e(v, 8) = fv (v)fe(8) ; (5. 1 .32) 

therefore, the magnitude and the phase are independent random variables. • 

Jointly Gaussian Random Variables. Jointly Gaussian or binormal random 
variables X and Y are distributed according to a joint PDF of the form 

1 
fx,y (X, y) = � 2na1a2y 1 - p-

where m 1 , m2, ar , and aJ are the mean and variances of X and Y, respectively, and p is 
their correlation coefficient. When two random variables X and Y are distributed according 
to a binormal distribution, it can be shown that X and Y are normal random variables and 
the conditional densities f(x Jy) and f(y Jx) are also Gaussian. This property shows the 
main difference between jointly Gaussian random variables and two random variables that 
each have a Gaussian distribution. 

The definition of two jointly Gaussian random variables can be extended to more 
random variables. For instance, X1 ,  X2, and X3 are jointly Gaussian if any pair of them 
are jointly Gaussian, and the conditional density function of any pair given the third one is 
also jointly Gaussian. 

Here are the main properties of jointly Gaussian random variables: 

1. If n random variables are jointly Gaussian, any subset of them is also distributed 
according to a jointly Gaussian distribution of the appropriate size. In particular, all 
individual random variables are Gaussian. 

2. Jointly Gaussian random variables are completely characterized by the means of all 
random variables m1 ,  m2,, . . .  , mn and the set of all covariance COV(X; , Xj) for all 
1 :S i :S n and 1 :S j :S n. These so-called second-order properties completely 
describe the random variables. 

3. Any set of linear combinations of (X 1 ,  X2, . . .  , Xn) are themselves jointly Gaussian 
In particular, any linear combination of X; 's is a Gaussian random variable. 

4. Two uncorrelated jointly Gaussian random variables are independent. Therefore,fm 
jointly Gaussian random variables, independence and uncorrelatedness are equiva· 
lent. As previously stated, this is not true for general random variables. 

5.1 .6 Sums of Random Variables 

Ifwe have a sequence ofrandom variables (Xi ,  X2, . • .  , Xn) with basically the same prop 
erties, then the behavior of their average Y = � 2::7=1 X; is expected to be "less random' 
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than each X; . The law of large numbers and the central limit theorem are statements of this 
intuitive fact. 

The law of large numbers (LLN) states that if the sequence of random variables 
X1 , X2, . . .  , Xn are uncorrelated with the same mean mx and variance ai < oo, then for 
any E > 0, limn--*oo P( /Y  - mx / > E) = 0, where Y = � :L7=1 X; . This means that the 
average converges (in probability) to the expected value. 

The central limit theorem not only states the convergence of the average to the mean, 
but it also gives some insight into the distribution of the average. This theorem states that if 
X; 's are i.i.d. (independent and identically distributed) random variables which each have 
a mean m and variance a

2
, then Y = � :L7=1 X; converges to a N ( m, :1) .  We can gen­

erally say that the central limit theorem states that the sum of many i.i.d. random variables 
converges to a Gaussian random variable. As we will see later, this theorem explains why 
thermal noise follows a Gaussian distribution. 

This concludes our brief review of the basics of the probability theory. References at 
the end of this chapter provide sources for further study. 

µ RANDOM PROCESSES: BASIC CONCEPTS 

A random process is the natural extension of random variables when dealing with signals. 
In analyzing communication systems, we basically deal with time-varying signals. In our 
development so far, we have assumed that all the signals are deterministic. In many situa­
tions, the deterministic assumption on time-varying signals is not a valid assumption, and 
it is more appropriate to model signals as random rather than deterministic functions. One 
such example is the case of thermal noise in electronic circuits. This type of noise is due to 
the random movement of electrons as a result of thermal agitation, therefore, the resulting 
current and voltage can only be described statistically. Another example· is the reflection of 
radio waves from different layers of the ionosphere; they make long-range broadcasting of 
short-wave radio possible. Due to the randomness of these reflections, the received signal 
can again be modeled as a random signal. These two examples show that random signals 
can describe certain phenomena in signal transmission. 

Another situation where modeling by random processes proves useful is in the char­
acterization of information sources. An information source, such as a speech source, gener­
ates time-varying signals whose contents are not known in advance. Otherwise there would 
be no need to transmit them. Therefore, random processes also provide a natural way to 
model information sources. 

A random process, or a random signal, can be viewed as a set of possible realizations 
of signal waveforms. The realization of one from the set of possible signals is governed 
by some probabilistic law. This is similar to the definition of random variables where one 
from a set of possible values is realized according to some probabilistic law. The difference 
is that in random processes, we have signals (functions) instead of values (numbers). 

Example 5.2.1 

Assume that we have a signal generator that can generate one of the six possible sinusoids. 
The amplitude of all sinusoids is one, and the phase for all of them is zero, but the frequencies 
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can be 100, 200, . . .  , 600 Hz. We throw a die, and depending on its outcome, which we denote 
by F, we generate a sinusoid whose frequency is 100 times what the die shows (lOOF). This 
means that each of the six possible signals will be realized with equal probability . . This is 
an example of a random process. This random process can be defined l!S X (t) = cos(2n x 
100Ft). • 

Example 5.2.2 
Assume that we uniformly choose a phase e between 0 and 2n and generate a sinusoid with 
a fixed amplitude and frequency but with a random phase e. In this case, the random process 
is X(t) = A cos(2nf0t + 0), where A and fo denote the fixed amplitude and frequency and 
e denotes the random phase. Some sample functions for this random process are shown in 
Figure 5. l l . 1 

Example 5.2.3 
The process X (t) is defined by X (t) = X, where X is a random variable uniformly distributed 
on [- 1 ,  1] .  In this case, an analytic description of the random process is given. For this ran· 
dom process, each sample is a constant signal. Sample functions of this process are shown ir 
Figure 5. 12. 1 

From the preceding examples, we see that corresponding to each outcome w; in a samplf 
space Q, there exists a signal x(t ; w;) . This description is similar to the description of ran· 
<lorn variables in which a real number is assigned to each outcome w; . Figure 5 . 13 depict1 

Figure 5.11 Sample functions of the random process given in Example 5.2.2. 
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Figure 5.12 Sample functions of the random 
process given in Example 5.2.3. 

2 1 1  

this general view of  random processes. Thus, for each w; , there exists a deterministic time 
function x(t ;  w;) ,  which is called a sample function or a realization of the random process. 
At each time instant to and for each w; E Q, we have the number x (to ; w;) .  For the differ­
ent outcomes (w; 's) at a fixed time t0, the numbers x(to; w;) constitute a random variable 
denoted by X(t0) .  After all, a random variable is nothing but an assignment of real numbers 
to the outcomes of a random experiment. This is a very important observation and a bridge 
that connects the concept of a random process to the more familiar concept of a random 
variable. In other words, at any time instant, the value of a random process is a random 
variable. 

Example 5.2.4 

In Example 5.2. 1,  determine the values of the random variable X (0.001). 

Solution The possible values are cos(0.2n), cos(0.4n), . . .  , cos(l .2n) and each has a prob­
ability � · • 

Example 5.2.5 

Let Q denote the sample space corresponding to the random experiment of throwing a die. 
Obviously, in this case Q = { I ,  2, 3 ,  4, 5 ,  6}. For all w; , let x(t; w;) = w;e-1 u_1 (t) denote a 
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x(t; w2
) 
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Figure 5.13 Sample functions of 
a random process. 

random process. Then X(l) is a random variable taking values e-1 , 2e-1 , • • •  , 6e-1 and each 
has probability � - Sample functions of this random process are shown in Figure 5. 14. • 

Example 5.2.6 

We can have discrete-time random processes, which are similar to continuous-time random 
processes. For instance, let w; denote the outcome of a random experiment consisting of inde­
pendent drawings from a Gaussian random variable distributed according to N(O, 1) .  Let the 
discrete-time random process {Xn}�0 be defined by Xo = 0 and Xn = Xn-1 + Wn for all 
n :=::: 1. This is an example of a discrete-time random process, which is nothing but a sequence 
of random variables. 1 

5.2.1 Statistical Averages 

At any given time, the random process defines a random variable; at any given set of times 
it defines a random vector. This fact enables us to define various statistical averages for th< 
process via statistical averages of the corresponding random variables. For instance, W< 
know that, at any time instance t0, the random process at that time, i.e., X (t0), is an ordinai; 
random variable; it has a density function and we can find its mean and its variance at tha 
point. Obviously, both mean and variance are ordinary deterministic numbers, but the: 
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1 

-4 -3 -2 -1  0 1 2 3 4 

x(t; w2) 

2 

-4 -3 -2 -1  0 1 2 3 4 

x(t; w3) 

3 

Figure S.14 Sample functions 
-4 -3 -2 -1 0 1 2 3 4 of Example 5.2.5. 

depend on the time to. That is, at time t1, the density function, and thus the mean and the 
variance, of X(t1) will generally"be different from those of X(to) .  

Definition 5.2.1. The mean, or expectation, of the random process X ( t) is  a deter­
ministic function of time denoted by mx(t) that at each time instant to equals the mean of 
the random variable X (t0). That is, mx(t) = E[X(t)] for all t . • 

Since at any to the random variable X (to) is well defined with a probability density function 
fx(to) (x) ,  we have 

E[X(to)] = mxCto) = 1_: xfx(t0) (x)dx. 

Figure 5 .15 gives a pictorial description of this definition. 

Example 5.2.7 

The mean of the random process in Example 5 .2.2 is obtained by noting that 

Hence, 

., e = 
{ -:Jn o ::: e < 2n 

18 ( ) 
0 otherwise · 

E[X(t)] = 12" A cos(2nf0t + e)_!_de = 0. o 2n 

We observe that, in this case, m x (t) is independent of t .  

(5.2. 1) 

• 
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Figure 5.15 The mean of a random process. 

Another statistical average that plays a very important role in our study of random pro­
cesses is the autocorrelation function. The autocorrelation function is especially important 
because it completely describes the power spectral density and the power content of a large 
class of random processes. 

Definition 5.2.2. The autocorrelation function of the random process X ( t), denoted 
by Rx(t1 , t1) ,  is defined by RxCt1 ,  t1) = E[X(t1)X(t2)] . • 

From this definition, it is clear that Rx (t1 , t2) is a deterministic function of two variables t1 
and t1 given by 

Example 5.2.8 

The autocorrelation function of the random process in Example 5.2.2 is 

Rx(t1 , tz) = E[A cos(2nfot1 + E>)A cos(2nfotz + E>)] 

= A2E [� cos 2nfo(t1 - tz) + � cos(2nfo(t1 + tz) + 2e)J 

AZ 
= 2 cos 2nf0(t1 - t2) ,  

where we have used 

1
2
'.Jt 

1 
E[cos(2nf0(t1 + tz) + 28)] = cos[2nf0(t1 + tz) + W]-de = 0. 

. 0 2Jt 

(5.2.2) 

• 
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Example 5.2.9 

For the random process given in Example 5.2.3, we have 

Rx (t1 , t2) = E(X2) = -dx = -. 1+1 x2 1 

-1 2 3 

5.2.2 Wide-Sense Stationary Processes 

215 

• 

As we have seen, a random process observed at any given time is just a random variable, 
and the properties of this random variable depend on the time at which the random process 
is observed. It can happen that some of the properties of this random variable are indepen­
dent of time. Depending on what properties are independent of time, different notions of 
stationarity can be defined. One of the most useful notions of stationarity is the notion of 
wide-sense stationary (WSS) random processes. A process is WSS if its mean and auto­
correlation do not depend on the choice of the time origin. A formal definition is given in 
Definition 5 .2.3. 

Definition 5.2.3. A process X(t) is WSS if the following conditions are satisfied: 

1. mx(t) = E[X(t)] is independent of t. 
2. Rx(ti , t1) depends only on the time difference r 

individually. 
ti - t1 and not on ti and t1 

• 

Hereafter, we will use the term stationary as a shorthand for WSS processes, and their 
mean and autocorrelation will be denoted by mx and Rx(r) . 
Example 5.2.10 

For the random process in Example 5.2.2, we have already seen that mx = 0 and 
Rx (t1 , t2) = f cos 2JC/o(t1 - t2).  Therefore, the process is WSS. • 

Example 5.2.11 

Let the random process Y(t) be similar to the random process X(t) defined in Example 5.2.2, 
but assume that e is uniformly distributed between 0 and JC. In this case, 

my(t) = E[A cos(2JCfot + 8)] 

1" 1 = A  - cos(2JC/0t + 8) de 
0 JC 

A . " = - [sm(2JC/ot + 8)]0 
JC 

= � (-2 sin(2JC/ot)) 
JC 

2A . 
= - - sm(2JC/ot) . 

JC 

Since my (t) is not independent of t, the process Y(t) is not stationary. • 

From the definition of the autocorrelation function, it follows that Rx (ti , t1) 
Rx(t2 , ti) .  This means that if the process is stationary, we have Rx(r) = Rx(-r), i.e., 
the autocorrelation function is an even function in stationary processes. 
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A class of processes closely related to stationary processes is the class of cyclosta­
tionary processes. In cyclostationary processes, the statistical properties are periodic with 
time. We will give the formal definition of the cyclostationary processes here but their 
importance in communication system analysis will become more apparent in Chapter 10. 

Definition 5.2.4. A random process X(t) with mean mx(t) and autocorrelation 
function Rx(t + r, t) is called cyclostationary if both the mean and the autocorrelation are 
periodic in t with some period To, i.e., if 

mx(t + To) = mx(t) (5.2.3) 

and 

Rx(t + r + To, t + To) =  Rx(t + r, t) (5.2.4) 

for all t, and r . • 

Example 5.2.12 

Let X(t) = A cos(2rr:f0t) where A is a random variable uniformly distributed on [0, l ] .  Then 
mx(t) = 0.5 cos(2rr:f0t) and 

1 1 
Rx (t + r, t) = 6 cos(2rr:f0r) + 6 cos(2rr:fo(2t + r)) 

It is seen that both mx (t) and Rx(t + r, t) are periodic with period T0 = To· Therefore the 
process is cyclostationary. 1 

Example 5.2.13 

Let Y(t) = X (t) cos(2rr:f0t) where X(t) is a stationary random process with mean m anc 
autocorrelation Rx ( r). Then 

and 

my (t) = E[X (t) cos(2rr:fot)] = mx cos(2rr:fot) (5.2.5: 

Rr(t + r, t) = E(X(t + r) cos(2rr:f0(t + r))X(t) cos(2rr:f0t)) 

= Rx (r) [� cos(2rr:for) + � cos(4rr:fot + 2rr:for)J (5.2.6 

It is seen that both my (t) and Ry (t + r, t) are periodic with period To = fo· Therefore, tht 
process is cyclostationary. 1 

For a cyclostationary process, X (t), we define the average autocorrelation fanction 
Rx(r), as the average of Rx(t + r, t) over one period, i.e., 

Rx(r) = - Rx(t + r, t)dt 1 1To 

To o 
(5.2.7 
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Example 5.2.14 

Determine the average autocorrelation function of the random process in Example 5.2. 13 

Solution From Equation (5.2.7), we have 

Rx(r) = � {To Rx(r) [� cos(2nfor) + � cos(4nfot + 2nfor)] dt 
To Jo 2 2 

l 1 1� = -Rx(r) cos(2nfor) + -Rx(r) cos(4nfot + 2nfor) dt 
2 � 0 
Rx(r) = -

2
- cos(2nfor) 

5.2.3 Multiple Random Processes 

(5.2.8) 

• 

Multiple random processes arise naturally when dealing with two or more random pro­
cesses. For example, take the case where we are dealing with a random process X(t) and 
we pass it through a linear time-invariant (LTI) system. For each sample function input 
x (t; w;) , we have a sample function output y(t ; w; ) = x(t; w;) * h(t), where h(t) denotes 
the impulse response of the system. We can see that for each w; E Q, we have the two 
signals x(t; w; ) and y(t ; w;) . Therefore, we are dealing with two random processes, X(t) 
and Y (t) .  When dealing with two random processes, we naturally question the dependence 
between the random processes under consideration. To this end, we define the indepen­
dence of two random processes. 

Definition 5.2.5. Two random processes X(t) and Y(t) are independent if for all 
positive integers m, n, and for all t1 , t1 , . . .  , tn and r, , r2 , . . .  , Tm ,  the random vectors 
(X(t1 ) ,  X (t2) ,  . • .  , X(tn)) and (Y(r1 ) ,  Y(r2) ,  . . •  , Y (rm)) are independent. Similarly, X(t) 
and Y (t) are uncorrelated if the two random vectors are uncorrelated. • 

From the properties of random variables, we know that the independence of random pro­
cesses implies that they are uncorrelated, whereas uncorrelatedness generally does not 
imply independence, except for the important class of Gaussian processes (to be defined 
. in Section 5.3) for which the two properties are equivalent. Next, we define the correlation 
function between two random processes. 

Definition 5.2.6. The cross correlation between two random processes X(t) and 
Y(t) is defined as 

(5.2.9) 

• 

From the preceding definition, in general, 

(5 .2.10) 

The concept of stationarity can also be generalized to joint stationarity for the case 
of two random processes. 
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Definition 5.2.7. Two random processes X(t) and Y(t) are jointly wide-sense sta­
tionary, or simply jointly stationary, if both X(t) and Y(t) are individually stationary and 
the cross-correlation RXY(t1 , t1) depends only on r = ti - t1. • 

Note that for jointly stationary random processes, from the definition and Equation (5.2. 10), 
it follows that 

RXY (r) = RYX(-r). (5.2. 1 1) 

Example 5.2.15 

Assuming that the two random processes X (t) and Y (t) are jointly stationary, determine the 
autocorrelation of the process Z(t) = X (t) + Y(t) . 

Solution By definition, 

Rz(t + r, t) = E[Z(t + r)Z(t)] 

= E[(X(t + r) + Y(t + r))(X(t) + Y(t))] 

= Rx(r) + Rr(r) + Rxr(r) + Rxr (-r). 

5.2.4 Random Processes and Linear Systems 

• 

In the section on multiple random processes, we saw that when a random process passt'.s 
through an LTI system, the output is also a random process defined on the original prob­
ability space. In this section, we will study the properties of the output process based on 
the knowledge of the input process. We are assuming that a stationary process X (t) is the 
input to an LTI system with the impulse response h(t) and the output process is denoted 
by Y(t) , as shown in Figure 5 . 16. 

We are interested in the following questions: Under what conditions will the output 
process be stationary? Under what conditions will the input and output processes be jointly 
stationary? How can we obtain the mean and the autocorrelation of the output process, as 
well as the cross correlation between the input and output processes? 

We next demonstrate that if a stationary process X(t) with mean mx and autocor­
relation function Rx(r) is passed through an LTI system with impulse response h(t), the 
input and output processes X (t) and Y (t) will be jointly stationary with 

my = mx L: h(t) dt; 

RXY (r) = Rx(r) * h(-r); 

(5.2. 12) 

(5.2. 13) 

(5.2. 14) 

X(t) � Y(t) 
Figure 5.16 A random process passing through an LTI system. 
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By using the convolution integral to relate the output Y(t) to the input X(t), i.e., Y(t) = 
J�
00
X(r)h(t - r) dr, we have 

E[Y(t)] E [i: X(r)h (t - r) dr J 
1_: E[X(r)]h (t - r) dr 

= 1_: mxh(t - r) dr 

u=:I:::-r mx J00 h(u) du = my. 
-oo 

. This proves that my is independent of t. 
The cross-correlation function between the output and the input is 

E[X(t1 )Y(t2)] 

E [X(t1) 1_: X(s)h(t2 - s) ds] 

1_: E[X (t1 )X (s)]h(t2 - s) ds 

= 1_: Rx(t1 - s)h(t2 - s) ds 

u=;,_-t2 J00 R"x_(t1 - t2 - u)h (-u) du 
-oo 

= 1_: Rx(r - u)h(-u) du 

= Rx(r) * h(-r) = RXY(r) . 
This shows that RXY (t1 , t2) depends only on r = t1 - t2. 

The autocorrelation function of the output is 

E[Y(t1 )Y(t2)] 

E [ (i: X(s)h(t1 - s) ds) Y(t2) J 
1_: Rxy(s - t2)h(t1 - s) ds 

u=�12 1_: RXY(u)h(t1 - t2 - u) du 

RXY(r) * h (r) 
Rx(r) * h(-r) * h (r) = Ry(r). 
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In the last step, we have used the result of the preceding step. This shows that Ry and RXY 
depend only on r = t1 - t2 and, hence, the output process is stationary. Therefore, the input 
and output processes are jointly stationary. 

Example 5.2.16 

Assume a stationary process passes through a differentiator. What are the mean and autocor­
relation functions of the output? What is the cross correlation between the input and output? 

Solution In a differentiator, h(t) = 8'(t). Since 8'(t) is odd, it follows that 

my = mx i: 8'(t) dt 

= 0. 
The cross-correlation function between output and input is 

/ I d RXY (r) = Rx (r) * 8  (-r) = -Rx(r) * 8  (r) = --Rx(r) , 
· dr 

and the autocorrelation function of the output is 

d d2 Ry (r) = -dr Rx (r) * 8'(r) = -dr2 Rx(r), 

where we have used Equation (2. 1 .34 ). 

Example 5.2.17 

• 

Repeat the previous example for the case where the LTI system is a quadrature filter defined 
by h(t) = -,h ; therefore, 

H 
(f) = -j sgn(f). In this case, the output of the filter is the Hilbert 

transform of the input (see Section 2.6). 

Solution We have 100 1 my = mx -dt = 0 
-00 n:t 

because _!_ is an odd function. The cross correlation function is Jtl 

1 A 

RXY (r) = Rx(r) * -- = -Rx(r), -n:r 
and the autocorrelation function of the output is 

1 A Ry (r) = RXY (r) * - = -Rx(r) = Rx (r), n:r 
where we have used the fact that .i(t) = -x(t) and assumed that Rx(r) has no DC 
component. • 

5.2.5 Power Spectral Density of Stationary Processes 

A random process is a collection of signals, and the spectral characteristics of these signals 
determine the spectral characteristics of the random process. If the signals of the random 
process are slowly varying, then the random process will mainly contain low frequencies 
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and its power will be mostly concentrated at low frequencies. On the other hand, if the 
signals change very fast, then most of the power in the random process will be at the 
high-frequency components. 

A useful function that determines the distribution of the power of the random process 
at different frequencies is the power spectral density or power spectrum of the random 
process. The power spectral density of a random process X(t) is denoted by Sx(f) , and 
denotes the strength of the power in the random process as a function of frequency. The 
unit for power spectral density is W /Hz. 

For stationary random processes, we use a very useful theorem that relates the power 
spectrum of the random process to its autocorrelation function. This theorem is known as 
the Wiener-Khinchin theorem. 

Theorem [Wiener-Khinchin] For a stationary random process X(t), the power spectral 
density is the Fourier transform of the autocorrelation function, i.e., 

Sx(f) = 5[Rx(r)] . (5.2.15) 

For a cyclostationary process, the power spectral density is the Fourier transform of the 
average autocorrelation function, i.e., 

Sx(f) = 5[Rx(r)] (5.2 .16) 

Example 5.2.18 

For the stationary random process in Example 5.2.2, we had 

A2 
Rx(r) = 2 cos(2nf0r). 

Hence, 

A2 
Sx (f) = 4[8(f - fo) + o(f + fo)J. 

The power spectral density is shown in Figure 5. 17. All the power content of the process 
is located at fo and -f0• This is expected because the sample functions of this process are 
sinusoidals with their power at those frequencies. • 

S
x
(f) 

-Jo Jo 
Figure 5.17 Power spectral 
density of the random process of 

J Example 5.2.18. 
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Example 5.2.19 

The process of Example 5.2.3 is stationary. In this case, 

Hence, 

1 
Rx(r) = E[X (t + r)X(t)] = E[X2] = - . 

3 

Sx(f) = §[�] = �o(f) 
Obviously, in this case, for each realization of the process, we have a different power 
spectrum. • 

Example 5.2.20 

Determine the power spectrum of the random process given in Example 5.2. 13 

Solution From Example 5.2.14, we know that the process is  cyclostationary with average 
autocorrelation function 

- Rx(r) 
Rx (r) = -

2
- cos(2nJor). 

Taking the Fourier transform, we obtain [Rx(r) J 1 1 Sx (f) = § -
2

- cos(2nJor) = 4Sx (f - Jo) +  4Sx (f + Jo). (5.2.17) 

This shows that the power spectrum of a modulated WSS random process is the power spec­
trum of the original signal shifted by ±Jo and scaled by 1/4. • 

The power content, or simply the power, of a random process is the sum of the 
powers at all frequencies in that random process. In order to find the total power, we have 
to integrate the power spectral density over all frequencies. This means that the power in 
the random process X ( t), denoted by Px, is obtained using the relation 

Px = 1_: Sx(/) df. (5.2. 18) 

Since Sx(f) is the Fourier transform of Rx(r), then Rx(r) will be the inverse 
Fourier transform of S x (f). Therefore, we can write 

Rx(r) = 1_: Sx(f)ej2rcf< dr. (5.2. 19) 

Substituting r = 0 into this relation yields 

Rx(O) = 1_: Sx(f) df. (5.2.20) 

Comparing this with Equation (5.2. 18), we conclude that 

Px = Rx(O) . (5.2.21) 
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From Equations (5.2. 18) and (5.2.21), we see that the power in a stationary random process 
can be found either by integrating its power spectral density (adding all power components) 
or substituting r = 0 in the autocorrelation function of the process. 

Example 5.2.21 
Find the power in the process given in Example 5 .2.18 

Solution We can use either the relation 

or the relation 

Px = 1_: Sx (f) dJ 

= 1_: [ �2 [8 (f - Jo) + 8 (f + Jo)] J df 

A2 
= 2 x -4 A2 

2 

Px = Rx(O) 

= A2 
cos(2nJo•) / 

2 r=O A2 
2 

• 

Power Spectra in LTI Systems. We have seen that when a stationary random 
process with mean mx and autocorrelation function Rx(r) passes through an LTI system 
with the impulse response h(t), the output process will be also stationary with mean 

my = mx 1_: h (t) dt 

and autocorrelation 

Ry(r) = Rx(r) * h(r) * h(-r). 

We have also seen that X(t) and Y(t) will be jointly stationary with the cross-correlation 
function 

RXY(r) = Rx(r) * h(-r). 

Translation of these relations into the frequency domain is straightforward. By noting that 
.¥[h(-r)] = H*(f) and f�00 h (t) dt = H(O) , we can compute the Fourier transform of 
both sides of these relations to obtain 

my = mxH(O) 
Sy(f) = Sx(f) IH(f) l2 • 

(5.2.22) 

(5.2.23) 
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The first equation says that since the mean of a random process is basically its DC value, 
i.e., the mean value of the response of the system only depends on the value of H (f) 
at f = 0 (DC response). The second equation says that when dealing with the power 
spectrum, the phase of H (f) is irrelevant; only the magnitude of H (f) affects the output 
power spectrum. This is also intuitive since power depends on the amplitude and not on 
the phase of the signal. For instance, if a random process passes through a differentiator, 
we have H(f) = j2nf ; hence, 

my = mxH(O) = 0 
Sy(f) = 4n2 f2Sx(f) . 

(5.2.24) 

(5.2.25) 

We can also define a frequency-domain relation for the cross-correlation function. 
Let us define the cross-spectral density S xy (f) as 

def SXY (f) = 9'[RXY(i)] . (5.2.26) 

Then 

SXY(f) = Sx(f) H
*
(f), (5.2.27) 

and since RYX (r) = Rxy(-r), we have 

SYX(f) = S*x_y (f) = Sx(f) H(f). (5.2.28) 

Note that although Sx(f) and Sy(f) are real nonnegative functions, SXY Cf) and SYX (f) 
can generally be complex functions. Figure 5 . 18  shows how these quantities are related. 

Example 5.2.22 

If the process in Example 5.2.2 passes through a differentiator, we have H(f) = j2nJ 
therefore, 

Sr (f) = 4n2 J2 [ �2 (8(f - Jo) +  8 (f + Jo)) J = A2n2 Ji[8(f - Jo) + 8(f + Jo)] 

x
(t)� y(t) 

S
yx
(f) 

Figure 5.18 Input-output relations for the power 
spectral density and the cross-spectral density. 
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and 

jA2nfo Sxr CJ) = (-j2n/)Sx(/) = -2- [8(/ + /o) - 8(/ - /o)] . 

Example 5.2.23 

Passing the process in Example 5.2.3 through a differentiator results in 

Sr (/) = 4n2 /2 Go(f)) = 0, 

Sxr CJ) = (-j2nf) Go(f)) = o, 
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• 

where we have used the basic properties of the impulse signal in both relations. These results 
are intuitive because the sample functions of this process are constant and differentiating them 
results in zero output. • 

5.2.6 Power Spectral Density of a Sum Process 

In practice, we often encounter the 'sum of two random processes. For example, in the case 
of communication over a channel with additive noise, the noise process is added to the 
signal process. Next, we determine the power spectral density for the sum of two jointly 
stationary processes. 

Let us assume that Z(t) = X(t) + Y(t), where X(t) and Y(t) are jointly stationary 
random processes. We already know from Example 5.2. 15 that Z (t) is a stationary process 
with 

Rz (r) = Rx(r) + Ry(r) + Rxr(r) + Rrx(r) . (5.2.29) 

Taking the Fourier transform of both sides of this equation and using the result of Prob­
lem 5 .39, we obtain 

Sz (f) = Sx(f) + Sr (f) + Sxr Cf) + Srx(f) 
'-...-" 
Sh<f) 

= Sx(f) + Sr (f) + 2Re [Sxy (f)] . (5.2.30) 

The preceding relation shows that the power spectral density of the sum process is the sum 
of the power spectra of the individual processes plus a third term, which depends on the 
cross correlation between the two processes. 

If the two processes X(t) and Y(t) are uncorrelated, then 

Rxr(r) = mx my . 

Now if at least one of the processes is zero mean, we will have Rxr ( r) = 0 and 

Sz (f) = Sx(f) + Sr (f) . 
. / I 

(5.2.31)  
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Example 5.2.24 

Let X (t) represent the process in Example 5.2.2, and let Z(t) = X (t) + ft X (t). Then 

jA2TIJo SXY (f) = -
2
- [8(f + Jo) - 8(f - Jo)] ; 

therefore, 
Re[SXY(f)] = 0. 

Hence, 

Sz(f) = Sx (f) + Sy (f) = A2 ( � + TI2 Ji) [8(f - Jo) +  8 (f + Jo)]. • 

5.3 GAUSSIAN AND WHITE PROCESSES 

Gaussian processes play an important role in communication systems. The fundamental 
reason for their importance is that thermal noise in electronic devices, which is produced 
by the random movement of electrons due to thermal agitation, can be closely modeled by 
a Gaussian process. 

In order to see the reason why thermal noise is a Gaussian process, consider a resistor. 
The free electrons in a resistor move as a result of thermal agitation. The movement of the 
electrons is quite random and can be in any direction; however, their velocity is a function 
of the ambient temperature. The higher the temperature, the higher the velocity of the 
!!lectrons. The movement of these electrons generates a current with a random value. We 
can consider each election in motion as a tiny current source, whose current is 'a random 
variable that can be positive or negative, depending on the direction of the movement of 
the electron. The total current generated by all electrons, which is the generated thermal 
noise, is the sum of the currents of all these current sources. We can assume that at least 
a majority of these sources behave independently and, therefore, the total current is the 
sum of a large number of independent and identically distributed random vaiiables. Now 
by applying the central limit theorem, we conclude that this total current has · a Gaussian 
distribution. This is the reason that thermal noise can be very well modeled by a Oaussian 
random process. 

Gaussian processes provide rather good models for some information sources as 
well. Some interesting properties of the Gaussian processes, which will be discussed in 
this section, make these processes mathematically tractable and easy to use. 

5.3.1 Gaussian Processes 

In a Gaussian random process, we can look at different instances of time and the resulting 
random variables will be jointly Gaussian. We start our discussion with a formal definition 
of Gaussian processes. 

Definition 5.3.1. A random process X (t) is a Gaussian process if for all n anc 
all (t1 , t2 , . . .  , tn) , the random variables {X(t; ) }7=1 have a jointly Gaussian densit) 
function. 1 
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From the preceding definition, we know that at any time instant to, the random variable 
X(to) is Gaussian; at any two points t1 , tz, random variables (X(t1 ) ,  X (t2)) are distributed 
according to a tw°fdimensional jointly Gaussian distribution. 

Example 5.3.1 

Let X(t) be a zero-mean stationary Gaussian random process with the power spectral density 
S x(t) = SIT ( 1�0) . Determine tlie probability density function of the random variable X(3). 
Solution Since X (t) is a Gaussian random process, the probability density function of ran-

. <lorn variab�e X(t) at any value of t is Gaussifili. Therefore, X(3) ,,__, N(m, a2) . Now we need 
to find m and a2• Since the process is zero mean, at any time instance t, we have E[X(t)] = O; 
this means m = E[X(3)] = 0. To find the variance, we note that 

a2 = VAR[X(3)] 
= E[X2(3)] - (E[X (3)])2 

= E[X(3)X(3)] 
= Rx(O), 

where, in the last step, we have used the fact that the process is stationary and hence 
E[X(t1 )X(t2)] = RxCt1 - t2). But from Equation (5.2.20), we have 

a2 = Rx(O) 

= 1: Sx(f) df 1500 
= 5 df 

-500 

= 5000; 

therefore, X(3) ""N(O, 5000), or the density function for X(3) is 
. 1 ,2 

f (x) = ../10,000it 
e-ro.oou · • 

Just as we have defined jointly Gaussian random variables, we can also defi jointly 
Gaussian random processes. 

Definition 5.3.2. The random processes X(t) and Y(t) are jointly Gaussian if for 
all n, m and all (t1 , t2 , . . .  , tn) and (r1 , r2 , . . .  , rm) , the random vector (X (t1) ,  
X (t2) ,  . . .  , X (tn)� Y (r1 ) ,  Y(r2) ,  . . .  , Y (rm)) i s  distributed according to an n + m dimen­
sional jointly Gaussian distribution. • 

From this"d�finition, it is obvious that if X (t) and Y(t) are jointly Gaussian, then each of 
them is indi�duajly Gaussian; but the converse is not always true. That is, two individually 
Gaussian random processes are not always jointly Gaussian. 

Gaussian and jointly Gaussian random processes have some important properties that 
are not shared by other families of random processes. Two of the most important properties 
are given here: 
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Property I. If the Gaussian process X(t) is passed through an LTI system, then 
the output process Y(t) will also be a Gaussian process. Moreover, X(t) and Y(t) .will be 
-jointly Gaussian processes. 

This property follows directly from the fact that linear combinations of jointly Gaus­
sian random variables are themselves jointly Gaussian. 

This result is very important; it demonstrates one of the properties that makes Gaus­
sian processes attractive. For a non-Gaussian process, knowledge of-the statistical prop­
erties of the input process does not easily lead to the statistical properties of the output 
process. However, for a Gaussian process, we know that the output process of an LTI 
system will also be Gaussian. 

Property 2. For jointly Gaussian processes, uncorrelatednef)s and independence 
are equivalent. 

This is also a straightforward consequence of the basic properties of Gaussian ran­
dom variables, as outlined in our discussion of jointly Gaussian random variables. : 

Example 5.3.2 

The random process X(t) in Example 5.3 . l  is passed through a differentiator and the out­
put process is denoted by Y (t), i.e., Y (t) = fr X (t), determine the probability density func­
tion Y(3). 
Solution Since a differentiator is an LTI system, by Property 1 ,  Y(t) is a Gaussian process. 
This means that Y(3) is a Gaussian random variable with mean my and variance a};. Also 
note that the impulse response of a differentiator is h(t) = 8'(t); hence, its transfer function is 
H(j) = .?F[h(t)] = j2nf. In order to find my, we use the result of Example 5.2.16, which 
shows my = 0. To find a}, we use a method similar to the one employed in Example 5.3.1 . 
First we have to findSy (f), which can be found using Equation (5.2.23) with H(f) = j2nf. 

This is very similar to Examples 5.2.22 and 5.2.23. We have 

1500 
= 5 x 4n2f2 df 

-500 

= [20n2 !3
] 500 

3 f=-500 
20n2 = -- x 2 x 5003 3 

� 1 .64 x 1010 • 
Since my = 0 and a� = 1 .64 x 1010, we have Y(3) � N(O, 1 .64 x 1010) .  

5.3.2 White Processes 

The term white process is used to denote processes in which all frequency component 
appear with equal power, i.e., the power spectral density is a constant for all frequencie� 
This parallels the notion of "white light," in which all colors exist. 
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Definition 5.3.3. A process X (t) is called a white process if it has a flat power 
spectral density, i.e., if Sx(f) is a constffi!t for all f. 

· 

• 

In practice, the importance of white processes stems from the fact that thermal noise can be 
closely modeled as a white process over a wide range of frequencies. Also, a wide range of 
processes used to describe a variety of information sources can be modeled as the output of 
LTI systems driven by a white process. Figure 5 .19 shows_ the power spectrum of a white 
process. 

If we find the 'power content of a white process using Sx(f) = C, a constant, we 
will have 

Px = 1_: Sx(f) df = 1_:
_
C df = oo. 

Obviously, no real physical process can have infinite power; therefore, a white process is 
not a meaningful physical process. However, quantum mechanical analysis of the thermal 
noise shows that it has a power spectral density given by 

/if 
(5.3. 1 )  Sn (f) = ( !!l ) ' 

2 e kT - 1 

in which Ii denotes Planck's constant (equal to 6.6 x 10-34 J x sec) and k is Boltzmann's 
constant (equal to 1 .38 -x 10-23 J/K). T denotes the temperature in degrees Kelvin. This 

, power spectrum is shown in Figure 5 .20. 
The preceding spectrum achieves its maximum at f = 0, and the value of this max­

imum is k[ . The spectrum goes to zero as f goes to infinity, but the rate of convergence 
to zero is very slow. For instance, at room temperature (T', = 300° K) Sn (f) drops to 90% 
of its maximum at about f � 2 x 1012 Hz, which is beyond the frequencies employed in 
conventional communication systems. Thus, we conclude that thermal noise, though not 
precisely white, for all practical purposes can be modeled as a white process with a power 

S
x
(f) 

kT 
2 

Figure 5.19 Power spectrum of a white f 
process. 

Figure 5.20 Power spectrum of thermal f 
noise. 
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spectrum equal to kJ . The value kT is usually denoted by N0; therefore, the power spectral 

density of thermal noise is usually given as Sn (f) = �o . It is sometimes referred to as the 
two-sided power spectral density, emphasizing that this spectrum extends to both positive 
and negative frequencies. We will avoid this terminology throughout this text and simply 
use power spectrum or power spectral density. 

Looking at the autocorrelation function for a white process, we see that 

I [No ] No Rn (r:) = g;-- 2 = To(r:) . (5.3.2) 

This shows that for all r: f= 0, we have Rx(r) = 0. Thus, if we sample a white process 
at two points t1 and t1 (t1 f= t1), the resulting random variables will be uncorrelated. If 
the random process is white and also Gaussian, any pair of random variables X (t1 ) ,-X (t2) , 
where t1 f= t2, will also be independent (recall that for jointly Gaussian random vru;iables, 
uncorrelatedness and independence are equivalent.) 

Properties of the Thermal Noise. The thermal noise that we will use in' subse­
quent chapters is assumed to have the following properties: 

1. Thermal noise is a stationary process. 

2. Thermal noise is a zero-mean process. 

3. Thermal noise is a Gaussian process. 

4. Thermal noise is a white process with a power spectral density Sn (f) = kJ . · 

"-­
It is clear that the power spectral density of thermal noise increases with increasing the 
ambient temperature; therefore, keeping electric circuits cool makes their noise level low. 

5.3.3 Filtered Noise Processes 

In many cases, the white noise generated in one stage of the system is filtered by the next 
stage; therefore, in the following stage, we encounter filtered noise that is a bandpass pro­
cess, i.e., its power spectral density is located away from the zero frequency and is mainly 
located around some frequency fc, which is far from zero and larger than the bandwidth of 
the process. 

In a bandpass process, sample functions are bandpass signals; like the bandpass sig­
nals discussed in Section 2. 7-, they can be expressed in terms of the in-phase and quadrature 
components. In this section, we study the main properties of bandpass noise processes and 
particularly study the main properties of the in-phase and quadrature processes. 

Let us assume that the process X (t) is the output of an ideal bandpass filter of band­
width W which is located at frequencies around fc· For example, one such filter can have 
a transfer function of the form 

H, (f) = { 1 I f  - !c l ::::: W 
0 otherwise 

(5.3.3; 
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-fc - W -fc -fc 
+ W 

f 

..-----.- - - - -- -- - - - - - - - - - - ! _ _ _  --- - --- - - - - --..-----.. 

-
f
c - W -Jc fc f 

Figure 5.21 Filter transfer functions H1 (f) and H2 (f). 

Another example of a such filter would be { 1 /e S If I S fe + W 
H2(/) = . 0 otherwise 

(5.3.4) 

Figure 5.21 shows plots of the transfer functions of these two filters. 
Since thermal noise is white and Gaussian, the filtered thermal noise will be Gaussian 

but not white. The power spectral density of the filtered noise will be 

Sx(f) � �o IH(f) l2 = �o H(f) , 

where we have used the fact that for ideal filters IH(/) 12 = H(f). For the two filtered 
noise processes corresponding to H1 (f) and H2(f), we have the following power spectral 
densities: 

and 

l f - fe l S W 
otherwise 

fe S If I S fe + W 
otherwise 

(5.3.5) 

(5.3.6) 

All bandpass filtered noise signals have an in-phase and quadrature component that are 
lowpass signals. This means that the bandpass random process X(t) can be expressed in 
an equation that is similar to Equation (2.7.8), i.e., 

X(t) = Xe(t) cos(2n/et) - Xs(t) sin(2n/et) , (5.3.7) 
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where Xc(t) and X.(t)-the in-phase and quadrature components-are lowpass processes. 
Note that, as we did with Equation (2. 7 . 17), we can also represent the filtered noise in terms 
of its envelope and phase as 

X(t) = A(t) cos(2nfct + e(t)) , (5.3.8) 

where A(t) and e (t) are lowpass random processes. 

Properties of the In-Phase and Quadrature Processes. For filtered· white 
Gaussian noise, the following properties for Xc(t) and X.(t) can be proved (for _proofs, 
see Proakis and Salehi (2008)): 

1. Xc(t) and Xs (t) are zero-mean, lowpass, jointly stationary, and jointly Gaussian r�p-
dom processes. cr'L�r .. t.J f"'WU, (Ft>r e�: 2NoW .pr f;/f:er?J 

2. If the power in process X (t) is Px, then the power in each of the processes Xc(t.) and 
X.(t) is also Px. In other words, 

Px = Pxc = Pxs = 1_: Sx(f) df. (5.3.9) 

3. Processes Xc(t) and X.(t) have a common power spectral density. This power:. spec­
tral density is obtained by shifting the positive frequencies in S x (f) to the left by 
!co shifting the negative frequencies of Sx (f) to the right by fc, and adding the two 
shifted spectra. Therefore, if H1 (f), given in Equation (5.3.3), is used, then 

(5.3. 10) 

and if H2(f), given in Equation (5 .3.4) is used, then 

I l l :::; w (5.3. 1 1) 
otherwise 

The power spectral densities for these two cases are shown in Figure 5.22. It is obvi­
ous that in both cases, the power in the in-phase and quadrature components is equal 
to the power in the bandpass noise. When H1 (f) is used, the power in the filtered 
noise from Equation (5.3.5) is P1 = �0 x 4W = 2N0 W, and when H2(f) is used, 
the power in the filtered noise from Jjquation (5.3.6) is P2 = �0 x 2W = No W. By 
integrating the power spectral density, we can see that the power in the in-phase and 
quadrature components in these two cases are 2N0 W and No W, respectively, which 
are equal to the corresponding P1 and P2. 

4. If + fc and -fc are the axis of symmetry of the positive and negative frequencies, 
respectively, in the spectrum of H (f)-as is the case for H1 (f) in Equation (5.3.3) 
and is not the case for H2(f) in Equation (5.3.4)-then Xc(t) and Xs(t) will be 
independent processes. 
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Figure 5.22 Power spectral densities of the in-phase and quadrature component's of the filtered noise passed 
through H (f) and H, (f). 

Example 5.3.3 

For the bandpass white noise at the output of filter H1 (f), given in Equation (5.3.3), find the 
power spectral density of the process Z(t) = aXcCt) + bX,(t). 
Solution Since fc is the axis of symmetry of the noise power spectral density, the in-phase 
and quadrature components of the noise will be independent; therefore, we are dealing with 
the sum of two independent and zero-mean processes. This means that the conditions leading 
to Equation ( 5 .2.31) are satisfied, and the power spectral density of Z ( t) · is the suni of the 
power spectral densities of aXc(t) and bX, (t). But we already know that S Xe (f) = S x, (f) = 
S x (f) , therefore S z (f) = a2 S x (f) + b2 S x (f) = (a2 + b2 )S x (f): Note that in the special 
case where a =  cos e and b = - sine, we have Sz(f) = Sx (f). • 

Noise Equivalent Bandwidth. When a white Gaussian noise passes through a 
filter, the output process, although still Gaussian, will not be white anymore. The filter 
characteristic shapes the spectral properties of the output process, and we have 

Sr (f) = Sx(f) IH(f) l2 = �o IH(f) l2 . 

Now if we want to find the power content of the output process, we have to integrate Sr(f) . 
Thus, 

100 Ni 100 Pr = 
-oo

Sr(f) df =  20 
-oo

lH(f) l2 df. 
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Therefore, to determine the output power, we have to evaluate the integral f �00 I H (f) 1 2 d f. 
To do this calculation, we define Bneq. the noise equivalent bandwidth of a filter with the 
frequency response H (f), as 

.(5 .3,. 12) 

where Hmax d�notes the maximum of IH(f) I in the passband of the filter. Figure 5.23 
shows Hmax and Bneq for a typical filter. 

Using the preceding definition, we have 

Pr = No /00 
I H(f) l2 df 2 -00 

No 2 = l X 2Bneq Hmax 

= No Bneq H�ax· (5.3 . 13: 

Therefore, when we have Bneq• finding the output noise power becomes a simple task. Tht 
noise equivalent bandwidth of filters and amplifiers is usually provided by tht 
manufacturer. 

Example 5.3.4 

Find the noise equivalent bandwidth of a lowpass RC filter. 

Solution For this filter, 

H( -
1 f) - 1 + j2rcf RC ' 

and is shown in Figure 5.24. Defining r = RC, we have 

1 
JH(f) I = , 

Jl + 4n2 f2r2 

f 
Figure 5.23 Noise equivalent 
bandwidth of a typical filter. 
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1 

0 
Figure 5.24 Frequency response of a lowpass f 
RC filter. 

and therefore Hmax = 1 .  We also have 

Hence, 

5.4 SUMMARY AND FURTHER READING 

2 
. d 

100 1 
o 1 + 4n2 J2r2 f 

= 2 -- x --u=2rrfr 100 1 du 
0 1 + u2 2n-c 

1 1t - x ­
Jt-C 2 

2-c 

tr 1 B - -- - -neq -
2 X 1 - 4RC

. • 

In this chapter, we presented a review of the basic definitions and concepts in probabil­
ity and random processes. Several random variables and their properties were introduced, 
including the Bemouli random variable, the binomial random variable, the uniform random 
variable, and the Gaussian random variable. Functions of random -variables were treated, 
including statistical averages such as the mean value and the variance. We also covered 
multiple random variables and joint statistical parameters of multiple random variables, 
such as joint moments, e.g., their covariance. 

In our coverage of random processes, we introduced wide-sense stationary pro­
cesses and their autocorrelation function, and multiple random processes and their cross­
correlation functions. We also introduced the power spectral density of stationary processes 
and the Wiener-Khinchin theorem, which relates the power spectral density to the Fourier 
transform of the autocorrelation function. When a linear time-invariant (LTI) system is 
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excited by a stationary random process, the system output is also stationary. In such a case, 
we related the aurocorrelation and power spectral density of the LTI system output to the 
autocorrelation and power spectral density of the input random process and to time- and 
frequency-response characteristics of the LTI system. 

The final topic of this chapter focused on Gaussian random processes and spectrally 
white processes. In our treatment of white processes, we presented the properties of ther­
mal noise and characterized thermal noise as a white Gaussian random process. We also 
considered filtering a white Gaussian noise process by a bandpass filter to obtain a band­
pass Gaussian noise process. Then, we showed that such a bandpass filtered noise pro­
cess is expressed in terms of an in-phase component and a quadrature component, both of 
which are lowpass random processes. Finally, the spectral properties of the in-phase and 
quadrature random processes were presented. 

The books by Leon Garcia (1994), Helstrom (1991), Davenport and Root (1987), 
Papoulis (1991), Nelson (1995), and Stark and Woods (1994) cover probability and ran­
dom processes with an emphasis on electrical engineering applications. Gray and Davisson 
(1986) is particularly interesting, since it covers random processes for electrical engineers 
without compromising mathematical rigor. 

PROBLEMS 

5.1 A random experiment consists of drawing a ball from an um that contains four red 
balls (numbered 1, 2, 3, 4) and three black balls numbered (1 ,  2, 3). Precisely state 
what outcomes are contained in the following events: 

1. E 1 = The number on the ball is even. 

2. E2 = The color of the ball is red and its number is greater than 1 .  
3 .  E3 = The number on the ball i s  less than 3 .  
4. £4 = E1 U £3. 
5. Es = E1 u (E2 n £3) .  

5.2 If all balls in the preceding problem are equally likely to be drawn, find the proba­
bilities of E; , 1 ::; i ::; 5 . 

5.3 In a certain city, three car brands A,  B, and C have 20%, 30%, and 50% of the market 
share, respectively. The probabilities that a car will need major repair during its first 
year of purchase are 5%, 10%, and 15%, for these brands, respectively. 

1. What is the probability that a car in this city will need major repair during its 
first year of purchase? 

2. If a car in this city needs major repair during its first year of purchase, what if 
the probability that it is made by manufacturer A? 

5.4 Under what conditions can two disjoint events A and B be independent? 
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5.5 An information source produces 0 and 1 wi�h probabilities 0.3 and 0.7, respectively. 
The output of the source is transmitted via a channel that has a probability of error 
(turning a 1 into a 0 or a 0 into a 1) equal to 0.2. 

1. What is the probability that a 1 will be observed at the output? 

2. What is the probability that a 1 was the output of the source if a 1 is observed at 
the output of the channel? 

' 

5.6 A coin is flipped three times, and the random variable X denotes the total number of 
heads that show up. The probability of landing on a head in one flip of this coin is 
denoted by p. 

1. What values can the random variable X take? 
2. What is the probability mass function oJ the random variable X? 
3. Derive and plot the CDP of X. 
4. What is the probability that X exceeds 1? 

5.7 For coin A, the probability of landing on a head is equal to � and the probability of 
landing on a tail is equal to � ; coin B is a fair coin. Each coin is flipped four times. 
Let the random variable X denote the number of heads resulting from coin A, and Y 
denote the resulting number of heads from coin B.  

1. What is  the probability that X = Y = 2? 
2. What is the probability that X = Y? 
3. What is the probability that X > Y? 
4. Wha� is the probability that X + Y :::; 5? 

5.8 A random variable X is  defined by the CDP 

1. Find the value of K. 

{ O, 
l Fx(x) � r 

' '  

x < 0 

x :'.'.: 1 -

2. Is this random variable discrete, contif!UOus, or mixed? 
3. What is the probability that ! < X :::; 1 ?  

4. What i s  the probability that ! < X < 1 ?  
5. What is the probability that X exceeds 2? 

5.9 Random variable X is distributed according to fx(x) = A(x). 

1. Determine P(X > !). 
2. Determine P (X > O IX < !). 
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3. What is fx (x \X > i)7 

4. What is E(X\X > i)7 

5.10 X is a Gaussian random variable with a mean 4 and a variance 9, i.e., N(4, 9). 
Determine the following probabilities: 

1. P(X > 7) . 
2. P(O < X < 9). 

5.11 The noise voltage in an electric circuit can be modeled as a Gaussian random va'riable 
with a mean equal to zero and a variance equal to 1 o-8 . 

1. What is the probability that the value of the noise exceeds 10-47 What is the 
probability that it exceeds 4 x 10-47 What is the probability that the noise value 
is between -2 x 10-4 and 10-47 

2. Given that the value of the noise is positive, what is the prq_bability that it exceeds 
10-47 

3. This noise passes through a half-wave rectifier with characteristics 

g(x) = {X, 
0, 

x > O 

Find the PDF of the rectified noise by first finding its CDF. Why can we not use 
the general expression in Equation (5. 1 . 1 1)7 

4. Find the expected value of the rectified noise in the previous part. 

5. Now assume that the noise passes through a full-wave rectifier defined by g(x) = 

\x \ .  Find the density function of the rectified noise in this case. What is tht 
expected value of the output noise in this case 7 

5.12 X is a N(O, a2) random variable. This random variable is passed through a systen 
whose input-output relation is given by y = g(x). Find the PDF or the PMF of th1 
output random variable Y in each of the following cases: 

1. Square law device, g(x) = ax2 • 
2. Limiter, {-b 

g(x) = b : 
x ,  

3. Hard limiter, {a, 
g(x) = 0, 

b, 

x ::; -b 
x ?::. b 
\x \ < b 

x > O  
x = 0 .  
x < O  
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4. Quantizer, g(x) = Xn for an :S x < lln+h 1 _:::: n _:::: N, where Xn lies in 
the interval [an , an+il , the sequence {a1 ,  a2, . . . , aN+d satisfies the conditions 
a1 = -oo, llN+I = oo, and for i > j, we have a; > aj . 

5.13 The random variable <P is uniformly distributed on the interval [ - ¥ ,  ¥] .  Find the 
probability density function of X = tan <P. Find the mean and the variance of X. 

5.14 Let Y be a positive-valued random variable, i.e., fy(y) = 0 for y < 0. 

1. Let a be any positive constant, _and show that P (Y > a) _:::: E;}') (Markov 
inequality). 

2. Let X be any random variable with variance o-2, and define Y = (X - E[X])2 

and a = E2 for some E. Obviously, the conditions of the problem are satisfied 
for Y and a as chosen here. Derive the Chebychev inequality 

0"2 
p ( IX - E(X) I > E) :::: 2 ·  E 

5.15 Show that for a binomial random variable, the mean is given by np and the variance 
is given by np( l  - p).  

5.16 Show that for a Poisson random variable defined by the PMF P(X = k) = fi-e-A, 
where k = 0, 1, 2, . . .  and A. >  0, we have E(X) = A.  and VAR(X) = A.. 

5.17 Let X denote a Gaussian random variable with a mean equal to zero and a variance 
equal to o-2 . Show that 

E[xn] = 10, n = 2k + 1 
1 x 3 x 5 x · · · x (n - l)o-n , n = 2k 

x2 
(Hint: Differentiate the identity f000 e - 2u2 dx = 0.5J2no-2, k times.) 

5.18 Two random variables X and Y are distributed according to 

f 
( ) --' IK(x + y) , O _:::: x , y _:::: l X Y X, Y - . . ' 0, otherwise 

1. Find K. 
-2 .  What is  the probability that X + Y > 1? 

3. Find P (X > Y). 

4. What is P (X > YIX + 2Y > I)? 

5. Find P(X = Y). 

6. What is P (X > 0.5 IX = Y)? 
7. Find fx(x) and fy(y). 
8. Findfx (x l X  + 2Y > 1 )  and E(X IX  + 2Y > 1 ) .  
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5.19 Let X1 , X2, . . .  , Xn denote independent and identically distributed random variables 
each with PDF fx(x) .  

1 .  If Y = min{X1 , X'!-, . . .  , Xn}, find the PDF of Y .  

2 .  If Z = max{X1 ,  X2, . . . , Xn} , find the PDF of Z.  

5.20 Show that for the Rayleigh density function 

I ..£e -;:z x > 0 fx(x) = a2 ' 
0, otherwise 

we have E(X) = a  Pi and VAR(X) = (2 - I) a2. 

5.21 Let X and Y be independent random variables with 

and 

fx(x) = ' {ae-ax 
0, 

x > O 
otherwise 

fy (y) = 
e , x > 

. 
{{3 -fix 0 
0, otherwise 

where a and f3 are assumed to be positive constants. Find the PDF of X + Y and treat 
the special case a = f3 separately. 

5.22 Two random variables X and Y are distributed according to {Ke-x-y , fx,y (X ,  y) = 
O, 

1. Find the value of the constant K. 
x 2: y 2: 0 
otherwise 

2. Find the marginal probability density functions of X and Y. 

3. Are X and Y independent? 

4. Find fxiy(x ly). 
5. Find E(X IY  = y). 
6. Find CQYi._4:, Y) and� . 

I 

5.23 Let e be uniformly distributed on [O, n], and let the random variables X and Y b< 
defined by X = cos e and Y = sin e. Show that X and Y are uncorrelated, but an 
not independent. 

5.24 Let X and Y be two independent Gaussian random variables, each with mean zerc 
and variance 1 .  Define the two events E 1 (r) = { X > r and Y > r} and E2 (r) = 
{,Jx2 + Y2 > 2r} , where r is any nonnegative constant. 
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1. Show that £1 (r) <;; E2(r) ;  therefore, P (E1 (r)) :::; P (E2(r)) .  
2 .  Show that P (E1 (r)) = Q2(r) .  
3.  Use the relations for rectangular to polar transformation to find P (E2 (r)) and 

conclude with the bound 

on the Q-function. 

5.25 It can be shown that the Q-function can be well approximated by 

where t = 1)px and 

p = 0.23 16419; 
bi = 0.3 198 1530; 
.b2 = -0.356563782; 
b3 = 1 .78 1477937; 
b4 = -1 . 821255978; 
b5 = 1 .330274429. 

Using this relation, write a computer program to compute the Q-function at any 
given value of its argument. Compute Q(x) for x = 1 ,  1 .5 ,  2 • .  �.5, 3, 3 .5,4, 4.5, 5 ,  
and compare the results with those obtained from the table of the Q-function. 

5.26 Let X and Y be independent Gaussian random variables, each distributed according 
to N(O, a2) . ·Define Z = X + Y and W == 2X - Y. What can you say about the joint 
PDF of Z and W? What is the covariance of Z and W? 

5.27 Let X and Y be two jointly Gaussian random variables with means mx and my, 
variances ai and a'f, and a correlation coefficient PX,Y · Show that fxri' (x l y) is a. 
Gaussian distribution with a mean m x + p ax (y - my) and a variance ax2 (1 - Px2 y) .  ay , 
What happens if p = O? What happens if p = ±1? 

5.28 Let X and Y be zero-mean jointly Gaussian random variables, each with variance 
a2• The correlation coefficient between X and Y is denoted by p. Random variables 
Z and W are defined by 

where e is a constant angle. 

{ z = x cos e + y sin e . 
w = -x sin e + y cos e ' 
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1. Show that Z and W are jointly Gaussian random variables. 

2. For what values of fJ are the random variables Z and W independent? 

5.29 Two random variables X and Y are distributed according to 

1. Find K. 

{ Ke_xz!yi xy 2: 0 fx,y (X, y) = TI ' 
0, xy < 0 

2. Show that X and Y are each Gaussian random variables. 

3. Show that X and Y are not jointly Gaussian. 

4. Are X and Y independent? 

5. Are X and Y uncorrelated? 

6. Find fx1y (x ly) . Is this a Gaussian distribution? 

5.30 Let X and Y be two independent Gaussian random variables with a common variance a2. The mean of X is m and Y is a zero-mean random variable. We define-random 
variable V as V = ,Jx2 + Y2 . Show that 

where 

fv(v) = { ;2 10 (;�) e-"�!�2
, v > 0 

0, v :s 0 

Io(x) = __!__ {2TI ex cos u du = __!__ 1TI 
ex cos u  du 

2n lo 2n -TI 
is called the modified Bessel function of the first kind and zero order. The distribution 
of V is known as the Rician distribution. Show that, in the special case of m = 0, the 
Rician distribution simplifies to the Rayleigh distribution. 

5.31 A coin has the probability of landing on a head equal to t and is flipped 2000 times. 

1. Using the law of large numbers, find a lower bound to the probability that the 
total number of heads lies between 480 and 520. 

2. Using the central limit theorem, find the probability that the total number oJ 
heads lies between 480 and 520. 

5.32 Find m x (t) for the random process X (t) given in Example 5 .2.3 . Is the result inde· 
pendent of t? 

5.33 Let the random process X(t) be defined by X(t) = A +  Bt where A and B art 
independent random variables, each uniformly distributed on [-1,  l]. Find mx(t 
and Rx(t1 , t1) .  
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5.34 Show that the process given in Example 5.2.3 is a stationary process. 

5.35 Which one of the following functions can be the autocorrelation function of a random 
process and why? 

1. f (r) = sin(2nfor). 

2. f (r),  as shown in Figure P-5.35. 

f(r) 

T 

-1 
Figure P-5.35 

5.36 Is the process of Example 5.2.5 stationary? 

5.37 A random process Z(t) takes the values 0 and 1 .  A transition from 0 to 1 or from 1 
to 0 occurs randomly, and the probability of having n transitions in a time interval of 
duration r ( r > 0) is given by 

l ( C.H )n 
PN(n) = 

l + ar l + ar
. ' 

'-
n = 0, 1 ,  2, . . .  , 

where a > 0 is a constant. We further assume that at t = 0, X (0) is equally likely to 
be 0 or 1 .  · 

1. Find mz(t) . 

2, Find Rz(t + r, t) . Is Z(t) stationary? 

3. Determine the power spectral density of Z(t) . 

5.38 The random process X (t) is defined by 

X (t) = X cos 2nfot + Y sin 2nfot, 

where X and Y are two zero-mean independent Gaussian random variables each with 
the variance a2. 
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1. Find mx(t). 
2. Find Rx(t + r, t) . Is X(t) stationary? 

3. Find the power spectral density of X (t) .  
4. Answer Parts 1 and 2 for the case where ai = af. 

5.39 Show that for jointly stationary processes X(t) and Y(t), we have RXY (r) = RYX(-r). 
From this information, conclude that s XY (f) = s� x (f) . 

5.40 A zero-mean white Gaussian noise process with the power spectral density of �0 
passes through an ideal lowpass filter with bandwidth B.  

1 .  Find the autocorrelation of the output process Y (t) .  
2. Assuming r = 2� ,  find the joint probability density function of the random 

variables Y(t) and Y(t + r).  Are these random variables independent? 
· 

5.41 Find the output autocorrelation function for a delay line with delay D.. when the input 
is a stationary process with the autocorrelation Rx(r). Interpret the result. 

5.42 We have proved that when the input to an LTI system is stationary, the output is also 
stationary. Is the converse of this theorem also true? That is, if we know that the 
output process is stationary, can we conclude that the input process is necessarily 
stationary? 

5.43 Generalize the result of Example 5 .2.24 when X (t) is stationary. 

1. Show that X (t) and ft X (t) are uncorrelated processes. 

2. Show that the power spectrum of Z (t) = X ( t) + ft X (t) is the sum of the power 
spectra of X (f) and ft X ( t) . 

3. Express the power spectrum of the sum in terms of the power spectrum of X (t) .  

5.44 Assume X(t) i s  a stationary process with the power spectral density Sx<f). This 
process passes through the system shown in Figure P-5.44. 

X(t) 

1. Is Y(t) stationary? Why? 

2. What is the power spectral density of Y(t)? 
3. What frequency components cannot be present in the output process and why? 

Delay = T 

d 
dt 

Figure P-5.44 
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5.45 The stationary random process X (t) has a power spectral density denoted by S x (f) . 
f' 

1. What is the power spectral density of Y (t) = X (t) - X (t - T)? 
2. What is the power spectral density of Z(t) = X'(t) - X(t)? 
3. What is the power spectral density of W(t) = Y(t) + Z(t)? 

5.46 Show that for two jointly stationary processes X (t) and Y (t) ,  we have 

1 I RXY (r) I :S JRx(O)Ry (O) :S l [Rx(O) + Ry (O)] .  

5.47 The stationary process X (t) i s  passed through an LTI system, and the output process 
is denoted by Y(t). Find the output autocorrelation function and the cross-correlation 
function between the input and the output processes in each of the following 
cases: 

1. A delay system with delay D.. 

2. A system with h(t) = � · 
3. A system with h(t) = e-a1u(t), where a >  0. 

4. A system described by the differential equation 

d d -Y(t) + Y (t) = -X(t) - X(t). dt dt 
5. A finite-time average defined by the input-output relation 

1 it+T y(t) = - x(r) dr, 2T t-T 
where T is a constant. 

5.48 Give an example of two processes X(t) and Y(t) for which RXY (t+r, t) is a function 
of r, but X(t) and Y(t) are not stationary. 

Oo X(t) denotes a zero-mean WSS Gaussian rand�m process with power spectral V density 
1 

Sx(f) = 4 x 10-5 A c�5) 
' . " 

1. What is the power in this process? 

2. What is the bandwidth of this process? 

3. Assuming that this process passes through an ideal lowpass filter with a band­
width of 50 kHz and the output is denoted by Y(t) , determine Sy (f), the power 
spectral density of Y(t), and the total power in the output process. 
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4. Determine the PDF (probability density function) of the random variable X (O) . 
5. Find the smallest value of t0 > 0 such that X (0) and X (t0) are independeht. 

5.50 X(t) denotes a zero-mean WSS Gaussian random process with autocorrelation 
function 

1. What is the power in this process? 
2. Determine the power spectral density, Sx(f), for this process. 
3. What is the bandwidth of this process? 
4. Assuming that this process passes through an ideal lowpass filter with a band­

width of 5 kHz and the output is denoted by Y(t), determine Sy(f), the power 
spectral density of Y (t) , and the total power in the output process. 

5. Determine the PDF of random variables X (O), X( l0-4) ,  and X( l .5 x 10-4) .  
6.  Show that random variables X (O) and X( l0-4) are independent but X(O) and 

X ( 1 .5 x 10-4) are dependent. 

\ 5.51 .A WSS Gaussian random process X (t) has mean m x = 2 and power spectral density 
' .... / 

X(t) 

1 10-3 
Sx(f) = 

0 

Il l :s 200 

otherwise 

This random process passes through an LTI system shown below. The output of the 
system is denoted by Y (t) .  

1 .  What i s  my, the mean of Y(t)? 
2. What is Sy (f), the power spectral density of Y(t)? 
3. What is Py, the power in Y (t)?  
4. Is  Y(t) WSS? Why? 

/ 5. Is Y(t) Gaussian? Why? 
6. Consider the random variable Y(l ) ,  the output at time t = 1 .  What is the PDF 

of this random variable? ,J 

1 d 
2 dt 

Delay = 1 Y(t) 

5.52 In the block diagram shown below, X (t) denotes a zero-mean WSS (wide-sense 
stationary) and white random process with power spectral density Sx(f) = 

�0 •  
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X (t) 

2
.!l 

dt 

+ Y(t) = X (t) + 2X'(t) I � • LPF: [-W, W] 

The block denoted by LPF represents an ideal lowpass filter that passes all frequen­
cies in the frequency range from -W to W and blocks all other frequencies. Answer 
the following questions, your answers will be in terms of N0• 

1. What is the power spectral density and the mean of Y(t)? 
2. What is the power spectral density of Z(t)? 
3. Is Z(t) a WSS random process? Why? 

4. What is the variance of Z(t) if W = 4? 

5. What is the power in Y(t)? 

5.53 Find the power spectral density for each of the following processes: 

;'\ 
''\ 

1. X(t) = A cos(2nfot + E>), where A is a constant and E> is a random variable 
uniformly distributed on [O, % ] .  

2.  X(t) = X + Y, where X and Y are independent, X is uniform on [- I ,  I ] ,  and 
Y is uniform on [0, I] . 

5.54 )<{( (t) is a stationary random process with the autocorrelation function Rx(r) ;��-al• I ,  where a > 0. This process is applied to an LTI system with h(t) = e-f31u(t) , 
where fJ > 0. Find the power spectral density of the output process Y (t) .  Treat the 
cases a f= fJ and a = fJ separately. 

5.55 Let Y(t) = X(t) + N(t), where X(t) and N(t) are signal and noise processes. It 
is assumed that X (t) and N(t) are jointly stationary with the autocorrelation func­
tions Rx(r) and RN(r) and cross-correlation function RxN(r). We want to separate 
the signal from the noise by passing Y(t) through an LTI system with the impulse 
response h(t) and the transfer function H (f) . The output process is denoted by X (t) ,  
which we want to be as close to X(t) as possible. 

1. Find the cross correlation between X(t) and X(t) in terms of h(r), Rx(r), 
RN (r), and RxN(r). 

2. Show that the LTI system that minimizes E[X(t)-X(t)]2 has a transfer function 

H(f) = Sx(f) + sxN (f) 
Sx(f) + SN (f) + 2Re[SxN (f)] 

3. Now assume that X (t) and N(t) are independent an!;l N(t) is a zero-mean white 
Gaussian process with the power spectral density �o . Find the optimal H (f) 
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under these conditions. What is the corresponding value of E[X(t) - X(t)]2 in 
this case? 

4. In the special case of SN(f) = 1 ,  Sx(f) = 1]12 , and SxN CJ) = 0, find the 
optimal H (f) . 

5.56 In this problem, we examine the estimation of a random process by observing another 
random process. Let X(t) and Z(t) be two jointly stationary random processes. We 
are interested in designing an LTI system with the impulse response h(t), such that 
when Z(t) is passed through it, the output process X(t) is as close to X(t} as possi­
ble. In other words, we are interested in the best linear estimate of X (t) based on the 
observation of Z(t) in order to minimize E[X(t) - X(t)]2 • 

1. Let us assume we have two LTI systems with the impulse responses h(t) and 
g(t). Z(t) is applied to both systems and the outputs are denoted by X(t) and 
X(t), respectively. The first filter is designed such that its output satisfies the 
condition 

E [cx(t) - X(t))Z(t - r)] = 0 

for all values of r and t, whereas the second filter does not satisfy this property 
Show that 

E[X(t) - X(t)f 2: E[X(t) - X(t)]2 , 

i.e., the necessary and sufficient condition for an optimal filter is that its outpu1 
satisfies the orthogonality condition, as given by 

E [cx(t) - X(t))Z(t � r)] = 0, 

which simply means that the estimation error E (t) = X(t) - X(t) must b( 
orthogonal to the observable process Z(t) at all times. 

2. Show that the optimal h(t) must satisfy 

Rxz(r) = Rz(r) * h(r). 

3. Show that the optimal filter satisfies 

H(f) = 
Sxz (f) . Sz(f) 

4. Derive an expression for E[E2 (t)] when the optimal filter is employed. 

5.57 What is the noise equivalent bandwidth of an ideal bandpass filter with bandwidtl 
W? 

5.58 A zero-mean white Gaussian noise, nw(t) ,  with power spectral density �o is passe: 
through an ideal filter whose passband is from 3 kHz to 1 1  kHz. The output proces 
is denoted by n(t). 
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1. If Jo = 7 kHz, find Snc (f), Sns (f), and Rncn, (r), where nc(t) and ns (t) are the 
in-phase and quadrature components of n(t). 

2. Repeat Part 1 with fo = 6 kHz. 

5.59 Let p(t) be a bandpass signal with the in-phase and quadrature components Pc(t) 
and ps (t) ;  let X(t) = I:::-oo Anp(t - nT), where An 's are independent random 
variables. Express Xc(t) and Xs(t) in terms of Pc(t) and Ps (t) . 

5.60 Let X(t) be a bandpass process and let V(t e its envel pe. Show that for all 
choices of the center frequency f �/ emains unchanged. 

5.61 Let nw (t) be a zero-mean white Gaussian noise with the power spectral density �o ; 
let this noise be passed through an ideal bandpass filter with the bandwidth 2 W 
centered at the frequency fc· Denote the output process by n (t) . 

1. Assuming Jo = fc, find the yower Jntent of the in-phase and quadrature com-
ponents ofn(t). 5Vlc �')11.r� l N� l!J_ C..JAJ 

2. Find the density function of V(t), the envelope of n(t) . l'l'c tf!J,3 &).:-�{ l!J lN0 VJ} 
1�Jtp;V.M-3. Now assume X(t) = A cos 2nf0t + n(t), where A is a constant. What is the 

,X)�4f�af?ef'H�tff)tlo� �tii �N�e(fr�f,l_$f:{�fJX$�t�clfJ;flf� 2.NoVI) 
\J (..i-) � L '-ltlJ f. s J 5.62 A noise process has a power pectral oensity given by { 10-s (1 _ It� ) , 

Sn (f) = 
10 

0, 

/f l <  108 

/ f l > 108 

f D ) ,, 
This noise is passed through an ideal bandpass filter with a bandwidth of 2 MHz, 
centered at 50 MHz. 

1. Fi
i
id the power content of the output process. 12_ t ()-'l. 

2. Write the output process in terms of the in-phase and quadrature components, 
and find the power in each c

o
mponent.Assume Jo = 50 MHz. 

3. Find the power spectral density of the in-phase and quadratl1re components. 

4. Now assume that the filter is not an ideal filter and is described by 

/H(f) /2 =

I 
I f / - 49 x 106 49 MH� < /f l <  5 1  MHz . 
0, otherwise 

Repeat Parts I ,  2, and 3 with this assumption. 



250 Probability and Random Processes Chapter 5 

COMPUTER PROBLEMS 

5.1 Generation of Random Variables 

1 

0 

The objective of this problem is to generate a random variable X that has a linear 
probability density function as shown in Figure CP-5. l (a); i.e., 

fx(x) = I� O ::; x ::; 2  
otherwise 

The corresponding probability distribution function is 

x { o 
Fx(x) = P(X :::; x) = £00 fx(v) dv = : X < O 

0 :::; x :::; 2. 
X > 2  

Fx (x) is shown in Figure CP-5. l (b). Note that 0 :::; Fx(x) :::; 1 .  

f(x) 

1 

2 x 0 

(a) 

F(x) 

2 

(b) 
x 

Figure CP-5.1 (a) A linear 
probability density function 
and (b) the corresponding 
probability distribution 
function. 

To generate a sequence of samples of the random variable X, say {X; } ,  we use MAT­
LAB to generate uniformly distributed random variables {u; } in the range (0, 1) .  
Then, we set 

x� F(x;) = -1.... = u; 
4 

and solve for x; . Thus, x; = 2,JU;. Clearly, the range of x; is (0, 2) . 

1. Generate 10,000 samples of the random variable X by using the procedure pre­
viously described. 

2. By subdividing the interval (0, 2) into 20 equally spaced subintervals (bins). 
count the number of samples {x; } that fall into each bin and plot a histogram oJ 
the 10,000 randomly generated samples. Compare the histogram with the lineai 
probability density function f x (x) and comment on how well the histograrr 
matches fx(x). 
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5.2 Generation of Gaussian Random Variables 

Additive noise encountered in communication systems is characterized by the Gaus­
sian probability density function 

1 x2 
fx (x) = --e - :z;;T , -oo < x < oo ,  ,JlTia 

as shown in Figure CP-5.2(a), where a2 is the variance of the random variable X. 
The probability distribution function, shown in Figure CP-5.2(b), is 

Fx (x) = P(X S x) = J_� fx(v) dv, -oo < x < oo. 

f(x) F(x) 

0 

(a) 

x 0 

(b) 

Figure CP-5.2 (a) The Gaussian probability density function and (b) the corresponding probability 
distribution function. 

x 

The objective of this problem is to generate a sequence {x;} of Gaussian-distributed 
random variables on the computer. If there was a closed-form expression for F x (x ), 
we could easily generate a sequence of uniformly distributed random variables {u;} 
and let Fx(x;) = u;. Then, we solve for x; by performing the inverse mapping. How­
ever, in this case, Fx(x) cannot be expressed in closed form. Instead, we circumvent 
this problem by first generating random variables that we related to Gaussian ran­
dom variables. From probability theory, we know that a Rayleigh-distributed random 
variable R, which has a probability distribution function 

r � O  
otherwise 

is related to a pair of independent Gaussian random variables X and Y through the 
transformation {X = R cos 8 

Y = R sin 8 ' 

where 8 is a uniformly distributed random variable in the interval (0, 2n) and is 
independent. from R. The parameter a2 is the variance of X and Y. Therefore, we set 



252 Probability and Random Processes Chapter 5 

FR (r; ) = u;, where {u; } is a sequence of uniformly distributed random variables on 
the interval (0, 1) .  We can easily invert this equation to obtain 

r; = 2cr2 ln (-1 ) . 
1 - U; 

Next, we generate another sequence, say, { v; } , of uniformly distributed random vari­
ables on the interval (0, 1) and define 

e; = 2nv; . 

Finally, from {r; } and {e; } , we generate the Gaussian random variables using the 
relations {x; = r; c?s e; . y; = r; sme; 

1. By using the preceding procedure, generate 10,000 samples of a Gaussian ran­
dom variable with a zero mean and a variance cr2 = 2. 

2. By subdividing the interval (-10, 10) into 20 equally spaced subintervals (bins), 
count the number of samples of {x; } and {y; } that fall into each bin, and plot a 
histogram of the 10,000 randomly generated samples. Compare the histogram� 
with the Gaussian probability density function f x (x), and comment on how well 
the histogram matches fx(x). 

5.3 Autocorrelation Function and Power Spectrum 

The objective of this problem is to compute the autocorrelation and the power spec­
trum of a sequence of random variables. 

1. Generate a discrete-time sequence {xn} of N = 1000 statistically independen 
and identically distributed random variables, which are selected from a uniforn 
distribution over the interval ( -4 ,  4) . The estimate of the autocorrelation of tht 
sequence {xn} is defined as 

l N-m 
Rx(m) = --- """' XnXn+m • m = 0, 1 ,  . . .  , M 

N - m � 
n=I 

1 N 
= N _ 

lm l L XnXn+m • m = - 1 ,  -2, . . . , -M, 
n=lml 

where M = 100. Compute Rx (m) and plot it. 
2. Determine and plot the power spectrum of the sequence {xn} by computing th1 

discrete Fourier transform (DFT) of Rx(m), which is defined as 
M 

"""' j2rrfm 
Sx (f) = � Rx(m)e- 2M+1 . 

m=-M 
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The fast Fourier transform (FFT) algorithm may be used to efficiently compute 
the DFT. 

5.4 Filtered White Noise 

A white random process X(t) with the power spectrum Sx (f) = 1 for all f excites 
a linear filter with the impulse response 

h(t) = {�-I otherwise · 

1. Determine and plot the power spectrum Sy (f) of the filter output. 
2. By using the inverse FFT algorithm on samples of Sy (f) , compute and plot the 

autocorrelation function of the filter output y(t) . To be specific, use N = 256 
frequency samples. 

5.5 Generation of Lowpass Random Process 

The objective of this problem is to generate samples of a lowpass random process by 
passing a white-noise sequence {xn } through a digital lowpass filter. The input to the 
filter is a sequence of statistically independent and identically distributed uniform 
random variables on the interval (-! ,  !) . The digital lowpass filter has an impulse 
response 

I (0.9)n h(n) = 
0 otherwise 

and is characterized by the input-output recursive (difference) equation 

Yn = 0.9Yn-l + xn , n 2': 1 ,  Y-1 = 0. 

1. Generate a sequence {xn } of 1000 samples and pass these through the filter to 
generate the sequence {Yn} .  

2.  Using the basic formula in Computer Problem CP-5.3, compute the autocorre­
lation functions Rx(m) and Ry(m) for !m l _:::: 100. Plot Rx(m) and Ry(m) on 
separate graphs. 

3. Compute and plot the power spectrum S x (f) and Sy (f) by evaluating the dis­
crete Fourier transform of Rx(m) and Ry(m). 

5.6 Generation of Bandpass Random Process 
A bandpass random process X (t) can be represented as 

X(t) = Xc(t) cos 2nfct - Xs(t) sin 2nfct , 

where Xc(t) and Xs(t) are called the in-phase and quadrature components of X(t). 
The random processes Xc(t) and Xs (t) are lowpass processes. 
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cos 2rtfcn 

1-t-1-----1� X(n) = Xc(n) cos 2rtfcn - X5(n) sin 2rtfcn 

X,(n) 

-sin 2rtfcn 

Figure CP-5.6 Generation of a bandpass random process. 

1. Generate 1000 samples of a bandpass random process X(t) by first generating 
1000 samples of two statistically independent lowpass random processes Xc(t) 
and Xs(t) , and then use these to modulate the quadrature carriers cos 2rtfct and 
sin 2rtfct, as shown in Figure CP-5.6. The carrier frequency is fc = 1000/rt. 
The input sequence into the digital lowpass filter has statistically independent 
and identically distributed uniform random variables on the interval (-� , �) . 

2.  Use the formula given in Computer Problem CP-5.3 to compute and plot the 
autocorrelations Rxc (m), Rx5 (m) , and Rx(m) for !m l :::; 100. 

3. Compute and plot the power spectra of S Xe (f), S Xs (f), and S x (f) by evaluating 
the discrete Fourier transform of Rxc (m), Rx5 (m) , and Rx(m). 



Effect of Noise 
on Analog 

J; Communication 
Systems 

�: 

In Chapters 3 and 4, we studied the important characteristics of analog communication sys­
tems. These characteristics included time domain and frequency domain representations 
of the modulated signal, bandwidth requirements, power content of the modulated sig­
nal, and the modulator and demodulator implementation of various analog communication 
systems. 

In this chapter, the effect of noise on various analog communication systems will 
be analyzed. As we will see, angle modulation and frequency modulation (FM) systems, 
in particular, can provide a high degree of noise immunity; therefore, they are desirable 
in cases of severe noise and/or low signal power. This noise immunity is obtained at the 
price of sacrificing channel bandwidth because, as we have seen in Chapter 4, the band­
width requirements of angle modulation systems are considerably higher than the required 
bandwidth of amplitude modulation (AM) systems. 

This chapter starts with a performance analysis of linear modulation systems in the 
presence of noise. Then, the effect of noise on angle modulation systems is discussed. 
Finally, we analyze the effects of transmission loss and noise on analog communication 
systems in general. 

6.1 EFFECT OF NOISE ON AMPLITUDE MODULATION SYSTEMS 

In this section, we determine the signal-to-noise ratio (SNR) of the output of the receiver 
that demodulates the amplitude-modulated signals. In evaluating the effect of noise on the 
various types of analog carrier-modulated signals, it is also interesting to compare the result 
with the effect of noise on an equivalent baseband communication system. We begin the 
evaluation of the effect of noise on a baseband system. 

255 
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6.1 . 1  Effect of Noise on a Baseband System 

Since baseband systems serve as a basis for comparison of various modulation systems, 
we begin with a noise analysis of a baseband system. In this case, there is no carrier 
demodulation to be performed. The receiver consists only of an ideal lowpass filter with 
the bandwidth W. The noise power at the output of the receiver, for a white noise input is 
therefore l+w No 

Pn0 = -W Tdj 
= NoW. (6. 1 . 1) 

If we denote the received power by PR, the baseband SNR is given by 

(6. 1 .2) 

Example 6.1.1 

Find the SNR in a baseband system with a bandwidth of 5 kHz and with N0 = 10-14 W/Hz. 
The transmitter power is 1 kilowatt and the channel attenuation is 10-12• 

Solution We have PR = 10-12 Pr = 10-12 x 103 = 10-9 Watts. Therefore, 

- - -- - - 20 ( S )  PR 10-9 
N b - No W - 10-14 x 5000 - . 

This is equivalent to 10 log10 20 = 1 3 dB. 

6.1 .2 Effect of Noise on DSB-SC AM 

• 

In double-sideband suppressed-carrier amplitude modulation (DSB-SC AM), the transmit­
ted signal is 

u(t) = Acm(t) cos(2rr.fct); (6. 1 .3) 

therefore, the received signal at the output of the receiver noise-limiting filter is the sum of 
this signal and filtered noise. Recall from Section 5.3.3 that a filtered noise process can be 
expressed in terms of its in-phase and quadrature components, as given in Equation (5.3.7). 
Adding the filtered noise to the modulated signal, we can express the received signal as 

r(t) = u(t) + n(t) 
= Acm(t) cos(2rr.fct) + nc(t) cos(2rr.fct) - ns (t) sin(2rr.fct}. (6. 1 .4) 

Suppose we demodulate the received signal by first multiplying r(t) by a locally generated 
sinusoid cos(2rr. Jct +<P ) , where </J is the phase of the sinusoid, and then passing the product 



Section 6.1 Effect of Noise on Amplitude Modulation Systems · 257 

signal through an ideal lowpass filter having a bandwidth W. The multiplication of r(t) 
with cos(2nfct + ¢) yields 

r(t) cos(2nfct + ¢) = Acm(t) cos(2nfct) cos(2nfct + ¢) + n(t) cos(2nfct + ¢) 
1 1 = 2Acm(t) cos(¢) + 2Acm(t) cos(4nfct + ¢) 

+ � [nc(t) cos(¢) + ns (t) sin(¢)] 

1 . + 2 [nc (t) cos(4nfct + ¢) - ns (t) sm(4nfct + ¢)] . (6. 1 .5) 

The lowpass filter rejects the double-frequency components and passes only the lowpass 
components. Hence, its output is 

1 1 y(t) = 2Acm(t) cos(¢) + 2 [nc(t) cos(¢) + ns (t) sin(¢)] . (6. 1 .6) 

As was discussed in Chapter 3, the effect of a phase difference between the received 
carrier and a locally generated carrier at the receiver is a drop equal to cos2 ( ¢) in the 
received signal power. This can be avoided by employing a phase-locked loop, as will be 
described in Chapter 8. The effect of a phase-locked loop is to generate a sinusoidal carrier 
at the receiver with the same frequency and phase of the received carrier. If a phase-locked 
loop is employed, then ¢ = 0 and the demodulator is called a coherent or synchronous 
demodulator. In our analysis in this section, we assume that we are employing a coherent 
demodulator. With this assumption, without loss of generality, we assume that ¢ = O; 
hence, 

1 y(t) = 2 [Acm(t) + nc(t)] . (6. 1 .7) 

Therefore, at the receiver output, the message signal and the noise components are additive 
and we are able to define a meaningful SNR. The message signal power is given by -

Az P0 = --f PM, (6. 1 .8) 

where PM is the power content of the message signal. The noise power is given by 

(6. 1 .9) 

where we have used the fact that the power contents of nc(t) and n(t) are equal. This was 
discussed, in Equation (5.3.9) in Section 5.3.3. The power content of n(t) can be found by 
noting that it is the result of passing nw(t) through a filter with bandwidth Be. Therefore, 
the power spectral density of n(t) is given by 

If - !c l < w (6. 1 . 10) 
otherwise 
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Pn = 1_: Sn (f) dj 

No = - x 4W 
2 

= 2WNo . 

Now we can find the output SNR as 

i2WNo 
A�PM 
2WNo 

Chapter 6 

(6. 1 . 1 1) 

(6. 1 . 12) 

In this case, the received signal power, as given by Equation (3.2.2), is PR = A�:M . There­
fore, the output SNR in Equation (6. 1 . 1 2) for DSB-SC AM may be expressed as 

( S )  PR 
N ooss 

= 
NoW ' (6. 1 . 13) 

which is identical to (S/ N)b, which is given by Equation (6. 1 .2). Therefore, in DSB-SC 
AM, the output SNR is the same as the SNR for a baseband system. In other words, DSB­
SC AM does not provide any SNR improvement over a simple baseband communication 
system. 

6.1 .3 Effect of Noise on SSB AM 

In this case, the modulated signal, as given in Equation (3.2.8), is 

u (t) = Acm(t) cos(2nfct) =f Acm(t) sin(2nfct) . (6. 1 . 14) 

Therefore, the input to the demodulator is 

r(t) = Acm(t) cos(2nfct) =f Acm(t) sin(2nfct) + n(t) 
= (Acm(t) + nc(t)) cos(2nfct) + (=fAcm(t) - n8 (t)) sin(2nfct) . (6. 1 . 15) 

Here we assume that demodulation occurs with an ideal phase reference. Hence, 
the output of the lowpass filter is the in-phase component (with a coefficient of 4) of the 
preceding signal. That is, 

(6. 1 . 16) 
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We observe that, in this case again, the signal and the noise components are additive, and a 
meaningful SNR at the receiver 

o
utput can be defined. Parallel to our discussion of DSB, 

we have 

and 

where 

Therefore, 

But in this case, 

thus, 

100 No Pn = Sn (f) df = - x 2W = WNo. -00 2 

( S ) P0 A�PM 
N 0 

= -Pn
-
0 = _W_M_o 

(6. 1 . 17) 

(6. 1 . 1 8) 

(6. 1 . 19) 

(6. 1 .20) 

(6. 1 .21) 

(6. 1 .22) 

Therefore, the signal-to-noise ratio in a single-sideband system is equivalent to that of a 
DSB system. 

6.1 .4 Effect of Noise on Conventional AM 

In conventional DSB AM, the modulated signal was given in Equation (3.2.6) as 

u (t) = Ac [ l + am(t)] cos 2nfct. (6. 1 .23) 

Therefore, the received signal at the input to the demodulator is 

r(t) = [Ac [l + amn(t)] + nc(t)] cos 2nfct - ns (t) sin 2nfct, (6. 1 .24) 

where a is the modulation index and mn (t) is normalized so that its minimum value is -1 . 
If a synchronous demodulator i s employed, the situation i s basically similar to the DSB 
case, except that we have 1 + amn (t) instead of m(t) . Therefore, after mixing and lowpass 
filtering, we have 

1 
YI (t) = 2 [Ac [1 + amn(t)] + nc(t)] . (6. 1 .25) 

However, in this case, the desired signal is m(t), not 1 + amn (t) . The DC component in the 
demodulated waveform is removed by a DC block and, hence, the lowpass filter output is 

1 nc(t) y(t) = 2Acamn(t) + -2-. (6. 1 .26) 
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In this case, the received signal power is given by 

(6. 1 .27 

where we have assumed that the message process is zero mean. Now we can derive th1 
output SNR as 

1 A2 2p 4 ca Mn 
�Pnc 

A�a2PMn 
2NoW 
a2 PMn =¥- [ 1 + a2 PMn ] 
1 + a2PMn NoW 

a2PMn PR 
1 + a2PMn NoW 

where we have used Equation (6. 1 .2) and 17 denotes the modulation efficiency. 

(6. 1 .28 

We can see that, since a2 PMn < 1 + a2 PMn ,  the SNR in conventional AM is alway 
smaller than the SNR in a baseband system. In practical applications, the modulation inde: 
a is in the range of 0.8-0.9. The power content of the normalized message process depend 
on the message source. For speech signals that usually have a large dynamic range, PM i 
in the neighborhood of 0. 1 . This means that the overall loss in SNR, when compared to . 
baseband system, is a factor of 0.075 or equivalent to a loss of 1 1 dB. The reason for thi 
loss is that a large part of the transmitter power is used to send the carrier component o 
the modulated signal and not the desired signal. 

To analyze the envelope-detector performance in the presence of noise, we must us• 
certain approximations. This is a result of the nonlinear structure of an envelope detect01 
which makes an exact analysis difficult. In this case, the demodulator detects the envelop 
of the received signal and the noise process. The input to the envelope detector is 

r(t) = [Ac [1 + amn (t)] + nc(t)] cos 2nfct - ns (t) sin 2nfct ; (6. 1 .29 

therefore, the envelope of r(t) is given by 

(6. 1 .30 
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Now we assume that the signal corpponent in r (t) is much stronger than the noise compo­
nent. With this assumption, we have 

(6. 1 .3 1) 

therefore, we have a high probability that 

V, (t) � Ac [l + amn (t)] + nc(t). (6. 1 .32) 

After removing the DC component, we obtain 

(6. 1 .33) 

which is basically the same as y(t) for the synchronous demodulation without the i coef­
ficient. This coefficient, of course, has no effect on the final SNR; therefore we conclude 
that, under the assumption of high SNR at the receiver input, the performance of syn­
chronous and envelope demodulators is the same. However, if the preceding assumption is 
not true, we still have an additive signal and noise at the receiver output with synchronous 
demodulation, but the signal and noise become intermingled with envelope demodulation. 
To see this, let us assume that at the receiver input, the noise power1 is much stronger than 
the signal power. This means that 

V,(t) = J[Ac[ l  + amn(t)] + nc(t)]2 + n'f(t) 

= J A� (l + amn(t))2 + n� (t) + n'f(t) + 2Acnc(t) (l + amn(t)) 

a � ( ) [ 2Acnc(t) ] n�(t) + n'f(t) 1 + 2( )  2 ( ) (1 + amn(t)) nc t + ns t 

� Vn (t) [1 + Ac�c(t) (1 + amn(t))] vn (t) 
Acnc(t) 

= Vn (t) + (1 + amn (t)) , 
Vn (t) (6. 1 .34) 

where (a) uses the fact that A�(l +amn(t))2 is small compared with the other components 
and (b) denotes Jn�(t) + n'f(t) by Vn(t) , the envelope of the noise process; we have also 
used the approximation ../I+E � 1 + �, for small E, where 

2Acnc(t) 
E = 2 2 (1 + amn(t)) .  nc (t) + ns (t) 

(6. 1 .35) 

We observe that, at the demodulator output, the signal and the noise components are no 
longer additive. In fact, the signal component is multiplied by noise and is no longer dis­
tinguishable. In this case, no meaningful SNR can be defined. We say that this system is 
operating below the threshold. The subject of threshold and its effect on the performance 

1 By noise power at the receiver input, we mean the power of the noise within the bandwidth of the 
modulated signal or, equivalently, the noise power at the output of the noise-limiting filter. 
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of a communication system will be covered in more detail when we discuss the nois1 
performance in angle modulation. 
Example 6.1.2 

We assume that the message is a wide-sense stationary random process M(t) with the auto 
correlation function 

RM (r) = 16 sinc2(10,000r). 

We also know that all the realizations of the message process satisfy the conditio1 
max lm(t) I  = 6. We want to transmit this message to a destination via a channel with 
50-dB attenuation and additive white noise with the power spectral density Sn Cf) = � = 

10-12 W/Hz. We also want to achieve an SNR at the modulator output of at least 50 dE 
What is the required transmitter power and channel bandwidth if we employ the followin, 
modulation schemes? 

1. DSB AM. 
2. SSB AM. 
3. Conventional AM with a modulation index equal to 0.8. 

Solution First, we determine the bandwidth of the message process. To do this, we obtai 
the power spectral density of the message process, namely, 

which is nonzero for - 10,000 < f < 10,000; therefore, W = 10,000 Hz. Now we ca 
determine ( �) b as a basis of comparison: 

2 x 10-12 x 1Q4 

Since the channel attenuation is 50 dB, it follows that 

Pr 
l O log - = 50· 

PR 
, 

therefore, 

Hence, 
10-5 x 108 Pr 

2 

1. For DSB-SC AM, we have 

Therefore, 

and 

- = - = -- � 50 dB = 105. 
( S ) ( S ) 103 Pr 

N 0 N b 2 

lQ3pr 
-

2
- = 105 ==> Pr = 200 Watts 

BW = 2W = 2 x 10,000 = 20,000 Hz � 20 kHz. 
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2. For SSB AM, 

and 

( S ) ( S ) 103 Pr 
N 0 

= 
N b 

= -2-
= 105 ==> Pr = 200 Watts 

BW = W =)0,000 Hz = 10 kHz. 

3. For conventional AM, with a = 0.8, 

where 1J is the modulation efficiency given by 
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First, we find PM. , the power content of the normalized message signal. Since 
max /m(t) / = 6, we have 

PM PM 
PM = = - . n 

(max /m (t) /)2 36 

To determine PM, we have 

therefore, 

Hence, 

Therefore, 

or 

16  4 
PM = - = - . n 36 9 

0.82 x t 1J = 4 � 0.22. 
1 + 0.82 x 9 

- � 0.22--r 
= 0. 1 1 x 103 Pr = 105 ( s )  103 p 

N 
0 

2 

Pr � 909 Watts. 

The bandwidth of conventional AM is equal to the bandwidth of DSB AM, i.e., 

BW = 2W = 20 kHz. 

6.2 EFFECT OF NOISE ON ANGLE MODULATION 

• 

In this section, we will study the performance of angle-modulated signals when contam­
inated by additive white Gaussian noise; we will also compare this performance with the 
performance of amplitude-modulated signals. Recall that in amplitude modulation, the 
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5 

0 

-5 

(a) 

(b) 

Figure 6.1 Effect of noise in frequency modulation. 

message information is contained in the amplitude of the modulated signal; since noist 
is additive, it is directly added to the signal. However, in a frequency-modulated signal, tht 
noise is added to the amplitude and the message information is contained in the frequenq 
of the modulated signal. Therefore, the message is contaminated by the noise to the exten 
that the added noise changes the frequency of the modulated signal. The frequency of 1 
signal can be described by its zero crossings. Therefore, the effect of additive noise on tht 
demodulated FM signal can be described by the changes that it produces in the zero cross 
ings of the modulated FM signal. Figure 6. 1 shows the effect of additive noise on the zerc 
crossings of two frequency-modulated signals, one with high power and the other with lov 
power. From the previous discussion and also from Figure 6.1 ,  it should be clear that th1 
effect of noise in an FM system is different from that of an AM system. We also obsern 
that the effect of noise in a low-power FM system is more severe than in a high-powe 
FM system. In a low-power signal, noise causes more changes in the zero crossings. Thi 
analysis that we present in this chapter verifies our intuition based on these observations. 

The block diagram of the receiver for a general angle-modulated signal is shown ii 
Figure 6.2. The angle-modulated signal is represented as2 

u(t) = Ac COS (2rr.fct + </J(t)) 

= 
{Ac cos (2rr.fcf + 2rr.k1 J�00 m(r) dr) 
Ac COS (2rr.fct + kpm(t)) 

FM 

PM 
(6.2. l 

2Throughout our noise analysis, when we refer to the modulated signal, we mean the signal as receive 
by the receiver. Therefore, the signal power is the power in the received signal, not the transmitted power. 
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BW = Bc 

Bandpass 
filter 

r(t) = u(t) + n(t) 
Figure 6.2 The block diagram of an angle demodulator. 

Angle 
demodulator 

BW = W  

Lowpass 
filter 
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The additive white Gaussian noise nw(t) is added to u(t), and the result is passed 
through a noise-limiting filter whose role is to remove the out-of-band noise. The band­
width of this filter is equal to the bandwidth of the modulated signal; therefore, it passes the 
modulated signal without distortion. However, it eliminates the out-of-band noise; hence, 
the noise output of the filter is a filtered noise process denoted by n(t) . The output of this 
filter is 

r (t) = u(t) + n(t) 
= u (t) + nc(t) cos(2nfct) - ns (t) sin(2nfct). (6.2.2) 

As with conventional AM noise-performance analysis, a precise analysis is quite involved 
due to the nonlinearity of the demodulation process. Let us assume that the signal power 
is much higher than the noise power. Then, the bandpass noise is represented as (see 
Equation 5.3.8) 

n(t) = n� (t) + n; (t) cos 2nfct + arctan --J ( �oo) 
nc (t) 

= Vn (t) COS (2nfct + <I>n(t)) , (6.2.3) 

where Vn (t) and <I>n (t) represent the envelope and the phase of the bandpass noise process, 
respectively. The assumption that the signal is much larger than the noise means that 

(6.2.4) 

Therefore, the phasor diagram of the signal and the noise are as shown in Figure 6.3. 
From this figure, it is obvious that we can write 

Im 

<Pn(t) - </J(t) / 
I I I 

\�Vn(t) sin ( <Pn(t) - <P(t)) . 
_ _ _ _ .P 

I � / Vn(t) COS (<Pn(t) - </J(t)) 
I 

I <Pn(f) 
Re 

Figure 6.3 Phasor diagram of an angle-modulated signal when the signal is much stronger than the noise. 
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x cos (2nfct + </J(t) + arctan Vn(t) sin (<Pn (t) - </J(t)) ) Ac + Vn(t) COS (<Pn (t) - </J(t)) 
( Vn (t) . ) x cos 2nfct + </J(t) + � sm (<Pn (t) - </J(t)) . 

Chapter 

(6.2.: 

The demodulator processes this signal and, depending on whether it is a phase demodulate 
or a frequency demodulator, its output will be the phase or the instantaneous frequency c 
this signal (the instantaneous frequency is 2� times the derivative of the phase). 3 Therefori 
noting that </J(t) = {kpm(t) 1 PM 

2nk1 f_00 m(r) dr FM ' 

we see that the output of the demodulator is given by {¢(t) + Vn(t) sin (<Pn (t) - </J(t)) PM y(t) = 1 d ( Ac 
V. (t) ) --

d </J(t) + _n_ sin (<Pn (t) - </J(t)) FM 
2n t Ac 

- Ac {kpm(t) + 
Vn(t) sin (<Pn (t) - </J(t)) PM 

- 1 d Vn(t) . k1m(t) + - - -- sm (<Pn (t) - </J(t)) FM 
2n dt Ac 

PM 

FM 

where we have defined 
def Vn (t) . Yn(t) = -- sm (<Pn (t) - <P(t)) . Ac 

(6.2.( 

(6.2.' 

(6.2. 

The first term in Equation (6.2.7) is the desired signal component, and the second ter 
is the noise component. From this expression, we observe that the noise component 
inversely proportional to the signal amplitude Ac. Hence, the higher the signal level, tl 
lower the noise level. This is in agreement with the intuitive reasoning presented at ti 
beginning of this section and based on Figure 6. 1 .  Note that this is not the case with amp 
tude modulation. In AM systems, the noise component is independent of the signal cm 
ponent, and a scaling of the signal power does not affect the received noise power. 

30f course, in the FM case, the demodulator output is the instantaneous frequency deviation of v(t) fo 
the carrier frequency fc. 
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Let us study the properties of the noise component given by 

Vn(t) . Yn (t) = -- sm (<I>n(t) - ¢ (t)) Ac 

= __!__ [Vn (t) sin<I>n (t) cos ¢ (t) - Vn (t) cos <I>n (t) sin¢ (t)] Ac · 

1 . = - [ns (t) cos ¢ (t) - nc(t) sm ¢(t)] . Ac 

267 

(6.2.9) 

Here we provide an approximate and intuitive argument to determine the signal-to­
noise ratio of the demodulated signal. A more rigorous derivation can be found in the 
references given at the end of this chapter. 

Note that ¢(t) is either proportional to the message signal or proportional to its inte­
gral. In both cases, it is a slowly varying signal compared to nc(t) and ns (t), which are 
the in-phase and quadrature components of the bandpass noise process at the receiver and 
have a much higher bandwidth than ¢ (t) . In fact, the bandwidth of the filtered noise at 
the demodulator input is half of the bandwidth of the modulated signal, which is many 
times the bandwidth of the message signal. Therefore, we can say that when we compare 
variations in nc(t) and ns (t) ,  we can assume that ¢ (t) is almost constant, i.e., ¢(t) � ¢. 
Therefore, 

1 . Yn (t) = - [ns(t) cos ¢ - nc(t) sm¢] . Ac (6.2. 10) 

Now notice that in this case, fc is the axis of symmetry of the bandpass noise process. 
Therefore, the conditions leading to the result of Example 5 .3.3 are valid with a = co;'/> 

. c 
and b = -��"' . By using the result of Example 5.3.3, we have 

Syn (f) = (a2 + b2)Sn. CJ) = Sn�Cf)
' c 

(6.2. 1 1) 

where Sn. (f) is the power spectral density of the in-phase component of the filtered noise 
given in Equation (5.3. 10). Note that the bandwidth of the filtered noise process extends 
from fc - 1;'.'  to fc + �· ; hence, the spectrum of nc(t) extends from -�· to �· . Therefore, 

(6.2. 12) 

Substituting Equation (6.2. 12) into Equation (6.2.10) results in 

I i i  :::: �c 
(6.2. 13) 

otherwise 

This equation provides an expression for the power spectral density of the filtered 
noise at the front end of the receiver. After demodulation, another filtering is applied; this 
reduces the noise bandwidth to W, which is the bandwidth of the message signal. Note that 
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in the case of FM, as seen in Equation (6.2.7), the process Yn (t) is differentiated and scalec 
by 2� . Using Equation (5.2.25) from Chapter 5, which gives the power spectral density oJ 
the derivative of a process, we conclude that the power spectral density of the proces� 
2� ft Yn (t) is given by (see Equation 5 .2.25) 

I J I  '.S �c (6.2. 14 
otherwise 

This means that in PM, the demodulated-noise power spectral density is given b� 
Equation (6.2.13); in FM, it is given by Equation (6.2. 14). In both cases, 1;:' must b( 
replaced by W to account for the additional postdemodulation filtering. In other words 
for I / I < W, we have 

PM 
(6.2. 15 

FM 

Figure 6.4 shows the power spectrum of the noise component at the output of the demod 
ulator in the frequency interval 1 / 1  < W for PM and FM. 

It is interesting to note that PM has a fiat noise spectrum and FM has a paraboli 
noise spectrum. Therefore, the effect of noise in FM for higher-frequency components i 
much higher than the effect of noise on lower-frequency components. The noise powe 
at the output of the lowpass filter is the noise power in the frequency range [W, + w: 
Therefore, it is given by 

-w 
(a) 

(b) 

w f 

f 
Figure 6.4 Noise power spectrum at 
demodulator output for 1/1  < W in  (a) PM 
and (b) FM. 
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PM 

FM { 2WNo 
A2 c 

= 2NoW3 
3A2 c 

PM 

(6.2. 16) 
FM. 

Now we can use Equation (6.2.7) to determine the output signal-to-noise ratio in 
angle modulation. First, we have the output signal power 

Then the SNR, which is defined as 

becomes { k;A� PM ( s )  -
2
-
NoW 

N 0 
= 3k}A� PM 

2w2 NoW 

PM 

FM 

Noting that �z is the received signal power, denoted by PR, and 
{{JP = kp max lm(t) I 

k1max lm(t l f31 =---­w 
' we may express the output SNR as 

PM 

FM 

{3p PM (!__) = PR max lm(t) I to W 
{ ( ) 2 

N o 3p ( f3t ) PM 
R max lm (t) I NoW 

PM 

FM 

(6.2. 17) 

(6.2. 1 8) 

(6.2. 19) 

(6.2.20) 

If we denote ta� by ( �) b, the SNR of a baseband system with the same received power, 
we obtain { PMf3; ( S ) (!__) = (max lm(t) l)2 N b 

PM 

N 0 3 PM f3J ( S j 
FM 

(max lm(t l)2 N} b 

(6.2.21) 
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Note that in the preceding expression, (ma:i�(t\)2 is the average-to-peak power ratio 01 
the message signal (or equivalently, the power content of the normalized message, PM" ) 
Therefore, (_§__) - 1{3�PMn (�) b 

N 0 - 3 .<12 p (_§__) Pf Mn N b 

PM 
(6.2.22 

FM 

Now using Carson's rule Be = 2({3 + l )W, we can express the output SNR in terms of th1 
bandwidth expansion factor, which is defined as the ratio of the channel bandwidth to thi 
message bandwidth and is denoted by Q: 

Q � Be = 2({3 + 1 ) .  
w 

From this relationship, we have f3 = ¥ - 1 .  Therefore, PM p,::,,,) ' ( �) b 
PM 

3PM p,::,,)' G), FM 

From Equations (6.2.20) and (6.2.24), we can make several observations: 

(6.2.23 

(6.2.2� 

1. In both PM and FM, the output SNR is proportional to the square of the modulatic 
index f3. Therefore, increasing f3 increases the output SNR, even with low receive 
power. This is in contrast to amplitude modulation, where such an increase in tl 
received SNR is not possible. 

2. The increase in the received SNR is obtained by increasing the bandwidth. Therefor 
angle modulation provides a way to trade off bandwidth for transmitted power. 

3. The relation between the output SNR and the bandwidth expansion factor Q is 
quadratic relation. This is far from optimal.4 Information theoretical analysis of ti 
performance of communication systems shows that the optimal relation between ti 
output SNR and the bandwidth expansion ratio is an exponential relation. 

4. Although we can increase the output SNR by increasing {3, having a large f3 meai 
having a large Be (by Carson's rule). Having a large Be means having a large noi 
power at the input of the demodulator. This means that the approximation P (Vn (t) · 

Ac) � 1 will no longer apply and that the preceding analysis will not hold. In fact, 
we increase f3 such that the preceding approximation does not hold, a phenomern 
known as the threshold effect will occur and the signal will be lost in the noise. Tl 
means that although increasing the modulation index up to a certain value improv 

4By optimal relation, we mean the maximum savings in transmitter power for a given expansion in bru 
width. An optimal system achieves the fundamental limits on communication, as predicted by information thee 
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the performance of the system, this cannot continue indefinitely. After a certain point, 
increasing f3 will be harmful and deteriorates the performance of the system. 

5. A comparison of the preceding result with the SNR in amplitude modulation shows 
that, in both cases, increasing the transmitter power (and consequently the received 
power) will increase the output SNR, but the mechanisms are totally different. In 
AM, any increase in the received power directly increases the signal power at the 
output of the demodulator. This is basically because the message is in the ampli­
tude of the transmitted signal and an increase in the transmitted power directly 
affects the demodulated signal power. However, in angle modulation, the message 
is in the phase of the modulated signal and, consequently, increasing the transmitter 
power does not increase the demodulated message power. In angle modulation, the 
output SNR is increased by a decrease in the received noise power, as seen from 
Equation (6.2. 16) and Figure 6. 1 .  

6 .  In FM, the effect of noise is higher at higher frequencies. This means that signal 
components at higher frequencies will suffer more from noise than signal compo­
nents at lower frequencies. In some applications where FM is used to transmit SSB­
FDM (frequency-division multiplexing) signals, those channels that are modulated 
on higher-frequency carriers suffer from more noise. To compensate for this effect, 
such channels must have a higher signal level. The quadratic characteristics of the 
demodulated noise spectrum in FM is the basis of preemphasis and deemphasis fil­
tering, which will be discussed later in this chapter. 

Example 6.2.1 

What is the required received power in an FM system with fJ = 5 if W = 15 kHz and 
No = 10-14 W/Hz? The power of the normalized message signal is assumed to be 0. 1 Watt 
and the required SNR after demodulation is 60 dB. 

Solution We use the relation 

( �) 0 = 3{32 PM,, ��, 
with (-%-)0 = 106, fJ = 5 ,  PM,, =  0 . 1 , N0 = 10-14, and W = 15,000, to obtain PR = 2 x 10-5 
or 20 microwatts. • 

6.2.1 Threshold Effect in Angle Modulation 

The noise analysis of angle-demodulation schemes is based on the assumption that the 
signal-to-noise ratio at the demodulator input is high. With this crucial assumption, we 
observe that the signal and noise components at the demodulator output are additive and we 
are able to carry out the analysis. This assumption of high SNR is a simplifying assumption 
that is usually made in the analysis of nonlinear modulation systems. Due to the nonlinear 
nature of the demodulation process, the additive signal and noise components at the input 
of the modulator do not result in additive signal and noise components at the output of 
the demodulator. In fact, this assumption is generally not correct. The signal and noise 
processes at the output of the demodulator are completely mixed in a single process by 
a complicated nonlinear relationship. Only under the high SNR assumption is this highly 
nonlinear relationship approximated as an additive form. Particularly at low SNRs, signal 
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and noise components are so intermingled that we cannot recognize the signal from tht 
noise; therefore, no meaningful SNR as a measure of performance can be defined. 

In such cases, the signal is not distinguishable from the noise and a mutilation o 
threshold effect is present. There exists a specific SNR at the input of the demodulato 
(known as the threshold SNR) below which signal mutilation occurs. The existence of the 
threshold effect places an upper limit on the trade-off between bandwidth and power i1 
an FM system. This limit is a practical limit in the value of the modulation index f3 f 
The analysis of the threshold effect and the derivation of the threshold index f3 f is quit1 
involved and beyond the scope of our analysis. The references cited at the end of this boo] 
can provide an analytic treatment of the subject. This text will only mention some result 
on the threshold effect in FM. 

At threshold, the following approximate relation between Ia� = ( �) b and f3 f hold 
in an FM system: 

(!._) = 20(f31 + 1) . N b,th 
(6.2.25 

From this relation, given a received power PR, we can calculate the maximum allowed 1 
to make sure that the system works above threshold. Also, given a bandwidth allocation c 

Be, we can find an appropriate f3 using Carson's rule Be = 2({3 + 1) W. Then, using th 
preceding threshold relation, we determine the required minimum received power to mak 
the whole allocated bandwidth usable. 

In general, there are two factors that limit the value of the modulation index {3. Tt 
first is the limitations on channel bandwidth, which affect f3 through Carson's rule. Tt 
second is the limitation on the received power which limits the value of f3 to less than tl 
value derived from Equation (6.2.25). Figure 6.5 shows plots of the output SNR in an F1 
system as a function of the baseband SNR. The output SNR values in these curves are : 
decibels, and different curves correspond to different values of {3, as marked. The effect 1 
threshold is apparent from the sudden drops in the output SNR. These plots are drawn f1 
a sinusoidal message for which 

(max lm (t) J )2 

In such a case, 

As an example, for f3 = 5, this relation yields 

and (!._) = 120 "' 20.8 N b,th 

1 (6.2.21 -
2 

(6.2.2 

(6.2.2 

dB. (6.2.� 
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Decibel scale 

Figure 6.5 Output SNR of an FM system as a function of the baseband SNR for various values of {J. 

For fJ = 2, we have 

(�)o / = 7.8 + (�)b / , 
dB dB (!__) = 60 � 17.8 N b,th 

dB. 

(6.2.30) 

(6.2.3 1) 

It is apparent that if, e.g., ( /t) b = 20 dB, then regardless of the available bandwidth, 
we cannot use fJ = 5 for such a system because the system will operate below threshold. 
For this case, we can use fJ = 2. This yields an SNR equal to 27 .8 dB at the output of the 
receiver. This is an improvement of 7.8 dB over a baseband system. 

In general, if we want to employ the maximum available bandwidth, we must choose 
the largest possible fJ that guarantees that the system will operate above threshold. This is 
the value of fJ that satisfies (!__) = 20(/J + 1) . N b,th 
By substituting this value into Equation (6.2.22), we obtain 

(�) 0 = 60{32({3 + l )PMn ' 

(6.2.32) 

(6.2.33) 

which relates a desired output SNR to the highest possible fJ that achieves that SNR. 
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Example 6.2.2 

Design an FM system that achieves an SNR at the receiver equal to 40 dB andrequires the 
minimum amount of transmitter power. The bandwidth of the channel is 120 kHz; the message 
bandwidth is 10 kHz; the average-to-peak power ratio for the message, PM. = (max�:(t)ll2 i� 
� ; and the (one-sided) noise power spectral density is N0 = 10-s W/Hz. What is the requirec 
transmitter power if the signal is attenuated by 40 dB in transmission through the channel? 

Solution First, we have to see whether the threshold or the bandwidth impose a more restric. 
tive bound on the modulation index. By Carson's rule, 

Be = 2(f3 + l )W 

120,000 = 2(f3 + 1)  x 10,000, 

from which we obtain f3 = 5. Using the relation 

(6.2.34 

with ( �) 0 = 104, we obtain f3 � 6.6. Since the value of f3 given by the bandwidth constrair 
is less than the value of f3 given by the power constraint, we are limited in bandwidth (a 
opposed to being limited in power). Therefore, we choose f3 = 5, which, when substituted i 
the expansion for the output SNR, 

yields 

- = - = 266.6 � 24.26 dB. 
( s )  800 

N b 3 

Since ( �) b = �':,., with W = 10, 000 and No = 10-s, we obtain 

8 
PR = 

300 
= 0.0266 � - 15. 74 dB 

and 
Pr = -15. 74 + 40 = 24.26 dB � 266.66 Watts. 

(6.2.3: 

(6.2.3( 

(6.2.3' 

(6.2.3 

Had there been no bandwidth constraint, we could have chosen f3 = 6.6, which would rest 
in ( �) b � 153. In turn, we would have PR � 0.0153 and Pr � 153 Watts. 

6.2.2 Preemphasis and Deemphasis Filtering for FM 

As observed in Figure 6.4, the noise power spectral density at the output of the FM demo 
ulator has a parabolic shape within the message signal bandwidth. This parabolic increa 
in the noise power spectral density is due to the use of a differentiator in the FM demo 
ulator. As a consequence, the higher-frequency components of the message signal a 
degraded by this increase in noise power. 

To compensate for the increase in noise power at the higher frequencies of the ill( 

sage signal, we can boost the high-frequency components prior to the FM modulator at t 
transmitter and, thus, transmit these frequencies at a higher power level. This can be eas 
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Figure 6.6 Preemphasis and 
deemphasis filter characteristics. 

accomplished by using a highpass filter at the transmitter, called a preemphasis filter. Thus, 
the degradation of the high-frequency components of the message due to the large noise 
power spectral density at the demodulator is reduced. 

Having boosted the high frequencies of the message signal at the transmitter, we 
need to restore these frequency components in the demodulated message signal to their 
original form. This is accomplished by performing the inverse operation of preemphasis, 
i.e., passing the demodulated signal through a lowpass filter, called a deemphasis filter. 
Thus, the cascade of the preemphasis and the deemphasis filters has reciprocal frequency­
response characteristics within the bandwidth occupied by the message signal, as shown in 
Figure 6.6. 

The characteristics of the preemphasis and deemphasis filters depend largely on 
the power spectral density of the message process. In commercial FM broadcasting of 
music and voice, first-order lowpass and highpass RC filters with a time constant of 75 µs 
are employed. In this case, the frequency response of the receiver (deemphasis) filter is 
given by 

I Hd (f) = -----,­
I + · L '  J Jo 

where fo = 2rrx7L10_6 � 2100 Hz is the 3 dB frequency of the filter. 

(6.2.39) 

To analyze the effect of preemphasis and deemphasis filtering on the overall signal­
to-noise ratio in FM broadcasting, we note that siilce the transmitter and the receiver 
filters cancel the effect of each other, the received power in the message signal remains 
unchanged, and we only have to consider the effect of filtering on the received noise. Of 
course, the only filter that has an effect on the received noise is the receiver filter, which 
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shapes the power spectral density of the noise within the message bandwidth. The noise 
component before filtering has a parabolic power spectrum. Therefore, the noise compo­
nent after the deemphasis filter has a power spectral density given by 

(6.2.40) 

where we have used Equation (6.2.15). The noise power at the output of the demodulator 
can be obtained as 

No j+w J1 
= - -- dJ A� -W 1 + j2 

J;} 

= 
2NoJ

g [W 
_ arctan W ] . 

A� Jo Jo 
(6.2.41 

Since the demodulated message signal power in this case is equal to that of a simple FN 
system with no preemphasis and deemphasis filtering, the ratio of the output SNRs in thes1 
two cases is inversely proportional to the noise power ratios, i.e., 

2Nof6 [.!!'.. - arctan .!!'..] A� Jo Jo 

1 
- - W W '  3 - - arctan -fo Jo 

(6.2.42 

where we have used Equation (6.2. 16). Hence, Equation (6.2.42) gives the improvemer 
obtained by employing preemphasis and deemphasis filtering. 

Example 6.2.3 

In commercial FM broadcasting, W = 15 kHz, fo = 2100 Hz, and f3 = 5. Assuming that tt 
average-to-peak power ratio of the message signal is 0.5, find the improvement in the outp1 
SNR of FM when we use preemphasis and deemphasis filtering rather than a baseband systen 
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Solution From Equation (6.2.22), we have 

( ! ) 0 = 3 x 52 x 0.5 x ( ! ) b 
= 37.5 (!)b 
� 15.7 + (!){B 
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(6.2.43) 

Therefore, FM with no preemphasis and deemphasis filtering performs 15.7 dB better than a 
baseband system. For FM with preemphasis and deemphasis filtering, we have 

= 21.3 (!) 0 
� 13.3 + (!)0 1 

dB 

� 13.3 + 15.7 + (!)b l 

� 29 +  (!){B 

dB 
(6.2.44) 

The overall improvement when using preemphasis and deemphasis filtering rather than a base­
band system is, therefore, 29 dB. • 

6.3 COMPARISON OF ANALOG-MODULATION SYSTEMS 

Now, we are at a point where we can present an overall comparison of different analog 
communication systems. The systems that we have studied include linear modulation sys­
tems (DSB-SC AM, conventional AM, SSB-SC AM, vestigial sideband) and nonlinear 
modulation systems (FM and PM). 

The comparison of these systems can be done from various points of view. Here we 
present a comparison based on three important practical criteria: 

1. The bandwidth efficiency of the system. 
2. The power efficiency of the system as reflected in its performance in the presence of 

noise. 
3. The ease of implementation of the system (transmitter and receiver). 
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Bandwidth Efficiency. The most bandwidth efficient analog communication sys­
tem is the SSB-SC system with a transmission bandwidth equal to the signal bandwidth. 
This system is widely used in bandwidth critical applications, such as voice transmission 
over microwave and satellite links and some point-to-point communication systems in con­
gested areas. Since SSB-SC cannot effectively transmit DC, it cannot be used for the trans­
mission of signals that have a significant DC component, such as image signals. A good 
compromise is the VSB system, which has a bandwidth slightly larger than SSB and is 
capable of transmitting DC values. VSB is used in TV broadcasting and in some data 
communication systems. PM, and particularly FM, are the least favorable systems when 
bandwidth is the major concern, and their use is only justified by their high level of noise 
immunity. 

Power Efficiency. A criterion for comparing the power efficiency of various sys­
tems is the comparison of their output signal-to-noise ratio at a given received signal 
power. We have already seen that angle-modulation schemes, and particularly FM, pro­
vide a high level of noise immunity and, therefore, power efficiency. FM is widely used 
on power-critical communication links, such as point-to-point communication systems and 
high-fidelity radio broadcasting. It is also used for transmission of voice (which has been 
already SSB/FDM multiplexed) on microwave line-of-sight and satellite links. Conven­
tional AM and VSB+C are the least power-efficient systems and are not used when the 
transmitter power is a major concern. However, their use is justified by the simplicity of 
the receiver structure. 

Ease of Implementation. The simplest receiver structure is the receiver for con­
ventional AM, and the structure of the receiver for VSB+C system is only slightly more 
complicated. FM receivers are also easy to implement. These three systems are widely used 
for AM, TV, and high-fidelity FM broadcasting (including FM stereo). The power ineffi­
ciency of the AM transmitter is compensated by the extremely simple structure of literally 
hundreds of millions of receivers. DSB-SC and SSB-SC require synchronous demodula­
tion and, therefore, their receiver structure is much more complicated. These systems are. 
therefore, never used for broadcasting purposes. Since the receiver structure of SSB-SC anc 
DSB-SC have almost the same complexity and the transmitter of SSB-SC is only slightl) 
more complicated than DSB-SC, DSB-SC is hardly used in analog signal transmission 
due to its relative bandwidth inefficiency. 

6.4 EFFECTS OF TRANSMISSION LOSSES AND NOISE IN ANALOG COMMUNICATION 
SYSTEMS 

In any communication system, there are usually two dominant factors that limit the perfor 
mance of the system. One important factor is additive noise that is generated by electroni1 
devices that are used to filter and amplify the communication signal. A second factor tha 
affects the performance of a communication system is signal attenuation. Basically al 
physical channels, including wireline and radio channels, are lossy. Hence, the signal i 
attenuated (reduced in amplitude) as it travels through the channel. A simple mathematic2 
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Figure 6. 7 Mathematical model of 
channel with attenuation and additive 
noise. 

model of the attenuation may be constructed, as shown in Figure 6.7, by multiplying the 
transmitted signal by the factor a < 1 .  Consequently, if the transmitted signal is s (t), the 
received signal is 

r(t) = as(t) + n(t). (6.4. 1 ) 

Clearly, the effect of signal attenuation is to reduce the amplitude of the desired signal 
s (t) and, thus, to render the communication signal more vulnerable to additive noise. 

In many channels, such as wirelines and microwave line-of-sight channels, signal 
attenuation can be offset by using amplifiers to boost the level of the signal during trans­
mission. However, an amplifier also introduces additive noise in the process of amplifica­
tion and, thus, corrupts the signal. This additional noise must be taken into consideration 
in the design of the communication system. 

In this section, we consider the effects of attenuation encountered in signal transmis­
sion through a channel and additive thermal noise generated in electronic amplifiers. We 
also demonstrate how these two factors influence the design of a communication system. 

6.4.1 Characterization of Thermal Noise Sources 

Any conductive two-terminal device is generally characterized as lossy and has some resis­
tance, say R ohms. A resistor that is at a temperature T above absolute zero contains free 
electrons that exhibit random motion and, thus, result in a noise voltage across the terminals 
of the resistor. Such a noise voltage is called thermal noise. 

In general, any physical resistor (or lossy device) may be modeled by a noise source 
in series with a noiseless resistor, as shown in Figure 6.8. The output n(t) of the noise 

R 

(a) (b) 

n(t) 

Figure 6.8 A physical resistor (a) is modeled as a noiseless resistor in series with a 
noise source (b). 
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Figure 6.9 Noisy resistor connected to a load resistance Ri. 

source is characterized as a sample function of a random process. Based on quantun 
mechanics, the power spectral density of thermal noise (see Section 5.3) is given as 

2Rli lf l 2 SR(f) = ( hi/I ) (volts) /Hz, 
e kT - 1 (6.4.2 

where h is Plank's constant, k is Boltzmann's constant, and T is the temperature of th 
resistor in degrees Kelvin, i.e., T = 273 + C, where C is in degrees Centigrade. A 
indicated in Section 5 .3, at frequencies below 1012 Hz (which includes all conventiona 
communication systems) and at room temperature, 

hi/I l li lf l e k T  � + -- . 
kT 

Consequently, the power spectral density is well approximated as 

(6.4.3 

(6.4A 
When connected to a load resistance with value RL, the noise voltage shown i 

Figure 6.9 delivers the maximum power when R = RL. In such a case, the load is matche 
to the source and the maximum power delivered to the load is E[N2(t)]/4RL. Therefore 
the power spectral density of the noise voltage across the load resistor is 

kT Sn (f) = 2 W/Hz. (6.4.: 

As previously indicated in Section 5.3.2, kT is usually denoted by N0• Hence, the pow1 
spectral density of thermal noise is generally expressed as 

No Sn (f) = 2 W/Hz. (6.4.1 

For example, at room temperature (To = 290° K) , No = 4 x 10-21 W/Hz. 

6.4.2 Effective Noise Temperature and Noise Figure 

When we employ amplifiers in communication systems to boost the level of a signal, v 

are also amplifying the noise corrupting the signal. Since any amplifier has some fini 
passband, we may model an amplifier as a filter with the frequency-response characterist 
H (f). Let us evaluate the effect of the amplifier on an input thermal noise source. 
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Figure 6.10 illustrates a thermal noise source connected to a matched two-port net­
work having the frequency response H(f). The output of this network is connected to a 
matched load. First, we recall that the noise power at the output of the network is 

Pno = Sn Cf) IH(f) l2df = � IH(f) J2 df. loo N loo -00 2 
-00 

(6.4.7) 

From Section 5.3.3, we recall that the noise equivalent bandwidth of the filter is defined as 
1 100 Bneq = 2 '&  -oo IH(f) l2 df, (6.4.8) 

where, by definition, '& = I H (f) l�ax is the maximum available power gain of the amplifier. 
Consequently, the output noise power from an ideal amplifier that introduces no additional 
noise may be expressed as 

(6.4.9) 
Any practical amplifier introduces additional noise at its output due to internally 

generated noise. Hence, the noise power at its output may be expressed as 

Pno = 'B NoBneq + Pni 
= 'BkTBneq + Pn; ,  (6.4.10) 

where Pn; is the power of the amplifier output due to internally generated noise. Therefore, ( Pn; ) Pno = 'BkBneq T +  . 
'BkBneq 

This leads us to define a quantity 

Pn; Te = --­'BkBneq ' 

(6.4. 1 1 ) 

(6.4. 12) 

which we call the effective noise temperature of the two-port network (amplifier). Then 

(6.4. 1 3) 
Thus, we interpret the output noise as originating from a thermal noise source at the tem­
perature T + Te. 

A signal source at the input to the amplifier with power Psi will produce an output 
with power 

(6.4.14) 
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Hence, the output SNR from the two-port network is 

rikTBneqO + Te/T) 
Ps; 

NoBneq Cl + Te/T) 

= l + �e/T (�) ; , (6.4.15) 

where, by definition, (S / N); is the input SNR to the two-port network. We observe that the 
SNR at the output of the amplifier is degraded (reduced) by the factor ( 1 +Te/ T). Thus, Te 
is a measure of the noisiness of the amplifier. An ideal amplifier is one for which Te = 0. 

When T is taken as room temperature To (290° K), the factor (1 +Te/To) is called the 
noise figure of the amplifier. Specifically, the noise figure of a two-port network is defined 
as the ratio of the output noise power Pno to the output noise power of an ideal (noiseless) 
two-port network for which the thermal noise source is at room temperature (T = 290° K). 
Clearly, the ratio 

F = (l + �:) (6.4. 16: 

is the noise figure of the amplifier. Consequently, Equation (6.4.15) may be expressed as 

(6.4. 17: 

By taking the logarithm of both sides of Equation (6.4. 17), we obtain 

10  log ( �) 0 = -10 log F + 10 log ( �); . (6.4. 18  

Hence, 10 log F represents the loss in SNR due to the additional noise introduced by th1 
amplifier. The noise figure for many low-noise amplifiers, such as traveling wave tubes, i: 
below 3 dB. Conventional integrated circuit amplifiers have noise figures of 6 dB to 7 dB. 

It is easy to show (see Problem 6.16) that the overall noise figure of a cascade of I<. 
amplifiers with gains Cfik and corresponding noise figures Fk. 1 :::: k :::: K is 

(6.4. 19 

This expression is known as Fries ' formula. We observe that the dominant term is F1 
which is the noise figure of the first amplifier stage. Therefore, the front end of a receive 
should have a low noise figure and a high gain. In that case, the remaining terms in the suu 
will be negligible. 
Example 6.4.1 

Suppose an amplifier is designed with three identical stages, each of which has a gain c 
Cfi; = 5 and a noise figure F; = 6, i = 1, 2, 3. Determine the overall noise figure of th 
cascade of the three stages. 
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Solution From Equation (6.4.19), we obtain 

Fz - 1  F3 - l  F = F1 + -- + --, <&1 <&1 <&2 

F1 = 6 + 1 + 0.2 = 7.2, 

or, equivalently, F1dB = 8.57 dB. 

6.4.3 Transmission Losses 

283 

• 

As we indicated previously, any physical channel attenuates the signal transmitted through 
it. The amount of signal attenuation generally depends on the physical medium, the fre­
quency of operation, and the distance between the transmitter and the receiver. We define 
the loss ;£, in signal transmission as the ratio of the input (transmitted) power to the output 
(received) power of the channel, i.e., 

(6.4.20) 

or, in decibels, 

;£,dB = lO log;J', = lO log Pr - lO log PR . (6.4.21 )  

In wireline channels, the transmission loss is usually given in terms of decibels per unit 
length, e.g., dB/km. For example, the transmission loss in coaxial cable of 1 cm diameter 
is about 2 dB/km at a frequency of 1 MHz. This loss generally increases with an increase 
in frequency. 

Example 6.4.2 

Determine the transmission loss for a 10 km and a 20 km coaxial cable if the loss per kilometer 
is 2 dB at the frequency operation. 

Solution The loss for the 10 km channel is ;£,dB = 20 dB. Hence, the output (received) 
power is PR = Pr j;J', = 10-2 Pr. For the 20 km channel, the loss is ;£,dB = 40 dB. Hence, 
PR = 10-4 Pr .  Note that doubling the cable length increases the attenuation by two orders of 
magnitude. • 

In line-of-sight radio systems, the transmission loss is given as 

(6.4.22) 

where A. = c / f is the wavelength of the transmitted signal, c is the speed of light (3 x 
108 m/sec) , f is the frequency of the transmitted signal, and d is the distance between the 
transmitter and the receiver in meters. In radio transmission, ;£, is called the free-space path 
loss. 
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Example 6.4.3 

Determine the free-space path loss for a signal transmitted at f = 1 MHz over distances o 
10 km and 20 km. 
Solution The loss given in Equation (6.4.22) for a signal at a wavelength A. = 300 m is 

for the 10 km path and 

:£dB = 20 log10(4n x 104/300) 

= 52.44 dB 

:£dB = 20 log10 (8n x 104 /300) 

= 58.44 dB 

(6.4.23 

(6.4.24 

for the 20 km path. It is interesting to note that doubling the distance in radio transmissio1 
increases the free-space path loss by 6 dB. 

Example 6.4.4 

A signal is transmitted through a 10 km coaxial line channel, which exhibits a loss of 2 dB/krr 
The transmitted signal power is PidB = -30 dBW (-30 dBW means 30 dB below 1 Watt 01 
simply, one milliwatt). Determine the received signal power and the power at the output of a 
amplifier that has a gain of WdB = 15 dB. 

Solution The transmission loss for the 10 km channel is :£dB = 20 dB. Hence, the receive 
signal power is 

PRdB = PTdB - :£dB = -30 - 20 = -50 dBW. (6.4.2� 

The amplifier boosts the received signal power by 15 dB. Hence, the power at the output c 
the amplifier is 

PodB = PRdB + G dB 
= -50 + 15 = -35 dBW. (6.4.2( 

6.4.4 Repeaters for Signal Transmission 

Analog repeaters are basically amplifiers that are generally used in telephone wire-li11 
channels and microwave line-of-sight radio channels to boost the signal level and, thus, t 
offset the effect of signal attenuation in transmission through the channel. 

Figure 6. 1 1  illustrates a system in which a repeater is used to amplify the signal th: 
has been attenuated by the lossy transmission medium. Hence, the input signal power : 
the input to the repeater is 

Transmitter PT Lossy 

PT � channel 
:!', 

T PR = 5£  Amplifier 
p 

<§
.,
F
a 

N1 

(6.4.2' 

Figure 6.11 A communication 
system employing a repeater to 
compensate for channel loss. 
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The output power from the repeater is 

(6.4.28) 

We may select the amplifier gain �a to offset the transmission loss. Hence, �a = 5£ and 
Po = PT. 

Now, the SNR at the output of the repeater is 

1 ( PT ) = 
Fa5£ NoBneq 

. (6.4.29) 

Based on this result, we may view the lossy transmission medium followed by the amplifier 
as a cascade of two networks: one with a noise figure 5£ and the other with a noise figure 
Fa . Then, for the cascade connection, the overall noise figure is 

(6.4.30) 

If we select �a = 1/5£, then 
F - 1 

F = 5£ + _
a 
__ = 5£Fa. 
1/5£ 

(6.4.31) 

Hence, the cascade of the lossy transmission medium and the amplifier is equivalent to a 
single network with the noise figure 5£Fa ·  

Now, suppose that we transmit the signal over K segments of the channel, where 
each segment has its own repeater, as shown in Figure 6. 12. Then, if F; = 5£; Fa; is the 
noise figure of the i th section, the overall noise figure for the K sections is 

Transmitter 
Pr 

co 5£2Fa2 - 1 5£3 Fa3 - 1 
F = .,z,1 Fa1 + + -------

�ai /5£1 ( �ai /5£1)( �a2/5£2) 
5£K FaK - 1 + ------------

( �aif5£1 ) ( �az!5i2) · · · ( �aK/5£K) 

Channel 
5£ 

Channel 
5£2 

Repeater 
'tl.2, Fa2 

Figure 6.12 A communication system employing repeaters. 

(6.4.32) 

Channel 
5£n 
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Therefore, the signal-to-noise ratio at the output of the repeater (amplifier) at th 
receiver is 

(�)o = � (�); 
1 ( Pr ) = F NoBneq · (6.4.33 

In the important special case where the K segments are identical, i.e., 51',; = 51', fa 
all i and Fa; = Fa for all i ,  and where the amplifier gains are designed to offset the losse 
in each segment, i.e., C&a; = 51',; for all i ,  then the overall noise figure becomes 

F = K5i',Fa - (K - 1) � K5i',Fa .  (6.4.34 

Hence, (�) o � 
K�Fa (N:;neq) . (6.4.35 

Therefore, the overall noise figure for the cascade of the K identical segments is simply } 
times the noise figure of one segment. 
Example 6.4.5 

A signal with the bandwidth 4 kHz is to be transmitted a distance of 200 km over a wirelin 
channel that has an attenuation of 2 dB/km. (a) Determine the transmitter power PT require 
to achieve an SNR of (S / N)0 = 30 dB at the output of the receiver amplifier that has 
noise figure FadB = 5 dB. (b) Repeat the calculation when a repeater is inserted every 1 
km in the wireline channel, where the repeater has a gain of 20 dB and a noise figure c 
Fa = 5 dB. Assume that the noise equivalent bandwidth of each repeater is Bneq = 4 kHz an 
that No = 4 x 10-21 W/Hz. 

Solution 

1. The total loss in the 200 km wireline is 400 dB. From Equation (6.4.35), with K = 1 ,  w 
have 

Hence, 

But 

10 log(S / N) = - 10 log 51', - 10 log Fa - 10 log(NoBneq) + 10 log PT. 

PTda = (S/N)odB + FadB + (NoBneq)aa + 1 0 log 51', 

= 30 + 5 + 400 + (NoBneq)dB. 

(NoBneq)dB = 10 log(l .6 X 10-17) = - 168 dBW, 

where dBW denotes the power level relative to 1 Watt. Therefore, 

PTdB = 435 - 168 = 267 dBW 

PT = 5 x 1026 Watts, 

which is an astronomical figure. 
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2. The use of a repeater every 10 km reduces the per segment loss to ;£dB = 20 dB. There are 
20 repeaters and each repeater has a noise figure of 5 dB. Hence, Equation (6.4.35) yields 

(S / N)odB = - 10 log K - 10 log ;£ - 10 log Fa - 10 log(NoBneq) + 10 log Pr 

and 

30 = -13  - 20 - 5 + 168 + PrdB· 

Therefore, 

or equivalently, 

PrctB = - 100 dBW, 

Pr = 10-10 Watts (0. 1 picowatts). • 

The preceding example clearly illustrates the advantage of using analog repeaters in 
communication channels that span large distances. However, we also observed that analog 
repeaters add noise to the signal and, consequently, degrade the output SNR. It is clear 
from Equation (6.4.35) that the transmitted power PT must be increased linearly with the 
number K of repeaters in order to maintain the same (S/N)0 as K increases. Hence, for 
every factor of 2 increase in K, the transmitted power PT must be increased by 3 dB. 

6.5 SUMMARY AND FURTHER READING 

In this chapter, we determined the effects of additive noise in the demodulation of AM, 

1 FM, and PM analog signals. We began by evaluating the signal-to-noise ratio (SNR) of 
the received signal at the output of the demodulator for DSB-SC AM, SSB AM, and con­
ventional AM. In Example 6. 1 .2, we compared these three types of AM signals on the 
basis of the transmitted power required to achieve an output SNR of 50 dB in additive 
white Gaussian with power spectral density of 10-12 W/Hz and an attenuation of 50 dB. 
We found that the required transmitter power for DSB-SC and SSB is 200 Watts and, for 
conventional AM, it is 909 Watts. 

We performed a similar evaluation of the output SNR in angle-modulated (FM and 
PM) systems, and we observed the important role played by the modulation index fJ, which 
provides a measure of the bandwidth expansion'in angle-modulated systems. We demon­
strated that the channel bandwidth required to transmit the angle-modulated signal is given 
by Carson's rule as Be = 2(fJ + 1) W, where W is the bandwidth of the information-bearing 
signal. We also considered the threshold effect in the demodulation of angle-modulated 
signals and described the signal distortion that occurs when the received signal SNR falls 
below a precomputed threshold. To compensate for high-frequency noise enhancement that 
occurs in the demodulation of FM signals, we introduced preemphasis filtering at the trans­
mitter in order to boost the high frequencies of the transmitted signal. At the receiver end, 
a deemphasis filter is used following the FM demodulator in order to restore the FM signal 
to its original form and thus undo the preemphasis filtering performed at the transmitter. 
Angle-modulated systems are compared with amplitude-modulated systems on the basis 
of bandwidth efficiency, power efficiency, and ease of implementation. 
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In the last section of this chapter, we characterized thermal noise sources in term 
of this effective noise temperature and noise figure. Finally, we considered transmissio 
losses and the benefits of inserting analog repeaters in long-distance signal transmission. 

Analysis of the effect of noise on analog communication systems can be found i 
many textbooks on communications, including Carlson (1986), Ziemer and Tranter (2002: 
Couch (1993), and Gibson (1993). The book of Sakrison (1968) provides a detailed anal 
ysis of FM in the presence of noise. Taub and Schilling ( 1986) provide in-depth treatmer 
of the effect of threshold and various methods for threshold extension in FM. 

PROBLEMS 

6.1 The received signal r (t) = s (t) +n (t) in a communication system is passed throug 
an ideal lowpass filter (LPF) with bandwidth W and unity gain. The signal compo 
nent s (t) has a power spectral density 

S (f) - Po s 
- 1 + (f I B)2 ' 

where B is the 3 dB bandwidth. The noise component n (t) has a power spectra 
density No/2 for all frequencies. Determine and plot the SNR as a function of th 
ratio WIB. What is the filter bandwidth W that yields a maximum SNR? 

6.2 The input to the system shown in Figure P-6.2 is the signal plus noise waveform 

t 
r(t) 

t 

r (t) = Ac cos 2nfct + n (t) , 

where n (t) is a sample function of a white noise process with spectral density No/� 

1. Determine and sketch the frequency response of the RC filter. 

2. Sketch the frequency response of the overall system. 

3. Determine the SNR at the output of the ideal LPF assuming that W > fc wher 
W denotes the bandwidth of the LPF. Sketch the SNR as a function of W fo 
fixed values of R and C. 

c 

R Ideal 
LPF 

Output 

Figure P-6.2 
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6.3 A DSB amplitude-modulated signal with a power spectral density, as shown in Fig­
ure P-6.3(a), is corrupted with additive noise that has a power spectral density No/2 
within the passband of the signal. The received signal plus noise is demodulated and 
the lowpass is filtered, as shown in Figure P-6.3(b ). Determine the SNR at the output 
of the LPF. 

Po 
-w 

COS (2nfct) 

(a) 

Figure P-6.3 

w f 

LPF Output 

BW = W  

(b) 

6.4 A certain communication channel is characterized by a 90 dB attenuation and addi-_ 
tive white noise with the power spectral density of �0 = 0.5 x 10-14 W/Hz. The 
bandwidth of the message signal is 1 .5 MHz, and its amplitude is uniformly dis­
tributed in the interval [ -1 , 1] . If we require that the SNR after demodulation be 
30 dB, find the necessary transmitter power in each of the following cases: 

1. Upper single-sideband (USSB) modulation. 

2. Conventional AM with a modulation index of 0.5. 

3. DSB-SC modulation. 

6.5 A sinusoidal message signal, whose frequency is less than 1000 Hz, modulates the 
carrier c(t) = 10-3 cos 2nfct . The modulation scheme is conventional AM and the 
modulation index is 0.5. The channel noise is additive white noise with a power 
spectral density of �0 = 10-12 W/Hz. At the receiver, the signal is processed, as 
shown in Figure P-6.5 (a). The frequency response of the bandpass noise-limiting 
filter is shown in Figure P-6.5 (b). 

1. Find the signal power and the noise power at the output of the noise-limiting 
filter. 

2. Find the output SNR. 
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H(f) 

Bandpass 
noise-limiting 

filter 

2 cos 2nfcf 

(a) 

Ideal 
LPF 

BW = lOOO Hz 

H(f) l 
->j 2000 Hz �---- -'. - - - - - -

1 2000 Hz r­
/ , � _ L i '\.  

-fc fc - 1500 fc fc 
+ 

1500 f 
(b) 

Chapter 1 

Figure P-6.5 

6.6 In an analog communication system, demodulation gain is defined as the ratio of th 
SNR at the output of the demodulator to the SNR at the output of the noise-limitin: 
filter at the receiver front end. Find expressions for the demodulation gain in each o 

the following cases: 

1. DSB. 

2. SSB. 

3. Conventional AM with a modulation index of a. What is the largest possibl 
demodulation gain in this case? 

4. FM with a modulation index f3 f .  
5.  PM with a modulation index f3 P . 

6.7 In a broadcasting communication system, the transmitter power is 40 kW, the chan 
nel attenuation is 80 dB, and the noise power spectral density is 10-10 W/Hz. Th 
message signal has a bandwidth of 104 Hz. 

1. Find the predetection SNR (SNR in r(t) = au(t) + n(t)). 
2. Find the output SNR if the modulation is DSB. 

3. Find the output SNR if the modulation is SSB. 

4. Find the output SNR if the modulation is conventional AM with a modulatio 
index of 0.85 and has a normalized message power of 0.2. 

6.8 A communication channel has a bandwidth of 100 kHz. This channel is to be use1 
for transmission of an analog source m(t), where jm(t) I < 1 ,  and its bandwidth i 
W = 4 kHz. The power content of the message signal is 0. 1 Watt. 
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1. Find the ratio of the output SNR of an FM system that utilizes the whole band­
width to the output SNR of a conventional AM system with a modulation index 
of a = 0.85. What is this ratio in dB? 

2. Show that if an FM system and a PM system are employed and these systems 
have the same output SNR, then 

6.9 The normalized message signal mn (t) has a bandwidth of 5000 Hz and power of 0. 1 
Watt, and the channel has a bandwidth of 100 kHz and attenuation of 80 dB. The 
noise is white with a power spectral density 0.5 x 10-12 W/Hz, and the transmitter 
power is 10 kW. 

1. If AM with a = 0.8 is employed, what is (it )o? 

2. If FM is employed, what is the highest possible (it) 0? 
6.10 A normalized message signal has a bandwidth of W = 8 kHz and a power of PMn = 

�. We must transmit this signal via a channel with an available bandwidth of 60 
kHz and attenuation of 40 dB. The channel noise is additive and white with a power 
spectral density of �0 = 10-12 W/Hz. A frequency modulation scheme, with no 
preemphasis/deemphasis filtering, has been proposed for this purpose. 

1. If we want an SNR of at least 40 dB at the receiver output, what is the minimum 
required transmitter power and the corresponding modulation index? 

2. If the minimum required SNR is increased to 60 dB, how would your answer 
change? 

3. If in Part 2, we are allowed to employ preemphasis or deemphasis filters with a 
time constant of r = 75 µsec, how would the answer change? 

6.11 In transmission of telephone signals over line-of-sight microwave links, a combina­
tion of FDM-SSB and FM is often employed. A block diagram of such a system is 
shown in Figure P-6.1 1 .  

m1(t) 
mz(t) 

m3(t) 

mK(t) 

Each of the signals m; (t) is bandlimited to W Hz, and these signals are USSB mod­
ulated on carriers c; (t) = A; cos 2nfcit, where fci = (i - l)W, 1 ::;: i ::;: K, and 
m(t) is the sum of all USSB-modulated signals. This signal FM modulates a carrier 
with frequency fc with a modulation index of {3. 

FDM m(t) u(t) 
SSB FM 

Figure P-6.11 
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1. Plot a typical spectrum of the US SB-modulated signal m (t) .  
2. Determine the bandwidth of m (t) .  
3 . At the receiver side, the received signal r(t) = u(t) + n w  (t) is first FM demod. 

ulated and then passed through a bank of USSB demodulators. Show that th( 
noise power entering these demodulators depends on i .  

4. Determine an expression for the ratio of the noise power entering the demodu 
lator, whose carrier frequency is f; to the noise power entering the demodulato1 
with the carrier frequency fj,  1 S i , j S K. 

5.  How should the carrier amplitudes A; be chosen to guarantee that, after USSE 
demodulation, the SNR for all channels is the same? 

6.12 A power meter that measures average power is connected to the output of a transmit 
ter, as shown in Figure P-6. 12. The meter reading is 20 Watts when it is connectec 
to a 50 Q load. Determine 

1. The voltage across the load resistance. 
2. The current through the load resistance. 
3. The power level in dBm units. 

Figure P-6.12 

6.13 A twisted-pair telephone wireline channel with characteristic impedance Zc = 300 [ 
is terminated with a load of ZL = 300 Q. The telephone line is 200 km long and ha 
a loss of 2 dB/km. 

1. If the average transmitted power Pr = 10 dBm, determine the received powe 
PR if the line contains no repeaters. 

2. If repeaters with a gain of 20 dB are used to boost the signal on the channel, anc 
if each repeater requires an input signal level of 10 dBm, determine the numbe 
of repeaters and their spacing. The noise figure of each repeater is 6 dB. 

6.14 A radio antenna pointed in a direction of the sky has a noise temperature of 50° K 
The antenna feeds the received signal to the preamplifier, which has a gain of 35 dl 
over a bandwidth of 10 MHz and a noise figure of 2 dB. 

1. Determine the effective noise temperature at the input to the preamplifier. 
2. Determine the noise power at the output of the preamplifier. 
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6.15 An amplifier has a noise equivalent bandwidth Bneq 25 kHz and a maximum 
available power gain of 'B = 30 dB. Its output noise power is 108kT0, where To 
denotes the ambient temperature. Determine the effective noise temperature and the 
noise figure. 

6.16 Prove that the effective noise temperature of k two-port networks in cascade is 

Te2 Te3 Tek 
Te = Tel + - + -- + · · · + ----'B1 'B1 'Bi W1 'Bi · · · wk 

Using this relationship, prove Fries' formula, which is given in Equation (6.4. 19). 

COMPUTER PROBLEMS 

6.1 Effect of Noise on DSB-SC AM 

The transmitted message signal is given by 

m(t) = [ �inc(lOOt) O :S t :S to 
otherwise ' 

where to = 0. 1 .  The message signal modulates the carrier c(t) = cos 2nfct, where 
fc = 250 Hz, to produce the DSB-SC AM signal u(t) = m(t)c(t). 

1. By selecting the sampling interval ts = 0.0001 ,  generate 1000 samples of the 
message signal m(t) and the modulated signal u(t) at t = nts , n = 0, 1 ,  . . .  , 999, 
and plot both signals. 

2. Generate a sequence of 2000 zero-mean and unit-variance Gaussian random 
variables. Form the received signal sequence, 

r (nts) = r(n) = u(nts) + CJ [wc(nts) cos 2nfcnts - Ws(nts) sin2nfcnts] 
= U (n) + CJ  [Wc(n) COS 2nfcnts - Ws(n) sin 2nfcnts] , 

where wc(t) and Ws(t) represent the quadrature components of the additive 
Gaussian noise process and CJ2 is a scale factor that is proportional to the noise 
power. Generate and plot the received signal sequence {r(n)} for the following 
values of CJ : CJ =  0 . 1 ,  CJ =  1 ,  and _CJ = 2. 

3. Demodulate the received signal sequence {r(n)} by using the demodulator shown 
in Figure CP-6. 1 , and plot the received message signal mr(t) for each of the 
three values of CJ .  The lowpass filter is a linear phase FIR filter, which has 3 1  
taps, a cutoff frequency ( -3 dB) of 100 Hz, and a stopband attenuation of at 
least 30 dB. Comment on the effect of the additive noise on the demodulated 
signal mr(t) by comparing mr(t) with the transmitted message signal m(t). 

4. Determine the SNR at the receiver output for the three values of a .  
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Lowpass filter 
m,(t) 

cos 2nfct I t = nt,.n =O, 1, ... ,999 Figure CP-6.1 Demodulator for DSB-SC AM. 

6.2 Effect of Noise on SSB-SC AM 

Repeat Computer Problem 6. 1 when the transmitted signal is an SSB-SC AM. 

6.3 Effect of Noise on Conventional AM 

A message signal is given by 

m(t) = { �nc(lOOt) 0 .::::: t .::::: to 
otherwise ' 

where to = 0. 1 .  The message signal modulates the carrier c(t) = cos 2nfct, wher1 
fc = 250 Hz, to produce a conventional AM signal u(t). The modulation index i 
a = 0.8. 

1. By selecting the sampling interval ts = 0.0001 ,  generate 1000 samples of th 
message signal m(t) and the modulated signal 

u(t) = [1 + am(t)] cos 2nfct l t=nt. , n=O, l, . . .,999 · 

Plot both signals. 
2. Generate a sequence of 2000 zero-mean and unit-variance Gaussian randou 

variables. Form the received signal sequence, 

r(nts) = r(n) = u (nts) + er  [wc(nts) cos 2nfcnts - Ws(nts) sin 2nfcnts] 
= u(n) + a [wc(n) cos 2nfcnts - Ws(n) sin 2nfcnts] , 

where Wc(t) and Ws(t) represent the quadrature components of the additiv 
Gaussian noise process and cr2 is a scale factor that is proportional to the nois 
power. Generate and plot the received signal sequence {r(n)} for the followin. 
values of er :  a =  0. 1 ,  a = 1 ,  and a = 2. 

3. Demodulate the received signal sequence {r(n)} by using an envelope detectc 
that computes 

e (t) = J[l + am(t) + Wc(t)]2 + w}(t) l t=nt, , n=O, l ,2, . .  .,999' 

Plot e(t) for each of the three values of a. Compare e(t) with the original me� 
sage signal m(t), and comment on the effect of the additive noise on the democ 
ulated signal. Note that in the absence of noise, the message signal m(t) can b 
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obtained from the envelope signal e(t) by subtracting the DC offset, which is 
equal to 1. In the presence of noise, what is the DC offset? 

4. Determine the SNR at the receiver output for the three values of a .  

6.4 Effect of Noise on FM 

The message signal ( sinc(lOOt) m(t) = 0 
0 :::: t :::: to 
otherwise ' 

where to = 0. 1 ,  frequency modulates the carrier c(t) = cos 2rr.fct, in which fc = 

250 Hz. The frequency-deviation constant is k 1 = 100. The frequency-modulated 
signal is 

u(t) = cos (2rr.fct + 2rr.k1 /_100 m(r) dr) . 

1. By selecting the sampling interval ts = 0.0001, generate 2000 samples of the 
message signal m(t) and its integral. Plot them on separate graphs. 

2. Generate and plot 2000 samples of the FM signal u(t) in the time interval 
l t l :::: to. 

3. Use MATLAB's Fourier-transform routine to compute and plot the spectra of 
m(t) and u(t) on separate graphs. 

4. Generate a sequence of 3998 zero-mean and unit-variance Gaussian random 
variables. Form the received signal sequence 

r(nts) = r(n) = u(nts) + a  [wc(nts) cos 2rr.fcnts - Ws (nts) sin 2rr.fcnts] 
= u(n) + U [Wc(n) COS 2rtfcnts - Ws(n) sin 2rtfcnts] 

for n = 0, ± 1 ,  ±2, . . .  , ±999, where Wc(t) and Ws(t) represent the quadrature 
components of the additive Gaussian noise process and a2 is a scale factor that is 
proportional to the noise power. Generate and plot the received signal sequence 
{r(n)} for a =  0. 1 and a =  1 . 

5 . Demodulate the received signal sequence {r(n)} to obtain the received message 
signal m r ( t) . Compare the result with the original message signal. The FM signal 
can be demodulated by first finding the phase of u(t), i.e., the integral of m(t), 
which can be differentiated and divided by 2rr.k1 to yield m(t). Use the MAT­
LAB function unwrap . m to undo the effect of 2rr. phase foldings. Comment on 
how well the demodulated signal matches the original signal m(t). 
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Analog-to-Digital 
Conversion 

Communication systems are designed to transmit information. In any communication sy� 
tern, there exists an information source that produces the information; the purpose of th 
communication system is to transmit the output of the source to the destination. In radi 
broadcasting, for instance, the information source is either a speech source or a musi 
source. In TV broadcasting, the information source is a video source that outputs a movin 
image. In FAX transmission, the information source produces a still image. In communic2 
tion between computers, either binary data or ASCII characters are transmitted; therefon 
the source can be modeled as a binary or ASCII source. In storage of binary data on 
computer disk, the source is again a binary source. 

In Chapters 3, 4, and 6, we studied the transmission of analog information usin 
different types of anal<?g modulation. The rest of this book deals with transmission c 
digital data. Digital data transmission provides a higher level of noise immunity, mor 
flexibility in the bandwidth-power trade-off, the possibility of applying cryptographic an 
antijamming techniques, and the ease of implementation using a large-scale integratio 
of circuits. In order to employ the benefits of digital data transmission, we have to fin 
convert analog information into digital form. Conversion of analog signals into digital dat 
should be carried out with the goal of minimizing the signal distortion introduced in th 
conversion process. 

In order to convert an analog signal to a digital signal, i.e., a stream of bits, thre 
operations must be completed. First, the analog signal has to be sampled, so that we ca 
obtain a discrete-time continuous-valued signal from the analog signal. This operation i 
called sampling. Then the sampled values, which can take an infinite number of value: 
are quantized, i.e., rounded to a finite number of values. This is called the quantizatio 
process. After quantization, we have a discrete-time, discrete-amplitude signal. The thir 
stage in analog-to-digital conversion is encoding. In encoding, a sequence of bits (om 
and zeros) are assigned to different outputs of the quantizer. Since the possible outputs c 

the quantizer are finite, each sample of the signal can be represented by a finite number c 
bits. For instance, if the quantizer has 256 = 28 possible levels, they can be represented b 
8 bits. 

296 
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7.1 SAMPLING OF SIGNALS AND SIGNAL RECONSTRUCTION FROM SAMPLES 

The sampling theorem is one of the most important results in the analysis of signals; 
it has widespread applications in communications and signal processing. This theorem 
and its numerous applications clearly show how much can be gained by employing the 
frequency-domain methods and the insight provided by frequency-domain signal analysis. 
Many modem signal-processing techniques and the whole family of digital communication 
methods are based on the validity of this theorem and the insight provided by it. In fact, 
this theorem, together with results from signal quantization techniques, provide a bridge 
that connects the analog world to digital communication techniques. 

7.1 . 1  The Sampling Theorem 

The idea leading to the sampling theorem is very simple and quite intuitive. Let us assume 
that we have two signals, x1 (t) and x2(t), as shown in Figure 7 . 1 . The first signal x1 (t) 
is a smooth signal, which varies very slowly; therefore, its main frequency content is at 
low frequencies. In contrast, x2(t) is a signal with rapid changes due to the presence of 
high-frequency components. We will approximate these signals with samples taken at reg­
ular intervals T1 and T2, respectively. To obtain an approximation of the original signal, we 
can use linear interpolation of the sampled values. It is obvious that the sampling interval 
for the signal x1 (t) can be much larger than the sampling interval necessary to reconstruct 
signal x2 (t) with comparable distortion. This is a direct consequence of the slow time vari­
ations of the signal x1 (t) compared to x2(t). Therefore, the sampling interval for the signals 
of smaller bandwidth can be made larger, or the sampling frequency can be made smaller. 
The sampling theorem is a precise statement of this intuitive reas_oning. It basically states 
two facts: 

1. If the signal x (t) is bandlirnited to W, i.e., if X(f) _ 0 for ! f l  > W, then it is 
sufficient to sample at intervals Ts = 2

� . 

(a) 

Xz(t) 

(b) Figure 7.1 Sampling of signals. 
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2. If we are allowed to employ more sophisticated interpolating signals than linear inter 
polation, we are able to recover the exact original signal from the samples, as loni 
as condition 1 is satisfied. 

Obviously, the importance of the sampling theorem lies in the fact that it not only provide 
a method to reconstruct the original signal from the sampled values, but also gives a pre 
cise upper bound on the sampling interval (or equivalently, a lower bound on the samplini 
frequency) required for distortionless reconstruction. 

Sampling Theorem. Let the signal x(t) have a bandwidth W, i.e., let X(f) = I  
for If I 2: W. Let x (t) be sampled at multiples of some basic sampling interval T, , wher1 
Ts :::; 2� , to yield the sequence {x(nTs)}��oo· Then it is possible to reconstruct the origina signal x(t) from the sampled values by the reconstruction formula 

00 
x(t) = L 2W'Tsx(nTs)sinc[2W'(t - nTs)], 

n=-oo 
where W' is any arbitrary number that satisfies the condition 

I 1 W < W  < - - W. - - Ts 

(7. 1 . 1  

In the special case where Ts = 2
� , we will have W' = W = 2�s and the reconstructio1 

relation simplifies to 

x(t) = 
n
�
oo 
x(nTs)sinc (;s - n) . 

Proof Let x8(t) denote the result of sampling the original signal by impulses at n1 
time instants. Then 00 

x8(t) = L x(nTs)o(t - nTs) . (7. 1 .2 
n=-oo 

We can write 00 
X8(t) = x(t) L o(t - nTs). (7. 1 .3 

n=-oo 
where we have used the property that x(t)o(t - nTs) = x(nTs)o(t - nTs) . Now if w 
find the Fourier transform of both sides of the preceding relation and apply the dual of th 
convolution theorem to the right-hand side, we obtain 

(7. 1 .4 

Using Table 2. 1 to find the Fourier transform of z=:_00 8 ( t - n Ts), we obtain 

(7 . 1 .: 
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Substituting Equation (7. 1 .5) into Equation (7. 1 .4), we obtain 

Xs(f) = X(f) * .!_ 
f 

8 (t - !!___) 
I's n=-oo Ts 

299 

(7. 1 .6) 

where, in the last step, we have employed the convolution property of the impulse sig­
nal, which states X (f) * 8 (t - Y,) = X (t - Y,) . This relation shows that X8(f), the 
Fourier transform of the impulse-sampled signal, is a replication of the Fourier transform 
of the original signal at a rate of -k Figure 7.2 shows a plot of Xs(f). Now if Ts > 2

� , 
then the replicated spectrum of x(t) overlaps and reconstruction of the original signal is not 
possible. This type of distortion, which results from undersampling, is known as aliasing 
error or aliasing distortion. However, if Ts :::; 2

� , no overlap occurs; and by employing an 
appropriate filter we can reconstruct the original signal. To get the original signal back, it is 
sufficient to filter the sampled signal through a lowpass filter with the frequency-response 
characteristics 

1. H(f) = Ts for I i i  < W. 
2. H (f) = o for If I ::: t - W. 

For W :::; If I < t -W, the filter can have any characteristic that makes its implementation 
easy. Of course, one obvious (though not practical) choice is an ideal lowpass filter with 
bandwidth W', where W' satisfies W :::; W' < t - W, i.e., by using a filter with a transfer 
function given by ' 

H(f) = Ts fl (2�,) . 

X(f) A 

-w w 

A 

- w  w 

Figure 7.2 Frequency-domain representation of the sampled signal. 

(7.1 .7) 

f 

Ts 
f 
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With this choice, we have 

X(f) = X0 (f)Ts n (2�,) . 
Taking the inverse Fourier transform of both sides, we obtain 

x (t) = x0(t) * 2W'Tssinc(2W't) 

= (�00 x(nTs)o(t - nTs)) * 2W'Tssinc(2W't) 00 
L 2W'Tsx(nTs)sinc (2W' (t - nTs)) . 

n=-oo . 

Chapter : 

(7. 1 .8 

(7. 1 .9 

This relation shows that if we use sine functions for interpolation of the sampled val 
ues, we can perfectly reconstruct the original signal. The sampling rate ls = 2� is th 
minimum sampling rate at which no aliasing occurs. This sampling rate is known a 
the Nyquist sampling rate. If sampling is done at the Nyquist rate, then the only choic1 
for the reconstruction filter is an ideal lowpass filter and W' = W = 2t . In this case, 

00 

x(t) = L x (2':v) sine (2Wt - n) 
n=-oo 00 

• ( t ) = 
n
�
oo 

x (nTs)smc Ts - n . (7. 1 . 10 

In practical systems, sampling is done at a rate higher than the Nyquist rate. Thi 
allows for the reconstruction filter to be realizable and easier to build. In such cases, th 
distance between two adjacent replicated spectra in the frequency domain, i.e., ( -,J; - W) -
W = ls - 2 W, is known as the guard band. Therefore, in systems with a guard band, w 

have ls = 2W + W0, where W is the bandwidth of the signal, Wa is the guard band, ani 
ls is the sampling frequency. 

Note that there exists a strong similarity between our development of the samplin: 
theorem and our previous development of the Fourier transform for periodic signals ( o 

Fourier series). In the Fourier transform for periodic signals, we started with a (time) peri 
odic signal and showed that its Fourier transform consists of a sequence of impulses. There 
fore, to define the signal, it was enough to give the weights of these impulses (Fourier-serie 
coefficients). In the sampling theorem, we started with an impulse-sampled signal, or 
sequence of impulses in the time domain and showed that the. Fourier transform is a peri 
odic function in the frequency domain. Here again, the values of the samples are enoug 
to define the signal completely. This similarity is a consequence of the duality between th 
time .and frequency domains and the fact that both the Fourier-series expansion and th 
reconstruction from samples are orthogonal expansions, one in terms of the exponenfo 
signals and the other in terms of the sine functions. 
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Example 7.1.1 

In this development, we have assumed that samples are taken at multiples of Ts . What happens 
if we sample regularly with Ts as the sampling interval, but the first sample is taken at some 
O < to < Ts? 

Solution We define a new signal y(t) = x(t + t0) .  Then y(t) is  bandlimited with Y(f) = 
ej2rrfro X(f) and the samples of y(t) at {k:Z:,}�_00 are' equal to the samples of x (t) at {to + 
kTs}�_00• Applying the sampling theorem to the reconstruction of y (t), we have 

00 
y (t) = L y (kTs)sinc (2W(t - kTs)) 

k=-00 
00 

= L x (to + kTs)sinc (2W(t - kTs)) ; 
k=-00 

hence, 
00 

x (t + to) = L x(to + k:Z:,)sinc (2W(t - kTs)) . 
k=-00 

Substituting t = -t0, we obtain the following important interpolation relation: 

00 
x (O) = L x(t0 + k:Z:,)sinc (2W(t0 + kTs)) . (7.1 . 1 1) 

k=-00 

• 
Example 7.1.2 

A bandlimited signal has a bandwidth equal to 3400 Hz. What sampling rate should be used 
to guarantee a guard band of 1200 Hz? 

Solution We have 
Is =  2W + WG; 

therefore, 

Is = 2 x 3400 + 1200 = sooo. • 

After sampling, the continuous-time signal is transformed to a discrete-time signal. 
In other words, the time-axis has been quantized. After this step, we have samples taken 
at discrete times, but the amplitude of these samples is still continuous. The next step in 
analog-to-digital conversion is the quantization of the signal amplitudes. This step results 
in" a signal that is quantized in both time and amplitude. 

7.2 QUANTIZATION 

After sampling, we have a discrete-time signal, i.e., a signal with values at integer multiples 
of T, . The amplitudes of these signals are still continuous, however. Transmission of real 
numbers requires an infinite number of bits, since generally the base 2 representation of 
real numbers has infinite length. After sampling, we will use quantization, in which the 
amplitude becomes discrete as well. As a result, after the quantization step, we will deal 
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with a discrete-time, finite-amplitude signal, in which each sample is represented by 
finite number of bits. In this section, we will study different quantization methods. W 
begin with scalar quantization, in which samples are quantized individually; then, we wi 
explore vector quantization, in which blocks of samples are quantized at a time. 

7.2.1 Scalar Quantization 

In scalar quantization, each sample is quantized into one of a finite number of levels, whic 
is then encoded into a binary representation. The quantization process is a rounding pre 
cess; each sampled signal point is rounded to the "nearest" value from a finite set of pm 
sible quantization levels. In scalar quantization, the set of real numbers IR is partitione 
into N disjoint subsets denoted by <;!/h, 1 :::; k :::; N (each called a quantization region 
Corresponding to each subset <!Jlk> a representation point (or quantization level) xk is chi 
sen, which usually belongs to <!Jlk. If the sampled signal at time i ,  x; belongs to <!Jlk> the 
it is represented by Xk, which is the quantized version of x.  Then, .Xk is represented t 
a binary sequence and transmitted. This latter step is called encoding. Since there are , 
possibilities for the quantized levels, log2 N bits are enough to encode these levels iff 
binary sequences.1 Therefore, the number of bits required to transmit each source outp 
is R = log2 N bits. The price that we have paid for representing (rounding) every samp 
that falls in the region <!Jlk by a single point xk is the introduction of distortion. 

Figure 7.3 shows an example of an eight-level quantization scheme. In this schem 
the eight regions are defined as <!lt1 = (-oo, ai] , <!lt2 = (a1 ,  a2], • • • , <!fts = (a1 , +oo) . Tl 

x xs - - - - - - - - - - - - - - - - - -
x1 - - - - - - - - - - - -....--........ 

xsi-----1 
a2 

__ ___, _ _ _ _ _ _  x3 

.....------- - - - - - - - - - - - - x2 
- - - - - - - - - - - - - - - - - - X1 

Figure 7.3 Example of an 
eight-level quantization scheme 

1 N is generally chosen to be a power of 2. If it is not, then the number of required bits would be flog2 . 
where r x l denotes the smallest integer greater than or equal to x. To make the development easier, we alv. 
assume that N is a power of 2. 
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representation point (or quantized value) in each region is denoted by x; and is shown in 
the figure. The quantization function Q is defined by 

Q (x) = x; for all x E 'l!L; . (7.2. 1) 

This function is also shown in the figure. 
j Depending on the measure of distortion employed, we can define the average distor-

tion resulting from quantization. A popular measure of distortion, used widely in practice, 
is the squared error distortion defined as (x - x)2• In this expression, x is the sampled 
signal value and x is the quantized value, i.e., x = Q (x). Ifwe are using the squared error 
distortion measure, then 

d(x , x) = (x - Q (x))2 = x2 , 

where x = x - x = x - Q (x) . Since X is a random variable, so are X and X; therefore, 
the average (mean squared error) distortion is given by 

D = E[d(X, X)] = E(X - Q (X))2 . 

Example 7.2.1 

The source X(t) is a stationary Gaussian source with mean zero and power spectral density 

Ii i < lOO Hz 
otherwise 

The source is sampled at the Nyquist rate and each sample is quantized using the eight-level 
quantizer which is shown in Figure 7.3 This figure has a1 = -60, a2 = -40, a3 = -20, a4 = 

O, as = 20, a6 = 40, a1 = 60, and i1 = -70, i2 = -50, x3 = -30, x4 = -IO, x5 = 
10, x6 = 30, x1 = 50, and x8 = 70. What is the resulting distortion and rate? 

Solution The sampling frequency is !s = 200 Hz. Each sample is a zero-mean Gaussian 
random variable with variance 100 1100 

o-2 = E(Xt) = Rx(r) r,�o = Sx (f)df = 2df = 400, -00 -100 
where we have used Equations (5.2. 1 8) and (5.2.21). Since each sample is quantized into eight 
levels, log2 8 = 3 bits are sufficient to represent (encode) the sample; therefore, the resulting 
rate is 

R = 3 Is = 600 bits/sec. 

To find the distortion, we have to evaluate E(X - X)2 for each sample. Thus, we have 

D = E(X - X)2 = 1_: (x - Q (x))2 fx (x)dx, 

where f x (x) denotes the probability density function of the random variable X. From here, 
we have 

8 
D = �Im, (x - Q (x))2 fx (x)dx, 
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or equivalently, 

+ 100 (x - is)2 fx (x)dx,  
a7 

(7.2.2 

2 
where fx (x) is v'z�400e-s'oo . Substituting {a;}j=1 and {x;}�=l in this integral and evaluating th 
result with the Q-function table, we obtain D � 33.38. Note that if we were to use zero bi1 
per source output, th�n the best strategy would be to set the reconstructed signal equal to zen 
In this case, we would have a distortion of D = E(X - 0)2 = a2 = 400. This quantizatio 
scheme and transmission of 3 bits per source output has enabled us to reduce the distortion t 
33.38, which is a factor of 1 1 .98 reduction or 10.78 dB. 

In the preceding example, we have chosen E(X - Q (X))2, which is the mea 
squared distortion, or quantization noise as the measure of performance. A more meai 
ingful measure of performance is a normalized version of the quantization noise, and it 
normalized with respect to the power of the original signal. 

Definition 7.2.1. If the random variable X is quantized to Q (X), the signal-ti 
quantization noise ratio (SQNR) is defined by 

E(X2) SQNR = -E
-
(X
-
-
-
Q
-
(X
_
)
_
)2 

When dealing with signals, the qu.antization noise power is 

1 1f Px. = lim - E (X (t) - Q (X (t)))2 dt 
T-+ oo  T _ r_  

2 
and the signal power is 

. 1 f Px = lim - 1 E(X2(t))dt . 
T-+ oo  T T 

-2 

Hence, the signal-to-quantization noise ratio is 
Px SQNR = -. Px. 

(7.2.: 

(7.2.· 

(7.2. 

(7.2. 

If X (t) is stationary, then this relation simplifies to Equation (7 .2.3), where X is the randc 
variable representing X (t) at any point. 
Example 7.2.2 

Determine the SQNR for the quantization scheme given in Example 7.2.l . 
Solution From Example 7.2. 1 , we have Px = 400 and Px = D = 33.38. Therefore, 

Px 400 
SQNR = - = -- = 1 1 .98 � 10.78 dB. 

Px 33.38 
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Uniform Quantization. Uniform quantizers are the simplest examples of scalar · 
quantizers. In a uniform quantizer, the entire real line is partitioned into N regions. All 
regions except 0l1 and <!A,N are of equal length, which is denoted by 11. This means that for 
all 1 S i S N - 2, we have a;+ 1 -a; = 11. It is further assumed that the ·quantization levels 
are at a distance of � from the boundaries a1 , a1, . . .  , <l:N-I · Figure 7.3 is an example of 
an eight-level uniform quantizer. In a uniform quantizer, the mean s,quared error distortion 
is given by 1a1 

D = _00 (x - (a1 - 11/2))2 fx(x)dx 

N-21a1+i6 
+ � 

ai+(i-l)t. 
(x - (a1 + i!l - 11/2))2 fx(x)dx 

+ f00 (x - (a1 + (N - 2)/1 + 11/2))2 fx(x)dx. L,+�-�"' . (7.2.7) 

Thus, D is a function of two design parameters, namely, a1 and 11. In order to design the 
optimal uniform quantizer, we have to differentiate D with respect to these variables and 
find the values that minimize D. 

Minimization of distortion is generally a tedious ta
s
k and is done mainly by numer­

ical techniques. Table 7.1 gives the optimal quantization level spacing for a zero-mean 
unit-variance Gaussian random variable. The last column in the table gives the entropy 
after quantization which is discussed in Chapter 12. 

Nonuniform Quantization. If we relax the condition that the quantization re­
gions (except for the first and the last one) be of equal length, then we are minimizing the 
distortion with less constraints; therefore, the resulting quantizer will perform better than 
a uniform quantizer with the same number of levels. Let us assume that we are interested 
in designing the optimal mean squared error quaptizer with N levels of quantization with 
no other constraint on the regions. The average distortion will be given by 1a1 N-2 · [ai+I 

D = -oo (x - x1)2 fx(x)dx + � la; (x - X;+1)2 fx(x)dx 

+ {00 (x - xN)2 fx(x)dx . laN-1 (7.2.8) 

There exists a total of 2N - 1 variables in this expression (a1 ,  a2, . . .  , aN-I and 
X1 , X2, . . .  , XN) and the minimization of D is to be done with respect to these variables. 
Differentiating with respect to a; yields 

which results in 

� = fx(a;) [(a; - x;)2 - (a; - X;+1)2] = 0, aa; (7.2.9) 

(7.2. 10) 
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TABLE 7.1 OPTIMAL UNIFORM QUANTIZER FOR A GAUSSIAN SOURCE 

Number Output Output-level Mean Squared Entrop 
Levels Spacing Error H(x) 
N /:;. D 

1 .000 0.0 
2 1 .596 0.3634 1 .000 
3 1 .224 0. 1902 1.536 
4 0.9957 0.1 188 1 .904 
5 0.8430 0.08218  2.183 
6 0.7334 0.06065 2.409 
7 0.6508 0.04686 2.598 
8 0.5860 0.03744 2.761 
9 0.5338 0.03069 2.904 

10  0.4908 0.02568 3.032 
1 1  0.4546 0.02185 3.148 
12 0.4238 0.01885 3.253 
1 3  0.3972 0.01645 3.35C 
14 0.3739 0.01450 3.44( 
15  0.3534 3 \)Q 

0.01289 3.524 
16  0.3352 0.0 1 154 3.602 
17 0.3 189 -1. i 0.01040 3.67t 
18  0.3042 0.009430 3.74t 
19  0.2909 0.008594 3.8 1 1  
20 0.2788 0.007869 3.87< 
21 0.2678 0.007235 3.93c 
22 0.2576 0.006678 3.99( 
23 0.2482 0.006185 4.04: 
24 0.2396 0.005747 4.09� 
25 0.2315  0.005355 4.14( 
26 0.2240 0.005004 4.19' 
27 0.2171  0.004687 4.24: 

1 !  J 28 0.2105 0.004401 4.28� 
29 0.2044 0.004141 4.321 
30 0. 1987 0.003905 4.37( 
3 1  0.1932 0.003688 4.41( 
32 0.1881 0.003490 4.44• 
33 0. 1833 0.003308 4.48' 
34 0.1787 0.003 141 4.52· 
35 0.1744 0.002986 4.561 
36 0.1703 0.002843 - 4.59· 

From Max (1960); © IEEE. 

This result simply means that, in an optimal quantizer, the boundaries of the quantize 
tion regions are the midpoints of the quantized values. Because quantization is done on 
minimum distance basis, each x value is quantized to the nearest {x; }f::1 . 

To determine the quantized values x; , we differentiate D with respect to x; and defo 
ao = -oo and aN = +oo. Thus, we obtain 
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which results in 

/ 
-A- = 2(x - x;)fx (x)dx = 0, an la; 

ax; a;- 1 

A J:�1 xfx (x)dx 
x· = -,.-------

' J:;_1 fx(x)dx · 

307 

(7.2. 1 1 ) 

(7.2. 12) 

Equation (7 .2. 12) shows that in an optimal quantizer, the quantized value (or representation 
point) for a region should be chosen to be the centroid of that region. Equa,tions (7 .2. 10) 
and (7.2. 12) give the necessary conditions for a scalar quantizer to be optimal; they are 
known as the Lloyd-Max conditions. The criteria for optimal quantization (the Lloyd-Max 
conditions) can then be summarized as follows: 

1. Th\ boundaries of the quantization regions are the midpoints of the corresponding 
quantized values (nearest neighbor law). 

2. The quantized values are the centroids of the quant
i
zation regions . 

. 

Although these rules are very simple, they do not result in analytical solutions to 
the optimal quantizer design. The usual method of designing the optimal quantizer is to 
start with a set of quantization regions and then, using the second criterion, to find the 
quantized values. Then, we design new quantization regions for the new quantized values, 
and alternate betw�en the two steps until the distortion does not change much from one 
step to the next. Based on this method, we can design the optimal quantizer for various 
source,statistics. Table 7.2 shows the optimal nonuniform quantizers for various values 
of N for a zero-mean unit-variance Gaussian source. If, instead of this source, a general 
Gaussian source with mean m and variance a2 is used, then the values of a; and x; read 
from Table 7 .2 are replaped with m + a a; and m + ax; , respectively, and the value of the 
distortion D will be replaced by a2 D. 

Example 7.2.3 

How would the results of Example 7 .2. 1 change if, instead of the uniform quantizer shown in 
Figure 7 .3, we used an optimal nonuniform quantizer with the same number of levels? 

Solution We can find the quantization regions and the quantized values from Table 7.2 with 
N = 8, and then use the fact that our source is an N (0, 400) source, i.e., m = 0 and a = 20. 
Therefore, all a; and x; values read from the table should be multiplied by a = 20 and the 
distortion has to be multiplied by 400. This gives us the values a1 = -a7 = -34.96, a2 = 
-a6 = -21, a3 = -a5 = -10.012,-a4 = 0 and x1 = -xs = -43.04, x2 = -x7 = -26.88, 
x3 = -.X6 = - 15.12, x4 = -.X5 = -4.902 and a distortion of D = 13 .8 16. The SQNR is 

400 
SQNR = 

13 _816 
= 28.95 � 14.62 dB, 

which is 3 .84 dB betterThan the SQNR of the uniform quantizer. • 
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TABLE 7.2 OPTIMAL NONUNIFORM QUANTIZER FOR A GAUSSIAN SOURCE 

N ±a; ±x; D H(X) 
' 0 0 \ 

2 0 0.7980 0.3634 

3 0.6120 0, 1 .224 0. 1902 1 .536 

4 0, 0.9816  0.4528, 1 .510 0.1 175 1 .9 1 1  

5 0.3823, 1 .244 0, 0.7646, 1 .724 0.07994 2.203 

6 0, 0.6589, 1 .447 0.3 177, 1 .000, 1 .894 0.05798 2.443 

7 0.2803, 0.8744, 1 .6 1 1  0, 0.5606, 1 . 1 88, 2.033 0.04400 2.647 
8 0, 0.5006, 1 .050, 1 .748 0.245 1 ,  0.7560, 1 .344, 0.03454 2.825 

2.152 
9 0.2218, 0.6812, 1 . 198, 0, 0.4436, 0.9188, 1 .476, 0.02785 2.983 

1 .866 2.255 
. 

10 0,  0.4047' 0.8339, 1 .325, 0.1996, 0.6099, 1 .058, 0.02293 3.125 
1 .968 1 .591, 2.345 

! i  
1 1  0. 1 837, 0.5599, 0.9656, 0, 0.3675, 0.7524, 1 . 179, 0.01922 3.253 

1 .436, 2.059 1 .693, 2.426 
12 0,  0.3401 ,  0.6943, 1 .081, 0.1684, 0.51 19, 0.8768, 0.01634 3.372 

1.534, 2.141 1 .286, 1 .783, 2.499 

13  0. 1569, 0.4760, 0.8126, 0, 0.3 138, 0.6383, 0.9870, 0.01406 3.481 
1 . 1 84, 1 .623, 2.215 1 .38 1 ,  1 .865, 2.565 

14 0, 0.2935, 0.5959, 0.9181 ,  0.1457, 0.4413, 0.7505, 0.01223 3.582 
1 .277, 1 .703, 2.282 1 .086, 1 .468, 1 .939, 2.625 

15  0.1369, 0.4143, 0.7030, 0, 0.2739, 0.5548, 0.8512, 0.01073 3.677 
1.013, 1 .361, 1 .776, 2.344 1 .175, 1 .546, 2.007, 2.681 

16 0, 0.2582, 0.5224, 0.7996, 0.1284, 0.3881 ,  0.6568, 0.009497 3.765 
1 .099, 1 .437, 1 .844, 2.401 0.9424, 1 .256, 1 .618, 

2.069, 2.733 
17 0.1215, 0.3670, 0.6201 ,  0 ,  0.2430, 0.4909, 0.7493, 0.008463 3.849 

0.8875, 1 . 178, 1 .508, 1 .906, 1 .026, 1 .33 1 ,  1 .685, 2.127, 
2.454 2.781 

1 8  0 ,  0.2306, 0.4653, 0.7091 ,  0.1 148, 0.3464, 0.5843, 0.007589 3.928 
0.9680, 1 .251 ,  1 .573, 1 .964, 0.8339, 1 . 102, 1 .400, 1 .746, 
2.504 2.18 1 ,  2.826 

19  0.1092, 0.3294, 0.555 1 ,  0 ,  0.2184, 0.4404, 0.6698, 0.006844 4.002 
0.7908, 1 .042, 1 .318,  1 .634, 0.91 17, 1 . 173, 1 .464, 1 .803, 
2.018, 2.55 2.232, 2.869 

20 0, 0.2083, 0.4197, 0.6375, 0. 1038, 0.3 128, 0.5265, 0.006203 4.074 
I 

0.8661 ,  1 . 1 1 1 ,  1 .381 ,  1 .690, 0.7486, 0.9837, 1 .239, ! i j I 2.068, 2.594 1 .524, 1 .857, 2.279, 2.908 
2 1  0.09918, 0.2989, 0.5027, 0, 0.1984, 0.3994, 0.6059, 0.005648 4.1.41 

0.7137, 0.9361, 1 . 175, 0.8215, 1 .05 1 ,  1 .300, 1 .579, 
1 .440, 1 .743, 2.1 16, 2.635 1 .908, 2.324, 2.946 

. .  

22 0, 0 .1900, 0.3822, 0.5794, 0.09469, 0.2852, 0.4793, 0.005 165 . 4.206 
0.7844, 1 .001 ,  1 .235, 1 .495, 0.6795, 0.8893, 1 . 1 13, 
1 .793, 2.160, 2.674 1 .357' 1 .632, 1 .955, 2.366, 

2.982 

(continued overleG 

i ! '! i i i  

j j,:I !Ji 
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TABLE 7.2 (CONTINUED) 
N ±a; ±x; D H(X) 
23 0.09085, 0.2736, 0.4594, 0, 0. 1817, 0.3654, 0.5534, 0.004741 4.268 

0.6507, 0.8504, 1 .062, 0.7481 ,  0.9527, 1 . 172, 
1 .291 ,  1 .546, 1 .841, 2.203, 1 .41 1 ,  1 .682, 2.000, 2.406, 
2.71 1 3.016 

24 0, 0. 1746, 0.3510, 0.5312, 0.08708, 0.2621 ,  0.4399, 0.004367 4.�27 
0.7173, 0.9122, 1 . 1 19, 1 .344, 0.6224, 0.8122, 1 .012, 
1 .595, 1 .885, 2.243, 2.746 1 .227' 1 .462, 1 .  728, 2.042, 

2.444, 3 .048 
25 0.08381 ,  0.2522, 0.423 1 ,  0 ,  0.1676, 0.3368, 0.5093, 0.004036 4.384 

0.5982, 0.7797, 0.9702, 0.6870, 0.8723, 1 .068, 
1 . 173, 1 .394, 1 .641 ,  1 .927, 1 .279, 1 .510, 1 .772, 2.083, 
2.28 1 ,  2.779 2.480, 3 .079 

26 0, 0.1616, 0.3245, 0.4905, 0.08060, 0.2425, 0.4066, 0.003741 4.439 
0.6610, 0.8383, 1 .025, 0.5743, 0.7477, 0.9289, 
1 .224, 1 .442, 1 .685, 1 .968, 1 . 121 ,  1 .328, 1 .556, 1 .814, 
2.3 18, 2.81 1  2.121 ,  2.514, 3 .109 

27 0.07779, 0.2340, 0.3921 ,  0 ,  0.1556, 0.3 124, 0.4719, 0.003477 4.491 
0.5587, 0.7202, 0.8936, 0.6354, 0.8049, 0.9824, 
1 .077, 1.273, 1 .487, 1 .727, 1 . 17 1 ,  1 .374, 1 .599, 1 .854, 
2.006, 2.352, 2.842 2.158, 2.547, 3 . 137 

28 0, 0. 1503, 0.3018, 0.04556, 0.07502, 0.2256, 0.3780, 0.003240 4.542 
0.6132, 0.7760, 0.9460, 0.5333, 0.6930, 0.8589, 
1 . 126, 1 .3 19, 1 .529, 1 .766, 1 .033, 1 . 1 18, 1 .419, 1 .640, 
2.042, 2.385, 2.871 1 .892, 2.193, 2.578, 3.164 

From Max (1960); @ IEEE. 

7.2.2 Vector Quantization 

In scalar quantization, each output of the discrete-time source (which is usually the result 
of sampling. of a continuous-time source) is quantized separately and then encoded. For 
example, if we are using a four-level scalar quantizer and encoding each level into two 
bits, we are using two bits per each source output. This quantization scheme is shown in 
Figure 7.4. 

_ 

Now if we consider two samples of the source at each time, and we interpret thes'? 
two samples as a point in a plane, the quantizer partitions the entire plane into 16 quanti­
zation regions, as show in Figure 7.5. We can see that the regions in the two-dimensional 
space are all of rectangular shape. If we allow 16 regions of any shape in the two­
dimensional space, we are capable of obtaining better results. This means that we are 
quantizing two source outputs at lfil'time by using 16 regions, which is equivalent to four 
bits per two source outputs or two bits per each source output. Therefore, the number of 
bits per source output for quantizing two samples at a time is equal to the number of bits 
per source output obtained in the scalar case. Because we are relaxing the requirement of 
having rectangular regions, the performance may improve. Now, if we take three samples 
at a time and quantize the entire three-dimensional space into 64 regions, we will have 

� 
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x 

Figure 7.4 A four-level scalar 
quantizer. 

Figure 7.5 A scalar four-level quantization applied to two samples. 

even less distortion with the same number of bits per source output. The idea of vect< 
quantization is to take blocks of source outputs of length n, and design the quantizer in tl 
n-dimensional Euclidean space, rather than doing the quantization based on single sampl1 
in a one-dimensional space. 

• 

Let us assume that the quantization regions in the n-dimensional space are denot( 
by ffii , 1 :::; i :::; K.  These K regions partition the n-dimensional space. Each block i 
source output of length n is denoted by the n-dimensional vector x E Rn ; if x E mi , it 
quantized to Q (x) = x; . Figure 7.6 shows this quantization scheme for n = 2. Now, sirn 
there are a total of K quantized values, log K bits are enough to represent these value 
This means that we require log K bits per n source outputs, or the rate of the source code 

log K R = -- bits/source output. 
n 

(7.2.1 

The optimal vector quantizer of dimension n and number of levels K ch©o�es tl 
regions \ill; 's and the quantized values x; 's such that the resulting distortion is minimize 
Applying the same procedure that we used for the case of scalar quantization, we obta 
the following criteria for an optimal vector quantizer design: 

1. Region \ill; is the set of all points in the n-dimensional space that are closer to Xi th 
any other Xj , for all j 'I= i ;  i.e. , 
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Xz 

Figure 7.6 Vector quantization in two dimensions. 

2. x; is the centroid of the region r;Jl; ; i.e., 

x; = 1 r;Jt f· · ·f xfx(x)dx. P(X E ;) r;Ift; 

A practical approach to designing optimal vector quantizers is on the basis of the 
same approach employed in designing optimal scalar quantizers. Starting from a given set 
of quantization regions, we derive the optimal quantized vectors for these regions by using 
criterion 2. Then we repartition the space using the first criterion, and go back and forth 
until the changes in distortion are negligible. 

Vector quantization has found widespread applications in speech and image coding; 
numerous algorithms for reducing its computational complexity have been proposed. 

7.3 ENCODING 

In the encoding process, a sequence of bits are assign�d to different quantization values. 
Since there are a total of N = 2v quantizatiqn levels, v bits are sufficient for the encoding 
process. In this way, we have v bits corresponding to each sample; since the sampling rate 
is fs samples/sec, we will have a bit rate of R = v ls bits/sec. 

The assignment of bits to quantization levels can be done in a variety of ways. In 
scalar quantization, a natural way of encoding is to assign the values of 0 to N - 1 to 
different quantization levels starting from the lowest level to the highest level in order of 
increasing level value. Then we can assign the binary expansion of the numbers 0 to N - 1 
to these levels .  Thus, v zeros are assigned to the lowest quantization level, 0 . . .  0 1 to the '-.,--' 

v-1 
second lowest quantization level, 0 . . .  0 10 to the next level, . . .  and 1 . . .  1 to the highest '-.,--' '-.,--' 

v-2 v 
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TABLE 7.3 NBC AND GRAY CODES FOR A 1 6-LEVEL QUANTIZATION 

Quantization Level Level Order NBC Code Gray Code 
.x
, 0 0000 0000 

.X2 1 0001 0010 

x3 2 0010 001 1  

x4 3 001 1 0001 

xs 4 0100 0101 
.x
6 5 0101 0100 

.X1 6 0110 0110 

xs 7 01 1 1  01 1 1  

x9 8 1000 1 1 1 1  

xw 9 1001 1 1 10  

Xn IO 1010 1 100 

.X12 1 1  101 1 1 101 

.£13 12 1 100 1001 

i14 13 1 101 1000 

xis 14 1 1 10 1010 
.x
,6 15 1 1 1 1  1011  

quantization level. This type of encoding is  called natural binary coding or NBC for short 
Another approach to coding is to encode the quantized levels in a way that adjacent leveh 
differ only in one bit. This type of coding is called Gray coding. 

Table 7 .3 gives an example of NBC and Gray coding for a quantizer with N = H 
levels. 

7.4 WAVEFORM CODING 

Waveform coding schemes are designed to reproduce the waveform output of the source a 
the destination with as little distortion as possible. In these techniques, no attention is paic 
to the mechanism that produces the waveform; all attempts are directed at reproducing th( 
source output at the destination with high fidelity. The structure of the source plays no rol( 
in the design of waveform coders and only properties of the waveform affect the design 
Thus, waveform coders are robust and can be used with a variety of sources as long a: 
the waveforms produced by the sources have certain similarities. In this section, we stud� 
some basic waveform coding methods that are widely applied to a variety of sources. 
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7.4.1 Pulse Code Modulation 

Pulse code modulation (PCM) is the simplest and oldest waveform coding scheme. A pulse 
code modulator consists of three basic sections: a sampler, a quantizer and an encoder. A 
functional block diagram of a PCM system is shown in Figure 7.7. In PCM, we make the 
following assumptions: 

1. The waveform (signal) is bandlimited with a maximum frequency of W. Therefore, 
it can be fully reconstructed from samples taken at a rate of Is = 2W or higher. 

2. The signal is of finite amplitude. In other words, there exists a maximum amplitude 
Xmax such that for all t ,  we have lx(t) I .:S Xmax · 

3. The quantization is done with a large number of quantization levels N, which is a 
power of 2 (N = 2v) .  

The waveform entering the sampler is  a bandlimited waveform with the bandwidth W. 
Usually, there exists a filter with bandwidth W prior to the sampler to prevent any com­
ponents beyond W from entering the sampler. This filter is called the presampling filter. 
The sampling is done at a rate higher than the Nyquist rate; this allows for some guard 
band. The sampled values then enter a scalar quantizer. The quantizer is either a uniform 
quantizer, which results in a uniform PCM system, or a nonuniform quantizer. The choice 
of the quantizer is based on the characteristics of the source output. The output of the quan­
tizer is then encoded into a binary sequence of length v, where N = 2v is the number of 
quantization levels. 

Uniform PCM. In uniform PCM, we assume that the quantizer is a uniform 
quantizer. Since the range of the input samples is [ -Xmax , + XmaxJ and the number of quan­
tization levels is N, the length of each quantization region is given by 

2Xmax Xmax 
l:!.. = -- = -

N 2v-1 · 
(7.4.1 )  

The quantized values in uniform PCM are chosen to be the midpoints of the quantization 
regions; therefore, the error x = x - Q (x) is a random variable taking values in the 
inten>al ( -% , + % ] . In ordinary PCM applications, the number of levels ( N) is usually high 
and the range of variations of the input signal (amplitude variations Xmax) is small. This 
means that the length of each quantiz�tion region (l:!..) is small. Under these assumptions, 
in each quantization region, the error X = X - Q (X) can be approximated by a uniformly 
distributed random variable on ( -� ,  + �] . In other words, ., J 

J(x) = { k \ l 
:.._ � < x < .� 

2 - - 2 

otherwise 
\ }  

x(t) I I {xnJ I I {.Qn} I I . . . 0 1 1  0 • . .  

-----'•� Sampler 1-----'•11o- Quantizer1-----i•� Encoder • 

· Figure 7.7 Block diagram of a PCM system. 
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The distortion introduced by quantization (quantization noise) is therefore 

- f +� 1 f!..2 x2 x2 E[X2] = -x2dx = - = max = � 
_ p,_ f!.. 12 3N2 3 x 4v ' 

2 

(7.4.2) 

where v is the number of bits/source sample and we have employed Equation (7.4. 1 ). The 
signal-to-quantization noise ratio then becomes 

Px 3 x N2Px 
SQNR = _ = 2 X2 Xmax 

(7.4.3) 

where Px is the power in each sample. In the case where X (t) is a wide-sense stationary 
process, Px can be found using any of the following relations: 

Px = Rx(r) 1r=O ( 
= 1_: Sx(f) df 

= 1_: x2 fx(x) dx . 

Note that since Xmax is the maximum possible value for X, we always have Px = E[X2] ::: 
x�ax· This means that �x < 1 (usually �x « l) ;  hence, 3N2 = 3 x 4v is an upperbounc Xmax Xmax 
to the SQNR in uniform PCM. This also means that SQNR in uniform PCM deteriorate! 
as the dynamic range of the source increases because an increase in the dynamic range o1 
the source results in a decrease in �x . Xmax 

Expressing SQNR in decibels, we obtain 

Px 
SQNR I � 10 log10 -2- + 6v + 4.8. 

dB Xmax 
(7.4.4: 

We can see that each extra bit (increase in v by one) increases the SQNR by 6 dB. This i: 
a very useful strategy for estimating how many extra bits are required· to achieve a desirec 
SQNR. 

Example 7.4.1 

What is the resulting SQNR for a signal uniformly distributed on [-1 ,  I] ,  when uniform PCJ\I 
with 256 levels is employed? 

I 1 1 
Solution We have Px = J_1 2x2dx = 3 .  Therefore, using Xmax = 1 and v = log 256 = 8 

we have 

SQNR = 3 x 4" x Px = 4" = 65536 � 48. 16 dB. (7.4.5 

The issue of bandwidth requirements of pulse transmission systems, of which PCJ'v 
is an example, is dealt with in detail in Chapter 10. In this chapter, we briefly discuss somi 
results concerning the bandwidth requirements of a PCM system. If a signal has a band 
width of W, then the minimum number of samples for perfect reconstruction of the signa 



Section 7.4 Waveform Coding 315 

is  given by the sampling theorem, and it  is  equal to 2W samples/sec. If some guard band 
is required, then the number of samples per second is fs, which is more than 2W. For each 
sample, v bits are used; therefore, a total of v fs bits/sec are required for transmission of the 
PCM signal. In the case of sampling at the Nyquist rate, this is equal to 2 v W bits/ sec. The 
minimum bandwidth requirement for binary transmission of R bits/sec (or, more precisely, 
R pulses/sec) is � - (See Chapter 10.)2 Therefore, the minimum bandwidth requiiement of 
a PCM system is 

vfs 
BWreq = l' (7.4.6) 

which, in the case of sampling at the Nyquist rate, gives the absolute minimum bandwidth 
requirement for pulse transmission as 

BWreq = vW .• (7.4.7) 

This means that a PCM system expands the bandwidth of the original signal by a factor of 
at least v. 

Nonuniform PCM. As long as the statistics of the input signal are close to the 
uniform distribution, uniform PCM works fine. However, in coding of certain signals such 
as speech, the input distribution is far from uniform. For a speech waveform, in particular, 
there exists a higher probability for smaller amplitudes and a lower probability for larger 
amplitudes. Therefore, it makes sense to design a quantizer with more quantization regions 
at lower amplitudes and fewer quantization regions at larger amplitudes. The resulting 
quantizer will be a non-uniform quantizer that has quantization regions of various sizes. 

The usual method for performing nonuniform quantization3 is to first pass the 
samples through a nonlinear element that compresses the large amplitudes (reduces the 
dynamic range of the signal) and then performs a uniform quantization on the output. At 
the receiving end, the inverse (expansion) of this nonlinear operation is applied to obtain the 
sampled value. This technique is called companding (compressing-expanding). A block 
diagram of this system is shown in Figure 7 .8. 

There are two types of companders that are widely used for speech coding. The 
µ,-law compander, used in the United States and Canada, employs the logarithmic function 
at the transmitting side, where Ix I ::: I :  

( ) 
log(I  + µ,lxl) 

( ) g x = sgn x . 
log(l  + µ,) 

(7.4.8) 

The parameter µ, controls the amount of compression and expansion. The standard PCM 
system in the United States and Canada employs a compressor with µ, = 255 followed 
by a qniform quantizer with 8 bits/sample. Use of a compander in this system improves 
the performance of the system by about 24 �B. Figure 7 .9 illustrates the µ,-law compander 
charactepstics for µ, =  0, 5, and 255. 

2 A more practical bandwidth requirement is !i, where 1 < a < 2. 
3 Sometimes, the term nonlinear quantizati�n is used. This is misleading, because all quantization 

schemes, uniform or nonuniform, are nonlinear. 
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{xnl C ompressor 
g(x) 

Uniform 
PCM Decoder 

Figure 7.8 Block diagram of a nonuniform PCM system. 
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Figure 7.9 A graph of µAaw compander characteristics. 

Expander 
g-l(x) 

Reconstruction 
filter 

The second widely used logarithmic compressor is the A-law compander. The char 
acteristics of this compander are given by 

1 + log Alx l  
g(x) = sgn(x), 

1 + log A 
(7.4.9 

where A is chosen to be 87 .56. The performance of this compander is compttrable to thi 
performance of the µ,-law compander. Figure 7 . 10  illustrates the characteristics of thi 
compander for A = 1 ,  2, and 87 .56. 

7.4.2 Differential Pulse Code Modulation 

In a PCM system, after sampling the information signal, each sample is quantized inde 
pendently using a scalar quantizer. This means that previous sample values have no effec 
on the quantization of the new samples. However, when a bandlimited random process i 
sampled at the Nyquist rate or faster, the sampled values are usually correlated randon 
variables. The exception is the case when the spectrum of the process is flat within it 
bandwidth. This means that the previous samples give some information about the neJ1 
sample; thus, this information can be employed to improve the performance of the PC:t\ 
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Figure 7.10 A graph of A-law compander characteristics. 
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x 

system. For instance, if the previous sample values were small, and there is a high proba­
bility that the next sample value will be small as well, then it is not necessary to quantize a 
wide range of values to achieve a good performance. 

In the simplest form of differential pulse code modulation (DPCM), the difference 
between two adjacent samples is quantized. Because two adjacent samples are highly cor­
related, their difference has small variations; therefore, to achieve a certain level of perfor­
mance, fewer levels (and therefore fewer bits) are required to quantize it. This means that 
DPCM can achieve performance levels at lower bit rates than PCM. 

Figure 7 . 1 1  shows a block diagram of this simple DPCM scheme. As seen in the 
figure, the input to the quantizer is not simply Xn - Xn-I but rather Xn -

Y
�_1 . We will 

see that 
Y
�_1 is closely related to Xn-1 ,  and this choice has an advantage because the 

accumulation of quantization noise is prevented. The input to the quantizer Yn is quantized 
by a scalar quantizer (uniform or nonuniform) to produce 

Y
n · Using the relations 

� ,  Yn = Xn - Yn-1 (7.4. 10) 

A A A 
Yn Yn 1 Xn 

Q • 

A A A 
, Y'n-1' Y' Xn-1 I E  n 

T = l T = l 

Figure 7.11 A simple pPCM encoder and decoder. 
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and 
(7.4. 1 1) 

we obtain the quantization error between the input and the output of the quantizer as 

\ 
Y
n - Yn = 

Y
n - (Xn -

Y
�-1 ) 

(7.4. 12: 

At the receiving end, we have 
(7.4. 13: 

Comparing Equation (7.4. 1 1) with Equation (7.4. 13) we see that 
f
� and 

X
n satisfy thf 

same difference equation with the same excitation function (
Y
n). Therefore, if the initia 

conditions of 
Y
� and 

X
n are chosen to be the same, they will be equal. For instance, if Wf 

let 
f
�1 = 

X
_1 = 0, then all n will have 

f
� = 

X
n. Substituting this in Equation (7.4. 12) 

we obtain 
(7.4.14' 

This shows that the quantization error between Xn and its reproduction 
X
n is the same ai 

the quantization error between the input and the output of the quantizer. However, the rangt 
of variations of Yn is usually much smaller than that of Xn; therefore, Yn can be quantizec 
with fewer bits. 

Example 7.4.2 

Speech signal is bandlimited to 3 kHz and sampled at the rate of 8 kHz. To achieve the samt 
quality of distortion PCM requires 8 bits/sample and DPCM requires 4 bits/sample. Determirn 
the bit rates required to transmit the PCM and DPCM encoded signals 

Solution For PCM, we have 

R = Vfs = 8 X 8000 = 64,000 bps 

and for DPCM 
R = vfs = 4 x 8000 = 32,000 bps. 

7.4.3 Delta Modulation 

Delta modulation (DM) is a simplified version of the DPCM system shown in Figure 7 . 1 1  
In delta modulation, the quantizer is a one-bit (two-level) quantizer with magnitudes ±� 
A block diagram of a DM system is shown in Figure 7. 12. The same analysis that wa 
applied to the simple DPCM system is valid here. 

In DM only one bit per sample is employed, so the quantization noise will be higl 
unless the dynamic range of Yn is very low. This, in tum, means that Xn and Xn-l must hav1 
a very high correlation coefficient. To have a high correlation between Xn and Xn-1 • w 
have to sample at rates much higher than the Nyquist rate. Therefore, in DM, the samplin: 
rate is usually much higher than the Nyquist rate, but since the number of bits per sampI 
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Figure 7.12 Delta modulation. 
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T = l 

is only one, the total number of bits per second required to transmit a waveform may be 
k>wer than that of a PCM system. 

A major advantage of DM is the very simple structure of the system. At the receiving 
end, we have the following relation for the reconstruction of Xn : 

Xn - Xn-1 = Yn . (7.4. 15) 

Solving this equation for Xn, and assuming zero initial conditions, we obtain 
n 

Xn = L
Y
; . (7.4. 16) 

i=O 

This means that to obtain Xn, we only have to accumulate the values of Yn . If the sam­
pled values are represented by impulses, the accumulator will be a simple integrator. This 
simplifies the block diagram of a DM system, as shown in Figure 7.13 .  

The step size Li is a very important parameter in designing a delta modulator system. 
Large values of Li cause the modulator to follow rapid changes in the input signal; but 
at the same·time, they cause excessive quantization noise when the input changes slowly. 
This case is shown in Figure 7. 14. For large Li, when the input varies slowly, a large quan­
tization noise occurs; this is known as granular noise. The case of a too small Li is shown 
in Figure 7.15. In this case, we have a problem with rapid changes in the input. When the 

Q Accumulator1----+-

........ ---;Accumulatorl-----' 

Figure 7.13 Delta modulation with integrators. 
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Figure 7.14 Large /';. and granular noise. 

Figure 7.15 Small /';. and slope overload 
distortion. 

input changes rapidly (high-input slope), it takes a rather long time for the output to follo 
the input, and an excessive quantization noise is caused in this period. This type of di 
tortion, which is caused by the high slope of the input waveform, is called slope overlot 
distortion. 

Adaptive Delta Modulation. We have seen that a step size that is too lari 
causes granular noise, and a step size too small results in slope overload distortion. Tb 
means that a good choice for /::;.. is a "medium" value; but in some cases, the performani 
of the best medium value (i.e., the one minimizing the mean squared distortion) is n 
satisfactory. An approach that works well in these cases is to change the step size accordi1 
to changes in the input. If the input tends to change rapidly, the step size must be large 
that the output can follow the input quickly and no slope overload distortion results. Wh 
the input is more or less flat (slowly varying), the step size is changed to a small value 
prevent granular noise. Such changes in the step size are shown in Figure 7 . 16. 

To adaptively change the step size, we have to design a mechanism .for recognizi 
large and small input slopes. If the slope of the input is small, the output of the quanti' Y 

alternates between /::;.. and -/::;.. , as shown in Figure 7. 16. This is the case where granu 
noise is the main source of noise, and we have to decrease the step size. However, in t 
case of slope overload, the output cannot follow the input rapidly and the output of t 
quantizer will be a succession of +D..'s or -D..'s. We can see that the sign of two successi Y
n 's is a good criterion for changing the step size. If the two successive outputs have 1 
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Figure 7.16 Performance of adaptive delta 
modulation. 

same sign, the step size should be increased; if they are of opposite signs, it should be 
decreased. 

A particularly simple rule to change the step size is given by 

(7.4. 17) 

where En is the output of the quantizer before being scaled by the step size and K is some 
constant larger than 1 .  It has been verified experimentally that in the 20-60 kilobits/sec 
range, with a choice of K = 1 .5, the performance of adaptive delta modulation systems is 
5-10 dB better than the performance of delta modulation when applied to speech sources. 

ANALYSIS-SYNTHESIS TECHNIQUES 

In contrast to waveform coding, analysis-synthesis t�chniques are methods that are based 
on a model for the mechanism that produces the waveform. The parameters of the model 
that are extracted from the source waveform are quantized, encoded, and transmitted to the 
receiving end. At the receiving end, based on the received information, the same model is 
synthesized and used to generate an output similar to the original waveform. These systems 
are mainly used for speech coding. In this section, we will briefly treat a system known as 
linear predictive coding (LPC). 

Speech is produced as a result of excitation of the vocal tract by the vocal cords. This 
mechanism can be modeled as a time-varying filter (the vocal tract) excited by a signal 
generator. The vocal tract is a combination of the throat, the mouth, the tongue, the lips, 
and the nose, They change shape during generation of speech; therefore, the vocal tract is 
modeled as a 1time-varying system. The properties of the excitation signal highly depend 
on the type of speech sounds; they can be either voiced or unvoiced. For voiced speech, 
the excitation can be modeled as a periodic sequence of impulses at a frequency Jo, the 
value of which depends on the speaker. The reciprocal -Jo is called the pitch period. For 
unvoiced speech, the excitation is well modeled as a white noise. This model is shown in 
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White-noise 
generator 

Periodic-impulse 1----� 
generator 
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switch 
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Figure 7.17 Model for speech generation mechanism. 

All-pole filter Speech signal 

Figure 7 . 17. The vocal tract filter is usually modeled as an all-pole filter described by th< 
difference equation 

p 
Xn = L a;Xn-i + Gwn , 

i=I 
(7.5 . l  

where Wn denotes the input sequence (white noise or impulses), G is a gain parameter 
{a; } are the filter coefficients, and p is the number of poles of the filter. The process wn 
which represents the part of Xn that is not contained in the previous p samples, is calle< 
the innovation process. 

Speech signals are known to be stationary for short periods of time, such as 20-
30 msec. This characteristic behavior follows from the observation that the vocal trac 
cannot change instantaneously. Hence, over 20-30 msec intervals, the all-pole filter coef 
ficients may be assumed to be fixed. At the encoder, we observe a 20-30 msec record o 
speech from which we estimate the model parameters {a; } ,  the type of excitation signa 
(white noise or impulse), the pitch period 1o if the speech is voiced, and the gain parame 
ter G. 

To elaborate on this process, suppose that the speech signal is filtered to 3 kHz anc 
sampled at a rate of 8000 samples/sec. The signal samples are subdivided into blocks o 
160 samples, corresponding to 20 msec intervals. Let {xn , 1 :S n :S 160} be the sequenc1 
of samples for a block. The encoder must measure the model parameters to be transmitte1 
to the receiver. 

Linear prediction is used to determine the filter coefficients at the encoder. A linea 
predictor of order p is an all-zero digital filter with input {xn } and output 

p 
Xn = L akXn-k 

k=I 
for 1 :S n  :S N, (7.5.2 

where we have assumed that Xn = 0 is outside the interval of interest. Figure 7 . 1 8  illustrate 
the functional block diagram for the prediction process. The difference between the actm 
speech sample Xn and the predicted value Xn constitutes the prediction error en, i.e., 

p 
= Xn - L akXn-k · 

k=I 
(7.5.3 
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Figure 7 .18 Functional block diagram of linear prediction. 

In order to extract as much information as possible from the previous values of Xn, we 
choose the coefficients {a; } so that the average of the squared error terms, i.e., 

1 N 
'jg = - '"" e2 P N � n 

n=I 

(7.5.4) 

is minimized. Differentiating 18 P with respect to each of the prediction filter coefficients 
{a; } and setting the derivative to zero, we obtain a set of linear equations for the filter 
coefficients, i.e., 1 N 1 N p 

N 
LXnXn-i = N 

LLakXn-iXn-k 
n=I n=I k=I 

for 1 S i S p. (7.5.5) 

Since we have assumed that outside the stationary interval, 1 S n S N, we have Xn = 0, 
we can write the preceding relation as 

Now if we define 

1 00 1 00 p -
N 

L XnXn-i = N 
L L akXn-iXn-k 

n=-oo n=-oo k=I p [ 1 00 J = L ak N 
L Xn-iXn-k . 

k=I n=-oo 
(7.5.6) 

(7.5.7) 
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we can write Equation (7.5.6) as 

for 1 :::; i :::; p. (7.5.8 

These equations are called the Yule-Walker equations. We can express them in the matrii 
form 

r = Ra , (7.5.9 

where a is the vector of the linear predictor coefficients, R is a p x p matrix whose (i, j)tl 
element is 

k
-j , and r is a vector whose components are R.; 's. It can be easily verified fron 

the definition of R.; that 
(7.5.10 

therefore, the matrix R is a symmetric matrix. Also, it is obvious that all elements of I 
that are on a parallel line to the diagonal elements are equal. Such a matrix is called ; 
Toeplitz matrix, and efficient recursive algorithms exist for finding its inverse and, thus 
solving Equation (7.5.9) for the vector of predictor coefficients. One such algorithm is th 
well-known Levinson-Durbin algorithm. Refer to the references at the end of this chapte 
for the details of this algorithm. 

For the optimal choice of the predictor coefficients, the squared error term can bi 
shown to be 

p cg�n =
R
o -LR

k . 
k=l 

According to the speech production model, 

N 

= G2 � Lw�. 
n=l 

If we normalize the excitation sequence {wn } such that 
j; L�

=l w� 
value of the gain parameter as 

G = fif'. 

(7.5. 1 1  

(7.5.12 

1, we•obtain th 

(7.5.1: 

The estimation of the type of excitation (impulsive or noise), as well as the estimat 
of the pitch period -Jo (when the excitation consists of impulses), may be accomplished b 
various algorithms. One simple approach is to transform the speech data into the frequenc 
domain and look for sharp peaks in the signal spectrum. If the spectrum exhibits peaks i 
some fundamental frequency f0, the excitation is taken to be a periodic impulse train wit 
the period -Jo. If the spectrum of the speech samples exhibits no sharp peaks, the excitatio 
is taken as white noise. 
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The prediction filter coefficients, gain, voiced-unvoiced information, and pitch _!_ 
are quantized and transmitted to the receiver for each block of sampled speech. The spee{h 
signal is synthesized from these parameters using the system model shown in Figure 7 . 17. 
Typically, the voiced-unvoiced information requires one bit, the pitch frequency is rep­
resented by 6 bits, the gain parameter can be represented by 5 bits using logarithmic 
companding, and the prediction coefficients require 8-10 bits/coefficient. Based on LPC, 
speech can be compressed to bit rates as low as 2400 bits/sec. We could alternatively use 
vector quantization when quantizing the LPC parameters. This would further reduce the 
bit rate. In contrast, PCM applied to speech has a bit rate of 64,000 bits/sec. 

LPC is widely used in speech coding to reduce the bandwidth. By vector quantizing 
the LPC parameters, good quality speech is achieved at bit rates below 10,000 bits/sec in 
mobile (cellular) telephone systems. 

7.6 DIGITAL AUDIO TRANSMISSION AND DIGITAL AUDIO RECORDING 

Audio signals constitute a large part of our daily communications. Today, thousands of 
radio stations broadcast audio signals in analog form. The quality of voice signal broad­
casting is generally acceptable, as long as the voice signal is intelligible. On the other 
hand, the quality of music signals that are broadcast via AM radio is relatively low fidelity 
because the bandwidth of the transmitted signal is restricted through regulation (by the 
Federal Communications Commission in the United States). The FM radio broadcast of 
analog signals provides higher fidelity by using a significantly larger channel bandwidth 
for signal transmission. Commercial radio broadcasting of audio signals in digital form has 
already begun with the advent of satellite radio systems. 

In the transmission of audio signals on telephone channels, the conversion from 
analog-to-digital transmission, which has been taking place over the past several decades, 
is now nearly complete. We will describe some of the current developments in the digital 
encoding of audio signals for telephone transmission. 

The entertainment industry has experienced the most dramatic changes and benefits 
in the conversion of analog audio signals to digital form. The development of the compact 
disc (CD) player and the digital audio tape recorder have rendered the previous analog 
recording systems technically obsolete. We shall use the CD player as a case study of the 
sophisticated source encoding/decoding and channel encoding/decoding methods that have 
been developed over the past few years for digital audio systems. 

7.6.1 Digital Audio in Telephone Transmission Systems 

Nearly all of the transmission of speech signals over telephone channels is currently digital. 
The encoding of speech signals for transmission over telephone channels has been a topic 
of intense research for over 50 years. A wide variety of methods for speech source encoding 
have been developed over the years; many of these methods are in use today. 

The general configuration for a speech signal encoder is shown in Figure 7. 19. 
� Because the frequency content of speech signals is limited to below 3200 Hz, the speech i 
l 
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signal is first passed through an antialiasing lowpass filter and then sampled. To ensure 
that aliasing is negligible, a sampling rate of 8000 Hz or higher is typically selected. The 
analog samples are then quantized and represented in digital form for transmission over 
telephone channels. 

PCM and DPCM are widely used waveform encoding methods for digital speech 
transmission. Logarithmic µ, = 255 compression, given by Equation (7.4.8), is generally 
used for achieving nonuniform quantization. The typical bit rate for PCM is 64,000 bps, 
while the typical bit rate for DPCM is 32,000 bps. 

PCM and DPCM encoding and decoding are generally performed in a telephone 
central office, where telephone lines from subscribers in a common geographical area 
are connected to the telephone transmission system. The PCM or DPCM encoded speech 
signals are transmitted from one telephone central office to another in digital form over 
so-called trunk lines, which are capable of carrying the digitized speech signals of many 
subscribers. The method for simultaneous transmission of several signals over a common 
communication channel is called multiplexing. In the case of PCM and DPCM transmis­
sion, the signals from different subscribers are multiplexed in time; hence, we have the 
term time-division multiplexing (TDM). In TDM, a given time interval T1 is selected 
as a frame. Each frame is subdivided into N subintervals of duration T1 / N, where N 
corresponds to the number of users who will use the common communication channel. 
Then, each subscriber who wishes to use the channel for transmission is assigned a subin­
terval within each frame. In PCM, each user transmits one 8-bit sample in each 
subinterval. 

In digital speech transmission over telephone lines via PCM, there is a standard TDM 
hierarchy that has been established for accommodating multiple subscribers. In the first 
level of the TDM hierarchy, 24 digital subscriber signals are time-division multiplexed into 
a single high-speed data stream of 1 .544 Mbps (24 x 64 kbps plus a few additional bits for 
control purposes). The resulting combined TDM signal is usually called a DS-1 channel. 
In the second level of TDM, four DS-1 channels are multiplexed into a DS-2 channel, 
each having the bit rate of 6.3 12 Mbps. In a third level of hierarchy, seven DS-2 channels 
are combined via TDM to produce a DS-3 channel, which has a bit rate of 44.736 Mbps. 
Beyond DS-3, there are two more levels of TDM hierarchy. Figure 7 .20 illustrates the TDM 
hierarchy for the North American telephone system. 
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Figure 7.20 The TDM hierarchy for the North American telephone system. 
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In mobile cellular radio systems for transmission of speech signals, the available bit 
rate per user is small and cannot support the high bit rates required by waveform encoding 
methods, such as PCM and DPCM. For this application, the analysis-synthesis method 
based on the LPC, as described in Section 7 .5, is used to estimate the set of model param­
eters from short segments of the speech signal. The speech model parameters are then 
transmitted over the channel using vector quantization. Thus, a bit rate in the range of 
4800-9600 bps is achieved with LPC. 

In mobile cellular communication systems, the base station in each cell serves as 
the interface to the terrestrial telephone system. LPC speech compression is only required 
for the radio transmission between the mobile subscriber and the base station in any cell. 
At the base station interface, the LPC-encoded speech is converted to PCM or DPCM for 
transmission over the terrestrial telephone system at a bit rate of 64,000 bps or 32,000 bps, 
respectively. Hence, we note that a speech signal transmitted from a mobile subscriber to 
a fixed subscriber will undergo two different types of encoding; however, a speech signal 
communication between two mobiles serviced by different base stations, connected via the 
terrestrial telephone system, will undergo four encoding and decoding operations. 

7.6.2 Digital Audio Recording 

Audio recording became a reality with the invention of the phonograph during the second 
half of the nineteenth century. The phonograph had a lifetime of approximately 100 years, 
before it was supplanted by the CD that was introduced in 1982. During the 100-year 
period, we witnessed the introduction of a wide variety of records, the most popular of 
which proved to be the long-playing (LP) record that was introduced in 1948. LP records 
provide relatively high-quality analog audio recording. 

In spite of their wide acceptance and popularity, analog audio recordings have a 
number of limitations, including a limited dynamic range (typically about 70 dB) and a 
relatively low signal-to-noise ratio (typically qbout 60 c;lB). By comparison, the dynamic 
range of orchestral music is in the range of 100-120 dB. This means that if we record the 
music in analog form, at low music levels, noise will be audible and, if we wish to prevent 
this noise, saturation will occur at high music levels. 
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TABLE 7.4 COMPARISON OF AN LP RECORD AND A CD SYSTEM 

Specification/Feature LP Record CD System 

Frequency response 30 Hz-20 kHZ 20 Hz-20 kHz 

±3 dB +0.5/-1 dB 

Dynamic range 70 dB >90 dB 

1 kHz 

Signal-to-noise ratio 60 dB >90 dB 

Harmonic distortion 1 %-2% 0.005% 

Durability High frequency response Permanent 

degrades with playing 

Stylus life 500-600 hours 5000 hours 

Digital audio recording and playback allows us to improve the fidelity of recorded 
music by increasing the dynamic range and the signal-to-noise ratio. Furthermore, digi­
tal recordings are generally more durable and do not deteriorate with playing time, as do 
analog recordings. Next, we will describe a CD system as an example of a commercially 
successful digital audio system that was introduced in 1982. Table 7.4 provides a compari­
son of some important specifications of an LP record and a CD system. The advantages of 
the latter are clearly evident. 

From a systems point of view, the CD system embodies most of the elements of a 
modem digital communication system. These include analog-to-digital (AID) and digital­
to-analog (D/ A) conversion, interpolation, modulation/demodulation, and channel cod­
ing/decoding. A general block diagram of the elements of a CD digital audio system is 
illustrated in Figure 7.21 .  Now, we will describe the main features of the source encoder 
and decoder. 

The two audio signals from the left (L) and right (R) microphones in a recording 
studio or a concert hall are sampled and digitized by passing them through an A1Q con­
verter. Recall that the frequency band of audible sound is limited to approximately 20 kHz. 
Therefore, the corresponding Nyquist sampling rate is 40 kHz. To allow for some fre­
quency guard band and to prevent aliasing, the sampling rate in a CD system has been 
selected to be 44. 1 kHz. This frequency is compatible with video recording equipment that 
is commonly used for the digital recording of audio signals on magnetic tape. 

The samples of both the L and R signals are quantized using uniform PCM with 
16  bits/sample. According to the formula for SQNR given by Equation (7.4.4), 1 6-bit uni­
form quantization results in an SQNR of over 90 dB. In addition, the total harmonic distor­
tion achieved is 0.005%. The PCM bytes from the digital recorder are encoded to provide 
protection against channel errors in the readback process and passed to the modulator. 

At the modulator, digital control and display information is added, including a table 
of contents of the disc. This information allows for programmability of the CD player. 
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Using a laser, the digital signal from the modulator is optically recorded on the sur­
face of a glass disc that is coated with photoresist. This results in a master disc, which is 
used to produce CDs by a series of processes that ultimately convert the information into 
tiny pits on the plastic disc. The disc is coated with a reflective aluminum coating and then 
with a protective lacquer. 

In the CD player, a laser is used to optically scan a track on the disc at a constant 
velocity of 1 .25 m/sec and, thus, to read the digitally recorded signal. After the L and R 
signal are demodulated and passed through the channel decoder, the digital au'dio signal is 
converted back to an analog audio signal by means of a D/ A converter. 

The conversion of L and R digital audio signals into the DI A converter has a precision 
of 16 bits. In principle, the digital-to-analog conversion of the two 16-bit signals at the 
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44. 1 kHz sampling rate is relatively simple. However, the practical implementation of a 
16-bit DIA converter is very expensive. On the other hand, inexpensive DIA converters 
with 12-bit (or less) precision are readily available. The problem is to devise a method for 
DI A conversion that employs low precision and, hence, results in a low-cost DI A converter, 
while maintaining the 16-bit precision of the digital audio signal. 

The practical solution to this problem is to expand the bandwidth of the digital audio 
signal by oversampling through interpolation and digital filtering prior to analog conver­
sion. The basic approach is shown in the block diagram given in Figure 7.22. The 16-bit L 
and R digital audio signals are up-sampled by some multiple U by inserting U - 1 zeros 
between successive 16-bit signal samples. This process effectively increases the sampling 
rate to U x 44. 1 kHz. The high-rate L and R signals are then filtered by a finite-duration 
impulse response (FIR) digital filter, which produces a high-rate, high-precision output. 
The combination of up-sampling and filtering is a practical method for realizing a digital 
interpolator. The FIR filter is designed to have a linear phase and a bandwidth of approx­
imately 20 kHz. It serves the purpose of eliminating the spectral images created by the 
up-sampling process and is sometimes called an antiimaging filter. 

If we observe the high sample rate and high precision of the L and R digital audio 
signals of the output of the FIR digital filter, we will find that successive samples are nearly 
the same; they differ only in the low-order bits. Consequently, it is possible to represent 
successive samples of the digital audio signals by their differences and, thus, to reduce 
the dynamic range of the signals. If the oversampling factor U is sufficiently large, delta 
modulation may be employed to reduce the quantized output to a precision of 1 bit/sample. 
Thus, the DI A converter is considerably simplified. An oversampling factor U = 256 is 
normally chosen in practice. This raises the sampling rate to 1 1 .2896 MHz. 

Recall that the general configuration for the conventional delta modulation system is 
as shown in Figure 7.23. Suppose we move the integrator from the decoder to the input oJ 
the delta modulator. This has two effects. First, it preemphasizes the low frequencies in thf 
input signal; thus, it increases the correlation of the signal into the delta modulator. Second 
it simplifies the delta modulator decoder because the differentiator (the inverse system: 
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required at the decoder is canceled by the integrator. Hence, the decoder is reduced to a 
simple lowpass filter. Furthermore, the two integrators at the encoder can be replaced by a 
single integrator placed before the quantizer. The resulting system, shown in Figure 7 .24, 
is called a sigma-delta modulator (SDM). Figure 7.25 illustrates an SDM that employs a 
single digital integrator (first-order SDM) with a system function 

I 

z- I 
H(z) = 1 _1 . - z  

Thus, the SDM simplifies the DIA conversion process by requiring only a 1-bit DIA fol­
lowed by a i:;onventional analog filter (a Butterworth filter, for example) for providing 
antialiasing protection and signal smoothing. The output analog filters have a passband 
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of approximately 20 kHz; thus, they eliminate any noise above the desired signal band. In 
modem CD players, the interpolator, the SDM, the 1-bit DIA converter, and the lowpass 
smoothing filter are generally implemented on a single integrated chip. 

7.7 THE JPEG IMAGE-CODING STANDARD 

The JPEG standard, adopted by the Joint Photographic Experts Group, is a widely used 
standard for lossy compression of still images. Although several standards for image com­
pression exist, JPEG is by far the most widely accepted. The JPEG standard achieves very 
good-to-excellent image quality and is applicable to both color and gray-scale images. 
The standard is also rather easy to implement and can be implemented in software with 
acceptable computational complexity. 

JPEG belongs to the class of transform-coding techniques, i.e., coding techniques 
that do not compress the signal (in this case, an image signal) directly, but compress the 
transform of it. The most widely used transform technique in image coding is DCT (dis­
crete cosine transform). The major benefits of DCT are its high degree of energy com­
paction properties and the availability of a fast algorithm for computation of the transform. 
The energy compaction property of the DCT results in transform coefficients, in which 
only a few of them have significant values, so that nearly all of the energy is contained in 
those particular components. 

The DCT of an N x N picture with luminance function x (m , n) , 0 ::::; m, n :S N - l 
can be obtained with the use of the following equations: 

l N-1 N-1 
X(O, 0) = N L :L x(k, l) ,  k=O 1=0 

2 N-l N- l [ (2k + l)un J [ (21 + l)vn J X(u, v) = N L L x(k, l) cos 2N cos 2N k=O l=O 

(7.7. l) 

u, v 'I 0. (7.7.2) 

The X (0, 0) coefficient is usually called the DC component, and the other coefficients are 
called the AC components. 

The JPEG encoder consists of three blocks: the DCT component, the quantizer, anc 
the encoder, as shown in Figure 7 .26. 

The DCT Component. A picture consists of many pixels arranged in an m x � 
array. The first step in DCT transformation of the image is to divide the picture array intc 
8 x 8 subarrays. This size of the subarrays has been chosen as a compromise of complexit� 
and quality. In some other standards, 4 x 4 or 16 x 16  subarrays are chosen. If the number o 
rows or columns (m or n) is not a multiple of 8, then the last row (or column) is replicate< 
to make it a multiple of 8. The replications are removed at the decoder. · 

After generating the subarrays, the DCT of each subarray is computed. This proces 
generates 64 DCT coefficients for each subarray starting from the DC component X (0, 0 
and going up to X (7, 7) . The process is shown in Figure 7 .27. 
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TABLE 7.5 QUANTIZATION TABLE FOR JPEG 

16 1 1  10 16 24 40 5 1  61 

12 12 14 19 26 58 60 55 

14 13 16 24 40 57 69 56 

14 17 22 29 5 1  87 80 62 

18 22 37 56 68 109 103 77 

24 35 55 64 81 104 1 13 92 

49 64 78 87 103 121  120 101  

72 92 95 98 1 12 100 103 99 

The Quantizer. Due to the energy compaction property of the DCT, only low­
frequency components of the DCT coefficients have significant values. 

Since the DC component carries most of the energy and since there exists a strong 
correlation between the DC component of a subarray and the DC component of the preced­
ing subarray, a uniform differential quantization scheme is employed for quantization of 
DC components. The AC components are quantized using a uniform quantization scheme. 
Although all components are quantized using a uniform scheme, different uniform quanti­
zation schemes use different step sizes. All quantizers, however, have the same number of 
quantization regions, namely, 256. 

A 64-element quantization table determines the step size for uniform quantization of 
each DCT component. These step sizes are obtained using psychovisual experiments. The 
result of the quantization step is an 8 x 8 array with nonzero elements only in the top left 
comer and many zero elements in other locations. A sample quantization table illustrating 
the quantization steps for different coefficients is shown in Table 7.5. 

After the quantization process, the quantized DCT coefficients are arranged in a vec· 
tor by zigzag sampling, as shown in Figure 7.28. Using this type of sampling, we obtain i 
vector X of length 64 with nonzero values only in the first few components. 

The Encoding. The quantization step provides lossy compression of the imagt 
using the method described previously. After this step, entropy coding (as will be discussec 
in Chapter 12) is employed to provide lossless compression of the quantized values. Om 
of the entropy-coding methods specified in the JPEG standard is Huffman coding; this wil 
be discussed in Section 12.3. 1 .  In this case, Huffman codes are based on tables specifyin1 
code words for different amplitudes. Since the quantized subarrays contain a large numbe 
of zeros, some form of runlength coding is used to compress these zeros. Refer to th 
references at the end of this chapter for further details. 

Compression and Picture Quality in JPEG. Depending on the rate, JPE< 
can achieve high-compression ratios with moderate-to-excellent image quality for bot 
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gray-scale and color images. At rates of 0.2-0.5 bits/pixel, moderate-to-good quality 
pictures can be obtained that are sufficient for some applications. Increasing the rate to 
0.5-0.75 bits/pixel results in good-to-very-good quality images that are sufficient for many 
applications. At 0. 75-1.5 bits/pixel, excellent quality images are obtained that are sufficient 
for most applications. Finally, at rates of 1 .5-2 bits/pixel, the resulting image is practi­
cally indistinguishable from the original. These rates are sufficient for the most demanding 
applications. 

7.8 SUMMARY AND FURTHER READING 

The focus of this chapter was on the conversion of analog signals to digital form. We 
began by describing the sampling theorem for bandlimited signals. We demonstrated that 
by sampling an analog signal with bandwidth W at the minimum rate of 2 W samples per 
second, it is possible to reconstruct the analog signal from its samples with no loss in 
fidelity or information. This minimum sampling rate of 2W samples per second is called 
the Nyquist rate. 

The second step in the conversion of an analog signal to digital form is quantization 
of the samples to a set of discrete amplitude levels. The simplest form of quantization is 
scalar quantization, where each sample is quantized separately. A scalar quantizer can per­
form either uniform quantization or nonuniform quantization. We described both methods 
and characterized the performance of a uniform quantizer and a nonuniform quantizer in 
terms of the signal-to-quantization-noise ratio (SQNR). We also described vector quanti­
zation, in which a block of k samples is jointly quantized. In general, vector quantization 
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- results in superior performance compared to scalar quantization, and is widely. used iIJ 
speech and image digital signal processing. 

The third and final step in the conversion of an analog signal to digital form is encod­
ing. In the encoding process, a sequence of bits is assigned to different quantization values 

We also described several waveform coding schemes which are designed to repro. 
duce the output waveform from a source at the destination with as little distortion as possi-

. ble. These methods include both uniform and nonuniform pulse code modulation (PCM) 
differential pulse code modulation (DPCM), delta modulation (DM), and adaptive delt< 
modulation (ADM). Another waveform encoding method is based on construction of , 
model for the analog source and using linear prediction to estimate the model parameters 
which are transmitted to the receiver. In tum, the receiver uses the model parameters tc 
reconstruct the source and generate the source output. This method is called an analysis­
synthesis technique, where the analysis is performed at the transmitter to estimate tht 
model parameters and the synthesis is performed at the receiver to construct the mode 
for the source and generate the source output. This technique is widely used in speed 
coding. 

In the last two sections of this chapter, we presented applications of analog-to-digita 
conversion in digital audio transmission in telephone systems, digital audio recording fo 
the compact disc, and image coding based on the JPEG standard. _/ 

Jayant and Noll ( 1984) and Gersho and Gray (1992) examine various quanti:Zatio1 
and waveform coding techniques in detail. Gersho and Gray (1992) include a detailed treat 
ment of vector quantization. Analysis-synthesis techniques and linear-predictive codin: 
are treated in books on speech coding, specifically Markel and Gray (1976), Rabiner an1 
Schafer (1979), and Deller, Proakis, and Hansen (2000). The JPEG standard is describe, 
in detail in the book by Gibson, et al. (1998). 

PROBLEMS 

7.1 Assume x(t) has a bandwidth of 40 kHz. 

1. What is the minimum sampling rate for this signal? · 

2. What is the minimum sampling rate if a guard band of 10 kHz is required? 

3. What is the maximum sampling interval for the signal x1 (t) 
x (t) cos(80,000nt)? 

7.2 For a lowpass signal with a bandwidth of 6000 Hz, what is the minimum samplin 
frequency for perfect reconstruction of the signal? What is the minimum require 
sampling frequency if a guard band of 2000 Hz is required? If the reconstructic 
filter has the frequency response 

H (f) = { � - K l/\o:ooou 
I l l < 1000 
1000 < Ii i  < 10,000 , 

otherwise 
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what is the minimum required sampling frequency and the value of K for perfect 
reconstruction? 

7.3 Let the signal x(t) = Asinc(lOOOt) be sampled with a sampling frequency of 2000 
samples/sec. Determine the most general class of reconstruction filters for perfect 
reconstruction of this signal. 

7.4 The lowpass signal x(t) with a bandwidth of W is sampled with a sampling interval 
of Ts, and the signal 

00 

Xp(t) = 
L x(nTs)p(t - nTs) 

n=-oo 

is reconstructed from the samples, where p(t) is an arbitrary-shaped pulse (not nec­
essarily time limited to the interval [O, Ts]). 

1. Find the Fourier transform of xp(t). 
2. Find the conditions for perfect reconstruction 011:;(0dom��-(t)� 

" ,------
3. Determine the required reconstruction filter. �' 

7.5 The lowpass signal x (t) with a bandwidth of W is sampled at the Nyquist rate, and 
the signal 

00 

X1 (t) = L (- Itx(nTs)8(t - nTs) 
n=-oo 

is generated. 

1. Find the Fourier transform of x1 (t). 

2. Can x(t) be reconstructed from x1 (t) by using a linear time-invariant system? 
Why? 

3. Can x (t) be reconstructed from x1 (t) by using a linear time-varying system? 
How? 

7.6 A lowpass signal x(t) with bandwidth W is sampled with a sampling interval Ts, and 
the sampled values are denoted by x (nTs). A new signal x1 (t) is generated by linear 
interpolation of the sampled values, i.e., 

t - nTs 
X1 (t) = x(nTs) + -- (x((n + l)Ts) - x(nTs)) Ts 

1. Find the power spectrum of x1 (t). 

nTs :S t :S (n + l)Ts .  

2. Under what conditions can the original signal be reconstructed from the sampled 
signal and what is the required reconstruction filter? 
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7.7 A lowpass signal x(t) with bandwidth of 50 Hz is sampled at the Nyquist rate and 
the resulting sampled values are 

1. Find x(.005) . 

{ - 1  -4 < n < 0 
x (nTs) = 1 0 <� :S 4 

0 otherwise 

2. Is this signal power type or energy type? Find its power or energy content. 

7.8 Let W be arbitrary and x(t) be a lowpass signal with a bandwidth W. 

/ --.....\ \ 

1. Show that the set of signals {<fan (t)}�_00, where <Pn = sinc(2Wt - n) represents 
an orthogonal signal set. How should these signals be weighted to generate an 
orthonormal set? 

2. Conclude that the reconstruction from the samples relation 

CXl 

x(t) = L 
x(nTs)sinc(2Wt - n) 

n=-oo 
is an orthogonal expansion relation. 

3. From Part 2, show that for all n 

1_: x(t)sinc(2Wt - n) dt = Kx(nTs) ,  

and find K.  

li 7.9/Let X (t) denote a wide-sense stationary (WSS) Gaussian process with Px = 10. 
� 

/ 

1. Using Table 7 . 1 ,  design a 16-level optimal uniform quantizer for this source. 

2. What is the resulting distortion if the quantizer in Part 1 is employed? 

3. What is the amount of improvement in SQNR (in decibels) that results from 
doubling the number of quantization levels from 8 to 16? 

7.10 Using Table 7 . 1 ,  design an optimal quantizer for the source given in Example 7.2. 1 .  
Compare the distortion of this quantizer to the distortion obtained there. 

7.11 Solve Problem 7.9 by using Table 7.2 instead of Table 7 . 1  to design an optimal 
nonuniform quantizer for the Gaussian source. 

7 .12 Consider the encoding of the two random variables X and Y, which are uniformly 
distributed on the region between the two squares, as shown in Figure P7 7 . 12. 
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1 
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-2 -1 1 2 x 

-1 

-2 
Figure P-7.12 

1. Find fx(x) and fy (y). 

2. Assume each of the random variables X and Y are quantized using four-level 
uniform quantizers. What is the resulting distortion? What is the resulting num­
ber of bits per (X, Y) pair? 

3. Now assume that instead of scalar quantizers for X and Y, we employ a vector 
quantizer to achieve the same level of distortion as in Part 2. What is the resulting 
number of bits/source output pair (X, Y)? 

7.13 Two random variables X and Y are uniformly distributed on the square shown in 
Figure P-7.13 .  

y 

x 

Figure P-7.13 
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1. Find fx(x) and fy(y) .  
2. Assume that each of the random variables X and Y are quantized using four­

level uniform quantizers. What is the resulting distortion? What is theresulting1 
number of bits per (X, Y) pair? I 

3. Now assume that instead of scalar quantizers for X and Y, we employ a vector 
quantizer with the same number of bits/source output pair (X, Y) as in Part 2. 
What is the resulting distortion for this vector quantizer? 

7.14 Solve Example 7.4.1 when the samples are uniformly distributed on [-2, 2]. 

7.15 A stationary random process has an autocorrelation function given by Rx (r) = A; e-lr l cos 2rrf0r ;  we know that the random process never exceeds 6 in magnitude. 
Assume that A = 6. 

1. How many quantization levels are required to guarantee an SQNR of at least 
60 dB? 

2. Assuming that the signal is quantized to satisfy the condition of Part 1 and 
assuming the approximate bandwidth of the signal is W, what is the minimum 
required bandwidth for the transmission of a binary PCM signal based on this 
quantization scheme? 

7.16 A signal can be modeled as a lowpass stationary process X (t) ,  whose probability 
density function (PDF) at any time t0 is shown in Figure P-7.16. 

-2 

f x(x) 

1 
2 

2 x 

Figure P-7.16 

The bandwidth of this process is 5 kHz, and we desire to transmit it using a PCM 
system. 

1. If sampling is done at the Nyquist rate and a uniform quantizer with 32 levels is 
employed, what is the resulting SQNR? What is the resulting bit rate? 

2. If the available bandwidth of the channel is 40 kHz, what is the highest achiev· 
able SQNR? 

3. If, instead of sampling at the Nyquist rate, we require a guard band of at leas1 
2 kHz and the bandwidth of the channel is 40 kHz, what is the highest achievablt 
SQNR? 
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i.17 ¥stationary source is distributed according to a triangular PDF, fx(x) = �A (i) · G/This source is quantized using the four-level uniform quantizer . { 1 .5, 1 < x s 2 
0.5, 0 < x s 1 

Q (x) = 
-0.5, - l < x S O 
-1 .5, -2 s x s - 1 

J:?etermine the PDF of the random variable representing the quantization error, i.e., 
X = X - Q (X). 

7.18 The random process X (t) is defined by X (t) = Y cos(2nfot+E>), where Y and e are 
two independent random variables, Y uniform on [-3 , 3] and e uniform on [0, 2n]. 

1. Find the autocorrelation function of X (t) and its power spectral density. 

2. If X(t) is to be transmitted to maintain an SQNR of at least 40 dB using a uni­
form PCM system, what is the required number of bits/sample and the least 
bandwidth requirement (in terms of fo)? 

3. If the SQNR is to be increased by 24 dB, how many more bits/sample must be 
introduced, and what is the new minimum bandwidth requirement in this case? 

7.19 A zero-mean, WSS random process X (t) with autocorrelation function of 

Rx(r) = 2sinc2 (104r) 
is applied to a PCM system. We also know that X(t) has a maximum value of 10. 
The quantizer in the PCM system uses N = 128 levels. 

1. If a guard band of 2.5 kHz is used for sampling, what is the resulting bit rate 
(R), SQNR (in dB), and the minimum required transmission bandwidth (BT)? 

2. If the minimum required SQNR is 56 dB, what is  the required N and the mini­
mum required transmission bandwidth (assuming the same 2.5 kHz guard band 
as in part 1)? What will be the resulting SQNR (in dB) of the designed system? 

3. If a total transmission bandwidth of 93 kHz is available, what is the highest 
achievable SQNR (in dB)? What are the resulting system parameters (WG, N, 
and fs) and the transmission rate? 

7.20 X (t) denotes a zero-mean WSS Gaussian random process with autocorrelation func-
ti on 

1. What is the power in this process? 

2. Determine the power spectral density, Sx(f) , for this process. 

3. What is the bandwidth of this process? 
'Ill 
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4. Assuming that this process passes through an ideal lowpass filter with a band­
width of 5 kHz and the output is denoted by Y(t), determine Sy (f), the power 
spectral density of Y (t), and the total power in the output process. 

5. Determine the PDF (probability density function) of random variables X(O), 
X (10-4), and X (1 .5 x 10-4). 

6. Show that random variables X (O) and X(l0-4) are independent but X (O) and 
X( l .5 x 10-4) are dependent. 

7.21 In a PCM system, the signal X (t) has a bandwidth of 5 kHz. This signal is sampled 
is with a guard band of 2 kHz. It is known that the sampled values have a probability 
density function shown below. 

fx(x) 

1 3 
1 
6 

I x 
-2 2 

The quantizer uses N = 128 levels. After quantization, the quantized levels are 
binary encoded and transmitted. 

1. What is the resulting bit rate in bits per second? 

2. What is the resulting SQNR (in dB)? 

3. What is the required transmission bandwidth? 

4. If the available transmission bandwidth is 70 kHz, what is the maximum achiev­
able SQNR (in dB)? 

7.22 The power spectral density of a WSS information source is shown below (the unit of 
power spectral density is W/Hz). The maximum amplitude of this signal is 200. 
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1. What is the power in this process? 

2. Assume that- this signal is transmitted using a uniform PCM system with 512 
quantization levels, what i s  the resulting SQNR in decibels and what i s  the min­
imum required transmission bandwidth if in sampling the signal a guard band of 
1 kHz is used? 

3. If the available transmission bandwidth is 47 kHz, design a PCM system that 
achieves the highest possible SQNR and utilizes the maximum guard band. 

7.23 A zero-mean stationary information source X(t) has a power spectral density given 
by 

{ 1 1 

Sx(f) = ; 1 + !2 I / I ::=; 200 Hz 

otherwise 

The amplitude of this source is limited to 10 in magnitude. This source is sampled 
at the Nyquist rate and the samples are coded using an 8 bit/sample uniform PCM 
system. 

1. Determine the resulting SQNR in decibels. 

2. If we want to increase the SQNR by at least 20 dB, how should the required 
number of quantization levels change? 

3. In Part 2, what is the minimum required bandwidth for the transmission of the 
PCM signal? 

(Hint: fx arctan x = 1 L2 , and for x > 20, you can use the approximation arctan x .� 
rt/2.) 

7.24 Signal X (t) has a bandwidth of 12,000 Hz, and its amplitude at any time is a random 
variable whose PDF is shown in Figure P-7 .24. We want to transmit this signal using 
a uniform PCM system. 

a 

-2 2 
Figure P-7.24 

1. Show that a =  � ·  
2. Determine the power in X(t). 
3. What is the1 SQNR in decibels if a PCM system with 32 levels is employed? 

4. What is the minimum required transmission bandwidth in Part 3? 
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5. If we need to increase the SQNR by at least 20 dB, by how much should the 
transmission bandwidth increase? 

7.25 The power spectral density of a zero-mean WSS random process X (t) is given by 

,, I ' I 

I 

l + 5000 
5000 

Sx(f) = - l + 5000 
5000 

0 

-5000 :::: l :::: 0 

0 < l :::: 5000 

otherwise 

and the maximum amplitude of this process is 600. 

1. What is the power content ofthis process? 

2. If this process is sampled at rate ls to guarantee a guard band of 2000 Hz, what 
is ls? 

3. If we use a PCM system with 256 quantization levels on this process (sampled 
at the rate you found in Part 2), what is the resulting SQNR (in decibels)? 

4. In Part 3, what is the resulting bit rate? 
5. If the output of the PCM system is to be transmitted using a binary system, what 

is the required minimum transmission bandwidth? 
6. If we need to increase the SQNR by at least 25 dB, what is the required num­

ber of quantization levels, the resulting SQNR, and the required transmission 
bandwidth? 

/7.2� In our analysis of PCM systems, we always assumed that the transmitted bits were 
L_f" received with no errors. However, practical channels cause errors. Let us assume that 

the output of a PCM system is transmitted via a channel whose error probability is 
denoted by P2• We further assume that P2 is small enough such that, in transmission 
of the v bits resulting from encoding of each quantized sample, either no error occurs 
or, at most, one error occurs. This means that the probability of each transmitted bit 
being in error is P2, and the probability of no error in transmission of v bits is roughly 
1 - v P2• We also assume that for the binary representation of each quantized value, 
natural binary coding (NBC) is employed, i.e., the lowest quantized level is mapped 
into a sequence of zeros and the largest level is mapped into a sequence of all ones, 
and all the other levels are mapped according to their relative value. 

1. Show that, if an error occurs in the least significant bit, its effect on the quan­
tized value is equivalent to /:!;,., the spacing between the levels; if an error occurs 
in the next bit, its effect on the quantized value is 21:!;,.; . . .  , if an error occurs in 
the most significant bit, its effect on the quantized value is 2v-I /:!;,.. 

2. From Part 1 ,  show that the mean squared error resulting from channel errors is 
given by 

4v - 1  
Dchannel = Pz/:!;,.2-3-, 

where /:!;,. = 2x;:;ax = �::'..".� is the spacing between adjacent levels. 
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3. From Part 2, conclude that the total distortion, which is the sum of the quanti­
zation distortion and the transmission distortion due to channel errors, can be 
expressed by 

2 2 
Dtotal = Xmax 2 (1 + 4P2(N2 - 1)) = Xmax (1 + 4P2 (4v - 1)) . 3 x N 3 x 4v 

4. Finally, show that the SNR, defined as the ratio of the signal power to the total 
noise power, is given by 

3N2
X2 

SNR = ------
1 + 4P2(N2 - 1) 

where 
v x 
X - -- . 

Xmax 
7.27 In a CD player, the sampling rate is 44. 1 kHz, and the samples are quantized using a 

16 bit/sample quantizer. Determine the resulting number of bits for a piece of music 
with a duration of 50 minutes. 

COMPUTER PROBLEMS 

7.1 Determining the Centroids 

Use MATLAB to determine the centroids of the quantization regions for a zero­
mean, unit-variance Gaussian distribution, where the boundaries of the quantization 
regions are given by (-5, -4, -2, 0, 1 , 3, 5). The Gaussian distribution is given in 
them-file normal . m. Although the support of the Gaussian distribution is (-oo, oo), 
for practical purposes, it is sufficient to use a range that is many times the standard 
deviation of the distribution. For example, (m - lOu, m + lOu), where m is the mean 
and u is the standard deviation ( u2 is the variance) of the Gaussian random variable. 

7.2 Uniform Quantizer Distortion 

The objective of this problem is to use MATLAB to determine the mean squared error 
for a uniform quantizer with 12 quantization levels, each of length 1 , designed for 
a zero-mean Gaussian source with u2 = 4. The quantization regions are symmetric 
with respect to the mean of the distribution. 

1. Specify the boundaries of the quantization regions. 
2. Specify the 12 quantization regions. 
3. Determine the 12 quantization values corresponding to the quantization regions 

and the resalting mean squared distortion. 

7.3 Design of Lloyd-Max Quantizer 

The objective of this problem is to use MATLAB to design a 10-level Lloyd-Max 
(nonuniform) quantizer for a zero-mean, unit-variance Gaussian source. 
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1. Determine the quantization boundaries and the quantization levels. 

2. Determine the mean squared distortion. 

7.4 Uniform PCM 

The objective of this exercise is to investigate the error in the quantization of a sinu­
soidal signal using uniform PCM. 

1. Quantize the sinusoidal signal 

s (t) = sin t, 0 ::;  t ::;  10 

once to 8 levels and once to 16  levels for a sampling interval Ts = 0. 1 .  Plot the 
original signal and the two quantized versions on the same graph, and observe 
the results. 

2. Compute the SQNR for the 8- and 16-level quantizers. 

7.5 Quantization Error in Uniform PCM 

The objective of this problem is to evaluate the quantization error in quantizing � 

Gaussian source using uniform PCM. 

1. Generate 500 zero-mean, unit-variance Gaussian random variables and quantiz( 
them by using a uniform 64-level PCM quantizer and encoder. Plot the 500-poin 
sequence generated. 

2. Determine the SQNR for the 64-level quantizer. 

3. Determine the first five values of the sequence, the corresponding quantized val 
ues, and the corresponding PCM code words. 

4. Plot the quantization error, defined as the difference between the input value am 
the quantized value, for the 500-point sequence. 

7.6 Nonuniform PCM 

The objective of this problem is to evaluate the quantization error in quantizing thi 
output of a Gaussian source with nonuniform PCM. 

1. Generate 500 zero-mean, unit-variance Gaussian random variables and quantiz• 
them using a 16-, 64-, and 128-level quantizer and a µ, = 255 nonlinearity. Pk 
the input-output quantizer characteristic for each case and the correspondin: 
error sequence. 

2. Determine the SQNR for each quantizer. 



f,Digital Modulation 
} Methods i n  an  
f Additive White 
Gaussian Noise 
Chan nel 

In Chapter 7, we described methods for converting the output of a signal source into a 
sequence of binary digits. In this chapter, we consider the transmission of the digital infor­
mation sequence over communication channels that are characterized as additive white 
Gaussian noise (AWGN) channels. The AWGN channel is one of the simplest mathemat­
ical models for v�us physical communication channels, including wirelines and some 
radio channels. S h channels are basically analog channels, which means that the digital 
information sequ nee to be transmitted must be mapped into analog signal waveforms. 

Our treatm nt focuses on the characterization and the design of analog signal wave­
forms that carry d · ital information and their performance on an A WGN channel. First, we 
consider signal tr mission through baseband channels, i.e., channels having frequency 
passbands that usual include zero frequency (f = 0) . When the digital information is 
transmitted through a bas channel, there is no need to use a carrier frequency for the 
transmission of the digitally modulated signals. On the other hand, there are many com­
munication channels (including telephone channels, radio channels, and satellite channels) 
that have frequency passbands that are far removed from f = 0. These types of chan­
nels are called bandpass channels. In such channels, the information-bearing signal is 
impressed on a sinusoidal carrier, which shifts the frequency content of the information­
bearing signal to the appropriate frequency band that is passed by the channel. Thus, the 
signal is transmitted by carrier modulation. 

Throughout this chapter, we study only one-shot communications, i.e., transmission 
of only one signal corresponding to a single message, with no transmission following this 
single transmission. We study sequential transmission of digital data and intersymbol inter­
ference in Chapter 10. 

347 
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We begin by developing a geometric representation of these types of signals, which 
is useful in assessing their performance characteristics. Then, we describe several differ­
ent types of analog signal waveforms for transmitting digital information, and we give theu 
geometric representation. The optimum demodulation and dete

_
ction of these signals is the11 

described, and their performance in the AWGN channel is evaluated in terms of the prob­
ability of error. In Chapter 9, we compare the various modulation methods on the basis oJ 
their performance characteristics, their bandwidth requirements, and their implementatior 
complexity. 

8.1 GEOMETRIC REPRESENTATION OF SIGNAL WAVEFORMS 

In a digital communication system, the modulator input is typically a sequence of binai; 
information digits. The modulator may map each information bit to be transmitted into om 
of two possible distinct signal waveforms, say s1 (t) or s2(t) .  Thus, a zero is represented b; 
the transmitted signal waveform s1 (t), and a one is represented by the transmitted signa 
waveform s2 (t) . This type of digital modulation is called binary modulation. Altemativel) 
the modulator may transmit k bits (k > 1) at a time by employing M = 2k distinct signa 
waveforms, say sm (t) ,  1 ::::: m ::::: M. This type of digital modulation is called M-ar: 
(nonbinary) modulation. In this section, we develop a vector representation of such digita 
signal waveforms. Such a representation provides a compact characterization of signa 
sets for transmitting digital information over a channel, and it simplifies the analysis o 
their performance. Using vector representation, waveform communication channels ar 

represented by vector channels. This reduces the complexity of analysis considerably. 
Suppose we have a set of M signal waveforms Sm (t), 1 ::::: m ::::: M, which are to b 

used for transmitting information over a communication channel. From the set of M wav� 
forms, we first construct a set of N ::::: M orthonormal waveforms, where N is the dimer 
sion of the signal space. For this purpose, we use the Gram-Schmidt orthogonalizatio 
procedure. 

Gram-Schmidt Orthogonalization Procedure. We begin with the first wavefon 
s1 (t), which is assumed to have energy 181 .  The first waveform of the orthonormal set • 
constructed simply as 

Vrl (t) = S1� . 
v'i81 

Thus, 1fr1 (t) is simply s1 (t) normalized to unit energy. 

(8.L 

The second waveform is constructed from s2(t) by first computing the projection c 
s2(t) onto 1fr1 (t), which is 

C21 = 1_: S2 (t)1fr1 (t)dt. (8. 1. :  

Then, c211/r1 (t) is subtracted from s2(t) to yield 

(8. 1 .  
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Now, d1(t) is orthogonal to 1fr1 (t), but it does not possess unit energy. If �2 denotes the 
energy in d1(t) ,  then the energy-normalized waveform that is orthogonal to 1fr1 (t) is 

d1(t) 1fr2 (t) = � ·  

�1 =  1_: di (t) dt . 

(8. 1 .4) 

(8. 1 .5) 

In general, the orthogonalization of the kth function leads to 

where 

and 

,/, (t) = dk (t) 'l'k 
� · 

k-1 
dk(t) = Sk (t) - L Ck;1/r; (t) , 

i=l 

�k = 1_: df (t) dt, 

i = 1, 2, . . .  k - 1 .  

(8. 1 .6) 

(8. 1 .7) 

(8. 1 .8) 

(8. 1 .9) 

Thus, the orthogonalization process is continued until all the M signal waveforms {sm (t) } 
have been exhausted and N ::::: M orthonormal waveforms have been constructed. If at any 
step dk (t) = 0, then there will be no new 1fr(t) ; hence, no new dimension is introduced. 
The N orthonormal waveforms {1/rn (t) } form an orthonormal basis in the N-dimensional 
signal space. The dimensionality N of the signal space will be equal to M if all the M 
signal waveforms are linearly independent, i.e., if none of the signal waveforms is a linear 
combination of the other signal waveforms. 

Example 8.1.1 
Let us apply the Gram-Schmidt procedure to the set of four waveforms illustrated in Fig­
ure 8 . l (a). The waveform s1 (t) has energy � 1 = 2, so that 1fr1 (t) = s1 (t)/../2. Next, we 
observe that c21 = 0, 0SO that 1/11 (t) and s2(t) are orthogonal. Therefore, 1fr2(t) = s2(t)/� = 
s2(t)/../2. To obtain 1fr3(t), we compute c31 and c32, which are c31 = 0 and c32 = -../2. Hence, 

Since d3 (t) has unit energy, it follows that 1/!J(t) = d3 (t) . Finally, we find that c41 = ../2, 
c42 = 0, C43 = 1 .  Hence, 
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(b) Orthonormal waveforms 

Figure 8.1 Application of the Gram-Schmidt orthogonalization procedure to signals {s, (t)}, 

Thus, s4 (t) is a linear combination of if!1 (t) and if!3 (t); consequently, the dimensionalit,of the 
signal set is N = 3. The functions 1/!1 (t), if!2(t), and if!3(t) are shown in Figure 8 . l (b)�- ;' 

Once we have constructed the set of orthogonal waveforms {1/rn (t)} , we can exprd1ss 
the M signals {sm (t) } as exact li:ear combinations of the {�. Hence, we may wri,\ 

Sm(t) = L Smnifrn (t) ,  m = 1 ,  2, . . .  M ,  (8. 1 . 10) 
n=l 

where the weighting coefficients in this linear combination are given as 

Smn = 1_: Sm (t)ifrn (t) dt. (8. 1 . 1 1) 

' 
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Since the basis functions {1/rn (t) } are orthonormal, the energy of each signal waveform is 
related to the weighting coefficients as follows: 

On the basis of expression in Equation (8. 1 . 10), each signal waveform may be rep­
resented by the vector 

(8. 1 . 12) 

or, equivalently, as a point in N-dimensional signal space with coordinates {sm; , i = 

1 ,  2, . . .  , N}. We can show that the inner product of two signals is equal to the inner product 
of their vector representations, i.e., 

1_: Sm(t)sn (t) dt = Sm ·Sn . (8. 1 . 13) 

and, in particular, when we substitute m = n in Equation (8. 1 . 13), we obtain 

'i8m = 1_: S� (t) dt = l !sm 1 12; (8. 1 . 14) 

i.e., the energy of the mth signal waveform is simply the square of the length of the vector 
or, equivalently, the square of the Euclidean distance from the origin to the point in the 
N -dimensional space. It should also be noted that since selection of the orthonormal basis 
is not unique, the vector representation of signal waveforms is not unique either. However, 
the dimensionality of the the signal space N and the length of the vectors representing the 
signals are independent of the selected orthonormal basis. 

Example 8.1.2 

Let us determine the vector representations of the four signals shown in Figure 8.1  (a) by using 
the orthonormal set of functions in Figure 8. l (b). Since the dimensionality of the signal space 
is N = 3, each signal is described by three components, which are obtained by projecting each 
of the four signal waveforms on the three orthonormal basis functions 1/11 (t), 1/12(t), 1/J3(t). 
Thus, we obtain s ,  = (,J2, 0, 0) , s2 = (0, ,J2, 0), s3 = (0, -,J2, 1), s4 = (,J2, 0, 1). These 
signal vectors are shown in Figure 8.2. • 

1/12(t) 

Sz 

Figure 8.2 Signal vectors corresponding to the signals 
S;(t), i = 1 ,  2, 3, 4. 
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11------ 1 

0 1 0 2 3 

i/12(t) 
1 

0 1 2 

Figure 8.3 Alternate set of basis functions. 

/ 
Finally, we should observe that the set of basis functions { 1/rn (t)} obtained by the 

Gra , -Schmidt procedure is not unique. For example, another set of basis functions tha 
sp the three-dimensional space is shown in Figure 8.3. For this basis, th�l-vedor: 
are 1 = ( 1 ,  1 ,  0) , s2 = ( 1 ,  - 1 ,  0) , s3 = (-1 ,  1 ,  1 ,  ) ,  and s4 = ( 1 ,  1 ,  1) .  We should not1 
that e change in the basis functions does not change the dimensionality of the space N 
the 1 gths (energies) of the signal vectors, or the inner product of any two vectors. l 
change in the basis is essentially a rotation and/or reflection of the signal points around th1 
origin. 

Although the Gram-Schmidt orthogonalization procedure is guaranteed to generat1 
an orthonormal basis for representation of the signal set, in many cases, including the pre 
ceding example, it is easier to use a method based on inspection to generate the orthonorma 
basis. We explore this method in the problems at the end of this chapter. 

8.2 BINARY MODULATION SCHEMES 

In this section, we consider two different binary modulation methods: binary antipodal sig 
naling and binary orthogonal signaling. We show that some of the most common binar: 
modulation schemes, including binary pulse amplitude modulation (�AM), bi�. 
amplitude-shift keying (ASK), binary pulse position modulation (PPM and bi . 
frequency-shift keying (FSK), are special cases of these two modulation �ethods Wi 
assume that the information to be transmitted is a binary sequence that consists of zero 
and ones, and occurs at the bit rate Rb bits/sec (bps). 

8.2.1 Binary Antipodal Signaling 

Binary antipodal signaling is the simplest digital modulation method. In thistheme, th 
information bit 1 is represented by a pulse p(t) of duration T, and the i�ation bi 
0 is represented by -p(t). Since one signal pulse is the negative of the other, this typ 
of signaling is called binary antipodal signaling and since each signal carries one bit o 

information, the bit interval Tb is equal to signal duration T, i.e., Tb = T. An exampI 

' 
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s1(t) Sz(t) 

A 

0 Tb 

0 Tb -A 
Figure 8.4 Binary PAM signals. 

of binary antipodal signaling is shown in Figure 8.4 where p(t) is a rectangular pulse 
of amplitude A. Because in this type of signaling binary information is transmitted by 
the amplitude of the pulse, this modulation scheme is also called binary pulse amplitude 
modulation. Pulses are transmitted at a bit rate Rb = I/Tb bits/sec, where Tb is the bit 
interval. The pulse shape determines the spectral characteristics of the transmitted signal, 
as described in Chapter 10. 

In this particular example, the binary PAM signal waveforms are expressed as 

(8.2. 1 )  

where Am takes one of two possible values (A for m = 1 and -A for m =  2), and gr(t) is 
a rectangular pulse of unit amplitude, as shown in Figure 8.5. The signal energy in each of 
the two waveforms is 

�m = 1Tb 
s�(t) dt, m = 1 , 2 

= A21n 
g�(t) dt 

= A2I'b. 

(8.2.2) 

i Hence, the two signal waveforms have equal energy, i.e., �m = A2Tb, for m = 1 ,  2. Each 
signal waveform carries one bit of information. Therefore, we define the signal energy per 
bit of information as �b· Thus, we have A =  J�b/Tb . 

The two signal waveforms in binary PAM have a very simple geometric representa­
tion. The signal waveforms are expressed as 

1------. 

0 

Sm (t) = Sm1/r(t), m = 1 ,  2, 

Figure 8.5 A rectangular pulse of unit amplitude and 
duration Tb. 

(8.2.3) 
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"' (t) 

� ------. 

- �  
Sz 0 

(a) 

Figure 8.6 Unit energy basis function for binary PAM. 

- �  
Sz 0 

(b) 

Figure 8. 7 Geometric representation of binary PAM. 

where if!(t) is the unit energy rectangular pulse shown in Figure 8.6, and s1 = � 
s2 = -,.J&b. We note that the binary PAM signal waveforms can be uniquely represente 
geometrically in one dimension (on the real line) as two vectors, and each has the ampli 
tude ,.J&;,, as shown in Figure 8.7(a). For simplicity, we usually omit drawing the vect01 
from the origin, and we simply display the two endpoints at ,.J&b and -,.J&;,, as shown i 
Figure 8.7(b). 

Example 8.2.1 

Consider the two antipodal signal waveforms shown in Figure 8.8. Show that these signa 
have exactly the same geometric representation as the two rectangular pulses in Figure 8.4. 

Solution Note that the two signal pulses have energy 'gb· The waveforms of .these signa 
may also be represented as 

Sm (t) = Sm1/f(t), m = 1 ,  2, 

s2(t) 

� i----.... 

0 0 

- � - -V&;JT,, I----' 

Figure 8.8 Binary antipodal signals in Example 8.2.1 .  
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i/l(t) 

0 

-VT!T,, -
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Figure 8.9 Unit energy basis function for the antipodal 
signals in Figure 8.8. 

where 1/f (t) is the unit energy waveform shown in Figure 8.9, and s1 = vw;;,, s2 = -vw;;,. 
Therefore, the two antipodal signal waveforms in Figure 8.8 have exactly the same geometric 
signal representation as those shown in Figure 8.4. • 

From this discussion, we conclude that any pair of antipodal signal waveforms can 
be represented geometrically as two vectors (two signal points) on the real line, where one 
vector is the negative of the other, as shown in Figure 8.7. The unit energy waveform, in 
general, is given by lfr(t) = 1)-, where <t/,P denotes the energy in p(t) . 

V<f!,P 

Binary Amplitude-Shift Keying. Binary ASK is a special case of binary antipo­
dal signaling in which two baseband signals ±p(t) are used to amplitude modulate a sinu­
soidal carrier signal cos 2rr. fct, i.e., 

s1 (t) = p(t) cos 2rr.fct, 0 S t <  Tb, 
s2 (t) = -p(t) cos 2rr.fct, 0 S t < Tb. 

(8.2.4) 

In the special case where p(t) is a rectangular pulse, the two signals can be expressed as 

(8.2.5) 

where <t/,b denotes the energy in s1 (t) and s2(t), as shown in Problem 8.5. Plots of binary 
ASK signal waveforms for this case are shown in Figure 8. 10. 

Geometric representation of binary ASK is similar to other binary antipodal schemes 
as shown in Figure 8.7, and the unit energy signal used for geometric representation of 
these signals is 

1/r(t) = fl COS 2rr.fct, v 11  o s t < n. (8.2.6) 
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Figure 8.10 Binary ASK signal waveforms. 

The main difference between binary ASK and the binary antipodal scheme show 
in Figure 8.4 is in their spectral characteristics. The waveforms shown in Figure 8.4 ar 

baseband (lowpass) signals with their spectral content near f = 0, whereas the carrif 
modulated signals in Equation (8.2.4) are bandpass signals with spectrum near ±fc· 

8.2.2 Binary Orthogonal Signaling 

Another type of pulse modulation that may be used to transmit a binary informatio 
sequence is binary orthogonal signaling. In binary orthogonal signaling, sr (t) and s2(t 
have equal energy �b and are orthogonal, i.e., 

(8.2.'i 

1Th sr (t)s2(t) dt = 0. 
\ 

Since the two signals are already orthogonal, the task of finding an orthonormal bas: 
for representing them reduces to normalizing each signal, i.e., 

Sr (t) 1/rr (t) = � ·  

s2 (t) 1/r2 (t) = [Cg "  
'\/�b 

Using this orthonormal basis, we can write sr (t) and s2 (t) as 

sr (t) = � 1/rr (t) + 0 1/r2(t) ,  

s2 (t) = 0 1/rr (t) + � 1/r2(t) 
"'" 

(8.2.! 

( (8.2.� 
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0 0 

(a) 

resulting in 

(b) 

S1 = (�, 0) , 
S2 = (o,�) , 

Figure 8.11 Geometric representation of 
binary orthogonal signal waveforms. 

(8.2. 10) 

as shown in Figure 8. l l (a) or as shown in Figure 8. l l (b) as two signal points in two­
dimensional space. We observe that the two signal vectors are perpendicular; hence, they 
are orthogonal, i.e., their dot product is equal to zero. 

Binary Pulse Position Modulation. Binary pulse position modulation is an 
example of binary orthogonal signaling. In binary PPM, we employ two pulses that are 
different only in their location. Signal waveforms s1 (t) and s2(t) ,  which are shown in 
Figure 8. 12, represent a binary PPM signaling scheme. Since these two signals are non­
overlapping, they are orthogonal, i.e., 

1Tb S1 (t)s2 (t) dt = 0. (8.2. 1 1) 

As we may observe by inspection, the two signal waveforms have identical energies, i.e., 

S1 (t) 

v'2"&b/Tb 1-------. 

0 

{Tb rn �b = lo 
s�(t)dt = lo si(t) dt. 

0 

Figure 8.12 Signal pulses in binary PPM (orthogonal signals). 

(8.2. 12) 
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"11 (t) "12(t) 

� ----. 

0 0 

Figure 8.13 Two orthonormal basis functions for binary PPM signals. 

In order to represent these two waveforms geometrically as vectors, we need tw 
orthonormal basis functions. These two waveforms, 1/JJ (t) and 1/f2(t), are shown i 
Figure 8 . 13. Consequently, the signal waveforms SJ (t) and s2(t) may be expressed as 

SJ (t) = Sl l  1/JJ (t) + S121/J2(t) , 
s2(t) = S2J 1/IJ (t) + s221/12(t) ,  

where we can easily observe that 

rb Sl l  = lo SJ (t)1/JJ (t)dt = ,/&;,; 

(8.2.I: 

(82. 1· 

The two signal waveforms are represented as two-dimensional vectors s J and s2 given l 
Equation (8.2. 10) and shown in Figure 8. 1 1 .  

Binary Frequency-Shift Keying. Another example of binary orthogonal sigm 
is binary frequency-shift keying. In binary FSK, the two signal waveforms are 

(8.2. 1 

with fJ = kif2Tb and h = k2/2Tb, where kJ and k2 are distinct positive integers. It is cle 
that the frequency separation of the two sinusoidal signals is !:;.f = I h - fJ I = m /2 
where m = \k2 - ki \ is a positive integer. The signals are illustrated in Figure 8. 14. It 
easy to verify that under these conditions,f'J (t) and s2(t) have equal energy "&b and tl 
they are orthogonal, i.e., (see Problem 8.6) tl1' 
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Figure 8.14 Binary FSK signal waveforms. 

and lo Tb St (t)s2 (t) dt = 0. 

The two basis waveforms for the binary FSK signals are 

Hence, 

1/r1 (t) = {2 cos 2n/1t , 0 :::; t < Tb, y T;  
1/r2(t) = {2 cos 2rr.fit , 0 :::; t < Tb. y T;  

359 

(8.2. 16) 

(8.2. 17) 

(8.2. 18) 

Consequently, these binary FSK waveforms have the sarne geometric representation as 
shown in Figure 8. 1 1  for binary orthogonal waveforms. 

The basic difference between binary FSK signals and the binary PPM signals is their 
spectral characteristics, which are shown in Figure 8.15 . We observe that the frequency 
content of the PPM signals is centered around f = 0, whereas the binary FSK signals 

Figure 8.15 Spectral characteristics of binary PPM (left) and FSK (right) signals. 
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are bandpass signals. Hence, the PPM signals are baseband signals that are suitable fo 
transmission in baseband channels, whereas the FSK signals are bandpass signals that ar1 
suitable for transmission in bandpass channels. We will observe that, in spite of these differ 
ences in the spectral characteristics of the two signal types, their performance in channel 
corrupted by additive white Gaussian noise (AWGN) is identical, simply because they hav, 
identical geometric representations. 

Example 8.2.2 

Consider the two orthogonal signal waveforms shown in Figure 8.16. Show that these tw 
signal waveforms represent a binary orthogonal signaling scheme and have a geometric reI 
resentation similar to Figure 8 . 1 1 .  

Solution B y  inspection, the two signal waveforms satisfy the orthogonality condition give 
by Equation (8.2. 1 1), and they have energy �b· By using the orthonormal basis wavefom 
1{!1 (t) and 1{!2(t) in Figure 8.13, the signal waveforms s; (t) and s� are expressed as 

and 

(8.2. 1 1  

where 

rn s; 1 = lo s; (t)1/11 (t)dt = .;w;;;J2; 

rn s;2 = lo s; (t)1/12 (t)dt = J�b/2; 

(8.2.2 

rn s�2 = lo s� (t)1/12 (t)dt = -.;w;;;J2. 

s{(t) si(t) 

VcgbfTb 1---------. Vi;JT;, to----. ' 

0 0 

Figure 8.16 Two orthogonal signal waveforms. 
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Figure 8.17 Signal vectors for the binary orthogonal waveforms shown 
in Figure 8.16. 

The vectors s; = ( .j'f!,b/2, .j'f!,b/2) and s; = ( .j'f!,b/2, -.J'f!,b/2) are shown in Figure 8.17. 
We observe that s; and s; are perpendicular (orthogonal vectors) and are simply a phase­
rotated version of the orthogonal vectors shown in Figure 8. l l (a). 

Note that because s1 (t) and s2(t) are orthogonal, we could simply normalize them and 
use the result as an orthonormal basis. Using this method, we would obtain vector representa­
tions given in Equation (8.2.10) and geometric representation as in Figure 8. 1 1 . • 

8.3 OPTIMUM RECEIVER FOR BINARY MODULATED SIGNALS IN ADDITIVE WHITE GAUSSIAN 
NOISE 

In this section, we describe the signal processing operations performed at the receiver to 
recover the transmitted information. We begin by describing the channel that corrupts the 
transmitted signal by the addition of noise. 

Additive White Gaussian Noise Channel. The communication channel is as­
sumed to corrupt the transmitted signal by the addition of white Gaussian noise, as shown 
in Figure 8 . 18. Thus, the received signal in a signal interval of duration Tb may be expressed 
as 

r(t) = Sm(t) + n(t), m = 1 , 2, 

Channel 
Transmitted 

signal ---+----+-! + 1-----+--+- Received signal 

sm(t) r(t) = sm(t) + n(t) 

Noise 
n(t) 

Figure 8.18 Model for the received signal passed through an AWGN channel. 

(8.3 .1) 
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r(t) Signal Decisi 
Detector 

Received demodulator transmitt 

on on 

ed signal 
signal 

Receiver 

Figure 8.19 Receiver for digitally modulated signals. 

where n(t) denotes the sample function of the AWGN process with the power spectra 
density Sn (f) = N0/2 W/Hz. Based on the observation of r (t) over the signal interval, w1 
wish to design a receiver that is optimum in the sense that it minimizes the probability o 
making an error. To be specific, we focus on the processing of the received signal r(t) i1 
the interval 0 :::; t < Tb . 

It is convenient to subdivide the receiver into two parts, the signal demodulator am 
the detector, as shown in Figure 8 .19. In Section 8.4. 1 ,  we will show that such a subdivisio1 
does not affect the optimality of the overall system. The signal demodulator's function is ti 
convert the received signal waveform r(t) into a vector y, whose dimension is equal to th 
dimension of the transmitted signal waveforms. The detector's function is to decide whicl 
of the two possible signal waveforms was transmitted; this decision is based on observatio 
of the vector y.  

Two realizations of the signal demodulator are described in Section 8.3.1 and Sec 
tion 8.3.2. The first is based on the use of si�al correlators. The second is based on the us 
of matched filters. The optimum detector that follows the signal demodulator is designe1 
to minimize the probability of error. 

8.3.1 Correlation-Type Demodulator 

In this section, we describe the processing of the received signal by a correlation-typ 
demodulator for binary antipodal signals (binary PAM) and binary orthogonal signal 
(binary PPM). We begin with binary antipodal signals. 

Binary Antipodal Signals. Let us consider the binary antipodal signal!> generall 
represented as 

Sm(t) = Sml/l(t) , m = 1 ,  2, (8.3.� 

where 1/f(t) is the unit energy rectangular pulse 1/f(t) = � - For the special case wher 
V'f!,P 

rectangular pulses are used, 1/f (t) is shown in Figure 8.6. We have seen that in binar 
antipodal signaling s1 = ,Jw;;, and s2 = -,Jw;/,. Therefore, the received signal is 

r (t) = sm1/f(t) + n(t), 0 :::; t < Tb, m = 1, 2. J8.3.:. 

In a correlation-type demodulator, the received signal r(t) is multiplied by the sigrn 
waveform 1/l(t) and the product is integrated over the interval 0 :::; t < Tb, as.._illustrate 
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Jo 

ifi(t) 

Sample at 
t = Tb Figure 8.20 Cross correlator for binary 

antipodal signals. 

in Figure 8.20. We say that r (t) is cross correlated with i/!(t). Mathematically, this cross­
correlation operation produces the output 

y(t) = 11 r(r)i/!(r) dr 
= 11 [smi/!(r) + n(r)]i/!(r) dr (8.3.4) 

== Sm 11 i/!2(r) dr + 11 n(r)ifr(r) dr. 
We sample the output of the correlator at t = Tb. Thus, we obtain 

(8.3.5) 

where n is the additive noise term defined as 

(b 
n = lo 1/r(r)n(r) dr. (8.3.6) 

Since n(t) is a sample function of a white Gaussian noise process, the noise term n is a 
Gaussian random variable with zero mean and with variance 

u; = E(n2) = 1n 1n E(n(t)n(r))ifr(t)i/!(r) dtdr 
= (Tb (Tb No o(t - r)i/!(t)i/!(r) dtdr lo lo 2 

= � i/!2(t)dt = � .  Ni 1Tb Ni 
2 0 2 

(8.3 .7) 

l where we have used Equation ( 5 .3 .3) for the autocorrelation function of white noise. There­
fore, for a given signal· transmission (given Sm), the output of the correlator (y = y(Tb)) is 
a Gaussian random variable with mean Sm and variance No/2, i.e., 

f(y Jsm) = �e-(y-sm)2/No , m = 1, 2. (8.3.8) 

These two conditional probability density functions (PDFs) are illustrated in Figure 8.21 . 
This correlator output is fed to the detector, which decides whether the transmitted bit is a 
zero or a one, as described in Section 8.3.3. 
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����������--1��----=-���������--+- y -� � 
Figure 8.21 The conditional probability density functions of the correlator output for binary antipodal 
signaling. 

Example 8.3.1 

Sketch the noise-free output of the correlator for the rectangular pulse 1/f (t), as shown 
Figure 8.6, when s1 (t) and s2(t) are transmitted. 

Solution With n (t) = 0, the signal waveform at the output of the correlator is 

The graphs of y(t) for s1 = Jw;; and s2 = -Jw;; are shown in Figure 8.22. Since 
pulse 1/f (t) is constant over the integration interval 0 ::O t < Tb, the correlator is just a sim 
integrator. We observe that the maximum signal at the output of the correlator occurs at t = 
We also observe that the correlator must be reset to zero at the end of each bit interval Tb, 
that it can be used in the demodulation of the received signal in the next signal interval. Si 
an integrator is called an integrate-and-dump filter 

Example 8.3.2 

If the binary antipodal signals illustrated in Figure 8.8 are used for the transmission of inl 
mation, demonstrate that the output of the correlation-type demodulator is exactly the sam( 
that given for the previously discussed rectangular pulse signals. 

Solution In this case, 1/f (t) is the signal waveform shown in Figure 8.9, and the recei· 
signal is 

r(t) = Sm 1/f (t) + n(t) . 

-� 
Figure 8.22 Noise-free cross-correlator outputs when s 1  (t) and s2(t) are transmitted. 
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The cross-correlator output is 

y(t) = L r(r:)l/f(r:) dr: 

= Sm L 1/f2(r:)dr: + L n(r:)l/f(r:) dr:; 

at t = Tb, we have 

The signal component Sm in the cross-correlator output is the same as that obtained for the rect­
angular pulse, and the noise term n has exactly the same mean (zero) and variance 
(j; = No/2. • 

Example 8.3.3 

The correlation-type demodulator can be implemented in discrete time by sampling the recei­
ved signal waveform and cross correlating it with the sampled version of the possible trans­
mitted signals. Let us consider antipodal signaling based on the rectangular pulse shown in 
Figure 8.5. The received signal waveform r (t) and the transmitted pulse s(t) are sampled at a 
rate of F, = 20/Tb (the sampling interval is T, = Tb/20). The correlation of r(t) with s(t) 
performed numerically yields 

1 k y(kT,) = 20 L r(nT,)s(nT,), 
n=I 

k = 1, 2, . . .  , 20 

Compute and plot y(kT,) for 1 ::S k ::S 20 when the transmitted signal is s(t) and -s(t), 
where s(t) is the rectangular pulse shown in Figure 8.5 and r (t) is noise free. Compare the 
plots with the continuous-time correlator outputs shown in Figure 8.22. 

Solution Figure 8.23 illustrates the noise-free outputs of the discrete-time correlator for the 
two antipodal signals. They are similar to the outputs of the continuous-time correlator. • 

Binary Orthogonal Signals. Let us consider the two orthogonal signals given by 
Equation (8.2. 13) and illustrated in Figure 8 .12, where 1/r1 (t) and 1fr2(t) are the orthogonal 
basis functions as shown in Figure 8.13 , and s 1 = (,ftb, 0) and s2 = (0, � are the 
signal vectors. These two signals are used to transmit a binary information sequence, which 
consists of zeros and ones and occurs at a rate Rb = 1 /Tb bits/sec. In the presence of 
AWGN, the received signal has the form 

r(t) = Sm(t) + n(t) , 0 ::S t < Tb, m = 1 ,  2. (8.3.9) 

Since the two possible transmitted signals are two-dimensional, the received signal 
r (t) is cross correlated with each of the two basis signal waveforms 1fr1 (t) and 1fr2 (t), as 
shown in Figure 8.24. The correlator output waveforms are 

Ym (t) = fo1 r(r)1frm (r) dr, m = 1 ,  2, (8.3. 10) 
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r(t) 
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fo'o 

fo'o 

Figure 8.23 The correlator output in 
Example 8.3.3. 

Y1(t) Y1 
to detector 

r 
Sample at 

t =  Tb 
l 

Y2(t) Y2 
to detector 

Figure S.24 Correlation-type demodulator for binary orthogonal signals. 
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which, when sampled at t = Tb, result in the outputs 

367 

(8.3. 1 1) 

Now, suppose the transmitted signal is s1 (t) = s1 11/11 (t) ,  so that r (t) = s1 11/11 (t) + 
n(t). The output of the first correlator is 

(8.3 . 12) 
= s 1 1  + n1 = � + n1 ,  

i where s1 1  = � is the signal component and n1 is the noise component, defined as 

rn n 1  = lo 
n(i)1/11 (i) di. 

The output of the second correlator is 

[Tb 
Y2 = lo [s1 1 1/11 (i) + n(i)]1/12 (i) di 

[Tb [Tb 
= su lo 1/11 (i)1/12(i) di + lo n(i)1{12(i) di 

[Tb 
= lo 

n (i)1/12(i) di = nz. 

(8.3 . 13) 

(8.3. 14) 

(8.3. 1 5) 

(8.3 . 16) 

The output of the second correlator only includes the noise component n2, because 1{11 (t) 
and 1{12(t) are orthogonal. Consequently, the received signal vector is 

Y = (y1 , Y2) (8.3. 17) 

= (� + n1 , n2) . (8.3 . 18) 

It is easy to verify that when the signal s2(t) = s221/12(t) is transmitted, the outputs 
of the two correlators are Y1 = n 1  and Y2 = s22 + nz = � + nz. Hence, the received 
signal vector is 

Y = (y1 , Y2) 

= (n 1 ,  � + n2) . 

(8.3. 19) 

(8.3.20) 

The vector y at the output of the cross correlators is fed to the detector, which decides 
whether the received signal vector corresponds to the transmission of a one or a zero. 

The statistical characteristics of the observed signal vector y are easily determined. 
Since n(t) is a sample function of a white Gaussian noise process, the noise terms n1 and 
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n2 are zero-mean Gaussian random variables with variance o-; = No/2. Furthermore, th 
correlation between n 1 and nz is 

No {Tb = T Jo 1/11 (t)1/12(t) dt = 0. 

(8.3.21 

Therefore, n 1 and n2 are uncorrelated; since they are Gaussian, n 1 and nz are statist 
cally independent. Consequently, when the transmitted signal is s1 (t), the conditionaljoi1 
probability density function of the correlator output components (y1 , yz) is 

f(y1 , Y2 ls1) = (�) 2 e -(yi-,JW:;;/!No e-y?_!No . (8.3.2'. 

When s2 (t) is transmitted, the conditional joint PDF of the correlator output componen 
(y1 , Y2) is 

f(y1, Y2 ls2) = (�Y e-y[/No e -(yz-,JW:;;/!No . (8.3.2: 

Since the noise components n 1  and n2 are statistically independent, we observe th 
the joint PDFs of (y1 , yz), which are given by Equations (8.3.22) and (8.3.23), factor in 
a product of marginal probability density functions, i.e., 

(8.3.2 

For example, Figure 8.25 shows the PDFs f (y1 ls 1 ) and f (Y2 ls1) when s1 (t) is transmitte 

Example 8.3.4 

Consider the two orthogonal signals shown in Figure 8.12. Assuming that the transmitt 
signal waveform is s2 (t) = A1/f2(t), in the absence of additive noise, sketch the out): 
waveforms of the two correlators shown in Figure 8.24. The other signal waveform is s1 (t) 
A 1/f1 (t), where 1/f1 (t) and 1/f2 (t) are the basis functions shown in Figure 8.13.  

Figure 8.25 The conditional probability density functions of the outputs (y1 ,  y2) from the cross correlators 1 

two orthogonal signals. 
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Yz(t) 

0 0 

Figure 8.26 Correlator output signal waveforms when s2 (t) is the transmitted signal. 

Solution When s2 ( t) is transmitted in the absence of noise, the outputs of the two correlators 
shown in Figure 8.26 are 

Y1 (t) = L s2 (r:)i/f1 (r:) dr: = .jcg;, L i/f2(r:)i/f1 (r:) dr:, 

yz(t) = L s2(r:)i/f2(r:) dr: = .jcg;, L i/f}(r:) dr:. 
The graphs of the correlator outputs are illustrated in Figure 8.26. Note that the noise-free 
output of the first correlator is zero for 0 :::: t < Tb because i/f 1 (t) and i/f2 (t) are nonoverlapping 
orthogonal waveforms. • 

Example 8.3.5 

The correlation-type demodulator for binary orthogonal signaling scheme in Figure 8.24 can 
be implemented in discrete time by sampling the received signal waveform and cross correlat­
ing it with the sampled version of the possible transmitted signals. Let us consider orthogonal 
signaling based on the rectangular pulses shown in Figure 8.12, so that 

r (t) = s;(t) + n(t), i = l ,  2. 

The received signal waveform r(t) and the transmitted pulse S1 (t) and Sz(t) are sampled at a 
rate of Fs = 20/Tb .  The discrete-time correlator outputs are (Ts = Tb/20) 

1 k Y1 (kTs) = 
20 Lr(nT,)s1 (nTs), 

n=l 

1 k Y2 (kTs) = 
20 Lr(nT,)s2(nTs) , 

n=l 

1 :::: k :::: 20, 

1 :::: k ::;  20. 

Compute and plot y1 (kT,) and y2 (kT,) for 1 :S k :::: 20 when s1 (t) is transmitted and 
when and s2 (t) is transmitted and r(t) is noise free. Compare the plots with the continuous­
time correlator outputs shown in Figure 8.26. 

Solution Figure 8.27 illustrates the noise-free outputs of the discrete-time correlator for the 
two antipodal signals. They are similar to the outputs of the continuous-time correlator. • 
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Y1(kTs) Y2(kTs) 
'i!;b ----------------

Yi(kTs) Y2(kTs) 

1!; b ------------------------------------------

Figure 8.27 The correlator outputs in Example 8.3.5 when s1 (t) is transmitted (top) and when s2(t) is 
transmitted (bottom). 

Example 8.3.6 

If the binary orthogonal signals illustrated in Figure 8.16 are used for the transmission 1 
binary information, determine the outputs of the two correlators when the signal wavefon 
s; (t) is transmitted. 

Solution The two orthogonal signals in Figure 8.16 are expressed as a linear combination 1 
the two nonoverlapping basis functions 1/f1 (t)and 1/f2(t), as shown in Figure 8.13. Thus, 

s; (t) = s1 11/f1 (t) + s121/f2 (t) = Jw,b/21/fi (t) + Jw,b/21/f2(t) 

and 

When s; (t) is transmitted, the received signal is r(t) = s; (t) +n(t). The two correlator outpt 
are (b 

Ym = Jo r(r)ifrm (r) dr, m = 1 , 2. 

By substituting for s; (t) in the preceding integral and using the orthogonality property of ifr1 I 
and 1/f2(t), we obtain 

Y1 = Jw,b/2 + n1 
and 

Y2 = Jw,b/2 + n2, 
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where the noise components are defined as 

m = 1 , 2. 

As demonstrated, n1 and n2 are zero-mean uncorrelated Gaussian random variables, each hav­
ing a variance a; = N0/2. Therefore, the joint probability density function of y1 and y2, 

conditioned on s; (t) being transmitted, is 

(8.3.25) 

• 

8.3.2 Matched-Filter-Type Demodulator 

Instead of using cross correlation to perform the demodulation, we may use a filter-type 
demodulator, as described in the next paragraph. As in the preceding section, we describe 
this demodulator for binary antipodal and binary orthogonal signals. 

Binary Antipodal Signals. As we have observed, in the case of binary antipodal 
signals, the received signal is 

r(t) = sm1/f(t) + n(t), 0 S t < Tb, m = 1 ,  2, (8.3.26) 

where 1/f (t) is a unit energy pulse of duration Tb. Suppose we pass the received signal r(t) 
through a linear time-invariant filter with impulse response 

h(t) = 1/l(Tb - t), 0 S t < Tb . (8.3.27) 

The filter output is 

y(t) = fo1 r(r)h(t - r) dr. (8.3.28) 

If we sample the output of the filter at t = Tb, we obtain 

y(Tb) = 1Tb r (r)h(Tb - r) dr. 

But h(Tb - r) = 1/1(-r). Therefore, 

y(Tb) = 1Tb [sm1/f(r) + n(r)]1/l(r) dr 

(8.3.29) 

= Sm + n. 
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s (t) 

A 

0 T 

(a) Signal s (t) 
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h (t) = s(T - t) 

A 

0 T 
(b) Impulse response 

of filter matched to s (t) 
Figure 8.28 Signal s(t) and filter 
matched to s (t). 

Hence, the output of the filter at t = Tb is exactly the same as the output obtained with 
cross correlator. 

A filter whose impulse response h(t) = s (T - t), where s (t) is assumed to b 
confined to the time interval 0 ::: t < T, is called the matched filter to the signal s ({ 
An example of a signal and its matched filter are shown in Figure 8.28. The response c 
h(t) = s (T - t) to the signal s (t) is 

y(t) = fo1 s (r)s(T - t + r) dr, (8.3.3( 

which is basically the time-autocorrelation function of the signal s (t), as shown i 
Equation (2.3.37). Figure 8.29 illustrates y(t) for the triangular signal pulse shown i 
Figure 8.28. We note that the autocorrelation function y(t) is an even function of t, whic 
attains a peak at t = T. The peak value y(T) is equal to the energy of the signal s(t). 

Example 8.3.7 

For the signal s(t) shown in Figure 8.28(a), implement the matched filter in discrete-time ar 
compute the matched filter output when the input is the sampled version of s(t). Select tl 
sampling rate Fs = 20/ Ts (sampling interval Ts = Tb/20). Plot the matched filter output. 

Solution The matched filter impulse response is 

h(t) = s(Tb - t) 

y (t) 

Figure 8.29 The matched filter 
output is the autocorrelation function 
s (t). 
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y(kTs) 

Figure 8.30 The matched filter output in Example 8.3.7. 

and the continuous-time output is the convolution of h(t) with s(t), i.e., 

y(t) = L h(r)s(t - r) dr 

Thus, the discrete-time output of the matched filter is 

1 k y(kT,) = 20 L h(mTs)s(kT, - mTs) m=l 
1 k = 20 'I:, s(20Ts - mTs)s(kTs - mTs) m=l 

The plot of y(kTs) is shown in Figure 8.30. 
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• 

Binary Orthogonal Signals. As we have observed in the previous section, binary 
orthogonal signals are two-dimensional signals; hence, two correlators are needed to per­
form the demodulation. In place of the correlators, two linear time-invariant filters may be 
employed. To be specific, consider the received signal 

r (t) = sm (t) + n(t), 0 :S t < Tb , m = 1 ,  2, (8.3.31) 

where sm (t) and m = 1 ,  2 are the two orthogonal waveforms given by Equation (8.2. 13) 
and illustrated in Figure 8. 12, and iffm (t) and m = 1, 2 are the two orthogonal basis func­
tions shown in Figure 8.13 . The impulse responses of the two filters matched to 1/;'1 (t) and 
1/f2(t) are defined as 
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and 

When the received signal r(t) is passed through the two filters, their outputs are 

Ym (t) = lot r(r)hm (t - r) dr, m = 1 ,  2. 
<___ If we sample the outputs of these filters at t = Tb, we obtain 

= loTb r(r)lfrm (r) dr, m = 1 , 2. 

Chapter ! 

(8.3.32 

(8.3.33 

(8.3.34 

By comparing the outputs of the two matched filters at t = Tb with the outputs obtaine1 
from the cross correlators given by Equation (8.3 . 1 1), we observe that the outputs are iden 
tical. Therefore, the correlation-type demodulator and the matched-filter-type demodulate 
yield identical outputs at t = Tb. 

Properties of the Matched Filter. A matched filter has some interesting prope1 
ties. Let us prove the most important property, which may be stated as follows: If a signa 
s (t) is corrupted by AWGN, the filter with the impulse response matched to s (t) maximize 
the output signal-to-noise ratio (SNR). 

To prove this property, let us assume that the received signal r (t) consists of th 
signal s (t) and AWGN n(t), which has zero mean and a power spectral density Sn <f) = 

No/2 W/Hz. Suppose the signal r(t) is passed through a filter with the impulse respons 
h(t), 0 :s t < T, and its output is sampled at time t = T. The filter response to the sigm 
and noise components is 

y(t) = lot r(r)h(t - r) dr 
(8.3.35 = lot s (r)h(t - r) dr + lot n(r)h(t - r) dr. 

At the sampling instant t = T, the signal and noise components are 

y(T) = loT s (r)h(T - r) dr + loT n(r)h(T - r) dr 
(8.3.3( = Ys (T) + Yn (T), 

where Ys (T) represents the signal component and Yn (T) represents the noise comp< 
nent. The problem is to select the filter impulse response that maximizes the output SNE 
defined as 



Section 8.3 Optimum Receiver Design 375 

(S) y](T) N 0 
= E (y;(T)) " (8.3 .37) 

The denominator in Equation (8.3.37) is simply the variance of the noise term at the 
output of the filter. Let us evaluate E (y�(T)) . We have 

E (y�(T)) = foT foT E(n(r)n(t))h(T - r)h(T - t) dt dr 

= � o(t - r)h(T - r)h(T - t) dt dr N, 1T 1T 2 0 0 
= No 1T h2 (T - t) dt. 2 0 

(8.3.38) 

Note that the variance depends on the power spectral density of the noise and the energy in 
the impulse response h (t) . 

By substituting for Ys (T) and E (y�(T)) in Equation (8.3.37), we obtain the expres­
sion for the output SNR as 

( ) [foT s (r)h(T - r)dr r [f[ h(r)s(T - r)dr r � o 
= 

�o J0T h2(T - t) dt 
= 

�o J[ h2(T - t) dt 
. (8.3.39) 

Since the denominator of the SNR depends on the energy in h (t), the maximum output 
SNR over h (t) is obtained by maximizing the numerator of (S / N)o subject to the constraint 
that the denominator is held constant. The maximization of the numerator is most easily 
performed by using the Cauchy-Schwartz inequality, which generally states that if 81 (t) 
and 8z(t) are finite energy signals, then 

[1.: 81 (t)82(t) dt r :s ;:_: 8i(t) dt ;:_: 8� (t) dt ' (8.3 .40) 

where equality holds when 8i (t) = C82(t) for any arbitrary constant C. If we set 81 (t) = 
h(t) and 8z(t) = s (T- t) ,  it is clear that the (S /N)o is maximized when h(t) = Cs(T- t) , 
i.e., h(t) is  matched to the signal s (t) . The scale factor C2 drops out of the expression for 
(S / N)0, since it appears in both the numerator and the denominator. 

The output (maximum) SNR obtained with the matchecl filter is 

2 1T = - s2(t) dt No o 
(8.3.41) 2�s 

- - , No 
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where �s is the energy of the signal s (t). Note that the output SNR from the matched filter 
depends on the energy of the waveform s (t), but not on the detailed characteristics of s(t) . 
This is another interesting property of the matched filter. 

Frequency-Domain Interpretation of the Matched Filter. The matched filter 
has an interesting frequency-domain interpretation. Since h(t) = s (T - t), the Fourier 
transform of this relationship is 

H(f) = 1T 
s (T - t) e-j2nft dt 

(8.3.42) 

= S*(f)e-j2rcfT . 

We observe that the matched filter has a frequency response that is the complex conjugate 
of the transmitted signal spectrum multiplied by the phase factor e-j2rc fT, which represents 
the sampling delay of T. In other words, I H (f) I = I S  (f) \ ,  so that the magnitude response 
of the matched filter is identical to the transmitted signal spectrum. On the other hand, the 
phase of H(f) is the negative of the phase of S(f), shifted by a linear function of T. 

Now, if the signal s (t), with spectrum S(f), is passed through the matched filter, the 
filter output has a spectrum Y(f) = \ S(f) \2e-j2rcfT . Hence, the output waveform is 

Ys (t) = 1_: Y(f) ej2rcft df 

= 1_: \ S(f) \2 e-j2rrfT ej2rcft df. 

By sampling the output of the matched filter at t = T, we obtain 

Ys (T) = f 
00 

\S(f) \2df = {T 
s2 (t) dt = �s . 

-oo lo 
where the last step follows from Parseval's relation. 

The noise of the output of the matched filter has a power spectral density 

So(f) = \H(f) \2N0/2. 

Hence, the total noise power at the output of the matched filter is 

Pn = 1_: So(f) df 

(8.3.43; 

(8.3.4{ 

(8.3.45 

(8.3.46 
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The output SNR is simply the ratio of the signal power 

Ps = y;(T) 

to the noise power Pn. Hence, 

'i82 s 
'iSsNo/2 

which agrees with the result given by Equation (8.3.41) .  

Example 8.3.8 

2'i8s 
No , 

377 

(8.3 .47) 

(8.3.48) 

Consider the binary orthogonal PPM signals, which are shown in Figure 8 . 12, for transmitting 
information over an AWGN channel. The noise is assumed to have zero mean and power 
spectral density N0/2. Determine the impulse response of the matched filter demodulators, 
and the output waveforms of the matched filter demodulators when the transmitted signal is 
S1 (t). 
Solution The binary PPM signals have dimension N = 2. Hence, two basis functions are 
needed to represent the signals. From Figure 8 . 13, we choose 1fr1 (t) and 1fr2(t) as 

o/ «t) � I ff. Ti O < t  < � - - 2 

0, otherwise 

,,,(t) � / Ii· Tb - < t < Tb 
2 - -

0, otherwise 

These waveforms are illustrated in Figure 8.3 1 (a). The impulse responses of the two matched 
filters are 

and 

Tb - < t < Tib 
2 - -

otherwise 

- ,  0 < t < Tb/2 
h1(t) = 1/f2(Tb - t) = Tb -/ H.  0, otherwise 

and are illustrated in Figure 8.3 l (b). 
If S1 (t) is transmitted, the (noise-free) responses of the two matched filters are as shown 

in Figure 8.31 (c). Since y1 (t) and y2(t) are sampled at t = Tb, we observe that y1. (Tb) = ff,, 
and Y2s (Tb) = 0. Hence, the received vector formed from the two matched filter outputs at the 
sampling instant t = Tb is 

(8.3.49) 
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rfr1(t) rfrz(t) 

� � 
0 Tb Tb 3Tb t 0 Tb Tb 3Tb t 

2 2 2 2 

(a) 

hi(t) = rfr1(T - t) hz(t) = rfrz(T - t) 

� � 
0 Tb Tb 3Tb t 0 Tb Tb 3Tb t 

2 2 2 2 

(b) 

Y1s(t) Y2s(t) 

� � 

0 0 

(c) 
Figure 8.31 Basis functions and matched filter responses for Example 8.3.8. 

where n1 = Yin (Tb) and nz = Y2n (Tb) are the noise components at the outputs of the match1 
filters, given by 

Ykn (Tb) = 1Tb n(t)1f!k (t)dt, 

Clearly, E(nk) = E(Ykn (Tb)) = 0. Their variance is 

k = 1 , 2. 

u; = E·{yfn(Tb)) = 1Tb 1Tb E(n(t)n(T))1/lk (t)1f!k(T) dt dT 

No 1Tb No 
= - 1/l'f(t)dt = - . 

2 0 2 

Observe that for the first matched filter, 

No ' 

(8.3.5 

(8.3.5 



Section 8.3 Optimum Receiver Design 379 

which agrees with our previous result, since %b is the signal energy per information bit. Also, 
note that the outputs of the two matched filters corresponding to the transmitted signal s2 (t) 
are (y1 ,  Y2) = (n 1 ,  � + n1) · • 

8.3.3 The Performance of the Optimum Detector for Binary Signals 

=� 
' · In this section, we describe the optimum decision rule, which is employed by the detector 

to make decisions based on the output from the demodulator. For this development, we 
assume that the signals received in successive signal intervals are statistically independent, 
so the detector only needs to consider its input in a given bit interval when making a 
decision on the transmitted signal in that bit interval. 

Binary Antipodal Signals. As we have observed, the output of the demodulator 
in any signal (bit) interval is 

y = Sm + n, m = 1 , 2, (8.3.52) 

where Sm = ±� and n is a zero-mean Gaussian random variable with variance a; = 
N0/2. The conditional probability density functions p(y lsm) , m = 1 ,  2, are given by 
Equation (8.3.8) and illustrated in Figure 8.21 .  

Since the input to the detector i s  a scalar, it i s  apparent that the detector compares 
y with a threshold a, determines whether y > a, and declares that the signal s1 (t) was 
transmitted. Otherwise, it declares that s2 (t) was transmitted. The optimality of this scheme 
will be shown in Section 8.4. 1 .  Later in this chapter, we demonstrate that this decision rule 
maximizes the probability of making a correct decision or, equivalently, that it minimizes 
the probability of error. 

� For the binary antipodal signals, the average probability of error as a function of the 
threshold a is 

(8.3.53) 

where P (s1 )  and P (s2) are the a priori probabilities of the two possible transmitted signals. 
Let us determine the value of the threshold a, say a*, that minimizes the average probabil­
ity of error. Differentiating P2(a) with respect to a and setting the derivative to zero, we 
obtain 

or equivalently, 

(8.3.54) --- - --
f (a ls2) P (s1) 

Substituting the conditional probability density functions given by Equation (8.3.8) into 
Equation (8.3.54) with s1 = � and s2 = -�, we have 

(8.3.55) 
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or equivalently, 

e4a�/No = P(s2) . P (s1) 
Clearly, the optimum value of the threshold is 

* No P(s2) a = -- ln --. 4� P(s1) 

Chapter ! 

(8.3.56 

We observe that if P(s1) > P(s2), then a* < 0, and if P(s2) > P(s1) , then a* > O 

In practice, the two possible signals are usually equally probable, i.e., the a priori probabil 
ities P(s1) = P(s2) = 1/2. Here, Equation (8.3.56) yields the threshold a* = 0. For thi: 
case, the average probability of error is 

10 1 10 ( . /f&\2 
= f(y ls1)dy = r.::;-,;r e- Y-v �bJ /Nody. 

-oo v rt No -oo 

(8.3.57 

By malting a simple change in variable, specifically x = (y - � / J N0/2, the integra 
may be expressed as 

1 1-
J
2
<t!,
b/No 2 P2 = -- e-x 12 dx ....n;r, -oo (8.3.58 

where Q(x) is the area under the tail of the normal (Gaussian) probability density function 
defined as 

Q(x) = _1_ 1-x 
e-u2/2 du = _1_ foo e-u2/2 du. ....n;r, -oo ....n;r, x 

(8.3.59 

For more properties of Q(x), see the discussion following Equation (5. 1 .7). We observ1 
that the probability of error depends only on the SNR 2<t!,b/ No and not on the detaile1 
characteristics of the pulse waveforms. Also, Equations (5. 1 .8)-(5 . 1 . 10) clearly show th� 
the error probability tends to zero exponentially as SNR increases. 

Binary Orthogonal Signals. In the case of binary orthogonal signals, the outpu 
of the demodulator is the two-dimensional vector y = (y1 , y2), where y1 and y2 are th 
outputs of the two cross correlators or the two matched filters. Recall that if the signal s1 (t 
is transmitted, the demodulator outputs are 

and 
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where the noise components n1 and n2 are statistically independent, zero-mean Gaussian 
variables with variance u; = No/2. For the important case in which the two orthogonal 
signals are equally probable, i.e., P(s1) = P(s2) = 1/2, the detector that minimizes the 
average probability of error simply compares y1 with Y2. If Yr > y2, the detector declares 
that s1 (t) was transmitted. Otherwise, it declares that s2(t) was transmitted. The optimality 
of this scheme follows from the discussion in Section 8.4. 1 .  Based on this decision rule, 
assuming that s1 (t) was transmitted, the probability of error is simply the probability that 
Yr - Y2 < 0. Since Yr and y2 are Gaussian with equal variance u; = No/2 and statistically 
independent, the difference 

z = YI - Y2 
= .Jw;/, + n1 - n2 

(8.3 .60) 

is also a Gaussian random variable with mean .Jw;;, and variance u'}: = N0. Consequently, 
the probability density function of z is 

f ( ) 
_ 1 -(z-�'/ /2No z - e , .J2nNo 

and the average probability of error is 

P2 = P(z < 0) = £: f(z) dz 

1 1-� 2 (�b ) = -- e-x 12 dx = Q - . .J2TI. -oo No 

(8.3.61) 

(8.3.62) 

When we compare the average probability of error of binary antipodal signals given 
by Equation (8.3.58) to that of binary orthogonal signals, we observe that, for the same 
error probability P2, the binary antipodal signals require a factor of two (3 dB) less signal 
energy than orthogonal signals. The graphs of P2 for these two signal types are shown in 
Figure 8.32. 

Performance of General Binary Equiprobable Signaling. Our derivation of 
the performance of binary antipodal and binary orthogonal signaling, for equiprobable 
messages, shows that 

P, � Q (�) 
P2 � Q (�) 

for binary antipodal, 

for binary orthogonal, 

where cgb is the energy per bit and N0/2 is the noise power spectral density. 

(8.3.63) 

(8.3.64) 
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We make two interesting observations about the form of P2. First, we note that the 
probability of error depends only on the ratio '11,b/ No and not on any other detailed charac­
teristics of the signals and the noise. Second, we note that 2'11,b/ No is also the output SNR 
from the matched filter (and correlation-type) demodulator. The ratio '11,/J/ No is usually 
called the signal-to-noise ratio or SNR/bit. 

We also observe that in both cases the probability of error may be expressed in terms 
of the distance between the two signals s1 and s2 • From Figure 8.7, we observe that in the 
case of binary antipodal signaling, the two signals are separated by the distance d12 = 
2,JW;b. Substituting '11,b = df2/4 in Equation (8.3.63), we obtain 

(8.3.65) 
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Similarly, for binary orthogonal signaling, from Figure 8. 1 1  we have d12 ..JJ%b and 
substituting cgb = df2/2 in Equation (8.3.64) results in Equation (8.3.65). 

Equation (8.3.65) illustrates the dependence of the error probability on the Euclidean 
distance between the two signal points. Note that in general the Euclidean distance between 
the two signal points can be expressed directly in terms of the signal waveforms as 

df2 = 1_: (s1 (t) - s2 (t))2 dt. (8.3.66) 

It can be shown that Equation (8.3.65) can be used for computing the error proba­
bility of any binary communication system with two equiprobable messages corrupted by 
AWGN. 

Example 8.3.9 

Signal waveforms s1 (t) and s2 (t) shown in Figure 8.33 are used to transmit equiprobable 
binary data over an AWGN channel. Determine the bit-error probability of this system. 

Solution We can write 

Therefore, 

2 i----. 

1 --------�-... 

0 :::0 t < Tb/2 
Tb/2 :::0 t < Tb 
otherwise 

Figure 8.33 Binary waveforms in Example 8.3.9. 

and 

2 

sz (t) = {20t/Tb O ::::: t < Tb 
otherwise 

Sz(t) 
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Substituting into Equation (8.3.65) yields 

• 

8.4 M-ARY DIGITAL MODULATION 

In Sections 8.2 and 8.3, we described the transmission of one bit at a time by employing 
two signal waveforms that are either antipodal or orthogonal. In this section, we consider 
the simultaneous transmission of multiple bits by using more than two signal waveforms. 
In this case, the binary information sequence is subdivided into blocks of k bits, called 
symbols, and each block (or symbol) is represented by one of M = 2k signal waveforms, 
each of duration T. This type of modulation is called M -ary modulation. Here we define the 
signaling (symbol) rate, R,, as the number of signals (or symbols) transmitted per second. 
Clearly, 

1 Rs = y'  
and since each signal carries k = log2 M bits of information, the bit rate i s  given by 

The bit interval is 

it is shown in Figure 8.34; 

k Rb = kRs = - . T 

The M signal waveforms may be one-dimensional or multidimensional. The one­
dimensional M-ary signals are a generalization of the binary PAM (antipodal) signals. 

8.4.1 The Optimum Receiver for M-ary Signals in AWGN 

In Section 8.3, we described the optimum receiver for binary antipodal and binary orthog· 
onal signals in AWGN. In this section, we derive the optimum receiver for M-ary signali 
corrupted by AWGN. 

As described above, the input sequence to the modulator is subdivided into k-bi 
blocks, called symbols, and each of the M = 2k symbols is associated with a dorrespondini 
signal waveform from the set {sm (t) , m = 1 ,  2, .. , M}. Each signal waveform is transmittec 

\ 

�---------- T ----------

-+-I ----+-----t-�'V-- . . . ------<..,.___ 
0 Tb 2Tb kTb 

Tb = bit interval 

T = symbol interval 

Figure 8.34 Relationship between the symbol interval and the bit interval. 
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within the symbol (signaling) interval or time slot of duration T. To be specific, we consider 
the transmission of information over the interval 0 ::::; t < T. 

The ch�nnel is  assumed to corrupt the signal by the addition of white Gaussian noise, 
as shown in Figure 8.18 . Thus, the received signal in the interval 0 < t < T may be 
expressed as 

r (t) = Sm(t) + n(t) , 0 :S t  < T, (8.4. 1) 

where n(t) denotes the sample function of the AWGN process with the power spectral 
density Sn <f) = �o W/Hz. Based on the observation of r(t) over the signal interval, we 
wish to design a receiver that is optimum in the sense that it minimizes the probability of 
making an error. 

The Signal Demodulator. As in the case of binary signals, it is convenient to 
subdivide the receiver into two parts: the signal demodulator and the detector. The function 
of the signal demodulator is to convert the received waveform r ( t) into an N -dimensional 
vector y = (y1 , yz , . . . , YN ) , where N is the dimension of the transmitted signal wave­
forms. The function of the detector is to decide which of the M possible signal waveforms 
was transmitted based on observation of the vector y. 

We have shown that the M -ary signal waveforms, each ,of which is N -dimensional, 
may be represented in general as 

( 

N 
Sm(t) = I:, smk'lf!k(t), 

k=I 
0 :S t  :S T, 

'� 
m = 1 , 2 . . .  , M, 

where {smk} are the coordinates of the signal vector 

Sm = (Sm[ , Sm2 • . . , SmN) ,  m = 1 ,  2, . . . .  ' M, 

(8.4.2) 

(8.4.3) 

and 1/rk(t) and k = 1, 2, . . . , N are N orthonormal basis waveforms that span the 
N-dimensional signal space. Consequently, every one of the M possible transmitted sig­
nals of the set {sm (t) ,  1 :S m :S M} can be represented as a weighted linear combination 
of the N basis waveforms {1/rk (t)} .  

In the case of  the noise waveform n(t) in the received signal r(t), the functions 
{1/rk (t) } do not span the noise space. However, we will show that the noise terms that fall 
outside the signal space are irrelevant to the detection of the signal. 

As a generalization of the demodulator for binary signals, we employ either a 
correlation-type demodulator that consists of N cross correlators in parallel, as shown in 
Figure 8.35, or a matched-filter-type demodulator that consists of N matched filters in par­
allel, as shown in Figure 8.36. To be specific, suppose the received signal r(t) is passed 
through a parallel bank of N cross correlators. The correlator outputs at the end of the.. 
signal interval are 

Yk = Smk + llk , k = 1 ,  2, . . .  , N, 

(8.4.4) 
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Received 
signal 
r(t) 

rf!1(t) 

Figure 8.35 Correlation-type demodulator. 

Received 
signal 
r(t) 

1------< rf!2(T - t) 

-----; rf!N(T - t) 

Figure 8.36 Matched-filter-type demodulator. 

Sample 
at t = T 

Sample 
at t = T 

To detector 

To detector 

Chapter 8 
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where 

Smk = foT Sm (t)1frk (t) dt, k = 1 ,  2, . . .  , N, 

(8.4.5) 

Equation (8.4.4) is equivalent to 

y = Sm + n ,  (8.4.6) 

where the signal is now represented by the vector Sm with components Smk and k = 
1 ,  2, . . .  , N. Their values depend on which of the M signals was transmitted. The com­
ponents of n, i.e., {nd, are random variables that arise from the presence of the additive 
noise. 

In fact, we can express the received signal r(t) in the interval 0 ::; t ::; T as 

N N 
r(t) = L, smkVrk (t) + L, nk1frk (t) + n'(t) 

The term n'(t) , defined as 

k=l k=l 

N 
= L YkVrk(t) + n'(t) . 

k=l 

N 
n'(t) = n(t) - L, nk1frk (t) ,  

k=1 

(8.4.7) 

(8.4.8) 

is a zero-mean Gaussian noise process that represents the difference between the original 
noise process n(t) and the part that corresponds to the projection of n(t) onto the basis 
functions {Vrk (t) } .  We will show that n'(t) is irrelevant when we decide which signal was 
transmitted. Consequently, the decision may be based entirely on the correlator output 
signal and noise components Yk = Smk + nk . k = 1 ,  2, . . .  , N. 

Since the signals {sm(t)} are deterministic, the signal components {smk} are deter­
ministic. The noise components {nk} are Gaussian. Their mean values are 

(8.4.9) 
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for all k. Their covariances are 

= ___!!_8 (t - r)'tfrk (t)'tfrm (r) dt dr 1T 1T N, 0 0 2 

N, 1T = 2
° 

0 
Vrk(t)'tfrm (t) dt 

Chapter 8 

(8.4. 10) 

where Dmk = 1 when m = k and will otherwise be zero. Therefore, the N noise components 
{nk} are zero-mean uncorrelated Gaussian random variables with a common variance a; = 

No/2, and it follows that 

N 1 - N "
T 

f (n) = n f (n;) = e Li=! No 
. (nNo)N/2 
1=1 

(8.4. 1 1; 

From the previous development, the correlator outputs {Yk} conditioned on the mtt 
signal being transmitted are Gaussian random variables with mean 

(8.4.12: 

and equal variance 

a; = a; = No/2. (8.4. 13: 

Since the noise components {nk} are uncorrelated Gaussian random variables, they are alsc 
statistically independent. As a consequence, the correlator outputs {yk} conditioned on th1 
mth transmitted signal are statistically independent Gaussian variables. Hence, the condi 
tional probability density functions (PDFs) of the random variables (y1 , y2, . . .  , YN) = J 
are simply 

N 
f (y lsm) = n f (Yk lsmk) , m = 1 ,  2, . . .  , M, (8.4. 14 

k=l 

where 
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Substituting Equation (8.4. 15) into Equation (8.4. 14 ), we obtain the joint conditional PDFs 
as 

f(y lsm) = 
(nN:)N/2 exp [-� (Yk - Smk)2 /No] 

1 2 -
(n
_
Ni
_
o
_
)
_N/-2 exp[- II y - Sm II /No] , m = 1 , 2, . . .  , M. 

(8.4. 16) 

(8.4. 17) 

As a final point, we wish to show that the correlator outputs (y1 , Y2 , . . .  , y N) are 
sufficient statistics for reaching a decision on which of the M signals was transmitted. 
In other words, we wish to show that no additional relevant information can be extracted 
from the remaining noise process n'(t) . Indeed, n'(t) is uncorrelated with the N correlator 
outputs {yk} , i.e., 

E(n'(t)yk) = E(n'(t))smk + E(n'(t)nk) 
= E(n'(t)nk) 

T N 
= 1 E(n(t)n(r:))1frk(r:) dt -

L E(n jnk)i/tj (t) 0 j=l 
No No = -1/tk(t) - -1/tk(t) = 0. 2 2 (8.4. 1 8) 

This means n'(t) and rk are uncorrelated because n'(t) is zero mean. Since n'(t) and {yk} 
are Gaussian and uncorrelated, they are also statistically independent. Consequently, n'(t) 
does not contain any information that is relevant to the decision as to which signal wave­
form was transmitted. All the relevant information is contained in the correlator outputs 
{yk} .  Hence, n'(t) may be ignored. 

Example 8.4.1 

Consider an M = 4 PAM for a baseband AWGN channel in which the signal waveforms are 

Sm (t) = Sm1/J(t),  0 :S t <  T, 

where 1/f(t) is a unit energy rectangular pulse of duration T and the four signal points {sm } 
are ±d and ±3d. Thus, the signal points are symmetric with respect to the origin and equally 
spaced with distance 2d between adjacent signal points. The additive noise is a zero-mean 
white Gaussian noise process with the spectral density N0/2. Determine the PDF of the 
received signal at the output of the demodulator and sketch the PDFs for the case M = 4. 

Solution The received signal is expressed as 

r(t) = Sm 1/l(t) + n(t) 
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-3d -d d 3d 

Figure 8.37 PDFs for M = 4 received PAM signals in additive white Gaussian noise. 

and the output of the demodulator is 

= Sm + n, 

where n is a zero-mean Gaussian random variable with variance a; = N0/2. Therefore, tl 
PDF of y = y(T) is 

f(yJsm) = �e-<Y-sm)2/No , m = 1 ,  2, . . .  ' M 

and sm = (2m - 1 - M)d. 
The PDFs for M = 4 PAM are shown in Figure 8.37. 

Example 8.4.2 

Consider a set of M = 4 orthogonal signal waveforms in which the four signal points are 

s1  = (#.. o, o, o) ,  

s2 = (Jo, � . . O, o) , 

S3 = ( 0, 0, #,, 0) , 
S4 = ( 0, 0, 0, #.) . 

The additive noise is a zero-mean white Gaussian noise process with a spectral density No/ 
Determine the PDF of the received signal vector y at the output of the demodulator, assumi1 
that the signal s1 (t) was transmitted and sketch the PDFs of each of the components of ti 
vector y. 

Solution The signal vector corresponding to the transmitted s1 (t) is 

S 1 = (#., 0, 0, o) 

and the received signal vector is, according to Equation (8.4.6), 

y = S1  + n  
= .(� + n1 > nz, n3, n4) , 
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f(y;ls1), i = 2, 3, 4 

Figure 8.38 The PDFs of the 
-------::+------':::::--------- Y; received signal components of the 

vector y in Example 8.4.2. 

391 

where the noise components n 1 , n2 , n3, n4 are mutually statistically independent, zero-mean 
Gaussian random variables with identical variance o} = N0/2. Therefore, the joint PDF of 
the vector components y1 , y2 , y3 , y4 is, according to Equation (8.4. 16) with N = 4, 

The PDFs of each of the components of the vector y are shown in Figure 8.38. We note 
that the PDFs of yz , y3 , y4 are identical. • 

The Optimum Detector. As we have observed from this development, when a 
signal is transmitted over an AWGN channel, either a correlation-type demodulator or a 
matched-filter-type demodulator, produces the vector y = (y1 , y2, . . .  , YN ), which con­
tains all the relevant information in the received signal waveform. The received vector y 
is the sum of two vectors. The first vector is Sm, the signal vector that is equivalent to the 
transmitted signal, and the second vector is n ,  the noise vector. The vector Sm is a point 
in the signal constellation, and the vector n is an N -dimensional random vector with sta­
tistically independent and identically distributed components, where each component is a 
Gaussian random variable with mean 0 and variance No/2. Since the components of the 
noise are independent and have the same mean and variance, the distribution of the noise 
vector n in the N-dimensional space has spherical symmetry. When Sm is transmitted, the 
received vector y, which represents the transmitted signal Sm plus the spherically symmet­
ric noise n ,  can be represented by a spherical cloud centered at sm . The density of this 
cloud is higher at the center and becomes less as we depart from s m ,  i.e., these points 
become less likely to be received. The variance of the noise No/2 determines the density 
of the noise cloud around the center signal Sm . For low N0/2, the cloud is closely centered 
arouna Sm and its density (representing the probability) reduces sharply as the distance 
from the center is increased. For high No/2, the cloud is spread and larger distances have 
a higher probability compared with the low N0/2 case. The signal constellation, the noise 
cloud, and the received vector are shown in Figure 8.39 for the case of N = 3 and M = 4. 

We wish to design a signal detector that makes a decision on the transmitted signal 
in each signal interval based on the observation of the vector y in each interval, such that 
the probability of a correct decision is maximized. With this goal in mind, we consider a 
decision rule based on the computation of the posterior probabilities defined as 

P (signal Sm was transmitted ly) m = 1 , 2, . . .  , M, (8.4. 19) 
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Figure 8.39 Signal constellation, nois1 
cloud, and received vector for N = 3 
and M = 4. It is assumed that s, is 
transmitted. 

which we abbreviate as P (s m I y). The decision criterion is based on selecting the signa 
corresponding to the maximum of the set of posterior probabilities { P (s m I y)}. At the ern 
of this section, we show that this criterion maximizes the probability of a correct decision 
hence, it minimizes the probability of error. Intuitively, this decision is the best possibl1 
decision that minimizes the error probability. It is clear that in the absence of any receivec 
information y, the best decision is to choose the signal Sm that has the highest prior proba 
bility P(sm) .  After receiving the information y, the prior probabilities P(sm) are replace1 
with the posterior (conditional) probabilities P(sm ly), and the receiver chooses the Sm tha 
maximizes P (s m I y). This decision criterion is called the maximum a posteriori probabilit 
(MAP) criterion. 

Using Bayes's rule, we may express the posterior probabilities as 

P(s I ) = f(y lsm)P(sm) 
m Y J(y) ' 

(8.4.2C 

where f (y lsm) is the conditional PDF of the observed vector given Sm, and P(sm) is the 
priori probability of the mth signal being transmitted. The denominator of Equation (8.4.21 
may be expressed as 

M 

f (y) = L 
f (y lsm)P(sm). (8.4.21 

m=l 

From Equations (8.4.20) and (8.4.21), we observe that the computation of the post( 
rior probabilities P(sm IY) requires knowledge of the a priori probabilities P Ism) and tb 
conditional PDFs f(y lsm) for m = 1 ,  2, . . . , M. 

Some simplification occurs in the MAP criterion when the M signals e equall 
probable a priori, i.e., P(sm) = 1/  M for all M. Furthermore, we note that the de ominat< 



Section 8.4 M-ary Digital Modulation 393 

in Equation (8.4.20) is independent of which signal is transmitted. Consequently, the deci­
sion rule based on finding the signal that maximizes P(sm lY) is equivalent to finding the 
signal that maximizes f (y lsm) . 

The conditional PDF f(ylsm) ,  or any monotonic function of it, is usually called the 
likelihood function. The decision criterion based on the maximum of f (y lsm) over the M 
signals is called the maximum-likelihood (ML) criterion. We observe that a detector based 
on the MAP criterion and one that is based on the ML criterion make the same decisions, 
as long as the a priori probabilities P(sm) are all equal; in other words, the signals {sm} are 
equiprobable. 

In the case of an AWGN channel, the likelihood function f (y lsm) is given by Equa­
tion (8.4. 16) . To simplify the computations, we may work with the natural logarithm of 
f (y lsm), which is a monotonic function. Thus, 

(8.4.22) 

The maximum of Inf (y lsm) over Sm is equivalent to finding the signals Sm that minimize 
the Euclidean distance N 

D(y, Sm) = L(Yk - Smk)2 . (8.4.23) 
k=I 

We call D(y, sm) m = 1 ,  2, . . .  , M, the distance metrics. Hence, for the AWGN channel, 
the decision rule based on the ML criterion reduces to finding the signal Sm that is closest 
in distance to the received signal vector y. We will refer to this decision rule as minimum 
distance detection. 

Another interpretation of the optimum decision rule based on the ML criterion is 
obtained by expanding the distance metrics in Equation (8.4.23) as 

N N N 
D(y, Sm) = L

Y� - 2 L YnSmn + L: s;.n 
n=I n=I n=I 

m = 1 , 2, . . .  , M. 

(8.4.24) 

The term II y 112 is common to all decision metrics; hence, it may be ignored in the com­
putations of the metrics. The result is a set of modified distance metrics 

D' (y, Sm) = -2y·sm+  I I Sm 1 12 . (8.4.25) 

Note that selecting the signal Sm that minimizes D'(y, Sm) is equivalent to selecting the 
signal that maximizes the metric C(y ,  Sm) ::::;:; -D'(y ,  Sm) , i.e., 111 ..11�.;"l..e.. ,.-__ ,A I"' lfl l<-� ' Sm) = 2y·Sm- II Sm 1 1 2] (8.4.26) 

The term y·sm represents the projection of the received signal vector onto each of the M 
possible transmitted signal vectors. The value of each of these projections is a measure of 
the correlation between the received vector and the mth signal. For this reason, we call 
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C(y, Sm) ,  m = 1 ,  2, . . .  , M, the correlation metrics for deciding which of the M signal� 
was transmitted. Finally, the terms I I Sm 1 1 2= '&m , m = 1 ,  2, . . .  M, may be viewed as bia� 
terms that serve as compensation for signal sets that have unequal energies, such as PAM 
If all signals have the same energy, II s m 1 1 2 may also be ignored in the computation of th( 
correlation metrics C(y, Sm) and the distance metrics D'(y, Sm). 

In summary, we have demonstrated that the optimum ML detector computes a se 
of M distances D(y, Sm) or D'(y, Sm) and selects the signal corresponding to the smalles 
(distance) metric. Equivalently, the optimum ML detector computes a set of M correlatio1 
metrics C(y, Sm) and selects the signal corresponding to the largest correlation metric. 

This development for the optimum detector treated the important case in which al 
signals are equally probable. In this case, the MAP criterion is equivalent to the ML crite 
rion. However, when the signals are not equally probable, the optimum MAP detector base: 
its decision on the probabilities P (sm ly), m = 1 ,  2, . . .  , M given by Equation (8.4.20), o 
equivalently, on the posterior probability metrics, 

(8.4.27 

The following example illustrates this computation for binary PAM signals. 

Example 8.4.3 

Consider the case of binary PAM signals in which the two possible signal points are s1 = 

-s2 = ..{i;,, where '&b is the energy per bit. The prior probabilities are P(s1) and P(s2) 
Determine the metrics for the optimum MAP detector when the transmitted signal \s corrupte1 
with AWGN. 

Solution The received signal vector (which is one dimensional) for binary PAM is 

y = ±,,fi;, + n, 

where n = Yr. (T) is a zero-mean Gaussian random variable with a variance (]'; = N0/� 
Consequently, the conditional PDFs f (y lsm) for the two signals are 

and 

and 

1 - (r - .,ti;,)2 
/2(]''/; 

f (y ls1 ) = M::::2. e · 

y 2TC(J'; 

1 - (r + .,ti;,)2 
/2(]''/; 

f (y ls2) = M::::2. e . 
y 2TC(J'; 

Then the metrics PM(y, s 1) and PM(y, s2) defined by Equation (8.4.27) are 

If P�(y , s1) > PM(y , s2), we select s1 as the transmitted signal; otherwise, we sele� 
dec1s1on rule may be expressed as V 

PM(y, s,) � 1 .  / (8.4.2! 
PM(y, s2) s2 
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But 
PM(y, s1 ) = 

P(s1) ex { [( + �)2 - ( _ �)2] /20-2 } PM(y, s2) P(s2) 
p y v 0b y v 0b n , 

so Equation (8.4.28) may be expressed as 

or equivalently, 
(8.4.29) 

This is the final form for e op etector. Its input y from the demodulator is 
compared with the threshold ( N0/4�) In (P(s2)/ P(s1)) . We note that this is exactly the 
same detection rule that was obtained in Section 8.3.3, Equation (8.3.56), for binary antipodal 
signals (binary PAM). 

It is interesting to note' that in the case of unequal prior probabilities, it is necessary to 
know not only the values of the prior probabilities but also the value of the power spectral 
density N0 and the signal energy 'i8b in order to compute the threshold. When the two signals 
are equally probable, the threshold is zero. Consequently, the detector does not need to know 
the values of these parameters. • 

We conclude this section with the proof that the decision rule based on the ML cri­
terion minimizes the probability of error when the M signals are equally probable a priori. 
Let us denote by Rm the region in the N -dimensional space for which we decide that signal 
sm(t) was transmitted when the vector y = (y1 , y2, . . . YN) is received. The probability of 
a decision error given that Sm (t) was transmitted is 

where R'j,, is the complement of Rm . The average probability of error is 

M 1 PM = L 
M P(e lsm) 

m=I 

M 1 1 = L 
- f (y lsm)dy M RC m=I m 

(8.4.30) 

(8.4.31) 

We note that PM is minimized by selecting the signal Sm if f (y lsm) is larger than f (y lsk) 
for all m I- k. 
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Similarly for the MAP criterion, when the M signals are not equally probable, the 
average probability of error is 

M 
PM = 1 -L 1 P(sm lY)f(y)dy. 

m=I Rm 
(8.4.32) 

PM is a minimum when the points that are to be included in each particular region Rm are 
those for which P (sm ly) exceeds all other posterior probabilities. 

8.4.2 A Union Bound on the Probability of Error 

In the preceding sections, we have introduced a number of binary communication systems 
and their corresponding optimal detection schemes. We have also derived expressions for 
the error probability of these systems in terms of their SNR/bit ("€,bf N0). Most of the error 
probability expressions are derived for equiprobable messages, where the optimal decision 
rule is the maximum-likelihood rule. 

We have seen that for binary equiprobable signaling over an AWGN channel, regard­
less of the signaling scheme, the error probability can be expressed as 

(8.4.33) 

where d is the (Euclidean) distance between the two signal points in the constellation and 
is related to the signal waveforms via 

A natural question here is whether a similar simple expression exists for the error 
probability of the general equiprobable M -ary signaling. As discussed above, Equation 
(8.4.31) gives an expression for the error probability of a general equiprobable M-ary 
signaling scheme in AWGN. However, this equation cannot be reduced further into a closed 
form for error probability because, in general, the decision regions Rm are irregular and the 
integral of the Gaussian function over them does not have a closed form. However, there 
is a simple upper bound to the error probability of general equiprobable M -ary signaling 
systems. This upper bound is known as the union bound; we will derive this upper bound 
next. 

Let us assume that sm(t) is transmitted in an M-ary equiprobable signaling scheme. 
The error probability is the probability that the receiver detects a signal other than Sm (t). 
Let E; denote the event that message i is detected at the receiver. Then 

Pm = P(errorl Sm(t) sent) = P (Q E; \  Sm(t) sent) :S i;.  P (E; I sm(t) sent) . 

iolm iolm 
(8.4.34) 

\ 
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A necessary (but not sufficient) condition for message s; (t) to be detected at the 
receiver when signal Sm (t) is sent is that y be closer to S; than to Sm,  i.e., 

D(y, s;) < D(y, Sm) . 

Thus, we conclude that 

P (E; / sm(t) sent) S· P (D(y, S;) < D(y, Sm)) . (8.4.35) 

But P (D(y, S;) < D(y, sm)) is the probability of error in a binarH§9uiprobable signaling 
system, which, by Equation (8.4.33), is given by 

( dm; ) P (D(y, S;) < D(y, Sm)) = Q ,.j2NQ . (8.4.36) 

From Equations (8.4.35) and (8.4.36), we conclude that 

( dm; ) P (E; I m sent) S Q ,.j2NQ . (8.4.37) 

Substituting Equation (8.4.37) into Equation (8.4.34) yields 

� ( dm; ) Pm S -8 Q ,.j2ffo · (8.4.38) 
i.,Cm 

We define the minimum distance of a signal set as the minimum of the distances 
between any two points in the corresponding signal constellation. In other words, 

dmin = min dmm' . l:Sm,m':SM m1.,Cm 
(8.4.39) 

Then, for any 1 S i, m S M, we have dm; :'.::: dmin, and since the Q-function is a decreasing 
function [see the discussion following Equation (5. 1 .7)], we have 

( dm; ) ( dmin ) Q ,.j2NQ s Q ,.j2NQ . (8.4.40) 

M 
/ Pm S � Q (�) = (M - l)Q ( � (8.4.41) 
1 •=I o v�1vo 
• i.,Cm 

It is cle�tbis.Jmund is independent of m. Therefore, it is valid independently of 
which signal was transmitted. Hence, we conclude that 

M ( ) d2 . 1 drrun M - 1 _ _nun PM = M 
L Pm S (M - 1) Q � S -2-e 4No , 
m=I v�1vo 

(8.4.42) 
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where the last step uses the inequality Q(x) :::: l/2e-x2/2 from Equation (5. 1 .8). Equa. 
tion (8.4.42) is known as the union bound for the error probability. 

As can be seen from Equation (8.4.42), there are two versions of the union bound 
The first version is in terms of the Q-function, and the second version is in terms of th( 
exponential function. The union bound provides a very useful bound on the error proba 
bility, particular"Q'. at high signal-to-noise ratios. At lower SNRs, the bound becomes loos( 
and useless. To analyze the performance of a system at low SNRs, more powerful boundini 
techniques are needed. 

The union bound also signifies the role of the minimum distance of a signal set o1 
its performance, particularly at large SNRs. A good signal set should provide the maxi 
mum possible value of dmin· In other words, to design a good signal set, the points in th1 
corresponding constellation should be maximally apart. 

8.5 M-ARY PULSE AMPLITUDE MODULATION 

The generalization of binary PAM to M-ary PAM is relatively straightforward. The k-bi 
symbols are used to select M = 2k signal amplitudes. Hence, in general, the M -ary PM 
signal waveforms for a baseband channel may be expressed as 

Sm(t) = Amp(t) , m = 1 ,  2, . . .  , M 
= sm1/f(t), m = 1 ,  2, . . .  , M 

(8.5.1 

(8.5.2 

where p(t) is a lowpass pulse signal of duration T and 1/f (t) = p(t)/ .J&; is the normalize. 
version of it. In the special case where p(t) is a rectangular pulse shape we can write 

sm(t) = AmgT(t) ,  0 :S t  < T, m = 1 ,  2, . . .  , M . 

= Sm1/f(t), 0 :S t  < T, m = 1 ,  2, . . .  , M, 
(8.5.: 

where the pulse gT (t) and the basis function 1/f(t) are shown in Figures 8.40(a) and 8.40(b 
respectively. We observe that all M signal waveforms have the same pulse shape. Rene( 
they are one-dimensional signals. We also note that, in general, Sm = Am.J&; which in th 
special case when 

gT (t) 

1----. 

0 T 

(a) 

( 1 ,  p(t) = gT (t) = 
Q 

ifi(t) 

vTft 
1-------. 

0 T 
(b) 

0 :::: t < T 
otherwise 

Figure 8.40 Rectangular pulse gr (t) ru 
basis function 1/f(t) for M-ary PAM. 
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becomes Sm = Am./T. An important feature of these PAM signals is that they have differ­
ent energies. That is, 

cgm = ( s� (t)dt = s� {T 1/f2(t)dt = s� = A� cgp· lo lo . 
(8.5.4) 

Assuming that all k-bit symbols are equally probable, the average energy of the transmitted 
signals is 

(8.5.5) 

In order to minimize the average transmitted energy and to avoid transmitting signals 
with a DC component, we want to select the M signal amplitudes to be symmetric about 
the origin and equally spaced. That is, 

Am = (2m - 1 - M)A , m = 1 ,  2, . . .  , M, (8.5.6) 

where A is an arbitrary scale factor. The corresponding average energy, assuming that all 
k-bit symbols are equally probable, is 

) Lf-) ,fl " 

(8.5.7) 

For the signal amplitudes given in Equation (8.5.6), the corresponding signal con­
stellation points in a geometric representation of the M -ary PAM signals are given as 

Sm = Am� 
= A�(2m - 1 - M), m = 1 ,  2, . ., M. (8.5.8) 

It is convenient to define the distance parameter d as d = A�, so that 

Sm = (2m - 1 - M)d, m = 1 ,  2, . . .  , M. (8.5.9) 

The signal constellation point diagram is shown in Figure 8.41 .  Note that the distance 
between two adjacent signal points is 2d. 
Example 8.5.1 

Sketch the signal waveforms for M = 4 PAM, which are described by Equation (8.5.3) and 
determine the average transmitted signal energy. 

-5d -3d 

Figure SAl M = 4 PAM signal waveforms. 

1· 
-d 

2d ·1 
0 d 3d 5d 
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T 
�--�--- t 

-3A 1------1 

S3 (t) 

3A 

A ...._ __ 

_____ _._ ___ t 
T 

-+--...._ ___ t Figure 8.42 M = 4 PAM signal T waveforms. 

Solution The four signal waveforms are shown in Figure 8.42. 
The average energy, based on equally probable signals according to Equation (8.5.7), 

where d2 = A2T by definition. 

�av = 5A2T = 5d2, 

8.5.1 Carrier-Modulated PAM for Bandpass Channels (M-ary ASK) 

To transmit the digital signal waveforms through a bandpass channel by amplitude modul 
tion, the baseband signal waveforms Sm (t) ,  m = 1 ,  2, . . .  , M are multiplied by a sinusoid 
carrier of the form cos 2n Jct, as shown in Figure 8.43. In this figure, fc is the carrier fr 
quency and corresponds to the center frequency in the passband of the channel. Thus, tl 
transmitted signal waveforms may be expressed as 

Um (t) = Sm(t) cos 2nfct, m = 1 , 2, . . .  , M. (8.5 .1  

As previously described in Section 3.2, amplitude modulation of the carrier cos 2n, 
by the baseband signal waveforms {sm (t) } shifts the spectrum of the baseband signal 1 

Baseband signal 

sm(t) 

Bandpass signal 

sm(t) cos 2nfJ 

Carrier 
cos 2rtfcf 

Figure 8.43 Amplitude modulation of the sinusoidal carrier by 
baseband signal. 
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- w 

-fc + W 

0 
(a) 

l_ 
2 

0 
(b) 

w 

fc- W 

Figure 8.44 Spectra of (a) baseband and (b) amplitude-modulated signals. 
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f 

fc fc + W  f 

an amount fe; thus it places the signal into the passband of the channel. Recall that the 
Fourier transform of the carrier is � [ o (f - fe) + o (f + fe)] .  Because multiplication of two 
signals in the time domain corresponds to the convolution of their spectra in the frequency 
domain, the spectrum of the amplitude-modulated signal given by Equation (8.5 . 10) is 

(8.5 . 1 1) 

Thus, the spectrum of the baseband signal sm(t) is shifted in frequency by an amount 
equal to the carrier frequency fe· The result is a double-sideband suppressed-carrier (DSB­
SC) amplitude-modulated signal, as illustrated in Figure 8.44. The upper sideband of the 
carrier-modulated signal contains the frequency content of Um (t) for l f l > fe, i.e., for 
fe < Il l  S fe + W. The lower sideband of Um (t) includes the frequency content for 
If < fe, i.e., for fe - W S Il l < fe· Hence, the DSB-SC amplitude-modulated signal 
occupie a channel bandwidth of 2W, which is twice the bandwidth required to transmit 
the baseba d signal. 

The e ergy of the bandpass signal waveforms Um (t) ,  m = 1 ,  2, . . .  , M, which are 
given by Eq ation (8 .5. 10), is defined as 

'"(gm = 1_: u�(t)dt = 1_: s�(t) cos2 2nfct dt 

= - s� (t)dt + - s�(t) cos 4nfet dt. 1 100 1 100 
2 00 2 -oo (8.5 . 12) 
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We note that when fc » W, the term 

� L: s� (t) cos 4rtfct dt (8.5. 13: 

involves the integration of the product of a slowly varying function, i.e., s� (t), with , 
rapidly varying sinusoidal term, i.e., cos 4rt fct. With an argumynt similar to the argumen 
following Equation (3.2.2), we conclude that the integral in Equation (8.5. 13) over a singlt 
cycle of cos 4rcfct is zero (see Figure 3.6); hence, the integral over an arbitrary number o: 
cycles is also zero. Consequently, the energy of the carrier-modulated signal is 

�m = - s� (t) dt. 
1 J

oo 

2 -oo (8.5 . 14 

Thus, we have shown that the energy in the bandpass signal is one-half of the energy in th< 
baseband signal. The scale factor of 1 /2 is due to the carrier component cos 2rt Jct, whicl 
has an average power of 1/2. 

In M -ary amplitude-shift keying (ASK), the signal waveforms have the general forn 

Sm(t) = Amp(t) cos 2rtfct, 1 :S m  :S M  (8.5 .15 

where p (t) is a baseband signal of duration T. It is seen that all signals are multiples of th 
same signal p(t) cos 2rcfct and only the amplitude Am differentiates them. Therefore, al 
signals can be expressed in terms of a single normalized sign � 

This shows that the dimensionality of 

Example 8.5.2 

A carrier-modulated PAM signal may be expressed as 

Um (t) = sm (t) cos 2nfct 
= Sm 1/f (t) COS 21tfct, 0 _:::: t < T, 

(8.5 .16 

where sm = (2m - 1 - M)d, m = 1 , 2, . . .  , M, and d = Aft;, as given by Equation (8.5.9 
and ifr(t) is a unit energy pulse defined over the interval 0 _:::: t :::: T. Determine the bas 
function for the carrier-modulated PAM signal and the corresponding signal points in a vectc 
representation. 
Solution The carrier amplitude PAM signal may be expressed as 

where 
1/J'c(f) = .J2ifr(t) COS 21tfct 

and 
Scm = Sm/.J2 = (2m - 1 - M)d/.J2, m = 1 ,  2, . . .  , M. 
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8.5.2 Demodulation and Detection of Amplitude-Modulated PAM Signals 

The demodulation of a bandpass signal may be accomplished by means of correlation 
or matched filtering, as described for baseband channels. However, as we will observe 
from the development that follows in Section 8.8, the presence of the carrier introduces an 
additional complication in the demodulation of the signal. 

The transmitted signal in a signaling interval may be expressed as 

Um(t) = Sm (t) COS 2rtfct, m = 1 ,  2, . . .  , M, (8.5. 17) 

and the received signal has the form 

r (t) = Um (t) + n(t), (8.5. 1 8) 

where 
n (t) = nc(t) cos 2nfct - ns (t) sin2nfct (8.5. 19) 

is a bandpass noise process, as discussed in Section 5.3.3. 
By cross correlating the received signal r (t) with the basis function 1/tc(t) = 

,,/21/t(t) cos 2nfct, we obtain, at the sampling instant t = T, 

y (T) = 1T r(t)i/tc(t) dt 

= -J2sm [T 1/t2(t) cos2 2rtfct dt + ,,/2 r n(t)i/t(t) COS 2rtfcf dt lo , lo 
Sm = ,,j2 + n = Scm + n, (8.5.20) 

where n represents the additive noise component at the output of the correlator. An identical 
result is obtained if a matched filter replaces the correlator to demodulate the received 
signal. 

As in the case of baseband PAM, for equiprobable messages, the optimum detector 
bases its decision on the distance metrics 

D(y, sm) = (y - Scm)2 , m = l , 2, . . .  , M  (8.5.21) 

or, equivalently, on the correlation metrics 

C(y ,  Sm) =  2yscm - s;m . (8.5.22) 

8.5.3 Probability of Error for M-ary PAM 

In the case of M -ary PAM in baseband AWGN channels, the input to the detector is 

Y = Sm + n, (8.5.23) 

where sm denotes the mth transmitted amplitude level, defined previously in Equation 
(8.5.9), and n is a Gaussian random variable with zero mean and variance a; = No/2. 
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Figure 8.45 Placement of thresholds at midpoints of successive amplitude levels. 
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si - 5  

The average probability of error for equally probable amplitude levels can be determinec 
from the decision rule that finds the maximum of the correlation metrics: 

C(y, Sm) = 2ysm - s� 
= 2(y - Sm/2)sm . (8.5.24: 

Equivalently, the optimum detector may compare the input y with a set of M - 1  thresholds 
which are placed at the midpoints of successive amplitude levels, as shown in Figure 8.45 
Thus, a decision is made in favor of the amplitude level that is closest to y. 

The placing of the thresholds as shown in Figure 8.45 helps evaluate the probabil 
ity of error. On the basis that all amplitude levels are equally likely a priori, the averag1 
probability of a symbol error is simply the probability that the noise variable n exceeds i1 
magnitude one-half of the distance between levels. However, when either one of the tw< 
outside levels ±(M - 1) is transmitted, an error can occur in one direction only. Thus 
we have 

M - 2  . 2 PM = �P(ly - sm l > d) + M P(y - Sm >  d) 

M - 1  = �P(ly - sm l > d) 

= ---- e 0 dx M - 1 2 100 -x2/M 
M ..jnNO d 

where 2d is the distance between adjacent signal points. 

(8.5.25 

The distance parameter d is easily related to the average transmitted signal energ: 
Recall that d = A� and �av is given by Equation (8.5.7) as �av = A2�p(M2 - 1)/'. 
Hence, 

�av =  d2 (M2 - 1)/3, (8.5.2( 

and the average probability of error is expressed as _ 2(M - 1) ( 6�av ) PM - M Q (M2 - l)No . (8.5.2' 
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Since the average transmitted signal energy 'jgav = T Pav , where Pav is the average trans­
mitted power, PM may also be expressed as a function of Pav· 

In plotting the probability of a symbol error for M -ary signals such as M -ary PAM, 
it is customary to use the average SNR/bit as the basic parameter. Since each signal carries 
k = log2 M bits of information, the average energy per bit 'jgbav is given by 'jgbav = 'jgav/ k 
and k =log2M. Equation (8.5.27) may be expressed as 

� [ 0':" 
p = 2(M - 1) Q ( 6(log2 M)'jgbav ) .----r;

(r¥_;.28) M 
M (M2 - l )No ' L. G ) z_ .  

where 'jgbav/ No is the average SNR/bit. Figure 8.46 illustrates the pr"cl:ability of a symbol 
error as a function of l 0log10'jgbav/No with M as a parameter. Note that the case M = 2 
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Figure 8.46 Probability of a symbol error for PAM. 



406 Digital Modulation in AWGN Channel Chapter 8 

corresponds to the error probability for binary antipodal signals. We also observe that for 
a fixed error probability, say PM = 10-5 , the SNR/bit increases by over 4 dB for every 
factor of two increase in M. For large M, the additional SNR/bit required to increase M 
by a factor of two approaches 6 dB. Thus, each time we double the number of amplitude 
levels M, we can transmit one additional information bit; the cost measured in terms of 
additional transmitter power is 6 dB/bit for large M, i.e., the transmitter power must be 
increased by a factor of 4 (10 log10 4 = 6 dB) for each additional transmitted bit in order 
to achieve a specified value of PM. 

Example 8.5.3 

Using Figure 8.46, determine (approximately) the SNR/bit required to achieve a symbol erro1 
probability of PM = 10-6 for M = 2, 4, and 8. 

Solution From observation of Figure 8.46, we know that the required SNR/bit is (approxi­
mately) as follows: 

10.5 dB for M = 2 (1 bit/symbol) ; 
14.8 dB for M = 4 (2 bits/symbol) ; 
19.2 dB for M = 8 (3 bits/symbol). 

Note that for these small values of M, each additional bit by which we increase (double) the 
number of amplitudes requires an increase in the transmitted signal power (or energy) by : 
little over 4 dB in order to maintain the same symbol error probability. For large values of M 
the argument of the function Q(x) in Equation (8.5.28) is the dominant term in the expressio1 
for the error probability. Since M = 2k, where k is the number of bits/symbol, increasing k b: 
1 bit to k + 1 requires that the energy/bit must be increased by a factor of 4 (6 dB) in order t1 
have the same value of the argument in Q(x). 

8.6 PHASE-SHIFT KEYING 

In the preceding section, we observed that bandpass signal waveforms, which are appro 
priate for transmission on bandpass channels, were generated by taking a set of baseban 
signals and impressing them on the amplitude of a carrier. In this section, we generat 
bandpass signal waveforms by digitally modulating the phase of the carrier. 

In ASK, the general form of the transmitted waveforms is Amp(t) cos 2nfct, i.e., th 
dependence of the signals to message m is through the amplitude Am .  In phase-shift keyin 
(PSK), this dependence is through the phase of the signal <Pm . In general, PSK waveform 
are of the following form: 

Um (t) = p(t) COS (2nfct + </Jm) , 

where p(t) is a baseband signal of duration T and <Pm is determined by the transmitte 
message. Since the signal phase <Pm depends on the message m, thus the signal is phm 
modulated. Because the transmitted signals are different only in their phase, all PSK signa 
have the same energy and thus in the signal space representation they are all at the sarr 
distance from the origin. Therefore, the signal space representation of PSK signals is a s1 
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of M points on a circle of radius ,Jw;; and centered at the origin, where �s is the common 
energy of the PSK waveforms. It is convenient to select <Pm values equally spaced as 

2nm <Pm = M '  m = 0 ,  1 ,  . . .  , M - 1 

In this case, the PSK waveforms have the general form of ( 2nm) Um(t) = p(t) COS 2nfct + M , m = 0, 1 ,  . . .  , M - 1 .  

For the special case where p(t) is a rectangular baseband pulse, we have 

{ !ti"; 
p(t) = 8T (t) = 6 T' 

and 

0 � t < T 
otherwise 

(8.6 .1) 

(8.6.2) 

u. (t) �fa/�  00' (2nfol + '';,") , 0 � t < T 
otherwise 

m = 0, 1 ,  . . .  , M - 1 ,  (8.6.3) 

where �s is the energy in each signal and T is the signal duration. Since each signal carries 
k = log2 M bits of information, we have �b = �sf log2 M. Figure 8.47 illustrates a four­
phase (M = 4) PSK signal waveform, usually called a quadrature PSK (QPSK) signal. 

By expanding the cosine term in Equation (8.6.3), we may express Um (t) as 

where 

180° phase 
shift 

! 

Um(t) = 8T (t)Amc cos 2nfct - 8T (t)Ams sin 2nfct, 

Ame = cos 2nm/M, m = 0, 1, . . .  , M - 1 ,  

Ams = sin 2nm/M, m = 0, 1, . . .  , M - 1 . 

0° phase 
shift 

! 
-90° phase 

shift 

! 

(8.6.4) 

(8.6.5) 

I I I I I 
0 T 2T 3T 4T 

� 
Figure 8.47 Example of a four-phase 
PSK signal. 
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Figure 8.48 Block diagram of a digital-phase modulator. 
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ct 
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ct 

Phase-modulated 
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Therefore, the modulator for the phase-modulated signal may be implemented a1 
shown in Figure 8.48, employing two quadrature carrier signals, where each quadratun 
carrier is amplitude modulated by the information-bearing signal. The pulse-shaping fil 
ters are designed to limit the spectrum of the transmitted signal to the allocated channe 
bandwidth. 

8.6.1 Geometric Representation of PSK Signals 

It follows from Equation (8.6.4) that digital phase-modulated signals can be representec 
geometrically as two-dimensional vectors with components #s cos 2nm/ M anc 
#s sin 2nm/ M, i.e., 

Sm = (� cos 2nm/M, � sin 2nm/M) . (8.6.6 

Note that the orthonormal basis functions are 

and 

where the energy of the pulse gT(t) is normalized to 2'(gs · Signal-point constellations fo 
M = 2, 4, and 8 are illustrated in Figure 8.49. We observe that binary phase modulation i 
identical to binary ASK and belongs to the family of binary antipodal signaling. 

The mapping or assignment of k information bits into the M = 2k possible phase 
may be done in a number of ways. The preferred assignment is to use Gray encoding, i: 
which adjacent phases differ by one binary digit, as illustrated in Figure 8.49. Because th 
most likely errors caused by noise involve the erroneous selection of an adjacent phas 
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Figure 8.49 PSK signal constellations. 

to the transmitted phase, only a single bit error occurs in the k-bit sequence with Gray 
encoding. 

The Euclidean distance between any two signal points in the constellation is 

= ( 2n(m - n) ) 2'tgs 1 - cos M , 
(8.6.7) 

and the minimum Euclidean distance (the distance between two adjacent signal points) is 
simply 

(8.6.8) 

The minimum Euclidean distance dmin plays an important role in determining the 
error-rate performance of the receiver that demodulates and detects the information in the 
presence of additive Gaussian noise, as we have previously observed in Section 8.4.2. 
Example 8.6.1 

Consider the M = 2, 4, and 8 PSK signal constellations shown in Figure 8.49; all have the 
same transmitted signal energy 'tgs· Determine the minimum distance dmin between adjacent 
signal points. For M = 8, determine by how many dB the transmitted signal energy 'tgs must 
be increased to achieve the same dmin as M = 4. 
Solution For M = 2, dmin = 2JW;;; for M = 4, dmin = �; and for M = 8, 

dmin = 2K sin rt/8 

For M = 8, the energy 'tgs must be increased by the factor of 2/0.586 = 3.413 or 5.33 
dB, in order to achieve the same minimum distance as M = 4. 

For large values of M, sin rt/ M � rt/ M, so 

2rtK dmin � 
M 

'tgs, M » 2. 
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Consequently, when the number M of signal points is doubled, which allows us to transmi 
one additional information bit per symbol, the signal energy �s must be increased by a fac 
tor of 4, or 6 dB, in order to maintain the same minimum distance between adjacent signa 
points. 1 

8.6.2 Demodulation and Detection of PSK Signals 

The received bandpass signal from an AWGN channel in a signaling interval 0 ::; t < ] 
may be expressed as 

r(t) = Um (t) + n(t) 
= [AmcgT (t) + nc (t)] cos 2nfct - [AmsgT (t) + n5 (t)] sin 2nfct (8.6.9 

m = 0, 1 ,  2, . . .  , M - 1 ,  

where n(t) i s  the additive bandpass Gaussian noise represented in terms of its quadratur 
components nc(t) and n5 (t) as 

n(t) = nc(t) cos 2nfct - n5 (t) sin 2nfct 

and Ame and Ams are the information-bearing signal components that are related to th 
transmitted carrier phase by Equation (8.6.5). 

The received signal may be correlated with 

1/r1 (t) =Ii gT (t) cos 2nfct 

and 

The outputs of the two correlators yield the two noise-corrupted signal component 
which may be expressed as 

y = Sm + n  
= (,,/&;cos 2nm/M + nc, ,,/&; sin 2nm/M + ns) , 

where, by definition, 

nc = � {T 
gT (t)nc(t) dt, 

.y4�s lo 

ns = � ( n5 (t)gT (t) dt . 
.y4�s lo 

(8.6.H 

(8.6 .1 

Because the quadrature noise components nc (t) and ns (t) are zero mean and uncom 
lated (see Property 4 of filtered noise in Section 5 .3 .3), it follows that E(nc) = E(n5) = 
and E(ncns) = 0. 
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The variance of the noise components is 

E (n�) = E (n;) = -1- {T {T 
gT(t)gT(r)E(nc(t)nc(r)) dt dr 41Ss lo lo 

N, 1T 
= (p

o g� (t) dt 4<os 0 
= No/2. 

41 1 

(8.6.12) 

The optimum detector projects the received signal vector onto each of the M pos­
sible transmitted signal vectors {sm} and selects the vector corresponding to the largest 
projection; thus, we compute the correlation metrics 

C(y, Sm) = y . Sm, m = 0, 1, . . .  ' M - 1 (8.6. 13) 

and select the signal vector that results in the largest correlation. 
Because all signals have equal energy, an equivalent detector metric for digital phase 

modulation is to compute the phase of the received signal vector y = (y1 , y2), which is 

r.::. t -1 Y2 
o = an -, 

YI 
. (8.6.14) 

and select the signal from the set { s m} whose phase is closest to e. In the next section, we 
evaluate the probability of error based on the phase metric given by Equation (8.6. 14) .  

8.6.3 Probability of Error for Phase-Coherent PSK Modulation 

In this section, we shall evaluate the probability of error for M -ary phase modulation in 
AWGN with the optimum demodulator and detector. The optimum detector based on the 
phase metric given by Equation (8.6. 14) will be used in the computation. We assume that 
a perfect estimate of the received carrier phase is available. Consequently, the performance 
that we derive is for ideal phase-coherent demodulation. 

Consider the case in which the transmitted signal phase is fJ = 0, corresponding to 
the signal uo(t) .  Hence, the transmitted signal vector is 

so = (�. o) 

and the received signal vector has the�nts 

YI = ,,/w;; + nc, 
Y2 = ns . 

(8.6. 15) 

(8.6. 16) 

Because nc and ns are jointly Gaussian random variables, it follows that Yt and Y2 
are jointly Gaussian random variables with E(y1) = ,,/w;;, E(yz) = 0, and u;, = u;2 = 
No/2 = u; . Consequently, 
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(8.6. 17) 

The detector metric is the phase 8 = tan-1y2/y1 . The PDF of 8 is obtained by a change 
in variables from (Y1 ,  Y2) to 

and 
8 = tan-1 Y2 • 

Y1 
This change in variables yields the joint PDF 

f (v e) = _v_e-(v2+�s-2�vcos0)/2a} v.e , 2 2 • 
rt<Ty 

Integration of fv.e (v, e) over the range of v yields fe(e) , i.e., 

fe(e) = fo00 fv.e (v ,  e) dv 

= _l_e-ps sin2 e {00 ve-(v-�s cos0)2/2 dv, 2TI lo 

(8.6.18: 

(8.6. 19 

(8.6.20 

(8.6.21 

where, for convenience, we have defined the symbol SNR as Ps = �s/No .  Figure 8.51 
illustrates fe(e) for several values of the SNR parameter Ps when the transmitted phas1 
is zero. Note that fe(e) becomes narrower and more peaked about e = 0 as the SNR p 
increases. 

When uo(t) is transmitted, a decision error is made if the noise causes the phase ti 
fall outside the range [-rt/ M, rt/ M]. Hence, the probability of a symbol error is frc/M 

PM = 1 - fe(e) de. 
-rc/M 

(8.6.22 

In general, the integral of fe(e) does not reduce to a simple form and must be evaluate 
numerically, except for M = 2 and M = 4. 

An alternate form of the symbol error probability has been derived by Weistei 
(1974) and Pawula (1999), and may be expressed as 

1 1rc-rc/M [ Ps sin\rt/M) ] PM = - exp - de. 
rt 0 sin2 e 

(8.6.2:'. 

For binary phase modulation, the two signals u0(t) and u1 (t) ,  are antipodal; henc1 
the error probability is 

(8.6.2L 
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Ps= 10 

Ps= 4 
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Figure 8.50 Probability density 
function fe (IJ) for p, = l ,  2, 4, 10. 

When M = 4, we basically have two binary phase modulation signals in phase quadrature. 
With a perfect estimate of the carrier phase, there is no crosstalk or interference between 
the signals on the two quadrature carriers; hence, the bit error probability is identical to 
that in Equation (8.6.24). On the other hand, the symbol error probability for M = 4 is 
determined by noting that 

(8.6.25) 

where Pc is the probability of a correct decision for the 2-bit symbol. The result in Equa­
tion (8.6.25) follows from the statistical independence of the noise on the quadrature car­
riers. Therefore, the symbol error probability for M = 4 is 

(8.6.26) 

(8.6.27) 

/ 
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If the signal-to-noise ratio is not too low, then ! Q ( J2'"gb/ No) « 1 ,  and we have 

(8.6.2l 

For M > 4, the symbol error probability PM is obtained by numerically integrating eith1 
Equation (8.6.22) or Equation (8.6.23). Figure 8 .51 illustrates this error probability as 
function of the SNR/bit for M = 2, 4, 8, 16, and 32. The graphs clearly illustrate tl 
penalty in the SNR/bit as M increases beyond M = 4. For example, at PM = 10-5 , tl 
difference between M = 4 and M = 8 is approximately 4 dB, and the difference betwef 
M = 8 and M = 16 is approximately 5 dB. For large values of M, doubling the numbi 
of phases requires an additional 6 dB/bit to achieve the same performance. 

To approximate the error probability for large values of M and large SNR, we mu 
first approximate fe(8) .  For 'gs/ No »  1 and 1 8 1  .:::: rr./2, fe (8) is approximated as 

(8.6.21 
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By substituting for fe(8) in Equation (8.6.22) and performing the change in variable from 
() to u = ,jP; sin (), we find that 

ln/Mfq . 2 PM � 1 - _..:. cos () e-Ps sm e d() -n/M TI � -- e-u /2 du 2 100 2 

,,/2Jf, fijiS sin n/ M 
= 2Q ( J2Ps sin ; ) 
= 2Q ( J2kP;, sin �) 
� 2Q ( 2bin' Cii H �) 
� 2Q ( 2n2 log2 M �b ) M2 No ' 

(8.6.30) 

(8.6.3 1) 

(8.6.32) 

where k = log2 M and Ps = kPb· Note that the last approximation holds for large M, 
where sin � � �. We note that the approximations to the error probability given in 
Equations (8.6.30) and (8.6.3 1) are good for all values of M. For example, when M = 2 
and M = 4, we have P2 = P4 = 2 Q  (.JlPb), which compares favorably (a factor 
of 2 difference) with the exact error probability given by Equation (8.6.24). Also, from 
Equation (8.6.32), it is clear that due to the presence of M2 in the denominator, doubling 
M deteriorates the performance by a factor of 4 (6 dB). This is similar to the performance 
of baseband and carrier-modulated PAM signals. 

Example 8.6.2 

By using the binary event error probability given in Equation (8.3.65) and the Euclidean dis­
tance between two adjacent signal points in a PSK signal constellation, which is given by 
Equation (8.6.8), determine an approximation to the symbol error probability. Compare the 
result with that given by Equation (8.6.30). 

Solution First, we determine the error probability in selecting a particular signal point other 
than the transmitted signal point when the signal is corrupted by AWGN. From Equation 
(8.3.65), we have 

( �) Pz = Q V Wo , 
where df 2 is the square of the Euclidean distance between the transmitted signal point and 
the particular erroneously selected signal point. In the case of a PSK signal constellation, the 
error probability is dominated by the erroneous selection of either one of the two signal points 
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adjacent to the transmitted signal point. Consequently, an approximation to the symbol ern 
probability is 

where dmin is given by Equation (8.6.8). By substituting for dmin in the approximation to PA 
we obtain 

PM � 2Q ( J2Ps sin �) , 
which is identical to the expression given in Equation (8.6.30). 

The equivalent bit error probability for M -ary phase modulation is rather tedious 1 
derive due to its dependence on the mapping of k-bit symbols into the corresponding sign: 
phases. When the Gray code is used in the mapping, two k-bit symbols corresponding 1 
adjacent signal phases differ in only a single bit. Because the most probable errors due 1 
noise result in the erroneous selection of an adjacent phase to the true phase, most k-b 
symbol errors contain only a single bit error. Hence, the equivalent bit-error probability f< 
M -ary phase modulation is well approximated as 

(8.6.3: 

The performance analysis just given applies to phase-coherent demodulation wi1 
conventional (absolute) phase mapping of the information into signal phases. As indicat< 
in Section 8.6.4, when phase ambiguities result in the estimation of the carrier phase, tl 
information symbols are differentially encoded at the transmitter and differentially decod< 
at the receiver. Coherent demodulation of differentially encoded phase-modulated signa 
results in a higher probability of error than the error probability derived for absolute-pha1 
encoding. With differentially encoded signals, an error in the detected phase (due to nois1 
will frequently result in decoding errors over two consecutive signaling intervals. This 
especially the case for error probabilities below 10-1 . Therefore, the probability of em 
for differentially encoded M -ary phase-modulated signals is approximately twice the prol 
ability of error for M -ary phase modulation with absolute-phase encoding. However, 
factor-of-2 increase in the error probability translates into a relatively small loss in SNJ 
as depicted in Figure 8 .5 1 .  

8.6.4 Differential Phase Encoding and Differential Phase Modulation 
and Demodulation 

The performance of ideal, coherent phase modulation and demodulation is closely attaim 
in communication systems that transmit a carrier signal along with the information sigrn 
The carrier-signal component, usually referred to as a pilot signal, may be filtered fro 
the received signal and used to perform phase-coherent demodulation. However, when 1 

separate carrier signal is transmitted, the receiver must estimate the carrier phase from ti 
received signal. As indicated in Section 8.8.1 ,  the phase at the output of a phase-lockc 
loop (PLL)has ambiguities of multiples of 2n:/ M, necessitating the need to differential 
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encode the data prior to modulation. This differential encoding allows us to decode the 
received data at the detector in the presence of the phase ambiguities. 

In differential encoding, the information is conveyed by phase shifts between any 
two successive signal intervals. For example, in binary-phase modulation, the information 
bit 1 may be transmitted by shifting the phase of the carrier by 180° relative to the previous 
carrier phase, while the information bit 0 is transmitted by a zero-phase shift relative to the 
phase in the preceding signaling interval. In four-phase modulation, the relative phase shifts 
between successive intervals are 0°, 90° , 180°, and 270° , corresponding to the information 
bits 00, 01 ,  1 1 , and 10, respectively. The generalization of differential encoding for M > 4 
is straightforward. The phase-modulated signals resulting from this encoding process are 
called differentially encoded. The encoding is performed by a relatively simple logic circuit 
preceding the modulator. 

Demodulation and detection of the differentially encoded phase-modulated signal 
may be performed as described in Section 8.8.4 using the output of a PLL to perform the 
demodulation. The received signal phase 8 = tan-1 y2/y1 at the detector is mapped into 
one of the M possible transmitted signal phases {8} that is closest to 8. Following the 
detector, there is a relatively simple phase comparator that compares the phases of the 
detected signal over two consecutive intervals to extract the transmitted information. Thus, 
phase ambiguities of 2 n / M are rendered irrelevant. 

Differential Phase-Shift Keying. A differentially encoded phase-modulated sig­
nal also allows a type of demodulation that does not require the estimation of the carrier 
phase. Instead, the phase of the received signal in any given signaling interval is compared 
to the phase of the received signal from the preceding signaling interval. To elaborate, sup­
pose that we demodulate the differentially encoded signal by multiplying r (t) by cos 2nfct 
and sin 2n fct and integrating the two products over the interval T. At the kth signaling 
interval, the demodulator output is given by the complex number 

(8.6.34) 

where ek is the phase angle of the transmitted signal at the kth signaling interval, ¢ is the 
carrier phase, and nk = nkc + jnks is the noise vector. Similarly, the received signal vector 
at the output of the demodulator in the preceding signaling interval is the complex number 

(8.6.35) . 

The decision variable for the phase detector is the phase difference between these two 
complex numbers. Equivalently, we can project Yk onto Yk-I and use the phase of the 
resulting complex number, i.e., 

Yky* = °" ej (ek-ek-1) + ICP ej(ek-<Pln* + ICPe-j(ek-1 -</J) nk + nkn* (8 6 36) k-1 °s V' 0s k-1 V' 0s k-1 ' · · 

which, in the absence of noise, yields the phase difference ek - ek-1 ·  Thus, the mean value 
of YkYk-I is independent of the carrier phase. Differentially encoded PSK signaling that is 
demodulated and detected as just described is called differential PSK (DPSK). 
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Figure 8.52 Block diagram of a DPSK demodulator. 

The demodulation and detection of DPSK using matched filters is illustrated i 
Figure 8.52. If the pulse 8T (t) is rectangular, the matched filters may be replaced by inte 
grators, which are also called integrate-and-dump filters. 

8.6.5 Probability of Error for DPSK 

Now consider the evaluation of the error probability performance of a DPSK demodulate 
and detector. The derivation of the exact value of the probability of error for M -ary DPSJ 
is extremely difficult, except for M = 2. The major difficulty is encountered in the determ 
nation of the PDF for the phase of the random variable YkYk-1 ' given by Equation (8.6.36 

Pawula et al. (1982) have shown that the probability of a symbol error for M-ar 
DPSK may be expressed in the integral form 

1 1rr-rr/M [ Ps sin2(n/ M) ] PM = - exp - de. n 0 1 + cos(n/ M) cos e (8.6.3'i 

This expression can be computed numerically to yield the symbol error probability. 
An approximation to the performance of DPSK is easily obtained, as we now demor 

strate. 
Without loss of generality, suppose the phase difference ek - ek-I = 0. Furthermon 

the exponential factors e-j (fJk-1 -</>) and ej (fJk-<l>l in Equation (8.6.36) can be absorbed int 
the Gaussian noise components nk-I and nk. as shown in Problem 5.28, without changin 
their statistical properties. Therefore, YkYk-I in Equation (8.6.36) can be expressed as 

(8.6.3� 

The complication in determining the PDF of the phase is the term nkn'k_1 • However, : 
SNRs of practical interest, the term nkn'k_1 is small relative to the dominant noise ten 
,./w;;(nk + n'k_1) .  ,If we neglect the term nkn'k_1 and we also normalize YkYk-I by dividin 
through by ,./w;;, the riew set of decision metrics becomes 
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Y1 = � + Re(nk + nj;_1) ,  
Y2 = lm(nk + nj;_1 ) .  

419 

(8.6.39) 

The variables Y1 and y2 are uncorrelated Gaussian random variables with identical vari­
ances a; = No. The phase is 

e = tan-I Y2 . (8.6.40) YI 
At this stage, we have a problem that is identical to the one we previously solved for phase­
coherent demodulation and detection of PSK. The only difference is that the noise variance 
is now twice as large as in the case of PSK. Thus, we conclude that the performance of 
DPSK is 3 dB worse than that for PSK. This result is relatively good for M ::=: 4, but it is 
pessimistic for M = 2 in the sense that the loss in binary DPSK, relative to binary PSK, is 
less than 3 dB at large SNR. 

In binary DPSK, the two possible transmitted phase differences are zero and n radi­
ans. As a consequence, only the real part of YkYZ-i is needed for recovering the informa­
tion. We express the real part as 

(8.6.41) 

Because the phase difference between the two successive signaling intervals is zero, an 
error is made if Re(ykyz_ 1) is less than zero. A rigorous analysis of the error probability of 
DPSK based mi computing the probability of ykyj;_ 1  + YZYk-I < 0 results in the following 
expression: 

(8.6.42) 

Here, Ph = 'f!,b/ No is the SNR/bit. 
The graph of Equation (8.6.42) is shown in Figure 8.53. Also shown in this figure is 

the probability of error for binary PSK. We observe that, at error probabilities below 10-4, 
the difference in SNR between binary PSK and binary DPSK is less than 1 dB. Since DPSK 
does not require the estimation of the carrier phase, the need for a phased-locked loop is 
eliminated, and the implementation of the demodulator is simplified. Given the relatively 
small difference in performance between binary DPSK and binary PSK, binary DPSK is 
often preferable in practice. 

8.7 QUADRATURE AMPLITUDE-MODULATED DIGITAL SIGNALS 

In our discussion of carrier-phase modulation, we observed that the bandpass signal wave­
forms may be represented as given by Equation (8.6.4), in which the signal waveforms are 
viewed as two orthogonal carrier signals, cos 2nfct and sin 2nfct , which are amplitude 
modulated by the information bits. However, the carrier-phase modulation signal wave­
forms are constrained to have equal energy 'f!,s, which implies that the signal points in the 
geometric representation of the signal waveforms lie on a circle of radius 'fl, s . If we remove 
the constant energy restriction, we can construct two-dimensional signal waveforms whose 
vector representation is not constrained to fall on a circle. 
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12 14 Figure 8.53 Probability of error for 
binary PSK and DPSK. 

The easiest way to construct such signals is to impress separate information bits o 
each of the quadrature carriers, cos 2rr Jct and -sin 2rr Jct .  This type of digital modulatio 
is called quadrature amplitude modulation (QAM). We may view this method of info 
mation transmission as a form of quadrature-carrier multiplexing, previously described i 
Section 3.4.2. 

The transmitted signal waveforms have the form 

Um (t) = Amc8T (t) cos 2nJct - Ams8T (t) sin 2nJct, m = 1 ,  2, . . .  , M, (8.7.l 

where {Ame} and {Ams} are the sets of amplitude levels that are obtained by mappin 
k-bit sequences into signal amplitudes. For example, Figure 8.54 illustrates a 16-QM 
signal constellation that is obtained by amplitude modulating each quadrature carrier b 
M = 4 PAM. In general, rectangular signal constellations result when two quadratm 
carriers are each modulated by PAM. Figure 8.55 illustrates the functional block diagrai 
of a modulator for QAM implementation. 

More generally, QAM may be viewed as a form of combined digital-amplituc 
and digital-phase modulation. Thus, the transmitted QAM signal waveforms may be expre 
sed as 

Umn (t) = AmgT(t) cos(2nJct + en) . m = 1 ,  2, . . . ' M1 ; n = 1 ,  2, . . .  ' M1. (8.7.: 
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Transmitted 
QAM 
signal 

+ r-----,-

If M1 = 2k1 and M2 = 2k2 , the combined amplitude- and phase-modulation method results 
in the simultaneous transmission of k1 + k1 = log2 M1 M2 binary digits occurring at a 
symbol rate Rb/(k1 + k1) .  

8.  7.1 Geometric Representation of QAM Signals 

It is clear that the geometric signal representation of the signals given by Equations (8. 7 . 1) 
and (8.7.2) is in terms of two-dimensional signal vectors of the form 

Sm = (�Ame. �Ams) ' m = 1 ,  2, . . . ' M, (8.7.3) 



I , I d 

li 1 11 1 I. r 
!' 

I .  
' .  

l l ! i i 1 ·: 11!1 

422 Digital Modulation in AWGN Channel Chapter : 

and the orthogonal basis functions are 

(8.7.4 

It should be noted that M = 4 rectangular QAM and M = 4 PSK are identical sigrn 
constellations. 

Examples of signal-space constellations for QAM are shown in Figure 8.56. 
The average transmitted energy for those signal constellations is simply the sum c 

the average energies in each of the quadrature carriers. For the signal constellations, a 
shown in Figure 8.56, the average energy per symbol is given as 

1 M 
�av = 

M 
L I I S; 1 12 • i=I 

(8.7.S 

The distance between any pair of signals points is 

(8.7.t 

Example 8.7.1 

Consider the M = 8 rectangular signal constellation and the M = 8 combined PAM-PSK sii 
nal constellation, as shown in Figure 8.57(a) and (b). Assuming that adjacent signal points i 
each of the two signal constellations are separated by a distance d = 2, determine the avera� 
energy per symbol for each constellation. Which signal constellation is preferable? Why? 

Solution For the M = 8 signal constellation shown in Figure 8.57(a), the coordinates of tl 
signal points are (±1 ,  ± 1) and (±3, ±1) .  Therefore, the average energy per symbol is 

1 �av = 8 [4(2) + 4(10)] = 6. 

For the M = 8 signal constellation shown in Figure 8.57(b), the coordinates of tl 
signal points are (±1 ,  ± 1) and (1 + ,./3, 0), (-1 - ,./3, 0), (0, 1 + ,./3), and (0, -1 - .J3 
Therefore, the average energy per symbol is 

l �av = 8 [4(2) + 4(7.464)] = 4.73. 

This signal constellation is preferable because it requires 1 dB less energy per symbol 
achieve the same performance as that of the rectangular signal constellation. 



Section 8.7 Quadrature Amplitude-Modulated Digital Signals 

M = 64 ·- - - ...... - - -+- - - -· - - · - - - .. - - - ---- - - --, 
I I 
I I 
I M = 32 I • • � - - -· - - · - - - •, • • 
I / ' I 
I / ' I 
I / 

M =  16 
' I / ' t • ·- - - -+- - - -+- - - -· • • 

I I I I I 
I I I I I I 
I I I M = 8 1  I I 
I + + + ' - - - � - - .- - - -· 
I I I = 4 ' 

I 
I I I I I I I • • - - - --- - _._ _ _ _  + • ' 

I I I I 
I I I I I I 
I I I I I I I I t • · - - - · - _ .. _ _ _ __ /. • ' I 
I ' / 

I ' / 
I ' / I 
I ' / + ' • ·- - - -+- - - -+- - - -· • 

I I 
I I 
I I · - - - .. _ - - ...... - - -+- - -· - - - · - - - .. - - - --

(a) 

M = 8  

(b) 
M =  16 

(c) 

423 

Figure 8.56 (a) Rectangular signal-space constellations for QAM. (b, c) Examples of combined PAM-PSK 
signal-space constellations. 

8. 7.2 Demodulation and Detection of QAM Signals 

The received QAM signal is corrupted by additive Gaussian noise. Hence, r (t) may be 
expressed as 

r (t) = Amc8T(t) cos(2rtfct) - Ams8T (t) sin(2rtfct) + n(t) . (8.7.7) 
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Figure 8.57 Two M = 8 QAM signal point constellations. 

The received signal r(t) is cross correlated with the functions given by Equation 
(8.7.4), and the outputs of the cross correlators is sampled at time t = T to yield the vecto 

Y = Sm + n 

The optimum detector computes the distance metrics 

D(y, Sm) = I I y - Sm 1 1 2, m = 1, 2, . . .  ' M 

(8.7.8 

(8.7.9 

(8.7. lC  

and selects the signal corresponding to the smallest value of D(y, Sm) .  If a correlatio 
metric is used in place of a distance metric, it is important to recognize that correlatio 
metrics must employ bias correction because the QAM signals are not equal energy signal1 

8.7.3 Probability of Error for QAM 

To determine the probability of error for QAM, we must specify the signal-point conste 
lation. We begin with QAM signal sets that have M = 4 points. Figure 8.58 illustrates tw 
4-point signal sets. The first is a four-phase modulated signal and the second is a QAll 
signal with two amplitude levels, labeled � and �. and four phases. Because th 
probability of error is dominated by the minimum distance between pairs of signal point: 
we impose the condition that dmin = 2,JW;; for both signal constellations; we also evaluat 
the average energy, based on the premise that all signal points are equally probable. For th 
four-phase signal, we have 

1 
�av = 4 (4)2�s = 2�, . (8.7.1 l 
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Figure 8.58 Two 4-point signal constellations. 

For the two-amplitude four-phase QAM, we place the points on circles of radii .ffi and 
,,;w;;.. Thus, with the constraint that drnin = 2-JW,, the average energy is 

(8.7 . 12) 

which is the same average energy as the M = 4-phase signal constellation. Hence, for all 
practical purposes, the error-rate performance of the two signal sets is the same. In other 
words, the two-amplitude QAM signal set has no advantage over M = 4-phase modulation. 

Next, consider M = 8 QAM. In this case, there are many possible signal constella­
tions. The four signal constellations shown in Figure 8.59 consist of two amplitudes and 
have a minimum distance between signal points of 2�. The coordinates (Ame• Ams) for 
each signal point, normalized by �, are given in the figure. Assuming that the signal 
points are equally probable, the average transmitted signal energy is 

(8.7. 13) 

where (amc, ams) are the normalized coordinates of the signal points. 
In Figure 8.59, the two signal sets (a) and (c) contain signal points that fall on a 

rectangular grid and have 'i8av = 6'i8s . The signal set (b) requires an average transmitted 
signal 'i8av = 6.82'i8s , and the fourth requires 'i8av = 4.73'i8s . Therefore, to achieve the same 
probability of error, the signal set (d) requires approximately 1 dB less energy than (a) 
and (c) and 1 .6 dB less energy than (b). This signal constellation is known to be the best 
eight-point QAM constellation because it requires the least energy for a given minimum 
distance between signal points. 

For M :=:: 16, there are many more possibilities for selecting the QAM signal points 
in the two-dimensional space. For example, we may choose a circular multiamplitude con­
stellation for M = 16, as shown in Figure 8.60. In this case, the signal points at a given 
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Figure 8.59 Four 8-point QAM signal constellations. 

M =  16 
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(d) 

/ 
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(1 +v'3, 0) 

Figure 8.60 Circular 16-point QAM signal 
constellation. 
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amplitude level are phase rotated by n/4 relative to the signal points at adjacent ampli­
tude levels. This 16-QAM constellation is a generalization of the optimum 8-QAM con­
stellation. However, the circular 16-QAM constellation is not the best 16-QAM signal 
constellation for the AWGN channel. 

Rectangular QAM signal constellations have the distinct advantage of being easily 
generated as two PAM signals impressed on phase-quadrature carriers. In addition, they are 
easily demodulated as previously described. Although they are not the best M-ary QAM 
signal constellations for M ::: 16, the average transmitted energy required to achieve a 
given minimum distance is only slightly greater than the average energy required for the 
best M -ary QAM signal constellation. For these reasons, rectangular M -ary QAM signals 
are most frequently used in practice. 

For rectangular signal constellations in which M = 2k where k is even, the QAM 
signal constellation is equivalent to two PAM signals on quadrature carriers, each hav­
ing ,,/M = 2kf2 signal points. Because the signals in the phase-quadrature components 
are perfectly separated by coherent detection, the probability of error for QAM is easily 
determined from the probability of error for PAM. Specifically, the probability of a correct 
decision for the M -ary QAM system is 

(8.7. 14) 

where P .JM is the probability of error of a ,,/M-ary with one-half the average energy in 
each quadrature signal of the equivalent QAM system. By appropriately modifying the 
probability of error for M -ary PAM, we obtain 

P../M = l (l --l ) Q (J 3 �av) , 
,,/M M - l No 

(8.7. 15) 

where �av/ No is the average SNR/symbol. Therefore, the probabilify of a symbol error for 
the M -ary QAM is 

(8.7. 16) 

We note that this result is exact for M = 2k when k is even. On the other hand, when k 
is odd, the signal constellation is no longer square; therefore, there is no equivalent M -ary 
PAM system. This is no problem, however, because it is rather easy to determine the error 
rate for a rectangular signal set. If we employ the optimum detector that bases its decisions 
on the optimum distance metrics given by Equation (8. 7 . 10), it is relatively straightforward 
to show that the symbol error probability is tightly upper bounded as 

< l - [1 - 2Q ( 3�av )] 2 - (M - l)No ( 3k�bav ) S 4Q (M .,.- l)No 

(8.7. 17) 
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for any k 2: 1 ,  where <gbav/ No is the average SNR/bit. The probability of a symbol error 
plotted in Figure 8.61 as a function of the average SNR/bit. 

It is interesting to compare the performance of QAM with that of phase modulatic 
for any given signal size M, because both types of signals are two-dimensional. Recall th 
for M -ary phase modulation, the probability of a symbol error is approximated as 

PM � 2Q ( /2Ps sin �) , (8.7 .1 : 

where Ps is  the SNR/symbol. For M -ary QAM, we may use the expression in Equ 
tion (8.7. 17). Because the error probability is dominated by the argument of the Q-functic 
we may simply compare the arguments of Q for the two signal formats. Thus, the ratio 
these two arguments is 

§6M = 
3/(M - 1) . 
2 sin2 n/M 

(8.7 .1 
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TABLE 8.1 SNR ADVANTAGE OF 
M -ARY QAM OVER M-ARY PSK. 

M lO logw�M 

8 1 .65 
16 4.20 
32 7.02 
64 9.95 
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For example, when M = 4, we have !Jf,M = 1. Hence, 4-PSK and 4-QAM yield compa­
rable performance for the same SNR/symbol. On the other hand, when M > 4, we find 
that !Jf,M > l ;  thus, M-ary QAM yields better performance than M-ary PSK. Table 8.1 
illustrates the SNR advantage of QAM over PSK for several values of M. For example, we 
observe that 32-QAM has a 7-dB SNR advantage over 32-PSK. 

Example 8.7.2 

From the expression for the symbol error probability of QAM, which is given by Equa­
tion (8.7. 17), determine the increase in the average energy per bit �bav required to maintain 
the same performance (error probability) if the number of bits per symbol is increased from k 
to k + 1 where k is large. 
Solution Since M = 2k, increasing k by one additional bit means that the number of signal 
points must be increased from M to 2M. For M large, we observe that increasing M to 2M 
in the argument of the Q-function in Equation (8.7. 17) requires that we increase the average 
energy per bit from �bav to 2�bav; this allows the error probability to remain the same. There­
fore, in QAM, increasing the number of bits per symbol by one bit causes an additional 3 dB 
increase in the transmitted signal energy to maintain the same error probability. This is a factor 
of two smaller in energy than PSK for large M. Therefore, QAM is more energy efficient than 
PSK for M > 4, as indicated in Table 8 . 1 .  • 

.. S.8 CARRIER-PHASE ESTIMATION 

In this section, we treat methods for estimating the carrier phase that is required for phase­
coherent demodulation of the received signal. In particular, we consider methods for carrier­
phase estimation from the received information-bearing modulated signal in which the data 
is conveyed by either PAM, PSK, or QAM. 

8.8.1 The Phase-Locked Loop 

We begin by describing a method for generating a phase reference for synchronous (phase­
coherent) demodulation of a DSB-SC AM signal. The received noise-corrupted signal at 
the input to the demodulator is given by 

r (t) = u(t) + n(t) 

= Acm(t) cos(2nfct + ¢) + n(t), (8.8. 1) 

where m (t) is  the message signal, which is assumed to be a sample function of a zero-mean 
random process M(t), e.g., m (t) may be a baseband PAM signal. 
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First, we note that the received signal r (t) has a zero mean, since the message proces 
is zero mean, i.e., M(t) contains no DC component. Consequently, the average power , 
the output of a narrowband filter tuned to the carrier frequency fc is zero. This fact implie 
that we cannot extract a carrier-signal component directly from r(t) . 

If we square r(t), the squared signal contains a spectral component at twice th 
carrier frequency. That is, 

r2 (t) = A�M2(t) cos2(2rrfct + </>) + noise terms 

1 1 = 2A�M2 (t) + 2A�M2(t) cos(4rrfct + 2¢) 

+ noise terms. (8.8.: 

Since E(M2(t)) = RM (O) > 0, there is signal power at the frequency 2fc, which can t 
used to drive a phase-locked loop (PLL). 

In order to isolate the desired double-frequency component from the rest of the fo 
quency components, the squared input signal is passed through a narrowband filter that 
tuned to the frequency 2 fc . The mean value of the output of such a filter is a sinusoid wi1 
frequency 2fc, phase 2¢, and amplitude A�E(M2(t))H(2fc)/2, where H(2fc) is the gai 
(attenuation) of the filter at f = 2fc· Thus, squaring the input signal produces a sinusoid 
component at twice the carrier frequency, which can be used as the input to a PLL. Tl 
general configuration for the carrier-phase estimation system is illustrated in Figure 8.62 

The PLL consists of a multiplier, a loop filter, and a voltage-controlled oscillat1 
(VCO), as shown in Figure 8.63. If the input to the PLL is the sinusoid cos(4rrfct + 2� 
and the output of the VCO is sin(4rrfct + 2/P), where ¢ represents the estimate of ¢, ti 
product of these two signals produces the signal 

e(t) = cos(4rrfct + 2¢) sin(4rrfct + 2/P) 
1 A 1 A = l sin 2(¢ - </>) + l sin(8rrfct + 2¢ + 2¢). (8.8. 

Note that e(t) contains a low-frequency term (DC) and a term at four times the carrier. 

r(t) Square-law 
device 

B andpass 
filter 

tuned to 2fc 

Loop 
filter 

vco 

PLL 

Output 
Figure 8.62 System for carrier-phi 
estimation. 

Figure 8.63 Basic elements of a PLL. 
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The loop filter is a lowpass filter that responds only to the low-frequency component 
sin(<,b - </>) and removes the component at 4fc· This filter is usually selected to have the 
relatively simple transfer function 

1 + T2S G(s) = -- , 1 + T1S (8.8.4) 

where the time constants i1 and i2 are design parameters (<1 » <2) that control the band­
width of the loop. A higher-order filter that contains additional poles may be used, if nec­
essary, to obtain a better loop response. 

The output of the loop provides the control voltage for the VCO, whose implemen­
tation is described in Section 4.3 in the context of FM modulation. The VCO is basically a 
sinusoidal signal generator with an instantaneous phase given by 

4rtfct + 2¢ = 4rtfct + K f :00 v(i)di, (8.8.5) 

where K is a gain constant in radians per volt-second. Hence, the carrier-phase estimate at 
the output of the VCO is 

(8.8.6) 

and the transfer function of the VCO is K / s .  
Since the double-frequency term resulting from the multiplication of the input signal 

to the loop with the output of the VCO is removed by the loop filter, the PLL may be 
represented by the closed-loop system model shown in Figure 8.64. 

The sine function of the phase difference 2( ¢-<!>) makes the system nonlinear and, as 
a consequence, the analysis of the PLL performance in the presence of noise is somewhat 
involved, although it is mathematically tractable for simple loop filters. 

In a steady-state operation when the loop is tracking the phase of the received carrier, 
the phase error ¢ - </> is small; hence, 

1 A A 

- sin 2( </> - </>) -:::::, </> - </> 2 . (8.8.7) 

With this approximation, the PLL is represented by the linear model shown in Figure 8.65. 
This linear model has a closed-loop transfer function 

1 A 

2sin(2cf> - 2cf>) 

KG(s)/s H (s) = -1 _+_K_G_(_s_) /-s 

vco 
K 

-
s 

Loop 
filter G(
s
) 

(8.8.8) 

Figure 8.64 Model of a PLL. 
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Figure 8.65 Linear model for a PLL. 

By substituting from Equation (8.8.4) for G(s) into Equation (8.8.8), we obtain 

H(s) _ 1 + r2s -
l + (r2 +

-k) s + ]l-s2 · 

Chapter 

(8.8.C 

Hence, the closed-loop system function for the linearized PLL is second order when tl 
loop filter has a single pole and a single zero. The parameter r2 determines the position 1 
the zero in H(s), while K, r1 , and r2 control the position of the closed-loop system pole 

The denominator of H (s) may be expressed in the standard form 

(8.8. 1 1  

where { is called the loop-damping factor and Wn is the natural frequency of the loop. 
terms of the loop parameters, Wn = ,J K / r1 and { = Wn ( r2 + 1 / K) /2, the closed-loc 
transfer function becomes 

) (2{wn - w�/ K)s + w� H(s = 2 • 

S + 2{ WnS + W� (8.8. 1  

The magnitude response 20 log I H (j  w) I as a function of the normalized frequeni 
w / Wn is illustrated in Figure 8.66, with the damping factor as a parameter and r1 » 1 .  Ne 
that { = 1 results in a critically damped loop response, { < 1 produces an underdamp1 
loop response, and { > 1 yields an overdamped loop response. 

The (one-sided) noise-equivalent bandwidth of the loop is (see Problem 8.42) 

(8.8. 1 

In practice, the selection of the bandwidth of the PLL involves a trade-off between t 
speed of response and the noise in the phase estimate. On the one hand, we want to sett 
the bandwidth of the loop to be sufficiently wide in order to track any time variations 
the phase of the received carrier. On the other hand, a wideband PLL allows more noise 
pass into the loop, which corrupts the phase estimate. Next, we assess the effects of noi 
in the quality of the phase estimate. 

Effect of Additive Noise on Phase Estimation. In order to evaluate the effe1 
of noise on the estimate of the carrier phase, let us assume that the PLL is trackin! 
sinusoid signal of the form 

s (t) = Ac cos[2nfct + ¢ (t)] , (8.8.1 
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Figure 8.66 Frequency response of a second-order loop. 

which is corrupted by the_ additive narrowband noise 

n(t) = nc(t) cos 2nfct - ns (t) sin 2rcfct. (8.8 . 14) 

The in-phase and quadrature components of the noise are assumed to be statistically inde­
pendent, stationary Gaussian noise processes with (two-sided) power spectral density N0/2 
W/Hz. By using simple trigonometric identities, the noise term in Equation (8.8. 14) can be 
expressed as 

n(t) = Xc(t) cos[2nfct + <f>(t)] - Xs (t) sin[2nfct + <f> (t)] , (8.8 . 15) 

where 
Xc(t) = nc (t) cos <f> (t) + ns (t) sin¢ (t) 

and 
Xs(t) = -nc(t) sin¢ (t) + ns (t) cos <f> (t). (8.8 . 16) 

We note that 
xc(t) + }xs(t) = [nc(t) + Jns (t)]e-j</>(t) . (8.8. 17) 

It is easy to verify that a phase shift does not change the first two moments of nc(t) and 
ns (t) ,  so that the quadrature components Xc(t) and Xs(t) have exactly the same statistical 
characteristics as nc (t) and ns (t) .  (See Problem 5.28.) 
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Loop 
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Figure 8.67 Equivalent mode 
of PLL with additive noise. 

Now, if s (t) + n (t) is multiplied by the output of the VCO and the double frequenc: 
terms are neglected, the input to the loop filter is the noise-corrupted signal 

e(t) = Ac sin !:!..¢ + Xc(t) sin !:!..¢ - Xs(t) cos !:!..¢, (8.8 .18 

where, by definition, !:!..</> = ¢ - </> is the phase error. Thus, we have the equivalent modt 
for the PLL with additive noise, as shown in Figure 8.67. 

When the power Pc = A�/2 of the incoming signal is much larger than the nois 
power, the phase estimate ¢ � </>. Then, we may linearize the PLL; thus, we can easil 
determine the effect of the additive noise on the quality of the estimate ¢. Under thes 
conditions, the model for the linearized PLL with additive noise will appear as illustrate 
in Figure 8.68. Note that the gain parameter Ac may be normalized to unity, provided thi 
the noise term is scaled by 1/ Ac. Thus, the noise term becomes 

Xc(t) . Xs (t) n i (t) = -- sm !:!..</> - -- cos !:!..</> .  Ac Ac (8.8. 1 � 

Since the noise n 1  (t) is additive at the input to the loop, the variance of the phm 
error !:!..</>, which is also the variance of the VCO output phase, is 

2 NoBneq ()$ = �, 
c 

(8.8.2( 

where Bneq is the (one-sided) equivalent-noise bandwidth of the loop, given by Equ: 
tion (8.8. 12). Note that A�/2 is the power of the input sinusoid and ai is simply the rat 

Noise 

Ac 

� 
vco 

K 
s 

G(s) 

Figure 8.68 Linearized model 
of PLL with additive noise. 
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of the total noise power within the bandwidth of the PLL divided by the input signal power. 
Hence, 

2 1 
a - = - , 

</> PL 
where PL is defined as the signal-to-noise ratio 

A�/2 
PL = BneqNo/2 

Thus, the variance of ¢ is inversely proportional to the SNR. 

(8.8.21) 

(8.8.22) 

The expression for the variance aJ of the VCO phase error applies to the case where 
the SNR is sufficiently high so that the linear model for the PLL applies. An exact analysis 
based on the nonlinear PLL is mathematically tractable when G(s) = 1 ,  which results in 
a first-order loop. In this case, the probability density function for the phase error can be 
derived [see Viterbi (1966)], and has the form 

f(!:i.</J) = 
exp(pL cos t:i.¢)

, 2n:lo(PL) 
(8.8 .23) 

�: where PL is the SNR defined in Equation (8.8.22), Bneq is the appropriate noise-equivalent 
bandwidth of the first-order lo_op, and Io(-) is the modified Bessel function of order zero. 

From the expression for f (!:i.</J), we may obtain the exact value of the variance o"J 
for the phase error of a first-order PLL. This is plotted in Figure 8.69 as a function of 1 /PL . 
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Also shown for comparison is the result obtained with the linearized PLL model. Note that 
the variance for the linear model is close to the exact variance for PL > 3. Hence, the linear 
model is adequate for practical purposes. 

Approximate analysis of the statistical characteristics of the phase error for the non­
linear PLL have also been performed. Of particular importance is the transient behavior of 
the nonlinear PLL during initial acquisition. Another important problem is the behavior of 
the PLL at low SNR. It is known, for example, that when the SNR at the input to the PLL 
drops below a certain value, there is a rapid deterioration in the performance of the PLL. 
The loop begins to lose lock and an impulsive type of noise, characterized as clicks, is 
generated; this degrades the performance of the loop. Results on these topics can be found 
in the texts by Viterbi (1966), Lindsey (1972), Lindsey and Simon (1973), and Gardne1 
(1979), and in the survey papers by Gupta (1975) and Lindsey and Chie (1981). 

Now that we have established the effect of noise on the performance of the PLL, let w 
return to the problem of carrier synchronization based on the system shown in Figure 8.70 
The squaring of the received signal that produces the frequency component at 2fc alsc 
enhances the noise power level at the input to the PLL; thus, it increases the variance o; 
the phase error. 

To elaborate on this point, let the input to the squarer be u(t) + n(t) . The output is 

y(t) = u2(t) + 2u(t)n(t) + n2(t) .  (8.8.24 

The noise terms are 2u(t)n(t) and n2(t) .  By computing the autocorrelation and powe 
spectral density of these two noise components, we can show that both components hav1 
spectral power in the frequency band centered at 2 fc . Consequently, the bandpass filter witl 
bandwidth Bneq centered at 2fc, which produces the desired sinusoidal signal componen 
that drives the PLL, also passes noise due to these two noise terms. 

s(t) 
Square-law 

device s2(t) 
(full-wave 
rectifier) 

Bandpass 
filter 

tuned to 
2fc 

Frequency 
divider 

Figure 8.70 Carrier recovery using a square-law device. 

COS ( 4rr.fct + 2</>) 

Loop 
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Let us select the bandwidth of the loop to be significantly smaller than the bandwidth 
Bbp of the bandpass filter, so that the total noise spectrum at the input to the PLL may be 
approximated by a constant within the loop bandwidth. This approximation allows us to 
obtain a simple expression for the variance of the phase error as 

z I a. = -- , 
¢ PLSL 

where SL is called the squaring loss and is given as 
I SL = /2 . 

l Bbp Bneq + 
PL 

(8.8.25) 

(8.8.26) 

Since SL < 1 ,  we have an increase in the variance of the phase error; this is caused by 
the added noise power that results from the squaring operation. For example, when p L = 
Bbp/2Bneq, the loss is 3 dB or, equivalently, the variance in the estimate increases by a 
factor of two. 

Finally, we observe that the output of the VCO from the squaring loop must be 
frequency divided by a factor of two and phase shifted by 90° to generate the carrier signal 
for demodulating the received signal. 

8.8.2 The Costas Loop 

A second method for generating a properly phased carrier for a double-sideband 
suppressed-carrier (DSB-SC) AM signal is illustrated by the block diagram in Figure 8. 7 1 .  

s(t) 

cos (2nfct + </>) 

90° phase 
shift 

sin (2nfct + </>) 

Figure 8.71 Block diagram of Costas loop. 
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filter 
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filter 

Loop 
filter 



j: 
I 

438 Digital Modulation in AWGN Channel Chapter 8 

The received signal 

r (t) = Acm(t) cos(2rtfct + </>) + n(t) 

is multiplied by cos(2rtfct +(/>) and sin(2rtfcf +(/>) , which are outputs from the VCO. The 
two products are 

Yc (t) = [Acm(t) cos(2rtfct + </>) 
+ nc(t) cos 2rrfct - ns (t) sin2rtfct] cos(2rtfct + (/>) 
Ac 1 • • = 2m(t) cos fl</> + l[nc(t) cos </> + ns (t) sin</>] 

+ double-frequency terms, 

Ys (t) = [Acm(t) cos(2rtfct + </>) 
+ nc(t) cos 2rtfct - ns (t) sin 2rtfct] sin(2rtfct + (/>) 
Ac 1 - -= 2m(t) sin fl</> + l[nc(t) sin</> - n. (t) cos </>] 

+ double-frequency terms, 

(8.8.21: 

(8.8.28 

where fl</> = ¢ - </>. The double-frequency terms are eliminated by the lowpass filter: 
following the multiplications. 

An error signal is generated by multiplying the two outputs y�(t) and y; (t) of th1 
lowpass filters. Thus, 

e(t) = y� (t)y;(t) 
A1 = _E_m2(t) sin 2fl</> 4 

Ac • • 

+ 4m(t) [nc(t) cos </> +  ns (t) sin</>] sin fl</> 

Ac • • 

+ 4m(t)[nc(t) sin</> - ns (t) cos </>] cos fl</> 

1 A A A A 

+ 4 [nc(t) cos </> + ns (t) sin</> ] [nc(t) sin</> - ns (t) cos </>] . 

This error signal is filtered by the loop filter whose output is the control voltage that drive 
the VCO. 

We note that the error signal into the loop filter consists of the desired term (A�m2 (t) 
4) sin 2fl</>, plus terms that involve signal x noise and noise x noise. These terms ar 

similar to the two noise terms at the input of the PLL for the squaring method. In fact, i 
the loop filter in the Costas loop is identical to that used in the squaring loop, the two loop 
are equivalent. Under this condition, the probability density function of the phase error an 
the performance of the two loops are identical. 
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In conclusion, the squaring PLL and the Costas PLL are two practical methods for 
deriving a carrier-phase estimate for the phase-coherent demodulation of a DSB-SC AM 
signal. 

8.8.3 Carrier-Phase Estimation for PAM 

In the demodulation of the carrier-modulated PAM signal described in Section 8.5.2, we 
assumed that the basis function l{!(t) is perfectly synchronized with the signal component 
of r(t) in both time and carrier phase, as shown in Figure 8.72. In practice, however, these 
ideal conditions do not hold. First, the propagation delay encountered in transmitting a 
signal through the channel results in a carrier-phase offset in the received signal. Second, 
the oscillator that generates the carrier signal cos 2n fct at the receiver is not generally 
phase-locked to the oscillator used at the transmitter. Practical oscillators usually drift in 
frequency and phase. Consequently, the demodulation of the bandpass PAM signal, as 
illustrated in Figure 8. 72, is ideal, but not practical. In a practical system, it is necessary 
to generate a phase-coherent carrier at the receiver to perform the demodulation of the 
received signal. The PLL or the Costas loop may be used for this purpose. 

A functional bl-ock diagram of the receiver that employs a PLL for estimating the 
carrier phase is shown in Figure 8.73. 

Received 
signal 

r(t) 

COS 2rtfct 

Oscillator 

Received 
signal 
r(t) 

PLL 

fo'c )dt 

Signal 
pulse 

generator 

Sampler 

Clock 

Baseband 
correlator or 
matched filter 

cos (2nfct + �) 

To detector 

Sampler 

Clock 

Figure 8.72 Ideal 
demodulation of bandpass 
digital PAM signal. 

Output 
Detector 

Figure 8.73 Demodulation of carrier-amplitude-modulated signal by using a PLL to acquire the carrier phase. 
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Figure 8.74 Bandpass demodulation of a digital PAM signal via (a) correlation and (b) matched filtering. 

As an alternative to performing the correlation or matched filtering at the basebanc 
as shown in Figure 8.73, we may perform cross correlation or matched filtering eithe 
at the bandpass or at some convenient intermediate frequency. In particular, a bandpas 
correlator may be used to multiply the received signal r (t) by the amplitude-modulate1 
carrier J21{f (t) cos(2nfct + ;/>), where cos(2nfct + ;/>) is the output of the PLL. Th 
product signal is integrated over the signaling interval T, the output of the integrator i 
sampled at t = T, and the sample is passed to the detector. If we use a matched filte 
instead of a correlator, the filter impulse response is 1/f (T - t) cos[2nfc (T - t) + ;/>] . Th 
functional block diagrams for these demodulators are shown in Figure 8.74. 

8.8.4 Carrier-Phase Estimation for PSK 

As previously indicated, in any carrier modulation system, the oscillators employed at th 
transmitter and the receiver are not generally phase locked. As a consequence, the receive 
PSK signal will be of the form 

r (t) = AmcgT (t) cos(2nfct + ¢) - AmsgT (t) sin(2nfct + ¢) + n(t), (8.8.2� 
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where ¢ is the carrier-phase offset. This phase offset must be estimated at the receiver, and 
the phase estimate must be used in the demodulation of the received signal. Hence, the 
received signal must be correlated with the two orthogonal basis functions 

and 

fT A 

1/11 (t)= V <i";gT(t) cos(2nfct + ¢) 

fT A 

1/12(t)= --y <i";gT(t) sin(2nfct + ¢), 

(8.8.30) 

where ¢ is the estimate of the carrier phase obtained by a PLL, as shown in Fig­
ure 8.75. When gT (t) is a rectangular pulse, the signal pulse generator may be eliminated. 

When the digital information is transmitted via the M-phase modulation of a carrier, 
a PLL may be used to estimate the carrier-phase offset. For M = 2, the squaring PLL and 
the Costas loop described in Sections 8.8.1 and 8.8.2 are directly applicable. 

For M > 2, the received signal may first be raised to the Mth power, as shown in 
Figure 8.76. Thus, if the received signal r(t) has the form 

r(t)= sm (t) + n(t) 

( 2nm ) = gT(t) cos 2nfct + ¢ + M + n(t), 
(8.8.3 1) 

:; , and we pass r(t) through an Mth power device, the output signal will contain harmonics 
of the carrier fc· The harmonic that we wish to select is cos(2nMfct + M¢) for driving 
the PLL. We note that 
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(8.8.32 

Thus, the information is removed from the Mth harmonic. The bandpass filter tuned ti 
the frequency Mfc produces the desired frequency component cos(2nMfct + M </> ), whicl 
is driving the PLL. The VCO output is sin(2nMfct + M/P) ,  so this output is divided i: 
frequency by M to yield sin(2nfct+/P) and is phase shifted by n/2 to yield cos(2nfct+¢; 
The two quadrature-carrier components are then passed to the demodulator. 

We should note that the quadrature-phase carrier components generated as previous! 
described, contain phase ambiguities of multiples of 2n / M that result from multiplying th 
carrier phase <P by M. Because M</>(mod 2n) is less than 2n, dividing the resulting angl 
by M yields a phase estimate of 1¢ 1  < 2n/ M. However, the true earner phase may excee 
this estimate by multiples of 2n/ M, i.e. , by 2nk/ M, for k =  1 ,  2, . . .  , M - 1 .  Such phas 
ambiguities can be overcome by differentially encoding the data at the transmitter an 

differentially decoding at the detector, as described in Section 8.6.4. 
Just as in the case of the squaring PLL, the M th power PLL operates in the presenc 

of noise that has been enhanced by the Mth power-law device. The variance of the pha� 
error in the PLL resulting from the additive noise may be expressed in the simple form 

2 1 ()". = ---
"' SMLPL ' (8.8.3'. 

where PL is the loop SN R and SML is the M-phase power loss. SML has been evaluated t 
Lindsey and Simon (1973) for M = 4 and M = 8. 

Another method for extracting a carrier-phase estimate ¢ from the received sign 
for M-ary phase modulation is the decision-feedback PLL (DFPLL), which is shown • 

Figure 8.77. The received signal is demodulated by using the two quadrature phase-lock( 
carriers given by Equation (8.8.30) to yield y = (y1 , y2) at the sampling instants. The pha: 



Section 8.8 Carrier-Phase Estimation 

Received 
signal 

90° phase 
shift 

vco 

-sin (2nfct + �) 

Delay 
T 

Delay 
T 

Sampler 

Loop 
filter 

A -! O= tan y2/y1 

Phase 
estimator 

Figure 8.77 Carrier recovery for an M-ary PSK using a decision-feedback PLL. 

443 

A 
-sin (J 

Y1 

estimate e = tan-1 Y2/Y1 is computed at the detector and quantized to the nearest of the 
M possible transmitted phases, which we denote as em. The two outputs of the quadrature 
multipliers are delayed by one symbol interval T and multiplied by cos em and - sin em . 
Thus, we obtain 

+ double-frequency terms, 



!I 
: I  

[ 'i 
' 

I I .  

444 Digital Modulation in AWGN Channel Chapter ! 

where we assume that em = em, and 

A 1 A 

-r(t) sin(2rrfcf + ¢) cos em= - [gT (t) cos em + nc(t)] cos em sin(¢ - ¢) 
2 

1 A 

+ - [gT (t) sin em + ns (t)] cos em cos(¢ - ¢) 2 

+ double-frequency terms. 

These two signals are added together to generate the error signal 

1 A 1 A 

e(t) = 2gT (t) sin(¢ - ¢) - lnc(t) sin(¢ - ¢ - em) 

1 A 

- lnc(t) cos(¢ - ¢ - em) 

+ double-frequency terms. 

(8.8.34 

This error signal is the input to the loop filter that provides the control signal for th 
VCO. 

We observe that the two quadrature noise components in Equation (8.8.34) appear a 
additive terms and no term involves a product of two noise components, as in the output a 
the Mth power-law device. Consequently, there is no power loss resulting from nonlinea 
operations on the received signal in the DFPLL. The M-phase decision-feedback trackin 
loop also has phase ambiguities of 2rrk/ M, necessitating the need for differentially encod 
ing the information sequence prior to transmission and differentially decoding the receive 
sequence at the detector to recover the information. 

8.8.5 Carrier-Phase Estimation for QAM 

As in the case of PAM and PSK, the demodulation of a QAM signal requires a carrif 
that is phase locked to the phase of the received carrier signal. Carrier-phase estimation fc 
QAM can be accomplished in a number of different ways depending on the signal-poir 
constellation and the phase relationships of the various signal points. 

For example, consider the eight-point QAM signal constellation shown in Figur 
8.56(b). The signal points in this constellation have one of two possible amplitude valm 
and eight possible phases. The phases are spaced 45° apart. This phase symmetry allows t 
to use a PLL driven by the output of an 8th power-law device that generates carrier compc 
nents at 8fc, where fc is the carrier frequency. Thus, the method illustrated in Figure 8.7 
may be generally used for any QAM signal constellation that contains signal points wit 
phases that are multiples of some phase angle e, where Le = 360° for some integer L. 

Another method for extracting a carrier-phase estimate ¢ from the received M-ar 
QAM signal is the DFPLL previously described in Section 8.8.4. The basic idea in tr 
DFPLL is to estimate the phase of the QAM signal in each signal interval and remm 
the phase modulation from the carrier. The DFPLL may be used with any QAM signa 



Section 8.8 Carrier-Phase Estimation 445 

regardless of the phase relationships among the signal points. To be specific, we express 
the received QAM signal as 

r (t) = Amgr(t) cos(2nfct + en + ¢) +  n(t), (8.8.35) 

where en is the phase of the signal point and <P is the carrier phase. This signal is demodu­
lated by cross correlating r (t) with 1/f1 (t) and 1/f2(t), which are given by Equation (8.7.4). 
The sampled values at the output of the correlators are 

Y1 = Am� cos( en + ¢  - ¢) + nc cos( en + </>  - ¢) - ns sin( en + </>  - ¢), 
Y2 = Am� sin( en + ¢  - ¢) + nc sin( en + </>  - if;) - ns cos( en + </>  - ¢) . (8.8.36) 

Now suppose that the detector, which is based on y1 and y2, has made the correct 
decision on the transmitted signal point. Then we multiply Y1 by - sin en and Y2 by cos en . 
Thus, we obtain 

-y1 sin en= -Am� cos(en + </> - ¢) sin en + noise component 
= Am�[- sin en cos en cos(¢ - ¢) + sin2 en sin(¢ - ¢) + noise component, 

Y2 cos en = Am� sin( en + </>  - ¢) cos en + noise component 

Received 
signal 

= Am�[sin en cos en cos(¢ - ¢) + cos2 en sin(¢ - ¢)] + noise component. 
(8.8.37) 
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Adding these two terms, we obtain an error signal e(T), given as 

e(T) = Y2 cos en - Y1 sin en 
= Am� sin(¢ - /fa) + noise components. 

Chapter � 

(8.8.38: 

This error signal is now passed to the loop filter that drives the VCO. Thus, only the phast 
en of the QAM signal is used to obtain an estimate of the carrier phase. Consequently, tht 
general block diagram for the DFPLL, which is given in Figure 8.77, also applies to carrier. 
phase estimation for an M-ary QAM signal. By using this DFPLL or the PLL describec 
above, the QAM signal can be demodulated and detected as shown in Figure 8.78. 

As in the case of digitally phase-modulated signals, this method for carrier-phast 
recovery results in phase ambiguities. This problem is solved generally by differentia 
encoding of the data sequence at the input to the modulator. 

8.9 SYMBOL SYNCHRONIZATION 

In a communication system, the output of the receiving filter y(t) must be sampled peri 
odically at the symbol rate and at the precise sampling time instants tm = mT + ro, when 
T is the symbol interval and r0 is a nominal time delay that depends on the propagatio1 
time of the signal from the transmitter to the receiver. To perform this periodic sampling 
we require a clock signal at the receiver. The process of extracting such a clock signal a 
the receiver is usually called symbol synchronization or timing recovery. 

Timing recovery is one of the most critical functions performed at the receiver of ; 
synchronous digital communication system. We should note that the receiver must knov 
not only the frequency ( 1 / T) at which the outputs of the matched filters or correlators an 

sampled, but also where to take the samples within each symbol interval. The choice o 
sampling instant within the symbol interval of duration T is called the timing phase. 

The best timing corresponds to the time instant within the symbol interval where th1 
signal output of the receiver filter is a maximum. In a practical communication system, th1 
receiver clock must be continuously adjusted in frequency ( 1  / T) and in timing phase ro t< 
compensate for frequency drifts between the oscillators used in the transmitter and receive 
clocks; thus, it will optimize the sampling time instants of the matched filter or correlato 
outputs. 

Symbol synchronization can be accomplished in one of several ways. In some com 
munication systems, the transmitter and receiver clocks are synchronized to a master clock 
which provides a very precise timing signal. In this case, the receiver must estimate an1 
compensate for the relative time delay between the transmitted and received signals. Sucl 
may be the case for radio communication systems where precise clock signals are trans 
mitted from a master radio station. 

Another method for achieving symbol synchronization is for the transmitter to simul 
taneously transmit the clock frequency 1 /T or a multiple of 1 /T along with the informa 
tion signal. The receiver may simply employ a narrowband filter tuned to the transmitte1 
clock frequency; thus, it can extract the clock signal for sampling. This approach has th, 
advantage of being simple to implement. There are several disadvantages, however. On 
is that the transmitter must allocate some of its available power to the transmission of th 
clock signal. Another is that some small fraction of the available channel bandwidth mm 
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be allocated for the transmission of the clock signal. In spite of these disadvantages, this 
method is frequently used in telephone transmission systems that employ large bandwidths 
to transmit the signals of many users. In such a case, the transmission of a clock signal is 
shared in the demodulation of the signals among the many users. Through this shared use 
of the clock signal, the penalty in transmitter power and in bandwidth allocation is reduced 
proportionally by the number of users. 

A clock signal can also be extracted from the received data signal. There are a number 
of different methods that can be used at the receiver to achieve self-synchronization. Next, 
we will consider four approaches to the problem of achieving symbol synchronization from 
the received signal. 

8.9.1 Early-Late Gate Synchronizers 

One method for generating a symbol timing signal at the receiver exploits the symmetry 
properties of the signal at the output of the matched filter or correlator. To describe this 
method, let us consider the rectangular pulse s(t), 0 ::=: t < T, shown in Figure 8.79(a). 
The output of the filter matched to s ( t) attains its maximum value at time t = T, as 
shown in Figure 8.79(b). Thus, the output of the matched filter is the time autocorrelation 
function of the pulse s (t). Of course, this statement holds for any arbitrary pulse shape, 
so the approach that we describe generally applies to any signal pulse. Clearly, the proper 
time to sample the output of the matched filter for a maximum output is at t = T, i.e., at 
the peak of the correlation function. 

In the presence of noise, the identification of the peak value of the signal is gene­
rally difficult. Instead of sampling the signal at the peak, suppose we sample early 
(at t = T - 8T) and late (at t = T + 8T). The absolute values of the early samples 
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A i-------. 
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(a) 
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T - 15T T T + l5T 
(b) 

2T Figure 8.79 (a) Rectangular signal pulse and (b) its 
matched filter output. 



448 Digital Modulation in AWGN Channel Chapter 8 

l y[m(T - oT)] I and the late samples l y[m(T +oT)] I will be smaller (on the average in the 
presence of noise) than the samples of the peak value I y (m T) I- Since the autocorrelation 
function is even with respect to the optimum sampling time t = T, the absolute values of 
the correlation function at t = T - oT and t = T + oT are equal. Under this condition, the 
proper sampling time is the midpoint between t = T - oT and t = T + oT. This condition 
forms the basis for the early-late gate symbol synchronizer. 

Figure 8.80 illustrates the block diagram of an early-late gate synchronizer. In this 
figure, correlators are used in place of the equivalent matched filters. The two correlators 
integrate over the symbol interval T, but one correlator starts integrating 8 T early relative 
to the estimated optimum sampling time, and the other integrator starts integrating 8 T late 
relative to the estimated optimum sampling time. An error signal is formed by taking the 
difference between the absolute values of the two correlator outputs. To smooth the noise 
corrupting the signal samples, the error signal is passed through a lowpass filter. If the 
timing is off relative to the optimum sampling time, the average error signal at the output of 
the lowpass filter is nonzero, and the clock signal is either retarded or advanced, depending 
on the sign of the error. Thus, the smoothed error signal is used to drive a voltage-controlled 
oscillator, whose output is the desired clock signal that is used for sampling. The output of 
the VCO is also used as a clock signal for a symbol waveform generator, which puts out 
the same basic pulse waveform as the transmitting filter. This pulse waveform is advanced 
and delayed, and then it is fed to the two correlators, as shown in Figure 8.80. Note that 
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if the signal pulses are rectangular, there is no need for a signal pulse generator within the 
tracking loop. 

We observe that the early-late gate synchronizer is basically a closed-loop control 
system whose bandwidth is relatively narrow compared to the symbol rate 1 / T. The band­
width of the loop determines the quality of the timing estimate. A narrowband loop pro­
vides more averaging over the additive noise; thus, it improves the quality of the estimated 
sampling instants, provided that the channel propagation delay is constant and the clock 
oscillator at the transmitter is not drifting with time (drifting very slowly with time). On the 
other hand, if the channel propagation delay is changing with time or the transmitter clock 
is also drifting with time, then the bandwidth of the loop must be increased to provide for 
faster tracking of time variations in symbol timing. This increases the noise in the loop and 
degrades the quality of the timing estimate. 

In the tracking mode, the two correlators are affected by adjacent symbols. However, 
if the sequence of information symbols has zero mean, as is the case for PAM and some 
other signal modulations, the contribution to the output of the correlators from adjacent 
symbols averages out to zero in the lowpass filter. 

An equivalent realization of the early-late gate synchronizer that is somewhat easier 
to implement is shown in Figure 8.8 1 .  In this case, the clock from the VCO is advanced 
and delayed by oT, and these clock signals are used to sample the outputs of the two 
correlators. 

Received 
signal 

Ia' ( )  dt 

Symbol 
waveform 
generator 

Symbol 
timing 

Ia' ( ) dt 

Sampler 

Advance 
by 8 

vco 

Retard 
by 8 

Sampler 

Figure 8.81 Block diagram of early-late gate synchronizer-an alternative form. 

Square-law 
device 

Loop 
filter 

Square-law 
device 



450 Digital Modulation in AWGN Channel Chapter ! 

8.9.2 Minimum Mean Square Error Method 

Another approach to the problem of timing recovery from the received signal is basec 
on the minimization of the mean square error (MSE) between the samples at the outpu 
of the receiver filter and the desired symbols. We assume that the baseband signal at th1 
transmitter is of the form 

00 
v(t) = L angr (t - nT), (8.9. 1  

n=-oo 
where {an } is the data sequence and T is the symbol interval. To be specific, let us assum1 
that v(t) is a PAM baseband signal and the data sequence {an} is a zero mean, stationar: 
sequence with statistically independent and identically distributed elements. Therefore, th 
signal v(t) has zero mean, i.e., E(v(t)) = 0. Furthermore, the autocorrelation function o 
v(t) is periodic in T; hence, v (t) is a periodically stationary process. 

The received signal at the output of the matched filter at the receiver may be expresse 
as 

00 
y(t) = L anx(t - nT - r0) + w(t), (8.9.2 

n=-oo 
where x(t) = gr(t) *8R (t), the asterisk denotes convolution, gR(t) is the impulse respons 
of the receiver filter, w(t) represents the noise at the output of the receiver filter, and r 

( ro < T) represents the timing phase. 
The MSE between the output of the receiver filter and the desired symbol at the mt 

symbol interval is defined as 

(8.9.3 

where 
00 

Ym (To) = L anx(mT - nT - ro) + w(mT). (8.9.4 
n=-oo 

Since the desired symbol am is not known a priori at the receiver, we may use the output c 
the detector, denoted as am, for the mth symbol. Thus, we substitute am for am in the MS! 
expression. Hence, the MSE is redefined as 

(8.9.: 

The minimum of MSE with respect to the timing phase ro is found by differentiatin 
Equation (8.9.5) with respect to ro. Thus, we obtain the necessary condition 

"""' [ A J dym ( ro) � Ym(To) - am = 0. 
m dro (8.9.{ 

An interpretation of the necessary condition in Equation (8.9.6) is that the optimm 
sampling time corresponds to the condition that the error signal [Ym (r0) - am] is uncom 
lated to the derivative dym(r0)/dr0. Since the detector output is used in the formation < 
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the error signal [ym (ro) - t'lm], this timing phase-estimation method is said to be decision 
directed. 

Figure 8 .82 illustrates an implementation of the system that is based on the condition 
given in Equation (8.9.6). Note that the summation operation is implemented as a lowpass 
filter, which averages a number of symbols. The averaging time is roughly equal to the 
reciprocal of the bandwidth of the filter. The filter output drives the voltage-controlled 
oscillator, which provides the best MSE estimate of the timing phase ro. 

8.9.3 Maximum-Likelihood Method 

In the ML method, the optimum symbol timing is obtained by maximizing the likelihood 
function, defined as 

(8.9.7) 
m 

where Ym ( r0) is the sampled output of the receiving filter given by Equation (8.9.4). From 
a mathematical viewpoint, the likelihood function can be shown to be proportional to the 
probability of the received signal (vector) conditioned on a known transmitted signal. Phys­
ically, A ( r0) is simply the output of the matched filter or correlator at the receiver averaged 
over a number of symbols. 

Sampler 
Ym(T) 

o---r---...-�Detector 

Sampler 

Figure 8.82 Timing recovery based on minimization of MSE. 
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Figure 8.83 Decision-directed ML timing recovery method for baseband PAM. 

A necessary condition for ro to be the ML estimate is that 

Chapter 8 

(8.9.8 

This result suggests the implementation of the tracking loop shown in Figure 8.83. W1 
observe that the product of the detector output am with dym (ro)/dro is averaged by a low 
pass filter that drives the VCO. Since the detector output is used in the estimation method 
the estimate f0 is decision directed. 

As an alternative to using the output symbols from the detector, we may use : 
nondecision-directed method that does not require knowledge of the information symbols 
This method is based on averaging over the statistics of the symbols. For example, we ma: 
square the output of the receiving filter and maximize the function 

m 
with respect to ro. Thus, we obtain 

dA2(ro) _ 2 '°' ( ) dym (ro) _ 0 --- - � Ym To - · dro dro m 

(8.9.9 

(8.9.10 

The condition for the optimum r0 given by Equation (8.9 .10) may be satisfied b 
the implementation shown in Figure 8.84. In this case, there is no need to know the dat 
sequence {am }. Hence, the method is nondecision directed. 

8.9.4 Spectral-Line Method 

Since the signal component at the output of the receiver filter is periodic with period 1 
we can recover a clock signal with frequency 1 / T by filtering out a signal component i 

f = l /T. We observe, however, that E(y(t)) = 0 because E(an) = 0. Therefore, y(l 
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cannot be used directly to generate a frequency component at f = l /T. On the other 
hand, we may perform a nonlinear operation on y(t) to generate power at f = 1 /T  and its 
harmonics. 

Let us consider a square-law nonlinearity. If we square the signal y(t) given by 
Equation (8.9.2) and take the expected value with respect to the data sequence {an}, we 
obtain 

E (y2
(t)) = E ( � � anamx(t - mT - ro)x (t - nT - ro)) + noise component 

00 
= a; L x2 (t - nT - ro) + noise component, (8.9. 1 1 )  

n=-oo 
where a; = E (a�) . Since E (y2 (t)) > 0, we may use y2 (t) to generate the desired fre­
quency component. 

Let us use Poisson's sum formula on the signal component (see Problem P-2.56) to 
express Equation (8.9. 1 1) in the form of a Fourier series. Hence, 

where 

a2 
a2 """"' x2 (t - nT - r ) = _E!_ """"' c ej2rrm(t-ro)/T 

a � 0 T � m ' 
n n 

Cm = j00 X (f)X (m - f) df. -oo T 

(8.9.12) 

(8.9. 13) 

By design, we assume that the transmitted signal spectrum is confined to frequencies below 
1/T .  Hence, X (f) = 0 for I/ I  > 1 /T ;  consequently, there are only three nonzero terms (m = 0, ±1) in Equation (8.9. 12). Therefore, the square of the signal component contains 
a DC component and a component at the frequency 1 / T. 
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This development suggests that we square the signal y(t) at the output of the receiv 
ing filter and filter y2 (t) with a narrowband filter B (f) tuned to the symbol rate 1 / T. If w1 
set the filter response B(l/T) = 1 ,  then 

a2 . a2 2n ; Re [c1 e11'.lt(t-ro)/T] = ; c1 cos T(t - ro) ,  (8.9. 14 

so that the timing signal is a sinusoid with a phase of -2nr0/ T, assuming that X (f) is real 
We may use alternate zero crossings of the timing signal as an indication of the correct sam 
pling times. However, the alternate zero crossings of the signal given by Equation (8.9. 14 
occur at 

or equivalently, at 

2n n 
T(t - ro) = (4k + 1 )2 , 

T t = kT + ro + 4 , 

(8.9.15 

(8.9. 16 

which is offset in time by T /4 relative to the desired zero crossings. In a practical systerr 
the timing offset can be easily compensated either by relatively simple clock circuitry o 
by designing the bandpass filter B(f) to have a n/2 phase shift at f = 1/T. Figure 8.8 
illustrates this method for generating a timing signal at the receiver. 

The additive noise that corrupts the signal will generally cause fluctuations in th 
zero crossings of the desired signal. The effect of the fluctuations will depend on th 
amplitude c1 of the mean timing sinusoidal signal given by Equation (8.9. 14). We not 
that the signal amplitude c1 is proportional to the slope of the timing signal in the vicinit 
of the zero crossing, as shown in Figure 8.86. Therefore, when the amplitude c1 is large 
the slope will be larger; consequently, the timing errors due to the noise will be smalle 
From Equation (8.9.13), we observe that c1 depends on the amount of spectral overlap c 

X(f) and X(l/T - f). Thus, c1 depends on the amount by which the bandwidth of X(j 
exceeds the (Nyquist) bandwidth 1 /2T. In other words, c1 depends on the excess bane 
width of the signal, which is defined as the band of frequencies of the signal X (f) beyon 
f = 1 /2T. If the excess bandwidth is zero, i.e., X(f) = 0 for Il l  > 1/2T, then c1 = ( 
thus, this method fails to provide a timing signal. If the excess bandwidth is large, such a 

Received 
signal 

Square-law 
device 

Sampler 

Narrowband 
filter 

tuned to l!T 
B(f) 

Clock 

Output 

n/2 
phase 
shift Figure 8.85 Symbol timing based 

on the spectral-line method. 
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Figure 8.86 Illustration of the slope of 
the sinusoid at the zero crossing as a 
function of the amplitude. 

a/2T where a = 1/2 or 1 ,  the timing signal amplitude will be sufficiently large to yield 
relatively accurate symbol timing estimates. 

8.9.5 Symbol Synchronization for Carrier-Modulated Signals 

The symbol-timing synchronization methods described above for baseband signals also 
apply to bandpass signals. Because any carrier-modulated signal can be converted to a 
baseband signal by a simple frequency translation, symbol timing can be recovered from 
the received signal after the frequency conversion to baseband. 

For QAM signals, the spectral-line methods described in Section 8.9.4 have proven 
to be particularly suitable for timing recovery. Figure 8.87 illustrates a spectral-line method 
that is based on filtering out a signal component at the frequency 1/2T and squaring the 
filter output to generate a sinusoidal signal at the desired symbol rate 1 / T. Because the 
demodulation of the QAM signal is accomplished as previously described [by multipli­
cation of the input signal with the two quadrature-carrier signals 1fr1 (t) and 1fr2 (t)], the 
in-phase and quadrature signal components at the outputs of the two correlators are used 

In-phase 
signal 

component 

Quadrature 
signal 

component 

Bandpass 
filter 

tuned to I/2T 

Bandpass 
filter 

tuned to I/2T 

Square-law 
device 

Square-law 
device 

Figure 8.87 Block diagram of a timing recovery method for QAM. 

..-------, Clock 
Bandpass signal 

filter 
tuned to I/T 
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as the inputs to the two bandpass filters tuned to l /2T. The two filter outputs are square1 
(rectified), summed, and then filtered by a narrowband filter tuned to the clock frequenc· 
1 / T. Thus, we generate a sinusoidal signal that is the appropriate clock signal for samplin; 
the outputs of the correlators to recover the information. 

In many modem communication systems, the received signal is processed (demod 
ulated) digitally after it has been sampled at the Nyquist rate or faster. In these cases, th 
symbol timing and carrier phase are recovered by signal-processing operations performe1 
on the signal samples. Thus, a PLL for carrier recovery is implemented as a digital PU 
and the clock recovery loop of a type described in this section is also implemented as 
digital loop. References on timing recovery methods based on sampled signals are given i 
Section 8 . 1 1 .  

8.10  REGENERATIVE REPEATERS 

In Section 6.4.4, we described analog repeaters, which are amplifiers that are generall 
used in telephone wireline channels and microwave line-of-sight radio channels to born 
the signal level and, thus, to offset the effect of signal attenuation in transmission throug 
the channel. In this section, we treat regenerative repeaters, which are generally used i 
digital transmission systems. 

The front end of each regenerative repeater consists of a demodulator/detector th; 
demodulates and detects the transmitted digital informatfon sequence sent by the precedin 
repeater. Once detected, the sequence is passed to the transmitter side of the repeater, whic 
maps the sequence into signal waveforms that are transmitted to the next repeater. This ty� 
of repeater is called a regenerative repeater. 

Since a noise-free signal is regenerated at each repeater, the additive noise does rn 
accumulate. However, when errors occur in the detector of a repeater, the errors are propi 
gated forward to the following repeaters in the channel. To evaluate the effect of errors c 
the performance of the overall system, suppose that the modulation is binary PAM, so th: 
the probability of a bit error for one hop (signal transmission from one repeater to the ne; 
repeater in the chain) is 

Since errors occur with low probability, we may ignore the probability that any 01 

bit will be detected incorrectly more than once during the transmission through a chann 
with K repeaters. Consequently, the number of errors will increase linearly with the nun 
ber of regenerative repeaters in the channel, and thus the overall probability of error mi 
be approximated as 

(8. 10. 
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In contrast, the use of K analog repeaters in the channel reduces the received SNR by K; 
hence, the bit-error probability is 

(8. 10.2) 

Clearly, for the same probability of error performance, the use of regenerative repeat­
ers results in a significant savings in transmitter power over analog repeaters. Hence, in 
digital communication systems, regenerative repeaters are preferable. However, in wire­
line telephone channels that are used to transmit both analog and digital signals, analog 
repeaters are generally employed. 

Example 8.10.1 

A binary digital communication system transmits data over a wireline channel of length 1000 
kilometers. Repeaters are used every 10 kilometers to offset the effect of channel attenuation. 
Determine the 7Eib/ N0 that is required to achieve a probability of a bit error of 10-5 if (a) 
analog repeaters are employed and (b) regenerative repeaters are employed. 
Solution The number of repeaters used in the system is K = 100. If regenerative repeaters 
are used, the 7Eib/ No obtained from Equation (8. 10.1) is 

10-5 = lOOQ ( ffff.) 
10-1 = Q ( ffff.) ' 

which yields approximately 1 1 .3 dB. If analog repeaters are used, the 7Eib/ N0 obtained from 
Equation (8. 10.2) is 

10-s = Q ( /ii:-) v lf50Na ' 

which yields an 7Eib/ N0 of 29.6 dB. Hence, the difference on the required SNR is about 18.3 
dB, or approximately 70 times the transmitter power of the digital communication system . 

• 

8.1 1  SUMMARY AND FURTHER READING 

In this chapter, we introduced the reader to basic digital modulation methods for trans­
mitting digital information on physical communication channels in which the transmitted 
signal is corrupted by additive noise that is modeled as white and Gaussian (A WGN). 
We began by developing a geometric representation of digital signals as vectors. Such a 
representation provides a compact characterization of signals for transmitting digital infor­
mation over a channel, and it simplifies the analysis of their performance. 

Using the vector representation, we classified different signals by their dimensional­
ity. Signals that are represented as a one-dimensional vector (scalar) are binary antipodal 
signals (binary PAM) and M-ary (nonbinary) pulse amplitude modulation (M-ary PAM). 
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These one-dimensional signals can be transmitted either on a baseband channel, or on � 
bandpass channel by simply impressing the digital signal onto a carrier frequency. 

We also introduced digital signals whose geometric representation took the form ol 
a two-dimensional vector. Examples of two-dimensional signals are binary PPM, bina.IJ 
FSK, PSK, DPSK, and QAM. Binary PPM is suitable for transmssion on baseband chan. 
nels and, by using the PPM signal to amplitude modulate a carrier frequency, the result 
ing signal can be transmitted on a bandpass channel. In contrast, the binary FSK, PSK 
DPSK, and QAM are bandpass signals and, hence, are suitable for transmission on band 
pass channels. 

A major emphasis of this chapter was placed on deriving the signal processing tha 
is performed by the receiver, whose function is to recover the transmitted digital informa 
tion as reliably as possible in the presence of AWGN. The receiver processing was spli 
into two parts, the first being the demodulator, which is then followed by the detector. W1 
demonstrated that the demodulator can be implemented either as a cross correlator or a: 
a matched filter. The outputs of the demodulator are sampled at the bit rate (for binai; 
signals) or at the symbol rate (for M-ary signals) and fed to the detector, which decide 
on the most probably transmitted symbol. We observed that the optimum decision rul1 
used by the detector is based on the maximum a posteriori probability (MAP) criterion o 
the maximum-likelihood (ML) criterion, depending on whether tie digital signals that an 

transmitted have unequal or equal a priori probabilities of occurring. Based on this imple 
mentation of the optimum detector, we derived the probability of error for the differen 
signal types, i.e., PAM, PSK, DPSK, QAM, and binary FSK. 

In the transmission of carrier modulated signals, such as PAM, PSK, and QAM, w 
observed that it is necessary to estimate the phase of the received carrier signal in orde 
to perform phase coherent demodulation and, thus, to recover the transmitted informa 
tion. Methods for estimating the carrier phase from the incoming received PAM, PSK 
or QAM signals were described, using as a basic element the phase-locked-loop (PLL: 
whose operating characteristics were described in Section 8.8. 1 .  

In this chapter, we also treated the important problem of extracting a timing sigm 
from the received signal, which serves as a clock for periodically sampling the output a 
the demodulator at the symbol rate. 

The geometrical representation of digital signals as vectors was first used by Kotel 
nikov (1947) and Shannon (1948a, 1948b) (in his classic papers). This approach was po� 
ularized by Wozencraft and Jacobs (1965). Today, this approach to signal analysis an 
design is widely used. Treatments similar to those given in the text may be found in mm 
books on digital communications. 

The matched filter was introduced by North (1943), who showed that it maximize 
the SNR. Analyses of various binary and M-ary modulation signals in AWGN were pe1 
formed in the two decades following Shannon's work. Treatments similar to those given i 
the chapter may be found in most books on digital communications. 

A number of books and tutorial papers have been published on the topic of tim 
synchronization. Books that cover both carrier-phase recovery and time synchronizatio 
have been written by Stiffler (1971 ), Lindsey (1972), Lindsey and Simon (1973), Meyr an 
Ascheid (1990), and Mengali and D' Andrea (1997). The tutorial paper by Franks (198( 
presents a very readable introduction to this topic. 
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PROBLEMS 

8.1 Consider the three waveforms 1/f n (t) shown in Figure P-8 . 1 .  

1 . Show that these waveforms are orthonormal. 

2. Express the waveform x (t) as a weighted linear combination of 1/fn (t) , n = 
1 ,  2, 3 if 

1 
2 

0 

Figure P·8.1 

{ -1  
x (t) = 1 : 

-1 ,  

and determine the weighting coefficients. 

2 

1 
2 

0 

4 0 

1 2 3 

O ::; t ::; l 
l ::s; t ::; 3  
3 ::; t ::; 4 

4 

4 

8.2 Use the orthonormal waveforms in Figure P-8. 1  to approximate the function 

x (t) = sin (nt /4) 
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over the interval 0 ::::; t ::::; 4 by the linear combination 3 x(t) = :�:::>nl/ln (t) . 
n=I 

Chapter 8 

1. Determine the expansion coefficients {en} that minimize the mean square approx. 
imation error 

E = la4 [x(t) - x (t)]2 dt. 
2. Determine the residual mean square error Emin. 

8.3 Consider the four waveforms shown in Figure P-8.3. 

1. Determine the dimensionality of the waveforms and a set of basis functions. 
2. Use the basis functions to represent the four waveforms by vectors s 1 ,  s2, s3 , s4 
3. Determine the minimum distance between any pair of vectors. 

1 

0 1 4 0 1 2 3 4 t 
-1 � -1 � 

Sz(t) 
2 � 

1 �  1 

l 
0 1 3 0 1 2 3 4 t 

-2 i---- -2 -

Figure P-8.3 
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8.4 Determine a set of orthonormal functions for the four signals shown in Figure P-8.4 
You may determine these functions by inspection. 

I I 
0 1 2 3 

-2 -

Figure P-8.4 

8.5 Show that if le = 2t , where k is a positive integer, then the energy in each of the 
signals SJ (t) and s2 (t), given by Equation (8.2.5), is equal to 'f!,b· Also show that if 
the condition le = 2

�
h 

is not satisfied but le Tb » 1 ,  then the energy in SJ (t) and 
s2(t) can be very closely approximated by 'f!,b· Note that since Tb is the duration 
of the rectangular pulse, 1 /Tb approximates its bandwidth. Therefore, the condition 
leTb » 1 means that the carrier frequency le is much larger than the bandwidth of 
the rectangular baseband pulse, a condition that is usually satisfied. 

�how that if IJ = 2
�
h 

and h = 2
�
h 

where kJ and k2 are distinct positive integers, Vthen the energy in each of the signals SJ (t) and s2 (t), given by Equation (8.2. 15), 
is equal to 'f!,b, and furthermore, they are orthogonal. Also show that if the above 
conditions are not satisfied but Ji Tb » 1 and hTb » 1 ,  then the energy in SJ (t) 
and s2(t) can be very closely approximated by 'f!,b, and the inner product of_sJ (t) and 
s2(t) is very close to zero. Note that since Tb is the duration of the rectangular pulse, 
1 /Tb approximates its bandwidth. Therefore, the conditions Ji n » 1 and h Tb » 1 
mean that the carrier frequencies IJ and h are_�uch larger than the bandwidth of 
the rectangular baseband pulse, a condition that is usually satisfied. 

8.7 The received signal in a binary communication system that employs antipodal signals 
is 

r (t) = s (t) + n (t) , 
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s(t) 
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where s (t) is shown in Figure P-8.7 and n(t) is AWGN with power spectral densit) 
No/2 W/Hz. 

1. Sketch the impulse responses of the filter matched to s ( t) . 
2. Sketch the output of the matched filter to the input s (t) .  
3 . Determine the variance of the noise of the output of the matched filter at t = 3. 

4. Determine the probability of error as a function of A and No. 

A i-----

0 1 2 3 Figure P-8.7 

8.8 A digital communication system employs the four equiprobable signals given belo\\ 

{ 1 O < t < l  
SJ (t) = - 1 1 < t � 2 ,  

0 otherwise 

{ 2 0 < t < 1 
s2(t) = 1 1 < t � 3 , 

0 otherwise 

S3(t) = -s1 (t) {2 2 < t < 3 S4(t) = - - . 
0 otherwise 

1. Determine an orthonormal basis for representation of these signals. 

2. Draw the constellation representing these signals. 

3. What is the dimensionality of this signal set? 

4. Using the vector representation of these signals determine the average energy 
this signal set and the average energy per bit Ebav· 
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8.9 A matched filter has the frequency response 

1 
_ 

e-j2nfT H (f) = -J-.2-n_f_ 

1. Determine the impulse response h (t) corresponding to H (f). 
2. Determine the signal waveform to which the filter characteristic is matched. 
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8.10 Prove that when a sine pulse 8T (t) is passed through its matched filter, the output is 
the same sine pulse. 

8.11 The demodulation of the binary antipodal signals 

s1 (t) = -s2 (t) = 
{ �, 0 :S t < T 

0, otherwise 

can be accomplished by use of a single integrator, as shown in Figure P-8. 1 1 ,  which 
is sampled periodically at t = kT, k = 0, ±1 ,  ±2, . . . . The additive noise is zero­
mean Gaussian with power spectral density of 

�0 W/Hz. 

1. Determine the output SNR of the demodulator at t = T. 
2. If the ideal integrator is replaced by the RC filter shown in Figure P-8. 1 1 , deter­

mine the output SNR as a function of the time constant RC. 

3. Determine the value of RC that maximizes the output SNR. 

Figure P-8.11 

.--------, Output 
r(t) = s1(t) + n(t)• I '-_fo_t (_)_d_t___,� � Detector I decision

• t 

R 

0,_ _
_

_
_ 
c_J_��1----t-=_k_T: r r << T  

Q Sketch the ilnpulse te'pon'e' of the filtern matched to the pul"'' 'hown ffi Figure 
P-8. 12. Also determine and sketch the output of each of the matched filters. 
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0 
(a) 

T 

S3(t) 

2 -

0 T 
2 
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Sz(l) 

2 -----

0 T T 
2 

-1 � 

(b) 

T 

(c) 
Figure P-8.12 

8.13 A binary PAM communication system employs rectangular pulses of duration ; 
and amplitudes ±A to transmit digital information at a rate R = 105 bits/sec. If ti 
power spectral density of the additive Gavssian noise is N0/2, where No = 10-
W /Hz, determine the value of A that is required to achieve an error probability ' 
P2 = 10-6. I 

8.14 In a binary PAM communication system fo� which the two signals occur with unequ 
probabilities (p and 1 - p ), the optimumdetector compares the output of the corr 
lator, which takes the values 

y = ±� + n 

with a threshold a, which is given by Equation (8.3.56). The resulting error prob 
bility of the detector is given by Equation (8.3.53). 

1. Determine the value of the threshold a = a* for p = 0.3, '7!,b = 1 and No = 0 

2. Determine the average probability of error when a = a* . 
8.15 Suppose that two signal waveforms St (t) and s2 (t) are orthogonal over the inten 

(0, T). A sample function n (t) of a zero mean, white noise process is cross correlat 
with St (t) and s2 (t) to yield 

nt = foT St (t) n (t) dt 
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and 

Prove that E (n1n2) = 0. 

�A binary PAM communication syst�m is used to transmit data over an A WGN chan­L/ nel. The prior probabili.tre(; for the bits are P (am =  1 )  = 1/3 and P (am = - 1) = 
2/3. 1' �µ,_, 1. Determine the optimum threshol,d at the detector. 

2. Determine the average probability of e9"or. 

3. Evaluate the average probability of error when '?!,b = 1 and No = 0. 1 .  

8.17 In a binary antipodal signaling scheme, the signals are given by 

{ 2At T , 
s1 (t) = -s2 (t) = 2A (l - y) , 

0, / 

O ::; t ::; f 
t :S t  :S T. 
otherwise 

/ 
The channel is A WGN and Sn (f) = �0 • The two signals have prior probabilities p 
and 1 - p. 

1. Determine the structure of the optimal receiver. 

2. Determine an expression for the error probability. 

3. Plot the error probability as a function of p for 0 ::; p ::; 1 .  

8.18 In an additive whit��aussian noise channel with noise power spectral density of �0 , 
two equiprobable messages are transmitted by 

sr (t) = [ 'if'  0 :S t < T 
0, otherwise ' 

Sz(t) = T ' [A (l - .!.) O ::; t < T 
0, otherwise 

1. Determine the structure of the optimal receiver. 

2. Determine the probability of error. 

8.19 Suppose that binary PAM is used for transmitting information over an A WGN with 
power spectral density of N0/2 = 10-10 W/Hz. The transmitted signal energy is 
'?!,b = A2T /2, where T is the bit interval and A is the signal amplitude. Determine 
the signal amplitude required to achieve an error probability of 10-6 if the data rate 
is (a) l O  kbps, (b)lOO kbps, and (c) 1 Mbps. 
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8.20 A Manchester encoder maps an information 1 into 10 and a 0 into 01 .  The sig­
nal waveforms corresponding to the Manchester code are shown in Figure P-8.20. 
Determine the probability of error if the two signals are equally probable. 

A t---- A -

-A ,__ -A i---' 
Figure P-8.20 

8.21 The signal waveform 

S(f) = {�-I 0 -:s_ t < T  
otherwise 

is passed through its matched filter, h(t) = s (T - t). Determine the output of thf 
matched filter. 

8.22 The data rate in a binary PAM communication system with AWGN is 2 Mbps. l 
the desired average error probability is 10-6, determine the SNR/bit, 'f!,b/ No, and tht 
power-to-noise ratio Pav/ No. 

8.23 A binary digital communication system employs the signals 

and 
so (t) = 0, 0 "S t < T 

SJ (t) = A, 0 -:::::. t < T 

for transmitting the information. This is called on-off signaling. The demodulato 
cross correlates the received signal r (t) with s (t) and samples the output of th 
correlator at t = T. 

1. Determine the optimum detector for an AWGN channel and the optimum thresh 
old, assuming that the signals are equally probable. 

2. Determine the probability of error as a function of the SNR. How does on-oJ 
signaling compare with antipodal signaling? 

8.24 Consider the signal 

u (t) = { � t cos 2nfct, 0 -S t < T 
0, otherwise 
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1. Determine the impulse response of the matched filter for this signal. 

2. Determine the output of the matched filter at t = T. 
3. Suppose the signal u (t) is passed through a correlator that correlates the input 

u (t) with u (t) . Determine the value of the correlator output at t = T. Compare 
your result with that in Part (2). 

8.25 A carrier component is transmitted on the quadrature carrier in a communication 
system that transmits information via binary PSK. Hence, the received signal has the 
form 

v (t) = ±ffes cos (2nfct + </>) + J2i'c sin (2nfct + ¢) + n (t) , 

where ¢ is the carrier phase and n (t) is AWGN. The unmodulated carrier component 
is used as a pilot signal at the receiver to estimate the carrier phase. 

1. Sketch a block diagram of the receiver; including the carrier phase estimator. 

2. Mathematically illustrate the operations involved in the estimation of the carrier 
phase ¢. 

3. Express the probability of error for the detection of the binary PSK signal as 
a function of the total transmitted power PT = Ps + Pc. What is the loss in 
performance due to the allocation of a portion of the transmitted power to the 
pilot signal? Evaluate the loss for Pc/ PT = 0. 1 .  

8.26 In the demodulation of a binary PSK signal received in white Gaussian noise, a 
phase-locked loop is used to estimate the carrier phase ¢ .  

1. Determine the effect of a phase error ¢ - ¢ on the probability of error. 

2. What is the loss in SNR if the phase error ¢ - ¢ = 45°? 

8.27 Consider the four-phase and eight-phase signal constellations shown in Figure 
P-8.27. Determine the radii r1 and rz of the circles so that the distance between 
two adjacent points in the two constellations is d. From this result, determine the 
additional transmitted energy required in the 8-PSK signal to achieve the same error 
probability as the four-phase signal at high SNR, where the probability of error is 
determined by errors in selecting adjacent points. 

M = 4  
M = S  Figure P-8.27 



468'1 / J 
Digital Modulation in AWGN Channel Chapter 8 

I ,, S.2sl Consider the two 8-point QAM signal constellations shown in Figure P-8.28. The l_/' minimum distance between adjacent points is 2A. Determine the average transmitted · 

power for each constellation assuming that the signal points are equally probable. 
Which constellation is more power efficient? 

) ( 
- ·· 

l ?,0 2 rA2-_ 7 /I 
' }---�_::== '"".·-� . • • 

• • • • 

(a) (b) Figure P·8.28 

8.29 The 16-QAM signal constellation shown in Figure P-8.29 is an international standarc 
for telephone line modems (called V.29). Determine the optimum decision bound­
aries for the detector; assume that the SNR is sufficiently high so that errors onl3 
occur between adjacent points. 

• 

-5 -3 -1 

• 

5 

3 

1 

1 
-1 

-3 

-5 

• 

3 5 

• 

Figure P-8.29 
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8.30 Specify a Gray code for the 16-QAM V.29 signal constellation shown in Problem 
8.29. 

8.31 Consider the octal signal point constellations in Figure P-8.3 1 .  

1 .  The nearest neighbor signal points in the 8-QAM signal constellation are sepa­
rated in distance by A units. Determine the radii a and b of the inner and outer 
circles. 

2. The adjacent signal points in the 8-PSK are separated by a distance of A units. 
Determine the radius r of the circle. 

3. Determine the average transmitter powers for the two signal constellations, and 
compare the two powers. What is the relative power advantage of one constella­
tion over the other? (Assume that all signal points are equally probable.) 

r 

8-PSK 8-QAM Figure P-8.31 

8.32 Consider the eight-point QAM signal constellation shown in Figure P-8.3 1 .  

1. Assign three data bits to each point of the signal constellation so that the nearest 
(adjacent) points differ in only one bit position. 

2. Determine the symbol rate if the desired bit rate is 90 Mbps. 
3. Compare the SNR required for the eight-point QAM modulation with that re­

quired for an eight-point PSK modulation having the same error probability. 
4. Which signal constellation (eight-point QAM or eight-point PSK) is more im­

mune to phase errors? Explain the reason for your answer. 0 Three messages, m1 ,  m2, and m3, are to be transmitted over an AWGN channel with v/ noise power spectral density �o . The messages are 

and 

0 .:::: t < T 
otherwise 

0 .:::: t < f 
t .:::: t < T .  
otherwise 
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1. What is the dimensionality of the signal space? 
2. Find an appropriate basis for the signal space. (Hint: You can find the basis 

without using the Gram-Schmidt procedure.) 

3. Sketch the signal constellation for this problem. 

4. Derive and sketch the optimal decision regions R1, R1, and R3 . 

5. Which of the three messages is more vulnerable to errors and why? In othe1 
words, which of the P(errorlm; transmitted) , i = 1 ,  2, 3 is larger? 

6. Using the union bound, find an upper bound on the error probability of thii 
signaling scheme. 

8.34 A three-level PAM system is used to transmit the output of a memoryless temat] 
source whose rate is 2000 symbols/sec. The signal constellation is shown in Figun 
P-8.34. Determine the input to the detector, the optimum threshold that minimize: 
the average probability of error, and the average probability of error. 

-A 0 A Figure P-8.34 

8.35 Consider a signal detector with an input 

r = ±A + n, 

where +A and -A occur with equal probability and the noise variable n is charac 
terized by the (Laplacian) PDF shown in Figure P-8.35. 

1. Determine the probability of error as a function of the parameters A and a .  
2. Determine the "SNR" required to achieve an error probability of 10-5 • How doe 

the SNR compare with the result for a Gaussian PDF? 

p(n) = _l_ e-lnlv21u 
V2U 

n Figure P-8.35 

8.36 Determine the average energy of a set of M PAM signals of the form 

Sm (t) = Sm1/I (t) , m = 1 ,  2, . . .  , M 
0 S t < T '  
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where 
Sm = (2m - 1 - M)d, m = l , 2, . . .  , M. 

The signals are equally probable with amplitudes that are symmetric about zero and 
are uniformly spaced with distance 2d between adjacent amplitudes, as shown in 
Figure 8.41 .  

8.37 In this chapter, we showed that an optimal demodulator can be realized as a 
correlation-type demodulator and a matched-filter-type demodulator, where in both 
cases, 1/1 j (t) and 1 :S j :S N were used for correlating r (t) or designing the matched 
filters. Show that an optimal demodulator for a general M -ary communication sys­
tem can also be designed based on correlating r (t) with s; (t) and 1 :S i :S M or 
designing filters that are matched to s; (t)'s and 1 :S i :S M. Precisely describe the 
structure of such demodulators by giving their block diagram and all relevant design 
parameters, and compare their complexity with the complexity of the demodulators 
shown in Figures 8.35 and 8.36. 

8.38 A speech signal is sampled at a rate of 8 kHz, logarithmically compressed and 
encoded into a PCM format using 8 bits/sample. The PCM data is transmitted through 
an AWGN baseband channel via M-level PAM. Determine the symbol rate required 
for transmission when (a) M = 4, (b) M = 8, and (c) M = 16. 

8.39 Two equiprobable messages are transmitted via an additive white Gaussian noise 
channel with a noise power spectral density of �o = 1 .  The messages are transmitted 
by the signals 

r(t) 

and s2(t) = s1 (t - 1 ) .  

O :s t :S l  
otherwise 

We intended to implement the receiver using a correlation type structure, but due to 
imperfections in the design of the correlators, the structure shown in Figure 
P-8.39 has been implemented. The imperfection appears in the integrator in the upper 
branch where we have J�.s instead of f0

1 • The decision box, therefore, observes 
r1 and r2; based on this observation, it has to decide which message was trans­
mitted. What decision rule should be adopted by the decision box for an optimal 
decision? 

fs( )  r1 

Decision ,n 
device 

{o r2 

Fignre P-8.39 
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8.40 Consider a transmission line channel that employs n - 1 regenerative repeaters plus 
the terminal receiver in the transmission of binary information. We assume that 
the probability of error at the detector of each receiver is p and that errors among 
repeaters are statistically independent. 

1. Show that the binary error probability at the terminal receiver is 

Pn = � (1  - (1  - 2pt] . 
2 

2. If p = 10-6 and n = 100, determine an approximate value of Pn . 

8.41 A digital communication system consists of a transmission line with 100 digital 
(regenerative) repeaters. Binary antipodal signals are used for transmitting the infor­
mation. If the overall end-to-end error probability is 1 o-6, determine the probability 
of error for each repeater and the required 7l,b/ No to achieve this performance in 
AWGN. 

8.42 Derive the expression for the (one-sided) noise equivalent bandwidth of the PLL 
given by Equation (8.8 .12). 

8.43 Suppose that the loop filter for a PLL has the transfer function 

1 G (s) = -----;;;;; . 
s + v 2 

1. Determine the closed-loop transfer function H (s) and indicate if the loop is 
stable. 

2. Determine the damping factor and the natural frequency of the loop. 

8.44 Consider the PLL for estimating the carrier phase of a signal in which the loop filte1 
is specified as 

K G(s) = -- . 1 + T\S 

1. Determine the closed-loop transfer function H(s) and its gain at f = 0. 
2. For what range of values of r1 and K is the loop stable? 

8.45 The loop filter G(s) in a PLL is implemented by the circuit shown in Figure P-8.45 
Determine the system function G(s) and express the time constants r1 and r2, m 

shown in Equation (8.8.4), in terms of the circuit parameters. 

Ri o���'\/Vlv��--<�---��o 
Input 1 Rz Output 

o�������'I------C�---<O Figure P-8.45 
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8.46 The loop filter G(s) in a PLL is implemented with the active filter shown in Figure 
P-8.46. Determine the system function G(s) and express the time constants r1 and 
r2, as shown in Equation (8.8.4), in terms of the circuit parameters. 

R 

Figure P-8.46 

8.47 Show that the early-late gate synchronizer illustrated in Figure 8.80 is a close approx­
imation to the timing recovery system illustrated in Figure P-8.47. 

r(t) 

Figure P-8.47 

Matched 
filter 

Sampler 

Sampler 

sgn(·) 

vco 
Loop 
filter 

QA binary communication system transmits the same information on two diversity ��hannels. The two received signals are 

r1 = ±� + n1 ,  
r2 = ±� + n2 , 

where E(ni) = E(n2) = 0, E(nI) = af , E(n�) = ai , and n1 and n2 are uncor­
related Gaussian variables. The detector bases its decision on the linear combination 
of r1 and r2, i.e., 

r = r1 + kr2 . \ 1. Determine the value of k that minimizes the probability of eJor. 
2. Plot the probability of error for af = 1 ,  ai = 3 and either � = 1 or k is the 

optimum value found in Part 1 .  Compare the results. \ 
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COMPUTER PROBLEMS 

8.1 Simulation of the Detector Performance for Binary Orthogonal Signals 

The purpose of this problem is to estimate and plot the probability of error as : 
function of the SNR for a binary communication system that employs binary orthog 
onal signals that are transmitted over an additive white Gaussian noise channel. Thi 
model of the binary communication system employing orthogonal signals is show1 
in Figure CP-8. 1 .  As shown, we simulate the generation of a binary sequence o 
zeros and ones that occur with equal probability and are mutually statistically inde 
pendent. To accomplish this task, we use a random number generator that generate 
uniform random numbers in the range (0, 1) .  If a number generated is in the rang, 
(0, 0.5), the binary source output is a 0. Otherwise, it is a 1 .  If a zero is generated 
then Yo = ,Jw;;, + no and Y1 = n , ,  where Yo and Y1 represent the outputs of th 
two matched filters or the two correlators for the binary orthogonal signals. If a 1 i 
generated, then Yo = no and y1 = ,Jw;;, + n 1 are generated. 

The additive noise components no and n 1 are generated by means of two Gaussia 
noise generators. Their means are zero and their variances are a2 = N0/2. For con 
venience, we may normalize the signal energy 'il,b to unity ('il,b = 1) and vary a; 
Note that the SNR, which is defined as 'il,b/ N0, is then equal to 1/2a2. The matche 
filter or correlator outputs Yo and y1 are fed to the detector, which decides whether a 
or a 1 has been received. The detector output is compared with the binary transmitte 
data sequence and an error counter is used to count the number of bit errors. 

Perform the simulation for the transmission of 10,000 bits at several different value 
of SNR, which cover the range of SNRs 0 :::: 10 log 'il,b/ No < lOdB. Plot the em 

Uniform random 
number generator 

Binary 
data source 

Gaussian random 
number generator 

Yo 

Y1 

Gaussian random 
number generator 

Compare 

Error counter 

Output 
data 

Detector 1--...::::.;;.::....., 

Figure CP-8.1 Simulation model for binary orthogonal signal detection. 
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probability as a function of the SNR. Compare the estimated error probability with 
the theoretical error probability given by the formula 

8.2 Simulation of the Detector Performance for Binary Antipodal Signals 

The purpose of this problem is to estimate and plot the probability of error when 
binary antipodal signals are transmitted over an additive white Gaussian noise chan­
nel. The model of the binary communication system employing antipodal signals is 
shown in Figure CP-8.2. As shown, we simulate the generation of the random vari­
able y, which is the input to the detector. A uniform random number generator is 
used to generate the binary information sequence of zeros and ones from the data 
source. The sequence of zeros and ones is mapped into a sequence of ±'jgb, where 'jgb 
represents the signal energy per bit. A Gaussian noise generator is used to generate 
a sequence of zero-mean Gaussian numbers with variance a2• For equally probable 
zeros and ones, the detector compares the random variable y with the threshold zero. 
If y > 0, the decision is made that the transmitted bit is a zero. If y < 0, the decision 
is made that the transmitted bit is a 1 .  The output of the detector is compared with 
the transmitted sequence of information bits, and the bit errors are counted. 

Perform the simulation for the transmission of 10,000 bits at several different values 
of SNR, which covers the range of SNRs 0 < 10 log10 'jgb/No :S 7. Plot the error · 
probability as a function of the SNR. Compare the estimated error probability with 
the theoretical error probability given by the formula 

Uniform random 
number generator 

Binary 
data source 

Gaussian random 
number generator 

y 

Compare 

Detector 

Error counter 

Figure CP-8.2 Simulation model of the binary antipodal signal detection. 

1---.----; .... Output 
data 

8.3 Simulation of the Detector Performance for On-Off Signals 

The model for the system to be simulated is similar to that shown in Figure CP-8.2, 
except that one of the signals is zero. Thus, we generate a sequence of random 
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variables {Yi }, where either Yi = ni when no signal is transmitted or Yi = � + ni 
when the signal is transmitted, and ni is a zero-mean Gaussian random variable with 
variance a2 = No/2. Hence, the two possible PDFs or Yi are shown in Figure CP-8.3. 
The detecto compares each of the random variables {Yi } to the optimum threshold 
�/2.and akes the decision that a 0 was transmitted when Yi < �/2 and that 
a 1 was trans "tted when Yi > �/2. 

Perform th simulation for the transmission of 10,000 bits at several different values 
of SNR t t covers the range of SNRs 0 ::; log10 Cf!,b/ No ::; 13  dB. Plot the error prob­
ability s a function of the SNR. Compare the estimated error probability obtained 
from the simulation with the theoretical error probability given by the formula 

-------+---'----�----- r Figure CP-8.3 The probability density 
0 functions for the received signal at the output 

of the correlator for on-off signals. 

8.4 Effect of Noise in a Binary Communication System 

The effect of noise on the performance of a binary communication system can bf 
observed from the received signal plus noise at the input to the detector. For example 
consider the binary communication system that employs binary orthogonal signals 
for which the input to the detector consists of a pair of random variables (yo , YI) 
where either 

or 

The noise variables no and n I are zero-mean, independent Gaussian random variable: 
with equal variance a2• 
Perform the simulation as described in CP-8. 1 to generate 100 samples of the receive1 
sequence (y0 , YI) for each value of a = 0. 1 ,  a = 0.3, and a = 0.5, where Cf!,b i: 
normalized to unity. Plot these 100 samples for each a as separate two-dimensiona 
plots with coordinates (yo , YI) . Comment on the results. 

8.5 Simulation of the Detector Performance for 4-Amplitude PAM 

The purpose of this problem is to estimate and plot the probability of error as a func 
tion of the SNR for a digital communication system that employs four-level PAM 
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The receiver is assumed to consist of a signal correlator or a matched filter followed 
by a detector. The model for the system to be simulated is shown in Figure CP-8.5. 
As shown, we simulate the generation of the random variable y, which is the output 
of the signal correlator and the input to the detector. 

We begin by generating a sequence of quaternary symbols that are mapped into cor­
responding amplitude levels {Am}. To accomplish this task, we use a random number 
generator that generates a uniform random number in the range (0, I) . This range is 
subdivided into four equal intervals (0, 0.25), (0.25, 0.5), (0.5, 0.75), and (0.75, I ) ,  
where the subintervals correspond to the symbols (pairs of information bits) 00, 01 ,  
1 1 ,  and 10 ,  respectively. Thus, the output of the uniform random number genera­
tor is mapped into the corresponding signal amplitude levels (-3d, -d, d, and 3d), 
respectively. 

The additive noise component having mean zero and variance a2 is generated by 
means of a Gaussian random number generator (RNG). For convenience, we may 
normalize the distance parameter d = 1 and vary a2• The detector observes y = 

Am + n and computes the distance between y and the four possible transmitted signal 
amplitudes. Its output Am is the signal amplitude level corresponding to the smallest 
distance. Am is compared with the actual transmitted signal amplitude, and an error 
counter is used to count the errors made by the detector. 

Perform a simulation for the transmission of 10,000 symbols at different values of 
the average bit SNR, which is defined as 

�avb 
= 

� (d2)
, No 4 a2 

and plot the estimated probability of a symbol error as a function of 10 log (�avb/ No) . 
Also plot the theoretical expression for the probability of error and compare the 
simulated performance to the theoretical performance. 

Mapping to 
amplitude level 

/ Error counter / 
Compare 

Am with Am 

y 

Gaussian random 
number generator 

Detector 

Figure CP-8.5 Simulation model of four-level PAM signal detection. 
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8.6 Simulation of 16-Amplitude PAM 

Modify the simulation described in CP-8.5 to transmit 16-level PAM. In this case 
the 16-ary symbols may be generated directly by subdividing the interval (0, 1)  intc 
16 equal-width subintervals and mapping the 16-ary symbols into the 16-ary signa 
amplitudes. Perform the simulation and plot the estimated error probability. Also 
plot the theoretical probability of a symbol error given by the expression in the tex 
and compare the estimated values to the theoretical values. 

8.7 Generation of PSK Signal Waveforms 

The objective of this problem is to generate constant envelope PSK signal waveform: 
described mathematically by the expression 

{fi; ( 2nm) um(t) = ,t·r cos 2nfct + M , m = 0, 1 ,  2, . . .  , M - 1 
0 S t < T 

For convenience, the signal amplitude may be normalized to unity. 

Generate and plot the PSK signal waveforms for the case in which fc = 6/T anc 
M = 8 over the time interval 0 S t < T. 

8.8 Demodulation of PSK Signals 

In this problem, we consider the demodulation of a M = 4 PSK signal waveforn 
r (t) as given by 

r(t) = Um (t) + n (t) 
= Um(t) + nc(t) COS 21tfct - ns (t) sin 21tfct, 

where the transmitted signal is 

Um (t) = 8T (t) cos (2�m) cos 2nfct - gT(t) sin (2�m) sin 2nfct 

= Smc1/Jl (t) + Sms1/J2(t) 

and n(t) is the additive Gaussian noise process. The pulse shape gT (t) is rectangulai 
i.e., I 

rzg; O < t < T  gT (t) = v =r  - . 
0 otherwise 

The demodulator employs two quadrature correlators to compute the two inputs t, 
the detector at the sampling time T: 

Yc (t) = lo t 
r (r)1/11 (r) dr, 

Ys (t) = lot 
r(r)1/12 (r) dr, 
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where 1/t1 (t) and 1/t2(t) are two orthogonal basis waveforms given by 

1/11 (t) =If gr (t) cos 2rcfct, 

{1 . 1/t2(t) = -V Ci; gr(t) sm 2rcfct. 
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Let us implement the two correlators in discrete time. Thus, the two outputs of the 
correlators are 

n 
Yc (nTs) = L r (kTs)i/11 (kTs) , n = 1 ,  2, . . .  , 

k=O 

n 
Ys (nTs) = L r (kTs)i/t2 (kTs), n = 1 ,  2, . . .  , 

k=O 

where the sampling interval is Ts = T / 100 and the carrier frequency fc = 30 / T. The 
noise samples nc(kTs) and ns (kTs) are statistically independent, zero-mean Gaussian 
with variance a2. Perform the computation and plot Yc (nTs) and Ys (n'Is) for n = 
1 ,  2, . . .  , 100, a2 = 0, a2 = 0.05, a2 = 0.5 and each of the phases in a four-phase 
PSK signal. 

8.9 Simulation of M = 4 PSK Modulation and Detection 

The objective of this problem is to estimate the probability of error for a communi­
cation system that employs M = 4 PSK modulation. The model for the system to be 
simulated is shown in Figure CP-8.8. 

As shown, we simulate the generation of the random vector y = Sm + n, which is 
the output of the signal correlator and the input to the detector. We begin by g erat­
ing two-bit symbols that are mapped into the corresponding four-phase signal oints. 
To accomplish this task, we use a random number generator that generates a un"form 
random number in the range (0, 1) .  This range is subdivided into four equal inte als, 
(0, 0.25), (0.25, 0.50), (0.50, 0.75), and (0.75, 1 .0) , where the subintervals c e­
spond to the pairs of information bits 00, 01, 1 1 , and 10, respectively. These pairs f 
bits are used to select the signal phase vectors Sm, m = 1, 2, 3, 4. 
The additive noise components nc and ns are statistically independent zero-mean 
Gaussian random variables with an equal variance a2• For convenience, we may 
normalize the signal energy �s to unity and control the SNR by scaling the noise 
variance a2. 
The detector observes the received signal vector y in each symbol interval and com­
putes the projection (dot product) of y into the four possible signal vectors Sm. Its 
decision is based on selecting the signal point corresponding to the largest projection. 
The output decisions from the detector are compared with the transmitted symbols, 
and symbol errors and bit errors are counted. 
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Uniform random 
number generator 
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Gaussian RNG 

Ye 

Ys 
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Compare 

Bit-error 
counter 

Detector r---r-� 2-bit symbol 

Symbol-error 
counter 

Figure CP-8.9 Simulation model of M = 4 PSK signal detection. 

Perform the simulation of the four-phase system just described for 10,000 symbol 
(20,000 bits) for the range of SNR 0 ::; 10 log10 <t!,b/ No ::; 8 dB, and plot the esti 
mated probability of a bit error and probability of a symbol error. Also, plot the thee 
retical bit error probability for M = 4 PSK and compare the simulated performanc 
to the theoretical error probability. Comment on the results. 

8.10 Simulation of M = 4 Differential PSK Modulation and Detection 

The objective of this problem is to estimate the probability of error for a commuru 
cation system that employs M = 4 differential PSK (DPSK) modulation. The modt 
for the system to be simulated is shown in Figure CP-8.9. 

The M = 4 DPSK mapper changes the phase of the transmitted signal relative t 
the phase of the previous transmission as follows: (a) by 0 radians if the bits to b 
transmitted are 00, (b) by n/2 radians if the bits to be transmitted are 01 ,  (c) by · 
radians if the bits to be transmitted are 1 1 , and (d) by 3n/2 radians if the bits t 
be transmitted are 10. Two Gaussian random noise generators (RNG) are used t 
generate the noise components (nc, ns), which are uncorrelated, are zero mean, an 
have the variance CY2• Hence, the received signal-plus-noise vector is [ nm y= cos l + nc nm J sin 2 + ns 

= [Yc Ys] . 
The differential detector basically computes the phase difference between two sm 
cessive received signal vectors Yk and Yk-I · Mathematically, this computation ca 
be performed as 

YkYZ-1= (Yck + jysk) (Yck-1 - jysk-1) 
= Yr + j Yi , 
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and ek = tan-
1 (y;/yr) is the phase difference. The value of ek is compared with 

the possible phase differences (0°, 90°, 180°, and 270°), and a decision is made in 
favor of the phase that is closest to ek . The detected phase is then mapped into the 
pair of information bits. The error counter counts the symbol errors in the detected 
sequence. 

Perform the simulation of the M = 4 DPSK system as previously described for 
10,000 symbols (20,000 bits) for the range of SNR 0 :S 10 log10 11,b/No :S 10 dB, 
and plot the estimated probability of a symbol error. Also, plot the theoretical symbol 
error probability for M = 4 PSK and compare the simulated performance for M = 4 
DPSK to the theoretical error probability for M = 4 phase coherent PSK. Comment 
on the results. 

Uniform RNG 

M = 4 DPSK 
mapper 

Figure CP-8.10 

Gaussian RNG 

Ye 

Ys 

Gaussian RNG 

Compare 

Symbol-error 
counter 

Delay 
M = 4 2-bit 
DPSK t--..--;.,._output 

1-----i� detector 

Simulation model of M = 4 DPSK signal detection. 

8.11 Demodulation of QAM Signals 

The demodulator for a QAM signal employs two quadrature correlators tha cross 
correlate the received signal given by 

r (t) = Amcgr (t) cos(2nfct + ¢) + Amsgr(t) sin(2nfct + ¢) + n(t) 

with the phase quadrature basis functions given by 

1/r1 (t) =Ii gy (t) cos(2nfct + ¢),  

fI . 1/r2(t) = -V � gy (t) sm(2nfct + ¢). 
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The pulse shape gT (t) is rectangular; i.e., 
I 
!fi; 

8T(t) = 6 T 0 -::::_ t < T 
otherwise 

Chapter 

Let us implement the two correlators in discrete time. Thus, the two outputs of tl 
correlators are 

n 
Ye (nTs) = L r(kTs)1/r1 (kTs) , n = 1 ,  2, . . .  , 

k=O 
n 

Ys (nTs) = L r (kTs)1/r2 (kTs) ,  n = 1 ,  2 ,  . . .  , 
k=O 

where the sampling interval is Ts = T / 100 and the carrier frequency fe = 30 / T. Tl 
carrier phase ¢ may be selected to be uniformly distributed in the interval (0, 2rr 
and the additive noise samples ne(kTs) and ns (kTs) are statistically independer 
zero-mean Gaussian with variance a2. Perform the computation and plot Ye(nT, 
and Ys (nTs) for n = 1 ,  2, . . .  , 100, a2 = 0, a2 = 0.05, a2 = 0.5 for the M = 
QAM signal constellation shown in Figure 8.56(b). We may select any one of tl 
eight signal points for transmission. 

8.12 Simulation of M = 16 QAM Modulation and Detection 

The objective of this problem is to estimate the probability of error for a commun 
cation system that employs M = 16 quadrature-amplitude modulation (QAM). Tl 
model of the system to be simulated is shown in Figure CP-8. 12(a). The unifor 
random number generator (RNG) is used to generate the sequence of informatic 
symbols corresponding to the 16 possible 4-bit combinations of b1 , b2 , b3 , and h 
The information symbols are mapped into the corresponding signal points, as shov 
in Figure CP-8. 12(b), which have the coordinates [Ame • Amsl Two Gaussian RN< 
are used to generate the uncorrelated, zero-mean noise components [ne, ns] , each , 
which has a variance a2• Consequently, the received signal-plus-noise vector at tl 
input to the detector is 

Y = [Ame + ne Ams + ns]. 

The detector computes the Euclidean distance between y and each of the 16 possib 
transmitted signal vectors; then it selects the signal point that is closest to the receiv1 
vector y.  The error counter counts the symbol errors in the detected sequence. 

Perform the simulation of the M = 16 QAM system as described for 10,000 syr 
bols (40,000 bits) for the range SNR 0 -::::_ 10  log10 ('i/,bav/ No) < 13 dB, and plot ti 
estimated probability of a symbol error. Also, plot the theoretical symbol error pro 
ability for M = 16 QAM and compare the simulated performance to the theoretic 
error probability. Comment on the results. 
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Figure CP-8.12 Simulation model for M = 16 QAM signal detection. 
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4-bit symbol 

8.13 Repeat Example 8.3.3 of the correlation-type demodulator when the received signal 
is corrupted by AWGN, where the noise samples have variances a2 = 0. 1 ,  0.5, and 
1 .0. 

8.14 Repeat Example 8.3.5 of the matched-filter demodulator when the received signal is 
corrupted by AWGN, where the noise samples have variances a2 

= 0 . 1 ,  0.5, and 
1 .0. 

8.15 Simulation of Early-Late Gate Synchronizer for PAM 

The objective of this problem is to simulate the operation of an early-late gate syn­
chronizer for a binary PAM system. The basic pulse used in PAM has a raised cosine 
spectrum with a roll-off factor of 0.4. The system transmission rate 1 /T  = 4800 
bits/sec_. Consequently, the pulse is given as 

. cos 1920nt 
x (t) = smc(4800t) 

1 _ 1 .4746 x 107t2
• 

This signal pulse extends from -oo to +oo. 
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Plot x(t) and verify that, for all practical purposes, it is sufficient to consider onl) 
the interval l t l :::: 0.6 x 10-3 ,  which is roughly [-3T, 3T]. Truncate the pulse tc 
this interval and compute the autocorrelation function. Plot the autocorrelation anc 
determine its length in samples and the position of its maximum, i.e., the optimurr 
sampling time. Select the sampling rate to be 40 samples per bit interval T. 
Simulate the early-late gate synchronizer when the incorrect sampling is to the righ 
or to the left of the peak by 10 samples and verify that the synchronizer finds the 
correct sampling time, i.e., the maximum of the pulse. 
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In this chapter, we expand the treatment of digital modulation waveforms to multidi­
mensional signals. We develop the geometric representation of M -ary orthogonal, and 
biorthogonal signals, simplex signals, and binary-coded signals. Then, we evaluate the 
average probability of error when these signals are transmitted through an additive white 
Gaussian noise (AWGN) channel. We also describe M-ary frequency-shift keying (FSK) 
signals, their modulation and their detection, including noncoherent detection and the prob­
ability of error for noncoherent detection. The reader is also introduced to continuous­
phase FSK (CPFSK) signals and continuous-phase modulation (CPM). A comparison of 
the various modulation methods presented in this chapter and Chapter 8 is described on 
the basis of their power requirements, their bandwidth requirements and their probability 
of error performance. 

9.1 M-ARY ORTHOGONAL SIGNALS 

M -ary orthogonal signal waveforms at baseband can be constructed in a variety of ways. 
For example, Figure 9.1 illustrates two sets of M = 4 orthogonal signal waveforms. We 
observe that the signal waveforms s; (t) and i = 1 ,  2, 3 ,  4 in Figure 9 . l (a) do not over­
lap over the time interval (0, T), and they represent pulse position modulation (PPM) for 
M = 4. The signal waveforms s;(t) and i = 1 ,  2, 3 ,  4 in Figure 9 . l (b) are overlapping in 
time, but still satisfy the orthogonality condition, namely, 

1T s;(t)sj (t)dt = 0, i f. j. (9. 1 . 1) 

The number of dimensions required to represent a set of M orthogonal waveforms is 
N = M. Hence, a set of M orthogonal signal waveforms can be represented geometrically 
by M orthogonal vectors in M -dimensional space. To be specific, let us consider M-ary 
PPM signal waveforms. Such a set of M baseband PPM signals are expressed mathemati­
cally as 

Sm (t) = 
jCi;

iffm (t), m = 1 ,  2, .. , M, (9. 1 .2) 

485 
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Figure 9.1 Two sets of M = 4 orthogonal signal waveforms. 
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VMff - - - - - - - -----. 
0 (m - l)T mT 

M M 

Figure 9.2 Rectangular pulse 
gr(t) and basis function lfrm(t) . for M-ary PPM signals 
waveform. 

where 1/rm(t) and m = 1 ,  2, . . , M are a set of M orthogonal basis waveforms. These wave­
form are defined as ( (m - l)T) (m - l)T mT ,,, (t) = gr t - < t < -'I' m  M ' M - - M '  

(9. 1 .3) 

in which gr(t) is a unit energy pulse, which is nonzero over the time interval 0 :=:: t :=:: T / M 
and the basis functions 1/rm(t) and m = 1 ,  2, . . .  , M are simply time-shifted replicas of 
gr(t) , as illustrated in Figure 9.2. Each signal waveform sm (t) has energy 

{T s�(t)dt = �s {T 1/r�(t)dt = �s . all m. lo lo , 
�s denotes the energy of each of the signal waveforms representing k-bit symbols. Con­
sequently, M-ary PPM signal waveforms are represented geometrically by the following 
M -dimensional vectors: 

s ,  = (#s, 0, 0 ,  . . .  ' 0) ;  
S2 = (0, #s, 0, . . . , 0) ; 

SM = (0, 0, 0, . . .  , � .  
(9. 1 .4) 

Clearly, these vectors are orthogonal, i.e., s; ·s j = 0 when i =!= j .  It is also interesting to 
note that the M signal vectors are mutually equidistant, i.e., 

dmn = J11 Sm - Sn 1 12 = .,[ii;, for all m =/= n .  (9. 1 .5) 

Example 9.1.1 

Determine the vectors in a geometric representation of the M = 4 signal waveforms s! (t) and 
i = 1 ,  2, 3, 4, that are shown in Figure 9. l(b). Use the basis waveforms if!m(t) that are shown 
in Figure 9.2 

Solution We note that the four orthogonal waveforms have equal energy, given by 

( [s;(t)]2 dt = 
�s ( dt = �s -

Jo T lo 
By computing the projection of each signal waveform on the four basis waveforms if!m (t), i.e., 

1T s;(t)if!m (t)dt, m = 1 , 2, 3, 4, 
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we obtain the vector s; .  Thus, we obtain 

s' I 

s' 2 

s' 
3 

s' 4 

J"&s/4 , J"&s/4 , ft;/4 ,  ft:74) ; 
J"&s/4 , J"&s/4 , -ft;/4 , - ft:74) ; 
J"&s/4 , -J"&s/4 , J"&s/4 , -ft;/4) ; 
J"&s/4 , -J"&s/4 , -ft;/4 , )"&s/4) . 

We observe that these four signal vectors are orthogonal, i.e., s; ·sj = 0 for i i= j .  

Chapter ! 

The baseband M -ary orthogonal signals described above can be transmitted on band 
pass channels by simply multiplying the baseband signals by the appropriate carrie 
cos 2n Jct .  Consequently, the transmitted signal is a double-sideband suppressed-carrie 
(DSB-SC) amplitude-modulated signal. As in our discussion of carrier-modulated signal 
in Chapter 8, the received signal carrier is generally shifted in phase, necessitating th 
need for a phase-locked loop (PLL) to estimate the carrier phase in order to perform signi 
demodulation. Once the received signal is converted to baseband by the demodulator, th 
detector operates as in the case of baseband signal transmission in computing the distanc 
metrics and making decisions on the transmitted symbols. 

9.1 .1 Probability of Error for M-ary Orthogonal Signals 

In deriving the probability of error for the general class of M -ary orthogonal signals, 
is convenient to use PPM signals, which have the simple vector representation given i 
Equation (9. 1 .4), where "&s is the energy for each of the signal waveforms. 

For equal energy orthogonal signals, the optimum detector selects the signal resultin 
in the largest cross correlation between the received vector y and each of the M possibl 
transmitted signal vectors {sm} , i.e., 

M 

C(y, Sm) = Y·Sm = 
L YkSmk > 
k=l 

m = 1 , 2, . . .  , M. (9. U  

To evaluate the probability of error, let us suppose that the signal s 1 is transmitte1 
Then the vector at the output of the M cross correlators or M matched filters and, thus, tl 
input to the detector is the vector 

(9. 1 . '  

where n 1 ,  n1, . . .  , nM are zero-mean, mutually statistically independent Gaussian rando 
variables with equal variance a; = No/2. Substituting Equation (9. 1 .7) into Equatic 
(9. 1 .6), we obtain 

C(y, s 1 )  = � (� + n1) ; 
C(y, s2) = �n2; 

(9.L 
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Note that the scale factor � may be eliminated from the correlator outputs by dividing 
each output by �. Then, with this normalization, the probability density function (PDF) 
of the first correlator output (y1 = � + n 1) is 

(9. 1 .9) 

and the PDFs of the other M - 1 correlator outputs are 

m = 2, 3 , . . .  , M. (9. 1 . 10) 

It is mathematically convenient to first derive the probability that the detector makes 
a correct decision. This is the probability that y1 is larger than each of the other M - 1 
correlator outputs n2 , n3, . . .  , nM. This probability may be expressed as 

(9. 1 . 1 1) 

where P(n2 < Y1 ,  n3 < Y1 ,  . . .  , nM < yi Jy1 )  denotes the joint probability that n2 , n3 , . .  , 
n M are all less than Y1 ,  conditioned on any given y1 . Then this joint probability is averaged 
over all Y1 .  Since the {Ym} are statistically independent, the joint probability factors into a 
product of M - 1 marginal probabilities of the form 

P(nm < Y1 IY1) = !�� f (ym)dym , m = 2, 3, . . .  , M 

(9. 1 . 12) 

These probabilities are identical for m = 2, 3 ,  . . .  , M; hence, the joint probability under 
consideration is simply the result in Equation (9. 1 . 12) raised to the (M - 1) power. Thus, 
the probability of a correct decision is 

(9. 1 . 13) 

and the probability of a k-bit symbol error is 

(9. 1 . 14) 
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Therefore, 

(9. 1 . 15) 

The same expression for the probability of error is obtained when any one of the other 
M - 1 signals is transmitted. Since all the M signals are equally likely, the expression for 

PM given in Equation (9 . 1 . 15) is the average probability of a symbol error. This expression 

can be evaluated numerically. 

To make a fair comparison of communication systems, we want to have the proba­
bility of error expressed in terms of the signal-to-noise ratio (SNR)/bit, <tl,b/ No, instead of 

the SNR/symbol, <t!,s /No. This is important because, depending on the size of constellation, 

different systems carry a different number of bits/signal. With M = 2k , each symbol con­
veys k bits of information; hence, <t!,s = k<tl,b · Thus, Equation (9. 1 . 15) may be expressed in 

terms of <fl, b / N 0 by substituting for <fl, s .  
Sometimes, we also want to convert the probability of a symbol error into an equiv­

alent probability of a binary digit error. For equiprobable orthogonal signals, all symbol 

errors are equiprobable and occur with probability 

PM PM 

M - l = 2k - 1  · (9. 1 . 16) 

Furthermore, there are ( �) ways in which n bits out of k may be in error. Hence, the 

average number of bit errors per k-bit symbol is 

k (k) PM 2k-I � n n 2k - 1 = k 
2k - 1 PM' (9. 1 . 17) 

and the average bit-error probability is simply the result in Equation (9. 1 . 17) divided by k, 

the number of bits/symbol. Thus, 

(9. 1 . 18: 

The graphs of the probability of a binary digit error as a function of the SNR/bit 
<tl,b/ No, are shown in Figure 9.3 for M = 2, 4, 8 , 16, 32, 64. This figure illustrates that b) 
increasing the number M of waveforms, we can reduce the SNR/bit required to achieve i 
given probability of a bit error. For example, to achieve a Pb = 10-5 ,  the required SNR/bi 

is a little more than 12 dB for M = 2, but if M is increased to 64 signal waveformi 
(k = 6 bits/symbol), the required SNR/bit is approximately 6 dB. Thus, a savings of ove1 

6 dB (a factor of four reduction) is realized in the transmitter power (or energy) requirec 
to achieve a Pb = 10-5 by increasing M from M = 2 to M = 64. Note that this behavio: 
is in complete contrast with M-ary pulse amplitude modulation (PAM), where increasin1 
M increases the error probability. 

What is the minimum required <tl,b/ No to achieve an arbitrarily small probabilit� 
of error as M --+ oo? To answer this question, we apply the union bound, derived i1 
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Figure 9.3 Probability of a bit 
error for optimum detection of 
orthogonal signals. 

Section 8.4.2 for a general equiprobable M-ary signaling scheme, to the special case of an 
M -ary orthogonal signaling system as described in the following section. 

9.1 .2 A Union Bound on the Error Probability of M-ary Orthogonal Signals 

Let us investigate the effects of increasing M on the probability of error for orthogonal sig­
nals. To simplify the mathematical development, we use the union bound (see Section 8.4.2) 
to derive an upper bound on the probability of a symbol error. This is much easier than the 
exact form given in Equation (9. 1 . 15). 

As we discussed earlier [see Equation (9 . 1 .5)] , M -ary orthogonal signals are equidis­
tant with 

(9. 1 . 19) 
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therefore, 
drnin = J2fi; · (9. 1 .20) 

Using this value of drnin in Equation (8.4.42), we obtain the union bound on the error prob­
ability of an M -ary orthogonal signaling system as 

M - 1  _ 18s -� 
PM :S -2

-e 2No :S Me 2No 

Thus, using M = 2k and 18s = k18b, we have 

p < 2ke-k18b/2N0 M _ 

= e-k(18b/No-2 ln2)/2 . 

(9. 1 .21: 

(9. 1 .22: 

As k -+ oo or equivalently, as M -+ oo, the probability of error approaches zero exponen 
tially, provided that 18b/ No is greater than 2 ln 2, i.e., 

cgb 
- > 2 ln 2  = 1 .39 � l .42 dB. No (9. 1 .23 

The simple upper bound on the probability of error given by Equation (9. 1 .22) implie 
that as long as SNR 2: 1 .42 dB, we can achieve an arbitrarily low PM. However, thi 
union bound is not a very tight upper bound at low SNR values. In fact, by more elaborat1 
bounding techniques, it can be shown that PM -+ 0 as k -+  oo, provided that 

cgb 
- > ln 2 = 0.693 � - l .6dB. No 

(9. 1 .24 

Hence, - 1 .6 dB is the minimum required SNR/bit to achieve an arbitrarily small proba 
bility of error in the limit as k -+ oo (M -+ oo). This minimum SNR/bit (-1 .6 dB) i 
called the Shannon limit for an additive white Gaussian noise channel. More discussio 
on the Shannon limit and how the value of - 1 .6 dB is derived is given in Section 12.6 i 
Equation (12.6.7) and the discussion leading to it. 

9.2 BIORTHOGONAL SIGNALS 

In general, a set of M biorthogonal signals are constructed from a set of M /2 orthogc 
nal signals [s; (t) ,  i = 1 ,  2, . . .  , M/2] and their negatives [-s; (t) ,  i = 1 ,  2, . . .  , M/2 
As we shall observe later in this chapter, the channel bandwidth required to transmit th 
information sequence via biorthogonal signals is just one-half of that required to transm 
M orthogonal signals. For this reason, biorthogonal signals are preferred over orthogom 
signals in some applications. 

To develop the geometric representation of M -ary bi orthogonal signals, let us cor 
sider PPM signals. We begin with M /2 PPM signals of the form 

Sm(t) = �1/J'm(t) , m = 1 ,  2, . . .  , M/2, 0 :S t  :S T, (9.2. l 
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Figure 9.4 Rectangular pulse gT(t) and basis function lfrm (t) for M-ary biorthogonal PPM signal waveforms. 

where 1/rm(t) ,  m = 1 ,  2, . . . .  , M/2, are a set of M/2 basis waveforms as illustrated in 
Figure 9.4 and defined mathematically as 

t - t - < t < --( (m - l )T) (m - l)T mT 1/rm ( )  - gT 
M/2 ' M/2 - - M/2 ' (9.2.2) 

where gT(t) is also shown in Figure 9.4. The negatives of these signal waveforms are 

SM+m (t) = -sm (t) = -#s1/rm(t) , m = 1 ,  2, . .  , M/2. 2 (9.2.3) 

We observe that the number of dimensions needed to represent the M /2 orthogonal 
signals is N = M /2. In the case of PPM signals, the signal vectors of M /2 dimensions are 

S 1 = (�, 0, 0, . . .  , 0) ;  
s2 = (o, �. o, . . .  , o) ; 

(9.2.4) 

SM/2 = (0, 0, 0, . . .  , � .  
The other M /2 signal vectors corresponding to the signal waveforms that are the negatives 
of the M /2 PPM signal waveforms are 

Example 9.2.1 

S �+I = (-�, 0, 0, . . .  , 0) ; 
SM.+2 = (0, -�, 0, . . .  , 0) ; 2 . 

SM = (0, 0, 0, . . .  , -� .  
(9.2.5) 

Determine the vector representation of the four biorthogonal signal waveforms shown in 
Figure 9.5(a). 

Solution The signal waveform s1 (t) and s2 (t) are orthogonal and are represented by the 
vectors 
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and 

The signal waveforms s3 (t
) 

= -s1 
(t
) 
and s4(t

) 
= -s2(t

)
. Therefore, the geometric represen­

tation of s3 (t
) 

and s4(t
) 
is 

and 
S4 = (o, -�). 

The signal points corresponding to these vectors are shown in Figure 9.5(b). It is interesting tc 
note that the signal points shown in Figure 9.5 for the M = 4 biorthogonal signals are identical 
to the signals points in a four-phase phase-shift keying (PSK) signal. 1 

S1 
(t
) 

0 T/2 0 T/2 T 

S3
(t
) 

S4
(t
) 

T/2 T/2 T 
0 0 

- '\/211,,fT -'\/211,s!T 

(a) 

S2 

ye&, 
S3 S1 

(b) 

Figure 9.5 M = 4 biorthogonal signal waveforms and signal point constellation for Example 9.2. 1 .  
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In a general set of M biorthogonal signals, the distance between any pair of signal 
vectors is either dmn = � when the two signal vectors are orthogonal or dmn = 2#. 
when one of the two signal vectors is the negative of the other (antipodal). 

�· As in the case of M -ary orthogonal signals, the baseband biorthogonal signals can 
be transmitted on bandpass channels by simply multiplying the baseband signals by the 
appropriate carrier cos 2nfct to produce a DSB-SC amplitude-modulated signal. 

9.2.1 Probability of Error for M-ary Biorthogonal Signals 

As previously indicated in Section 9.2, a set of M = 2k biorthogonal signals are con­
structed from M /2 orthogonal signals by including the negatives of the orthogonal signals. 
Thus, we achieve a reduction in the complexity of the demodulator for the biorthogo­
nal signals relative to that for the orthogonal signals. This occurs because the former is 
implemented with M /2 cross correlators or matched filters, whereas the latter requires M 
matched filters or cross correlators. Biorthogonal signals are also more bandwidth efficient 
than orthogonal signals. 

The vector representation of biorthogonal signals is given by Equations (9.2.4) and 
(9.2.5). To evaluate the probability of error for the optimum detector, let us assume that the 
signal sI (t) corresponding to the vector s I = (#., 0, 0, . . .  , 0) was transmitted. Then, 
the received signal vector is 

(9.2.6) 

where the {nm } are zero-mean, mutually statistically independent, and identically dis­
tributed Gaussian random variables with the vari.ance a;; = N0/2. The optimum detec­
tor decides in favor of the signal corresponding to the largest in magnitude of the cross 
correlators, or M/2 

C(y ,  Sm) =  Y·Sm = 
L YkSmk , 
k=I 

m = 1, 2, . . .  , M /2, (9.2.7) 

while the sign of this largest term is used to decide whether sm(t) or -sm (t) was trans� 
mitted. According to this decision rule, the probability of a correct decision is equal to 
the probability that YI = #. + nI > 0 and YI exceeds I Ym l  = lnm l for m = 2, 3, . . .  , 
M/2. But 

1 1YI 2 
P( lnm l  < YI IYI > 0) = '-AT e-x /No dx 

v nNo -y, 

1 1Y1/� 2 
= -- e-x 12 dx, 

.J2Jt -y1/� 
so the probability of a correct decision is 

(9.2.8) 
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Upon substitution for f (y1) ,  we obtain 

[ ] M-1 
oo 1 v+J2'7b5/No 2 

2 
P - -- e-x 12 dx c 

- f_J2'7bs/No ,j2i f_(v+� 
(9.2.9) 

where we have used the PDF of Y1 given in Equation (9. 1 .9). Finally, th.e probability of a 
symbol error PM = 1 - Pc. 

Pc and, hence, PM may be evaluated numerically for different values of M from 
Equation (9.2.9). The graph shown in Figure 9.6 illustrates PM as function of '7bb/No. 
where '7bs = k'7bb for M = 2, 4, 8, 16, and 32. We observe that this graph is similar tc 
that for orthogonal signals (see Figure 9.3). However, in this case, the probability of erro1 
for M = 4 is greater than that for M = 2. This is because we have plotted the symbol 
error probability PM in Figure 9 .6. If we plot the equivalent bit error probability, we wouk 
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find that the graphs for M = 2 and M = 4 coincide. As in the case of orthogonal signals, 
as M --+  oo (or k --+ oo), the minimum required 'f!,b/No to achieve an arbitrarily small 
probability of error is - 1 .6 dB, the Shannon limit. 

.. 9.3 SIMPLEX SIGNALS 

Another set of M signal waveforms that can be constructed from M orthogonal signals is 
obtained by subtracting the average of the M orthogonal signals from each of the orthogo­
nal signal waveforms. The M signal waveforms that result are called simplex signal wave­
fomts. Thus, if we have M orthogonal baseband signal waveforms {sm (t)} ,  the simplex 
signal waveforms, denoted as {s�(t)} , are constructed as 

Then, it follows that (see Problem 9.3) the energy of these signals s� (t) is 

and 1T I I 'f!,s sm (t)sn (t) dt = - -- ,  m =/= n, 
o M - 1 

(9.3 .1) 

(9.3.2) 

(9.3.3) 

where 'fl, s is the energy of each of the orthogonal signals and 'fl,� is the energy of each of the 
signals in the simplex signal set. Note that the waveforms in the simplex set have smaller 
energy than the waveforms in the orthogonal signal set. Second, we note that simplex signal 
waveforms are not orthogonal. Instead, they have a negative correlation, which is equal 
for all pairs of signal waveforms. We surmise that among all the possible M-ary signal 
waveforms of equal energy 'fl,,, the simplex signal set results in the smallest probability of 
error when used to transmit information on an additive white Gaussian noise channel. 

The geometric representation of a set of M simplex signals is obtained by subtracting 
the mean signal vector from a set of M orthogonal vectors. Thus, we have 

1 M 
s� = Sm -

M 
L Sk. m = 1 ,  2, . . .  , M. 
k=I 

The effect of subtracting the mean signal 

1 M 
s = - L: sk 

M k=I 

(9.3.4) 

(9.3.5) 

from each orthogonal vector is to translate the origin of the M orthogonal signals to the 
point s and to minimize the energy in the signal set { s�} .  
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If the energy per signal for the orthogonal signals is 'i8s = I I Sm 112 , then the energy 
for the simplex signals is 

(9.3.6) 

The distance between any two signal points is not changed by the translation of the ori­
gin, i.e., the distance between signal points remains at d = �- Finally, as indicated, 
the M simplex signals are correlated. The cross-correlation coefficient (normalized cross 
correlation) between the mth and nth signals is 

s� -s� 
Ymn = -----

1 1 s;,, 1 1 1 1 s� II 

- 1/M 
(1 - 1/M) 

- 1  
M - 1 

(9.3.7) 

Hence, all the signals have the same pairwise correlation. Figure 9. 7 illustrates a set 
of M = 4 simplex signals. 

As in the case of M-ary orthogonal signals, the baseband simplex signals can be 
transmitted on bandpass channels by simply multiplying the baseband signals by the appro­
priate carrier cos 2nfct to produce a DSB-SC amplitude-modulated signal. 

9.3.1 Probability of Error for M-ary Simplex Signals 

Next, we consider the probability of error for M simplex signals. Recall from Section 9.3 
that simplex signals are a set of M equally correlated signals with a mutual cross-correlatim 
coefficient Ymn = -1/(M - 1) .  These signals have the same minimum separation oJ 
� between adjacent signal points in M -dimensional space as orthogonal signals. The) 
achieve this mutual separation with a transmitted energy of 'i8s (M - 1)/M, which is les� 
than that required for orthogonal signals by a factor of (M - 1)/ M. Consequently, th<: 
probability of error for simplex signals is identical to the probability of error for orthogona: 
signals, but this performance is achieved with a savings of 

Sz 

� - - - - - - - - - - - - - - - - - � 

Figure 9.7 Signal constellation for the M = 4 simplex signals. 
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M IO log(l - Ymn) = IO log -- dB 
M - 1  

499 

(9.3.8) 

in SNR. Notice that for M = 2, i.e., binary modulation, the simplex signals become antipo­
dal; consequently, the transmitted signal energy (or power) required to achieve the same 
performance as binary orthogonal signals is 3 dB less. Therefore, the result in Equation 
(9.3.8) is consistent with our previous comparison of binary orthogonal signals and antipo­
dal signals. For large values of M, the difference in performance between orthogonal sig­
nals and simplex signals approaches zero. 

9.4 BINARY-CODED SIGNALS 

Signal waveforms for transmitting digital information may also be constructed from a set 
of M binary code words of the form 

Cm = (Cm1 . Cm2 • • • •  ' CmN) .  m = 1 ,  2, . . .  ' M, (9.4. 1) 

where Cmj = 0 or 1 for all m and j .  In this form, N is called the block length, or dimension, 
of the code words. Given M code words, we can construct M signal waveforms by mapping 
a code bit Cmj = 1 into a pulse 8T (t) of duration T / N and a code bit Cmj = 0 into the 
negative pulse -gT (t) .  
Example 9.4.1 

Given the code words 
er = [l 1 1 1 0] 
C2 = [1 1 0 0 1 ]  
C3 = [1 0 1 0 1 ]  
C4 = [0  1 0 1 0] 

construct a set of M = 4 signal waveforms, as previously described, using a rectangular pulse 
gr(t). 

Solution As indicated, a code bit 1 is mapped into the rectangular pulse gr(t) of duration 
T/5, and a code bit 0 is mapped into the rectangular pulse -gr(t). Thus, we construct the 
four waveforms shown in Figure 9 .8 that correspond to the four code words. • 

Let us consider the geometric representation of a set of M signal waveforms gener­
ated from a set of M binary words of the form 

Cm = (Cm1 ,Cm2 • . • .  , CmN) ,  m = 1 ,  2, . . .  , M, (9.4.2) 

where Cmj = 0 or 1 for all m and j. The M signal waveforms are of dimension N and are 
represented geometrically in vector form as 

Sm = (Sml · Sm2 • • • •  ' SmN) ,  m = 1 ,  2, . . , M, (9.4.3) 

where Smj = ±J�sl N for all m and j .  Thus, the energy of each signal waveform is �s -
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Figure 9.8 A set of M = 4 signal waveforms of dimension N = 5 constructed from the four code words in 
Example 9.4. 1 .  

In general, there are 2N possible signals that can be constructed from the 2N pos 
sible binary code words. The M code words are a subset of the 2N possible binary cod< 
words. We also observe that the 2N possible signal points correspond to the vertices of ai 

N-dimensional hypercube with its center at the origin. Figure 9.9 illustrates the signa 
points in N = 2 and N = 3 dimensions. 

The M signals constructed in this manner have equal energy �s· We determine th1 
cross-correlation coefficient between any pair of signals based on the method used t< 
select the M signals from the 2N possible signals. This topic is treated in Chapter 13 
We can show that any adjacent signal points have a cross-correlation coefficient of (se1 
Problem 9.2) 

N - 2 
y = --N 

(9.4.4 

and a corresponding Euclidean distance 

d = 2J�s/N. (9.4.5 

The distance between adjacent signal points affects the performance of the detector; as w 
have observed previously. 
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N = 2  

Sg 

N = 3  Figure 9.9 Signal points for signals generated from binary codes. 

9.4.1 Probability of Error for Binary-Coded Signals 

As we have observed in the discussion above, a set of N -dimensional binary code words 
of the form 

Cm = (Cm 1 , Cm2, . . .  , CnN) ,  m = l , 2, . . .  , M  (9.4.6) 

are represented geometrically in vector form as 

Sm =  (sm 1 .  Sm2, . . .  , SmN) ,  m = 1 ,  2, . . .  , M, (9.4.7) 

where Smj = ±JCfi,s/ N for all m and j ,  and Cf!,s is the energy per waveform. The error prob­
ability of a coded system can be obtained using the union bound given in Equation (8.4.42). 
The performance of a digital communication system that employs binary-coded signals is 
considered in Chapter 13 .  

9.5 FREQUENCY-SHIFT KEYING 

The simplest form of frequency modulation for digital transmission is binary frequency­
shift keying (FSK) previously described in Section 8.2.2. In binary FSK, we employ two 
different frequencies, such as fo and fi = fo + t:;,,f, to transmit a binary information 
sequence. The choice of frequency separation t:;,,F = f1 - fo is considered shortly. Thus, 
the two signal waveforms may be expressed as 
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uo(t) 

U1 (t) 
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� = cos 2nlot, 
b 

� = cos 2nl1 t, b 

0 .:::: t .:::: Tb , 

0 .:::: t .:::: Tb , 

where '71,b is the signal energy/bit and Tb is the duration of the bit inter-val. 

Chapter g 

(9.5. 1) 

More generally, M -ary FSK may be used to transmit a block of k = log2 M bits/signa 
waveform. In this case, the M signal waveforms may be expressed as 

[ii; Um(t) = y T cos(2nlet + 2nmb.lt) , m = 0, 1 ,  . . .  , M - 1 ,  0 .:=:: t .:=:: T, (9.5.2: 

where '71,s = k'?/,b is the energy per symbol, T = kTb is the symbol interval, and l:!i,.f i: 
the frequency separation between successive frequencies, i.e., b.l = lm - lm-1 ,  when 
lm = le + mb.f. 

Note that the M FSK waveforms have equal energy '7/;s . The frequency separation b.j 
determines the degree to which we can discriminate among the M possible transmitted sig 
nals. As a measure of the similarity (or dissimilarity) between a pair of signal waveforms 
we define the correlation coefficients 

1 1T 
Ymn = - Um (t)un (t) dt. '71,s 0 

Substituting for um(t) and un (t) in Equation (9.5.3), we obtain 

1 1T 2'7/; 
Ymn = - _s 

cos(2nlet + 2nmb.lt) cos(2nlet + 2nnb.lt) dt '71,s o T 

(9.5.3 

1 1T l 1T 
= - cos 2n(m - n)b.lt dt + - cos[4nlet + 2n(m + n)b.lt] dt 

T o T o 

sin 2n(m - n)b.lT 
2n(m - n)b.lT ' 

(9.5.4 

where the second integral vanishes when le » 1 /T. A plot of Ymn as a function of th 
frequency separation b.l is given in Figure 9. 10. We observe that the signal wavefonn 
are orthogonal when b.l is a multiple of l /2T. Hence, the minimum frequency separatio 
between successive frequencies for orthogonality is 1 /2T. We also note that the mini 
mum value of the correlation coefficient is Ymn = -0.217, which occurs at the frequenc 
separation b.l = 0.715/ T. 
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Figure 9.10 Cross-correlation 
coefficient as a function of frequency 
separation for FSK signals. 

M-ary orthogonal FSK waveforms have a geometric representation as M -dimensional 
orthogonal vectors, given as 

So = ( fts, 0, 0, . . .  , 0) , 

s 1  = (o,ft,, o, . . .  , o) ,  
(9.5.5) 

SM-I = (o, o, . . .  , O,fts) , 
where the basis functions are lftm (t) = .J2lT cos 2n:Cfc + m!).f)t. The distance between 
the pairs of signal vectors is d = � for all m, n ,  which is also the minimum distance 
among the M signals. 

9.5.1 Demodulation of M-ary FSK 

Assume that the FSK signals are transmitted through an additive white Gaussian noise 
channel. Furthermore, we assume that each signal is phase shifted in the transmission 
through the channel. Consequently, the filtered received signal at the input to the demodu­
lator may be expressed as 

r(t) = � cos(2nfct + 2n:m!).f t + <Pm) + n (t) , (9.5.6) 

where <Pm denotes the phase shift of the mth signal and n(t) represents the additive band­
pass noise, which may be expressed as 

n(t) = nc(t) cos 2nfct - ns(t) sin 2nfct . (9.5.7) 

The demodulation and detection of the M FSK signals may be accomplished by one 
of two methods. One approach is to estimate the M carrier phase shifts {<Pm} and perform 
phase-coherent demodulation and detection. As an alternative method, the carrier phases 
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may be ignored in the demodulation and detection of the FSK signals. The latter method h 
called noncoherent demodulation and detection. 

In phase-coherent demodulation, the received signal r (t) is correlated with each oJ 
the M possible received signals cos(2nfct+2nmt.ft+cPm) , m = 0, 1 ,  . . .  , M - 1, when 
{ cPm} are the carrier phase estimates. A block diagram illustrating this type of demodulatior 
is shown in Figure 9 . 1 1 .  It is interesting to note that when cPm I- </>m , m = 0, 1 ,  . . .  , M - J 
(imperfect phase estimates), the frequency separation required for signal orthogonality a; 
the demodulator is t.f = 1 /T  (see Problem 9.10), which is twice the minimum separatior 
for orthogonality when </> = ¢. 

The requirement for estimating M carrier phases makes coherent demodulation 01 
FSK signals extremely complex and impractical, especially when the number of signals ii 
large. Therefore, we shall not consider the coherent detection of FSK signals. 

Instead, we now consider a method for demodulation and detection that does no 
require knowledge of the carrier phases. The demodulation may be accomplished as showr 
in Figure 9 . 12. In this case, there are two correlators per signal waveform, or a total of 2.M 

lot ( )  dt 1--__.rr 
Sample at t = T 

lot ( ) dt L--__.rr 
Sample at t = T 

PLLz 

Received 

signal 

Sample at t = T 

Figure 9.11 Phase-coherent demodulation of M-ary FSK signals. 

Output 
Detector 1-----� 

decision 
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ff cos 2rcfct 

fa' ( )dt 
Sample at t = T 

-ff sin 2rcfct 

fa' ( )dt 
Sample at t = T 

ff COS 2rt(fc + !lf)t 

fa' ( )dt 
Sample at t = T -ff sin 2rc(fc + !lf)t 

Received 
Detector 

Output 
signal fa' ( )dt 

Y1s decision 

Sample at t = T 

10' ( )dt 
1---rr 

Sample at t = T -ff sin 2rc[fc + (M - l)!lf]t 

lo' ( )dt 
1---....r 

Sample at t = T 

YM-ls 

Figure 9.12 Demodulation of M-ary FSK signals for noncoherent detection. 

correlators, in general. The received signal is correlated with the basis functions (quadra­
ture carriers) 

and 

1/lcm (t) = H cos(2nfct + 2nm!lft) 

(2 .  1/lsm (t) = -y T sm(2nfct + 2nmllft) 

for m = 0, 1 ,  . . .  , M - 1 .  The 2M outputs of the correlators are sampled at the end of the 
signal interval and the 2M samples are passed to the detector. Thus, if the mth signal is 
transmitted, the 2M samples at the detector may be expressed as 
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� [ sin 2n(k - m)�JT cos 2n(k - m)�JT - 1 . J Y - cos A. - sm A. + n kc- 2n(k - m)�JT 'I'm 2n(k - m)�JT 'I'm kc . 

IW [cos 2n(k - m)�fT - 1 sin 2n(k - m)�fT . J Yks= v <os ln(k - m)�JT cos <Pm + ln(k - m)�JT sm ¢m + nks . 

where nkc and nks denote the Gaussian noise components in the sampled outputs. 
We observe that when k = m, the sampled values to the detector are 

Ymc = �COS <Pm + llmc• 
Yms = � sin ¢m + nms · 

(9.5.8 

(9.5.S 

Furthermore, we observe that when k "I m, the signal components in the samples Ykc an 
Yks will vanish, independent of the values of the phase shift <Pk. provided that the frequenc 
separation between successive frequencies is �! = 1/ T. In such a case, the other 2(M - 1  
correlator outputs consist of noise only, i.e., 

Ykc = nkc• Yks = nks ,  k -:fa m. (9.5.H 

In the development that follows, we assume that �f = 1 /T, so that the signals ai 

orthogonal. 
It is easily shown (see Problem 9.1 1) that the 2M noise samples {nkc} and {nk, 

are zero-mean, mutually uncorrelated Gaussian random variables with an equal varianc 
a2 = N0/2. Consequently, the joint PDF for Ymc and Yms conditioned on <Pm is 

(9.5 .1 

and for m "I k,  we have 

(9.5.l'. 

Given the 2M observed random variables {Ykc. Yks · k = 0, 1 ,  . . .  , M - 1 ) ,  the op1 
mum detector selects the signal that corresponds to the maximum of the posteri1 
probabilities 

P[sm was transmitted Jy] = P(sm lY) ,  m = 0, 1 ,  . . .  , M - 1 ,  (9.5. 1  

where y i s  the 2M-dimensional vector with elements {ykc, Yks ·  k = 0 ,  1 ,  . . .  , M - l } .  V 
derive the form for the optimum noncoherent detector for the case of binary FSK. Tl 
generalization to M -ary FSK is straightforward. 
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9.5.2 Optimum Detector for Noncoherent Binary FSK 

In binary orthogonal FSK, the two posterior probabilities are 

P( I ) = fy(y lso)P(so) So Y fy (y) , 

P (  I ) = 
fy(y ls 1 )P(s1) . s , y fy(y) ' 

hence, the optimum detection rule may be expressed as 

or, equivalently, 

so 
P (so lY) � P(s1 ly) 

SJ 

fy(y lso)P(so) � fy(y ls1 )P(s1) 
<:::: ' fy(y) SJ fy(y) 
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(9.5. 14) 

(9.5.15) 

(9.5. 16) 

where y is the four-dimensional vector y = (Yoe. Yos . Y1c. Y1s). The relation in Equation 
(9 .5 . 16) simplifies to the detection rule 

fy(y lso) � P(s 1 ) . fy (y ls1) SJ P(so) (9.5. 17) 

The ratio of PDFs in the left-hand side of Equation (9.5. 17) is the likelihood ratio, which 
we denote as 

A(y) = fy(y lso) . 
fy(y ls1 ) (9.5. 18) 

The right-hand side of Equation (9.5. 17) is the ratio of the two prior probabilities, which 
takes the value of unity when the two signals are equally probable. 

The PDFs fy(y lso) and fy(y ls 1 )  in the likelihood ratio may be expressed as 

(9.5. 19) 

where fym (Ymc. Yms l<Pm) and fyk (Ykc · Yks) , m f. k are given by Equations (9.5. l l) and 
(9.5. 12), respectively. Thus, the carrier phases <Po and ¢1 are eliminated by simply averag­
ing f¥m (Ymc • Yms l</Jm) . 

The uniform PDF for <Pm represents the most ignorance regarding the phases of the 
carriers. This is called the least favorable PDF for <Pm · When f<Pm (</Jm) = 1/2n, 0 ::;  <Pm ::; 
2n, is substituted into the integrals given in Equation (9.5. 19), we obtain 
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1 {21' 
21t Jo fy m (Ymc , Yms k/Jm) d</Jm 

= --e - Ymc+Yms+ s 2a _ eY <t>s(Ymc COSci>m+Yms SIIlci>m) a d</Jm • 1 ( 2 2 cg )/ 2 1 121' RF . I 2 

2mr2 2n o 
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2 
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(9.5.20) 

(9.5.21) 

where /0(x) is the modified Bessel function of order zero. This function is a monotonically 
increasing function of its argument, as illustrated in Figure 9.13 .  lo(x) has the power series 
expansion 

00 2k 
Io(x) = L 22�k !)2 . k=O 

(9.5.22) 

From Equations (9.5. 17) to (9.5. 19), we obtain the likelihood ratio in the form 

Io (J<gs (Y6c + Y6s)/a2) so P(s1 )  
A(y) = � -- . 

lo ( Jcgs (Yfc + Yfs) /a2) 81 P(so) 

Thus, the optimum detector computes the two envelopes 

5 

4.5 

4 
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3 

� 2.5 .... 
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1.5 

11---� 
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Yo = JYJc + Y6s 
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Figure 9.13 Graph of l0(x) . 

1 1.5 2 2.5 3 3.5 4 
x 

(9.5.23) 
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and 

Y1 = JYte + Yfs 

and the corresponding values of the Bessel function 

and 
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to form the likelihood ratio. We observe that this computation requires knowledge of the 
noise variance u2 and the signal energy 'i8s. The likelihood ratio is then compared with the 
threshold P(s 1 )/ P(s0) to determine which signal was transmitted. 

A significant simplification in the implementation of the optimum detector occurs 
when the two signals are equally probable. In such a case, the threshold becomes unity and, 
due to the monotonicity of the Bessel function, the optimum detector rule simplifies to 

; 2 2 � ;  2 + 2 Yoe + Yos <:: Y1e Y1s · 
S[ 

Thus, the optimum detector bases its decision on the two envelopes 

Yo = JYJe + YJs 

and 

Y1 = JYte + Yfs ; 

hence, it is called an envelope detector. 

(9.5 .24) 

The computation of the envelopes of the received signal samples at the demodulator's 
output renders the carrier signal phases {</>m } irrelevant in the decision as to which signal 
was transmitted. Equivalently, the decision may be based on the computation of the squared 
envelopes yJ and yf; in this case, the detector is called a square-law detector. Figure 9.14 
shows the block diagram of the demodulator and the square-law detector. 

The generalization of the optimum demodulator and detector to M -ary orthogo­
nal FSK signals is straightforward. As illustrated in Figure 9.12, the output of the opti­
mum demodulator at the sampling instant consists of the 2M vector components (Yoe, Yos , 
Y1c, Y1s • . . .  , YM-lc ·  YM-1s). Then the optimum noncoherent detector computes the M 
envelopes as 

Ym = JY�e + Y�s ' m = 0, 1 ,  . . .  , M - 1 .  (9.5.25) 

Thus, the unknown carrier phases of the received signals are rendered irrelevant to the 
decision as to which signal was transmitted. When all the M signals are equally likely to be 
transmitted, the optimum detector selects the signal corresponding to the largest envelope 
(or squared envelope). In the case of nonequally probable transmitted signals, the optimum 
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Figure 9.14 Demodulation and square-law detection of binary FSK signals. 
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Decision 

detector must compute the M posterior probabilities in Equation (9.5. 13) and then selec1 
the signal corresponding to the largest posterior probability. 

9.5.3 Probability of Error for Noncoherent Detection of M-ary FSK 

Consider M -ary orthogonal FSK signals that are detected noncoherently. We assume tha1 
the M signals are equally probable a priori and that u0(t) was transmitted in the interval 
0 S t  S T. 

The M-decision metrics at the detector are the M envelopes 

where 

and 

Ym = Ji?;,c + Y�s m = 0, 1 ,  . . . , M - 1 ,  

Yoe = ,Jw;; cos </>o + noc, 
Yos = ,Jw;; sin </>o + nos 

Ymc = nmc • m = 1 ,  2, . . .  , M - 1 ,  
Yms = nms •  m = 1 ,  2, . . .  , M - 1 .  

(9.5.26; 

(9.5.27; 

(9.5.28: 

The additive noise components { nmc} and { nms } are mutually statistically independent zero· 
mean Gaussian variables with equal variance a2 = N0/2. Thus, the PD F's of the randorr 
variables at the input to the detector are 
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1 -(y2 +y2 )/2a2 hm (Ymc. Yms) = --2 e 
me ms , m = 1, 2, . . .  , M - 1 .  2na 
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(9.5.29) 

(9.5.30) 

Let us make a change in variables in the joint PDFs given by Equations (9.5.29) and 
(9.5.30). We define the normalized variables 

JY�c + Y�s Rm = ' a 
1 Yms E>m = tan- - . Ymc 

(9.5.3 1) 

Clearly, Y me = a Rm cos E>m and Y ms = a Rm sin E>m. The Jacobian of this transformation is 

Consequently, 

I l l = I a cos E>".' a sin E>m I = a2Rm. -a Rm sm E>m a Rm cos E>m 

- rm -r'?;,/2 -fRmem (rm, Bm) - -e , m - 1 , 2, . . .  , M - l . 2n 

(9.5.32) 

(9.5.33) 

(9.5.34) 

Finally, by averaging fRmE>m (rm , Bm) over E>m, the factor of 2n is (see Example 5. 1 . 1 1  and 
Problem 5 .30) eliminated from Equations (9.5.33) and (9.5.34). Thus, we find that Ro has 
a Rice probability distribution and Rm , m = 1 ,  2, . . .  , M - 1 are each Rayleigh distributed. 

The probability of a correct decision is simply the probability that Ro > R1 , Ro > 

R1, . .  ., and Ro > RM-I ·  Hence, 

Pc= P(R1 < Ro, R1 < Ro, . . .  , RM-I < Ro) 
= fo00 P(R1 < Ro, R1 < Ro, . . . , RM-I < Ro i Ro = x)fR0 (x) dx. 

(9.5.35) 

Because the random variables Rm , m = 1 ,  2, . . .  , M - 1 are statistically i.i.d., the joint 
probability in Equation (9.5.35) conditioned on Ro factors into a product of M - l identical 
terms. Thus, 

where 

P(R1 < Ro i Ro = x) = fox fR1 (r1 ) dr1 

= 1 - e-xz/2 . 

(9.5.36) 

(9.5.37) 
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The (M - l)st power of Equation (9.5.37) may be expressed as 

(9.5.38) 

Substitution of this result in Equation (9 .5 .36) and integration over x yields the probabilit) 
of a correct decision as 

(9.5.39; 

where Ps = '71,s /No is the SNR/symbol. Then, the probability of a symbol error, which ii 
PM = 1 - Pc, becomes 

(9.5.40' 

where Pb = '71,b/ No is the SNR/bit. 
For binary FSK (M = 2), Equation (9.5.40) reduces to the simple form 

P2 = �e-Pb/2 . 
2 

(9.5.41: 

For M > 2, we may compute the probability of a bit error by using the relationship 

2k-I 
Pb = 

2k - 1  
PM, (9.5.42: 

which was established in Section 9. 1 . 1 .  Figure 9 .15 shows the bit-error probability as func· 
tion of the SNR/bit Pb for M = 2, 4, 8, 1 6, and 32. Just as in the case of coherent detectim 
of M-ary orthogonal signals (see Section 9. 1 . 1 ), we observe that for any given bit-erm 
probability, the SNR/bit decreases as M increases. It will be shown in Section 12.6 that, ir 
the limit as M --+ oo (or k = log2 M --+ oo ), the probability of a bit-error Pb can be madt 
arbitrarily small provided that the SNR/bit is greater than the Shannon limit of - 1 .6 dB. 

Example 9.5.1 

Compare the error probability of binary FSK, which is given by Equation (9.5.41), with tha 
for binary differential PSK (DPSK), which is given by Equation (8.6.42). 

Solution The error probability for binary DPSK is 

Comparing this expression with that for binary FSK, we observe that binary FSI' 
requires twice the transmitted signal energy to achieve the same performance as binar: 
DPSK. 1 
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Figure 9.15 Probability of a 
bit error for noncoherent 
detection of orthogonal FSK 
signals. 

All modulation systems studied so far are memoryless, meaning that the transmitted signal 
in any signaling interval depends only on the current information that is to be transmitted 
and does not depend on the information transmitted during past signaling intervals. In 
this section, we study modulation systems with memory. In these systems, the transmitted 
signal in each interval depends on the current information as well as previously transmitted -
information. We will see that these types of modulation schemes usually provide higher 
bandwidth efficiency and the inherent memory in these modulation schemes can be utilized 
to achieve better performance. 

9.6.1 Continuous-Phase FSK 

Ordinary FSK signals may be generated by having M = 2k separate oscillators tuned to the 
desired frequencies fc + mtJ,.f = f m and selecting one of the M frequencies according to 
the particular k-bit symbol that is to be transmitted in a signal interval. However, abruptly 
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switching from one oscillator output to another in successive signaling intervals results in 
relatively large spectral sidelobes outside of the main spectral band of the signal, which 
decay slowly with frequency separation. Consequently, this method wastes bandwidth. 

To avoid the use of signals with large spectral sidelobes, we may use the information­
bearing signal to frequency modulate a single carrier whose phase is changed in a contin­
uous manner. The resulting frequency-modulated signal is phase continuous; hence, it is 
called continuous-phase FSK (CPFSK). 

In order to represent a CPFSK signal, we begin with a PAM signal 

v(t) = L angT (t - nT) ,  (9.6. l )  
n 

where the amplitudes are obtained by mapping k-bit blocks of binary digits from the infor­
mation sequence into the amplitude levels ±1 ,  ±3, . . .  , ±(M - 1), and gT (t) is a rectangu­
lar pulse of amplitude 1/2T and duration T. The signal v(t) is used to frequency modulate 
the carrier. Consequently, the frequency-modulated carrier is 

u(t) = �cos [2nfct + 4nTfd [
00 

v(r)drl (9.6.2; 

where fd is the peak-frequency derivation. Note that the instantaneous frequency of the 
carrier is fc + 2T fdv(t). 

We observe that, although v(t) contains discontinuities, the integral of v(t) is con­
tinuous. We may denote the phase of the carrier as 

e(t ; a) = 4nTfd /_
1

00 
v(r)dr, (9.6.3: 

where a denotes the sequence of signal amplitudes. Since e(t ; a) is a continuous functior 
of t, we have a continuous-phase signal. 

The phase of the carrier in the interval nT ::; t ::; (n + l)T is determined by th< 
integral in Equation (9.6.3). Thus, 

n-1 
e(t ; a) = 2nfdT L ak + 2n(t - nT)fdan 

k=-00 
= en +  2nhanq(t - nT), 

where h, en , and q(t) are defined as 

n-1 
en = nh 2::: ab 

k=-00 

t < O  { 0, 

q (t) = �2T, 0 ::;  t ::;  T. 
t > T 2 ' 

(9.6.4 

(9.6.5 

(9.6.6 

(9.6.7 
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2 

Figure 9.16 The signal plot 8r (t) 
and its integral q(t). 

The parameter h is called the modulation index. We observe that 8n represents the phase 
accumulation (memory) from all symbols up to time (n - l)T. The signal q(t) is simply 
the integral of the rectangular pulse, as illustrated in Figure 9 . 16. 

It is instructive to sketch the set of all phase trajectories 8 (t ; a) generated by all 
possible values of the information sequence {an } .  For example, with binary symbols, an = 
± 1 ,  the set of phase trajectories beginning at time t = 0 is shown in Figure 9 . 17. For 
comparison, the phase trajectories for quaternary CPFSK (an = ±1 ,  ±3) are illustrated in 
Figure 9. 1 8. These phase diagrams are called phase trees. We observe that the phase trees 
are piecewise linear because the pulse gT(t) is rectangular. Smoother phase trajectories 
and phase trees may be obtained by using pulses that do not contain discontinuities. 

The phase trees shown in these figures grow With time. However, the phase of the 
carrier is unique only in the range (j = 0 to (j = 2n or, equivalently, from (j = -n to 
(j = n. When the phase trajectories are plotted modulo 2n, e.g., in the range (-n, n), the 
phase tree collapses into a structure called a phase trellis. 

Simpler representations for the phase trajectories can be obtained by displaying only 
the terminal values of the signal phase at the time instants t = n T. In this case, we restrict 
the modulation index h to be rational. In particular, let us assume that h = m/ p, where m 
and p are relatively prime integers. Then, at the time instants t = nT, the terminal phase 
states for m even are 

and for m odd are 

0 = {o nm 2nm (p - l)nm } "C.Js ' ' ' • • •  ' p p p 

� _ { nm
. 

2nm (2p - l )nm } E>s - 0, ' , . . . , . p p p 

(9.6.8) 

(9.6.9) 

Hence, there are p terminal phase states when m is even and 2 p terminal phase states 
when m is odd. For example, binary CPFSK with h = 1/2 has four terminal phase states, 
namely, 0, n/2, n, 3n/2. The state trellis for this signal is illustrated in Figure 9.19. In the 
state trellis, the phase transitions from one state to another are not true phase trajectories. 
They represent phase transitions to the terminal states at the time instants t = n T. 

An alternative representation to the state trellis is the state diagram, which also illus­
trates the state transitions at the time instants t = n T. This is an even more compact 
representation of the CPFSK signal. Only the possible terminal phase states and their tran­
sitions are displayed in the state diagram. Time does not appear explicitly as a variable. For 
example, the state diagram for the CPFSK signal with h = 1/2 is shown in Figure 9.20. 
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Figure 9.17 Phase trajectory for binary CPFSK. 

We should emphasize that a CPFSK signal cannot be represented by discrete point: 
in signal space as in the case of PAM, PSK, and quadrature amplitude modulation (QAM) 
because the phase of the carrier is time variant. Instead, the constant amplitude CPFSK sig· 
nal may be represented in two-dimensional space by a circle, where points on the circle rep 
resent the combined amplitude and phase trajectory of the carrier as a function of time. Fo1 
example, Figure 9.21 illustrates the signal-space diagrams for binary CPFSK with h = 1;: 
and h = 1/4. The dots at e = 0, JC/2, JC, 3JC/2 and e = 0, ±JC/4, ±JC/2, ±3JC/4, JC fo 
h = 1/2 and h = 1/4, respectively, represent the terminal phase states previously show1 
in the state diagram. 

Minimum-Shift Keying. Minimum-shift keying (MSK) is a special form o 
binary CPFSK in which the modulation index h = 1/2. Thus, the phase of the carrie 
for the MSK signal is 
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Figure 9.18 Phase trajectory for 

4T quaternary CPFSK. 

n-I 
e (t ; a) - � L ak + rranq (t - nTb) 

k=-00 
(9.6. 10) 

which follows from Equation (9.6.4). The corresponding carrier-modulated signal is 

= cos 2rr !c + -an t - -an + en . [ ( 1 ) nrr J b 4T,, 2 

(9.6. 1 1) 
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Figure 9.19 State trellis for binary CPFSK with h = 1 /2. 
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1 

1 

-1  

(a) (b) 

Figure 9.20 State diagram for binary CPFSK with h = 1/2. 

Figure 9.21 Signal space diagram for binary CPFSK 
with (a) h = 1/2 and (b) h = 1/4. 

The expression in Equation (9.6. 1 1) indicates that the MSK (binary CPFSK) sigm 
is basically a sinusoid consisting of one of two possible frequencies in the interval nTb : 
t :S (n + l )Tb ,  namely, 

(9.6.1� 
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Hence, the two sinusoidal signals may be expressed as 

i = 1 ,  2. (9.6. 13) 

The frequency separation is !1f = h - !1 = 1/2Tb . Recall that this is the minimum fre­
quency separation for orthogonality of the two sinusoids, provided the signals are detected 
coherently. This explains why binary CPFSK with h = 1 /2 is called minimum-shift keying. 
Note that the phase of the carrier in the nth signaling interval is the phase state of the signal 
that results in phase continuity between adjacent intervals. It is interesting to demonstrate 
that MSK is also a form of four-phase PSK. To prove this point, we begin with a four-phase 
PSK signal, which has the form 

u(t) = /!tf- { [
n
�

oo 
a2ngy (t - 2nTb)] COS 2rtfct 

where gy(t) is a sinusoidal pulse defined as { sin � 0 ::=: t ::=: 2Tb 
gy (t) = 2Tb, 

0, otherwise 

(9.6.14) 

(9.6. 15) 

and illustrated in Figure 9.22. First, we observe that the four-phase PSK signal consists 
of two quadrature carriers, cos 2rt Jct and sin 2rt Jct, which are amplitude modulated at a 
rate of one bit per 2Tb interval. The even-numbered information bits {a2n} are transmitted 
by modulating the cosine carrier, while the odd-numbered information bits {a2n+d are 
transmitted by amplitude modulating the sine carrier. Note that the modulation of the two 
quadrature carriers is staggered in time by Tb and that the transmission rate for each carrier 
is 1/2Tb . This type of four-phase modulation is called offset quadrature PSK (OQPSK) or 
staggered quadrature PSK (SQPSK). 

gy(t) = sin nt/2Tb 

1 

Figure 9.22 Sinusoidal pulse shape. 
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Figure 9.23 Representation of an MSK signal as a 
form of two staggered binary PSK signals, each with 
a sinusoidal envelope. (a) In-phase signal component, 
(b) quadrature signal component, and (c) MSK signal 
(a + b). 

Figure 9.23 illustrates the SQPSK signal in terms of the two staggered quadrature· 
modulated binary PSK signals. The corresponding sum of the two quadrature signals is i 

constant-amplitude, continuous-phase FSK signal, as shown in Figure 9.23. 
It is also interesting to compare the waveforms for MSK with the waveforms for stag· 

gered quadrature PSK (QPSK), in which the pulse gy(t) is rectangular for 0 ::; t ::; 2Tb 
and with the waveforms for conventional QPSK, in which the baseband pulse is rectangu· 
lar in the interval 0 ::; t ::; 2Tb. We emphasize that all three of these modulation method1 
result in identical data rates. The MSK signal is phase continuous. The SQPSK signal witl 
a rectangular baseband pulse is basically two binary PSK signals for which the phase tran 
sitions are staggered in time by Tb seconds. Consequently, this signal contains phase jump: 
of ±90° that may occur as often as every Tb seconds. On the other hand, in conventiona 
QPSK with constant envelope, one or both of the information symbols may cause phase 
transitions as often as every 2Tb seconds. These phase jumps may be ± 1 80° or ±90°. A1 
illustration of these three types of four-phase PSK signals is shown in Figure 9.24. 

From this description, it is clear that CPFSK is a modulation method with memof) 
The memory results from the phase continuity of the transmitted carrier phase from om 
symbol to the next. As a consequence of the continuous-phase characteristics, the powe 
spectra of CPFSK signals are narrower than the corresponding FSK signals in which th 
phase is allowed to change abruptly at the beginning of each symbol. 

Continuous-Phase Modulation. When the phase of the carrier is expresse1 
in the form of Equation (9.6.4), CPFSK becomes a special case of a general class o 
continuous-phase modulated signals in which the carrier phase is 
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Figure 9.24 Signal waveforms for (a) MSK, (b) offset QPSK (rectangular pulse), and (c) conventional QPSK 
(rectangular pulse). (From Gronemeyer and McBride; @1976 IEEE.) 

n 
e(t ; a) = 2n 

L akhq(t - kT), nT s t s (n + l)T, 
k=-oo 

(9.6 .16) 

where { ak} is the sequence of M -ary information symbols with possible values ± 1 ,  ±3, . . .  , 
±(M - 1), and q(t) is some arbitrary normalized waveform. Recall that for CPFSK, 
q (t) = t/2T for 0 S t  S T, q (t) = 0 for t < 0, and q (t) = 1/2 for t >  T . 

The waveform q (t) i s  the integral of a pulse gr(t) of arbitrary shape, i.e., 

q (t) = lot 8r (r:)dr:. (9.6. 17) 

If gr(t) = 0 for t > T, the CPM signal is called afull-response CPM signal. If the signal 
pulse gr (t) is nonzero for t > T, the modulated signal is called partial response CPM. In 
Figure 9.25, we illustrate several pulse shapes for gr(t) and the corresponding q (t). It is 
apparent that there is an infinite number of CPM signals that can be obtained by selecting 
different pulse shapes for gr(t) and by varying the modulation index h and the number of 
symbols M. 

The primary reason for extending the duration of the pulse g(t) beyond the time 
interval 0 S t S T is to further reduce the bandwidth of the transmitted signal. We note 
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Figure 9.25 Pulse shapes for 
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partial-response CPM, 
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that, when the duration of the pulse gT (t) extends over the time interval 0 ::::; t ::::; LT, 
where L > 1 ,  additional memory is introduced in the CPM signals; hence, the number of 
phase states increases. 

Three popular pulse shapes are given in Table 9 . 1 .  LREC denotes a rectangular pulse 
of duration LT, where L is a positive integer. In this case, L = 1 results in a CPFSK 
signal with the pulse, as shown in Figure 9.25(a). The LREC pulse for L = 2 is shown 
in Figure 9.25(c). LRC denotes a raised cosine pulse of duration LT. The LRC pulses 
corresponding to L = 1 and L = 2 are shown in Figures 9.25(b) and (d), respectively. 

The last pulse given in Table 9 . 1  is a Gaussian minimum-shift keying (GMSK) pulse 
with the bandwidth parameter B, which represents the -3 dB bandwidth of the Gaussian 
pulse. Figure 9.25(e) illustrates a set of GMSK pulses with time-bandwidth products BT 
ranging from 0. 1 to 1 .  We observe that the pulse duration increases as the bandwidth of 
the pulse decreases, as expected. In practical applications, the pulse is usually truncated 
to some specified fixed duration. GMSK with BT = 0.3 is used in the European digital 
cellular communication system, called GSM. From Figure 9.25(e), we observe that when 
BT = 0.3, the GMSK pulse may be truncated at l t l  = l .5T with a relatively small error 
incurred for t > l .5T. 

Due to the phase continuity inherent in the CPFSK and CPM signals, these modula­
tion schemes have memory, thus, their demodulation and detection is much more complex 
from a computational viewpoint. In general, the demodulator cross correlates the received 
signals in each signals interval with each of the possible phase-modulated transmitted sig­
nals and passes the correlation metrics to the maximum-likelihood (ML) detector. The 
detector exploits the memory (phase continuity) in the transmitted signal by performing 
ML sequence detection, as opposed to ML symbol-by-symbol detection, using the correla­
tion metrics in each signal interval. In Chapter 1 3, we introduce a computationally efficient 
method, called the Vitebi algorithm, for performing ML sequence detection. 

TABLE 9.1 SOME COMMONLY USED CPM PULSE SHAPES 

LREC 

LRC 

GMSK 

8r(t) = 

8r(t) = 

1 1  - (0 < t < LT) 2LT - -
0, otherwise 

I _l (1 - cos 2nt ) 0 :S t :S LT 2LT LT ' 
0, otherwise 

gr(t) = { Q [2nB (t - f) /(ln 2)112] - Q [2nB (t + f) /(ln 2)112] } 
Q(t) = - e-x212 dx 

1 Joo 
-/2n r 
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9.6.2 Spectral Characteristics of CPFSK Signals 

In this section we consider the spectral characteristics of CPFSK signals and present some 
results on their power spectral density. The derivation of these results may be found ir 
more advanced digital communication textbooks, e.g. Anderson et al. [1986] and Proaki! 
and Salehi [2008]. 

A CPFSK signal may be expressed in the general form 

{?}i; u(t ; a) = y r  cos [2nfct + e cr ;  a)J 
(9.6. 18: 

where the carrier phase e (t ; a) is given by Equation (9.6. 1 6). The lowpass equivalent o: 
this signal is the complex-valued baseband signal 

v(t) = ff-ejO(t;a) , (9.6.19 

which is sufficient to focus our attention on the spectral characteristics of the information 
bearing signal v(t). 

The computation of the power spectral density of the CPFSK (or CPM) signal i: 
somewhat difficult and tedious. The difficulty is due to the memory in the CPFSK signa 
and the exponential relationship between v(t) and e (t ; a). The general procedure involve: 
the computation of the autocorrelation function of the baseband signal v (t) and, then, com 
puting the Fourier transform of the autocorrelation function to obtain the power spectra 
density Sv (f) . 

The power spectral density of the real-valued signal u(t; a) is then found by translat 
ing Sv(f) in frequency by the carrier fc· Thus, we obtain 

1 Su (f) = 4 [Sv (f - fc) + Sv(f + fc)] . (9.6.20 

In the case of the CPFSK signal, this procedure yields the following expression fo 
the power spectral density: 

where 

sin n [fT - (2n - 1 - M)h/2] An (f) = --------­n [fT - (2n - 1 - M)h/2] 

. ( h (2n - 1 - M)) = smc f T - 2 , 

(9.6.21 

(9.6.22 
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COS (2nJT - t:lnm) - fJ COSO!nm Bnm(f) = 1 + {32 - 2{3 COS 2nfT ' 

t:lnm = nh(m + n - 1 - M), 

sin Mnh 
fJ = 

M sin nh · 
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(9.6.23) 

(9.6.24) 

(9.6.25) 

;g The power spectral density of CPFSK for M = 2 is plotted in Figure 9 .26 as a func-
tion of the normalized frequency fT, with the modulation index h = 2fdT as a parameter. 
Note that only one-half of the spectrum is shown in these graphs, because the spectrum is 
symmetric in frequency. The origin fT = 0 corresponds to the carrier frequency fc in the 
spectrum of the real-valued signal. 

These graphs show that the spectrum of the CPFSK signal is relatively smooth and 
well confined for h < 1 .  As h approaches unity, the spectra become very peaked and, for 
h = 1 ,  where lfJ I = 1 ,  we find that impulses occur at M frequencies, which is a situation 
that is generally avoided in practice. In communication systems that employ CPFSK, the 
modulation index is selected to conserve bandwidth, so that h < 1 .  

The special case of binary CPFSK with h = 1/2 (or fd = 1/4Tb) and fJ = 0 corre­
sponds to MSK. In this case, the power spectral density obtained from Equations (9.6.21) 
through (9.6.24) is 

S (f = 32�s [ COS 2nfTb ] 2 v ) n2 1 - 16j2T;f (9.6.26) 

In contrast, the power density spectrum of SQPSK with a rectangular pulse gy(t) of dura­
tion 2Tb is 

Sv(f) = 4�s ( si��;�bTb) 2 (9.6.27) 

The power density spectra in Equations (9.6.26) and (9.6.27) are illustrated in 
Figure 9.27. Note that the main lobe of MSK is 50% wider than that of SQPSK. However, 
the sidelobes of MSK fall off considerably faster. As a consequence, MSK is significantly 
more bandwidth efficient than SQPSK. 

In the more general case of CPM signals, the use of smooth pulses such as raised 
cosine pulses (LRC) of the form given in Table 9. 1 ,  where L = 1 for full response and 
L > 1 for partial response, result in smaller bandwidth occupancy and, hence, in greater 
bandwidth efficiency than the use of rectangular pulses. For example, Figure 9.28 illus­
trates the power-spectral density for binary CPM with different partial-response raised 
cosine (LRC) pulses and h = 1 /2. For comparison, the spectrum of binary CPFSK with 
h = 1/2 (MSK) is also shown. We note that as L increases, the pulse gy(t) becomes 
smoother and the corresponding spectral occupancy of the signal is reduced. 

9.7 COMPARISON OF MODULATION METHODS 

The digital modulation methods described in this chapter and Chapter 8 can be compared 
in a number of ways. For example, we can compare them on the basis of the SNR required 
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to achieve a specified probability of error. However, such a comparison would not be ve1 
meaningful unless it were made on the basis of some constraint, such as a fixed data ra 
of transmission. 

Suppose that the bit rate Rb is fixed. Consider the channel bandwidth required 
transmit the various signals. If we employ M-ary PAM, where M = 2k , the channel bani 
width required to transmit the signal is simply the bandwidth of the signal pulse gy (t 
which depends on its detailed characteristics. For our purposes, we assume that gy(t) 
a pulse of duration T and that its bandwidth W is approximately 1/2T, where T is ti 
symbol interval. In one symbol interval, we can transmit k information bits, so T = k/ 1 
sec. Hence, the channel bandwidth required to transmit the M -ary PAM signal is 

(9.7. 

If the PAM signal is transmitted at bandpass as a double-sideband suppressed carri 
signal, the required channel bandwidth is twice that for the baseband channel. However, ti 
bandwidth of the bandpass PAM signal can be reduced by a factor of2 by transmitting on 
one of the sidebands (either the upper or the lower sideband of the bandpass signal). Tht 
the required channel bandwidth of the single-sideband bandpass PAM signal is exactly t 
same as the bandwidth of the baseband signal. 

In the case of QAM, the channel bandwidth is (approximately) W = 1/T , but sin 
the information is carried on two quadrature carriers, it follows that T = 2k/ Rb, where 
is the number of information bits/carrier. Hence, 

W = Rb /2k = Rb /2 log2 MPAM = Rb/ log2 MQAM,  (9.7. 

where the number of signals for M-ary QAM, denoted as MQAM• is equal to the square 
the number MPAM of PAM signals. 

For M-ary phase modulation (M > 2), the channel bandwidth required to trans11 
the multiphase signals is W = 1 /T, where T = k/ Rb. Hence, 

(9.7 

Note that PAM, QAM, and PSK signals have the characteristic that, for a fixed 
rate Rb, the channel bandwidth decreases as the number of signals M increases. This me2 
that, with increasing M, the system becomes more bandwidth efficient. On the other hm 
examination of Figures 8.46, 8.5 1 ,  and 8.61 shows that in all these systems, at a giv 
'fbb/ N0, increasing M increases the error probability and thus deteriorates the performan1 
In other words, in these systems, increasing M increases the bandwidth efficiency a 
decreases the power efficiency. This is a direct consequence of the fact that, in these s: 
terns, the dimensionality of the signal space N is one (for PAM) or two (for PSK and QAJ 
and is independent of M. 

Orthogonal signals have completely different bandwidth requirements. For examf 
if we employ PPM signals, the symbol interval T is subdivided into M subintervals 
duration T / M and pulses of width T / M are transmitted in the corresponding subintervi 
Consequently, the channel bandwidth required to transmit the PPM signals is 



Section 9.7 Comparison of Modulation Methods 529 

W = M/2T = M/2(k/Rb) = MRb/2 log2 M Hz. (9.7.4) 

An identical result is obtained if the M orthogonal signals are constructed as M -ary FSK 
with a minimum frequency separation of 1/2T for orthogonality. Biorthogonal and simplex 
signals result in similar relationships as PPM (orthogonal). In the case ofbiorthogonal sig­
nals, the required bandwidth is one-half of that for orthogonal signals. From the bandwidth 
relation for orthogonal signals, we can see that for a fixed Rb, increasing M increases 
the bandwidth proportional to M/(2 log2 M). This shows that, in this case, increasing 
M decreases the bandwidth efficiency of the system. On the other hand, examination of 
Figures 9.3 and 9.15 shows that in these systems, for a fixed 'iSb/ No, increasing M improves 
the performance, and thus the power efficiency, of the system. It is also interesting to note 
that in orthogonal, biorthogonal, and simplex signaling schemes, the dimensionality of the 
signal space is not fixed and increases with an increasing M. 

From the foregoing discussion, it is clear that the characteristics of PAM, PSK, and 
QAM are completely different from the characteristics of orthogonal, biorthogonal, and 
simplex schemes. Therefore, their applications are also quite different. 

In general, it can be shown that the minimum bandwidth requirement for any digital 
modulation scheme is given by 

W - -R_b_N_ 
- 2log2 M ' (9.7.5) 

where Rb is transmission rate in bits/sec, N is the dimensionality of the signal space, 
and M is the number of points in signal constellation. Using this general equation, the 
minumum transmission bandwidth required for different communication schemes is given 
in Equation (9.7.6). 

Rb 
PAM: W = , 

2 log2 M 

Rb 
MPSK: W = -- , 

log2 M 

Rb 
BPSK: W =  , 

2 log2 M 

Rb 
QAM: W = -- , 

log2 M 

MRb 
Orthogonal Signaling: W = , 

2 log2 M 

Biorthogonal Signaling: 

Simplex Signaling: 

MRb 
W =  ' 4 log2 M 

(M - l )Rb 
W =  . 

2 log2 M 

for M > 2, 

(9.7.6) 

A compact and meaningful comparison of these modulation methods is based on 
the normalized data rate (also called the spectral bit rate) r = Rb/ W (bits per second 
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per hertz of bandwidth) versus the SNR/bit ('{!,bf No) required to achieve a given erro 
probability. We can use Equation (9.7.6) to derive expressions for the spectral bit rate ii 
different signaling schemes: 

PAM: r = 2 log2 M, 

·MPSK: r = log2 M, for M > 2, 

BPSK: r = 2 log2 M, 

QAM: r = log2 M, 

2 log2 M (9.7.7 
Orthogonal Signaling: r =  

M ' 

Biorthogonal Signaling: 
4 log2 M 

r =  
M 

Simplex Signaling: r =  
2 log2 M 
M - 1  

Figure 9 .29 illustrates the graph of r = Rb f W (measure of bandwidth efficiency) versu 
('{!,bf No) (measure of power efficiency) for PAM, QAM, PSK, and orthogonal signals fc 
the case in which the symbol error probability is PM = 10-5 • As discussed earlier i 
the case of PAM, QAM, and PSK, increasing the number of signal points M results in 
higher bit-rate-to-bandwidth ratio r = Rbf W. However, the cost of achieving the hight 
data rate is an increase in the SNR/bit. Consequently, M-ary PAM, QAM, and PSK ai 
appropriate for communication channels that are bandwidth limited, where we desire a bi 
rate-to-bandwidth ratio r > 1, and where there is sufficiently high SNR to support multipl 
signal amplitudes and phases. Telephone channels are examples of such bandlimited chm 
nels. The curve denoted by "Shannon limit" illustrates the boundary between the regio 
where reliable communication is possible and the region in which reliable communicatic 
is impossible (the shaded area). This curve is given by the relation 

'{!,b 2r - 1 
No r 

This relation is derived in Chapter 12  [see Equation ( 12.6.5)] . 

(9.7.: 

We have already observed that the cost of doubling the number of phases (increasir 
the number of bits/symbol by one bit) in PSK approaches 6 dB (a factor of 4) in addition 
transmitted power for large M. A similar comparison for QAM indicates that the increa: 
in transmitted power is approximately 3 dB per additional bit/symbol. Table 9.2 gives tl 
factor 10 1og2(M - l )f3, which represents the increase in average power required to mai1 
tain a given level of performance for QAM as the number of signal points in the rectangul 
constellation increases. Thus, we observe that QAM is preferable to PSK (and PAM) £ 
large signal constellation sizes. 

In contrast to PAM, QAM, and PSK, M-ary orthogonal signals yield a bit-rate-t 
bandwidth ratio of r :S 1 .  As M increases, r decreases due to an increase in the requir( 
channel bandwidth. However, the SNR/bit required to achieve a given error probability ( 
this case, PM = 10-5) decreases as M increases. Consequently, M-ary orthogonal signa 
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Figure 9.29 Comparison of several modulation methods at 10-5 symbol rate. 

TABLE 9.2 QAM SIGNAL CONSTELLATIONS 

Number of signal 
points M 

4 
8 
16 
32 
64 
128 

Increase in average 
power (dB) relative to M = 2 

3 
6.7 
10.0 
13.2 
16.2 
19.2 

531 
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as well as biorthogonal and simplex signals, are appropriate for power-limited channeli 
that have a sufficiently large bandwidth to accommodate a large number of signals. In thii 
case, as M -+ oo, the error probability can be made as small as desired, provided tha 
'fi,b/ N0 > 0.693 � (-1 .6 dB). This is the minimum SNR/bit required to achieve reliabl< 
transmission in the limit as the channel bandwidth W -+ oo and the corresponding bit 
rate-to-bandwidth ratio r -+ 0. 

9.8 SUMMARY AND FURTHER READING 

In this chapter, we extended our coverage of M -ary digital modulation to multidimensiona 
signals and derived their performance in additive white Gaussian noise (A WGN) channels 
The multidimensional signals we considered are orthogonal, biorthogonal, simplex, anc 
binary-coded signals. The dimensionality of M-ary orthogonal, biorthogonal, and sim 
plex signals was shown to be N = M. In contrast, the M-ary binary-coded signals ar1 
N -dimensional vectors, where N > M. 

We also described M-ary frequency-shift keying (FSK) signals and demonstrate1 
that when adjacent carrier frequencies are separated by l:!..f = 1 / T, where T is the symbc 
interval, the FSK signals have a geometric representation as M orthogonal vectors. W 
observed the difficulty and impracticality of implementing an M -ary FSK demodulato 
that must estimate M carrier phases required to perform phase-coherent demodulatior 
Instead , we demonstrated that the demodulator may ignore the multiple carrier phases b 
computing the envelopes of the received signals and passing the envelopes to the detecto: 
We also derived the probability of error for the FSK detector whose inputs are the envelope 
of the received signal-plus-noise for the M-ary FSK signals. 

Furthermore, we considered modulation systems with memory, emphasizing a spe 
cial type of M -ary FSK in which the phase of the transmitted signal carrier is constrained t 
be continuous as we switch from one carrier frequency to another at the end of each symbc 
interval. This is called continuous-phase FSK (CPFSK). The major reason for imposing th 
phase-continuity constraint is to reduce the sidelobes in the spectral characteristics of th 
FSK signal and, thus, reducing the transmitted signal bandwidth. A further generalizatio 
of CPFSK, called continuous-phase modulation (CPM), is obtained by allowing the basi 
pulse shape used in CPFSK to be different than rectangular. 

CPFSK and CPM are especially suitable for wireless digital communications becaus 
these digital modulations are bandwidth efficient and have a constant envelope. Therefon 
high-efficiency nonlinear power amplifiers can be used in the transmission of the signal: 
CPFSK and CPM have been treated extensively in the technical journals and in textbook 
A thorough treatment of CPM can be found in the book by Anderson et al. ( 1986). Tb 
journal papers by Aulin and Sundberg (198 1 ,  1982a, 1982b, 1984) and by Aulin et a 
(1981) provide a detailed analysis of the performance characteristics of CPM. The tutori: 
paper by Sundberg ( 1986) gives a very readable overview of CPM, its demodulation, an 
its performance characteristics. This paper also contains a comprehensive list of reference 

In the final section of this chapter, we compared the different ,types of one 
dimensional and multidimensional signals introduced in the previous chapter and th 
chapter. By fixing the probability of error for these different signals to some desired valu 
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e.g., Pb = 10-5 , we compared the different digital modulations on the basis of their bit 
rate-to-bandwidth ration, Rb/ W (bits/second/Hz) and the corresponding 7/,b/ N0 (SNR/bit) 
required to attain the selected probability of error. We observed that, in the case of PAM, 
PSK, DPSK, and QAM, as the number of signals M increases, Rb/ W increases and the 
SNR/bit also increases. As a consequence, these digital modulation methods are suitable 
for achieving high data rates (Rb/ W > 1 )  provided that the SNR/bit can be increased 
accordingly. In contrast, M -dimensional signal waveforms with M > 4 have the charac­
teristics that Rb/ W < 1 as M increases but the required SNR/bit decreases. Therefore, the 
M -ary multidimensional signals result in an expansion of the bandwidth required for their 
transmission, but this cost in channel bandwidth allows us to transmit the digital signals at 
a lower SNR/bit. As M approaches infinity, the limiting value of the SNR/bit is - 1 .6 dB. 
This is the lowest possible value of the SNR/bit that we can have in a digital communica­
tion system and still maintain reliable communications. This limiting value of the SNR/bit 
is called the Shannon limit. 

� PROBLEMS 

9.1 The lowpass equivalent signal waveforms for three signal sets are shown in 
Figure P-9. 1 .  Each set may be used to transmit one of four equally probable mes­
sages over an additive white Gaussian noise channel with a noise power spectral 
d . No ens1ty 2 .  

1. Classify the signal waveforms in Set I, Set II, and Set III. In other words, state 
the category or class to which each signal set belongs. 

2. What is the average transmitted energy for each signal set? 

3. For signal Set I, specify the average probability of error if the signals are detected 
coherently. 

4. For signal Set II, give a union bound on the probability of a symbol error if the 
detection is performed (a) coherently and (b) noncoherently. 

5. Is it possible to use noncoherent detection on signal Set III? Explain. 

6. Which signal set or signal sets would you select if you wanted to achieve a 
bit-rate-to-bandwidth ( 1i{;) ratio of at least 2? Explain your answer. 

9.2 Show that the correlation coefficient of two adjacent signal points corresponding to 
the vertices of an N -dimensional hypercube with its center at the origin is given by 

N - 2  
y = -- , N 

and their Euclidean distance is 

d = 2J7!,s/N. 
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Figure P-9.1 

9.3 Consider a set of M orthogonal signal waveforms Sm (t) , 1 :::; m :::; M, and 0 :::; t :: 
T, all of which have the same energy �. Define a new set of M waveforms as 

I I '\:'M Sm (t) = Sm (t) - M L..,k=l Sk (t) , 

Show that the M signal waveform { s� (t) } have equal energy, given by 

�' = (M - l) �/M, 

and are equally correlated, with correlation coefficient 

1 {T 1 I 1 
Ymn = 

�
' Jo Sm (t) Sn (t) dt = -

M _ l
. 
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9.4 Consider a biorthogonal signal set with M 8 signal points. Determine a union 
bound for the probability of a symbol error as a function of'f!,b/ No . The signal points 
are equally likely a priori. 

9.5 Consider an M-ary digital communication system where M = 2N , and N is the 
dimension of the signal space. Suppose that the M signal vectors lie on the vertices 
of a hypercube that is centered at the origin, as illustrated in Figure 9.9. Determine 
the average probability of a symbol error as a function of 'f!,s /No, where 'f!,s is the 
energy per symbol, No/2 is the power spectral density of the AWGN, and all signal 
points are equally probable. 

9.6 Consider the signal waveform 
n 

s (t) = L c;p (t - nTc) , 
k=l 

where p (t) is a rectangular pulse of unit amplitude and duration Tc. The {c; } may 
be viewed as a code vector c = [c1 ,  c2 , . . .  , en] , where the elements c; = ±1 .  Show 
that the filter matched to the waveform s (t) may be realized as a cascade of a filter 
matched to p(t) followed by a discrete-time filter matched to the vector c. Determine 
the value of the output of the matched filter at the sampling instant t = nTc .  

9.7 A Hadamard matrix is  defined as a matrix whose elements are ±1  and row vectors 
are pairwise orthogonal. In the case when n is a power of 2, an n x n Hadamard 
matrix is constructed by means of the recursion 

1. Let c; denote the ith row of an n x n Hadamard matrix as previously defined. 
Show that the waveforms constructed as 

n 
S; (t) = L 

C;kP (t - kTc) , i = 1 ,  2, . . .  , n 
k=l 

are orthogonal, where p (t) is an arbitrary pulse confined to the time interval 
0 ::S t  ::S Tc. 

2. Show that the matched filters (or cross correlators) for the n waveforms {s; (t) } 
can be realized by a single filter (or correlator) matched to the pulse p (t) fol­
lowed by a set of n cross correlators using the code words { c; } . 

9.8 The discrete sequence 

rk = .;ci;ck + nk ,  k = 1 ,  2, . . .  , n 

represents the output sequence of samples from a demodulator, where Ck = ± 1 
are elements of one of two possible code words, c1 = [ l ,  1 ,  . . .  , 1] and c2 = 
[ 1 ,  1 ,  . . .  , 1 ,  - 1 ,  . . .  , -1] .  The code word c2 has w elements, which are +l ,  and 
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n - w elements, which are - 1 ,  where w is some positive integer. The noise sequence 
{nd is white Gaussian with variance a2. 

1. What is the optimum maximum-likelihood detector for the two possible trans­
mitted signals? 

2. Determine the probability error as a function of the parameters (a2 , �b. w) . 

3. What is the value of w that minimizes the error probability? 

9.9 In Section 9.5 . 1 ,  we showed that the minimum frequency separation for the orthog­
onality of binary FSK signals with coherent detection is b.f = 2� .  However, a 
lower error probability is possible with coherent detection of FSK if /';. f is increased 
beyond A. Show that the minimum value of the correlation occurs at b.f = 0-;_15 ;  
determine the probability of error for this choice of b.f. 

9.10 Consider the phase-coherent demodulator for M-ary FSK signals as shown in 
Figure 9 . 1 1 .  

1 .  Assume that the signal 

{ii"; uo(t) = y T cos 2nfct, 

was transmitted; determine the output of the M - 1 correlators at t = T that 
corresponds to the signals Um (t) ,  m = 1 ,  2, . . .  , M - 1 ,  when <fm -:/= <Pm · 

2. Show that the minimum frequency separation required for the signal orthogo­
nality at the demodulator when <fm -:/= <Pm is b.f = t .  

9.11 In the demodulation and noncoherent detection of M -ary FSK signals, as illustrated 
in Figure 9. 12, show that the 2M noise samples that are given in Equations (9.5.8) 
and (9.5.9) are zero-mean, mutually independent Gaussian random variables with an 
equal variance a2 = �o . 

9.12 In on-off keying of a carrier modulated signal, the two possible signals are 

so (t) = 0, 

s1 (t) = If- cos 2nfct, 

The corresponding received signals are 

r (t) = n (t) , 0 :S t :S Tb 

r (t) = If- cos (2nfct + ¢) + n (t) , 0 :S t  :S Tb ' 

where ¢ is the carrier phase and n (t) is AWGN. 

1. Sketch a block diagram of the receiver (demodulator and detector) that employs 
noncoherent (envelope) detection. 
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2. Determine the probability density functions for the two possible decision vari­
ables at the detector corresponding to the two possible received signals. 

3. Derive the probability of error for the detector. 

9.13 Digital information is to be transmitted by carrier modulation through an additive 
Gaussian noise channel with a bandwidth of 100 kHz and No =  10-10 W/Hz. Deter­
mine the maximum rate that can be transmitted through the channel for four-phase 
PSK, binary FSK, and four-frequency orthogonal FSK that is detected noncoher­
ently. 

9.14 In an MSK signal, the initial state for the phase is either 0 or n radians. Determine 
the terminal phase state for the following four pairs of input data: (a) 00, (b) 01 ,  ( c) 
10, and (d) 1 1 .  

9.15 A continuous-phase FSK signal with h = 1/2 is represented as 

s (t) = ±.[iii- cos ( 2"".jb ) cos 2nfct ±I*- sin ( 21:jb ) sin 2nfct , 
0 :S t  :S 2Tb 

where the ± signs depend on the information bits transmitted. 

1. Show that this signal has a constant amplitude. 

2. Sketch a block diagram of the modulator for synthesizing the signal. 

3. Sketch a block diagram of the demodulator and detector for recovering the infor­
mation. 

9.16 Sketch the phase tree, the state trellis, and the state diagram for partial-response CPM 
with h = ! and 

g(t) = { 4� ' 
0, 

0 :S t :S 2T 
otherwise 

9.17 Determine the number of terminal phase states in the state trellis diagram for (a) a 
full-response binary CPM (CPFSK) with either h = � or i and (b) a partial-response 
L = 3 binary CPM with either h = � or i .  

COMPUTER PROBLEMS 

9.1 Simulation of Detector Performance for M = 4 Orthogonal Signals 

The purpose of this problem is to estimate and plot the probability of error as a func­
tion of the SNR for a digital communication system that employs M = 4 orthogonal 
signals and transmits them over an additive white Gaussian noise channel. The model 
of the system to be simulated is shown in Figure CP-9. 1 .  
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Gaussian RNG 

Yo 
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Error counter 

Figure CP-9.1 Simulation model for the detection of M = 4 orthogonal signals. 

As shown, we simulate the generation of the random variables yo, y1 , y2 , y3, whic 
constitute the input to the detector. First, we may generate a binary sequence < 
zeros and ones that occur with equal probability and are mutually statistically ind1 
pendent. The binary sequence is grouped into pairs of bits, which are mapped in1 
the corresponding signal components. As an alternative to generating the individu 
bits, we may generate pairs of bits, as described in CP-8.5. In either case, we ha� 
the mapping of the four symbols into the signal points. 

oo -+ so = (.ff., o, o, o) ; 
01 -+ S1 = (0, .ff,, 0, 0) ; 
10 -+ s2 = (0, 0, .ff,, o) ; 
1 1  -+ S3 = (0, 0, 0, .ff.) . 

The additive noise components no, n1 ,  n2 , n3 are generated by means of four Gau 
sian noise generators, each having zero mean and variance u2 = N0/2. For conv 
nience, we may normalize 'ifSs = 1 and vary u2• Since 'ifSs = 2'i8b, it follows tJi 
'ifSb = 1/2. The detector input consists of the received signal vector y = s; + n ,  i 
0, 1 ,  2, 3. The detector computes the correlation metrics Y·Sj ,  j = 0, 1 ,  2, 3, ai 
detects the signal having the largest correlation value. An error counter is used 
count the number of bit errors. 
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Perform the simulation for the transmission of 10,000 symbols (20,000 bits) at sev­
eral different values of SNR/bit that covers the range 0 :S 10 log'\gh/ N0 :s 8 dB. Plot 
the estimated probability of a bit error and compare the estimated values with the 
theoretical expression for the probability of a bit error. Comment on the results. 

9.2 Simulation of Detector Performance for M = 8 Orthogonal Signals 

Modify the simulation described in CP-9. 1  to transmit M = 8 orthogonal signals. 
Perform the simulation and plot the results. 

9.3 Correlation of Biorthogonal Signal Waveforms 

A set of M = 4 biorthogonal signal waveforms is shown in Figure 9.5. Note that 
s2(t) = -s0(t) and s3(t) = -s1 (t). Therefore, only two correlators are needed at the 
receiver to process the received signal, one for correlating r(t) with s1 (t) and one for 
correlating r (t) with so (t) .  
Suppose the received signal r(t) is sampled at a rate of Fs = 40/ T and the correla­
tions at the receiver are performed numerically, that is, 

k 
Yo(kTs) = L r(nT.)so (nT.), k = 1 ,  2, . . .  , 20 

n=l 
k 

YI (kTs) = L r(nT. )sr (nT.) , k = 21 ,  22, . . .  , 40 
n=21 

Compute and plot Yo(kTs) and Yr (kTs) when (a) so(t) is transmitted, (b) sr (t) is 
transmitted, (c) -so(t) = s2(t) is transmitted, and (d) -s1 (t) = s3(t) is transmitted 
and the additive noise is zero-mean, white, and Gaussian and the variance of the 
noise samples is a2 = 0, a2 = 0. 1 ,  and a2 = 1 .  

9.4 Simulation of Detector Performance for M = 4 Biorthogonal Signals 

The purpose of this problem is to estimate and plot the probability of error as a func­
tion of the SNR for a digital communication system that employs M = 4 biorthog­
onal signals and transmits them over an additive white Gaussian noise channel. The 
model for the system to be simulated is shown in Figure CP-9.4. 

As shown, we simulate the generation of the random variables Yo and y1 , which 
constitute the input to the detector. We begin by generating a binary sequence of zeros 
and ones that occur with equal probability and are mutually statistically independent, 
as described in CP-8 . 1 .  The binary sequence is grouped into pairs of bits, which are 
mapped into the corresponding signals as follows: 

00 -+ so = (�, o) ; 
01 -+ S r = (0, � ; 
10 -+ S2 = (0, -� ; 
1 1  -+ S3 = (-�, 0) . 
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Figure CP-9.4 Simulation model for the detection of M = 4 biorthogonal signals. 

Since s2 = -s 1 and S3 = -so, the demodulation requires two correlators or twc 
matched filters, whose outputs are Yo and y1 . The additive noise components n0 anc 
n 1 are generated by means of two Gaussian noise generators, each having mean zerc 
and variance a2 = N0/2. For convenience, we may normalize the symbol energy tc 
�s = 1 and vary the noise variance a2. Since �s = 2�b. it follows that �b = 1/2 
The detector output is compared with the transmitted sequence of bits and an err01 
counter is used to count the number of bit errors and the number of symbol errors. 

Perform the simulation for the transmission of 10,000 symbols (20,000 bits) at sev· 
eral different values of SNR/bit that covers the range 0 :::; 10 log10 �b/ No :::; 8 dB 
Plot the estimated probability of a symbol error and compare the estimated value� 
with the theoretical expression for the probability of a symbol error. Comment or 
the results. 

9.5 Noncoherent Demodulation of Binary FSK Signals 

The objective of this problem is to digitally implement a correlation-type demodu· 
lator in a digital communication system that employs binary FSK signal waveforms 
which are given as 

u i (t) = cos 2nf1t ,  0 :S t  :S Tb, 
u2(t) = cos 2nf2t, 0 :::; t :::; Tb, 

where !1 = 1000 /Tb and h = fI + 1 /Tb. The channel is assumed to impart a phast 
shift <P = 45° on each of the transmitted signals. Consequently, the received signa 
in the absence of noise is 

r (t) = cos(2nf;t + n/4), i = 1, 2 . . .  , 0 :::; t :::; Tb . 

The correlation-type demodulator for u 1  (t) and u2(t) is to be implemented digitally 

Suppose we sample the received signal r (t) at a rate Fs = 5000/Tb within tht 
bit interval 0 :::; t :::; Tb. Thus, the received signal r (t) is represented by the 500( 
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samples {r(n/ Fs)} . The correlation demodulator multiplies {r (n/ Fs)} by the sam­
pled versions of u1 (t) = cos 2n/1t, v1 (t) = sin 2nfit,  u2(t) = cos 2nfzt, and 
v2(t) = sin 2nfzt. Thus, the correlator outputs are 

k 
Yic(k) = I > 

(;J u, (t,) ' n=O k 
Y1s (k) = I > 

(;J VJ (f.) , n=O k 
Y2c(k) = I > (;J Uz (;J , n=O k 
Y2s (k) = I > 

(;J V2 
(;J , 

n=O 

k = 1 ,  2, . . . ,  5000; 

k = 1 ,  2, . . .  , 5000; 

k = 1 ,  2, . . .  , 5000; 

k = 1, 2, . . .  , 5000. 

The detector is a square-law detector that computes the two decision variables 

YI = Ytc (5000) + Yts (5000), 
Y2 = Yic (5000) + Yis (5000) 

and selects the information bit corresponding to the larger decision variable. 

Write a program that implements the correlation demodulator for the binary FSK 
signal processing. Assuming that r (t) = cos 2nf1t, plot the four sequences {Y1c (k), 
Y1s (k), Y2c (k) , Y2s (k)} for 0 _:::: k _:::: 5000. Repeat the computation when r (t) 
cos 2n fzt. What are the values of y1 and y2 in each of the two experiments? 

9.6 Simulation of Noncoherent Detection of Binary FSK 

The objective of this problem is to estimate the probability of error for a commu­
nication system that employs binary FSK modulation. The binary FSK waveforms 
are 

u1 (t) = cos 2nf1t, 

u2(t) = cos 2n (t1 + *) t, 0 _:::: t _:::: Tb 

The block diagram of the binary FSK system to be simulated is shown in Figure 
CP-9.6. 

Since the signals are orthogonal, when u1 (t) is transmitted, the first demodulator 
output is 

Y1c = ,JW;b cos </J + n1c , 
Yls = ,JW;b sin <P + n ls 

and the second demodulator output is 

Y2c = nzc , 
Y2s = nzs , 
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Figure CP-9.6 Simulation model for the noncoherent detection of binary FSK signals. 

where n lc,  ni, ,  n2c• and n2s are mutual statistically independent, zero-mean Gaus­
sian random variables with equal variance cr2 and <P represents the channel phase 
shift. The phase shift <P may be set to zero for convenience. The square-law detector 
computes 

Y1 = Yf c + Yf" 
Y2 = Yic + yi, 

and selects the information bit corresponding to the larger of these two decision 
variables. An error counter measures the error rate by comparing the transmitted 
sequence to the output of the detector. 

Perform the simulation of the binary FSK system as described for 10,000 bits for 
the range of the 0 ::; 10  log10 'f,b/ No ::; 12 dB and plot the estimated probability of 
error. Also plot the theoretical bit-error probability of binary FSK and compare the 
simulated performance to the theoretical error probability. Comment on the results. 



Digital Transmission 
through Bandlimited 
A WG N Channels 

In the last two chapters, we considered digital communication over an additive white 
Gaussian noise (A WGN) channel and evaluated the probability of error performance of 
the optimum receiver for several different types of digital modulation techniques. In this 
chapter, we treat digital communication over a channel that is modeled as a linear filter with 
a bandwidth limitation. The bandlimited channels most frequently encountered in practice 
are telephone channels, microwave line-of-sight (LOS) radio channels, satellite channels, 
and underwater acoustic channels. 

In general, a linear filter channel imposes more stringent requirements on the design 
of modulation signals. Specifically, the transmitted signals must be designed to satisfy the 
bandwidth constraint imposed by the channel. The bandwidth constraint generally pre­
cludes the use of rectangular pulses at the output of the modulator. Instead, the transmitted 
signals must be shaped to restrict their bandwidth to that available on the channel. The 
design of bandlimited signals is one of the topics treated in this chapter. 

We will see that a linear filter channel distorts the transmitted signal. The channel 
distortion results in intersymbol interference (ISi) at the output of the demodulator and 
leads to an increase in the probability of error at the detector. Devices or methods for 
correcting or undoing the channel distortion, called channel equalizers, are then described. 

10.1  CHARACTERIZATION OF BANDLIMITED CHANNELS AND SIGNAL DISTORTION 

A bandlimited channel such as a telephone wireline is characterized as a linear filter with 
impulse response c(t) and frequency response C(f), where 

C(f) = 1_: c(t)e-j2rrft dt. (10. 1 . 1 )  

If the channel is a baseband channel that i s  bandlimited to Be Hz, then C (f) = 0 for 
If  I > Be. Any frequency components at the input to the channel that are higher than Be 
Hz will not be passed by the channel. For this reason, we consider the design of signals 
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Figure 10.1 Magnitude and phase responses 
of bandlimited channel. 

for transmission through the channel that are bandlimited to W = Be Hz, as shown in 
Figure 10 . 1 .  Henceforth, W will denote the bandwidth limitation of the signal and the 
channel. 

-

Now, suppose that the input to a bandlimited channel is a signal waveform gT (t), 
where the subscript T denotes that the signal waveform is the output of the transmitter. 
Then, the response of the channel is the convolution of gT (t) with c(t), i.e., 

h(t) = L: c(r)gT (t - r)dr = c(t) * gT(t) , (10.1 .2) 

or, when expressed in the frequency domain, we have 

H(f) = C(f)GT (f) , (10. 1 .3) 

where GT(f) is the spectrum (Fourier transform) of the signal gT (t) and H(f) is the 
spectrum of h(t). Thus, the channel alters or distorts the transmitted signal gT (t) .  

Let us assume that the signal at the output of the channel is  corrupted by AWGN. 
Then, the signal at the input to the demodulator is of the form h(t) + n(t), where n(t) 
denotes the AWGN. The linear filter channel model is shown in Figure 10.2. 

From Chapter 8, we recall that in the presence of AWGN, a demodulator that employs 
a filter that is matched to the signal h(t) maximizes the signal-to-noise ratio (SNR) at its 
output. Therefore, let us pass the received signal r(t) = h(t) + n(t) through a filter that 
has a frequency response 
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Linear filter 
channel 

c(t) H C(f) 

h(t) 

Figure 10.2 Linear filter model for a bandlimited channel. 

+ i----11o- r(t) = h(t) + n (t) 

n(t) 
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(10. 1 .4) 

where to is some nominal time delay at which we sample the filter output. The subscript R 
denotes that the matched filter is at the receiver. 

The signal component at the output of the matched filter at the sampling instant 
t = t0 is 

(10.1 .5) 

which is the energy in the channel output waveform h(t) . The noise component at the 
output of the matched filter has a zero mean and a power spectral density 

No 2 Sn <f) = 2 JH(f) J . 

Hence, the noise power at the output of the matched filter has a variance 

a; = Sn (f)df = � JH(f) J2df = � -loo M 100 M "ff, -oo 2 -00 2 

Then the SNR at the output of the matched filter is 

(10. 1 .6) 

(10.1 .7) 

(10.1 .8) 

This is the result for the SNR at the output of the matched filter that was obtained in 
Chapter 8, except the received signal energy 7!,h has replaced the transmitted signal energy 
7!,s· Compared to the previous result, the major difference in this development is that the 
filter impulse response is matched to the received signal h(t) instead of the transmitted 
signal. Note that the implementation of the matched filter at the receiver requires that h(t) 
or, equivalently, the channel impulse response c(t) must be known to the receiver. 

Example 10.1.1 

The signal pulse 
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Figure 10.3 The signal pulse in (b) is transmitted through the ideal bandlimited channel shown in (a). 
The spectrum of gr(t) is shown in (c). 

is transmitted through a baseband channel with a frequency-response characteristic as show 
in Figure 10.3(a). The signal pulse is illustrated in Figure 10.3(b). The channel output is cm 
rupted by AWGN with the power spectral density N0/2. Determine the matched filter to th 
received signal and the output SNR. 

Solution This problem is most easily solved in the frequency domain. First, the spectrum c 
the transmitted signal pulse is 

GT(f) 
!_ sin(nfT) 

e-j1tfT 
2 nfT(l - j2T2) 

!_ sinc(JT) 
e-j1tfT 

2 (1 - j2T2) 
. 
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The spectrum IGT (f) l2 is shown in Figure 10.3(c). Hence, 

H(f) = C(f)GT (f) 

_ { GT(f), Ill :s W - 0, otherwise · 

Then, the signal component at the output of the filter matched to H (f) is 

_ _ l _ J w (sin rcfT)2 d - (2rc)2 -W J2(l - j2T2)2 f 

T J WT sin2 rca = (2rc)2 -WT a2(l - a2)2 da. 

The variance of the noise component is 

a; = � IGT (f) l2 df = __!!__!:_ . N lw N �  
2 -W 2 

Hence, the output SNR is 
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In this example, we observe that the signal at the input to the channel is not bandlimited. 
Hence, only a part of the transmitted signal energy is received, i.e., only the signal energy that 
falls within the passband If I :S W of the channel. The amount of signal energy at the output 
of the matched filter depends on the value of the channel bandwidth W when the signal pulse 
duration is fixed (see Problem 10. 1). The maximum value of�h, obtained as W --+  oo, is 

max�h = 1"' I GT (f) l2 = 1T 
g�(t) dt = �g, 

- 00  0 

where �g is the energy of the signal pulse gT(t). • 

In this development, we considered the transmission and reception of only a single 
isolated signal waveform gT (t) through a bandlimited channel with the impulse response 
c(t). We observed that the performance of the system is determined by �h, the energy in the 
received signal h(t) . To maximize the received SNR, we must make sure that the spectrum 
of the transmitted signal waveform gT (i) is limited to the bandwidth of the channel. The 
impact of the channel bandwidth limitation is felt when we consider the transmission of a 
sequence of signal waveforms. This problem is treated in the next section. 

10.1.1  lntersymbol Interference in Signal Transmission 

Let us consider the baseband pulse amplitude modulation (PAM) communication system 
illustrated by the functional block diagram in Figure 10.4. The system consists of a trans­
mitting filter having an impulse response gT(t), the linear filter channel with AWGN, a 
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Input Transmitting v(t) data filter Channel 

Gy(f) C(f) 

Noise 
n(t) 

Figure 10.4 Block diagram of a digital PAM system. 
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receiving filter with an impulse response gR(t), a sampler that periodically samples the 
output of the receiving filter, and a symbol detector. The sampler requires the extractioIJ 
of a timing signal from the received signal as described in Section 8.9. This timing signal 
serves as a clock that specifies the appropriate time instants for sampling the output of tht: 
receiving filter. 

Let us consider digital communication by means of M-ary PAM. Hence, the inpu1 
binary data sequence is subdivided into k-bit symbols, and each symbol is mapped intc 
a corresponding amplitude level that amplitude modulates the output of the transmittin� 
filter. The baseband signal at the output of the transmitting filter (the input to the channel: 
may be expressed as 

00 
v(t) = L angr (t - nT), (10.1 .9 

n=-oo 
where T = k /Rb is the symbol interval ( 1 / T = Rb/ k is the symbol rate), Rb is the bit rate 
and {an} is a sequence of amplitude levels corresponding to the sequence of k-bit blocks o 
information bits. 

The channel output, which is the received signal at the demodulator, may be expres 
sed as 

00 
r(t) = L anh(t - nT) + n(t) , ( 10. 1 . 10 

n=-oa 
where h (t) is the impulse response of the cascade of the transmitting filter and the channel 
Thus, h(t) = c(t) * gy(t) , c(t) is the impulse response of the channel, and n(t) represent 
the AWGN. 

The received signal is passed through a linear receiving filter with the impuls1 
response gR(t) and frequency response GR(f) . If gR(t) is matched to h(t), then its outpu 
SNR is maximum at the proper sampling instant. The output of the receiving filter may b 
expressed as 

00 

y(t) = L anx(t - nT) + w(t), (10. 1 . 1 1  
n=-oo 

where x(t) = h(t) * gR(t) = gy(t) * c(t) * gR(t) and w(t) = n(t) * gR(t) denotes th 
additive noise at the output of the receiving filter. 
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To recover the information symbols {an} ,  the output of the receiving filter is sampled 
periodically, every T seconds. Thus, the sampler produces 

or, equivalently, 

00 
y(mT) = L anx(mT - nT) + w(mT) 

n=-00 

00 
Ym = L anXm-n + Wm 

n=-00 

= xoam + 
L anXm-n + Wm , 
n-/m 

where Xm = x(mT), Wm = w(mT), and m = 0, ±1 ,  ±2, . . . . .  

( 10. 1 . 12) 

(10. 1 . 13) 

The first term on the right-hand side (RHS) of Equation (10. 1 . 13) is the desired sym­
bol am , scaled by the gain parameter x0. When the receiving filter is matched to the received 
signal h(t), the scale factor is 

xo = L: h2 (t)dt = L: IH(f) l2 df 

(10. 1 . 14) 

as indicated by the development of Equations (10. 1 .4) and (10.1 .5). The second term on 
the RHS of Equation (10. 1 . 13) represents the effect of the other symbols at the sampling 
instant t = mT, called the intersymbol interference. In general, ISI causes a degrada­
tion in the performance of the digital communication system. Finally, the third term, Wm, 
which represents the additive noise, is a zero-mean Gaussian random variable with variance 
O'� = No"€,h/2, previously given by Equation (10.1 .7). 

By appropriately designing the transmitting and receiving filters, we can satisfy the 
condition Xn = 0 for n =f. 0, so that the ISI term vanishes. In this case, the only term 
that can cause errors in the received digital sequence is the additive noise. The design of 
transmitting and receiving filters is considered in Section 10.3. 

10. 1 .2 Digital Transmission through Bandlimited Bandpass Channels 

The development given in Section 10. 1 . 1  for baseband PAM is easily extended to car­
rier modulation via PAM, quadrature amplitude modulation (QAM), and phase-shift key­
ing (PSK). In a carrier amplitude-modulated signal, the baseband PAM given by v(t) in 
Equation (10.1 .9) modulates the carrier, so that the transmitted signal u(t) is simply 

u(t) = v(t) cos 2nfct. (10. 1 . 15) 

Thus, the baseband signal v (t) is shifted in frequency by fc· 
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A QAM signal i s  a bandpass signal which, in its simplest form, may be viewed as 
two amplitude-modulated carrier signals in phase quadrature. That is, the QAM signal may 
be expressed as 

where 

u(t) = Vc(t) cos 2rcfct - Vs(t) sin 2rcfct, 

00 
Vc(t) = L ancgr (t - nT) , 

n=-oo 
00 

Vs(t) = L ansgr (t - nT) , 

n=-oo 

(10. 1 . 16) 

(10.1 . 17) 

and { anc} and {ans }  are the two sequences of amplitudes carried on the two quadrature car­
riers. A more compact mathematical representation of the baseband signal is the equivalenl 
complex-valued baseband signal 

v (t) = Vc(t) + jvs (t) 
00 L (anc + jans)gy (t - nT) 

n=-oo 
00 

= 
L angr (t - nT) , (10. 1 . 18 

n=-oo 
where the sequence {an = anc + jans }  is now a complex-valued sequence representini 
the signal points from the QAM signal constellation. The corresponding bandpass QM 
signal u(t) may also be represented as 

u (t) = Re [ v (t)ejZnfct] . (10. 1 . 19 

In a similar manner, we can represent a digital carrier-phase-modulated signal as i1 
Equation (10.1 . 19), where the equivalent baseband signal is 

00 
v (t) = 

L angr (t - nT) (10.1 .20 
n=-oo 

and the sequence {an} takes the value from the set of possible (phase) values { e-jZnm/ M 
m = 0, 1 ,  . . .  , M - l } .  Thus, all three carrier-modulated signals, PAM, QAM, and PSI 
can be represented as in Equations (10. 1 . 19) and (10. 1 .20), where the only difference is i 
the values taken by the transmitted sequence {an} .  

The signal v(t) given by  Equation (10. 1 .20) i s  called the equivalent lowpass signa 
In the case of QAM and PSK, this equivalent lowpass signal is a baseband signal which i 
complex-valued because the information-bearing sequence {an} is complex valued. In tb 
case of PAM, v (t) is a real-valued baseband signal. 
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When transmitted through the bandpass channel, the received bandpass signal may 
be represented as 

q (t) = Re [r(t)ej2rcfct] ,  (10. 1 .21) 

where r(t) is the equivalent lowpass (baseband) signal, which may be expressed as 

00 
r(t) = L anh (t - nT) + n(t) (10.1 .22) 

n=-oo 

and where, as in the case of baseband transmission, h(t) is the impulse response of the 
cascade of the transmitting filter and the channel; i.e., h(t) = c(t) * gT (t) , where c(t) is 
the impulse response of the equivalent lowpass channel and n(t) represents the additive 
Gaussian noise expressed as an equivalent lowpass (baseband) noise. 

The received bandpass signal can be converted to a baseband signal by multiplying 
q (t) with the quadrature carrier signals cos 2n Jct and sin 2n Jct and eliminating the double 
frequency terms by passing the two quadrature components through separate lowpass fil­
ters, as shown in Figure 10.5. Each one of the lowpass filters is assumed to have an impulse 
response gR(t) .  Hence, we can represent the two quadrature components at the outputs of 
these lowpass filters as an equivalent complex-valued signal of the form 

00 
y(t) = 

L anx(t - nT) + w(t) , (10.1 .23) 
n=-oo 

which is identical to the form given by Equation (10. 1 . 1 1) for the real baseband signal. 
Consequently, the signal design problem for bandpass signals is basically the same as that 
described in Section 10. 1 . 1  for baseband signals. 

In Section 10.3, we consider the design of bandlimited transmitting and receiving 
filters that either eliminate ISI or control ISL However, first we will determine the power 
spectral density of the transmitted digital signal. Thus, we will establish the relationship 
between the spectral characteristics of the transmitted signal and the channel bandwidth 
requirements. 

Received 
signal 

COS 2rr.fct 

-sin 2rr.fct 

LPF Im [n��n x(t-nT� + W5(t) 
GR(f) J 

Figure 10.5 Conversion of the bandpass received signal to baseband. 
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10.2 THE POWER SPECTRUM OF DIGITALLY MODULATED SIGNALS 

In this section we describe the power spectrum of linearly modulated digital signals, such 
as PAM, PSK and QAM. 

As shown in Section 10. 1 .2, the equivalent baseband transmitted signal for a digital 
PAM, PSK, or QAM signal is represented in the general form as 

00 
v (t) = L angT (t - nT), (l0.2. 1: 

n=-oo 

where {an} is the sequence of values selected from either a PAM, QAM, or PSK signa: 
constellation corresponding to the information symbols from the source, and 8T(t) is thf 
impulse response of the transmitting filter. Since the information sequence {an} is random 
v(t) is a sample function of a random process V (t) . In this section, we evaluate the powe1 
density spectrum of V(t). Our approach is to derive the autocorrelation function of V(( 
and then to determine its Fourier transform. The derivation is carried out in Appendix 1 OA 

The power spectrum of the baseband signal v(t) is expressed in the form 

where Sa (f) is the power spectrum of the information sequence {an} , defined as 

00 
Sa (f) = L Ra [m]e-j2:n:fmT , 

m=-oo 

(10.2.2 

(10.2.3 

GT (f) is the spectrum of the transmitting filter, and Ra[m] is the autocorrelation sequenc1 
of the information sequence {an} , defined as 

(10.2.4 

The result in Equation ( 10.2.2) illustrates the dependence of the power spectral den 
sity Sv (f) of the transmitted signal on (a) the spectral characteristics GT (f) of the trans 
mitting filter and (b) the spectral characteristics Sa(f) of the information sequence {an] 
Both GT(f) and Sa(f) can be designed to control the shape and form of the power spectr� 
density of the transmitted signal. 

Whereas the dependence of Sv (f) on GT (f) is easily understood, the effect c 
the autocorrelation properties of the information sequence {an} is more subtle. First, w 
observe that for an arbitrary autocorrelation Ra [m], the corresponding power spectral den 
sity Sa (f) is periodic in frequency with period l/T .  In fact, we note that Sa(f), give 
by Equation ( 10.2.3), has the form of an exponential Fourier series with {Ra [m]} as th 
Fourier coefficients. Consequently, the autocorrelation sequence {Ra [m]} is simply 1 1/2T 

Ra [m] = T Sa (f)ejZ:n:fmT df. 
-l/2T 

(10.2.: 
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Second, let us consider the case in which the information symbols in the sequence 
{an } are mutually uncorrelated. Then, 

m = O 
m =I= o' (10.2.6) 

where a;; = E(a�) - m� is the variance of an information symbol. By substituting for 
Ra[m] into Equation (10.2.3), we obtain the power spectral density 

00 

Sa (f) = a; + m� L e-j2nfmr . (10.2.7) 
m=-oo 

The term involving the summation on the RHS of Equation (10.2.7) is periodic with period 
1 / T. It may be viewed as the exponential Fourier series of a periodic train of impulses 
where each impulse has an area l /T  (see Table 2.1) . Therefore, Equation (10.2.7) can be 
expressed as 

(10.2.8) 

Substitution of this expression into Sv(f) given by Equation (10.2.2) yields the desired 
result for the power spectral density of the transmitted signal V (t) when the sequence of 
information symbols is uncorrelated; i.e., 

a2 m2 00 1 (m ) l2 ( m ) 
Sv (f) = ; 1Gr(f) l2 + 

T� 
L Gr 

T 8 f 
- T · (10.2.9) 

m=-oo 
The expression for the power spectral density of the transmitted signal given by 

Equation (10.2.9) is purposely separated into two terms to emphasize the two different 
types of spectral components. The first term a;; I Gr (f) 12 / T is the continuous spectrum 
and its shape depends on Gr(f) . The second term in Equation (10.2.9) consists of discrete 
frequency components spaced 1 / T apart in frequency. Each spectral line has a power that 
is proportional to IGr(/) 12 evaluated at f = m/T. We note that the discrete frequency 
components can be eliminated by selecting the information symbol sequence {an } to have 
zero mean. This condition is usually imposed in digital modulation methods because dis­
crete spectral lines are considered to be undesirable. To be specific, the mean ma in digital 
PAM, PSK, or QAM signals is easily forced to be zero by selecting the signal constellation 
points to be symmetrically positioned in the complex plane relative to the origin. Under 
the condition that ma = 0, we have 

(10.2. 10) 

Thus, the system designer can control the spectral characteristics of the transmitted digi­
tal signal by selecting the transmitter filter Gr(/). The following example illustrates the 
spectral shaping resulting from gr(t). 

Example 10.2.1 

Determine the power spectral density in Equation (10.2. 10), when gT (t) is the rectangular 
pulse shown in Figure 10.6(a). 
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Figure 10.6 A rectangular pulse gr(t) and its energy density spectrum IGr Cf)l2 • 

Solution The Fourier transform of gr(t) is 

Hence, 

Gr(f) = AT sin rtfT e-j1tfT . 
rtfT 

IGr(f) l2 = (AT)2 
( sin rtfT)2 

rtfT 

= (AT)2 sinc2(JT). 

This spectrum is illustrated in Figure 10.6(b ). We note that it contains nulls at multiples of 1/ 1  
in  frequency and that it decays inversely as the square of the frequency variable. 

Example 10.2.2 illustrates the spectral shaping that can be achieved by operation 
performed on the input information sequence. 

Example 10.2.2 

Consider a binary sequence {bn} ,  from which we form the symbols 

The {bn } are assumed to be uncorrelated binary valued (±1) random variables, each having 
zero mean and a unit variance. Determine the power spectral density of the transmitted signa 
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Solution The autocorrelation function of the sequence {an } is 

Ra[m] = E(anan+m) 

= E((bn + bn-1 ) (bn+m + bn+m-1)) 

= 1� 0, 

m = O  
m = ±l 
otherwise 

Hence, the power spectral density of the input sequence is 

Sa (f) = 2(1 + cos 2rrfT) 

= 4 cos2 rrfT 

555 

and the corresponding power spectrum for the modulated signal is, from Equation (10.2.2), 

Figure 10. 7 illustrates the power density spectrum Sa (f) of the input sequence, and the cor­
responding Sv (f) when Gr (f) is the spectrum of the rectangular pulse. • 

As demonstrated in the example, the transmitted signal spectrum can be shaped by 
having a correlated sequence {an} as the input to the modulator. 
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Figure 10.7 Power density spectra for (a) information sequence and (b) PAM modulated signal. 
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Having obtained the power spectrum of the baseband signal v(t), it is a simple mattei 
to find the power spectrum of the corresponding bandpass signal 

u(t) = Re [ v(t)ejZnfc1] .  

It is shown in Appendix lOA that the power spectrum of u(t) i s  given as 

1 Su (f) = 4 [Sv (f - fc) + Sv(f + fc)] · 

Hence, the power spectrum of the bandpass signal is simply determined by shifting the 
spectrum of v(t) by the carrier frequency ±fc and scaling the result by 1/4. 

10.3 SIGNAL DESIGN FOR BANDLIMITED CHANNELS 

In this section, we consider the problem of designing a bandlimited transmitting filter. First 
the design will be done under the condition that there is no channel distortion. Later, w1 
consider the problem of filter design when the channel distorts the transmitted signal. Sinc1 
H(f) = C(f)Gr(f), the condition for distortion-free transmission is that the frequency 
response characteristic C (f) of the channel must have a constant magnitude and a linea 
phase over the bandwidth of the transmitted signal, i.e., 

_ { Coe-jZnfto , lf l  :S W  C(f) - 0, lf l  > W' ( 10.3.l 

where W is the available channel bandwidth, to represents an arbitrary finite delay, whicl 
we set to zero for convenience, and Co is a constant gain factor, which we set to unity fo 

convenience. Thus, under the condition that the channel is distortion free and the bandwidtl 
of gr(t) is limited to W, we have H(f) = Gr (f). Consequently, the matched filter at fu, 
receiver has a frequency response GR (f) = Gr (f), and its output at the periodic samplin: 
times t = m T has the form 

or more simply, 

y(mT) = x(O)am + L anx(mT - nT) + w(mT), 
n#m 

Ym = Xoam + L GnXm-n + Wm, 
n#m 

(10.3.2 

(10.3.3 

where x(t) = gr (t) * gR(t) and w(t) is the output response of the matched filter to th 
input AWGN process n(t) . 

The middle term on the RHS of Equation (10.3 .3) represents the ISL The amour 
of ISi and noise that is present in the received signal can be viewed on an oscilloscope 
Specifically, we may display the received signal on the vertical input with the horizonti 
sweep rate set at 1/T . The resulting oscilloscope display is called an eye pattern becaus 
of its resemblance to the human eye. Examples of two eye patterns, one for binary PAl' 
and the other for quaternary (M = 4) PAM, are illustrated in Figure 10.8(a). 
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Figure 10.8 Eye patterns. (a) Examples of eye patterns for binary and quaternary PAM and (b) the effect of 
ISi on eye opening. 

The effect of ISI is to cause the eye to close, thereby reducing the margin for additive 
noise to cause errors. Figure 10.8(b) illustrates the effect of ISI in reducing the opening of 
the eye. Note that ISI distorts the position of the zero crossings and causes a reduction in 
the eye opening. As a consequence, the system is more sensitive to a synchronization error 
and exhibits a smaller margin against additive noise. 

Example 10.3.1 

Consider a binary PAM system that transmits data at a rate of 1/ T bits/sec through an ideal 
channel of bandwidth W. The sampled output from the matched filter at the receiver is 
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where am = ± 1 ,  with equal probability. Determine the peak value of the ISi and the nois� 
margin, as defined in Figure 10.8(b). 

Solution If we compare the matched filter output Ym with that given by Equation (10.3.3), i 
is apparent that xo = 1 ,  x1 = 0.2, Xz = -0.3, and Xm = 0, otherwise. The peak value of th! 
ISi occurs when am-1 = -am_z, so that the ISi term will take the peak value of +0.5. Sinci 
x0 = 1 and am = ±1,  the ISi causes a 50% reduction in the eye opening at the sampling timei 
t = mT, m = 0, ±1 ,  ±2, . . . .  Hence, the noise margin is reduced by 50% to a value of 0.5 
Thus, compared to the case in which there is no ISi, a noise component that is 50% smalle 
will cause an error at the detector. 

Next, we consider the problem of signal design under two conditions, namely, tha 
there is no ISi at the sampling instants and that a controlled amount of ISi is allowed. 

10.3.1 Design of Bandlimited Signals for Zero ISi-The Nyquist Criterion 

Let us consider a digital communication system as previously shown in Figure 10.4. Th 
signal component x (t) = gy (t) * c(t) * g R (t) at the output of the receiving filter, expresse1 
in the frequency domain, is 

X(f) = Gr(f)C(f)GR(f) 
= Gr(f)GR(f)Co e-j2rrfto (10.3.4 
= Gr(f)GR(f) , 

where Gr (f) and GR (f) denote the frequency responses of the transmitter and receiv� 
filters and C(f) = Co exp(-j2nfto) , I i i .:::; W denotes the frequency response of th 
channel. For convenience, we set C0 = 1 and to = 0. We have also seen that the output c 
the receiving filter, when sampled periodically at t = mT, m = . . .  , -2 - 1 ,  0, 1 ,  2 . . . 

yields the expression given by Equation ( 10.3.3). In this equation, the first term on the RH 
of the equation is the desired symbol, the second term constitutes the ISi, and the third ten 
is the additive noise. 

To remove the effect of ISi, it is necessary and sufficient that x(mT - nT) = 0 fc 
n f= m and x (O) f= 0, where without loss of generality, we can assume x(O) = 1 .  Th 
means that the overall communication system has to be designed such that { 1 ,  n = 0 x (nT) = 0, n f= 0 . (10.3.: 

In this section, we derive the necessary and sufficient condition for X (f) so x ( t) can satisl 
the preceding relation. This condition is known as the Nyquist pulse-shaping criterion 1 

Nyquist condition for zero !SI. 

Nyquist Condition for Zero ISi. A necessary and sufficient condition for x( 
to satisfy { 1 ,  n = 0 x(nT) = 0, n f= 0 (10.3. 
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is that its Fourier transform X (f) must satisfy 

00 

L x (! + ;) = T. (10.3.7) 
m=-oo 

Proof In general, x (t) is the inverse Fourier transform of X (f). Hence, 

x(t) = 1_: X(f)ej2nft df. (10.3.8) 

At the sampling instants t = nT, this relation becomes 

x (nT) = 1_: X(f)ej2nfnT df. (10.3.9) 

Let us break the integral in Equation ( 10.3.9) into integrals covering the finite range of 
1 / T. Thus, we obtain 

oo 1(2m+l)/2T 
x(nT) = L X(f)ej2rcfnT df 

m=-oo (2m-l)/2T 
oo 1 1/2T m = L X (! + -) ej2nfnT df 

m=-oo -l/2T T 

= 1 1/2T [ f 
X (! + 

m )] ej2nfnT df 
-l/2T m=-oo T 

1 1/2T 
= Z(f)ej2nfnT df, 

-l/2T 
where we have defined Z (f) by 

00 

z (f) = I: x (! + ; ) . 
m=-oo 

(10.3. 10) 

( 10.3. 1 1) 

Obviously, Z (f) is a periodic function with period � ;  therefore, it can be expanded in 
terms of its Fourier series coefficients {Zn} as 

00 

Z(f) = L Znej2rcnfT , 
n=-oo 

where 
I 

Zn = T 1_: Z(f)e-j2nnfT df. 
2T 

Comparing Equations (10.3.13) and (10.3. 10), we obtain 

Zn = Tx(-nT). 

(10.3.12) 

(10.3.13) 

(10.3. 14) 
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Therefore, the necessary and sufficient conditions for Equation ( 10.3.6) to be satisfiec 
is that { T n = 0  

Zn = O, n i= 0 , (10.3. IS: 

which, when substituted into Equation (10.3.12), yields 

Z(f) = T ( 10.3.16 

or, equivalently, 
00 

L 
x (! + ;) = T. (10.3.17 

m=-oo 
This concludes the proof for the condition that X (f) must satisfy to obtain zero ISL 

Now, suppose that the channel has a bandwidth of W. Then, C(f) = 0 for Ii i  > W 
consequently, X (f) = 0 for Ii i  > W. We distinguish three cases: 

1. 

2. 

In this case, T < 2
� or, equivalently, i > 2W. Since Z(f) = .E�:'.-cx,, X (f + f 

consists of nonoverlapping replicas of X (/), which are separated by t as shown i 
Figure 10.9, there is no choice for X (f) to ensure Z(f) = T in this case. Thus, ther 
is no way that we can design a system with no ISL 
In this case, T = 2

� or, equivalently, t = 2W (the Nyquist rate). The replication 
of X (/), separated by t ,  are about to overlap, as shown in Figure 10.10. It is clez 
that there exists only one X (f) that results in Z (f) = T, namely, 

_l_ + w -w 0 
T 

w t - w 1 T l_ + w T 

1 
Figure 10.9 Plot of Z(f) for the case T < - . 

2W 

1 
Figure 10.10 Plot of Z (f) for the case T = - . 

2W 

0 1 
T 
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X - { T I i i < W (f) - 0, otherwise 

or X (f) = Tn ( 2�) , which results in 

x(t) = sine (-f-) . 

561 

(10.3 . 18) 

(10.3 . 19) 

This means that the smallest value of T for which transmission with zero ISI is 
possible is T = 2� ;  for this value, x(t) has to be a sine function. The difficulty 
with this choice of x(t) is that it is noncausal and therefore nonrealizable. To make 
it realizable, usually a delayed version of it, i.e., sine ( 

t�o ) , is used and to is chosen 
such that for t < 0, we have sine 

C�0) � 0. Of course with this choice of x(t), the 
sampling time must also be shifted to mT + t0. A second difficulty with this pulse 
shape is that its rate of convergence to zero is slow. The tails of x (t) decay as 1 / t ; 
consequently, a small mistiming error in sampling the output of the matched filter at 
the demodulator results in an infinite series of ISI components. Such a series is not 
absolutely summable because of the 1/t rate of decay of the pulse; hence, the sum 
of the resulting rsr does not converge. 

3. In this case, for T > 2� ,  Z (f) consists of overlapping replications of X (f) sepa­
rated by � ,  as shown in Figure 10. 1 1 .  In this case, there exists an infinite number of 
choices for X(f), such that Z(f) = T. 

For the T > 2� case, a particular pulse spectrum that has desirable spectral properties and 
has been widely used in practice is the raised cosine spectrum. The raised cosine frequency 
characteristic (see Problem 10.5) is given as 

Xrc(f) = t [1 + COS ( "aT ( IJ I  - 127))] ' 
{ T, 

0, 

1 -w _l.. +w 
T T 

1 
Figure 10.11 Plot of Z(j) for the case T > 2W . 

O :::: If I :::: (1 - a)/2T 
I-a < If  I < I+a 2T - - 2T l + a 
l f l > 2T 

T 

(10.3.20) 
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where a i s  called the roll-off factor, which takes values in the range 0 ::=:: a ::=:: 1 .  The 
bandwidth occupied by the signal beyond the Nyquist frequency 2� is called the excess 
bandwidth and is usually expressed as a percentage of the Nyquist frequency. For example, 
when a = 1, the excess bandwidth is 50%; when a = 1 ,  the excess bandwidth is 100%. 
The pulse x(t) having the raised cosine spectrum is 

sin Tit/ T cos(rr.at / T) x (t) = rr.t/T 1 - 4a2t2/ T2 

. cos(rr.at/T) = smc(t/T) 2 2 2 . 1 - 4a t /T (10.3.21: 

Note that x(t) is normalized so that x(O) = 1. Figure 10. 12  illustrates the raised cosirn 
spectral characteristics and the corresponding pulses for a = 0, 1/2, 1 .  We note that fo 
a = 0, the pulse reduces to x(t) = sinc(t/ T) and the symbol rate is l / T  = 2W. Wher 
a = 1 ,  the symbol rate is 1 /T = W. In general, the tails of x(t) decay as 1/t3 for a > O 
Consequently, a mistiming error in sampling leads to a series of intersymbol interferenct 
components that converges to a finite value. 

Due to the smooth characteristics of the raised cosine spectrum, it is possible t< 
design practical filters for the transmitter and the receiver that approximate the overal 
desired frequency response. In the special case where the channel is ideal witl 
C(f) = TI (i'fv ) , we have 

x(t) 

(a) 

X(f) 

T 2T 
(b) 

Figure 10.12 Pulses having a raised cosine spectrum. 

2T 
f 

T 

(10.3.22 
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In this case, if the receiver filter is matched to the transmitter filter, we have Xrc(f) 
GT (f)GR(f) = IGT {f) l 2• Ideally, 

GT (f) = JIXrcU) le-jZrcfto (10.3 .23) 

and GR(f) = G�(f), where to is some nominal delay that is required to assure physi­
cal realizability of the filter. Thus, the overall raised cosine spectral characteristic is split 
evenly between the transmitting filter and the receiving filter. We should also note that an 
additional delay is necessary to ensure the physical realizability of the receiving filter. 
Example 10.3.2 

An ideal channel has the frequency-response characteristic shown in Figure 10. 13. Determine 
the frequency-response characteristics Gr (f) and GR (f) of the transmit and receiver filters, 
such that Gr(/)G R <f) = Xrc<f), where Xrc<f) is the raised cosine spectral characteristic 
given by Equation (10.3.20), and the desired roll-off factor is selected to be a = 1/2. Also, 
determine the symbol rate 1 / T, and compare it with the Nyquist rate. 
Solution Since the passband of the channel is limited to If I < 1200 Hz and a = 1/2, we 
have 1 + a = 3/2 = 1200. 2T 2T 
Hence, the symbol rate l/T = 1600 symbols/sec. In contrast, the Nyquist rate is 2400 sym­
bols/sec. The frequency response Xrc(f) is given as (with T = 1/1600), 

Then, 
IT, 0 :'.': lf l :'.': 400 

Xrc(/) = f [1 + cos ( 8�0 (lfl - 400))] ,  400 :'.': lf l :'.': 1200 . 
o, Ii i ::: 1200 

The phase characteristics of Gr(/) and GR(/) can be selected to be linear, with eR (f) = 
-er (f). • 

IC(f)I 

�l��t -1200 0 1200 

O(t
) 

O(t
) 

= -2n
f
to 

Figure 10.13 Frequency response of ideal channel 
in Example 9.2.2. 
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10.3.2 Design of Bandlimited Signals with Controlled ISi-Partial-Response Signals 

As we have observed from our discussion of signal design for zero ISI, it is necessary to 
reduce the symbol rate 1/ T below the Nyquist rate of 2W symbols/sec in order to realize 
practical transmitting and receiving filters. On the other hand, suppose we choose to relax 
the condition of zero ISI and, thus, achieve a symbol transmission rate of 2 W symbols/sec. 
By allowing for a controlled amount of ISI, we can achieve this symbol rate. 

We have already seen that the condition of zero ISI is x(nT) = 0 for n -:/= 0. However, 
suppose that we design the bandlimited signal to have controlled ISI at one time instant. 
This means that we allow one additional nonzero value in the samples {x (nT)} . The ISi 
that we introduce is deterministic or "controlled"; hence, it can be taken into account at the 
receiver. We will discuss this case next. 

One special case that leads to (approximately) physically realizable transmitting and 
receiving filters is specified by the samples1 

x (nT) = { 0
1 ,
' 
n = 0, 1 
otherwise · 

Now, using Equation (10.3. 14), we obtain 

{ T  n = O, -l 
Zn = 0, otherwise ' 

which, when substituted into Equation (10.3. 12), yields 

Z(f) = T + T e-j2rcfT . 

(10.3.24) 

(10.3.25) 

(10.3.26: 

As in the preceding section, it is impossible to satisfy this equation for T < 2� . However 
for T = 2� , we obtain 

X(f) = 2W , { _L [1 + e-jrcf!W] 
0, 

l f l  < w 
otherwise 

= 
{ -W-e-jnfl2W cos (;l) , 
0, 

lf l < W 
otherwise 

Therefore, x(t) is given by 

x(t) = sine (2Wt) + sinc(2Wt - 1) . 

( 10.3.27 

(10.3.28 

This pulse is called a duobinary signal pulse. It is illustrated, along with its magnitude spec 
trum, in Figure 10. 14. We note that the spectrum decays to zero smoothly, which mean 
that physically realizable filters can be designed to approximate this spectrum very closel� 
Thus, a symbol rate of 2 W is achieved. 

Another special case that leads to (approximately) physically realizable transmittin 
and receiving filters is specified by the samples 

1 It is convenient to deal with samples of x(t) that are normalized to unity for n = 0, 1 .  



Section 1 0.3 Signal Design for Bandlimited Channels 565 

x(t) 

IXCf)I 

-w +w 
f 

Figure 10.14 Time-domain and 
frequency-domain characteristics of 
a duobinary signal. { 1 ,  n = - 1 

x(nT) = -1 ,  n = 1 
0, otherwise 

The corresponding pulse x(t) is given as 

x(t) = sine (t + T)/T - sine (t - T)/T, 

and its spectrum is 

X(f) = 2w w w ' 

I_!.._ [ejrcf!W - e-jrcf/W] = j_ sin re/ 
0, 

I l l  :s w 
Il l > w 

(10.3 .29) 

(10.3 .30) 

(10.3.3 1) 

This pulse and its magnitude spectrum are illustrated in Figure 10.15 . It is called a modified 
duobinary signal pulse. It is interesting to note that the spectrum of this signal has a zero 
at I = 0, making it suitable for transmission over a channel that does not pass DC. 

We can obtain other interesting and physically realizable filter characteristics by 
selecting different values for the samples {x(nT)} and by selecting more than two nonzero 
samples. However, as we select more nonzero samples, the problem of unraveling the con­
trolled ISi becomes more cumbersome and impractical. 

In general, the class of bandlimited signals pulses that have the form 

� ( n ) sin 2rrW(t - n/2W) x (t) = L.., x -
2W 2rrW(t - n/2W) 

n=-oo 
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x(t) 

4T t 

(a) 

IX(f)I 

-w 0 w f 
(b) 

and their corresponding spectra 

{ _1 Loo x (2';v) e-jn1rf/W ' 
X (f) = 2W n=-oo 

0, 

Figure 10.15 Time-domain and 
frequency-domain characteristics 
of a modified duobinary signal. 

I l l ::::: w 

l f l > w 
are called partial response signals when controlled ISi is purposely introduced by selectin� 
two or more nonzero samples from the set {x (n/2W)} . The resulting signal pulses allow w 
to transmit information symbols at the Nyquist rate of 2 W symbols/sec. The detection oJ 
the received symbols in the presence of controlled ISi is described in the following section 

10.4 DETECTION OF PARTIAL-RESPONSE SIGNALS 

When the transmitter and receiver filters Gr (f) and GR (f) are designed for zero ISi, th< 
detectors for various modulation methods described in the last two chapters apply withou 
modification and their error rate performance in additive white Gaussian noise is the sam1 
as previously derived in these two chapters. In this section, we consider the detection o 
data symbols in the presence of controlled ISi and evaluate the error rate performance o 
the detector. 
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1 0.4.1 Symbol-by-Symbol Detection 

In this section, we describe a symbol-by-symbol method for detecting the information 
symbols at the demodulator for PAM when the received signal contains controlled ISL 
This symbol detection method is relatively easy to implement. A second method, based on 
the maximum-likelihood (ML) criterion for detecting a sequence of symbols, is described 
in Section 10.4.3. This second method minimizes the probability of error but is a little 
more complex to implement. In particular, we consider the detection of the duobinary 
and the modified duobinary partial response signals. In both cases, we assume that the 
desired spectral characteristic X (f) for the partial response signal is split evenly between 
the transmitting and receiving filters, i.e., I GT (f) I = IGR(f) I = IX(f) l 1/2 . 

For the duobinary signal pulse, x(nT) = 1, for n = 0, 1 and zero otherwise. Hence, 
the samples at the output of the receiving filter have the form 

(10.4.1) 

where {am} is the transmitted sequence of amplitudes and {Wm} is the sequence of additive 
Gaussian noise samples. Let us ignore the noise for the moment and consider the binary 
case where am = ±1 with equal probability. Then, bm takes on one of three possible 
values, namely, bm = -2, 0, 2, with corresponding probabilities 1/4, 1/2, 1/4. If am-I is 
the detected symbol from the signaling interval beginning at (m - 1), its effect on bm , 
the received signal in the mth signaling interval, can be eliminated by subtraction, thus 
allowing am to be detected. This process can be repeated sequentially for every received 
symbol. 

The major problem with this procedure is that errors arising from the additive noise 
tend to propagate. For example, if the detector makes an error in detecting am_ 1 ,  its effect 
on bm is not eliminated; in fact, it is reinforced by the incorrect subtraction. Consequently, 
the detection of am is also likely to be in error. 

Error propagation can be avoided by precoding the data at the transmitter instead of 
eliminating the controlled ISi by subtraction at the receiver. The precoding is performed 
on the binary data sequence prior to modulation. From the data sequence {dn} of ones 
and zeros that is to be transmitted, a new sequence {pn}, called the precoded sequence, is 
generated. For the duobinary signal, the precoded sequence is defined as 

Pm = dm 8 Pm-I •  m = 1 , 2, . . .  , (10.4.2) 

where the symbol 8 denotes modulo-2 subtraction. 2 Then, we set am = - 1 if Pm = 0, and 
am = 1 if Pm = 1 ,  i.e., am = 2pm - 1 .  

The noise-free samples at the output of the receiving filter are given as 

bm = am + am-I 
= (2pm - 1) + (2Pm-I - 1)  
= 2(pm + Pm-I - 1) .  

(10.4.3) 

2 Although this is identical to modulo-2 addition, it is convenient to view the precoding operation for 
duobinary in terms of modulo-2 subtraction. In the M-ary case, modulo-M addition and subtraction are clearly 
different. 
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bm Pm +  Pm-I = l + 1 .  

Chapter 10  

(10.4.4) 

Since dm = Pm EB Pm-1 ,  it follows that the data sequence dm is obtained from bm by using 
the relation 

bm dm = 2 + 1  (mod 2) . (10.4.5) 

Consequently, if bm = ±2, dm = 0 and if bm = 0, dm = I .  The effect of precoding is clear 
from Equation ( 10.4.5). The received level for the mth transmission bm is directly related 
to dm, the data at the same transmission time. Therefore, an error in reception of bm only 
affects the corresponding data dm, and no error propagation occurs. 
Example 10.4.1 

For the binary data sequence {dn } given as 

1 1 1 0 1 0 0 1 0 0 0 1 1 0 1 , 

determine the precoded sequence {Pn} ,  the transmitted sequence {an} ,  the received sequence 
{bn} ,  and the decoded sequence {dn} .  

Solution By using the Equations (10.4.2), (10.4.3), and ( 10.4.5), we obtain the desired 
sequences, which are given in Table 10. 1 .  • 

In the preceding derivation, we neglected the effect of the additive noise on the detec­
tion method. In the presence of additive noise, the sampled outputs from the receiving 
filter are given by Equation ( 10.4. 1) .  In this case, Ym = bm + Wm is compared with the 
two thresholds set at + 1 and - 1. The data sequence {dn} is obtained according to the 
detection rule 

d = { 1 ,  if - 1 < Ym < 1 m 0, if I Ym I :::: 1 . ( 10.4.6) 

The extension from binary PAM to multilevel PAM signaling using the duobinary 
pulses is straightforward. In this case, the M-level amplitude sequence {am} results in a 
(noise-free) sequence 

m = 1 , 2, . . .  , ( 10.4.7) 

TABLE 10.1 BINARY SIGNALING WITH DUOBINARY PULSES 

Data sequence dn 1 0 1 0 0 0 0 0 1 0 1 
Precoded sequence Pn 0 0 0 0 0 0 0 
Transmitted sequence an -1 1 - 1  -1 -1  - 1  1 1 - 1  1 1 -1 
Received sequence bn 0 0 0 2 0 -2 -2 0 2 2 2 0 0 2 0 
Decoded sequence dn 0 0 0 0 0 0 0 
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which has 2M - 1 possible equally spaced levels. The amplitude levels are determined 
from the relation 

am = 2pm - (M - 1) ,  ( 10.4.8) 

where {Pm} is the precoded sequence that is obtained from an M-level data sequence {dm }  
according to the relation 

Pm = dm 8 Pm-1 (mod M), (10.4.9) 

where the possible values of the sequence {dm} are 0, 1, 2, . . .  , M - 1 .  
In the absence of noise, the samples at the output of the receiving filter may be 

expressed as 

Hence, 

bm am + am-I 
= 2[pm + Pm-I - (M - l )] . 

bm Pm + Pm-I = l + (M - 1 ) .  

Since dm = Pm + Pm-1 ,  it follows that 

bm dm = 2 + (M - 1 )  (mod M). 

(10.4. 10) 

(10.4. 1 1) 

(10.4. 12) 

Here again, we see that error propagation has been prevented by using precoding. 
Example 10.4.2 

Consider the four-level data sequence {dn } 

0 0 1 3 1 2 0 3 3 2 0 1 0, 

which was obtained by mapping two bits into four-level symbols, i.e., 00 -+ 0, 01 -+ 1 ,  
10 -+ 2, and 1 1  -+ 3 .  Determine the precoded sequence {Pn }, the transmitted sequence {an }, 
the received sequence {bn },  and the decoded sequence {dn} .  
Solution By using Equations (10.4.7) through (10.4.12), we obtain the desired sequences, 
which are given in Table 10.2. • 

In the presence of noise, the received signal-plus-noise is quantized to the nearest 
possible signal level and the preceding rule is used on the quantized values to recover the 
data sequence. 

TABLE 10.2 FOUR-LEVEL TRANSMISSION WITH DUOBINARY PULSES 

Data sequence dn 0 0 3 2 0 3 3 2 0 1 0 
Precoded sequence Pn 0 0 0 2 3 3 2 3 2 2 
Transmitted sequence an -3 -3 -3 - 1  1 3 3 - 1  1 - 1  -1  3 1 1 
Received sequence b,, -6 -6 -4 0 4 6 2 0 0 -2 2 4 2 
Decoded sequence dn 0 0 3 2 0 3 3 2 0 0 
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In the case of the modified duobinary pulse, the controlled ISi is specified by the 
values x (n/2W) = - 1  for n = 1 , x(n/2W) = 1 for n = -1 ,  and zero otherwise. 
Consequently, the noise-free sampled output from the receiving filter is given as 

(10.4.13) 

where the M-level sequence {an} is obtained by mapping a precoded sequence according 
to the relation Equation (10.4.8) and 

Pm =  dm EB Pm-2 (mod M). (10.4. 14) 

From these relations, it is easy to show that the detection rule for receiving the data 
sequence { dm} from { bm} in the absence of noise is 

bm dm = 2 (mod M) . (10.4. 15) 

As demonstrated, the precoding of the data at the transmitter makes it possible to 
detect the received data on a symbol-by-symbol basis without having to look back at pre­
viously detected symbols. Thus, error propagation is avoided. 

The probability of error of the symbol-by-symbol detector previously described i� 
determined in the following section. 

10.4.2 Probability of Error for Symbol-by-Symbol Detection 

In this section, we determine the probability of error for the symbol-by-symbol detection 01 
digital M -ary PAM signaling using duo binary and modified duobinary pulses. The channe 
is assumed to be an ideal bandlimited channel with additive white Gaussian noise. Tut 
model for the communication system is shown in Figure 10. 16. 

At the transmitter, the M-level data sequence {dn} is precoded as previously describe1 
The precoder output is mapped into one of M possible amplitude levels. Then the trans 
mitting filter with frequency response GT (f) has an output 

M-level 

Data 
{dn) 

00 
v(t) = L angT (t - nT). 

n=-00 

Precoder 
Transmitting 

filter 

.__ __ __, IPn) 
G
T
(f) 

AWGN 
n (t) 

Receiving 
filter 
a;cn Detector 

Figure 10.16 Block diagram of the modulator and demodulator for partial response signals. 

(10.4. 16 

Output 
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The partial-response function X'(f) is divided equally between the transmitting and receiv­
ing filters. Hence, the receiving filter is matched to the transmitted pulse, and the cascade 
of the two filters results in the frequency characteristic 

(10.4. 17) 

The matched filter output is sampled at t = nT = n/2W and the samples are fed to the 
decoder. For the duobinary signal, the output of the matched filter at the sampling instant 
may be expressed as 

Ym am + am-I +  Wm 
bm + wm , 

(10.4 .18) 

where Wm is the additive noise component. Similarly, the output of the matched filter for 
the modified duobinary signal is 

Ym am - am-2 + Wm 
bm + wm . (10.4. 19) 

For binary transmission, let am = ±d, where 2d is the distance between signal levels. 
Then, the corresponding values of bm are (2d, 0, -2d). For M-ary PAM signal transmis­
sion, where am = ±d, ±3d, . . .  , ±(M - l)d, the received signal levels are bm = 0, 
±2d, ±4d, . . .  , ±2(M - l)d. Hence, the number of received levels is 2M - 1 .  The input 
transmitted symbols {am} are assumed to be equally probable. Then, for duobinary and 
modified duobinary signals, it is easily demonstrated that, in the absence of noise, the 
received output levels have a (triangular) probability mass function of the form 

M - lm l P (b = 2md) = M2 , m = 0, ±1 ,  ±2, . . .  ± (M - 1) , ( 10.4.20) 

where b denotes the noise-free received level and 2d is the distance between any two 
adjacent received signal levels. 

The channel corrupts the signal transmitted through it by the addition of white Gaus­
sian noise with zero mean and a power spectral density No/2. We assume that a sym­
bol error is committed whenever the magnitude of the additive noise exceeds the distance 
d. This assumption neglects the rare event that a large noise component with magnitude 
exceeding d may result in a received signal level that yields a correct symbol decision. The 
noise component Wm is zero-mean Gaussian with variance 

2 No jw 2 (Jw = - IGR(f) I df 2 -w 

= No [w IX (f) ldf = 2No/n, 2 1-w (10.4.21) 

where we have used Equations ( 10.3.27) and ( 10.3.3 1) to compute the integral. Equation 
(10.4.21 ) applies to both duobinary and modified duobinary signals. Hence, an upper bound 
on the symbol probability of error is 
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PM < L P( ly - 2mdl > dlb = 2md)P (b = 2md) 

m=-(M-2) 
+ 2P(y + 2(M - l)d > d lb = -2(M - l)d)P (b = -2(M - l)d) 

Chapter 10 

[ M-1 ] = P(ly l > dlb = 0) 2 � P(b = 2md) - P(b = 0) - P(b = -2(M - l)d) 

But 

= ( 1 - �2) P(ly l > dlb = 0) . 

P(IY I  > d lb = 0) = e-x f2<Iw dx 2 100 2 2 

.Jliaw d 

Therefore, the average probability of a symbol error is upper bounded as 

(10.4.22) 

(10.4.23) 

(10.4.24: 

The scale factor d in Equation (10.4.24) can be eliminated by expressing d in terms o 
the average power transmitted into the channel. For the M-ary PAM signal in which tht 
transmitted levels are equally probable, the average power at the output of the transmittini 
filter is 

Pav = E (a�) lw I GT (f) l2 df 
T -W 

= E (a�) lw IX (f) ldf T -W 

= �E (a!) , nT 

where E (a�) is the mean square value of the M signal levels, which is 

Therefore, 

2 3nPavT d = -4(_M_2_--l) . 

(10.4.25 

(10.4.2t 

(10.4.2� 
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By substituting the value of d2 from Equation (10.4.27) into Equation (10.4.24), we obtain 
the upper bound for the symbol error probability as 

PM < 2  1 - - Q - -( 1 ) ( (Jt )2 6 'gav ) 
M2 4 M2 - 1  No ' (10.4.28) 

where 'gav = PavT is the average energy/transmitted symbol, which can also be expressed 
in terms of the average bit energy as cgav = k'gbav = (log2M)'gbav· 

The expression in Equation (10.4.28) for the probability of error of M-ary PAM 
holds for both a duobinary and a modified duo binary partial response signal. If we compare 
this result with the error probability of M -ary PAM with zero ISi, which can be obtained 
by using a signal pulse with a raised cosine spectrum, we note that the performance of par­
tial response duobinary or modified duobinary has a loss of (n/4)2 or 2. 1 dB. This loss in 
SNR is due to the fact that the detector for the partial response signals makes decisions on 
a symbol-by-symbol basis; thus, it ignores the inherent memory contained in the received 
signal at the input to the detector. 

10.4.3 Maximum-Likelihood Sequence Detection of Partial-Response Signals 

When the received signal sequence has no memory, the symbol-by-symbol detector that 
was described in Sections 8.3.3 and 8.4. 1 is optimum in the sense of minimizing the 
probability of a symbol error. On the other hand, when the received symbol sequence has 
memory, i.e., the received symbols in successive symbol-time intervals are statistically 
interdependent, the optimum detector bases its decisions on the observation of a sequence 
of received symbols over successive symbol-time intervals. 

The sequence of received symbols resulting from the transmission of partial response 
signal waveforms is characterized as a sequence having memory between successive sym­
bols. To observe the memory in the received sequence, let us look at the noise-free received 
sequence for binary transmission given in Table 10. 1 . The sequence {bm} is 0, 0, 0, 2, 0, -2, 
-2, 0, 2, 2 . . . .  We note that it is not possible to have a transition from -2 to +2 or from 
+ 2 to -2 in one symbol interval. For example, if the signal level at the input to the detec­
tor is -2, the next signal level can be either -2 or 0. Similarly, if the signal level at a 
given sampling instant is 2, the signal level in the next time instant can be either 2 or 0. In 
other words, it is not possible to encounter a transition from -2 to 2 or vice versa between 
two successive received samples from the matched filter. However, a symbol-by-symbol 
detector does not exploit this constraint or inherent memory in the received sequence. 

The memory that is inherent in the received sequence {Ym} resulting from transmis­
sion of a partial response signal waveform is conveniently represented by a trellis diagram. 
For example, the trellis for the duobinary partial response signal for binary data transmis­
sion is illustrated in Figure 10.17. For binary modulation, this trellis contains two states; 
each state correspond to the two possible input values of am, i.e., am = ±1 .  Each branch in 
the trellis is labeled by two numbers. The first number on the left is the new data bit, i.e., 
am+I = ±1 .  This number determines the transition to the new state. The number on the 
right is the received signal level. 
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1/2 112 1/2 

t -1/-2 t -1/-2 t -1/-2 t 
t = O  t =  T t = 2T t = 3T 

Figure 10.17 Trellis for duobinary partial 
response signals. 

The duobinary signal has a memory of length L = 1 .  Hence, for binary modulation, 
the trellis has S1 = 2 states. For M-ary PAM modulation, the number of trellis states is M. 

The optimum sequence detector that exploits the memory inherent in the received 
sequence of symbols may be based on the maximum a posteriori probability (MAP) crite­
rion (see Section 8.4. 1) . For example, consider the transmission of a sequence of N sym­
bols {am ,  m = 1 ,  2, . . .  , N}. If each symbol can take one of M possible values, then there 
are MN possible transmitted sequences, denoted as aV, 1 :::::: k :::::: MN. The received 
sequence is {ym , 1 ::::; m ::::; N}, and it is denoted as YN · A detector that bases its decision 
on the MAP criterion computes a posteriori probabilities 

P(aV was transmitted IYN) ,  1 :::::: k :::::: MN (10.4.29) 

and selects the particular sequence that yields the highest probability. But the probabilities 
in Equation (10.4.29) can be expressed as 

(10.4.30) 

When all the symbol sequences aV are equally likely to be transmitted, which is usually 
the case in practice, selecting the sequence that maximizes the a posteriori probability is 
equivalent to finding the sequence a�

l 
that maximizes the conditional probability density 

function (PDF) f (y N la
V) over all possible MN sequences. Thus, the optimum detection 

criterion is the maximum-likelihood criterion. 
The optimum ML sequence detector computes MN probabilities, which includes one 

probability for each of the MN possible transmitted sequences. When M and N are large, 
the computational complexity of the ML detector becomes prohibitive. However, a compu­
tationally efficient algorithm for performing ML sequence detection, invented by Andrew 
Viterbi during the late 1960s, allows us to reduce the computational burden by eliminating 
sequences as new data is received. In effect, the Viterbi algorithm (VA) is a sequential trel­
lis search algorithm, which is described in more detail in Chapter 13 (Section 13 .3 .2) as a 
decoding algorithm for convolutional codes. 

In the case of the trellis shown in Figure 10 . 17 for the duo binary partial response 
signal, we observe that there are two states, labeled as + 1 and -1 ,  as well as nodes having 
two incoming signal paths and two outgoing signal paths. At each node of the trellis, the 
VA computes two probabilities (two metrics) corresponding to each of the two incoming 
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signal paths. One of the two paths is selected as the more probable (based on the values 
of the corresponding probabilities) and the other path is discarded. The surviving path at 
each node is then extended to two new paths, which includes one path for each of the 
two possible input symbols, and the search process continuous. Thus, the VA reduces the 
computational complexity of the ML detector. 

For the class of partial response signals, the received sequence {Ym , 1 ::=: m ::=: N} is 
generally described statistically by thejoint PDF f(YN l aN) , whereyN = (y1 , y2 , . . .  , YN)1 
and aN = (a1 ,  a2, • . .  , aN )1 and N > L. When the additive noise is zero-mean Gaussian,3 
f (YN I aN) is a multivariate Gaussian PDF; i.e. , 

!( I a ) - 1 
e-i<YN-hN)'c-1 <YN-bN) YN N - (2n)N/2 idet(C) i 1/2 ' (10.4.3 1) 

where bN = (b1 , b2 , . . .  , bN )1 is the mean of the vector YN and C is the N x N covariance 
matrix of y N . Then, the ML sequence detector selects the sequence through the trellis that 
maximizes the PDF f(YN I aN) .  

The computations for finding the most probable sequence through the trellis is sim­
plified by taking the natural logarithms of f (y N I a N) .  Thus, 

N 1 r 1 ln f(YN l aN) = -2 ln(2Jt) - 2 ln ldet(C) I - (YN - bN) c- (yN - bN)/2. (10.4.32) 

Given the received sequence {Ym} , the data sequence {am} that maximizes ln f (y N I a N) is 
identical to the sequence {am} that minimizes (YN - bN)1C-1 (yN - bN) ;  i.e., 

(10.4.33) 

The search through the trellis for the minimum distance path is performed sequen­
tially by use of the Viterbi algorithm. Let us consider the duobinary signal waveform with 
binary modulation and suppose that we begin at the initial state with ao = 1 .  Then upon 
receiving Y1 = a, + ao + w1 at time t = T and Y2 = a2 + ai + W2 at time t = 2T, we have 
four candidate paths, corresponding to (a1 ,  a2) = ( 1 ,  1) , (- 1 ,  1) ,  ( 1 ,  -1) ,  and (-1 ,  - 1) .  
The first two candidate paths merge at state 1 at t = 2T. For the two paths merging 
at state 1 ,  we compute the metrics µ'2(1 , 1) and µ2(-1 ,  1) and select the more proba­
ble path. A similar computation is performed at state - 1  for the two sequences ( 1 ,  - 1) 
and ( -1 ,  -1) .  Thus, one of the two sequences at each node is saved and the other is dis­
carded. The trellis search continues upon receipt of the signal sample y3 at time t = 3 T, 
by extending the two surviving paths from time t = 2T. 

The metric computations are complicated by the correlation of the noise samples at 
the output of the matched filter for the partial response signal. For example, in the case 
of the duo binary signal waveform, the correlation of the noise sequence {Wm} is over two 
successive signal samples. Hence, Wm and Wm+k are correlated for k = 1 and uncorrelated 
for k > 1 .  In general, a partial response signal waveform with memory L will result in a 
correlated noise sequence at the output of the matched filter, which satisfies the condition 
E(WmWm+k) = 0  for k > L.  

3To simplify the notation, we omit the superscript k from the following development. 
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The ML sequence detection introduces a variable delay in detecting each transmitted 
information symbol. In practice, the variable delay is avoided by truncating the surviving 
sequences to N1 most recent symbols, where N1 » 5L, thus achieving a fixed delay. In case 
the ML surviving sequences at time t = mT disagree on the symbol am-N, ,  the symbol in 
the most probable surviving sequence may be chosen. The loss in performance resulting 
from this truncation is negligible if N1 > 5L. 

10.4.4 Error Probability of the Maximum-Likelihood Sequence Detector 

In general, the computation of the exact probability of error is very difficult. Instead, we 
shall determine an approximation to the probability of error, which is based on comparing 
the metrics of two paths which merge at a node and which are separated by the smallest 
Euclidean distance of all other paths. Our derivation is performed for the duobinary partial 
response signal waveform. 

Let us consider the trellis for the duobinary partial response signal shown in Figure 
10. 17. We assume that we start in state 1 at t = 0 and that the first two transmitted symbols 
are a1 = 1 and a2 = 1 .  Then, at t = T we receive y1 = 2d + w1 and at t = 2T we 
receive Y2 = 2d + w2. An error is made at state 1 if the path (a1 , a2) = (-1 ,  1) is more 
probable than the path (a1 ,  a2) = ( 1 ,  1) , given the received values of Y1 and Y2· This path 
error event is the dominant path error event and, hence, it serves as a good approximation 
to the probability of error for the ML sequence detector. 

From Equation (10.4.32), the metric for the path (a1 , a2) = ( 1 ,  1) is 
- I [ YI - 2d ] µ'2(1 ,  1) = [y1 - 2d Y2 - 2d]C y2 _ 2d , 

where the covariance matrix C is given by (see Problem 10.35) 

For the path (a1 , a2) = (- 1 ,  1), the corresponding metric is 

(10.4.34) 

(10.4.35) 

(10.4.36) 

The probability of a path error event is simply the probability that the metric µ'2( -1 ,  1) is 
smaller than the metric µ'2( 1 ,  1 ) ;  i.e., 

(10.4.37) 

By substituting y1 = 2d + w1 and y2 = 2d + w2 into Equations (10.4.34) and (10.4.36) 
we find that 

(10.4.38) 
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Since w1 and w2 are zero-mean (correlated) Gaussian variables, their sum is also zero­
mean Gaussian. The variance of the sum z = w1 + w2 is simply a'}: = 16No/3rr. Therefore, 

(2d) ( f4d2\ P2 = P(z < -2d) = Q az 
= Q y -;;r J . 

From Equation (10.4.27) we have (with M = 2) the expression for d2 as 

Hence, the probability of the path error event is 

P2 - Q -- -- . _ ( l .5rr2 (2"&b )) 
16 No 

(10.4.39) 

(10.4.40) 

(10.4.41) 

First, we note that this path error event results in one bit-error in the sequence of 
two bits. Hence, the bit-error probability is P2/2. Second, there is a reduction in SNR of 
10 log(l .5rr2/16) = -0.34 dB relative to the case of no intersymbol interference. This 
small SNR degradation is apparently the penalty incurred in exchange for the bandwidth 
efficiency of the partial response signal. Finally, we observe that the ML sequence detector 
has gained back 1 .76 dB of the 2.1 dB degradation inherent in the symbol-by-symbol 
detector. 

10.5 SYSTEM DESIGN IN THE PRESENCE OF CHANNEL DISTORTION 

In Section 10.3 . 1 ,  we described a signal design criterion that results in zero ISi at the 
output of the receiving filter. Recall that a signal pulse x(t) will satisfy the condition of 
zero ISi at the sampling instants t = nT, n = ±1, ±2, . . .  , if its spectrum X(f) satisfies 
the condition given by Equation (10.3.7). From this condition, we concluded that, for ISI­
free transmission over a channel, the transmitter-receiver filters and the channel transfer 
function must satisfy 

(10.5 .1) 

where XrcCf) denotes the Fourier transform of an appropriate raised cosine pulse, whose 
parameters depend on the channel bandwidth W and the transmission interval T. In this 
section, we are concerned with the design of a digital communication system that sup­
presses ISi in a channel with distortion. We first present a brief coverage of various types 
of channel distortion, and then we consider the design of transmitter and receiver filters. 

We distinguish two types of distortion. Amplitude distortion results when the ampli­
tude characteristic I C(f) I is not constant for I i i  :::: W, as illustrated in Figure 10.18(a). 
The second type of distortion, called phase distortion, results when the phase characteristic 
ec(f) is nonlinear in frequency, as illustrated in Figure 10.1 8(b). 
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IC(f)I 

(a) (b) 

Figure 10.18 Channel characteristics illustrating (a) amplitude distortion and (b) phase distortion. 

Another view of phase distortion is obtained by considering the derivative of 8c(f) . 
Thus, we define the envelope delay characteristic as we did in Problem 2.66: 

r CJ) = -1  d8cCJ)
. 2TI df 

c10.s.2: 

When 8c CJ) is linear in f, the envelope delay is constant for all frequencies. In this case 
all frequencies in the transmitted signal pass through the channel with the same fixed tim( 
delay. In such a case, there is no phase distortion. However, when 8c CJ) is nonlinear, th( 
envelope delay r CJ) varies with frequency and the various frequency components in tht 
input signal undergo different delays in passing through the channel. In such a case, w< 
say thatthe transmitted signal has suffered from delay distortion. 

Both amplitude and delay distortions cause intersymbol interference in the receive< 
signal. For example, let us assume that we have designed a pulse with a raised cosine spec 
trum that has zero ISI at the sampling instants. An example of such a pulse is illustrated ii 
Figure 10.19(a). When the pulse is passed through a channel filter with a constant ampli 
tu de IC CJ) I = 1 for I f I < W and a quadratic phase characteristic (linear envelope delay: 
the received pulse at the output of the channel is as shown in Figure 10.19(b). Note that th 
periodic zero crossings have been shifted by the delay distortion, so that the resulting puls 
suffers from ISL Consequently, a sequence of successive pulses would be smeared into on 
another, and the peaks of the pulses would no longer be distinguishable due to the ISi. 

In the next section, we consider two design problems. First, we consider the desig 
of transmitting and receiving filters in the presence of channel distortion when the chanrn 
characteristics are known. Second, we consider the design of special filters, called chanrn 
equalizers, that automatically and adaptively correct for the channel distortion when tb 
channel characteristics, i.e., I CCJ) I and 8c (f), are unknown. 

10.5.1 Design of Transmitting and Receiving Filters for a Known Channel 

In this section, we assume that the channel frequency-response characteristic CCJ) 
known; thus, we consider the problem of designing a transmitting filter and a receivir 
filter that maximize the SNR at the output of the receiving filter and result in zero IS 
Figure 10.20 illustrates the overall system under consideration. 
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Figure 10.20 System configuration for the design of Gr(f) and GR(f). 

For the signal component, we must satisfy the condition 

Figure 10.19 Effect of 
channel distortion in (a) channel 
input and (b) channel output. 

Receiving To detector 
filter G
R
(f) 

I / I ::::: W, (10.5.3) 
where Xrc (/) is the desired raised cosine spectrum that yields zero ISi at the sampling 
instants and to is a time delay, which is necessary to ensure the physical realizability of the 
transmitter and receiver filters. 
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The noise at the output of the receiving filter may be expressed as 

w(t) = 1_: n(t - r)gR (r) dr, 

Chapter 10 

(10.5.4) 

where n(t) is the input to the filter. The noise n(t) is assumed to be zero-mean Gaussian. 
Hence, w(t) is zero-mean Gaussian, with a power spectral density 

where Sn Cf) is the spectral density of the noise process n(t). 

(10.5.5) 

For simplicity, we consider binary PAM transmission. Then, the sampled output of 
the matched filter is 

(10.5.6) 
where xo is normalized to unity, am = ±d, and Wm represents the noise term that is zero­
mean Gaussian with variance 

Consequently, the probability of error is 

P2 = _1 roo e_Y2/2 dy = Q ( fd2;) . .J2TI }d/<rw Y � 

(10.5.7) 

(10.5.8) 

Now, suppose that we select the filter at the transmitter to have the frequency response 

G (f) = ,.jJ[;;;(J) e-j2nfto T C(f) ' (10.5.9: 

where to is a suitable delay to ensure causality. Then, the cascade of the transmit filter anc 
the channel results in the frequency response 

(10.5 . W: 

In the presence of additive white Gaussian noise, the filter at the receiver is designed to bt 
matched to the received signal pulse. Hence, its frequency response is 

(10.5 . 1 1  

where t, is an appropriate delay. 
Let us compute the SNR d2 /a� for these filter characteristics. The noise variance i� 

2 No loo 2 No lw No aw = l -oo IGR(f) I df = l 
-W 

XrcCf) = 2· 
The average power transmitted is 

E (a2 ) loo d2 1W X (f) 
p = __ 

m
_ 2 (t) dt = - re dj· av T -oo 

gT T -W IC(f) l2 ' 

(10.5 . 12 

(10.5.13 
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hence, 

d2 = p T [f W XrcCf) df]
-I 

av 
-W I C(/) 12 

Therefore, the SNR d2 /er;, is given as 

We note that the term 

2 W -I !!__ = 2PavT [1 XrcCf) df] er� No -w IC (f) l2 
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(10.5. 14) 

(10.5.15) 

(10.5 . 16) 

with I C (f) I ::.:; 1 for If I ::.:; W, represents the loss in performance in dB of the communica­
tion system due to channel distortion. When the channel is ideal, I C (f) I = 1 for I f  I ::.:; W; 
hence, there is no performance loss. We also note that this loss is entirely due to amplitude 
distortion in the channel because the phase distortion has been totally compensated by the 
transmit filter. 

Example 10.5.1 

Determine the magnitude of the transmitting and receiving filter characteristics for a binary 
communication system that transmits data at a rate of 4800 bits/sec over a channel with fre-
quency response 

ICCJ) I = J 
1 

, 1 + (�)2 
li l :::: W, 

where W = 4800 Hz. The additive noise is zero-mean white Gaussian with a spectral density 
No/2. 

Solution Since W = l /T = 4800, we use a signal pulse with a raised cosine spectrum and 
a =  1 .  Thus, 

Then, 

and 

T X,cCf) = 2 [ l  + cos(nT li l)J 

2 n lil = T eas 9600 . 

Ii i ::::: 4800 Hz 

Ii i ::::: 4800 Hz 

for Ii i > 4800 Hz. 

• 
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10.5.2 Channel Equalization 

In the preceding section, we described the design of transmitting and receiving filters for 
digital PAM transmission when the frequency-response characteristics of the channel are 
known. Our objective was to design these filters for zero ISI at the sampling instants. This 
design methodology is appropriate when the channel is precisely known and its character­
istics do not change with time. 

In practice, we often encounter channels whose frequency-response characteristics 
are either unknown or change with time. For example, in data transmission over the dial­
up telephone network, the communication channel will be different every time we dial a 
number because the channel route will be different. Once a connection is made, however, 
the channel will be time invariant for a relatively long period of time. This is an example of 
a channel whose characteristics are unknown a priori. Examples of time-varying channels 
are radio channels, such as ionospheric propagation channels. These channels are charac­
terized by time-varying frequency response characteristics. When the channel characteris­
tics are unknown or time varying, the optimization of the transmitting and receiving filters, 
as described in Section 10.5 . 1 ,  is not possible. 

Under these circumstances, we may design the transmitting filter to have a square­
root raised cosine frequency response, i.e., 

Gr(f) = { ,JXrcCf)e-j2nfto , \f \ :::; W 
0, \ ! \ > w , 

and the receiving filter, with frequency response GR(f), to be matched to Gr(f) 
Therefore, 

\Gr(f) \ \GR Cf) \ = XrcCf) .  (10.5. 17 

Then, due to channel distortion, the output of the receiving filter is 

00 

y(t) = L anx(t - nT) + w(t), ( 10.5.18 
n=-oo 

where x (t) = gr(t) *c(t) *gR (t) .  The filter output may be sampled periodically to produc 
the sequence 

00 

Ym = L anXm-n + Wm 
n=-oo 

+oo 
= xoam + L anXm-n + Wm,  

n=-oo 
n#m 

( 10.5.1� 

where Xn = x(nT), n = 0, ±1, ±2, . . . .  The middle term on the right-hand side ' 
Equation ( 10.5. 19) represents the ISI. 
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T 

Figure 10.21 Equivalent discrete-time channel filter. 

T 

L, 
Output = L xk am - k  

k �  -Li 

583 

T 

In any practical system, it is reasonable to assume that the ISi affects a finite number 
of symbols. Hence, we may assume that Xn = 0 for n < -L1 and n > L2, where L1 and 
L2 are finite, positive integers. Consequently, the ISi observed at the output of the receiv­
ing filter may be viewed as being generated by passing the data sequence {am} through an 
FIR filter with coefficients {xn , -L1 :S n :S L2}, as shown in Figure 10.21 .  This filter is 
called the equivalent discrete-time channel filter. Since its input is the discrete information 
sequence (binary or M -ary ), the output of the discrete-time channel filter may be character­
ized as the output of a finite-state machine with L = L 1 + L2 states, corrupted by additive 
Gaussian noise. Hence, the noise-free output of the filter is described by a trellis having 
ML states. 

Maximum-Likelihood Sequence Detection. The optimum detector for the 
information sequence {am}, which is based on the observation of the received sequence 
{ym} and given by Equation (10.5 .19), is an ML sequence detector. The detector is akin to 
the ML sequence detector described in the context of detecting partial response signals that 
have controlled ISL The Viterbi algorithm described in Section 1 3.3.2 provides a method 
for searching through the trellis for the ML signal path. To accomplish this search, the 
equivalent channel filter coefficients {xn} must be known or measured by some method. At 
each stage of the trellis search, there are ML surviving sequences with ML corresponding 
Euclidean distance path metrics. 

Due to the exponential increase in the computational complexity of the Viterbi algo­
rithm with the span (length L) of the ISi, this type of detection is practical only when M 
and L are small. For example, in mobile cellular telephone systems that employ digital 
transmission of speech signals, M is usually selected to be small, i.e., M = 2 or 4, and 
2 :S L :S 5. In this case, the ML sequence detector may be implemented with reason­
able complexity. However, when M and L are large, the ML sequence detector becomes 
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impractical. In such a case, other more practical but suboptimum methods are used to detec 
the information sequence {am }  in the presence of ISI. Nevertheless, the performance of th 
ML sequence detector for a channel with ISi serves as a benchmark for comparing its pei 
formance with that of suboptimum methods. Two suboptimum methods are described nexi 

Linear Equalizers. For channels whose frequency-response characteristics ar 
unknown, we may employ a linear filter with adjustable parameters, which are adjusted t 
compensate for the channel distortion. Such a filter is called an equalizer. 

First, we consider the design characteristics for a linear equalizer from a frequenc) 
domain viewpoint. Figure 10.22 shows a block diagram of a system that employs a line� 
filter as a channel equalizer. 

The demodulator consists of a receiving filter with the frequency response GR (f) i 
cascade with a channel equalizing filter that has a frequency response GE (f) . Since GR (j 
is matched to GT (f) and they are designed so that their product satisfies Equation (10.5 . l� 
I GE (f) I must compensate for the channel distortion. Hence, the equalizer frequenc 
response must equal the inverse of the channel response, i.e., 

G (f) - -1
- - -1-e-jOc(fl IJ I < W E - c (J) - I c (J) I , - , (10.5.2( 

where IGE (J) I = 1/ IC(f) I and the equalizer phase characteristic eE (f) = -Bc (f 
In this case, the equalizer is said to be the inverse channel filter to the channel response. 

We note that the inverse channel filter completely eliminates ISi caused by the chru 
nel. Since it forces the ISi to be zero at the sampling times t = nT, the equalizer is calle 
a zero-forcing equalizer. Hence, the input to the detector is of the form 

Ym = am + wm , 

where Wm is the noise component, which is zero-mean Gaussian with a variance 

Input 
data Transmitting 

filter G
r
(f) 

a� = 1_: Sn Cf) IGR(f) l2 1GE (f) l2 df 

= 1W Sn Cf) IXrcCf) I df -W I C(f) l2 
, 

Channel C(f) 

Noise 
n (t) 

Receiving 
filter G
R
(f) 

Figure 10.22 Block diagram of a system with equalizer. 

(10.5.2 

Equalizer To detecto G
E
(f) 
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in which Sn (f) is the power spectral density of the noise. When the noise is white, Sn (f) = 
No/2 and the variance becomes 

a2 = No lw IXrcCf) I  df. w 2 -W IC (f) l2 (10.5.22) 

Example 10.5.2 

The channel given in Example 10.5.1 is equalized by a zero-forcing equalizer. Assuming that 
the transmitting and receiving filters satisfy Equation (10.5.17), determine the value of the 
noise variance at the sampling instants and the probability of error. 

Solution When the noise is white, the variance of the noise at the output of the zero-forcing 
equalizer (input to the detector) is given by Equation (10.5.22). Hence, 

c
r2 = No lw IXrc Cf) I df w 2 -W IC(f) l2 

= TNo lw [l + (JW)2] cos2 nlfl df 2 -w 2W 

= No (1 + x2) cos2 - dx 11 JtX 
0 2 

= (� - �) No. 3 n2 
The average transmitted power is 

(M2 - l)d2 1w 2 Pav = IGrCJ) I df 3T -W 

(M2 - l)d2 1w = 3T -W 
IXrc CJ) dj 

(M2 - l)d2 
3T 

The general expression for the probability of error is given as 

2(M - 1) ( 3P.vT ) PM = 
M 

Q 
(M2 - 1)(2/3 - 1/n2)No . 

If the channel were ideal, the argument of the Q-function would be <::���No . Hence, the loss 

in performance due to the nonideal channel is given by the factor 2 (2/3 - ;!z) = 1 . 133 or 
0.54 dB. • 

Let us now consider the design of a linear equalizer from a time-domain viewpoint. 
We noted previously that in real channels, the ISi is limited to a finite number of samples, L 
samples. As a consequence, in practice for example, the channel equalizer is approximated 
by a finite-duration impulse response (FIR) filter, or transversal filter, with adjustable tap 
coefficients {en} as illustrated in Figure 10.23. The time delay r between adjacent taps may 
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be selected as large as T, the symbol interval, in which case the FIR equalizer is called a 
symbol-spaced equalizer. In this case, the input to the equalizer is the sampled sequence 
given by Equation (10.5 .19). However, we note that when l /T  < 2W, frequencies in the 
received signal that are above the folding frequency 1 / T are aliased into frequencies below 
1 / T. In this case, the equalizer compensates for the aliased channel-distorted signal. 

On the other hand, when the time delay r between adjacent taps is selected such that 
1/r 2: 2W > 1 /T, no aliasing occurs; hence, the inverse channel equalizer compensates 
for the true channel distortion. Since r < T, the channel equalizer is said to have frac­
tionally spaced taps, and it is called a fractionally spaced equalizer. In practice, r is often 
selected as r = T /2. Notice that, in this case, the sampling rate at the output of the filter 
GR (f) is ¥ · 

The impulse response of the FIR equalizer is 
N 

gE (t) = L Cn8 (t - nr) , (10.5.23) 
n=-N 

and the corresponding frequency response is 
N 

GE (f) = L Cne-j2rr.fnT , (10.5.24: 
n=-N 

where {en} are the (2N + 1) equalizer coefficients and N is chosen sufficiently largt 
so that the equalizer spans the length of the ISI, i.e., 2N + 1 2: L.  Since X (f) = 

Gy (f) C (f) GR (f) and x (t) is the signal pulse corresponding to X (f), the equalized out 
put signal pulse is 
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N 
q (t) = L Cnx(t - nr). (10.5.25) 

n=-N 

The zero-forcing condition can now be applied to the samples of q (t) taken at times 
t = m T. These samples are 

N 
q(mT) = L CnX(mT - nr) , m = 0, ±1 ,  . . .  , ±N. (10.5 .26) 

n=-N 

Since there are 2N + 1 equalizer coefficients, we can control only 2N + 1 sampled values 
of q(t) . Specifically, we may force the conditions 

N '"" ( ) { 1 ,  m = 0 q (mT) = � CnX mT - nr = O, m = ±l , +2, . . .  , ±N , 
n=-N 

(10.5.27) 

which may be expressed in matrix form as X c = q, where X is a (2N + 1) x (2N + 1) .. 

matrix with elements {x(mT - nt)}, c is the (2N + 1) coefficient vector, and q is the 
(2N + 1) column vector with one nonzero element. Thus, we obtain a set of 2N + 1 linear 
equations for the coefficients of the zero-forcing equalizer. 

We should emphasize that the FIR zero-forcing equalizer does not completely elim­
inate ISi because it has a finite length. However, as N is increased, the residual ISI can be 
reduced; in a limit as N -+ oo, the ISi is completely eliminated. 

Example 10.5.3 

Consider a channel-distorted pulse x(t),  at the input to the equaliz1:r, given by the expression 

1 
x(t) = -

1
-
+
-
(
-
¥�)2 ' 

where 1/T is the symbol rate. The pulse is sampled at the rate 2/T and equalized by a zero­
forcing equalizer. Determine the coefficients of a five-tap zero-forcing equalizer. 

- ... 
Solution According to Equation (10.5.27), the zero-forcing equalizer must satisfy the 
equations 

q(mT) = t Cnx(mT - nT /2) = { b'. : : �l , ±2 · n=-2 
The matrix X with elements x(mT - nT /2) is given as 

I I I I I 5 10 T7 26 3'i 
I I I I 2 5 10 T7 

X =  I I I I 
5 2 2 5 
I I I I 

T7 Tci 5 2 
I I I I I 

3'i 26 T7 Tci 5 
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The coefficient vector c and the vector q are given as 

Then, the linear equations Xe = q can be solved by inverting the matrix X. Thus, we 
obtain . [ -2.2 ] 

4.9 
Copt = x-lq = -3 . 

4.9 -2.2 
One drawback to the zero-forcing equalizer is that it ignores the presence of addi 

tive noise. As a consequence, its use may result in significant noise enhancement. This il 
easily seen by noting that in a frequency range where C (f) is small, the channel equalize1 
GE (f) = 1 / C (f) compensates by placing a large gain in that frequency range. Conse 
quently, the noise in that frequency range is greatly enhanced. An alternative is to relax th€ 
zero ISI condition and select the channel equalizer characteristic such that the combinec 
power in the residual ISI and the additive noise at the output of the equalizer is minimized 
A channel equalizer that is optimized based on the minimum mean-square-error (MMSE 
criterion accomplishes the desired goal. 

To elaborate, let us consider the noise-corrupted output of the FIR equalize1 
which is N 

z(t) = L cny(t - nr) , (10.5.28 
n=-N 

where y(t) is the input to the equalizer, which is given by Equation (10.5 . 18). The outpu 
is sampled at times t = m T. Thus, we obtain 

N 
z(mT) = L cny(mT - nr). (10.5.29 

n=-N 
The desired response sample at the output of the equalizer at t = m T is the trans 

mitted symbol am. The error is defined as the difference between am and z(mT). Then, th 
mean square error between the actual output sample z (mT) and the desired values am is 

MSE = E(z(mT) - am)2 � E (t
N 

c"y(mT - nr) - a.) ' 
N N N 

= L L CnCkRy [n - k] - 2 L ckRAy [k] + E (a�) , 
n=-N k=-N k=-N 

(10.5.3( 
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where the correlations are defined as 

Ry[n - k] = E (y(mT - nr)y(mT - kr)) 
and 

(10.5.3 1) 

and the expectation is taken with respect to the random information sequence {am} and the 
additive noise. 

The MMSE solution is obtained by differentiating Equation (10.5.30) with respect to 
the equalizer coefficients fen } .  Thus, we obtain the necessary conditions for the MMSE as 

N 
L CnRy[n - k] = RAy[k] , k = 0, ±1 ,  2, . . .  , ±N. (10.5.32) 
n=-N 

There are (2N + 1) linear equations for the equalizer coefficients. In contrast to the zero­
forcing solution previously described, these equations depend on the statistical properties 
(the autocorrelation) of the noise as well as the ISI through the autocorrelation Ry[n]. 

In practice, we would not normally know the autocorrelation Ry [n] and the cross 
correlation RAy [n]. However, these correlation sequences can be estimated by transmitting 

• , a test signal over the channel and using the time average estimates 

,',_{ 

and 

1 K 
Ry [n] = 

K 
L Y(kT - nr)y(kT) 
k=I 

1 K 
RAy [n] = 

K L Y(kT - nr)ak 
k=I 

(10.5.33) 

in place of the ensemble averages to solve for the equalizer coefficients given by Equation 
(10.5.32). 

Adaptive Equalizers. We have shown that the tap coefficients of a linear equal­
izer can be determined by solving a set of linear equations. In the zero-forcing optimiza­
tion criterion, the linear equations are given by Equation (10.5.27). On the other hand, ifthe 
optimization criterion is based on minimizing the MSE, the optimum equalizer coefficients 
are determined by solving the set of linear equations given by Equation (10.5.32). 

In both cases, we may express the set of linear equations in the general matrix form 

Bc = d, (10.5.34) 

where B is a (2N + 1) x (2N + 1) matrix, c is a column vector representing the 2N + 1 
equalizer coefficients, and d is a (2N + 1)-dimensional column vector. The solution of 
Equation (10.5.34) yields 
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00.5.35: 

In practical implementations of equalizers, the solution of Equation (10.5.34) for th( 
optimum coefficient vector is usually obtained by an iterative procedure that avoids th( 
explicit computation of the inverse of the matrix B. The simplest iterative procedure i: 
the method of steepest descent, in which one begins by choosing arbitrarily the coefficien 
vector c, e.g., c0. This initial choice of coefficients corresponds to a point on the criterioi 
function that is being optimized. For example, in the case of the MSE criterion, the initia 
guess co corresponds to a point on the quadratic MSE surface in the (2N + 1)-dimensiona 
space of coefficients. The gradient vector, defined as g 0, which is the derivative of the MSJ 
with respect to the 2N + 1 filter coefficients, is then computed at this point on the criterio1 
surface and each tap coefficient is changed in the direction opposite to its correspondin: 
gradient component. The change in the jth tap coefficient is proportional to the size of th 
jth gradient component. 

For example, the gradient vector, denoted as gk, for the MSE criterion, found h 
taking the derivatives of the MSE with respect to each of the 2N + 1 coefficients, is 

k = 0, 1, 2, . . . . (10.5.3E 

Then the coefficient vector ck is updated according to the relation 

(10.5.3'i 

where D.. is the step-size parameter for the iterative procedure. To ensure convergence c 
the iterative procedure, D.. is chosen to be a small positive number. In such a case, th 
gradient vector gk converges toward zero, i.e., gk -+ 0 as k -+ oo, and the coefficient vec 
tor ck -+ Capt. as illustrated in Figure 10.24 for two-dimensional optimization. In genera 
convergence of the equalizer tap coefficients to Capt cannot be attained in a finite numbt 
of iterations with the steepest descent method. However, the optimum solution Capt ca 
be approached as closely as desired in a few hundred iterations. In digital communici 
tion systems that employ channel equalizers, each iteration corresponds to a time interv: 
for sending one symbol; hence, a few hundred iterations to achieve convergence to c0 
corresponds to a fraction of a second. 

Adaptive channel equalization is required for channels whose characteristics chan� 
with time. In such a case, the ISi varies with time. The channel equalizer must track sue 
time variations in the channel response and adapt its coefficients to reduce the ISi. In tl 
context of the preceding discussion, the optimum coefficient vector Capt varies with tin 
due to time variations in the matrix B and, for the case of the MSE criterion, time variati01 
in the vector d. Under these conditions, the iterative method previously described can 1 
modified to use estimates of the gradient components. Thus, the algorithm for adjustir 
the equalizer tap coefficients may be expressed as 

(10.5.3 

where gk denotes an estimate of the gradient vector gk and ck denotes the estimate of t1 
tap coefficient vector. 
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Figure 10.24 Example of 
convergence characteristics of 
a gradient algorithm. 

In the case of the MSE criterion, the gradient vector gk given by Equation (10.5.36) 
may also be expressed as (see Problem 10.30) 

An estimate of the gradient vector at the kth iteration is computed as 

(10.5.39) 

where ek denotes the difference between the desired output from the equalizer at the kth 
time instant and the actual output z(kT), and Yk denotes the column vector of 2N + I 
received signal values contained in the equalizer at time instant k. The error signal is 
expressed as 

(10.5.40) 

where Zk = z(kT) is the equalizer output given by Equation (10.5.29) and ak is the desired 
symbol. Hence, by substituting Equation (10.5 .39) into Equation (10.5.38), we obtain the 
adaptive algorithm for optimizing the tap coefficients (based on the MSE criterion) as 

(10.5.41) 

Since an estimate of the gradient vector is used in Equation (10.5.41), the algorithm is 
called a stochastic gradient algorithm. It is also known as the least mean square (LMS) 
algorithm. 

A block diagram of an adaptive equalizer that adapts its tap coefficients according 
to Equation (10.5.41) is illustrated in Figure 10.25. Note that the difference between the 
desired output ak and the actual output Zk from the equalizer is used to form the error 
signal ek . This error is scaled by the step-size parameter !:!.., and the scaled error signal 
!:!..ek multiplies the received signal values {y(kT - nr)} at the 2N + I  taps. The products 
!:!..eky(kT - nr) at the (2N + 1) taps are then added to the previous values of the tap coef­
ficients to obtain the updated tap coefficients, according to Equation (10.5.41). This com­
putation is repeated for each received symbol. Thus, the equalizer coefficients are updated 
at the symbol rate. 
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Figure 10.25 Linear adaptive equalizer based on the MSE criterion. 
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Initially, the adaptive equalizer is trained by the transmission of a known pseudorai 
dom sequence {am} over the channel. At the demodulator, the equalizer employs the kno" 
sequence to adjust its coefficients. Upon initial adjustment, the adaptive equalizer switch( 
from a training mode to a decision-directed mode, in which case the decisions at the outp1 
of the detector are sufficiently reliable so that the error signal is formed by computing tl 
difference between the detector output and the equalizer output, i.e., 

( 10.5.4'. 

where ak is the output of the detector. In general, decision errors at the output of the detect1 
occur infrequently; consequently, such errors have little effect on the performance of ti 
tracking algorithm given by Equation (10.5.41). 

A rule of thumb for selecting the step-size parameter to ensure convergence and goc 
tracking capabilities in slowly varying channels is 

1 /}.. = -----5 (2N + l )PR ' (10.5.4 

where PR denotes the received signal-plus-noise power, which can be estimated from d 
received signal. 

The convergence characteristics of the stochastic gradient algorithm in Equati1 
(10.5.41) is illustrated in Figure 10.26. These graphs were obtained from a computer siI 
ulation of an 1 1-tap adaptive equalizer operating on a channel with a rather modest amou 
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Figure 10.26 Initial convergence 
characteristics of the LMS algorithm 
with different step sizes. 

of ISL The input signal-plus-noise power PR was normalized to unity. The rule of thumb 
given in Equation (10.5.43) for selecting the step size gives !:!.. = 0.018. The effect of mak­
ing !:!.. too large is illustrated by the large jumps in MSE, as shown for !:!.. = 0. 1 15.  As 
!:!.. is decreased, the convergence is slowed somewhat, but a lower MSE is achieved; this 
indicates that the estimated coefficients are closer to Capt· 

Although we have described the operation of an adaptive equalizer that is optimized 
on the basis of the MSE criterion, the operation of an adaptive equalizer based on the zero­
forcing method is very similar. The major difference lies in the method for estimating the 
gradient vectors g k at each iteration. A block diagram of an adaptive zero-forcing equalizer 
is shown in Figure 10.27. 

Decision-Feedback Equalizer. The linear filter equalizers previously described 
are very effective on channels, such as wireline telephone channels, where the ISI is not 
severe. The severity of the ISI is directly related to the spectral characteristics, and is not 
necessarily related to the time span of the ISL For example, consider the ISI resulting from 
two channels illustrated in Figure 10.28. The time span for the ISI in channel A is five 
symbol intervals on each side of the desired signal component, which has a value of 0.72. 
On the other hand, the time span for the ISI in channel B is one symbol interval on each 
side of the desired signal component, which has a value of 0.815.  The energy of the total 
response is normalized to unity for both channels. 

In spite of the shorter ISI span, channel B results in more severe ISL This is evi­
denced in the frequency-response characteristics of these channels, which are shown in 
Figure 10.29. We observe that channel B has a spectral null (the frequency response 
C(f) = 0 for some frequencies in the band /f l  ::::; W) at f = 1/2T, whereas this does 
not occur in the case of channel A. Consequently, a linear equalizer will introduce a large 
gain in its frequency response to compensate for the channel null. Thus, the noise in chan­
nel B will be enhanced much more than in channel A. This implies that the performance 
of the linear equalizer for channel B will be significantly worse than that for channel A. 
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Figure 10.27 An adaptive zero-forcing equalizer. 
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' Figure 10.29 Amplitude spectra for (a) channel A shown in Figure 10.28(a) and (b) channel B shown in 
Figure 10.28(b ). 
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This fact is borne out by the computer simulation results for the performance of the linear 
equalizer for the two channels, as shown in Figure 10.30. Hence, the basic limitation of a 
linear equalizer is that it performs poorly on channels having spectral nulls. Such channels 
are often encountered in radio communications, such as ionospheric transmission at fre­
quencies below 30 MHz, and mobile radio channels, such as those used for cellular radio 
communications. 
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Figure 10.30 Error-rate performance of linear MSE equalizer. 
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A decision-feedback equalizer (DFE) is a nonlinear equalizer that employs previou 
decisions to eliminate the ISi caused by previously detected symbols on the current symbc 
to be detected. A simple block diagram for a DFE is shown in Figure 10.31 .  The DFJ 
consists of two filters. The first filter is called a feedforward filter, and it is generally 
fractionally spaced FIR filter with adjustable tap coefficients. This filter is identical in fon 
to the linear equalizer previously described. Its input is the received filtered signal y(t 
The second filter is a feedback filter. It is implemented as an FIR filter with symbol-space 
taps having adjustable coefficients. Its input is the set of previously detected symbols. Th 
output of the feedback filter is subtracted from the output of the feedforward filter to fon 
the input to the detector. Thus, we have 

N1 N2 

Zm = I:>ny(mT - nr) - 2.:.:>nllm-n , (10.5 .4' 
n=l 
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where {en} and {bn} are the adjustable coefficients of the feedforward and feedback filters, 
respectively, am-n •  n = 1 ,  2, . . .  , N2 are the previously detected symbols, N1 + 1 is the 
length of the feedforward filter, and N2 is the length of the feedback filter. Based on the 
input Zm, the detector determines which of the possible transmitted symbols is closest in 
distance to the input signal Zm. Thus, it makes its decision and outputs Gm. What makes the 
DFE nonlinear is the nonlinear characteristic of the detector, which provides the input to 
the feedback filter. 

The tap coefficients of the feedforward and feedback filters are selected to optimize 
some desired performance measure. For mathematical simplicity, the MSE criterion is 
usually applied and a stochastic gradient algorithm is commonly used to implement an 
adaptive DFE. Figure 10.32 illustrates the block diagram of an adaptive DFE whose tap 
coefficients are adjusted by means of the LMS stochastic gradient algorithm. Figure 10.33 
illustrates the probability of error performance of the DFE, obtained by computer simula­
tion, for binary PAM transmission over channel B. The gain in performance relative to that 
of a linear equalizer is clearly evident. 

We should mention that decision errors from the detector that are fed to the feedback 
filter have a small effect on the performance of the DFE. In general, there is a small loss in 
performance of 1 to 2  dB at error rates below 10-2; this is due to decision errors, but these 
decision errors in the feedback filters are not catastrophic. The effect of decision errors in 
the feedback filter for channel B is also shown in Figure 10.33. 

Feedforward filter 

Feedback filter 

Figure 10.32 Adaptive DFE. 
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Figure 10.33 Performance of DFE with and without error propagation. 

Although the DFE outperforms a linear equalizer, it is not the optimum equalize1 
from the viewpoint of minimizing the probability of error. As indicated previously, the 
optimum detector in a digital communication system in the presence of ISi is an Ml 
symbol sequence detector. Such a detector is particularly appropriate for channels witl: 
severe ISi when the ISi spans only a few symbols. For example, Figure 10.34 illustrate! 
the error probability performance of the Viterbi algorithm for a binary PAM signal trans· 
mitted through channel B .  For purposes of comparison, we also illustrate the probabilit) 
of error for a decision-feedback equalizer. Both results were obtained by computer simula· 
tion. We observe that the performance of the ML sequence detector is about 4.5 dB bette1 
than that of the DFE at an error probability of 10-4• Hence, this is one example when 
the ML sequence detector provides a significant performance gain on a channel that has 1 

relatively short ISi span. 
In conclusion, we mention that adaptive equalizers are widely used in high-speec 

digital communication systems for radio channels and telephone channels. For example 
high-speed telephone line modems (with a bit rate above 2400 bps) generally include ru 

adaptive equalizer that is implemented as an FIR filter with coefficients that are adjustec 
based on the MMSE criterion. Depending on the data speed, the equalizer typically span: 
between 20 and 70 symbols. The LMS algorithm given by Equation (10.5.41) is usuall� 
employed for the adjustment of the equalizer coefficients adaptively. 
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Figure 10.34 Performance of Viterbi detector and DFE for channel B. 

10.6 SUMMARY AND FURTHER READING 

In this chapter, we focused on the transmission of digital signals in bandlimited A WGN 
channels. We began with the characterization ofbandlimited channels as linear bandlimited 
filters and demonstrated that such channel characteristics generally result in signal distor­
tion. In digital signal transmission, channel distortion results in intersymbol interference. 

In order to limit the effects of channel distortion on the transmitted signals, we con­
sidered the design of bandlimited signals for transmission in bandlimited channels. First, 
we demonstrated that the power spectrum of a digitally modulated signal, such as PAM, 
PSK, and QAM, is a function of the spectrum Gr (f) of the basic signal pulse gr(t) that 
is used at the transmitter to limit the bandwidth of the transmitted signal. The power spec­
trum of the transmitted signal is also a function of the spectral characteristics of the data 
sequence {an } . We noted that when the data sequence has a zero mean, i.e., E(an) = 0, 
the occurrence of the impulses (discrete frequency components at multiples of the symbol 
rate) in the power spectrum of the transmitted is completely avoided. This condition is eas­
ily satisfied in the signal point constellations for PAM, PSK, and QAM that were described 
in Chapter 8. 

Then, we turned our attention to the design ofbandlimited pulses gr(t) for transmis­
sion in a bandlimited channel. 1\vo distrinct methods were described. In the first method, 
we imposed the constraint that, in transmitting the signal through an ideal bandlimited 
channel, the received signal be free of any ISi. Under the constraint of zero ISi, Nyquist 
(1928) proved that the maximum data rate that can be transmitted in an ideal channel of 
bandwidth W is 2W symbols per second, i.e., 1 /T = 2W where T is the signal interval. 
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The symbol rate of2W symbols per second is called the Nyquist rate. The only signal pulse 
gT (t) that can be used to achieve the Nyquist rate under the constraint of zero ISi is a sine 
pulse whose spectrum is limited to W Hz and is constant within this bandwidth. However, 
the sine pulse is not physically realizable. We demonstrated that it is possible to design 
physically realizable signal pulses that satisfy the zero ISi constraint, provided that the 
symbol transmission rate 1 / T satisfies the condition that 1 / T < 2 W. Signal pulses having 
a raised cosine spectrum were shown to possess this desirable property. Thus, the condition 
of zero ISi is satisfied at the cost of reducing the symbol rate below the Nyquist rate. 

By relaxing the constraint of zero ISi at the sampling instants, we demonstrated that 
a variety of bandlimited signal pulses can be designed that are bandlimited to W Hz and 
achieve the Nyquist rate of 2 W symbols per second. Two examples that were described in 
detail are the duobinary and modified duobinary signal pulses, in which the ISi exists over 
two symbols. These signal types belong to the general class of so-called partial response 
signals. We observed that the primary undesirable characteristic in using partial response 
signal pulses for transmission in a bandlimited channel is the complexity in the implemen­
tation of the optimum maximum-likelihood (ML) detector, which is a sequence detector 
as opposed to a simple symbol-by-symbol detector. The ML sequence detector is usually 
implemented by use of the Viterbi algorithm, which is described in Chapter 13 .  However, 
we showed that by accepting a modest penalty in the performance of the detector, a symbol­
by-symbol detector can be easily implemented for the duobinary and modified duobinary 
signal pulses. 

Having designed bandlimited signal pulses for transmission in ideal bandlimited 
channels, the problem that is encountered in practice is that channel distortion and ISi 
results from transmission in nonideal channels. To compensate for such channel distortion, 
an additional filter or computational device is typically employed in the receiver of the 
communication system. Such a device is called an equalizer. If the channel is time invari­
ant, its characteristics can be measured and the equalizer can be designed as a fixed (time­
invariant) filter. However, if the channel impulse response varies slowly in time (compared 
to the symbol rate), the equalizer can be designed to adapt to the slow time variations 
of the channel characteristics. Two of the most commonly used equalizers are the lin­
ear transversal (tapped-delay-line) filter and the decision-feedback filter, which consists of 
two separate tapped-delay-line filters. The optimum equalizer is based on the use of the 
ML criterion and is implemented efficiently by the Viterbi algorithm (VA) 

The pioneering work on signal design for bandwidth-constrained channels was done 
by Nyquist (1928). The use of binary partial response signals was originally proposed in 
the paper by Lender (1963) and was later generalized by Kretzmer (1966). The problem 
of optimum transmitter and receiver filter design was investigated by Gerst and Diamond 
( 1961), Tufts (1965), Smith (1965), and Berger and Tufts (1967). 

Adaptive equalization for digital communication was introduced by Lucky (1965, 
1966). Widrow ( 1966) devised the LMS algorithm for adaptively adjusting the equalizer 
coefficients. 

The Viterbi algorithm was devised by Viterbi (1967) for the purpose of decod­
ing convolutional codes, which are described in Chapter 13. Its use as the ML sequence 
detector for partial response signals and, more generally, for symbols corrupted by inter­
symbol interference, was proposed and analyzed by Forney (1972) and Omura ( 1971). 
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A comprehensive treatment of adaptive equalization algorithms is given in the book by 
Proakis and Salehi (2008). 

, APPENDIX 10A: POWER SPECTRUM OF MODULATED SIGNALS 

In this appendix, we derive the power spectrum of linearly modulated digital signals. We 
begin by deriving the power spectrum of the equivalent baseband signal, then, obtaining 
the power spectrum of the bandpass signal. 

1 OA.1 The Power Spectrum of the Baseband Signal 

As shown in Section 10. 1 .2, the equivalent baseband transmitted signal for a digital PAM, 
PSK, or QAM signal is represented in the general form as 

00 

v(t) = L angT(t - nT), ( lOA. l )  
n=-oa 

where {an} is the sequence of values selected from either a PAM, QAM, or PSK signal 
constellation corresponding to the information symbols from the source, and gT (t) is the 
impulse response of the transmitting filter. Since the information sequence {an} is random, 
v(t) is a sample function of a random process V (t). In this section, we evaluate the power 
density spectrum of V(t). Our approach is to derive the autocorrelation function of V(t) 
and then to determine its Fourier transform. 

First, the mean value of V(t) is 
00 

E(V(t)) = L E(an)gT (t - nT) 
n=-oa 

00 

= ma L gT(t - nT) , ( lOA.2) 
n=-oo 

where ma is the mean value of the random sequence {an} .  Note that although ma is a 
constant, the term Ln gT(t - nT) is a periodic function with period T. Hence, the mean 
value of V(t) is periodic with period T. 

The autocorrelation function of V (t) is 

Rv(t + r, t) = E(V*(t)V(t + r)) 
00 00 

= L L E(a:am)gT (t - nT)gT (t + r - mT). 
n=-OOm=-OO 

( lOA.3) 

In general, we assume that the information sequence {an} is wide-sense stationary with 
autocorrelation sequence 

( lOA.4) 
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Hence, Equation (lOA.3) may be expressed as 
00 00 

Rv(t + r, t) = L L Ra [m - n]gr(t - nT)gr(t + r - mT) 
n=-oo m=-oo 

00 00 
= L Ra[m] L gr (t - nT)gr (t + T - nT - mT). 

m=-00 n=-oo 

We observe that the second summation in Equation ( lOA.5), namely, 
00 
L 8r(t - nT)gr(t + r - nT - mT) 

n=-00 

Chapter 1C 

(lOA.5 

(lOA.6 

is periodic with period T. Consequently, the autocorrelation function Rv(t + r, t) is peri 
odic in the variable t ;  i.e., 

Rv(t + T + r, t + T) = Rv(t + r, t) . (lOA.7 

Therefore, the random process V(t) has a periodic mean and a periodic autocorrelatior 
Such a random process is cyclostationary (see Definition 5.2.4). 

The power spectral density of a cyclostationary process can be determined by fin 
averaging the autocorrelation function Rv (t+r, t) over a single period T and then compu1 
ing the Fourier transform of the average autocorrelation function (see the Wiener-Khinchi 
Theorem in Section 5 .2.5). Thus, we have 

1 1T/2 
Rv(r) = - Rv (t + r, t) dt T -T/2 

oo oo l T/2 
= L Ra [m] L -

1 gr(t - nT)gr (t + T - nT - mT) dt 
m=-oo n=-oo T -T 12 

oo oo l 1-nT+T/2 
= L Ra [m] L T _ _ 8r (t)gr(t + T - mT) dt 

m=-bo n=-oo nT T/2 

1 00 100 
= - L Ra [m] gr (t)gr(t + T - mT) dt. T m=-oo -oo 

(lOA.! 

We interpret the integral in Equation ( lOA.8) as the time-autocorrelation function of gr(i 
and define it as [see Equation (2.5. 1)] 

Rg (r) = 1_: gr (t)gr(t + r) dt. 

With this definition, the average autocorrelation function of V(t) becomes 

1 00 
Rv (r) = T L Ra [m]Rg(T - mT). 

m=-oo 

(lOA.� 

( lOA.11 
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We observe that the expression for Rv(r) in Equation ( lOA.10) has the form of a 
convolution sum. Hence the Fourier transform of Equation (lOA.10) becomes 

Sv(f) = 1_: Rv (r)e-j2rrf< dr 

1 00 100 . = -
L Ra [m] Rg(T - mT)e-12rrf< dr T m=-oo -oo 

where Sa (f) is the power spectrum of the information sequence {an} ,  defined as 

00 
Sa (f) = L Ra[m]e-j2rrfmT 

m=-oo 

( lOA. 1 1) 

( lOA. 12) 

and GT (f) is the spectrum of the transmitting filter. I GT (f) 1 2 is the Fourier transform of 
Rg (r). 

The result in Equation ( 1 OA. 1 1 )  illustrates the dependence of the power spectral den­
sity Sv(f) of the transmitted signal on (a) the spectral characteristics GT(f) of the trans­
mitting filter and (b) the spectral characteristics Sa (f) of the information sequence {an} .  
Both GT (f) and Sa (f) can be designed to control the shape and form of the power spectral 
density of the transmitted signal. 

10A.2 The Power Spectrum of the Carrier Modulated Signals 

The relationship between the power spectrum of the baseband signal to the power spectrum 
of the bandpass signal is relatively simple. Let us consider the bandpass PAM signal as an 
example. The autocorrelation function of the bandpass signal 

is 
u(t) = v(t) cos 2nfct 

Ru(t + r, t) = E(U(t)U(t + r)) 
= E(V(t) V(t + r)) cos 2rtfct cos 2rtfc(t + r) 
= Rv(t + r, t) cos 2rtfct cos 2nfc(t + r) . 

By expressing the product of the two cosine functions in terms of the cosine of the differ­
ence plus the sum of the two angles, we obtain 

1 Ru(t + r, t) = 2Rv(t + r, t) [cos 2rtfcr + cos 2nfc(2t + r)] . 

Then, the average of Ru(t + r, t) over a single period T yields 
- 1 -Ru(r) = 2Rv(r) cos 2rtfcr, ( lOA. 13) 
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where the second term involving the double-frequency term averages to zero for each 
period of cos 4n fct. 

The Fourier transform of Ru (t) yields the power spectrum of the bandpass signal a� 
1 

Su(t) = 4 [Sv (f - fc) + Sv (f + fc)] . (lOA.14: 

Although the derivation that resulted in Equation (lOA.14) was carried out for a bandpasi 
PAM signal, the same expression applies to QAM and PSK. The three bandpass signali 
differ only in the autocorrelation Ra[m] of the sequence {an} and, hence, in the powei 
spectrum Sa (/) of {an } .  

PROBLEMS 

10.1 In Example 10. 1 . 1 ,  the ideal channel of bandwidth W limits the transmitted signa 
energy that passes through the channel. The received signal energy as a function 0 
the channel bandwidth is 

where a =  fT. 

T !WT sin2 na 
<jgh (W) = -- da, (2n)2 -WT a2( 1  - a2)2 

1 E 1 ( · 11 ) ct? (W) .., W _ I 1 1 .5 2 2.5 3 d l 'jgh(W) . va uate numenca y ©h ior - 2T , T ' T ' T ' T ' T ' an p ot -T- a 
a function of W. 

2. Determine the value of 'jgh (W) in the limit as W -+ oo. For the computatio1 
you may use the time-domain relation 

l+oo lim 'jgh (W) = g} (t) dt. W->oo _00 

10.2 In a binary PAM system, the input to the detector is 

where am = ±1 is the desired signal, nm is a zero-mean Gaussian random variabl 
with variance <J; , and im represents the ISI due to channel distortion. The ISI ten 
is a random variable which takes the values -1 ,  0, 1 with probabilities j , !, ! 
respectively. Determine the average probability of error as a function of <J; . 

10.3 In a binary PAM system, the clock that specifies the sampling of the correlate 
output is offset from the optimum sampling time by 10%. 

1. If the signal pulse used is rectangular, determine the loss in SNR due to ti 
mistiming. 

2. Determine the amount of intersymbol interference introduced by the mistimin 
and determine its effect on performance. 
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10.4 The frequency-response characteristic of a lowpass channel can be approximated by 

C f) _ { 1 + a  cos 2nfto, la l < 1 ,  I l l  S W ( - 0, otherwise ' 

where W is the channel bandwidth. An input signal s(t) whose spectrum is ban­
dlimited to W /Hz, is passed through the channel. 

1. Show that the channel output is 
a y(t) = s (t) + 2 [s (t - to) + s (t + to)] . 

Thus, the channel produces a pair of echoes. 
2. Suppose the received signal y(t) is passed through a filter matched to s (t) . Deter­

mine the output of the matched filter at t = kT, k = 0, ±1 ,  ±2, . . .  , where T is 
the symbol duration. 

3. What is the ISi pattern resulting from the channel if to = T? 

10.5 Show that a pulse having the raised cosine spectrum given by Equation (10.3.20) 
satisfies the Nyquist criterion given by Equation (10.3.7) for any value of the roll-off 
factor a. 

10.6 Show that for any value of a, the raised cosine spectrum given by Equation (10.3.20) 
satisfies 

L:
oo 

XrcCf) df = 1 .  
[Hint: Use the fact that XrcCf) satisfies the Nyquist criterion given by Equation 
(10.3.7).] 

10. 7 Equation (10.3. 7) gfves the necessary and sufficient condition for the spectrum X (f) 
of the pulse x (t) that yields zero ISL Prove that, for any pulse that is bandlimited to 
If I < l /T, the zero ISi condition is satisfied if Re[X (f)] for f > 0 consists of a 
rectangular function plus an arbitrary odd function about f = l /2T, and lm[X (f)] 
is any arbitrary even function about f = l /2T. 

10.8 A channel has a passband characteristic in the frequency range I f  I S 1400 Hz. 

1. Select a symbol rate and a PAM signal constellation size to achieve a 9600 bps 
signal transmission. 

2. If a square-root raised cosine pulse is used for the transmitter pulse 8r (t) ,  select 
the roll-off factor. Assume that the channel has an ideal frequency-response char­
acteristic. 

10.9 Design an M-ary PAM system that transmits digital information over an ideal 
channel with bandwidth W = 2400 Hz. The bit rate is 14,400 bits/sec. Specify the 
number of transmitted points, the number of received signal points using a duobi­
nary signal pulse, and the required Cf!,b to achieve an error probability of 10-6 • The 
additive noise is zero-mean Gaussian with a power spectral density 10-4 W/Hz. 
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10.10 When the additive noise at the input to the demodulator i s  colored, the filter matched 
to the signal no longer maximizes the output SNR. In such a case, we may consider 
the use of a prefilter that "whitens" the colored noise. The prefilter is followed by a 
filter matched to the prefiltered signal. Toward this end, consider the configuration 
shown in Figure P-10.10. 

1. Determine the frequency-response characteristic of the prefilter that whitens the 
noise. 

2. Determine the frequency-response characteristic of the filter matched to s(t). 

3. Consider the prefilter and the matched filter as a single "generalized matched 
filter." What is the frequency-response characteristic of this filter? 

4. Determine the SNR at the input to the detector. 

r(t) = s(t) + n(t) Prewhitening 
f(t
) 

= s(t) + ii(t) 
filter 

Filter 
matched 
to s(t) n(t) is 

colored noise 

Figure P-10.10 

H
p
(f) 

10.11 Consider the transmission of data via PAM over a channel that has a bandwidth of 
1500 Hz. Show how the symbol rate varies as a function of the excess bandwidth. 
In particular, determine the symbol rate for excess bandwidths of 25%, 33%, 50%, 
67%, 75%, and 100%. 

10.12 The binary sequence 100101 10010 is the input to the precoder whose output is used 
to modulate a duobinary transmitting filter. Construct a table as in Table 10.2; show 
the precoded sequence, the transmitted amplitude levels, the received signal levels, 
and the decoded sequence. 

10.13 Repeat Problem 10.12 for a modified duobinary signal pulse. 

10.14 A precoder for a partial response signal fails to work if the desired partial response 
at n = 0 is zero modulo M. For example, consider the desired response for M = 2: { 2, n = 0 

( T) = 
1 ,  n = 1 

x n  -1 ,  n = 2  
0, otherwise 

Show why this response cannot be precoded. 

10.15 A baseband digital communication system employs the signals shown in Figure 
P-10.15(a) for the transmission of two equiprobable messages. It is assumed that 
the communication problem studied here is a "one shot" communication problem, 
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i.e., the messages are transmitted just once and no transmission takes place after­
ward. The channel has no attenuation and the noise is AWG with power spectral 
density �o . 

1. Find an appropriate orthonormal basis for the representation of the signals. 
2. In a block diagram, give the precise specifications of the optimal receiver using 

matched filters. Label the block diagram carefully. 
3. Find the error probability of the optimal receiver. 
4. Show that the optimal receiver can be implemented by using just one filter. [See 

the block diagram shown in Figure P-10. 15(b).] What are the characteristics of 
the matched filter and the sampler and decision device? 

5. Now assume the channel is not ideal, but has an impulse response of c(t) = 
o (t) + 4o(t - f ) .  Using the same matched filter as the previous part, design an 
optimal receiver. 

6. Assume that the channel impulse response is c(t) = o (t) + ao (t - f), where 
a is a random variable uniformly distributed on [O, 1] .  Using the same matched 
filter, design the optimal receiver. 

A---.... A � - - - - -r-----. 

0 T 0 T T 
2 2 

(a) 

AWGN 

h(t) 

Modulator Matched Sampler and 
filter decision 

(b) 

Figure P-10.15 

10.16 Sketch and label the trellis for a duo binary signal waveform used in conjunction with 
the precoding given by Equation (10.4.2). Repeat this for the modified duobinary 
signal waveform with the precoder given by Equation (10.4. 14). Comment on any 
similarities and differences. 



608 Digital Transmission through Bandlimited Channels Chapter 1 0 

10.17 A binary PAM signal is generated by exciting a raised-cosine roll-off filter with 
a 50% roll-off factor and then DSB-SC amplitude modulating it on a sinusoidal 
carrier, as illustrated in Figure P-10.17. The bit rate is 2400 bps. 

1. Determine the spectrum of the modulated binary PAM signal and sketch it. 
2. Draw the block diagram illustrating the optimum demodulator/detector for the 

received signal, which is equal to the transmitted signal plus additive white 
Gaussian noise. 

�n ll(t - nT) Filter with n raised cosine 
--------..i spectrum 

g(t) 

Carrier 
c(t) 

AWGN 
channel 

Figure P-10.17 

10.18 An ideal voice-band telephone line channel has a bandpass frequency-response char­
acteristic spanning the frequency range 600-3000 Hz. 

1. Design an M = 4 PSK (quadrature PSK or QPSK) system for transmitting data 
at a rate of2400 bits/sec and a carrier frequency fc = 1800. For spectral shaping, 
use a raised cosine frequency-response characteristic. Sketch a block diagram of 
the system and describe its functional operation. 

2. Repeat Part 1 if the bit rate is R = 4800 bits/sec. 
10.19 A voice-band telephone channel passes the frequencies in the band from 300-3300 

Hz. We want to design a modem that transmits at a symbol rate of2400 symbols/sec, 
and our objective is to achieve 9600 bits/sec. Select an appropriate QAM signal con­
stellation, carrier frequency, and the roll-off factor of a pulse with a raised cosine 
spectrum that utilizes the entire frequency band. Sketch the spectrum of the trans­
mitted signal pulse and indicate the important frequencies. 

10.20 Consider a digital collllllunication system that transmits information via QAM over 
a voice-band telephone channel at a rate 2400 symbols per second. The additive 
noise is assumed to be white and Gaussian. 

1. Determine the %bav /No required to achieve an error probability of 10-5 at 
4800 bps. 

2. Repeat Part 1 for a bit rate of 9600 bps. 
3. Repeat Part 1 for a bit rate of 19,200 bps. 
4. What conclusions do you reach from these results? 
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10.21 Determine the bit rate that can be transmitted through a 4 kHz voice-band tele­
phone (bandpass) channel if we use the following modulation methods: (a) binary 
PSK, (b) four-phase PSK, (c) eight-point QAM, (d) binary orthogonal FSK with 
noncoherent detection, (e) orthogonal four-FSK with noncoherent detection, and (f) 
orthogonal eight-FSK with noncoherent detection. For Parts (a) to (c), assume that 
the transmitter pulse shape has a raised cosine spectrum with a 50% roll-off. 

10.22 Consider the use of a (square-root) raised cosine signal pulse with a roll-off factor 
of unity for the transmission of binary PAM over an ideal bandlimited channel that 
passes the pulse without distortion. Thus, the transmitted signal is 

00 

v(t) = L akgr (t - kTb), 
k=-00 

where the signal interval Tb = T /2 and the symbol rate doubles for no ISL 

1. Determine the ISi values at the output of a matched filter demodulator. 
2. Sketch the trellis for the maximum likelihood sequence detector. Label the states. 

10.23 A binary antipodal signal is transmitted over a nonideal bandlimited channel, which 
introduces ISi over two adjacent symbols. For an isolated transmitted signal pulse 
s (t), the (noise-free) output of the demodulator is ,Jt;b at t = T and ,Jt;/,/4 at 
t = 2T at zero for t = kT, k > 2, where 'fl,b is the signal energy and T is the 
signaling interval. 

1. Determine the average probability of error assuming that the two signals are 
equally probable and the additive noise is white and Gaussian. 

2. By plotting the error probability obtained in Part 1 and the error probability 
for the case of no ISi, determine the relative difference in SNR of the error 
probability of 10-6• 

10.24 Determine the frequency-response characteristics for the RC circuit shown in Figure 
P-10.24. Also determine the expression for the envelope delay. 

R 
0 'V0. L 0 

Input Output I 0 0 Figure P·l0.24 

10.25 Consider the RC lowpass filter shown in Figure P-10.24 where r = RC = 10-6• 
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1.  Determine and sketch the envelope (group) delay of the filter as a function of 
frequency. 

2. Suppose that the input to the filter is a lowpass signal of bandwidth !:!..f == 1 
kHz. Determine the effect of the RC filter on this signal. 

10.26 A microwave radio channel has a frequency-response 

C(f) = 1 + 0.3 cos 2nfT. 

Determine the frequency-response characteristic for the optimum transmitting and 
receiving filters that yield zero ISi at a rate of 1 / T symbols/sec and have an excess 
bandwidth of 50%. Assume that the additive noise spectrum is fiat. 

10.27 An M = 4 PAM modulation is used for transmitting at a bit rate of 9600 bits/sec o; 
a channel having a frequency response 

1 C(f) = 
. f , 

1 + J i400 

where If I ::=: 2400, and C(f) = 0, otherwise. The additive noise is zero-mean, 
white Gaussian with power spectral density 

�0 W/Hz. Determine the (magnitude) 
frequency-response characteristic of the optimum transmitting and receiving filters. 

10.28 Binary PAM is used to transmit information over an unequalized linear filter chan­
nel. When a = 1 is transmitted, the noise-free output of the demodulator is 

0.9, m = 0 
{ 0.3, m = 1 

Xm = 
0.3, m = - 1  · 
0 , otherwise 

1. Design a three-tap zero forcing linear equalizer so that the output is { 1, m = 0 
qm = 

0, m = ±1 · 
2. Determine qm form = ±2, ±3 by convolving the impulse response of the equal­

izer with the channel response. 

10.29 The transmission of a signal pulse with a raised cosine spectrum through a channel 
results in the following (noise-free) sampled output from the demodulator: 

-0.5, k = -2 
0. 1 ,  k = - 1  

1 ,  k = O  
Xk = 

-0.2, k = 1 
0.05 , k = 2  

0, otherwise 
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1 .  Determine the tap coefficients of a three-tap linear equalizer based on the zero­
forcing criterion. 

2. For the coefficients determined in Part 1 ,  determine the output of the equalizer 
for the case of the isolated pulse. Thus, determine the residual ISI and its span 
in time. 

10.30 Show that the gradient vector in the minimization of the MSE may be expressed as 

where the error ek = ak - Zk and the estimate of gk, i.e., 

satisfies the condition that E(gk) = gk. 

10.31 A nonideal bandlimited channel introduces ISI over three successive symbols. The 
(noise-free) response of the matched filter demodulator sampled at the sampling ' 
time t = kT is { '71,b, k = 0 00 0.9'76b , k = ±1 J_00 s (t)s (t - kT)dt = 

O.l'76b , k = ±2 
0,  otherwise 

Determine the tap coefficients of a three-tap linear equalizer that equalizes the chan­
nel (received signal) response to an equivalent partial response (duobinary) signal { '71,b, k = 0, 1 Yk = 

0, otherwise · 

10.32 Determine the tap weight coefficients of a three-tap zero-forcing equalizer if the ISI 
spans three symbols and is characterized by the values x (0) = 1 ,  x ( -1)  = 0.3, and 
x (l) = 0.2. Also, determine the residual ISI at the output of the equalizer for the 
optimum tap coefficients. 

10.33 In line-of-sight microwave radio transmission, the signal arrives at the receiver via 
two propagation paths: the direct path and a delayed path that occurs due to signal 
reflection from the surrounding terrain. Suppose that the received signal has the 
form 

r(t) = s (t) + as(t - T) + n(t), 

where s (t) is the transmitted signal, a is the attenuation (a < 1 )  of the secondary 
path, and n(t) is AWGN. 

1. Determine the output of the demodulator at t = T and t = 2T that employs a 
filter matched to s (t) . 
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2.  Determine the probability of error for a symbol-by-symbol detector if the trans­
mitted signal is binary antipodal and the detector ignores the ISL 

3. What is the error-rate performance of a simple (one-tap) DFE that estimates a 
and removes the ISI? Sketch the detector structure that employs a DFE. 

10.34 Repeat Problem 10.32 and use the MMSE criterion for optimizing the tap coeffi­
cients. Assume that the noise power spectrum is 0.1 W/Hz. 

10.35 Show that the covariance matrix C for the noise at the output of the matched filter 
for the duobinary pulse is given by Equation (10.4.35). 

10.36 A wireline channel of length 1000 km is used to transmit data via binary PAM. 
Regenerative repeaters are spaced 50 km apart along the system. Each segment of 
the channel has an ideal (constant) frequency response over the frequency band 
0 ::: f ::: 1200 and an attenuation of 1 dB/km. The channel noise is AWGN. 

1. What is the highest bit rate that can be transmitted without ISI? 
2. Determine the required °&bf No to achieve a bit error of P2 = 10-7 for each 

repeater. 
3. Determine the transmitted power at each repeater to achieve the desired "&b/ No, 

where No = 4.1 x 10-21 W/Hz. 

10.37 (Carrierless QAM or PSK Modem) Consider the transmission of a QAM or M-ary 
PSK (M '.:'.:: 4) signal at a carrier frequency fc, where the carrier is comparable to 
the bandwidth of the baseband signal. The bandpass signal may be represented as 

s(t) = Re [ � ang(t - nT)ej2rrfct] . 

1. Show that s (t) can be expressed as 

s (t) = Re [ � a�Q(t - nT)] , 

where Q(t) is defined as 

Q(t) = q (t) + Jq (t) , 

q(t) = g(t) cos 2nfct, 

q (t) = g(t) sin 2rtfct 

and a� is a phase-rotated symbol, i .e. , a� = anej2rrfcnT . 

2. Using filters with responses q (t) and q (t), sketch the block diagram of the mod­
ulator and demodulator implementation that does not require the mixer to trans­
late the signal to bandpass at the modulator and to baseband at the demodulator. 
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10.38 [Carrierless amplitude or phase (CAP) modulation] In some practical applications in 
wireline data transmission, the bandwidth of the signal to be transmitted is compa­
rable to the carrier frequency. In such systems, it is possible to eliminate the step of 
mixing the baseband signal with the carrier component. Instead, the bandpass signal 
can be directly synthesized by embedding the carrier component in the realization 
of the shaping filter. Thus, the modem is realized, as shown in the block diagram in 
Figure P-10.38, where the shaping filters have the impulse responses 

q (t) = g(t) cos 2nfct, 
q (t) = g(t) sin 2nfct 

and g(t) is a pulse that has a square-root raised cosine spectral characteristic. 

1. Show that 1_: q(t)q (t) dt = 0 

and that the system can be used to transmit two-dimensional signals, e.g., PSK 
and QAM. 

2. Under what conditions is this CAP modem identical to the carrierless QAM/PSK 
modem treated in Problem 10.37? 

Shaping 

Serial 
filter 

Input to q(t) 
data parallel To transmitter 

converter Shaping 
filter 
q(t) 

(a) Modulator 

Filter or 
correlator Detector 

Received q(t) and Output 

signal 
parallel 

data Filter or to serial 
correlator converter 

q (t) t 
Sample 

at t = kT 

(b) Demodulator 

Figure P-10.38 
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COMPUTER PROBLEMS 

10.1 Linear Filter Model of a Communication Channel 

As indicated in this chapter, a bandlimited communication channel can be mod­
eled as a linear filter whose frequency response characteristics match the frequency 
response characteristics of the channel. Therefore, we may design digital finite­
duration impulse response (FIR) or infinite-duration impulse response (IIR) filters 
that approximate the frequency-response characteristics of analog communication 
channels. 

Suppose that we wish to model an ideal channel that has an amplitude response 
A(f) = 1 for Il l  :S 2000 Hz and A(f) = 0 for Il l  > 2000 Hz, and a constant 
delay (linear phase) for I l I :S 2000 Hz. The sampling rate for the digital filter is 
selected as Fs = 10, 000 Hz. Since the desired phase response is linear, only an 
FIR filter could satisfy this condition. However, it is not possible to achieve a zero 
response in the stopband. Instead, we select the stopband response to be -40 dB and 
the stopband frequency to be 2500 Hz. In addition, we allow for a small amount, 
0.5 dB, of ripple in the passband. 

Design an FIR filter with these characteristics. Plot the frequency and phase response 
of the filter in the frequency band 0 :S l :S 5000 Hz. Note that 5000 Hz is the folding 
frequency. 

10.2 Effect of Intersymbol Interference 

The purpose of this problem is to view the effect of intersymbol interference (ISi) 
on the received signal sequence {Yn }  for two channels that are characterized by the 
discrete time responses {xn} as follows: 

Channel 1 

and 

Channel 2 

{" -0.25, 
Xn = 

0. 1 ,  
0, 

{" - 0.5, 
Xn -

-0.2, 
0, 

n = O  
n = ±1 
n = ±2 
otherwise 

n = O  
n = ±1 
n = ±2 
otherwise 

Note that in these channels, the ISi is limited to two symbols on either side of the 
desired transmitted signal. Hence, the cascade of the transmitter and receiver filters 
and the channel at the sampling instants are represented by the equivalent discrete­
time FIR channel filter shown in Figure CP-9.3. 
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Suppose that the transmitted signal sequence is binary (±1),  and let the received 
sequence at the output of the equivalent discrete-time FIR channel filter be denoted 
as {yd. Therefore, the output sequence {yd can be expressed as 

where { ak = ± 1 }  is the input data sequence. Assuming that ak = 1 ,  compute and 
plot the values of {yd for the 16 possible data sequences {ak-I , ak+1 , ak-2 ,  ak+2} 
for channel 1 and channel 2. Use separate plots for the two channels. Repeat the 
experiment when ak = -1 .  Which channel characteristic results in detector errors 
due to ISi even in the absence of noise? 

Repeat the preceding experiments when the channel output sequence is corrupted by 
additive zero-mean white Gaussian noise with the variance a2 = 0. 1 .  Compare these 
results with the noiseless output and comment on the effect of the additive noise on 
the two channel output sequence. 

0.1 
- 1  r 1 

0.1 
• ' 

l l 
' • ' n 

-3 -2 0 2 3 
-0.25 -0.25 

(a) 

0.5 r 0.5 

-2 I I 2 
• 1 1 • ' n 

-3 -1 0 1 3 
-0.2 -0.2 

(b) 

Figure CP-10.3 FIR channel models with ISI: (a) channel l ;  (b) channel 2. 

10.3 Design of Optimum Transmitter and Receiver Filters 

The objective of this problem is to design a digital implementation of the transmitter 
and receiver filters, Gr (f) and GR (f), such that 

and GR (f) is the matched filter to Gr (f). 
The simplest way to design and implement the transmitter and receiver filters in 
digital form is to employ FIR filters with linear phase (symmetric impulse response). 
If Xrc(/) is the desired raised cosine frequency response with a specified roll-off 
parameter, the magnitude response of the transmitter and receiver filters is 
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The frequency response of the filters is  related to the impulse response by the Fourier 
transform relation 

(N-1)/2 
Gr(f) = L gr(n) e-j2rrfnrs , 

n=-(N-1)/2 
(A) 

where Ts is the sampling interval and N is the length of the filter. Note that N is odd. 
Since Gr (f) is bandlimited, we may select the sampling frequency Fs to be at least 
2/T. In particular, let 

1 4 Fs = - = -, Ts T 

or equivalently, Ts = T /4. Hence, the folding frequency is Fs/2 = 2/T. Since 
IGr (f) I = ./Xrc<f), we may sample Xrc<f) at equally spaced points in frequency, 
with the frequency separation !::i.f = Fs / N. Thus, we have 

(N-1)/2 
JXrc(m!::i.f) = Xrc(m:s) = L gr(n) e-j2rrmn/N . (B; 

n=-(N-1)/2 
The inverse transform relation is used to obtain the impulse response, i.e., 

(N-1)/2 
( ) - "'""""' (4m ) j2rrmn/N - 0 ±1 (N - 1) gr n - � Xrc NT e ' n - ' ' . . .  ± -2- . 

m=-(N-1)/2 
cc: 

Since gr (n) is symmetric, the impulse response of the desired linear phase trans· 
mitter filter is obtained by delaying gr(n) by (N - 1)/2 samples, i.e., we havt 
gr (n - N:;I ) , n = 0, 1 ,  . . .  , N - 1 .  

1 .  Determine and plot the impulse response gr [ n] of the transmitter filter of lengtl 
N = 3 1  when Xrc<f) has a roll-off factor a =  1/4, and 1/T = 1800 Hz. 

2. Determine and plot the frequency response I Gr (f) I for 0 :S f :S 0.5 frorr 
Equation (A). Does Gr(f) = 0 for I i i  :=: (1 + a)/T? Explain why it does 01 

does not. 

3. Plot 1Gr(f) l2 and Xrc<f) on the same graph and compare the .two graphs 
Explain the difference. 

4. Repeat Steps 1 ,  2, and 3 for a = 1/4, 1 /T = 1800 Hz, and N = 41 .  Compar< 
and comment in the results. 

10.4 Design of a Duobinary Signal Filter 

The objective of this problem is to design a digital implementation of the transmitte 
and receiver filters Gr (f) and GR (f) such that their product is equal to the spectrun 
of a duo binary pulse and GR (f) is the matched filter to Gr (f). 
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To satisfy the frequency domain specification, we have 

Therefore, 

I l l :s w 

I i i > W { _!_ cos 
(rr.f) Iii :s w 

IGr (f) I = W 2W ' 

o, Il l > w 
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By following the same approach as in Computer Problem 10.4, we obtain the impulse 
responses for a linear-phase FIR implementation of the transmitter and receiver fil­
ters. Therefore, with W = 1/2T and Fs = 4/T, we have 

(N-1)/2 4 
gy [n] = L j cr (N

�) I ej2n:mn/N , (N - 1) 
n = 0, ±1 , . . . , ± -2-n=-(N-1)/2 

and 8R [n] = gy [n]. 

1. Determine and plot gy [ n -
N 21 ] for W = 1 800 and N = 3 1 . 

2. By using Equation (A) of Computer Problem 9.4, determine and plot IGr (f) I . 
3. Plot I Gr (f)f and the ideal duobinary (cosine) spectrum on the same graph and 

compare the two spectra. Explain the difference. 

10.5 Precoding for Duobinary Signals 

Write a MATLAB program that takes a binary data sequence {dd, precodes it for 
a duobinary pulse transmission system to produce the sequence {pd, and maps the 
precoded sequence into the transmitted amplitude levels {ad. Then, from the trans­
mitted sequence {ad, and from the received noise-free sequences {bd, recover the 
original data sequence {dd. Verify the operation of your program using the data 
sequence { 1 0 0 1 0 1 1 1 0 1 1 O}. 

10.6 Simulation of Detector Performance for Duobinary Signal 

The objective of this problem is to simulate a binary PAM communication system 
that employs a duobinary signal pulse, where the precoding and amplitude conver­
sion that yields the sequence {an }  are performed as prescribed in the text. Hence, the 
input to the detector is the sequence 

Yk = bk + nk 

= ak + ak-I + nk .  k + 1 , 2, 
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where the sequence {nk} is zero mean, Gaussian, and uncorrelated. The variance of 
nk is 1J2 
Perform the simulation for 10,000 bits and measure the bit-error probability for 
1J2 = 0. 1 ,  1J2 = 0.5, and 1J2 = 1. Plot the theoretical error probability for binary 
PAM with no ISi, and compare the simulation results with this ideal performance. 
You should observe some degradation in the performance of the duobinary system. 
What are the approximate values of the degradation for 1J2 = 0. 1 ,  1J2 = 0.5, and 
(j2 = 1 ?  

10.7 Zero-Forcing Equalizer 

The objective of this problem is to design a zero-forcing equalizer for the channel­
distorted pulse x(t) at the input to the equalizer given by the expression 

1 x(t) = 2 '  
1 + (¥) 

where 1 /T is the symbol rate. The pulse is sampled at the rate 2/T, which is the 
input rate to the equalizer. 

As described in the text, the zero-forcing equalizer must satisfy the equations 

� ( nT ) { 1 ,  m = 0 q(mT) = � CnX mT - 2 = 
0, m = ±1 ,  ±2, . . .  , ±K ' n=-K 

where 2K + 1 is the number of taps in the equalizer and {en } are the equalizer 
coefficients. 

Write a program that computes the equalizer coefficients for any value of K. Com­
pute the equalizer coefficients for K = 2, 4, and 6. Plot the input sequence to the 
equalizer for the pulse x(t), and plot the equalizer output samples for each K = 2, 4, 
and 6. Compare how well the equalizer performs for each value of K by comparing 
the residual ISi at the output of the equalizer. 

10.8 MSE Equalizer 

The objective of this problem is to design an equalizer, based on the mean-square­
error criterion, for the channel-distorted pulse described by the expression 

1 x(t) = 
1 + (2t/T)2

' 

where 1 /T is the symbol rate. The pulse is sampled at the rate 2/T, which is the 
input rate to the equalizer. The information symbols have zero mean, unit variance, 
and are uncorrelated, i.e., 

E(an) = O; 

E(lan l2) = 1 ;  

E(anam) = 0 ,  n -:/= m. 
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The additive noise samples at the input to the equalizer are zero-mean uncorrelated 
Gaussian with variance a2 = 0.01 and a2 = 0. 1 .  

Write a program that computes the coefficients of the equalizer having 2K + 1 taps. 
Compute the equalizer coefficients for K = 2, 4, and 6. Plot the sequence to the 
equalizer for the pulse x(t) , and plot the equalizer output samples for each K = 2, 
4, and 6. Compare how well the equalizer performs for each value of K by computing 
the residual ISI at the output of the equalizer. 

Input --� 

Training 
data 

Figure CP-10.9 Linear adaptive equalizer based on the MSE criterion. 

10.9 Simulation of an Adaptive Equalizer 

The objective of this problem is to implement an adaptive equalizer based on the 
LMS algorithm. The channel is modeled as an FIR filter with symbol-spaced values 
that are given as follows: 

x = [0.05, -0.063, 0.088, -0. 126, -0.25, 0.9047, 0.25, 0. 126, 0.038, 0.088] . 

The MSE equalizer is also an FIR filter with symbol-spaced tap coefficients. Training 
symbols are transmitted initially to train the equalizer. In the data mode, the equal­
izer employs the output of the detector in forming the error signal used in the LMS 
algorithm. The block diagram of the system is shown in Figure CP-10.9. 
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Write a program that performs the simulation of the system in Figure CP-10.9. Use 
1000 training (binary) symbols and 10,000 binary data symbols for the FIR channel 
model previously given. Use a

2 = 0.01 ,  a2 = 0. 1 ,  and a
2 = 1 for the variance of 

the additive, zero-mean Gaussian noise sequence. Compare the measured error rate 
with that of an ideal channel with no ISL 



Multicarrier � Modulation r and OFDM 

In Section 10.5, we considered digital transmission through nonideal channels, and we 
observed that such channels cause intersymbol interference when the reciprocal of the sym­
bol rate is significantly smaller than the time dispersion (duration of the impulse response) 
of the nonideal channel. In such a case, the receiver employs a channel equalizer to com­
pensate for the channel distortion. If the channel is a bandpass channel with a specified 
bandwidth, the information-bearing signal may be generated at the baseband and then 
translated in frequency to the passband of the channel. Thus, the information-bearing signal 
is transmitted on a single carrier. We also observed that intersymbol interference usually 
results in some performance degradation, even in the case where the optimum detector is 
used to recover the information symbols at the receiver. 

1 1 . 1  ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING 

We can use an alternative approach to the design of a bandwidth-efficient communication 
system in the presence of channel distortion. Here, we subdivide the available channel 
bandwidth into a number of equal-bandwidth subchannels, where the bandwidth of each 
subchannel is sufficiently narrow so that the frequency-response characteristics of the sub­
channels are nearly ideal. Such a subdivision is illustrated in Figure 1 1 . 1 .  Thus, we create 
K = W / /::,,.f subchannels, where different information symbols can be transmitted simul­
taneously in K subchannels. Consequently, the data is transmitted by frequency-division 
multiplexing (FDM). 

With each subchannel, we associate a carrier 

xk(t) = cos 2nfkt, k = 0, 1, . . .  , K - 1 , ( 1 1 . 1 . 1) 

where fk is the mid-frequency in the kth subchannel. By selecting the symbol rate l / T  on 
each of the subchannels to be equal to the separation 1'1/ of the adjacent subcarriers, the 

621 
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IC(f)I 

w 

Multicarrier Modulation and OFDM Chapter 1 1 

Figure 11.1 Subdivision of the channel f 
bandwidth W into narrowband 
subchannels of equal width 1:!..f. 

subcarriers are orthogonal over the symbol interval T, independently of the relative phase 
relationship between subcarriers. That is, 

foT 
cos(2nfkt + <Pk) cos(2nfjt  + </lj)dt = 0, ( 1 1 . 1 .2) 

where fk - fj = n/T, n = 1 ,  2, . . .  , independently of the values of the phases <Pk and <Pj · 
In this case, we have orthogonal frequency-division multiplexing (OFDM). 

Multicarrier modulation (OFDM) has been used in both wireline and radio channels. 
In particular, it is used in digital subscriber loop (DSL) modems that are used to pro­
vide high-speed internet access to homes and businesses. OFDM is also used in wireless 
local area networks (LANs) that are used in homes and offices for wireless access to the 
internet. 

1 1 .2 MODULATION AND DEMODULATION IN AN OFDM SYSTEM 

In an OFDM system with K subchannels, the subcarrier frequencies are .{cos 2nfkt, 
0 ::: k ::: K - l } ,  where adjacent subcarrier frequencies are separated by D.f = l /T, 
i.e., fk+1 - fk = D.f = l / T  and T is the symbol interval. The symbol rate l / T  is 
reduced by a factor of K relative to the symbol rate on a single-carrier system that employs 
the entire bandwidth W and transmits data at the same rate as OFDM. Hence, the sym­
bol interval in the OFDM system is T = KT, , where Ts is the symbol interval in the 
single-carrier system. By selecting K to be sufficiently large, the symbol interval T can 
be made significantly larger than the time duration of the channel-time dispersion. 
Thus, intersymbol interference can be made arbitrarily small through the selection 
of K .  In other words, each subchannel appears to have a fixed frequency response 
C(fk),  k = 0, 1 ,  . . .  , K - 1 .  

Suppose that each subcarrier i s  modulated with M -ary quadrature amplitude modula­
tion (QAM). Then, the signal on the kth subcarrier may be expressed as (where 
8T (t) = ,J'IlT, 0 :S t  :S T) 
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Figure 11.2 The graph of u6 (t) in Example I 1.2. 1 .  

uk(t) = HAkc cos 2nfkt - HAks sin 2nfkt 
= Re [ H Akejek ej2rrfkt J 
= R{ H XkejZrrfkt l 

623 

50 55 

(1 1 .2. 1) 

where Xk = Akejek is the signal point from the QAM signal constellation that is transmit­

ted on the kth subcarrier, Ak = J A�c + A�s ' and ek = tan-1 (Aks/ Ake). The energy per 
symbol �s has been absorbed into {Xk }. 

Example 11.2.1 

The signal point Xk = 3 + j 1 selected from an M = 8 QAM signal constellation is to be 
transmitted on the frequency f6 = 6/ T, where T = 50 seconds is the symbol duration. Using 
Equation ( 1 1 .2. 1 ), compute and plot the waveform u6(t). 

Solution Figure 1 1 .2 shows the graph of u6(t) • 

When the number of subchannels is large, so that the subchannels are sufficiently 
narrowband, each subchannel can be characterized by a fixed frequency response C(fk) , 
k = 0,  1 ,  . . .  , K - 1 .  In general, C(fk) is  complex valued and may be expressed as 

( 1 1 .2.2) 
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Hence, the received signal on the kth subchannel is 

rk (t) = HICk lAkc cos (2nfkt + </>k) -HICk lAks sin (2nfkt + <Pk) + nk(t) 

= Re[ Hckxkejlrrfkt] + nk(t), ( 1 1 .2.3) 

where nk (t) represents the additive noise in the kth subchannel. We assume that nk(t) is 
zero-mean Gaussian and spectrally flat across the bandwidth of the kth subchannel. We also 
assume that the channel parameters ICk l and <Pk are known at the receiver. (These para­
meters are usually estimated by initially transmitting the unmodulated carrier cos 2nfkt 
and observing the received signal !Ck !  cos(2nfkt + ¢k.) 
Example 11.2.2 

Consider the signal generated in Example 1 1 .2. 1 .  Suppose the channel gain and phase shift at 
frequency f6 is 

or IC(f6) 1 = 1/2 and </J6 = rc/2. Compute and plot the received waveform r6(t) in the absence 
of noise. 

Solution The graph for r6(t) is shown in Figure 1 1 .3. • 

The demodulation of the received signal in the kth subchannel may be accomplished 
by cross correlating rk (t) with the two basis functions, based on knowledge of the carrier 
phase {¢k} at the receiver, 
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1/r1 (t) = H cos (2nfkt + <fJk) ,  0 ::;  t ::; T, 

0 ::;  t ::;  T, ( 1 1 .2.4) 

and sampling the output of the cross correlators at t = T. Thus, we obtain the received 
signal vector 

( 1 1 .2.5) 

which can also be expressed as the complex number 

( 1 1 .2.6) 

where T/k = T/kr + j T/ki represents the additive noise. 
The scaling of the transmitted symbol by the channel gain I Ck I can be removed by 

dividing Yk by ICk l · Thus, we obtain 

( 1 1 .2.7) 

where T/� = T/k/ ICk l · The normalized variable Y£ is passed to the detector, which computes 
the distance metrics between Y£ and each of the possible signal points in the QAM signal 
constellation and selects the signal point resulting in the smallest distance. 

From this description, it is clear that two cross correlators or two matched filters are 
required to demodulate the received signal in each subchannel. Therefore, if the OFDM 
signal consists of K subchannels, the implementation of the OFDM demodulator requires 
a parallel bank of 2K cross correlators or 2K matched filters. Furthermore, the modulation 
process for generating the OFDM signal can also be viewed as exciting a bank of 2K 
parallel filters with symbols taken from an M-ary QAM signal constellation. 

The bank of 2K parallel filters that generates the modulated signal at the transmitter 
and demodulates the received signal is equivalent to the computation of the discrete Fourier 
transform (DFT) and its inverse. Since an efficient computation of the DFT is the fast 
Fourier transform (FFT) algorithm, a more efficient implementation of the modulation and 
demodulation processes when K is large, e.g., K > 20, is by means of the FFT algorithm. 
In the next section, we describe the implementation of the modulator and demodulator in 
an OFDM system that uses the FFT algorithm to compute the DFT. 

Since the signals transmitted on the K subchannels of the OFDM system are syn­
chronized, the received signals on any pair of subchannels are orthogonal over the interval 
0 ::; t ::; T. If the subchannel gains I Ck I , 0 ::; k ::; K - 1 are sufficiently different across 
the channel bandwidth, subchannels that yield a higher SNR due to a lower attenuation 
can be modulated to carry more bits per symbol than subcarriers that yield a lower SNR 
(high attenuation). Consequently, QAM with different constellation sizes can be used on 
the different subchannels of an OFDM system. This assignment of different constellation 
sizes to different subchannels is generally done in practice, e.g., in DSL modems. 
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1 1 .3 AN OFDM SYSTEM IMPLEMENTED VIA THE FFT ALGORITHM 

In this section, we describe an OFDM system that uses QAM for data transmission on 
each of the subcarriers and the FFT algorithm in the implementation of the modulator and 
demodulator. 

The basic block diagram of the OFDM system is illustrated in Figure 1 1 .4. A serial­
to-parallel buffer subdivides the information sequence into frames of Bf bits. The Bf 
bits in each frame are parsed into K groups, where the ith group is assigned b; bits. 
Hence, K-1 Lb; = Bt · ( 1 1 .3. l) 

i=O 

We may view the multicarrier modulator as generating K independent QAM 
subchannels, where the symbol rate for each subchannel is 1 / T and the signal in each 
subchannel has a distinct QAM constellation. Hence, the number of signal points for the 
ith subchannel is M; = 2b; .  We will denote the complex-valued signal points correspond­
ing to the information signals on the K subchannels by Xb k = 0, 1 ,  . . .  , K - 1 .  These 
information symbols {Xd represent the values of the DFT of a multicarrier OFDM signal 
x (t), where the modulation on each subcarrier is QAM. Since x(t) must be a real-valued 
signal, its N-point DFT {Xd must satisfy the symmetry property XN-k = xz. Therefore, 
we create N = 2K symbols from K information symbols by defining 

Input Serial-to­

data parallel 
buffer 

0 t t Parallel-u pu to-
data serial 

converter 

XN-k = xz, k = 1, 2, . . .  ' K - 1 ,  

X� = Re[Xo], 

XK = Im[Xo] . 

DIA Output to 

(1 1 .3.2) 

(1 1 .3.3) 

(1 1 .3.4) 

Multicarrier 
modulator 

(inverse DFT) 

Add cyclic 
prefix and 
parallel-to- converter transmitter 

serial convert 

(a) Transmitter 

Multicarrier 
demodulator 

(DFT) 

(b) Receiver 

Remove 
cyclic 

prefix and 
serial-to­
parallel 
convert 

AID 
converter 

Figure 11.4 Block diagram of a multicarrier OFDM digital communication system. 
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Note that the information symbol Xo is split into two parts, both of which are real. If we 
denote the new sequence of symbols as {X� , k = 0, 1 , . . .  , N - l }, the N-point inverse 
DFT (IDFT) yields the real-valued sequence 

l N-1 
Xn = --

L x� ej2nnk/N 
,,/Fi k=O 
1 Ii K-1 (2 k \l = ,,/NLRe[Xo] + (-lt im[Xo] +2 £; IXk l cos ; + ek)j ' n = 0, 1 ,  . . .  ' N - 1 , 

(1 1 .3.5) 

where the information symbol xk = IXk l ejek . 
The sequence {xn , 0 .:::; n .:::; N - 1 }  corresponds to samples of the multicarrier 

OFDM signal x(t) which consists of K subcarriers fk = k/T, k = 0, 1 , 2, . . .  , K - 1 , 
where T is the signal duration. We note that the information symbol Xo corresponds to the 
DC component (Jo = 0) . For convenience, let us set X0 = 0, so that the OFDM signal has 
no DC component. Then the transmitted OFDM signal, which is generated by passing the 
signal samples {xn } through a digital-to-analog (D/A) converter, may be represented as 

Example 11.3.1 

2 K-I (2nkt ) x(t) = rr::r L IXk l cos -- + ek ' 
v N k=I T (1 1 .3 .6) 

Using the M = 16 QAM rectangular signal constellation shown in Figure 8.54, select pseu­
dorandomly each of the information symbols X1,  X2, X3, X4• With T = 100 sec, generate the 
signal waveform x (t) given by Equation ( 1 1 .3.6) and plot x(t).  Also, compute the IDFr val­
ues of {xn} ,  for 0 ::=: n ::=: 9 given by Equation ( 1 1 .3.5) and demonstrate that Xn = x (nT / N) = 
x(IOn), 0 ::=: n ::=: 9. 

Solution In this example K = 5 and N = 2K = 10. The graph for x (t) is shown in 
Figure 1 1 .5. The values of the IDFr are x0 = O, x1 = -2. 1 15 1 , x2 = -0.7265, x3 = 
-8.0403, X4 = -3.0777, X5 = 8, X6 = 3.0777, X7 = -0.4318,  Xg = 0.7265, X9 = 2.5872. It 
is easily verified that x(nT / N) = Xn · • 
With x(t) as the input to the channel, the channel output at the receiver may be 

expressed as 
r(t) = x(t) * c(t) + n(t), ( 1 1 .3.7) 

where c(t) is the impulse response of the channel and * denotes convolution. Since the 
bandwidth b.f of each subchannel is selected to be very small relative to the overall chan­
nel bandwidth W = Kb.f, the symbol duration T = l/ b.f is larger than the duration of 
the channel impulse response. To be specific, suppose that the channel impulse response 
spans m + 1 signal samples, where m « N. A simple way to completely avoid intersymbol 
interference (ISI) is to insert a time guard of duration mT / N between the transmission of 
successive data blocks. This allows the response of the channel to die out before the next 
block of K symbols is transmitted. 

An alternative method of avoiding ISI is to append a so-called cyclic prefix to each 
block of N signal samples { Xn , 0 .:::; n .:::; N - 1 } .  The cyclic prefix for the block of 
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Figure 11.5 The graph of x(t) in 
Example 1 1 .2. 1 .  

samples contains the samples XN-m, XN-m+1 , . . .  , XN-1 ·  These samples are appended to 
the beginning of the block, thus creating a signal sequence of length N + m samples, 
which may be indexed from n = -m to n = N - 1 ,  where the first m samples constitute 
the cyclic prefix. Then, if the sample values of the channel response are {en , 0 ::::; n ::::; m} , 
the convolution of {en } with {xn , -m ::::; n ::::; N - l }  produces the received signal {rn}. 
Since the ISI in any pair of successive signal transmission blocks affects the first m signal 
samples, we discard the first m samples of {rn } and demodulate the signal based on the 
received signal samples {rn ,  0 ::::; n ::::; N - l } .  

Example 11.3.2 
Consider the signal generated in Example 1 1 .3. 1 .  Suppose that the channel impulse response 
c(t) spans the time interval 0 :::: t :::: 15 sec. Determine the cyclic prefix to be appended to the 
IDFf sequence {xn} .  

Solution With T = 100 sec, the channel span i s  smaller than the time duration between 
the two IDFf samples. Thus, we select m = 2, and the cyclic prefix consists of the samples 
{XN-2, XN-d = {xg , X9} .  I 

If we view the channel characteristics in the frequency domain, the channel fre­
quency response at the subcarrier frequencies fk = k / T is 

Ck = c(2;k) = t en e-j2rrnkfN , k = 0, 1 ,  . . .  , N - 1 . 

n=O 
c1 u.s: 

Since the ISI is eliminated through either the cyclic prefix or the time guard band, th< 
demodulated sequence of symbols may be expressed as 

( 1 1 .3.9 

where {Xk} is the output of the N-point DFT computed by the demodulator and {1'/d is th< 
additive noise corrupting the signal. 
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As illustrated in Figure 1 1 .4, the received signal is demodulated by computing the 
DFr of the received signal after it has passed through an analog-to-digital (AID) con­
verter. As in the case of the OFDM modulator, the DFr computation at the demodulator is 
performed efficiently with the use of the FFr algorithm. 

To recover the information symbols from the values of the computed DFr, it is nec­
essary to estimate and compensate for the channel factors {Ck} . The channel measurement 
can be accomplished by initially transmitting either a known modulated sequence on each 
of the subcarriers or simply by transmitting the unmodulated subcarriers. If the channel 
characteristics vary slowly with time, the time variations can be tracked by using the deci­
sions at the output of the detector in a decision-directed manner. Thus, the multicarrier 
OFDM system can be made to operate adaptively. The transmission rate on each subcarrier 
can be optimized by properly allocating the average transmitted power and the number of 
bits that are transmitted by each subcarrier. The SNR per subchannel may be defined as 

T Pk 1Ck l2 SNRk = 2 , ank ( 1 1 .3 . 10) 

where T is the symbol duration, Pk is the average transmitted power allocated to the 
kth subchannel, 1 Ck l2 is the squared magnitude of the frequency response of the kth sub­
channel, and a;k is the corresponding noise variance. In subchannels with high SNR, we 
transmit more bits/symbol by using a larger QAM constellation than we would use with 
subchannels with low SNR. Thus, the bit rate on each subchannel can be optimized so 
that the error-rate performance among the subchannels is equalized to satisfy the desired 
specifications. 

Multicarrier OFDM using QAM modulation on each of these subcarriers has been 
implemented for a variety of applications, including high-speed transmission over tele­
phone lines, such as digital subscriber lines (DSL). This type of multicarrier OFDM mod­
ulation has also been called discrete-multitone (DMT) modulation. Multicarrier OFDM is 
also used in digital audio broadcasting in Europe and other parts of the world, as well as in 
wireless LANs. 

1 1 .4 SPECTRAL CHARACTERISTICS OF OFDM SIGNALS 

Although the signals transmitted on the subcarriers of an OFDM system are mutually 
orthogonal in the time domain, i.e., 

1T Uk (t)u j (t) dt = 0 k =f. j, (1 1 .4.1) 

where uk(t) is defined in Equation ( 1 1 .2 .1), these signals have significant overlap in the 
frequency domain. This can be observed by computing the Fourier transform of the signal 

uk (t) = Re [ HxkejZnfkt] 
= HAk cos (2rcfkt + fh) , 0 S t S T  ( 1 1 .4.2) 
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Figure 11.6 An example of the magnitude of the frequency response of adjacent subchannel filters in OFDM 
system for f E (0, 0.06f) and K = 64. (From Cherubini et al. (2002) IEEE.) 

for several values of k. Figure 1 1 .6 illustrates the magnitude spectrum IUk(f) I for three 
adjacent subcarriers. Note the large spectral overlap of the main lobes. Also note that the 
first sidelobe in the spectrum is only 1 3  dB down from the main lobe. Hence, there is a sig­
nificant amount of spectral overlap among the signals transmitted on different subcarriers. 
Nevertheless, these signals are orthogonal when transmitted synchronously in time. 

The large spectral overlap of the OFDM signals has various ramifications when the 
communication channel is a fading channel. In Chapter 14, we will see that signal fading, 
which is caused by time-varying multipath propagation, results in Doppler spreading of 
the transmitted signal. The multipath propagation of the signal components in the OFDM 
signal destroys the orthogonality among the subcarriers; when combined with the Doppler 
spreading, it results in intersubchannel interference (ICI). This ICI produces a significant 
degradation in the performance (error probability) of the OFDM system. Consequently, 
OFDM may not be as robust as a single carrier system in radio communications where 
the receiving terminal is moving at high speed. On the other hand, ICI is not a serious 
problem in OFDM systems in which the receiving terminal is moving at a low speed, e.g., 
pedestrian speed. This is the case, for example, in wireless LANs that employ OFDM 
signals with large (M = 64) QAM signal constellations. 

Another type of multicarrier modulation is much more robust than OFDM in the 
presence of ICI resulting from a large Doppler spread due to high terminal speeds; this is 
called filtered multitone ( FMT) modulation. An FMT signal is also generated and demod­
ulated through a bank of parallel filters. However, the filters in FMT are designed to 
have negligible spectral overlap and extremely sharp frequency roll-off characteristics. 



Section 1 1 .5 

10 

0 

-10 

i:o 'O -20 s ;:l l:i -30 u <!) 0.. 
"' 
<!) 

-40 'O 
B ·a b() 

-50 «! � 
-60 

-70 

Peak-to-Average Power Ratio in OFDM Systems 

/ u 

0.01 O.Q2 O.Q3 
fT/K 

0.04 

631 

0.05 0.06 

Figure 11.7 An example of the magnitude of the frequency response of adjacent subchannel filters in an FMT 
system for f E (0, 0.06f) and design parameters K = 64. (From Cherubini et al. (2002) IEEE.) 

For example, Figure 1 1 .7 illustrates the frequency-response characteristics in an FMT sys­
tem. Note that the filter sidelobes are at least 70 dB below the main lobe and the spectral 
overlap between adjacent filters is negligible. Such filter characteristics provide signifi­
cant immunity against ICI that may be encountered in highly mobile radio communication 
environments. Another advantage of FMT is that the signals transmitted on the different 
subcarriers need not be synchronous. 

The large immunity against ICI provided by FMT comes at a price in bandwidth 
efficiency. In papers that describe the design ofFMT systems, Cherubini et al. (2000, 2002) 
demonstrate that the increase in bandwidth compared with a conventional OFDM system 
can be made relatively modest, of the order of 10% to 20%. Therefore, FMT provides an 
alternative to conventional OFDM in high-mobility applications. 

1 1 .5 PEAK-TO-AVERAGE POWER RATIO IN OFDM SYSTEMS 

A major problem with multicarrier modulation in general and OFDM systems in particular 
is the high peak-to-average power ratio (PAR) that is inherent in the transmitted signal. 
Large signal peaks occur in the transmitted signal when the signals in the K subchannels 
add constructively in phase. Such large signal peaks may saturate the power amplifier at the 
transmitter, thus, causing intermodulation distortion in the transmitted signal. Intermodu­
lation distortion can be reduced and often avoided by reducing the power in the transmitted 
signal and, thus, operating the power amplifier at the transmitter in the linear range. Such a 
power reduction or "power back-off" results in inefficient operation of the OFDM system. 
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For example, if the PAR is 10 dB, the power back-off may be as much as 10 dB to avoid 
intermodulation distortion. 

Example 11.5.1 

Generate samples of the OFDM signal 

x(t) = L eos � + ek , 
K-I (2 k ) 
k=I T 

0 :S t :S T, 

where K = 32, T = 1 sec, the sample rate Fs = 200 samples per second, and the modula­
tion on each subcarrier is four-phase PSK; i.e., ek takes the possible values 0, n:/2, n:, 3n:/2, 
selected pseudorandomly. For each realization of x(t), determine the PAR. Repeat the com­
putation of the PAR for 20 different realizations of x (t) and plot the values of the PAR for the 
20 different realizations. 

Solution The average power of the sample { Xn } is 

1 199 p - - '°' x2 av - 200 L n 
n=O 

and the peak power is 
Ppeak = max{x;} .  

n 

Hence, the PAR = Ppeak/ Pav· The plot of the PAR is shown in Figure 1 1 .8. • 
Various methods have been devised to reduce the PAR in multicarrier systems. One 

of the simplest methods is to insert different phase shifts in each of the subcarriers. These 
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Figure 11.8 PAR values in Example 1 1 .5 .1 .  
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phase shifts can be selected pseudorandomly, or by means of some algorithm, to reduce 
the PAR. For example, we may have a small set of stored pseudorandomly selected phase 
shifts that can be used when the PAR in the modulated subcarriers is large. The information 
on which set of pseudorandom phase shifts is used in any signal interval can be transmitted 
to the receiver on one of the K subcarriers. Alternatively, a single set of pseudorandom 
phase shifts may be employed, where this set is found via computer simulation to reduce 
the PAR to an acceptable level over the ensemble of possible transmitted data symbols on 
the K subcarriers. 

Another method that can reduce the PAR is to modulate a small subset of the sub­
carriers with dummy symbols, which are selected to reduce the PAR. Since the dummy 
symbols do not have to be constrained to take amplitude and phase values from a speci­
fied signal constellation, their design is very flexible. The subcarriers carrying the dummy 
symbols may be distributed across the frequency band. Since modulating subcarriers in 
this manner results in a lower throughput in data rate, we want to employ only a small 
percentage of the total subcarriers. 

Alternatively, the PAR may be kept within a specified limit by clipping the signal at 
the DI A converter. The clipping generally distorts the signal at the transmitter and, hence, 
degrades the performance at the receiver. 

Because of its practical importance, the problem of PAR reduction in multicarrier 
communication systems has been thoroughly investigated and other methods have been 
devised. The interested reader may refer to the literature cited in Section 1 1 .7 . 

1 1 .6 APPLICATIONS OF OFDM 

OFDM is used in a variety of digital communication systems, including digital audio 
broadcasting (DAB), digital video broadcasting (DVB), high-speed transmission over tele­
phone lines such as digital subscriber lines (DSL), and wireless local area networks (LANs). 
In this section, we briefly describe three of these applications. 

1 1 .6.1 Digital Subscriber Lines 

As a first application of OFDM, consider high-speed digital transmission over wirelines 
that connect a telephone subscriber's premises to a telephone central office. These wireline 
channels typically consist of unshielded twisted-pair wire and are commonly called the 
subscriber local loop. The desire to provide high-speed internet access to homes and busi­
nesses over the telephone subscriber loop has resulted in the development of a standard for 
digital transmission based on OFDM with QAM as the basic modulation method on each 
of the subcarriers. 

The usable bandwidth of a twisted-pair subscriber loop wire is primarily limited by 
the distance between the subscriber and the central telephone office, i.e., the length of the 
wire, and by crosstalk interference from other lines in the same cable. For example, a 3 km 
twisted-pair wireline may have a usable bandwidth of approximately 1 .2 MHz. Since the 
need for high-speed digital transmission is usually in the direction from the central office 
to the subscriber (the downlink) and the bandwidth is relatively small, the major part of 
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the bandwidth is allocated to the downlink. Consequently, the digital transmission on the 
subscriber loop is asymmetric, and this transmission mode is called ADSL (asymmetric 
digital subscriber line). 

In the ADSL standard, the downlink and the uplink maximum data rates are speci­
fied as 6.8 Mbps and 640 kbps, respectively, for subscriber lines of approximately 12,000 
feet in length, and 1 .544 Mbps and 176 kbps, respectively, for subscriber lines of approxi­
mately 1 8,000 feet in length. The low part of the frequency band (0--25 kHz) is reserved for 
telephone voice transmission, which requires a nominal bandwidth of 4 kHz. Hence, the 
frequency band of the subscriber line is separated into two frequency bands via two filters 
(lowpass and highpass) that have cutoff frequencies of 25 kHz. Thus, the low end frequency 
for digital transmission is 25 kHz. The ADSL standard specifies that the frequency range of 
25 kHz to 1 . 1  MHz must be subdivided into 256 parallel OFDM subchannels. Hence, the 
size of the DFf and IDFf in the system implementation shown in Figure 1 1 .4 is N = 512. 
A sampling rate Fs = 2.208 MHz is specified, so that the high-end frequency in the signal 
spectrum is Fs /2 = 1 . 104 MHz. The frequency spacing between two adjacent subcarriers 
is t:i.f = 1 . 104 x 106 /256 = 4.3125 kHz. The channel time dispersion is suppressed by 
using a cyclic prefix of N /16 = 32 samples. 

By measuring the signal-to-noise ratio (SNR) for each subchannel at the receiver 
and communicating this information to the transmitter via the uplink, the transmitter can 
select the QAM constellation size in bits/symbol to achieve a desired error probability 
in each subchannel. The ADSL standard specifies a minimum bit load of 2 bits per sub­
channel, which corresponds to QPSK modulation. If a subchannel cannot support QPSK 
at the desired error probability, no information is transmitted over that subchannel. As an 
example, Figure 1 1.9 illustrates the received SNR as measured by the receiver for each 
subchannel and the corresponding number of bits/symbol selected from a QAM signal 
constellation. Note that the SNR in subchannels 220-256 is too low to support QPSK 
modulation; hence, no data are transmitted on these subchannels. ADSL channel char­
acteristics and the design of OFDM modems based on the ADSL standard are treated 
in detail in the books by Bingham (2000) and Starr et al. (1999). The use of OFDM 
with variable size QAM signal constellations for each of the subcarriers is often called 
discrete multitone (DMT) modulation. 
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Figure 11.9 Example of a DSL frequency response and bit allocation on the OFDM subchannels. 
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1 1 .6.2 Wireless LANs 

Wireless local area network (LAN) standards have been developed over the past few years 
by working groups within the IEEE (Institute of Electrical and Electronics Engineers) and 
other international standards organizations. These standards make it possible to provide 
high-speed wireless access to the internet. We will focus on the IEEE 802. 1 l a  standard, 
which is based on OFDM. A typical configuration is illustrated in Figure 1 1 . 10, where 
access point (AP) terminals communicate with several users (laptop computers). 

The United States's Federal Communications Commission (FCC) has allocated a 
300 MHz spectrum in the 5.2 GHz frequency band to provide wireless LAN services 
based on the 802. l la standard. A nominal channel bandwidth of 20 MHz is subdivided 
into 52 subchannels with subcarrier frequency spacing of 3 12.5 kHz. The OFDM symbol 
duration is 4 µsec, and the length of the cyclic prefix (guard interval) is 0.8 µsec. By 
using 48 subchannels to carry data via either BPSK, QPSK, 16-QAM, or 64-QAM, we can 
achieve (uncoded) data rates of 12-72 Mbps. With channel coding that is usually used to 
correct transmission errors, as discussed in Chapter 13, the achievable data rates in 802. 1 l a  
are 6, 9 ,  12, 1 8, 24, 36, 48, and 54 Mbps. In the remaining four subchannels, pilot tones are 
transmitted to measure and correct frequency offsets that may occur in the received signal 
due to terminal mobility. 

The multiple access scheme employed in 802. l la is called carrier sense multiple 
access with collision avoidance (CSMAICA). In simple terms, a terminal, before starting 
transmission, senses to see if the channel is available for signal transmission. If no other 
signal is detected to be above a set threshold, a packet of the signal is sent. After success­
ful reception, the recipient sends back an acknowledgement. After receiving the acknow­
ledgement, the user waits for a certain randomly selected time interval before sending 
another packet. This standard operates in the 5 .2-GHz frequency band; the IEEE 802.l l g  
standard, which is related, operates in the 2.4-GHz frequency band, where OFDM with 
QAM modulation is employed . 
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Figure 11.10 A wireless LAN configuration. 
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1 1 .6.3 Digital Audio Broadcasting 

Digital audio broadcasting (DAB) systems may be terrestrial, satellite based, or a combina­
tion of the two. Eventually, these systems will replace the analog AM and FM broadcasting 
systems currently in use. Various standards organizations have established standards for 
DAB in many countries. We shall focus on the European Eureka-147 standard established 
by the ITU (International Telecommunications Union) and ETSI (European Telecommu­
nication Standard Institute). 

The Eureka-147 DAB is a standard that operates in four different modes, where each 
mode is tailored to a specific frequency band and corresponding application. OFDM is used 
in all modes. The modulation used on each subchannel is differential quadrature phase-shift 
keying (QPSK). For example, mode 1 is employed in terrestrial broadcasting in the very 
high frequency band. In this mode, there are 1536 subcarriers with a subchannel spacing 
of 1 kHz. The symbol duration on each subcarrier is 1 msec and the frame duration is 
96 msec. The duration of the cyclic prefix is 246 µsec. Another mode is designed for satel­
lite transmission at frequency bands up to 3 GHz. For this mode, there are 192 subchannels, 
with an adjacent subchannel separation of 8 kHz. The symbol duration is 125 µsec and the 
frame duration is 24 msec. The cyclic prefix duration is 3 1  µsec. 

To conserve bandwidth, MPEG audio compression is employed in Eureka-147DAB. 
The audio quality achieved is comparable to CD quality. 

For more information on digital audio broadcasting, refer to the book by Hoeg and 
Lauterback (2001)  and the paper by Layer (2001). 

1 1 .7 SUMMARY AND FURTHER READING 

The focus of this chapter is on digital signal transmission via multicarrier modulation 
and orthogonal frequency-division multiplexing (OFDM). In multicarrier modulation, the 
available channel bandwidth W is subdivided into a number of equal-bandwidth subchan­
nels, where the bandwidth of each subchannel is sufficiently narrow, so that within the 
frequency band of each subchannel, the frequency response is constant in both magnitude 
and phase. Thus, we create K subchannels in which K information symbols are trans­
mitted simultaneously by modulating the subcarrier frequencies corresponding to the K 
subchannels. By selecting the symbol rate 1 / T on each of the subchannels to be equal to 
the frequency separation between adjacent subcarrier frequencies, the signals transmitted 
in the K channels are orthogonal over the symbol interval T .  Thus, we constructed an 
OFDM signal. 

As a consequence of the orthogonality property of the signals on the K subchan­
nels, the discrete-time signal that is formed at the transmitter is simply the inverse discrete 
Fourier transform (IDFT) of the K modulated subcarriers. Therefore, the computation of 
the IDFT at the transmitter is efficiently implemented by using the (inverse) fast Fourier 
transform (FFT) algorithm. The discrete-time modulated signal samples from the (inverse) 
FFT are passed to the D/ A converter to produce a continuous-time signal that is trans­
mitted on the channel. On the receiver side, the received signal is passed through an AID 
converter and the samples from the converter are fed to the demodulator. Since the signal 
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samples are the IDFT of the modulated subcarriers, the demodulator computes the DFT of 
these samples to recover the information symbols on the K subcarriers. Again, the DFT is 
computed efficiently by employing the FFT algorithm. To compensate for the effect of the 
channel on the information symbols carried in each subchannel, it is necessary to measure 
the magnitude and phase shift of the channel at each subcarrier. Such a measurement is 
obtained by transmitting pilot signals imbedded in the OFDM signal. For example, a small 
number of the OFDM subcarriers may be allocated as pilot subcarriers. 

We also described the use of a cyclic prefix in the FFT implementation of the modu­
lator and demodulator. The cyclic prefix serves the purpose of a guard interval for elimi­
nating ISi between successive OFDM blocks. The cyclic prefix samples inserted at the 
transmitter are discarded at the input to the FFT demodulator. Thus, any channel-induced 
time dispersion on the transmitted signal is eliminated. 

A view of the spectral characteristics of the OFDM signal shows that there is signifi­
cant frequency-domain overlap among the subcarrier signals. Nevertheless, the subcarrier 
signals are orthogonal in the time domain over their time duration T. 

We emphasized that a disadvantage in the transmission of OFDM signals is their high 
peak-to-average power ratio (PAR), which may cause saturation of the transmitter power 
amplifier and result in signal distortion, usually called intermodulation distortion. Several 
methods were described to limit the value of the PAR in the OFDM signal. 

In the final section of the chapter, we described three applications of signal transmis­
sion employing OFDM. The applications cited are (a) digital subscriber lines that are used 
to provide internet services to subscribers using the telephone network, (b) wireless LANs, 
such as WiFi that provide internet access to mobile users, and ( c) digital audio broadcasting 
systems that replace the current analog AM and FM broadcasting systems. 

There is a large amount of literature on multicarrier digital communication systems. 
One of the earliest systems, described by Doeltz et al. (1957), is called Kineplex; it was 
used for digital transmission in the high-frequency (HF) radio band. Other early work 
on multicarrier system design is described in the papers by Chang (1966) and Saltzberg 
(1967). The use of DFT for the modulation and demodulation of multicarrier OFDM 
systems was proposed by Weinstein and Ebert ( 197 1). More recent references on appli­
cations of OFDM in practical systems are papers by Chow et al. (1995) and Bingham 
(1990). The book by Bahai and Saltzberg (1999) provides a comprehensive treatment 
of OFDM. 

The problem of PAR reduction in multicarrier systems has been investigated by many 
people. The reader is referred to the papers by Boyd (1986), Popovic (1991), Jones et al. 
(1994), Wilkinson and Jones (1995), Wulich (1996), Tellado and Cioffi (1998), and Tarokh 
and Jafarkhani (2000). 

PROBLEMS 

11.1 Show that the sequence {xn , 0 :::; n :::; N - 1 } given by Equation (1 1 .3 .5) corresponds 
to the samples of x(t) given by Equation (1 1 .3.6). Also, prove that x(t) given by 
Equation ( 1 1 .3.6) is a real-valued signal. 
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11.2 Show that the IDFT of a sequence {Xb 0 :::; k :::; N - l }  can be computed by 
passing the sequence {Xd through a parallel bank of N linear discrete-time filters 
with system functions 

1 Hn(Z) = 
1 - ej2rcn/Nz-1 ' n = 0, 1 ,  . . .  , N - 1 ,  

where the filter outputs are sampled at n = N. 

11.3 Assess the cost of the cyclic prefix (used in multicarrier modulation to avoid ISI) in 
terms of 

1. Extra channel bandwidth. 

2. Extra signal energy. 

11.4 Let x [n] be a finite-duration signal with length N and let X[k] be its N-point DFf. 
Suppose we padx [n] with L zeros and compute the (N + L)-point DFT, X'[k]. What 
is the relationship between X[O] and X'[O]? Ifwe plot IX[k] I and IX'[k] I on the same 
graph, explain the relationship between the two graphs 

COMPUTER PROBLEMS 

11.1 Subcarrier Demodulation 

Consider the noise-free received signal r6(t) in Example 1 1 .2.2. Perform the demo­
dulation steps given in Equations ( 1 1 .2.4) through ( 1 1 .2.7) and, thus, demonstrate 
that the demodulated symbol is x6 = 3 + j l .  

11.2 Generation of an OFDM signal for 16-point QAM 

Using the 16-point QAM signal constellation shown in Figure 8.54(a), select pseu­
dorandornly each of the information symbols Xo , X1 ,  X2, . . .  , X9. With T = lOO sec, 
generate the transmitted signal waveform x (t) given by Equation (1 1 .3.6) for 
t = 0, 1 ,  . . .  , 100 and plot it. Then compute the IDFT values Xn for n = 0, 
1, . . .  , N-1, by using Equation ( 1 1 .3.5). Demonstrate that x(t), evaluated at Tn/ N, 
n = 0, 1 ,  . . .  , N - 1 , corresponds to the IDFT values. Finally, using the IDFT values 
{xn , 0 :::; n :::; N - 1} ,  compute the DFT, defined as 

N-1 
xk = ;., LXne-jZrck;V k = 0, 1, . . .  , N - 1 ;  

'\/ N n=O 

thus, demonstrate that the information symbols {Xk , 1 :::; k :::; 9} are recovered from 
the samples of x(t), where t = nT / N, 0 :::; n :::; N - 1 .  

11.3 Generation of an OFDM Signal for Four-phase PSK 

Repeat Computer Problem 1 1 .2 by generating an OFDM signal that transmits 
the K = 16 information symbols (Xo, X1 ,  . . .  , Xis) selected pseudorandornly from 
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the four-phase PSK constellation. Use the FFT algorithm to compute the DFT 
and IDFT. 

11.4 Computation of the IDFT of OFDM Signal 

Compute the IDFT of the OFDM signal given in Equation ( 1 1 .3 .5), where K = 16 
and the symbols (X0, X 1 ,  . . .  , X 1s) selected from the four-phase PSK constellation. 
Plot the magnitude IX (f) I for the OFDM signal. 

11.5 Use of Cyclic Prefix 

Using the OFDM signal generated in Computer Problem 1 1 .2, add a cyclic prefix of 
four samples to account for the channel dispersion and, thus, modify the MATLAB 
script given in Computer Problem 1 1 .2. 

11.6 Spectrum of OFDM Signal 

Determine the magnitude I Uk (f) I of the Fourier transform of the signal given by 
Equation ( 1 1 .4.2) for fk = k/T, k = 0, 1 ,  2, 3, 4, 5. For simplicity, let Ak = 1 
and ek = 0 for all k. Plot I Uk (f) I on the same graph for k = 0, 1 ,  2, 3, 4, 5 for 
0 :S f  :S 4/ T. 

11.7 Computation of PAR for QAM OFDM Signal 

Repeat the PAR computation in Example 1 1 .5 . 1  for the M = 16 QAM OFDM 
signal generated in Computer Problem 1 1 .2. Compare the computed PAR for QAM 
OFDM signal with the PSK OFDM signal. 

11.8 Computation of PAR for PSK OFDM Signal 

Repeat the PAR computation in Example 1 1 .5 . 1  for K = 128 and compare the result 
with K = 32. 

11.9 Limiting the PAR by Clipping the Peaks 

Repeat Example 1 1 .5 . 1 ,  but in this case clip the peak amplitude of the samples so 
that the PAR :::: 3 dB. Define the clipped signal as {xn} and compute the signal 
distortion defined as 

Plot D for the 20 signal realizations. 

11.10 Repeat Computer Problem 1 1 .9 for the PAR :::: 4 dB and for the PAR :::: 6 dB. 

11.11 Reduction of PAR by Random Phase Shifting 

Generate samples of the OFDM signal 

0 :S t  :S T, 
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where the phase <Pk is selected from a uniform distribution on interval (0, 2n) and the 
remaining signal parameters are identical to those in Exaple 1 1 .5 . 1 .  Generate four 
sets of uniformly distributed phases {¢k}, and for each realization of x(t), select the 
set that yields the smallest PAR. Repeat this process for 20 different realizations of 
x(t) and plot the resultant PAR for the 20 realizations of x(t). 

11.12 Repeat Computer Problem 1 1 . 1 1  for K = 8, four-phase PSK transmitted 
symbols. 



An I ntroduction 
to I nformation 
Theory 

In Chapter 1 ,  we saw that the essential parts of any communication system are the informa­
tion source, the communication channel, and the destination. We also saw that these three 
components are usually the given parts of a communication system, i.e., the communica­
tion engineer usually does not have much control over them. We also saw that two systems, 
i.e., the transmitter and the receiver, connect the information source to the channel and the 
channel to the destination, respectively. These two systems are completely designed by the 
communication engineer; therefore, they are under the full control of the designer. The role 
of these systems is to match the output of their preceding systems (the information source 
in the case of the transmitter, and the channel in the case of the receiver) to the system that 
comes after them (the channel in the case of the transmitter, and the destination in the case 
of the receiver). Another goal in the design of the transmitter and the receiver is to make 
sure that the signal will be resistant to channel impairments during the transmission. This 
results in different design techniques and methodologies, depending on the properties of 
the channel. For instance, in designing signals for transmission over a bandlimited channel, 
the problems of distortion and intersymbol interference must be considered in the design 
of the transmitted signal. When many transmitters and receivers share the same commu­
nication medium, as in the case of wireless communication, the problem of interference 
among different users should be addressed as well. 

In Chapters 3, 4, 6, 7, 8, 9, 10, and 1 1 , we studied different communication situations 
and signal design techniques. In Chapters 3, 4, and 6, we studied analog communication 
systems and the signal-to-noise ratio (SNR) that each system can provide at the output. In 
Chapters 7, 8, 9, 10, and 1 1 ,  we showed how analog signals can be transformed to digital 
signals and how digital signals can be transmitted. None of these chapters studied the 
fundamental limits on communications. Even in Chapters 8, 9, 10, and 1 1 ,  where optimal 
receivers for a given signal set were designed, we did not design the optimal signal set; 
thus, there was no discussion of overall communication system optimality. 

In this chapter, we study communication systems from another point of view. We 
study fundamental limits on the representation and transmission of information. In other 
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words, we try to determine the limits of communication. We will answer questions such as 
the following: What is the highest rate at which information can be reliably transmitted over 
a communication channel? What is the lowest rate at which information can be compressed 
and still be retrievable with small or no error? What is the complexity of such optimal 
systems? These questions belong to a branch of communication theory called information 
theory, a field founded in 1948 by the pioneering work of Claude E. Shannon. 

Shannon's fundamental contributions can be classified into two main categories. The 
first category consists of fundamental limits that apply to information sources. In this cate­
gory, mathematical models for information sources are developed, and a method for mea­
suring the information content of a source is introduced. Then the fundamental question 
of source coding is addressed and answered, i.e., what is the minimum rate at which a 
source can be compressed and still be recoverable from the compressed version? This is 
the essence of Shannon's source-coding theorem. 

The second category of fundamental limits concerns the transmission of information 
over noisy channels. The fundamental question is: What is the maximum rate at which 
information can be transmitted reliably over a noisy channel? This question is addressed 
in the well-known noisy channel coding theorem. 

1 2.1  MODELING INFORMATION SOURCES 

Communication systems are designed to transmit information. In any communication sys­
tem, an information source produces the information. The purpose of the communication 
system is to transmit the output of the source to the destination. In radio broadcasting, for 
instance, the information source is either a speech source or a music source. In TV broad­
casting, the information source is a video source, and the output is a moving image. In fax 
transmission, the information source produces a still image. In communication between 
computers, either binary data or ASCII characters (encoded as a sequence of binary digits) 
are transmitted; therefore, the source can be modeled as a binary or ASCII source. In the 
storage of binary data on a computer disk, the source is again a binary source. 

To study various information sources, we require a mathematical model to represent 
information sources and to measure their information content. Hartley, Nyquist, and Shan­
non were the pioneers in defining quantitative measures for information. In this section, 
we investigate the mathematical modeling of information sources and define a measure of 
information. In the next few sections, we will see how the output of an information source 
can be made more compact for easier transmission or storage. The process of representing 
the output of an information source with a small number of bits is called data compression. 

The intuitive and common notion of information refers to any new knowledge about 
something. We can obtain information via hearing, seeing, or other means of perception. 
The information source, therefore, produces outputs that may interest the receiver of the 
information (who does not know these outputs in advance). The role of the communication 
system designer is to make sure that this information is transmitted to the receiver correctly. 
Since the output of the information source is a time varying unpredictable function (if it 
is predictable, there is no need to transmit it), it can be modeled as a random process. In 
previous chapters, we have already seen that the existence of noise in communication chan­
nels causes stochastic dependence between the input and output of the channel. Therefore, 
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the communication system designer creates a system that transmits the output of a random 
process (information source) to a destination via a random medium (channel) and ensures 
low distortion. 

Information sources can be modeled by random processes, and the properties of the 
random process depend on the nature of the information source. Some basic characteristics 
of an information source include bandwidth, range of amplitude variations, power content, 
and statistical properties (e.g., probability density function (PDF) of the amplitude, station­
arity, and power spectral density). For example, when we model speech signals, our result 
is a random process that has all its power in a frequency band of approximately 300-3400 
Hz. Therefore, the power spectral density of the speech signal also occupies this band of 
frequencies. A typical power spectral density for the speech signal is shown in Figure 12. 1 .  
Video signals are restored from a still or moving image; therefore, the bandwidth depends 
on the required resolution. For TV transmission, this band is typically 0-6.5 MHz. 

There is one common element in each of these processes: They are bandlimited pro­
cesses and can be sampled at the Nyquist rate or faster and can be reconstructed from the 
sampled values. Therefore, it makes sense to limit this chapter to discrete-time random 
processes because all information sources of interest can be modeled by such a process, 
after they are sampled. The mathematical model for an information source is shown in 
Figure 12.2. Here, the source is modeled by a discrete-time random process {X; }�_00• 
The random variables X; are defined over an alphabet that can be either discrete (e.g., 
for binary data) or continuous (e.g., for sampled speech). The statistical properties of the 
discrete-time random process depend on the nature of the information source. 

Here, we will only study simple models for information sources. The study of more 
complicated models is mathematically demanding and beyond the scope of this book. How­

- ever, even simple models enable us to precisely define a measure of information and bounds 
on the compression and transmission of information. 

The simplest model for the information source that we study is the discrete memory­
less source (DMS). A DMS is a discrete-time, discrete-amplitude random process in which 
all X; 's are generated independently and with the same distribution. Therefore, a DMS gen­
erates a sequence of i.i.d. (independent and identically distributed) random variables that 
take values in a discrete set. 

Sx(f) 

-3400 -300 300 3400 f 

Information source 1-----------+-

Figure 12.1 Typical power spectrum of a speech 
signal. 

Figure 12.2 Mathematical model for a 
discrete-time information source. 
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Let di = {a1 ,  az , . . .  , aN} dertote the set in which the random variable X takes its 
values, and let the probability mass function for the discrete random variable X be denoted 
by p; = P (X = a;) for i = 1 ,  2, . . .  , N. A full description of the DMS is given by the set 
di, called the alphabet, and the probabilities {Pi }[:,1 . 

Example 12.1.1 
An information source is described by the alphabet di = {O, l }  and p(X; = l) == 

1 - P (X; = 0) = p. This is an example of a discrete memoryless source, and it gener­
ates a sequence of zeros and ones; therefore, it is a binary source. In the special case where 
p- = 0.5, the source is called a binary symmetric source, or BSS, for short. • 

1 2.1 .1  Measure of Information 

To provide a quantitative measure of information, we start with the basic model of an 
information source and define its information content to satisfy certain intuitive properties. 
Assume that the source that we are considering is a discrete and memoryless source. Let 
the outputs of this source be revealed to an interested party. Let a1 be the most likely output 
and aN be the least likely output. For example, we could imagine the source to represent 
both the weather conditions and air pollution in a certain city (in the northern hemisphere) 
during July. In this case, di represents various combinations of different weather conditions 
and pollution (such as hot and polluted, hot and lightly polluted, cold and highly polluted, 
cold and mildly polluted, and very cold and lightly polluted). The question is, Which out­
put conveys more information, a1 or aN (the most probable or the least probable output)? 
Intuitively, revealing aN (very cold and lightly polluted, in the previous example) reveals 
the most information. It follows that a rational measure of information for an output of an 
information source should be a decreasing function of the probability of that output. A sec­
ond intuitive property of a measure of information is that a small change in the probability 
of a certain output should not drastically change the information delivered by that output. 
In other words, the information measure should be a continuous function of the probability 
of the source output. 

Now assume that the information about output a j can be subdivided into two inde­
pendent parts called a jl and a j2• i.e., X j = (X jl ,  X jz), a j = {aj1 ,  a jz } and P(X = a j) = 
P(Xj1 = aj1)P (Xj2 = aj2) . This can happen if we assume that the temperature and pol­
lution were almost independent; therefore, each source output can be subdivided into two 
independent components. Since the components are independent, revealing the informa­
tion about one component (temperature) does not provide any information about the other 
component (pollution); so, intuitively, the am�unt of information provided byTevealing aj 
is the sum of the two information components obtained by revealing a jl and a jZ· From the 
preceding discussion, we can conclude that the amount of information revealed about an 
output aj with probability Pj must satisfy the following conditions: 

1. The information content of output a j depends only on the probability of a j and not 
on the value of a j . We denote this function by I (p j) , and we call it self information. 

2. Self information is a continuous function of p j , i.e., I (-) is a continuous function. 
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3. Self information is a decreasing function of its argument. 
4. If Pj = Pj1Pj2, then l (pj ) = l (pj1 ) + I (pj2) .  

It can be shown that the only function that satisfies all these properties is the logarithmic 
function, i.e., I (x) = - log(x). The base of the logarithm is not important and simply 
determines the unit by which the information is measured. If the base is 2, the information 
is expressed in bits per source symbol or bits per sample. Note that we can use the relation 
log2 X = 11°g10 x2 to find logarithms l in base 2. ogw Now that the information revealed about each source output ai is defined as the self 
information of that output, which is given by - log(pi) ,  we can define the information 
content of the source as the weighted average of the self information of all source outputs. 
This is justified by the fact that the frequency of appearance of various source outputs is 
proportional to their corresponding probabilities. Therefore, the information revealed by 
an unidentified source output is the weighted average of the self information of the various 
source outputs, i.e., z=f:,1 p;l  (Pi) = z=f:,1 -Pi log Pi . The information content of the 
information source is known as the entropy of the source and is denoted by H (X) .  

Definition 12.1.1. The entropy of a discrete random variable X is a function of its 
PMF and is defined by 

where 0 log 0 = 0. 

N N �: 

H (X) = - L Pi log Pi = L Pi log (�) , 
i=l , ' o i=l Pz 

( '  ., 
!) 

- \ 
2 

f 
(12. 1 . 1 )  

• 

Note that there is a slight abuse of notation here. We would expect H(X) to denote a 
function of the random variable X; hence, it would be a random variable itself. However, 

. H (X) is a function of the probability mass function (PMF) of the random variable X and 
is just a number. 
Example 12.1.2 

For a binary memoryless source with probabilities p and 1 - p, we have 

H(X) = -p log p - (1 - p) log( l  - p). (12. 1 .2) 

This function, denoted by Hb (p), is known as the binary entropy function, and a plot of it is 
given in Figure 12.3. • 

From the plot of the binary entropy function, we can see that the entropy of the binary 
memoryless source is zero when either p = 0 or p = 1 .  These two cases correspond to the 
time when the source generates all zeros or all ones. In both cases, the source is determinis­
tic and completely predictable. On the other hand, entropy is maximized, with a maximum 
equal to 1 ,  when the two source outputs are equiprobable and each has probability i .  This 
is the case where the output is least predictable; therefore, its entropy is maximized. This 
supports the intuitive development of entropy as a measure of the information content of a 
source (or measure of uncertainty of it). 

· 

1 In this chapter, we use log x denote log2 x. 
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Figure 12.3 The binary entropy 
function. 

Example 12.1.3 
A source with the bandwidth 4000 Hz is sampled at the Nyquist rate. Assuming that the result­
ing sequence can be approximately modeled by a DMS with alphabet S'l = {-2, - 1,  0, 1 ,  2} 
and with corresponding probabilities { � , � ,  � ,  f6, f6 } , determine the rate of the source in bits 
per second. 

Solution We have 

1 1 1 1 15 . 
H(X) = 2 1og 2 + 4 1og 4 + 8 1og 8 + 2 x 

16
log 16 = S bits/sample. 

Since we have 2 x 4000 = 8000 samples/sec, the source produces information at a rate of 
8000 x Jt = 15,000 bits/sec. • 

Example 12.1.4 
A discrete memoryless source has an alphabet of size N and the source outputs are equiprob­
able (each having a probability of 1J ). Find the entropy of this source. 

Solution We have 

N 1 1 
H(X) = - '°"' - log -L.... N N i=I 

= log N. (12. 1 .3) 

• 

The entropy of a discrete random variable X with N possible values satisfies the 
lower and upper bounds given in Equation (12. 1 .4). 

0 :::;: H(X) :::;: log N. (12.1 .4) 

The lower bound follows from the fact that because 0 :::;: Pi < 1 ,  we have - log Pi ::::: 0. 
The lower bound H(X) = 0 is achieved when the random variable X is deterministic, 
i.e., it takes one of its possible values with probability 1 ,  and the rest with probability 0. 
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The uppper bound H (X) = log N is achieved when the random variable is uniformly 
distributed (see Problem 12.7). 

12. 1 .2 Joint and Conditional Entropy 

·When dealing with two or more random variables, we can introduce joint and conditional 
entropies in exactly the same way that joint and conditional probabilities are introduced. 
These concepts are especially important when dealing with sources with memory. 

Definition 12.1.2. The joint entropy of two discrete random variables (X, Y) is 
defined by 

H(X, Y) = - I >cx, y) log p(x ,  y) . (12. 1 .5) 
x,y 

For the case of n random variables X = (X 1 ,  X 2,  . . .  , Xn), we have 

H(X) = - L p(x1 ,  X2 , . • . , Xn) log p(x1 ,  X2, • . • , Xn) . (12. 1 .6) 

• 

As seen, the joint entropy is simply the entropy of a vector-valued random variable. 
The conditional entropy of the random variable X, given the random variable Y, 

can be defined by noting that if Y = y, then the PMF of the random variable X will be 
p(x ly) and the corresponding entropy is H(X IY = y) = - Lx p(x ly) log p(x ly), which 
is intuitively the amount of uncertainty in--X-when we know that Y = y. The weighted 
average of these quantities over all y isfue uncertainty in X when Y is know�. This -quantity 
is known as the conditional entro�/ and defined next. 

I 
Definition 12.1.3. The r:onditional entropy of the random variable X, given the 

random variable Y, is defined by 

H(XIY) = - L P(X, y) log p(x ly) . (12. 1 .7) 
x,y 

In general, we have 

(12.1 .8) 

• 

Example 12.1.5 
Using the chain rule for PMFs, namely, p(x, y) = p(y)p(x ly), as given in Chapter 5, show 
that H(X, Y) = H(Y) + H(XIY). 
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Solution From the definition of the joint entropy of two raiidom variables, we have 

H(X, Y) = - L p(x, y) logp(x, y) 
x,y 

= - L p(x, y) log[p(y)p(x ly)] 
x,y 

= - L P(x, y) logp(y) - L P(X, y) log p(x ly) 
x,y x,y 

= - L P(y) logp(y) - L P(x, y) log p(x ly) 
y x,y 

= H(Y) + H(XJY), (12. 1 .9) 

where, in the last step, we have used 

L P(X, y) = p(y) .  (12 .1 . 10) 
x 

• 

This relation states that the information content of the pair (X, Y) is equal to the informa­
tion content of Y plus the information content of X after Y is known. Equivalently, it states 
that the same information is transferred by either revealing the pair ( X, Y) or by first reveal­
ing Y and then revealing the remaining information in X. This relation can be generalized 
to the case of n random variables to show the chain rule for entropies, as follows: 

(12. 1 . 1 1) 

In the case where the random variables (X1 , X2 , . . .  , Xn) are independent, this relation 
reduces to 

n 
H(X) = L H(X;) .  ( 12. 1 . 12) 

i=l 

If the random variable Xn denotes the output of a discrete (not necessarily mem­
oryless) source at time n, then H (X2 1X1) denotes the new information provided by the 
source output X2 to someone who already knows the source output X1 . Similarly, 
H (Xn lX1 ,  X2, . • .  , Xn_1) denotes the new information in Xn for an observer. who has 
observed (X 1 ,  X2, . . .  , Xn_1) .  The limit ohhis conditional entropy as n tends to infinity is 
known as the entropy rate of the random process. 

Definition 12.1.4. The entropy rate of a stationary discrete-time random process is 
defined by 

H = lim H(Xn lX 1 ,  X2, . . .  , Xn-1 ) .  ( 12. 1 . 13) 
n--->oo 

I 
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Stationarity ensures the existence of the limit. It can be proved that an alternative 
definition_ of the entropy rate for sources with memory is given by 

. 1 
H = hm -H(X1 , X2, . . .  , Xn) . ( 12. 1 . 14) 

n->oo n 

Entropy rate plays the role of entropy for sources with memory. It is basically a 
measure of the uncertainty per output symbol of the source. 

Example 12.1.6 
Two binary random variables X and Y are distributed according to the joint PMF given by 

1 
P (X = 0, Y = 1) = 4;  

1 
P(X = 1 ,  Y = 1) = l ;  

1 
P (X = 0, Y = 0) = 4 . 

Determine H(X, Y), H(X), H(Y), H(X IY) ,  and H(YIX) .  

. 1 1 1  1 1  1 
Solution We have P (X = 1 ,  Y = 0) = 0 and H(X, Y) = - - log - - - log - - - log - = 
3 

4 4 4 4 2 2 
l. Next, we have 

and 

1 1 
P (X = 1) = P(X = 1 ,  Y = 0) + P(X = l ,  Y = 1) = - =? P (X = 0) = -

2 2 

� 3 ' 1 
P(Y = 1) = P (X = 1 ,  Y = 1) + P('X\= 0, Y = 1) = 4 =? P(Y = 0) = 4 · 

Thus, we conclude that 

and 

and 

1 1 l 1 
H(X) = - 2 log 2 - 2 1og l = 1 

3 3 1 1 
H(Y) = - - log - - - log - = 0.81 13. 

4 4 4 4 

H(X, Y) = H(X) + H(YIX) ,  

H(Y IX) = 1 .5 - 1 = 0.5 

H(X IY) = H(X, Y) - H(Y) = 1 .5 - 0.8 1 13 = 0.6887. • 
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12.1 .3 Mutual Information 

For discrete random variables, H (X I Y) denotes the entropy (or uncertainty) of the random 
variable X after the random variable Y is known. Therefore, if the entropy of the random 
variable X is H(X), then H(X) - H(XI Y) denotes the amount of uncertainty of X that 
has been removed by revealing random variable Y. In other words, H (X) - H (X I Y) is the 
amount of information provided by the random variable Y about random variable X. This 
quantity plays an important role in both source and channel coding and is called the mutual 
information between two random variables. 

Definition 12.1.5. The mutual information between two discrete random variables 
X and Y is denoted by I (X; Y) and is defined by 

I (X; Y) = H(X) - H(XIY). (12. 1 . 15) 

• 
Using the expression for entropy and Equation (12. 1 .7) for conditional entropy, we 

can determine the following relation for the mutual information between two random vari­
ables X and Y:  

Example 12.1.7 

� � p(x ly) 
l (X; Y) = � � p(x, y) log -­

p(x) 
XE� yE6!/ 

� � p(x, y) 
= � � p(x,  y) log . 

CNJ m i  p(x)p(y) 
XEUl, yE-.'.J 

(12. 1 . 16) 

Let X and Y be binary random variables with P(X = 0, Y = 0) = t• P(X = 1, Y = 0) = t •  
and P(X = 0,  Y = 1) = t ·  Find J (X; Y) in this case. 

Solution We have, P(X = 0) = P(Y = 0) = � ; therefore, H(X) = H(Y) = Hb(�) = 
0.919. On the other hand, the (X, Y) pair is a random vector uniformly dist�uted on three 
values: (0, 0), ( 1 ,  0), and (0, 1) . Therefore, H(X, Y) = log 3 = 1 .585. From this, we have 
H(X\Y) = H(X, Y) - H(Y) = 1 .585 - 0.919 = 0.666 and J (X; Y) = H(X) - H(X\Y) = 

0.919 - 0.666 = 0.253 . • 

It can be shown (see Problem 12.31)  that 

I (X; Y) = I (Y; X) = H(X) - H(X I Y) = H(Y) - H(YIX) = H(X) + H(Y) - H(X, Y). 
(12. 1 . 17) 

Figure 12.4 represents the relation among entropy, conditional entropy, and mutual 
information quantities. 

12.1 .4 Differential Entropy 

So far, we have defined entropy and mutual information for discrete sources. If we are 
dealing with a discrete-time continuous-alphabet source whose outputs are real numbers, 
no quantity exists that has the intuitive meaning of entropy. In the continuous case, another 
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-
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Figure 12.4 Entropy, 
conditional entropy, and 
mutual information quantities. 

quantity that resembles entropy, called differential entropy, is defined. However, it does 
not have the intuitive interpretation of entropy as the uncertainty in the source output. In 
fact, to reconstruct the output of a continuous source reliably, an infinite number of bits per I 
source output are required because any output of the source is a real number and the binary 
expansion of a real number has infinitely many bits. 

� 
Definition 12�. The differential entropy of a continuous random variable X with 

the probability density functg:m fx(x) is denoted by h(X) and defined by 

where O logO = 0. 

Example 12.1.8 

h(X) = -1_: fx(x) log fx(x)dx, (12. 1 . 1 8) 

• 

Determine the differential entropy of a random variable X uniformly distributed on [0, a]. 

Solution From the definition of differential entropy, la 1 1 
h(X) = - - log -dx = log a. 

0 a a 

Clearly, for a < 1 ,  we have h (X) < 0, which is in contrast to the nonnegativity of the entropy 
of discrete sources. Also, for a = 1 ,  h (X) = 0 without X being deterministic. This is again in 
contrast to the entropy properties of discrete sources. • 

Example 12.1.9 
Determine the differential entropy of a zero-mean Gaussian random variable with variance a2• 

Solution The PDF is f(x) = �e-;:2 •  Therefore, using natural logarithms, we find 
v2na2 

the differential en
_
tropy to be 

h(X) = -1_: ln ( v'2·:�2) f(x)dx -1_: ln (e-f!r) f(x)dx 

= ln ( v'2Jta2 ) + ;;2 
1 = l ln (2nea2) , (12. 1 . 19) 
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where f ::"00 f (x )dx = 1 and J:O x2 f (x )dx = o-2. Changing the base of the logarithms to 2 
we have ' 

(12. 1 .20) 

• 

Extensions of the definition of differential entropy to joint random variables and 
conditional differential entropy are straightforward. For two random variables, we have 

h(X, Y) = -1:1: f(x , y) log f(x, y)dx dy (12. 1 .21) 

and 

h(X IY) = h(X, Y) - h(Y). (12. 1 .22) 

The mutual information between two continuous random variables X and Y is defined 
similarly to the discrete case as 

I (X; Y) = h(Y) - h(Y IX) = h(X) - h(X I Y) . (12. 1 .23) 

Although differential entropy does not have the intuitive interpretation of discrete source 
entropy, the mutual information of continuous random variables has the same interpretation 
as discrete random variables, i.e., the information provided by one random variable about 
the other random variable. 

12.2 THE SOURCE CODING THEOREM 
� 

The source coding theorem is one of the three fundamental theorems introduced by Shan-
non (1948a, 1948b). The source coding theorem establishes a fundamental limit on the rate 
at which the output of an information source can be compressed without causing a large 
error probability. We have already seen that the entropy of an information source is a mea­
sure of the uncertainty or, equivalently, the information content of the source. Therefore, 
it is natural that the entropy of the source plays a major role in the statement of the source 
coding theorem. 

The entropy of an information source has a very intuitive meaning. Assume that we 
are observing outputs of length n of a DMS where n is very large. Then, actording to the 
law of large numbers (see Chapter 5), there is a high probability (that goes to 1 as n --+ oo) 
that letter a1 is repeated approximately np1 times, letter a2 is repeated approximately np2 
times, . . .  , and letter aN is repeated approximately npN times. This means that when n 
is large enough, with a probability approaching 1, every sequence from the source has 
the same composition and therefore the same probability. The sequences x that have this 
structure are called typical sequences. Using the fact that the source is memoryless, the 
probability of a typical sequence is given by 
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N 
P(X = x) � 0P7Pi 

i=I 
N 

= n 2npi log Pi 
i=I 

= 2n L�! Pi log Pi 

= 2-nH(X) . 

This means that for large n, typical output sequences of length n of the source are equally 
probable with probability � 2-nH(X) . On the other hand, thtProbability of the set of non-
typical sequences is negligible. / Since the probability of the typical sequences is almost 1 and each typical sequence I 
has a probability of almost 2-nH(X) , the total number of typical sequences is almost 2nH(X) . 
Therefore, although a source of alphabet size N can p�oduce Nn sequences of length n, the 
"effective" number of outputs is 2nH(X) . By "effectiv� number of outputs," we mean that 
almost nothing is lost by neglecting the other outputs and the probability of having lost 
anything goes to zero as n goes to infinity. Figure 12.5 gives a schematic diagram of this 
property. The notion of typicality and the properties of typical sequences are practically 
very important. It tells us that, for all practical purposes, it is enough to consider the set 
of typical sequences rather than the set of all possible outputs of the source. The error 
introduced in ignoring nontypical sequences can be made smaller than any given E > 0 by 
choosing an n that is large enough. This is the essence of data compression, the practice of 
representing the output of the source with a smaller number of sequences than the number 
of the outputs that the source really produces. 

From this result, and since E is an arbitrary positive number, we can only repre­
sent the typical source outputs without introducing considerable error. Since the total 
number of typical sequences is roughly 2nH(Xl , we need nH(X) bits to represent them. 

• 
• 

• 

• 

Set �f typical sequences with = znH(X) 

elements 

• • 
• 

• • 
• • 

• • • 

• • • • • 
• 

• 
• • • 

• • 

• 

• 
• 

• 

• 

Figure 12.5 The set of typical and 
nontypical sequences. 
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However, these bits are used to represent source outputs of length n. Therefore, on the 
average, any source output requires H(X) bits for an essentially error-free representation. 
This once again justifies the notion of entropy as the amount of information per source 
output. 

So far, we have assumed that the source is discrete and memoryless; therefore, it 
can be represented by an i.i.d. random variable. Such a source can only be compressed 
if its PMF is not uniform. For X uniformly distributed, as shown in Example 12.1 .4, we 
have H(X) = log N;  therefore, 2nH (X) = 2n logN = Nn. This means that the "effective" 
number of source outputs of length n is equal to the total number of source outputs and no 
compression is possible. 

We have not considered the case where the source has memory. For a source with 
memory, the outputs of the source are not independent; therefore, previous outputs reveal 
some information about the future ones. This means that the rate at which fresh information 
is produced decreases as more and more source outputs are revealed. A classic example of 
such a case is printed English text, which shows a lot of dependency between letters and 
words (e.g., a "q" is almost always followed by a "u", a single letter between two spaces is 
either an "I" or "a"). The entropy per letter for a large text of English is roughly the limit of 
H(Xn lX1 , X2 , . • •  , Xn-1) as n becomes large (the entropy rate defined in Section 12. 1.2). 
In general for stationary sources, the entropy rate has the same significance as the entropy 
for the case of memoryless sources and defines the number of "effective" source outputs 
for any n that is large enough, i.e., 2nH where H is the entropy rate. 

-

Studies with statistical models of printed English show that the entropy rate con­
verges rather quickly; for n = 10, we are very close to the limit. These studies show that 
for n = 1 ,  i.e., a memoryless source model, we have H(X) = 4.03 bits/letter. As the 
memory increases, the size of the space over which conditional probabilities are computed 
increases rapidly, and it is not easy to find the conditional probabilities requirftl to com­
pute the entropy rate. Some methods for estimating these conditional probabilities have 
been proposed in the literature and, based on these methods, the entropy of English is 
estimated to be around 1 .3 bits/letter. (In these studies, only the 26 letters of the English 
alphabet and the space mark have been considered.) 

So far, we have given an informal description of the source coding theorem and 
justified it. A formal statement of the theorem, without proof, is given next. The interested 
reader is referred to the references at the end of this chapter for a proof. 

Source Coding Theorem A source with entropy (or entropy rate) H can be encoded 
with an arbitrarily small error probability at any rate R (bits/source output) as long as 
R > H. Conversely, if R < H, the error probability will be bounded away from zero, 
independent of the complexity of the encoder and the decoder employed. • 

This theorem, first·proved by Shannon (1948a), only gives necessary and sufficient 
conditions for the existence of source codes. It does not provide any algorithm for the 
design of codes that achieve the performance predicted by this theorem. In the next section, 
we present two algorithms for the compression of information sources. One is due to Huff­
man (1952), and the second is due to Lempel and Ziv (1977, 1978). 
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12.3 SOURCE CODING ALGORITHMS 

In the preceding section, we observed that H, the entropy of a source, gives a sharp bound 
on the rate at which a source can be compressed for reliable reconstruction. This means 
that at rates above entropy, it is possible to design a code with an error probability as small 
as desired, whereas at rates below entropy, such a code does not exist. This important 
result, however, does not provide specific algorithms to design codes approaching this 
bound. In this section, we will introduce two algorithms to design codes that are close 
to the entropy bound. These coding methods are the Huffman coding algorithm and the 
Lempel-Ziv source coding algorithm. 

12.3.1 The Huffman Source Coding Algorithm 

In Huffman coding, fixed length blocks of the source output are mapped to variable length 
binary blocks. This is called fixed-to-variable length coding. The idea is to map the more 
frequently occurring fixed length sequences to shorter binary sequences and the less fre­
quently occurring sequences to longer binary sequences, thus achieving good compres­
sion ratios. In variable length coding, synchronization is a problem. This means that there 
should be only one way to parse the binary received sequence into code words. The next 
example clarifies this point. 

Example 12.3.1 
Assume that the possible outputs of an information source are {a1 , a2 , a3 , a4, as} with the cor­
responding probabilities { � ,  � ,  � ,  -fG , -fG } . Consider the following four codes for this source: 

Letter 

a1 
az 
a3 
a4 
as 

Probability 

1 Pr = 2 
1 P2 = 4 
1 p3 = 8 
1 p4 = 16 
1 Ps = 
16 

Code 1 

01 

001 

0001 

00001 

Code words 

Code 2 Code,3 Code 4 

0 00 

10 10 01 

100 1 10 10 

1000 1 1 10 1 1  

10000 1 1 1 1  1 10 

In the first code, each code word ends with a 1. Therefore, as soon as the decoder 
observes a 1 ,  it knows that the code word has ended and a new code word will start. This 
means that the code is a self-synchronizing code. In the second code, each code word starts 
with a 1 .  Therefore, upon observing a 1 ,  the decoder knows that a new code word has started; 
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hence, the previous bit was the last bit of the previous code word. This code i s  again self­
synchronizing, but it is not as desirable as the first code. The reason is that, in this code, we 
have to wait to receive the first bit of the next code word to recognize that a new code word 
has started. However, in Code 1 , we recognize the last bit without having to receive the first bit 
of the next code word. Both Codes 1 and 2 are therefore uniquely decodable. However, only 
Code 1 is instantaneous. Codes 1 and 3 have the convenient property that no code word is the 
prefix of another code word. They satisfy the prefix condition. We can prove· that a necessary 
and sufficient condition for a code to be both uniquely decodable and instantaneous is that 
it satisfy the prefix condition. This means that both Codes 1 and 3 are uniquely decodable 
and instantaneous. However, Code 3 has the advantage of having a smaller average code word 
length. In fact, for Code 1 , the average code word length is 

1 1 1 1 1 
E[L] = 1 x - + 2 x - + 3 x - + 4 x - + 5 x - = 31/16, 

2 4 8 16 16 
and for Code 3, the average code word length is 

1 1 1 1 1 
E[L] = 1 x l + 2 x 4 + 3 x S + 4 x 16 + 4 x 16 = 30/16. 

Code 4 has a major disadvantage. This code is not uniquely decodable. For example, the 
sequence 1 101 10 can be decoded in two ways, as a5a5 or as a4a2a3• Codes that are not uniquely 
decodable are not desirable and should be avoided in practice. From this discussion, we can see 
that the most desirable of the four codes is Code 3, which is uniquely decodable, instantaneous, 
and has the least average code word length. This code is an example of a Huffman code, which 
we will discuss, shortly. • 

As already mentioned, the idea in Huffman coding is to choose code word lengths 
such that more probable sequences have shorter code words. If we can map each source 
output of probability Pi to a code word of length approximately log -i; and, at Tl!he same 
time, ensure unique decodability, then we can achieve an average code word length of 
approximately Li p; log -;; , which is equal to H(X). Huffman codes are uniquely decod­
able instantaneous codes with a minimum average code word length. In this sense, they are 
optimal. By optimal, we mean that among all codes that satisfy the prefix condition (and 
hence are uniquely decodable and instantaneous), Huffman codes have the minimum aver­
age code word length. Next, we present the algorithm for the design of Huffman codes. 
From the algorithm, it is obvious that the resulting code satisfies the prefix condition. 
The proof of the optimality is omitted; for more information, refer to the references in 
Section 12.7 . 

. Huffman Coding Algorithm. 

1. Sort source outputs in decreasing order of their probabilities. 

2. Merge the two least probable outputs into a single output whose probability is the 
sum of the corresponding probabilities. 

3. If the number of remaining outputs is 2, then go to Step 4; otherwise go to Step 2. 
4. Arbitrarily assign 0 and 1 as code words for the two remaining outputs. 
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Sort in decreasing 
order of probability 

Merge the two 
least probable 

no Number of elements = 2? >-----' 

Assign 0 and 1 to 
the two code words 

yes Append the code word 
with O and 1 

Stop Figure 12.6 Huffman hoding 
algorithm. 
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5. If an output is the result of the merger of two outputs in a preceding step, append the 
current code word with a 0 and a 1 to obtain the code word for the preceding outputs; 
then, repeat Step 5. If no output is preceded by the output in current step, then stop. 

Figure 116 shows a flow chart of this algorithm. 

Example lt3.2 
DesJgn a Huffman code for the source given in the preceding Example 12.3.L 

I 
Solution The following tree diagram summarizes the design steps for code construction and 
.the resulting code words: 
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0 1 0 2 

10 1 0 
4 1 
1 0 2 1 110 8 1 

4 1 
1110 1 0 1 

16 8 1 
1 1 1111 16 

• 

The average code word length of a Huffman code is defined by 

R = E[L] = L p(x)l (x), (12.3. 1)  

xE2f 

where l (x) is the length of the code word corresponding to the source output x. It c.an be 
shown that the average code word length satisfies the following inequality: 

H(X) :S R < H(X) + 1 .  (12.3.2) 

From this relation, it is obvious that the efficiency of a Huffman code, defined as 

H (X) 
ri = � , 

R 

is always less than or equal to 1 .  
If the Huffman code i s  designed for sequences of source letters of length n (the nth 

extension of the source), we would have 

where Rn denotes the average code word length for the extended source sequence; there­
fore, R = .! Rn . If our source is memoryless, we also have H (Xn) = nH (X) . Substituting n 
these into e preceding equation and dividing by n, we have 

- 1 
H(X) :S R <  H (X) + - . n (12.3.3) 

Therefore, R can be made as close to H (X) as desired by selecting n large enough. It is 
also obvious that, for discrete sources with memory, R approaches the entropy rate of the 
source as definedfa Equation (12. 1 . 14). 

Example 12.3.3 
A discrete memoryless source with equiprobable outputs and alphabet sll = {a1 , a2 , a3 } has 
the following Huffman code: 
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0 
10 
11 

1 
3 1 0 2 � ==>1--- 1 
3 1 
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The entropy of the source is H (X) = log 3 = 1 .585 and R = � = 1 .667. If we use 
sequences of two letters, we will have the source 

. 
h th b b"li (2) - { I I I l I I I I I } A H ff d " th" wit e pro a I ty vector p 

- ii '  ii '  ii '  ii ' ii '  ii '  ii '  ii '  ii .. u man co e 1or is source 
is designed in the following tree diagram: 

>-"---- 0 

Here, the average code word length is R2 = 3.222 bits per pair of source outputs or 
1 .61 1 bits per each source output. Comparing this with the previous example, we see that the 
average length is closer to the entropy of the source. In other words, working with the second 
extension of the source (i.e., two letters at a time) has improved the efficiency of the coding. If 
we use the third extension of the source, the efficiency will improve further. It is also obvious 
that, although the efficiency of the Huffman code improves by increasing n, the complexity of 
the code design and the encoding/decoding process increases as well. • 

12.3.2 The Lempel-Ziv Source Coding Algorithm 

We have already seen that Huffman codes are optimal in the sense that, for a given source, 
they provide a prefix code with minimum average block length. Nevertheless, there are 
two major problems in implementing Huffman codes. One problem is that the design of a 
Huffman code depend strongly on the source probabilities (statistics). The source statistics 
have to be known in advance to design a Huffman code. If we can only observe the source 
outputs, then we have to do the coding in two passes. In the first pass, we estimate the 
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statistics of the source (which, in the case of sources with memory and in cases where we 
want to apply Huffman coding to the extension of the source, becomes quite time consum­
ing) ; in the second pass, coding is done. The other problem with Huffman codes is that if 
the code is designed for source blocks of length 1 ,  it only employs variations in the fre­
quency of the source outputs and not the source memory. If we want to employ the source 
memory as well, we have to design the code for blocks of lengtli 2 or more; this exponen­
tially increases the complexity of the algorithm. For instance, encoding ASCII characters 
with a block length of 1 requires a tree with 256 terminal nodes, but if a block length of 2 is 
desired, the size of the tree and the complexity of coding becomes much higher. In certain 
applications, such as storage in magnetic or optical media, where high transfer rates are 

. desirable, the complexity and speed of Huffman coding becomes a bottleneck. 
The Lempel-Ziv algorithm belongs to the class of universal source coding algo­

rithms, i.e., algorithms that are independent of the source statistics. This algorithm is a 
variable-to-fixed length coding scheme. This means that any sequence of source outputs is 
uniquely parsed into phrases of varying length and these phrases are encoded using code 
words of equal length. Parsing is done by identifyingf hrases of the smallest length that 
have not appeared before. To this end, the parser observes the source output. As long as the 
new source output sequence after the last phrase coincides with one of the existing phrases, 
no new phrase is introduced and another letter from the source is considered. As soon as 
the new output sequence is different from the previous phrases, it is recognized as a new 
phrase and encoded. The encoding scheme is simple. The new phrase is the concatenation 
of a previous phrase and a new source output. To encode it, the binary expansion of the lex­
icographic ordering of the previous phrase and the new bit are concatenated. For example, 
assume that we want to parse and encode the following sequence: 

0100001 1000010100000101000001 100000101000010. 

Parsing the sequence by the rules previously explained results in the following phrases: 

0, 1, 00, 001 ,  10, 000, 101,  0000, 01 ,  010, 00001 ,  100, 0001,  0100, 0010, 

Clearly, all the phrases are different and each phrase is one of the previous phrases con­
catenated with a new source output. The number of phrases is 15. This mean that, for each 
phrase, we need 4 bits, plus an extra bit to represent the new source output. T e preceding 
sequence is encoded by 

0000 0, 0000 1 ,  0001 0, 001 1 1 ,  0010 0, 001 1 0, 0101 1 ,  0 1 10 0, 0001 

1, 1001 0, 1000 1, 0101 0, 0 1 10 1, 1010 0, 0100 0 

Table 12. 1  summarizes this procedure. 
This representation can hardly be called a data compression scheme because a 

sequence of length 44 has been mapped into a sequence of length 75. However, as the 
length of the original sequence is increased, the compression role of this algorithm becomes 
more apparent. We can prove that for a stationary and ergodic source, as the length of the 
sequence increases, the number of bits in the compressed sequence approaches nH (X), 
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TABLE 12.1 SUMMARY OF LEMPEL-ZIV EXAMPLE 

Dictionary Dictionary Code Word 

Location Contents 

0001 0 0000 0 
2 0010 1 0000 1 
3 001 1 00 0001 0 
4 0100 001 001 1  1 
5 0101 10 0010 0 
6 01 10 000 001 1 0 
7 01 1 1  101 0101 1 
8 1000 0000 01 10 0 
9 1001 01 0001 1 

10 1010 010 1001 0 
1 1  1011 00001 1000 1 
12 1 100 100 0101 0 
13 1 101  0001 01 10 1 
14 1 1 10 0100 1010 0 
15 1 1 1 1  0010 0100 0 

where H (X) is the entropy rate of the source. The decompression of the encoded sequence 
is straightforward and can be done very easily. 

One problem with the Lempel-Ziv algorithm is how the number of phrases should be 
chosen. Here we have chosen 15 phrases, which leaves us 4 bits to represent each phrase. 
In general, any fixed number of phrases will eventually become too small and overflow 
would occur. For example, if we were to continue coding this source for additional input 
letters, we could not add the new phrases to our dictionary because we have assigned four 
bits for representation of the elements of the dictionary and we already have 15  phrases in 
the dictionary. To solve this problem, the encoder and decoder must purge their dictionaries 
of elements that are not useful anymore and substitute new elements for them. The purging 
method should, of course, be a method on which the encoder and the decoder have agreed. 

The Lempel-Ziv algorithm is widely used in practice to compress computer files. 
The "compress" and "uncompress" utilities under the UNIX© operating system and other 
compression programs (zip, gzip, etc.) are implementations of various versions of this 
algorithm. 

12.4 MODELING OF COMMUNICATION CHANNELS 

The mathematical model for an information source together with a quantitative measure 
of information, as well as bounds on compression of an information source that are given 
by the source entropy, were presented in the preceding sections of this chapter. In this 
section, we study the other important component of a communication system, i.e., the 
communication channel. We also introduce the concept of coding for the protection of 
messages against channel errors. 
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As defined in  Chapter 1 ,  a communication channel is any medium over which infor­
mation can be transmitted or in which information can be stored. Coaxial cable, iono­
spheric propagation, free space, fiber optic cables, and magnetic and optical disks are 
examples of communication channels. What is common among these is that they accept 
signals at their inputs and deliver signals at their outputs at a later time (storage case) or at 
another location (transmission case). Therefore, each communication channel is character­
ized by a relation between its input and output. In this sense, a communication channel is 
a system. 

There are many factors that cause the output of a communication channel to be differ­
ent from its input. These factors include attenuation, nonlinearities, bandwidth limitations, 
multipath propagation, and noise. All these factors contribute to a complex input-output 
relation in a communication channel. Due to the presence of fading knd noise, tlte input­
output relation in a communication channel is generally a stochastic relation. 

Channels encountered in practice are generally waveform channels that accept 
continuous-time waveforms as their inputs and produce waveforms as their outputs. 
Because the bandwidth of any practical channel is limited, by using the sampling theo­
rem a waveform channel becomes equivalent to a discrete-time channel. In a discrete-time 
channel, both the input and the output are discrete-time signals. 

In a discrete-time channel, if the values that the input and output variables can take 
are finite, or countably infinite, the channel is called a discrete channel. An example of a 
discrete channel is a binary-input binary-output channel. In general, a discrete channel is 
defined by 2£, the input alphabet, Ci!I, the output alphabet, and p(yjx), the conditional PMF 
of the output sequence given the input sequence. A schematic representation of a discrete 
channel is given in Figure 12.7. In general, the output y; does not only depend on the input 
at the same time x; , but also on the previous inputs (channels with intersymbol interference, 
see Chapter 9) or even on previous and future inputs (in storage channels). Therefore, a 
channel can have memory. However, if a discrete channel does not have memory, it is 
called a discrete memoryless channel or DMC. For such a channel, for any y E ayn and 
x E iX:n, we have 

n 
P(yjx) = fl P(y; lx;) . i=l 

All channel models that we will discuss in this chapter are memoryless. 

2e 
Input alphabet 

p(yix) 

uy 
Output alphabet 

Figure 12.7 A discrete channel. 

(12.4. 1) 
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0 P(O I 0) = 1 - E 0 

1 P(l J l) = 1- E 1 Figure 12.8 The binary symmetric channel. 

A special case of a discrete memoryless channel is the binary symmetric channel 
or BSC. Figure 12.8 shows a binary symmetric channel. In a binary symmetric channel, 
E = P(OJ l )  = P(l JO) is called the crossover probability. 
Example 12.4.1 

Assume that we are dealing with an additive white Gaussian noise channel with binary antipo­
dal signaling (for instance, a binary PSK modulation system). We have already seen in 
Chapters 8 and 10 that, in such a channel, the error probability of a 1 being detected as 0 
or a 0 being detected as 1 is given by 

' �  P (l lOl � P (Ol i) � Q (ff) , (12.4.2) 

where N0 is the noise power spectral density and �b denotes the energy content of each of 
the antipodal signals representing 0 and 1 .  This discrete channel is an example of a binary 
symmetric channel. • 

Example 12.4.2 
In an AWGN channel with binary antipodal signaling, the input is either ,/w;;, or -,/w;;,. 
The output is the sum of the input and the Gaussian noise. Therefore, for this binary-input, 
continuous-output channel, we have � = {±,/w;;,}, qy = JR, and 

1 (y-x/ 
f (yJx) = --e - 2u , J2rr,a-2 

where a-2 denotes the variance of the noise. This an example of a discrete input-continuous 
output channel. • 
The most important continuous alphabet channel is the discrete-time, additive white 

Gaussian noise channel with an input power constraint. In this channel, both � and qy are 
the set ofreal numbers, and the input-output relation is given by 

Y = X + Z, (12.4.3) 

where Z denotes the channel noise, which is assumed to be Gaussian with mean equal to 0 
and variance equal to PN . We further assume that inputs to this channel satisfy some power 
constraint. For example, for large n, input blocks of length n satisfy 

1 n - I>? :s P, n i=l 
(12.4.4) 

where P is some fixed power constraint. This channel model is shown in Figure 12.9. 
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2l' = � --x--1�Y � x + z, 

n 

Input power constraint 1 L x
? 

:=;; P 
n i = l  

1 2.5 CHANNEL CAPACITY 

Figure 12.9 Additive white Gaussian noise 
channel with power constraint. 

We have already seen that H (X) defines a fundamental limit on the rate at which ¥iscrete 
source can be encoded without errors in its reconstruction. A similar "fundamental limit" 
exists also for information transmission over communication channels. 

Of course, the main objt:ctive when transmitting information over any communica­
tion channel is reliability, which is measured by the probability of correct reception at the 
receiver. Due to the presence of noise, at first glance it seems that the error probability is 
always bounded away from zero by some positive number. However, a fundamental result 
of information theory is that reliable transmission (that is, transmission with an arbitrarily 
small error probability) is possible even over noisy channels as long as the transmission rate 
is less than some number, called the channel capacity. This remarkable result, first shown 
by Shannon (1948b), is known as the noisy channel coding theorem. What the noisy chan­
nel coding theorem says is that the basic limitation that noise causes in a communication 
channel is not on the reliability of communication, but on the speed of communication. 

Figure 12.10 shows a discrete memoryless channel with four inputs and outputs. If 
the receiver receives an a, it does not know whether an a or a d was transmitted; if it 
receives a b, it does not know whether an a or a b  was transmitted, etc. Therefore, there 
always exists a possibility of error. But if the transmitter and the receiver agree that the 
transmitter only uses the letters a and c, then there exists no ambiguity. In this case,, if 
the receiver receives an a or a b, it knows that an a was transmitted; if it receives a c or 
a d, it knows that a c was transmitted. This means that the two symbols a and c can be 

1 
2 Figure 12.10 An example of a discrete channel. 
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Figure 12.11 The nth extension of a 
binary symmetric channel. 

transmitted over this channel with no error, i.e., we are able to avoid errors by using only 
a subset of the possible inputs to the channel. Admittedly, using a smaller subset of the 
possible inputs reduces the number of possible inputs, but this is the price that must be 
paid for reliable communication. This is the essence of the noisy channel coding theorem, 
i.e., using only those inputs whose corresponding possible outputs are disjoint, and thus do 
not cause ambiguity as to what message was transmitted. The chosen inputs should be "far 
apart" such that their "images" under the channel operation are nonoverlapping (or have 
negligible overlap). 

Looking at the binary symmetric channel and trying to apply this approach, we 
observe that there is no way that we can have nonoverlapping outputs. In fact, this is 
the case with most channels. To use the results of this argument for the binary symmet­
ric channel, we have to apply it not to the channel itself, but to the extension channel.2 
The nth extension of a channel with input and output alphabets ze and ay and conditional 
probabilities P (y [x) is a channel with input and output alphabets gen and ayn and con­
ditional probability P (y [x) = f}7=1 P (y; [x; ) . The nth extension of a binary symmetric 
channel takes binary blocks of length n as its input and its output. This channel is shown 
in Figure 12. 1 1 .  By the law of large numbers, discussed in Chapter 5, if n is large enough 
and a binary sequence of length n is transmitted over the channel, the output will disagree 
with the input with high probability at nE positions. The number of possible sequences that 
disagree with a sequence of length n at nE positions is given by ( n ) n !  

n E  - (n - nE) ! (nE) l °  

Using Stirling's approximation n !  � nne-n.J2Wi,, we obtain (:
E
) � 2nHb(E) , (12.5 .1)  

2Recall that, in Huffman coding, we also applied the coding algorithm to the nth extension of the source 
to achieve efficient compression. 
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gen = {O, l}n 

x 

Number of elements = 2nHb(<) 

(with high probability) 
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Total number of highly 
probable elements = 2 nH(Y) Figure 12.12 Schematic representation 

of a BSC. 
l 

where Hb(E) = -E log2 E - (1 - E) log2(1  - E) is the binary entropy function as 
defined in Equation (12.1 .2). This means that, for any input block, there are roughly 2nHb(E) 
highly probable corresponding outputs. On the other hand, the total number of highly 
probable output sequences (i.e., typical output sequences) is roughly 2nH(Y) . The maxi­
mum number of input sequences that produce almost nonoverlapping output sequences, 
therefore, is at most equal to 

2nH(Y) 
M = ___ = 2n(H(Y)-Hb(E)) 

2nHb(E) (12.5.2) 

This means that in n uses of this channel, we can transmit at most log2 M = n ( H ( Y) -
Hb(E)) bits and the transmission rate per channel use is 

· 

log2 M 
R = -- = H(Y) - Hb(E) .  n 

Figure 12.12 gives a schematic representation of this case. 

(12.5 .3) 

In the relation R = H(Y) - Hb(E), E depends on the channel and we cannot control 
it. However, the probability distribution of the random variable Y depends both on the 
input distribution P (x) and the channel properties characterized by E . To maximize the 
transmission rate over the channel, we have to choose a P(x) that maximizes H(Y) . If X 
is a uniformly distributed random variable, such that p(X = 0) = P(X = 1) = 0.5, then 
H (Y) will be maximized at one; therefore, we obtain 

(12.5.4) 

We can also prove that this rate is the maximum rate at which reliable transmission3 over 
the BSC is possible. Therefore, for a BSC the capacity is given by 

(12.5.5) 

A plot of the channel capacity in this case is given in Figure 12.13.  It is interesting 
to note that the cases E = 0 and E = 1 both result in C = 1 .  This means that a channel that 

3By reliable transmission, we mean that the error probability will tend to zero as the block length n tends 
to infinity. 



Section 1 2.5 Channel Capacity 667 

1 

0.9 

0.8 
,-.-. w 0.7 .._, 

� 0.6 
I 

,..... 0.5 II 
\..) 0.4 

0.3 

0.2 

0.1 
Figure 12.13 The capacity 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 e of a BSC. 

always flips the input is as good as the channel that transmits the input with no errors. The 
<' worst case, of course, happens when the channel flips the input with probability 112. 

The maximum rate at which we can communicate over a discrete memoryless chan­
nel and still make the error probability approach zero as the code block length increases is 
called the channel capacity and is denoted by C. The noisy channel coding theorem stated 
next gives the capacity of a general discrete memoryless channel. 

Noisy Channel Coding Theorem. The capacity of a discrete memoryless chan­
nel is given by 

C = max / (X; Y), P(x) 
(12.5.6) 

where I (X; Y) is the mutual information between X and Y, the channel input and output, as 
defined in Equations (12. 1 . 15) and (12. 1 . 16). If the transmission rate R is less than C, then 
reliable communication at rate R is possible, and if R > C, then reliable communication 
at rate R is impossible. 

In this theorem, R is 10g2 M ,  where M is the number of messages transmitted over the n 
nth extension of the channel, and "reliable transmission" refers to transmission wherein 
the error probability can be made arbitrarily close to zero by increasing n. Both rate R and 
capacity C are measured in bits per transmission or bits per channel use. 

This theorem is one of the most important results in information theory and gives 
a fundamental limit on the possibility of reliable communication over a noisy channel. 
According to this theorem, regardless of all other properties, any communication channel is 
characterized by a number called capacity, which determines how much information can be 
transmitted over it. Therefore, to compare two channels from an information transmission 
point of view, it is enough to compare their capacities. 
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Example 12.S.l 

x 

Find the capacity of the channel shown in Figure 12. 14. 

Solution We have to find the input distribution that maximizes I ( X; Y). We have 

But 

I (X; Y) = H(Y) - H(Y IX) . 

H(Y IX) = P(X = a)H(YIX = a) + P (X = b)H(Y IX = b) 

+P(X = c)H(Y [X = c). 

From the channel input-output relation, we see that for all three cases (X = a, X = b, and 
X = c), Y is a ternary random variable with probabilities 0.25, 0.25, and 0.5. Therelore, 

H(Y[X = a) =  H(Y IX = b) = H(YIX = c) = 1 .5 .  

Then, because P(X = a) + P(X = b) + P(X = c) = 1 ,  i t  follows that 

H(YIX) = 1 .5  

and 
I (X; Y) = H(Y) - 1 .5 .  

To maximize I (X; Y) ,  i t  remains to maximize H(Y), which is  maximized when Y is an 
equiprobable random variable. But it is not clear if there exists an input distribution that results 
in a uniform distribution on the output. However, in this special case (due to the symmetry of 
the channel), a uniform input distribution results in a uniform output distribution, and for this 
distribution, 

H(Y) = log 3 = 1 .585. 

Therefore, the capacity of this channel is given by 

c = 1 .585 - 1 .5 = .085 bits/transmission. 

This means that in order to transmit one bit of information, at least 

I 1 l -- - 12 
0.085 

transmissions over this channel are required. • 

y 

Figure 12.14 The DMC of Example 12.5.1 .  
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12.5.1 Gaussian Channel Capacity 

A discrete-time Gaussian channel with input power constraint is characterized by the 
input-output relation 

Y = X + Z, (12.5.7) 

where Z is a zero-mean Gaussian random variable with variance PN, and for n large 
enough, an input power constraint of the form 

1 
n 

- �x2 
< p � I -

ll i=l 
(12.5.8) 

applies to any input sequence of length n. For blocks of length n at the input, the output, 
and the noise, we have 

y = x  + z.  (12.5.9) 

If n is large, by the law of large numbers, we have 

(12.5. 10) 

or 
(12.5 .1 1) 

This means that, with probability approaching 1 (as n increases), y will be located in an 
n-dimensional sphere (hypersphere) that has a radius ...;nP;; and is centered at x. On the 
other hand, due to the power constraint of P on the input and the independence of the input 
and noise, the output power is the sum of the input power and the noise power, i.e., 

(12.5 . 12) 

or 
(12.5 . 13) 

This implies that the output sequences (again, asymptotically and with high probability) 
will be inside an n-dimensional hypersphere of radius Jn(P + PN) and centered at the 
origin. Figure 12. 15 shows the sequences in the output space. 

The question now is, How many x sequences can we transmit over this channel such 
that the hyperspheres corresponding to these sequences do not overlap in the output space? 
Obviously, if this condition is satisfied, then the input sequences can be decoded reliably. 
An equivalent question is as follows: How many hyperspheres of radius ...;nP;; can we pack 
in a hypersphere of radius ,Jn(PN + P)? The answer is roughly the ratio of the volumes 
of the two hyperspheres. Note that, for an ordinary three-dimensional sphere, the volume 
is �nR3; for a two-dimensional case (circle), the "volume" (i.e., the area) is nR2. We can 
show that, in general, the volume of an n-dimensional hypersphere is proportional to Rn . 
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n-Dimensional 
hypersphere 

radius = .fliP;; 

x 

n-Dimensional 
hypersphere 

radius = �n (P + PN) 

If we denote the volume of an n-dimensional hypersphere by 

Figure 12.15 The output 
sequences of a Gaussian 
channel with power constraint. 

(12.5. 14) 

where R denotes the radius and Kn is independent of R, we see that the number of mes-
sages that can be reliably transmitted over this channel is equal to 

· 

Kn (n(PN + P)) � A-1 =  ����
--.,,--

-

Kn (nPN)� 

= (PN
P
: P) � 

= (1 + �) � 
(12.5. 15) 

Therefore, the capacity of a discrete-time, additive white Gaussian noise channel with input 
power constraint P is given by 

1 C = - log A-1 
n 
1 n ( P ) = - · - log 1 + -
n 2 PN 

= � log (1 + �) . 
2 PN 

(12.5 .16) 

Bandlimited Gaussian Waveform Channels. When dealing with a continuous­
time, bandlimited, additive white Gaussian noise channel with noise power spectral density 
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�o , input power constraint P, and bandwidth W, we can sample at the Nyquist rate and 
obtain a discrete time channel. The power per sample will be P and the noise power per 
sample will be l+w No PN = -df = WNo. 

-W 2 

Substituting these results in Equation (12.5. 16), we obtain 

C = � log (1 + �) 
2 _ NoW 

bits/transmission. ( 12.5 . 17) 

If we multiply this result by the number of transmissions per second, which is 2W by the 
Nyquist sampling theorem, we obtain the channel capacity in bits/sec: 

C = W log (l + �) 
NoW 

bits/sec. (12.5. 1 8) 

This is the celebrated Shannon's formula for the capacity of a bandlimited additive white 
Gaussian noise channel. 

Example 12.5.2 
Find the capacity of a telephone channel with bandwidth W = 3000 Hz, and signal-to-noise 
ratio of 39 dB. 

Solution The signal-to-noise ratio of 39 dB is equivalent to 7943. Using Shannon's relation, 
we have 

C = 3000 log(l + 7943) � 38, 867 bits/sec. 

12.6 BOUNDS ON COMMUNICATION 

• 

From the previous section, the capacity of a bandlimited additive white Gaussian noise 
channel is given by 

C = W log (1 + �) . 
NoW 

From this result, the basic factors that determine the channel capacity are the channel band­
width W, the noise power spectrum N0, and the signal power P. There exists a trade-off 
between P and W in the sense that one can compensate for the other. Increasing the input 
signal power obviously increases the channel capacity, because when we have more power 
to spend, we can choose a larger number of input levels that are far apart. Therefore, we 
can send more information bits per transmission. However, the increase in capacity as a 
function of power is logarithmic and slow. This is because if we are transmitting with a 
certain number of input levels that are f!.. apart to allow a certain level of immunity against 
noise, and we want to increase the number of input levels, we have to introduce new levels 
with amplitudes higher than the existing levels, and this requires a lot more power. This fact 
notwithstanding, the capacity of the channel can be increased to any value by increasing 
the input power. 
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The effect of the channel bandwidth, however, is quite different. Increasing W has 
two contrasting effects. On one hand, on a higher bandwidth channel, we can transmit 
more samples per second and, therefore, increase the transmission rate. On the other hand, 
a higher bandwidth means higher noise power at the receiver, and this deteriorates its per­
formance. This is seen from the two W's that appear in the relation that describes the 
channel capacity. To see the effect of increasing the bandwidth, we let the bandwidth W 
tend to infinity. 

p p p 
lim W log(l + --) = - log e � 1 .44- .  

W-+oo No W No No 
(12.6.1) 

This means that, contrary to the power case, by increasing the bandwidth alone, we cannot 
increase the capacity to any desired value. Figure 12.16 shows C plotted versus W. 

In any practical communication system, we must have R < C. If an AWGN channel 
is employed, we have 

R < W log (1 + �) . 
NoW 

(12.6.2) 

By dividing both sides by W and defining r = 1ft, the spectral bit rate (or bandwidth 
efficiency), we obtain 

r < log (1 + �) . 
NoW 

(12.6.3) 

If "€,b is the energy per bit,4 then "€,b = �- By substituting in the previous relation, we 
obtain 

(12.6.4) 

4Note that P = energy/sec and R = bits/sec; hence, P / R = energy/bit = "€,h· 
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or, equivalently, 
�b 2' - 1 
- > -- . No r 

'ii:b dB 
No 
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(12.6.5) 

This relation is plotted in Figure 12.17. This equation gives the relation between two impor­
tant parameters in a communication system. These parameters are r, the spectral bit rate, 
which is a measure of the bandwidth efficiency of a communication system, and �� , the 
SNR/bit, which is a measure of the power efficiency of a system. With a higher value of 
r, the system is more bandwidth efficient. With a lower value of ��, required to achieve a 
certain error probability, the system is more power efficient. 

The curve defined by 

2' - 1  
or (12.6.6) 

r 

divides the plane into two regions. In one region (below the curve), reliable communication 
is possible; in the other region (above the curve), reliable communication is not possible. 
The performance of any communication system can be denoted by a point in this plane; 
the closer the point is to this curve, the closer the performance of the system is to that of 
an optimal system. From this curve, we see that as r tends to 0, 

�b - = ln 2 = 0.693 � - 1 .6 dB No (12.6.7) 

is an absolute minimum for reliable communication. In other words, for reliable commu-
nication, we must have 

�b 
- > 0.693. No 

(12.6.8) 
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In Figure 12. 17, when r « 1 ,  we are dealing with a case where bandwidth is large and the 
main concern is limitation on power. This case is usually referred to as the power-limited 
case. Signaling schemes, with high dimensionality, such as orthogonal, biorthogonal, and 
simplex schemes can be used in these cases. The case where r » 1 happens when the 
bandwidth of the channel is small; therefore, it is referred to as the bandwidth-limited 
case. Low-dimensional signaling schemes with crowded constellations (PAM, QAM, and 
PSK) are implemented in these cases. 

The Information Transmission Theorem. In Section 12.2, we introduced the 
fundamental limit in coding of information sources. This fundamental limit is expressed in 
terms of the entropy of the source. Entropy gives a lower bound on the rate of the codes 
that are capable of reproducing the source with no error. If we want to transmit a source U 
reliably via a channel with capacity C, we require that 

H(U) < C. ( 12.6.9) 

This relation defines the fundamental limit on the transmission of information. Note 
that we have assumed that for each source output, one transmission over the channel is 
possible. 

Example 12.6.1 
A binary source with P (X = 0) = � is to be transmitted over a binary symmetric channel 
with a crossover probability of E. Determine the range of E for reliable communication of the 
source. Assume that the channel can be used once per source output. 

Solution We have 

1 1 3 3 
H(U) = - 4 log2 4 - 4 1og2 4 = 0.81 13. 

For reliable communication, we need H(U) < C. The channel capacity for a BSC is given by 
C = 1 - Hb ( E). Therefore, we must have 

or 

This is a nonlinear equation and should be solved by numerical methods. This results in 
Hb(0.0288) � 0.1887 and two acceptable regions for E, namely, 0 < E < 0.0288 and 
0.9712 < E ::::: 1 .  • 

12.7 SUMMARY AND FURTHER READING 

In this chapter we introduced mathematical models for information sources and introduced 
a measure of information for discrete random variables. This measure of information, 
expressed as entropy, or entropy rate for sources with memory, is based on the works of 
Nyquist, Hartly, and Shannon. We also introduced joint entropy, conditional entropy, and 
mutual information of two random variables. Shannon's source coding theorem as well 
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J as Huffr�an coding and Lempel-Ziv algorithm for lossless dat� compression were subse­
quently mtroduced and we saw that entropy (or entropy rate) is the fundamental limit on 
how much a source can be losslessly compressed. 

Then, we studied mathematical models for communication channels and introduced 
important channels models including the DMC, the BSC, the discrete-time AWGN channel 
with input power constraint, the binary-input AWGN channel, and the continuous-time 
bandlirnited Gaussian waveform channel. We introduced the important notion of channel 
capacity and stated Shannon's noisy channel coding theorem. The chapter concluded with 
a discussion of the information transmission theorem. 

There exist many excellent books on information theory. The interested reader is 
referred to the books by Gallager (1968), Blahut (1987), and Cover and Thomas (2006), as 
well as Shannon's original work Shannon (1948a, 1948b). 

PROBLEMS 

12.1 A discrete memoryless source has an alphabet {a1 , a2 , a3 , a4 , a5 , a6} with corre­
sponding probabilities {0. 1 ,  0.2, 0.3, 0.05, 0.15,  0.2}. Find the entropy of this source. 
Compare this entropy with the entropy of a uniformly distributed source with the 
same alphabet. 

12.2 Let random variable X be the output of a discrete memoryless source that is uni­
formly distributed with size N. Find the entropy of it. 

12.3 Show that H(X) :::: 0 with equality holding if and only if X is deterministic. 

12.4 Let X be a geometrically distributed random variable; i.e., 

P (X = k) = p(l - p)k-I 

1. Find the entropy of X. 

k = 1, 2, 3, . . . .  

2. Knowing that X > K, where K is a positive integer, what is the entropy of X? 

12.5 Let Y = g(X), where g denotes a deterministic function. Show that, in general, 
H(Y) S H(X). When does equality hold? 

12.6 An information source can be modeled as a bandlimited process with a bandwidth 
of 6000 Hz. This process is sampled at a rate higher than the Nyquist rate to provide 
a guard band of 2000 Hz. We observe that the resulting samples take values in the 
set :fl =  {-4, -3, -1 ,  2, 4, 7} with probabilities 0.2, 0 .1 ,  0. 15, 0.05, 0.3, 0.2. What 
is the entropy of the discrete time source in bits per output (sample)? What is the 
information generated by this source in bits per second? 

12.7 Let X denote a random variable distributed on the set :fl = {a1 , a2 , . . .  , aN} with cor­
responding probabilities {p1 , p2 , . . .  , PN }. Let Y be another random variable defined 
on the same set, but distributed uniformly. Show that 

H(X) S H(Y) 
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with equality if and only if X is also uniformly distributed. Hint: First prove the 
inequality ln x :::; x - 1 with equality only for x = 1 , then apply this inequality to 

N ( # )  Ln=l Pn In p11 • 

12.8 A random variable X is distributed on the set of all positive integers 1 , 2, 3, . . .  with 
corresponding probabilities P1 ,  p2 , p3 , . . . .  We further know that the expected value 
of this random variable is given to be m, i.e., 

00 L: ip; = m. 
i=l 

Show that, among all random variables that satisfy the preceding condition, the geo­
metric random variable that is defined by 

1 ( 1 ) i-l 
p; = m 1 - m i = 1 , 2, 3, . . .  

has the highest entropy. Hint: Define two distributions on the source, the first one 
being the foregoing geometric distribution and the second one an arbitrary distribu­
tion denoted by q; . Then apply the approach of Problem 12.7. 

12.9 A memory less source has the alphabet A = { -5, -3, -1 , 0, 1, 3, 5} with corre­
sponding probabilities {0.05, 0.1 , 0. 1 , 0.15, 0.05, 0.25, 0.3}. 
1. Find the entropy of the source. 

2. Assume that the source is quantized according to the quantization rule 

{q(-5) = q (-3) = -4, 
q(-1) = q(O) = q(l)  = 0. 
q(3) = q (5) = 4 

Find the entropy of the quantized source. 

12.10 Using the two definitions of the entropy rate of a random process given in 
Equations (12. 1 . 13) and (12. 1 . 14), prove that for a DMS the entropy rate and the 
entropy are equal. 

12.11 A Markov process is a process with one step memory, i.e., a process such that 

p(xn lXn-1 , Xn-2 , Xn-3, . . .  ) = p(xn lXn-1 )  

· for all n .  Show that, for a stationary Markov process, the entropy rate i s  given by 
H(Xn lXn-1) . 

12.12 Using Equation 12. 1 .7, show that 

H(X IY) = L p(y)H(X IY = y) . 
y 
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12.13 Let X and Y denote two jointly distributed discrete valued random variables. 

1. Show that 
H(X) = - L p(x, y) log p(x) 

x,y 
and 

H(Y) = -
L P(x , y) log p(y) . 
x,y 

2. Use this result to show that 

H(X, Y) :::: H(X) + H(Y). 

When does the equality hold? Hint: Consider the two distributions p(x, y) and 
p (x) p (y) on the product set iit' x ay, and apply the inequality proved in Problem 
12.7 to I: p(x y) log p(x)p(y) .  x,y ' p(x,y) 

12.14 Use the result of Problem 12. 13 to show that 

H(X IY) :::: H(X) 

with equality if and only if X and Y are independent. 

12.15 Show that, in general, 
n 

H(X1 , X2, . . .  , Xn) :S L  H(X;) .  
i=I 

When does the equality hold? 

12.16 Assume that a BSS generates a sequence of n outputs. 

1. What is the probability that this sequence consists of all zeros? 
2. What is the probability that this sequence consists of all ones? 
3. What is the probability that, in this sequence, the first k symbols are ones and 

the next n - k symbols are zeros? 
4. What is the probability that this sequence has k ones and n - k zeros? 
5. How would your answers change if, instead of a BSS, we were dealing with a 

general binary DMS with P(X; = 1) = p. 

12.17 Give an estimate of the number of binary sequences of length 10,000 with 3000 
zeros and 7000 ones. 

12.18 A memoryless ternary source with output alphabet a 1 ,  a2, and a3 and corresponding 
probabilities 0.2, 0.3, and 0.5 produces sequences of length 1000. 

1. What is the approximate number of typical sequences in the source output? 
2. What is the ratio of typical sequences to nontypical sequences? 

----- --
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3. What is the probability of a typical sequence? 
4. What is the number of bits required to represent all output sequences? 

5. What is the number of bits required to represent only the typical output 
sequences? 

6. What is the most probable sequence and what is its probability? 

7. Is the most probable sequence a typical sequence? 

12.19 A source has an alphabet {a1 , a1 , a3 , a4} with corresponding probabilities {0. 1 , 
0.2, 0.3, 0.4}. 

1. Find the entropy of the source. 
2. What is the minimum required average code word length to represent this source 

for error-free reconstruction? 
3. Design a Huffman code for the source and compare the average length of the 

Huffman code with the entropy of the source. 
4. Design a Huffman code for the second extension of the source (take two letters 

at a time). What is the average code word length? What is the average number 
of required binary letters per each source output letter? 

5. Which is a more efficient coding scheme: the Huffman coding of the original 
source or the Huffman coding of the second extension of the source? 

12.20 Design a Huffman code for a source with n output letters and corresponding proba­
bilities { ! , � , k ,  . . .  , 2n� 1 , 2n� 1 } • Show that the average code word length for such a 
source is equal to the source entropy. 

12.21 Show that {01 ,  100, 101 ,  1 1 10, 1 1 1 1 ,  001 1 ,  0001} cannot be a Huffman code for 
any source probability distribution. 

12.22 Design a ternary Huffman code, using 0, 1 ,  and 2 as letters, for a source with output 
alphabet probabilities given by {0.05, 0 . 1 ,  0 .15 , 0.17, 0 .18 , 0.22, 0. 13} . What is the 
resulting average code word length? Compare the average code word length with 
the entropy of the source. (In what base would you compute the logarithms in the 
expression for the entropy for a meaningful comparison?) 

12.23 Design a ternary Huffman code for a source with output alphabet probabilities giveri 
by {0.05, 0 . 1 ,  0 .15 , 0.17 , 0 .13 , 0.4}. Hint: You can add a dummy source output with 
zero probability. 

12.24 A discrete memoryless source X has the alphabet {-5, -3, -1 ,  0, 1 ,  2, 3} with the 
corresponding probabilities {0.08, 0.2, 0.12, 0 .15 , 0.03 , 0.02, 0.4} . 
1. Design a Huffman code for this scmrce and find R, the average code word length 

of the Huffman code. 
2. Determine the entropy of the source and, using the result of Part 1 ,  determine 

the efficiency of the Huffman code you designed. The efficiency is defined as 
7/ 

= 
Hi_X) 0 

R 
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3. Now quantize the source using the following quantization rule: 

1 -2 
X = o,

, 
2, 

x = -5, -3 
x = - 1 , 0, 1 .  
X = 2, 3  

What is the absolute minimum required rate (bits per symbol) for perfect recon­
strUction of X? 

4. Looking at sequences of length 10,000 at the output of the quantized source 
(i.e., X), what is the possible number of sequences? What is the number of typ­
ical sequences? 

5. If a Huffman code is designed for the second extension of the original source 
before quantization (i.e., taking two letters at a time), what can you say about 
the average code word length per individual source symbol? Find bounds on the 
average code word length. 

12.25 A discrete memoryless information source is described by the alphabet � = {x1 , x2 , 
x3 , X4, X5 , X6} with probabilities { 1/32, 1/8, 1/2, 1/ 16, 1/32, 1/4}, respectively. 

1. Design a Huffman code for this source and determine the average code word 
length of the Huffman code. 

2. Can you improve the Huffman code by encoding the second extension of this 
source (in other words, using two letters at a time and designing the Huffman 
code for that source)? Why? 

3. Is there any way to improve the performance of the Huffman code designed in , 

Part 1 ?  (By improving the peiformance, we mean designing a code with a lower 
average code word length.) 

12.26 A discrete memoryless information source has the alphabet {a1 , a2, a3 , a4 , as} with 
the corresponding probabilities {0. 1 ,  0.2, 0.05, 0.3, 0.35}. 

1. Can this source be compressed at a rate of 2 bits per source symbol such that 
lossless reconstruction of it is possible? 

2. Now consider all sequences of length 1000 that this source can generate. How 
many of these sequences are possible? Write your answer in exponential form. 

3. Approximately how many of the sequences in Part 2 are typical sequences? 
Write your answer in exponential form. 

4. Now assume that you want to merge two letters of the source into one new letter 
b, say, b = {a; , aj }, such that the resulting source (which now has four outputs 
instead of five) can be compressed at a rate of 1 .5 bits per symbol and can be 
recovered with no loss. Which two letters would you merge into the new letter b? 

12.27 A discrete memoryless source with output alphabet {a;}J=1 and corresponding prob- , 
abilities {0. 1 1 , 0 .18 ,  0. 1 ,  0.2, 0.25, 0.05, 0. 1 1 }  is to be transmitted with no errors to 
a destination. 
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1 .  What i s  the minimum rate required for transmission of this source? 

2. Design a Huffman code for this source. What is the average code word length of 
the Huffman code? How is this average code word length related to the answer 
in Part 1 ?  

3. A new source i s  obtained by grouping the outputs of this source as follows: 
b1 = {a1 , a2} ,  b2 = {a3 , a4} , b3 = {as , a6} ,  b4 = {a7 } . Answer the question in 
Part 1 for this new source. 

12.28 Find the Lempel-Ziv source code for the binary source sequence 

00010010000001 10000100000001000000101000010000001 10100000001 100. 

Recover the original sequence from the Lempel-Ziv source code. Hint: You require 
two passes of the binary sequence to decide on the size of the dictionary. 

12.29 Using the definition of H(X) and H(X IY), show that 

I (X; Y) = L p(x , y) log 
p(x , y) 

. 
x,y 

p(x)p(y) 

Now, by using the approach of Problem 12.7, show that I (X; Y) 2:: 0 with equality 
if and only if X and Y are independent. 

12.30 Show that 

1. I (X; Y) :S min{H(X), H(Y)}. 
2. If IXI and ld,lJ I represent the size of sets X and d,lJ, respectively, then J (X; Y) ::; 

min{log IXI , log ld,lJ I } .  

12.31 Show that J (X; Y) = H(X) + H(Y) - H(X, Y) = H(Y) - H(Y IX) = I (Y; X). 

12.32 Let X denote a binary random variable with P(X = 0) = 1 - P(X = 1) = p, and 
let Y be a binary random variable that depends on X through P(Y = 1 IX = 0) = 
P(Y = O IX = 1) = E. 

1. Find H(X), H(Y), H(Y IX), H(X, Y), H(X I Y), and J (X; Y). 
2. For a fixed E,  which p maximizes I (X; Y)? 
3. For a fixed p, which E minimizes I (X; Y)? 

12.33 Show that 

I (X; YZW) = I (X; Y) + I (X : Z I Y) + I (X; W IZY). 

Can you interpret this relation? 

12.34 Let X, Y, and Z be three discrete random variables. 



Problems 

1. Show that if p(x, y, z) = p(z)p(x lz)p(ylx), we have 

I (X; Y I Z) :S I (X; Y) .  

2. Show that if p(x, y, z) = p(x)p(y)p(zlx, y), then 

J (X; Y) :S I (X; Y I Z) .  

3 .  In each case, give an example where strict inequality holds. 

12.35 Find the capacity of the channel shown in Figure P-12.35. 

0.5 Figure P-12.35 
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12.36 The channel shown in Figure P- 12.36 is known as the binary erasure channel. Find 
the capacity of this channel and plot it as a function of E . 

1 - e  Figure P-12.36 

12.37 Find the capacity of the cascade connection of n binary symmetric channels with 
the same crossover probability E. What is the capacity when the number of channels 
goes to infinity? 

12.38 Using Stirling's approximation n !  � nne-n,J2rui, show that (:E) � 2nHb(E) . 
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12.39 Show that the capacity of a binary-input, continuous-output AWGN channel with 
inputs ±A and noise variance a2 (see Example 12.4.2) is given by 

where 
f (x) = --e-<u-x) /2 log du. 100 1 2 2 

-00 ,,ffi 2 1 + e-2xu 

12.40 The matrix whose elements are the transition probabilities of a channel, i.e. 
p(y; lxj) 's, is called the channel probability transition matrix. A channel is called 
symmetric if all rows of the channel probability transition matrix are permutations 
of each other, and all its columns are also permutations of each other. Show that in 
a symmetric channel, the input probability distribution that achieves capacity is a 
uniform distribution. What is the capacity of this channel? 

12.41 Channels 1 ,  2, and 3 are shown in Figure P-12.41 .  

1 0 ---------..- a 

1 1 -----.,.------- b 
Channel 1 

Figure P-12.41 

�' 0 0.5 b 

Channel 2 

1. Find the capacity of channel 1 .  What input distribution achieves capacity? 

2. Find the capacity of channel 2. What input distribution achieves capacity? 
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3. Let C denote the capacity of the third channel, and let C 1 and C2 represent the 
capacities of the first and second channel. Which of the following relations holds 
true and why? 

(a) C < � (C1 + Cz) .  
(b) C = � (C1 + Cz) .  
(c) C > � (C1 + C2) .  

12.42 Let C denote the capacity of  a discrete memoryless channel with input alphabet 
� =  {x1 , xz, . . .  , xN} and output alphabet GY = {y1 , yz , . . .  , yM} . Show that C ::::; 
rnin{log M, log N}.  

12.43 The channel C is (known as the Z channel) shown in Figure P-12.43. 

1. Find the input probability distribution that achieves capacity. 

2. What is the input distribution and capacity for the special cases E = 0, E = 1 ,  
and E = 0.5? 

3. Show that if n such channels are cascaded, the resulting channel will be equiva­
lent to a Z channel with E1 = En . 

4. What is the capacity of the equivalent Z channel when n -+  oo? 

€ Figure P-12.43 

12.44 Find the capacity of the Channels A and B, as shown in Figure P-12.44. What is the 
capacity of the cascade channel AB? 

� - - - - - - - - - - - - - - - - - - - - - - - - - - - �  f - - - - - - - - - - - - - - - - - - - - - - - - - - - �  
I a I I 

a' I : A - -; - - - - - -:- - A' : 
I I I I 
I I I I 
I I I I 
I I I I 
I I I 

: B b- � - - - - - - l--b, 1�0.5 
B '  

I I I 
I I I 
I I I 

: : : 0.5 
I 0.5 I I : C : : 

C
' 

' - - - - - - - - - - - - - - - - - - - - - - - - - - - - !  L - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Channel A Channe! B 

Figure P-12.44 
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12.45 Find the capacity of an additive white Gaussian noise channel with a bandwidth of 
1 MHz, power of 10 Watts, and noise power spectral density of �o = 10-9 W /Hz. 

12.46 Channel C 1 is an additive white Gaussian noise channel with a bandwidth of w 
transmitter power of P, and noise power spectral density of �0 . Channel C2 is � 
additive Gaussian noise channel with the same bandwidth and power as channel c1 
but with noise power spectral density Sn (f). We assume that the total noise power 
for both channels is the same; that is, fw fw No Sn (f) df = - df = NaW. 

-W -W 2 

Which channel has a larger capacity? Give an intuitive reasoning. 

12.47 For the channel shown in Figure P-12.47, find the channel capacity and the input 
distribution that achieves capacity. 

B 

c 

2 Figure P-12.47 

12.48 Consider two discrete memoryless channels represented by (2t\ , p(y1 1x1), 0,lJ1 )  and 
(2t'2, p(y2 lx2) ,  0,lJ2) with corresponding capacities C1 and C2. A new channel is 
defined by (2t'1 x 2t'2, p(yi lx1 )p(y2 lx2) ,  0,lJ I  x 0,lJ2) . This channel is the "product 
channel" and models the case where x1 E 2t'1 and x2 E 2t'2 are simultaneously trans­
mitted over the two channels with no interference. Prove that the capacity of this 
channel is the sum of C1 and C2. 

12.49 Let (2t'1 ,  p(y1 1x1 ) ,  0,lJi )  and (2t'2, p(y2lx2) ,  0,lJ2) represent two discrete memoryless 
communication channels with inputs 2t'; , outputs 0,lJ; and conditional probabilities 
p(y; lx; ) .  Further assume that 2t'1 n 2t'2 = 0 and 0,lJI  n 0,lJ2 = 0. We define the 
sum of these channels as a new channel with the input alphabet 2(11 U 2t'2, output 
alphabet 0,lJ1 U 0,lJ2, and conditional probability p(y; lx; ) where i denotes the index 
of 2t' to which the input to the channel belongs. This models a communication situ­
ation where we have two channels in parallel, and at each transmission interval, we 
can use only one of the channels, the input and output alphabets are disjoint, and 
therefore at the receiver there is no ambiguity regarding which channel was being 
used. 

1. Show that the capacity of this channel satisfies 2c = 2c1 + 2c2 , where C 1 and 
C2 are the capacities of each channel. 
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2. Using the result of Part 1, show that if C1 = C2 = 0, we still have C = 1 .  In 
other words, show that we are able to transmit one bit per transmission using 
two channels with zero capacity. How do you interpret this result? 

3. Find the capacity of the channel shown in Figure P-12.49. 

0 -----

1
----- 0 

Figure P-12.49 

12.50 X is a binary memoryless source with P(X = 0) = 0.3. This source output is 
transmitted over a binary symmetric channel with crossover probability E = 0. 1 .  

1 .  Assume that the source i s  directly connected to the channel, i.e., no coding is 
employed. What is the error probability at the destination? 

2. For what values of E is reliable transmission possible (with coding, of course)? 

COMPUTER PROBLEMS 

12.1 Huffman Coding 

The objective of this problem is to design a Huffman code using MATLAB. The dis­
crete memoryless source output is generated from an alphabet X = {x1 , x2, . . .  , x9} 
with corresponding probabilities 

p = {0.2, 0 .15,  0 . 13 ,  0.12,  0 . 1 ,  0.09, 0.08, 0.07, 0.06}.  

1. Design a Huffman code and sketch the corresponding code tree. Specify the code 
words for the nine symbols in the alphabet. 

2. Determine the average code word length of the Huffman code. 
3. Determine the entropy of the source and compare it with the average code word 

length of the Huffman code. 

12.2 Huffman Coding 
The objective of this problem is to design Huffman codes using MATLAB. The dis­
crete memory less source output is generated from the alphabet X = { x 1 , x2 , • . .  , x6} 
with the corresponding probabilities 

p = {0. 1 ,  0.3, 0.05, 0.09, 0.21 ,  0.25} .  
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1 .  Determine the entropy of the source. 

2. Design a Huffman code and sketch the corresponding code tree. Specify the code 
words for the six symbols in the alphabet. 

3. Determine the efficiency of the Huffman code designed in Part 2. 

4. Design a Huffman code for the source sequences of length 2 and sketch the code 
word tree. Specify the code words for the symbols of length 2 and determine the 
efficiency of the code. Compare the efficiency for length 2 sequences with that 
for length 1 .  

12.3 Huffman Coding 

A discrete memoryless source is generated from the alphabet ·2(;' = {x1 ,  x2 , . . .  , x9} 
with corresponding probabilities { 1 1 1 1 1 1 1 1 1 } p = 2 '  4 '  8 '  16 ' 32 ' 64 ' 128 ' 256 ' 256 

. 

1. Design a Huffman code and sketch the corresponding code tree. Specify the code 
words for the nine symbols in the alphabet. 

2. Determine the average code word length of the Huffman code, the entropy of 
the source, and the efficiency of the Huffman code. 

3. Under what conditions is the efficiency of the Huffman code equal to 1 ?  

12.4 Huffman Code for Printed English 

The probabilities of the letters of the alphabet occurring in printed English are given 
in the following table: 

Letter Probability Letter Probability Letter Probability 

A 0.0642 B 0.0127 c 0.0218  
D 0.03 17 E 0. 103 1 F 0.0208 
G 0.0152 H 0.0467 I 0.0575 
J 0.0008 K 0.0049 L 0.0321 

M 0.0198 N 0.0574 0 0.0632 
p 0.0152 Q 0.0008 R 0.0484 
s 0.05 14 T 0.0796 u 0.0228 
v 0.0083 w 0.0175 x 0.0013 
y 0.0164 z 0.0005 Space 0. 1859 

1. Determine the entropy of printed English. 

2. Design a Huffman code for printed English. 

3. Determine the average code word length and the efficiency of the Huffman code. 
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12.5 Capacity of Binary Sylllilletric Channel 
Binary data are transmitted over an additive white Gaussian noise channel using 
BPSK signaling and hard-decision decoding at the output using optimal matched 
filter detection. 

1. Plot the error probability of the channel as a function of 

'(g 
r = J:i , 
. 0 

(12.7. 1) 

where '(f; is the energy in each BPSK signal and No/2 is the noise power spectral 
density. Assume that y changes from -20 to 20 dB. 

2. Plot the capacity of the resulting channel as a function fo y . 

12.6 Capacity of Binary Input AWGN Channel 

A binary input additive white Gaussian noise channel is modeled by the two binary 
input levels A and -A and additive zero-mean Gaussian noise with variance u2. In 
this case 2f = {-A , A},  Y = IR, p(ylX = A) ""'"' N(A , u2),  and p(y l X  = -A) ""'"' 
N (-A, u 2) .  Plot the capacity of this channel as a function of A/ u. Hint: Use the 
result of Problem 12.39. 

12.7 Capacity of a Bandlimited Additive White Gaussian Noise Channel 
The objective of this problem is to compute the capacity of a bandlimited additive 
white Gaussian noise channel using MATLAB. The capacity of this channel is given 
by the formula 

C = W log2 (1 + �) , 
NoW 

where W is the bandwidth of the channel, P is the average transmitted power, and 
No/2 is the power spectral density of the additive white Gaussian noise. 

1. Plot the capacity of the channel whose bandwidth W = 3000 Hz as a function 
of P /No, for values of P /No between -20 and 30 dB. 

2. Plot the capacity of the channel as a function of W when P /No = 25 dB. What 
is the limiting value of the channel capacity as W -+  oo? 

12.8 Capacity of a Bandlimited Additive White Gaussian Noise Channel 
The capacity of an A WGN channel, given as 

C = W log2 (1 + �) 
No W 

can also be expressed in terms of '(f;b/ N0, which is the SNR/bit that determines the 
probability of error. Since the average power P = '(f;b/ Tb = C'(f;b, where 1 / Tb = C 
is the rate in bits per second, this channel capacity formula may be expressed as 

c ( '(gb c ) - = log2 1 + - - . W No W 
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If we solve for "gb/ No as a function of C / W, we obtain 

2-W - 1 
c 
w 

Chapter 1 2  

1 .  Plot the normalized capacity C / W as a function of"gb/ No for the range of values 
0. 1 :::; C / W :::; 10. It may be convenient to plot the graph as a function of the 
SNR/bit in dB (10 log10 "gb/ No). 

2. Determine the SNR/bit in the limit as C / W ---+ 0. 



Codi ng for Reliable 
Communications 

In Chapter 12, we introduced fundamental bounds on source coding (data compression) 
and data transmission through a noisy channel. We saw that the fundamental bound for 
error-free source compression is given by the entropy (or entropy rate, for a source with 
memory) and the fundamental limit for reliable communication is given by the channel 
capacity. We also introduced some algorithms for source coding that achieved the bound 
pr�dicted by theory. In this chapter, we present methods for channel coding in pursuit 
of achieving the bounds set by theory in Shannon's noisy channel coding theorem, i.e., 
the channel capacity. It turns out that achieving channel capacity is more difficult than 
designing good source codes. 

13.1 THE PROMISE OF CODING 

We begin this section with an example that shows how coding can help us achieve lower 
error probabilities in digital communications. 

Example 13.1.1 
In a digital communication system, the transmitter power is P and the rate of the source is R.  
The system employs an M = 4 PSK signaling (QPSK), where a pair of information bits are 
mapped into any of the four signals shown in the constellation depicted in Figure 13 . 1 .  We 
can readily see that 'jgb = � . and the minimum Euclidean distance between any two signals in 
this constellation is given by 

( 13 . 1 . 1) 

Now assume that instead of transmitting a QPSK signal (which is two dimensional), three 
orthonormal signals are employed to transmit the same two bits. For example, we can assume 
that the orthonormal signals are given by 1/f (t), 1/f (t - T), and 1/f (t - 2T), where 1/f (t) is equal 
to zero outside the interval [0, T] and 

( 13 . 1 .2) 
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690 Coding for Reliable Communications Chapter 1 3 

Figure 13.1 Signal constellation for a 4PSK scheme, 

Figure 13.2 Code words on the vertices of a cube. 

This is obviously a set of orthonormal signals with a dimensionality of 3. Using these orthonor­
mal basis signals, we construct the following four signals: 

s1 (t) = ../W, ( +1/f (t) + 1/f (t - T) + 1/f (t - 2T) ) ;  

s2(t) = ../W, ( +1/f(t) - 1/f (t  - T) - 1/f  (t  - 2T)); 

S3(t) = ..n, (-1/f(t) - 1/f(t - T) + 1/f(t - 2T)); 

S4(t) = ../W, (-1/f (t) + 1/f (t - T) - 1/f  (t - 2T)) 

or, equivalently, in vector notation, 

s, = ..n, (+l ,  +l ,  +1) ;  

Sz = ../W, (+l ,  -1 ,  - 1) ; 

S3 = ../W, (- 1 ,  - 1 ,  +1) ; 

S4 = ../W, (-l , +1 , - 1) . 

(13 . 1 .3) 

(13 . 1 .4) 

(13 .1 .5) 

(13 . 1 .6) 

(13 . 1 .7) 

( 13.1 .8) 

(13 . 1 .9) 

(13. 1 . 10) 

The corresponding constellation is shown in the three-dimensional space in Figure 13.2. Obvi­
ously, with this choice of code words, each code word differs from any other code word at two 
components. Therefore, the Euclidean distance between any two signals is given by 

( 13. 1 . 1 1) 
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The energy 'i8 is easily related to the energy per bit 'iSb. Since two bits are transmitted per 
waveform, 

hence, 
2 2 P  'i8 = -'iSb = - - .  

3 3 R 

(13. 1 . 12) 

(13 . 1 . 13) 

Therefore, by substituting the result in Equation (13 . 1 . 13) into Equation ( 13. 1 . 1 1), we obtain 

2 16 p dij = "°3 R  for i =!= j .  ( 13 . 1 . 14) 

Comparing this with the minimum distance in the four-PSK signal, we observe that the 
minimum-distance squared has increased by a factor of 

16 p 
3 /i  
41'. R 

4 
(13. 1 . 15) -

3 

Because the error probability is a decreasing function of the minimum Euclidean distance, we 
have reduced the error probability by employing this new scheme. In fact, we can say that 
the resulting reduction in error probability is equivalent to the reduction in error probability 
achieved by an increase in power by a factor of � .  This, in turn, is equivalent to 1 .25 dB 
power gain. This power gain, of course, has not been obtained for free. We see that with this 
signaling scheme in a time duration of � , which is the time duration to transmit two bits, we 
have to transmit three signals. Therefore, the width of these signals is reduced by a factor of � ,  
and the bandwidth required to transmit them is  increased by a factor of � .  A second problem 
with this scheme is that obviously it is more elaborate and requires a more complex decoding 
scheme. • 

The foregoing example basically describes what a coding scheme does. Coding 
results in a lower error probability [which is equivalent to a higher effective signal-to-noise 
ratio (SNR)] at the price of increasing the bandwidth1 and the complexity of the system. 
In the preceding exercise, we have increased the number of dimensions from 2 to 3 (from 
QPSK to a three-dimensional signaling). This is equivalent to the following mapping: 

(+l ,  + l ) --+ (+ l ,  + l ,  +l) ,  

(+ l ,  - 1) --+ (+ l ,  - 1 ,  -1) ,  

(- 1 ,  - 1) --+ (- 1 ,  - 1 ,  + l) ,  

(- 1 ,  + l ) --+ (- 1 ,  +l ,  -1) .  

As seen from this mapping, the role of coding has been to add a parity-check bit to the 
two information bits. The parity is added in such a way that the number of +l 's in the 
resulting code word is always an odd number (or, equivalently, the number of - l 's is an 
even number). 

1There exist coding modulation schemes that increase the Euclidean distance between code words, but do 
not increase the bandwidth. 
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In a general signaling scheme with coded waveforms, sequences of length k = RT 
of the source outputs are mapped into sequences of length n of the form 

S;  = ..f& (±1 , ±1 ,  · · · , ±1) . ( 13 . 1 . 16) 
n 

These points are located on the vertices of a hypercube of edge length 2,JW,. The ratio 

k 
Re = -n (13. 1 . 17) 

is defined to be the code rate. There exist a total of 2n vertices of an n-dimensional hyper­
cube, of which we have to choose M = 2k as code words. Obviously, we have to select 
these 2k vertices so that they are as far apart from each other as possible. This makes 
the Euclidean distance between them large and, thus, reduces the error probability. In 
Example 13. 1 . 1 ,  we have k = 2 and n = 3.  We chose 2k = 4 points from the possible 
23 = 8 vertices of the three-dimensional cube so that they were maximally apart. The rate 
of the resulting code is Re = 2/3. 

Assume that we have chosen 2k vertices of the hypercube as the code words and each 
code word differs from another code word in at least d!;in components. This parameter is 
called the minimum Hamming distance of the code and will be defined more precisely 
in Section 13.2. The relation between Euclidean distance and Hamming distance is very 
simple. If the sequences s;  and s j differ in dn locations, then their Euclidean distance d� 
is related to dll by 

(13 . 1 . 18) 

This means that the minimum Euclidean distance can be expressed in terms of the mini­
mum Hamming distance as 

( 13 . 1 . 19) 

Now if we assume that s; is transmitted and use the· union bound (see Section 8.4.2), the 
probability of a code word error is upperbounded as 

p . < M Q  � ( 4dH. "g )  
M, - 2No 

(13 . 1 .20) 

where in the last step we have used the bound on the Q function introduced in Chapter 5. 
Noting that the energy content of each code word is neg and has to be equal to PT, we have 

( 13 . 1 .21) 
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where we have used the relation 'fbb = � .  Hence, 

p < 
M e-d�nRc'fbb/No M - 2 
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(13 . 1 .22) 

(The index i has been deleted because the bound is independent of i .) If no coding were 
employed-that is, if we used all the vertices of a k-dimensional hypercube rather than 2k 
vertices of an n-dimensional hypercube-we would have the following union bound on the 
code word error probability: 

(13 . 1 .23) 

Comparing the two bounds, we conclude that coding has resulted in a power gain equiva­
lent to 

(13 . 1 .24) 

which is called the asymptotic coding gain, or simply, the coding gain. As seen here, the 
coding gain is a function of two main code parameters, the minimum Hamming distance 
and the code rate. Note that, in general, Re < 1 and d�n 2: l ;  therefore, the coding gain 
can be greater or less than 1 .  It turns out that there exist many codes that can provide good 
coding gains. The relation defining the coding gain once again emphasizes that, for a given 
n and k, the best code is the code that can provide the highest minimum Hamming distance. 

To study the bandwidth requirements of coding, we observe that when no coding is 
used, the width of the pulses employed to transmit one bit is given by 

1 
n = -. R (13 . 1 .25) 

After using coding, in the same time duration that k pulses were to be transmitted, we must 
now transmit n pulses. This means that the duration of each pulse is reduced by a factor of 
� = Re. Therefore, the bandwidth expansion ratio is given by n 

B = Wcoding 
Wno coding 

1 n 

Re k 
(13 . 1 .26) 

We can prove that in an additive white Gaussian noise (AWGN) channel, there exists a 
sequence of codes with parameters (ni ,  k;) with fixed rate (* = Re independent of i) 
satisfying 

' 

Re < � log (1 + �) , 
2 NoW 

(13 . 1 .27) 

where � log ( 1 + N: w) is the capacity of the channel in bits per transmission, for which 
the error probability goes to zero as n; becomes larger and larger. 

In this chapter, we study two major types of codes, block codes and convolutional 
codes. Block codes are the codes that we have already described. In a block code, the 
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kL 

k k k 

k 

Figure 13.3 A convolutional encoder. 

information sequence is broken into blocks of length k and each block is mapped into 
channel input blocks of length n. This mapping is independent from the previous blocks, 
i.e., there is no memory from one block to another block. In convolutional codes, we use 
a shift register of length koL, as shown in Figure 13.3.  The information bits enter the shift 
register ko bits at a time; then n0 bits that are linear combinations of various shift register 
bits, are transmitted over the channel. These no bits depend not only on the recent k0 bits 
that just entered the shift register, but also on the (L - l)ko previous contents of the shift 
register that constitute its state. The quantity 

m = L  (13. 1 .28) 

is defined as the constraint length of the convolutional code, and the number of states of 
the convolutional code is equal to 2CL-llko .  The rate of a convolutional code is defined as 

ko Re = -no 
( 13 . 1 .29) 

The main difference between block codes and convolutional codes is the existence of mem­
.ory in convolutional codes. 

1 3.2 LINEAR BLOCK CODES 

An (n, k) block code is a collection of M = 2k binary sequences, each of length n, called 
code words. A code � consists of M code words c; for 1 :S i  :S 2k ; i.e., 

where each c; is a sequence of length n with components equal to 0 or 1. The collection of 
the code words is called the codebook or, simply, the code. 
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Definition 13.2.1. A block code is linear if the modulo-2 sum of any two code 
words is also a code word. This requires that if c; and c j are code words, then c; E9 c j must 
also be a code word, where E9 denotes componentwise modulo-2 addition. • 

With this definition, we can readily see that a linear block code is a k-dimensional 
subspace of an n-dimensional space. It is also obvious that the all-zero sequence 0 is a code 
word of any linear block code, since it can be written as c; E9 c; for any code word c; . We 
further assume that if the information sequence x1 (of length k) is mapped into the code 
word c1 (of length n) and the information sequence x2 is mapped into c2, then x 1  E9 x2 is 
mapped into c1 E9 c2. 
Example 13.2.1 

A (5, 2) code is defined by the code words 

cg! = {00000, 10100, 01 1 1 1 ,  1 101 1 } ,  

where the mapping of information bits to code words is as follows: 

00 -* 00000 

01 -* 01 1 1 1  

10 -* 10100 

1 1 -* 1 101 1 .  

It is easy to verify that this code is linear. However, the code defined by 

% = {00000, 1 1 100, 01 1 1 1 ,  1 10 1 1 }  

is not linear because the sum of the second and the third code words is not a code word. • 

Now we will define some of the basic parameters that characterize a code. 

Definition 13.2.2. The Hamming distance between two code words c; and c j is the 
number of components at which the two code words differ, i.e., the number of components 
where one code word is 1 and the other one is 0. The Hamming distance between two code 
words is denoted by d(c; , Cj) .2 • 

Definition 13.2.3. The Hamming weight, or simply the weight of a code word c; , 
is the number of 1 's in the code word and is denoted by w ( c;). • 

Definition 13.2.4. The minimum distance of a code is the minimum Hamming 
distance between any two different code words, i.e., 

dmin = min d(c; , Cj) .  c;.c j i#j 

2Hamming distance is denoted by d and Euclidean distance is denoted by dE. 

(13 .2. 1) 

• 
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Definition 13.2.5. The minimum weight of a code is the minimum of the weights 
of the code words except the all-zero code word: 

Wrriin = min w(c;) .  Cj;60 (13.2.2)
. 

• 

Theorem 13.2.1. In any linear code, dmin = Wmin· 

Proof If c is a code word, then w(c) = d(c, 0) . Also, if c; and Cj are code words, 
so is c = c; EB Cj and, moreover, d(c; , Cj) = w(c) . This implies that in a linear code 
corresponding to any weight of a code word, there exists a Hamming distance between two 
code words, and corresponding to any Hamming distance, there exists a weight of a code 
word. In particular, it shows that dmin = Wmin . 

• 

Generator and Parity-Check Matrices. In an (n ,  k) linear block code, let the 
code word corresponding to the information sequences3 e1 = (1000 . . .  0) , e1 = (0100 . . .  0), 
e3 = (0010 . . .  0) , . . .  , ek = (0000 . . .  1) be denoted by g1 , g2 , g3 , . . .  , gk , respectively, 
where each of the g; sequences is a binary sequence of length n. Now, any information 
sequence x = (x1 ,  x2 , X3 , . . .  , Xk) can be written as 

n 

x = L x;e; ; 
i=l 

therefore, the corresponding code word will be 
n 

C =  L:x;g; . 
i=l 

If we define the generator matrix for this code as 

G � [ !: l = [ ;:: 
gk gkl 

then, from Equation (13 .2.3), we can write 

c = xG, 

(13 .2.3) 

(13 .2.4) 

(13 .2.5) 

(13.2.6) 

where x is a 1 x k row vector and G is the k x n generator matrix. This shows that any linear 
combination of the rows of the generator matrix is a code word. The generator matrix for 
any linear block code is a k x n matrix of rank k (because the dimension of the subspace is 
k by definition). The generator matrix of a code completely describes the code. When the 
generator matrix is given, the structure of an encoder is quite simple. 

3In this chapter, all vectors are represented as row vectors. 
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Example 13.2.2 
Determine the generator matrix for the first code given in Example 13 .2. 1 .  

Solution We have to find the code words corresponding to the information sequences (10) 
and (01) .  These are (10100) and (01 1 1 1), respectively. Therefore, [ 10100 ] G = 

01 1 1 1  . ( 13.2.7) 

For the information sequence (x1 , x2),  the code word is given by 

(13.2.8) 

or 

Cz = Xz 

C5 = Xz. • 

The preceding code has the property that the code word corresponding to each information 
sequence starts with a replica of the information sequence itself followed by some extra 
bits. Such a code is called a systematic code and the extra bits following the information 
sequence in the code word are called the parity-check bits. A necessary and sufficient 
condition for a code to be systematic is that the generator matrix be in the form 

(13.2.9) 

where I k denotes a k x k identity matrix and P is a k x (n -k) binary matrix. In a systematic 
code, we have 

C; = IX; ,k 
Lj=l PjiXj , k + l -:S i  -:S n ' (13.2. 10) 

where all summations are modulo 2. 
By definition, a linear block code Cf6 is a k-dimensional linear subspace of the 

n-dimensional space. From linear algebra, we know that if we take all sequences of 
length n that are orthogonal to all vectors of this k-dimensional linear subspace, the result 
will be an (n - k)-dimensional linear subspace called the orthogonal complement of the 
k-dimensional subspace. This (n - k)-dimensional subspace naturally defines an (n, n - k) 
linear code, which is known as the dual of the original (n, k) code Cf6. The dual code is 
denoted by Cf6l.. Obviously, the code words of the original code C(6 and the dual code <'.(61. are 
orthogonal to each other. In particular, if we denote the generator matrix of the dual code 
by H, which is an (n - k) x n matrix, then any code word of the original code is orthogonal 
to all rows of H, i.e., 

for all c E Cf6. (13.2. 1 1) 
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The matrix H, which is  the generator matrix of the dual code �J_, is  called the parity-check 
matrix of the original code �- Since all rows of the generator matrix are code words, we 
conclude that 

(13.2. 12) 

In the special case of a systematic code, where 

(13.2. 13) 

the parity-check matrix has the following form: 

(13.2.14) 

Example 13.2.3 
Find the parity check matrix for the code given in Example 13.2. 1 .  

Solution Here, [ 10100 J G =  01 1 1 1  ' 

1 = U� l [ 100 J p = 1 1 1  . 

We conclude that 

therefore, [ 1 1 1 0 0 ] 
H =  0 1 0 1 0 . 

0 1 0 0 1 

The parity check equations, given by cH' = 0, are 

• 

Hamming Codes. Hamming codes are a class of linear block codes with 
n = 2m - 1 and k = 2m - m - 1 for some m :::: 3, and, regardless of the value of 
m, have a minimum distance of dmin = 3. This means that for m = 3, we have a (7, 4) 
Hamming code, and for m = 4, we have a (15,  1 1) Hamming code. As we will see later, 
with this minimum distance, these codes are capable of providing error correction capabil­
ities for single errors. The parity-check matrix for these codes has a very simple structure. 
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It consists of all binary sequences of length m except the all-zero sequence. The rate of 
these codes is given by 

2m - m - 1  
R - -----c - 2m - 1 

(13 .2. 15) 

which is close to 1 for large values of m .  Therefore, Hamming codes are high-rate codes 
with a relatively small minimum distance (dmin = 3). We will see later that the minimum 
distance of a code is closely related to its error correcting capabilities. Therefore, Hamming 
codes have limited error-correcting capability. 

Example 13.2.4 
Find the parity-check matrix and the generator matrix of a (7, 4) Hamming code in the sys­
tematic form. 

Solution In this case, m = 3; therefore, H consists of all binary sequences of length 3 
except the all-zero sequence. We generate the parity-check matrix in the systematic form as [ 1 0 1 

H = 1 1 0 0 1 1 1 0 0 ] 0 1 0 = [ P' I h ] ' 0 0 1 
and the generator matrix is [ 1 0 0 0 1 1 0 ] 0 1 0 0 0 1 1 G = 0 0 1 0 1 0 1  = [ h ! P ] . 0 0 0 1 1 1 1 
If the information sequence x = (x1 ,  x2, x3, x4) is encoded by this code, the resulting code 
word will be c = xG, whose components are given by 

CJ = X1 

The parity-check equations are obtained from cH' = 0 and are given by 

c, EB C3 EB C4 EB C5 = 0 
c, EB C2 EB C4 EB C6 = 0 
C2 EB C3 EB C4 EB C7 = o. • 
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1 3.2.1 Decoding and Performance of Linear Block Codes 

The purpose of using coding in communication systems is to increase the Euclidean dis­
tance between the transmitted signals and, hence, to reduce the error probability at a given 
transmitted power. This was shown by an example in the previous section. Referring to 
Figure 13 .2, we see that this goal is achieved by choosing the code words to be as far apart 
on the vertices of the cube as possible. This means that a good measure for comparing the 
performance of two codes is the Hamming distance between code words. Keeping track 
of all distances between any two code words is difficult, and in many cases, impossible. 
Therefore, the comparison between various codes is usually done based on the minimum 
distance of the code, which, for linear codes, is equal to the minimum weight. It follows 
that for a given n and k, a code with a larger dmin (or Wmin) performs better than a code 
with a smaller minimum distance. 

Soft-Decision Decoding. In Chapters 8 and 9, we have seen that the optimum 
signal-detection scheme on an additive white Gaussian noise channel is detection based on 
minimizing the Euclidean distance between the received signal and the transmitted signal. 
This means that after receiving the output of the channel and passing it through the matched 
filters, we choose one of the message signals that is closest to the received signal in the 
Euclidean distance sense. In using coded waveforms, the situation is the same. Assum­
ing we are employing binary PSK for transmission of the coded message, a code word 
c; = (ci ! ,  Ci2 , . . .  , C;n) is mapped into the sequence s; (t) = L�=I 1/r;k (t - (k - l )T), 
where 

. t - {1/r(t) , 1/r,k( ) - -1/r(t) ,  
Cik = 1 
Cik = Q 

(13.2. 16) 

and 1/r(t) is a signal of duration T and energy �. which is equal to zero outside the interval 
[0, T]. Now the Euclidean distance between two arbitrary signal waveforms is given by 
Equation ( 13 . 1 . 18): 

(13 .2. 17) 

This gives a simple relation between the Euclidean and the Hamming distance when a 
binary PSK signaling scheme (or any antipodal signaling scheme) is employed. Now, using 
the general relation 

(13 .2. 18) 

we obtain 

( (U;;i) p(code word Cj receivedlcode word c; sent) = Q Y To . (13.2. 19) 
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Since d;j 2: dmin, and since Q (x) is a decreasing function of x, we conclude that 

( (2:t;:i) p(code word cj receivedlcode word c; sent) ::=: Q V � . (13.2.20) 

Now using the union bound (see Section 8.4.2), we obtain 

( 

(2:t;:i ) p(errorlcode word c; sent) :::; (M - 1) Q V � (13 .2.21) 

and assuming equiprobable messages, we finally conclude that 

(13.2.22) 

There exists a simple relationship between the energy per code element, denoted as %, 
and the energy per information bit, denoted as %b. Since a code word has n elements, the 
total transmitted energy is n%. But a code word with n elements carries k information bits. 
Hence, k%b = n% , and it follows that 

(13.2.23) 

From Equations (13.2.22) and (13 .2.23), we conclude that 

(13.2.24) 

Equations (13 .2.22) and ( 13.2.24) are bounds on the code word error probability 
of a coded communication system when optimal demodulation is employed. By optimal 
demodulation, we mean passing the received signal r (t) through a bank of matched fil­
ters to obtain the received vector y, and then finding the closest point in the constella­
tion to y in the Euclidean distance sense. This type of decoding that involves finding the 
minimum Euclidean distance is called soft-decision decoding, and requires real number 
computation. 

Example 13.2.5 
Compare the performance of an uncoded data transmission system with the performance of 
a coded system using the (7, 4) Hamming code given in Example 13 .2.4 when applied to the 
transmission of a binary source with the rate R = 104 bits/sec. The channel is assumed to 
be an additive white Gaussian noise channel, the received power is 1 microwatt and the noise 
power spectral density is � = 10-11 • The modulation scheme for the elements of any code 
word is binary PSK. 
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Solution 

1. If no coding is employed, we have 

2P 10-6 . But RNo = !O" x lO-ll = 10, therefore, 

P2 = Q(,Jlo) = Q(3. 1 6) � 7.86 x 10-4• 

The error probability for four bits will be 

PError in 4 bits = 1 - ( 1 - Pb)4 � 3 . 1 X 10-3. 

2. If coding is employed, we have dmin = 3 and 

� �b p 4 20 - = Re- = Re-- = - x 5 = -. 
No No RNo 7 7 

Therefore, the message error probability is given by 

( (2d::::;i) PM ::: (M - 1) Q y --y:;;-
= 15Q ( J3 x �o ) 
= 15Q(4.14) � 2.6 x 10-4. 

Chapter 1 3  

(13.2.25) 

(13.2.26) 

( 13.2.27) 

We see that using this simple code decreases the error probability by a factor of 12. Of course, 
the price that has been paid is an increase in the bandwidth required for the transmission of 
the messages. This bandwidth expansion ratio is given by 

Wcoded = � = � = 1 .75_ 
Wuncoded Re 4 

• 

Hard-Decision Decoding. A simpler and more frequently used decoding scheme 
is to make hard binary decisions on the components of the received vector y, and then to 
find the code word that is closest to it in the Hamming distance sense. The next example 
clarifies the distinction between soft and hard decisions. 

Example 13.2.6 
A (3, 1) code consists of the two code words 000 and 1 1 1 . The code words are transmitted using 
binary PSK modulation with � = 1 .  The received vector (the sampled outputs of the matched 
filters) is y = (.5, .5, -3). If soft decision is employed, we have to compare the Euclidean 
distance between y and the two constellation points ( 1 ,  1 ,  1) and ( - 1 ,  -1 ,  - 1) and choose the 
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smaller one. We have (dE(y, ( 1 ,  1 ,  1))2 = .52 + .52 +42 = 16.5 and (dE(y, ( - 1 ,  - 1 ,  - 1))2 = 
1 .52 + 1 . 52 + (-2)2 = 8.5; therefore, a soft-decision decoder would decode y as ( - 1 ,  - 1 ,  - 1 )  
or equivalently (0, 0, 0). However, if  hard-decision decoding is  employed, y i s  first compo­
nentwise detected as 1 or 0. This requires a comparison of the components of y with the 
zero threshold. The resulting vector c is therefore c = ( 1 ,  1 ,  0). Now, we have to compare 
c with the ( 1 ,  1 ,  1 )  and (0, 0, 0) and find the closer one in the Hamming distance sense. The 
result is, of course, ( 1 ,  1 ,  1 ) .  As seen in this example, the results of soft-decision decoding and 
hard-decision decoding can be quite different. Of course, soft-decision decoding is the optimal 
detection method and achieves a lower probability of error. • 

There are three basic steps involved in hard-decision decoding. First, we perform 
demodulation by passing the received r (t) through the matched filters and sampling the 
output to obtain the y vector. This is an n-dimensional vector whose components are real 
numbers. Second, we compare the components of y with the threshold (usually zero) and 
quantize each component to one of the two levels (usually 0 and 1) to obtain the estimate 
·c of the transmitted code word, which is an n-dimensional vector with binary components. 
Finally, we perform decoding by finding the code word that is closest to c in the Ham­
ming distance sense. In this section, we present a systematic approach to hard-decision 
decoding. 

First, we will define the notion of a standard array. Let the code words of the code 
in question be denoted by c1 , c2 , . . . , cM, where each of the code words is of length n and 
M = 2k, and let c1 denote the all-zero code word. A standard array is a 2n-k x 2k array 
whose elements are binary sequences of length n and is generated by writing all the code 
words in a row starting with the all-zero code word. This constitutes the first row of the 
standard array. To write the second row, we look among all binary sequences of length n 
that are not in the first row of the array (i.e., are not code words). Choose one of these code 
words that has the minimum weight and call it e 1 .  Write it under4 c 1 and write e 1 EB c; under 
c; for 2 :::; i :::; M. The third row of the array is completed in a similar way. From the binary 
n-tuples that have not been used in the first two rows, we choose one with minimum weight 
and call it e2• Then, the elements of the third row become c; EB e2• This process is continued 
until no binary n-tuples remain to start a new row. Figure 13 .4 shows the standard array 
generated as explained. Each row of the standard array is called a coset and the first element 
of each coset (e1 , in general) is called the coset leader. 

The standard array has several important properties. 

C1 C
2 C3 CM 

e1 e1 EB c2 e1 EB c3 e1 EB cM 
e1 e

2 
EB c2 

e
2 

EB c3 e
2 

EB cM 

e
2(n-k) _l ez<n-k)_l EB Cz ez<n-k) -1 EB C3 e1(n-k) -1 EB CM Figure 13.4 The standard array. 

4Note that c1 EB e1 = e1o  since c1 = (0, 0, . . .  , 0). 
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Theorem 13.2.2. All elements of the standard array are distinct. 

Proof. Assume two elements of the standard array are equal. This can happen in two 
ways. 

1. The two equal elements belong to the same coset. In this case, we have e1 E9 c; = 
e1 E9 c j, from which we conclude c; = c j , which is impossible. 

2. The two equal elements belong to two different cosets. Here, we have ee E9 c; = 
ek E9 Cj for l 'I k, which means e1 = ek E9 (c; E9 cj) . By linearity of the code, c; E9cj 
is also a code word; let us call it em . Therefore, ez = ek E9 cm; hence, ez and ek belong 
to the same coset, which is impossible since, by assumption, k -:j:. l. 

• 

From this theorem, we conclude that the standard array contains exactly 2n-k rows. 

Theorem 13.2.3. If z 1 and z2 are elements of the same coset, we have z 1 Ht = z2Ht . 
Proof. It is enough to note that since z1 and z2 are in the same coset, z1 = e1 E9c; and 

z2 = ez E9 Cj for some 1 :::: i, j :::: M. Therefore, 

z 1Ht = (ez E9 c;) Ht = ezHt + 0 = (ez E9 cj) Ht = z2Ht . 
• 

From this theorem, we conclude that each coset of the standard array can be uniquely 
identified by the product e1 Ht , where e1 denotes the coset leader. In general, for any binary 
sequence z of length n, we define the syndrome s as 

(13 .2.28) 

If z = e1 E9c; , i.e., z belongs to the (l + l )st coset, then, obviously, s = e1 Ht . The syndrome 
is a binary sequence of length 2n-k, and corresponding to each coset, there exists a unique 
syndrome. The syndrome corresponding to the first coset, which consists of the code words, 
is s = 0. 

Example 13.2.7 
Construct the standard array for the (5, 2) code with the code words 00000, 10100, 0 1 1 1 1, 
1 101 1 .  Also, detennine the syndromes corresponding to each coset. 

Solution The generator matrix of the code is 

[ 1 0 1 0 0
1
] 

G = 0 1 1 

and the parity-check matrix corresponding to G is 

H = [ �  � � � �1 ] · 
0 1 0 0 
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Using this construction, we obtain the standard array 

00000 01 1 1 1  10100 1 101 1 
10000 1 1 1 1 1  00100 0101 1 
01000 001 1 1  1 1 100 1001 1 
00010 0 1 101  10 1 10  1 1001 
00001 01 1 10 10101 1 1010 
1 1000 101 1 1  01 100 0001 1 
10010 1 1 101  001 10 01001 
10001 1 1 1 10 00101 01010 

syndrome = 000 
syndrome = 100 
syndrome = 1 1 1  
syndrome = 010 
syndrome = 001 
syndrome = 0 1 1  
syndrome = 1 10 
syndrome = 101. 
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• 

Assuming that the received vector y has been componentwise compared with a 
threshold and the resulting binary vector is c, we must find the code word which is at 
minimum Hamming distance from c. First, we find in which coset c is located. To do this, 
we find the syndrome of c by calculating s = c H1 • After finding s, we refer to the standard 
array and find the coset corresponding to s.  Assume that the coset leader corresponding to 
this coset is e1 • Because c belongs to this coset, it is of the form e1 EBc; for some 1 :::; i :::; M. 
The Hamming distance of c from any code word c j is, therefore, 

(13.2.29) 

Because the code is linear, c; EB Cj = ck for some 1 :::; k :::; M. This means that, 

(13.2.30) 

but ck EB e1 belongs to the same coset that c belongs to. Therefore, to minimize d (c, c j ), we 
have to find the minimum weight element in the coset to which c belongs. By construction 
of the standard array, this element is the coset leader, i.e., we choose ck = O; therefore, 
c j = c; . This means that c is decoded into c; by finding 

(13 .2.3 1)  

Therefore, the procedure for hard-decision decoding can be summarized as follows: 

1. Find y, the vector representation of the received signal. 
2. Compare each component of y to the optimal threshold (usually 0) and make a binary 

decision on it to obtain the binary vector c. 
3. Find s = cH1 , the syndrome of c. 
4. Find the coset corresponding to s by using the standard array. 
5. Find the coset leader e and decode c as c = c EB e. 

In this decoding scheme, the difference between the vector c and the decoded vector c is 
e, so the binary n-tuple e is frequently referred to as the error pattern. This means that the 
coset leaders constitute the set of all correctable error patterns. 
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To obtain error bounds in hard-decision decoding, we note that, since a decision is 
made on each individual bit, the error probability for each bit for antipodal signaling is 

(13.2.32) 

and for orthogonal signaling is 

(13 .2.33) 

The channel between the input code word c and the output of the hard limiter c is a 
binary-input binary-output channel that can be modeled by a binary symmetric channel 
with crossover probability P2• Because the code is linear, the distance between any two 
code words c; and c j is equal to the distance between the all-zero code word, 0, and the 
code word c; EB c j = ck. Thus, without loss of generality, we can assume that the all-zero 
code word is transmitted. If 0 is transmitted, the error probability, by the union bound, 
cannot exceed (M - 1) times the probability of decoding the code word that is closest to O 
in the Hamming distance sense. For this code word, denoted by c, which is at distance dmin 
from 0, we have 

or, in general, 

Therefore, 

( d ) dmin d · + .!. min p -2- (1 _ p )  "i'" 2 dmm 2 2 ' 
2 

dmin odd 

dmin even 

(13.2.34) 

(13.2.35) 

This gives an upper bound on the error probability of a linear block code using hard­
decision decoding. A simpler error bound for hard-decision decoding is given by the 
inequality 

(13 .2.36) 

Equation (13.2.36) is derived in Problem 13 .21 . 
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As seen in both soft-decision and hard-decision decoding, dmin plays a major role in 
bounding the error probability. This means that, for a given (n, k), it is desirable to have 
codes with large dmin .  

We can show that the difference between the performance of soft- and hard-decision 
decoding is roughly 2 dB for an additive white Gaussian noise channel. That is, the error 
probability of a soft-decision decoding scheme is comparable to the error probability of a 
hard-decision scheme whose power is 2 dB higher than the soft-decision scheme. We can 
also show that if, instead of quantization of each component of y to two levels, an eight­
level quantizer (three bits/component) is employed, the performance difference with soft 
decision (infinite precision) reduces to 0. 1 dB. This multilevel quantization scheme, which 
is a compromise between soft (infinite precision) and hard decision, is also referred to as 
soft-decision decoding in the literature. 

Example 13.2.8 
If hard-decision decoding is employed in Example 13.2.5, how will the results change? 

Solution In this example, P2 = Q(jif- ) = Q (2.39) = 0.0084 and dmin = 3. Therefore, 

P16 � G)Pi( l  - P2)5 + G)Pi( l  - P2)4 + . . .  :- Pi 

� 2l Pf � 1 .5 x 10-3 • 

Thus, coding has decreased the error probability by a factor of2 (it was 12 in the soft-decision 
case). If, instead of the exact error probability, we used the bound in Equation (13.2.36), we 
would find that 

P16 � (2k - 1)  [P2( l  - P2)]312 = 0.01 14 = 1 1 .4 x 10-3 . (13.2.37) 

• 

1 3.2.2 Some Important Linear Block Codes 

In general, hard-decision decoding of linear block codes using the standard array and syn­
drome decoding is too complex to be used in practice for long block lengths. In order 
to make decoding of linear block codes practical, special classes of linear block codes 
for which low complexity decoding algorithms exist have been designed and decoding 
algorithms for these special classes have been devised. 

One of the most widely used subclasses of linear block codes is cyclic codes. Cyclic 
codes are linear block codes with the additional property that a cyclic shift of any code 
word is itself a code word. It turns out that cyclic codes have a rich and nice structure if 
expressed in terms of polynomials. Hard-decision decoding of cyclic codes is simpler than 
hard-decision decoding for the general class of linear block codes and can be implemented 
using simple shift-register circuits. 

A subclass of cyclic codes called BCH codes (Bose, Chaudhuri, and Hocquenghem) 
are particularly interesting and have been used extensively. BCH codes can be designed 
for correction of any given number of errors. In many books on coding theory, there are 
extensive tables for the design of BCH codes that can correct a certain number of errors. 
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There exists an elegant and fast decoding algorithm, called the Berlekamp-Massey decod­
ing algorithm, for hard-decision decoding of the BCH codes. 

Reed-Solomon codes are a subset of nonbinary BCH codes; therefore, they belong to 
the family of cyclic codes. Unlike other codes that we have studied in this chapter, Reed­
Solomon codes are nonbinary codes, i.e., in a code word c = (c1 , c2 , . . .  , en), the elements 
c; are not binary 0 or 1 but each c; is itself a sequence of length k of O's and 1 's. Therefore, 
the size of the alphabet in Reed-Solomon codes is q = 2k, and the code is a q-ary code. 
Reed-Solomon codes are particularly useful in correction of bursts of errors as studied in 
Section 13 .2.4. Fading channels and storage channels are examples of channels in which 
errors tend to occur in bursts. Reed-Solomon codes are widely used in data, music, and 
video storage on CDs and DVDs. 

Reed-Solomon codes can also be concatenated with a binary code to provide higher 
levels of error protection. The binary code used in concatenation with the Reed-Solomon 
codes could be either a block code or a convolutional code. The binary encoder and decoder 
are located right before the modulator and after the demodulator, respectively, and are 
called the inner encoder-decoder pair. We will discuss concatenated codes in Section 13.4. 

The detailed structure of cyclic, BCH, and Reed-Solomon codes requires consider­
able knowledge of finite-field theory and is treated in many standard textbooks on coding 
theory. The interested reader can refer to the books cited at the end of this chapter. 

1 3.2.3 Error Detection versus Error Correction 

Let Cf6 be a linear block code with minimum distance dmin· Then if c is transmitted and hard­
decision decoding is employed, any code word will be decoded correctly if the received c 
is closer to c than any other code word. This situation is shown in Figure 13.5. As shown, 
around each code word there is a "Hamming sphere" of radius ec, where ec denotes the 
number of correctable errors. As long as these spheres are disjoint, the code is capa­
ble of correcting ec errors. A little thinking shows that the condition for nonoverlapping 
spheres is 

dmin 

{2ec + 1 = dmin 
2ec + 2 = dmin 

dmin odd 

dmin even 

G E C1 ••---+----+-t---+-+---+---• Cz dminodd 

ec ec 

drrrin 

G E c1 ••---+----+-i----+---+-+---i----• c2 drrri0even 

ec 
Figure 13.5 Relation between 

ec and dmin· 
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Figure 13.6 Relation between eco 
ed, and dmin · 

(13.2.38) 

(13 .2.39) 

In some cases, we are interested in decoding procedures that can detect errors rather 
than correct them. For example, in a communication system where a feedback link is avail­
able from the receiver to the transmitter, it might be desirable to detect whether an error 
has occurred and if so, to ask the transmitter via the feedback channel to retransmit the 
message. If we denote the error-detection capability of a code by ed, then obviously, in 
the absence of error correction, ed = dmin - 1 because if drrun - 1 or fewer errors occur, 
the transmitted code word will be converted to a noncode word sequence and an error is 
detected. If both error correction and error detection are desirable, then there is naturally a 
trade-off between these two conditions. Figure 13 .6 demonstrates this. From this picture, 
we see that 

(13.2.40) 

with the extra condition ec ::S ed. 

13.2.4 Burst-Error-Correcting Codes 

Most of the linear block codes are designed for correcting random errors, i.e., errors that 
occur independently from the location of other channel errors. Certain channel models, 
including the additive white Gaussian noise channel, can be well modeled as channels 
with random errors. In some other physical channels, however, the assumption of indepen­
dently generated errors is not a valid assumption. One such example is a fading channel, as 
discussed in Section 14. 1 .  In such a channel, if the channel is in deep fade, a large number 
of errors occur in sequence, i.e., the errors have a bursty nature. Obviously, in this channel, 
the probability of error at a certain location or time depends on whether or not its adjacent 
bits are received correctly. Another example of a channel with bursty errors is a compact 
disc. Any physical damage to a compact disc, such as a scratch, damages a sequence of 
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Encoder Channel Deinterleaver Decoder 

Figure 13.7 Block diagram of a system that employs interleaving/deinterleaving for burst-error correction. 

Read out bits to modulator 

t t t t t t t t 
-- 1 8 15 22 29 36 . . .  mn - 6  
-- 2 9 16 23 30 37 . . .  mn - 5 
-- 3 10 17 24 31 38 . . .  mn - 4  1 
-- 4 11 18 25 32 39 . . .  mn - 3  m rows 

-- 5 12 19 26 33 40 . . .  mn - 2 
-- 6 13 20 27 34 41 . . .  mn - 1 
-- 7 14 21 28 35 42 . . .  mn l 

I ·  n - k  k ·I Parity bits Data bits 

Figure 13.8 A block interleaver for coded data. 

bits; therefore, the errors tend to occur in bursts. Of course, any random error-correcting 
code can be used to correct bursts of errors as long as the number of errors is less than 
half of the minimum distance of the code. But the knowledge of the bursty nature of errors 
makes it possible to design more efficient coding schemes. Two particular codes that are 
designed to be used for burst-error correction are Fire codes and Burton codes. Refer to 
Lin and Costello (2005) for a discussion of these codes. 

An effective method for the correction of error bursts is to interleave the coded data 
such that the location of errors looks random and is distributed over many code words rather 
than a few code words. In this way, the number of errors that occur in each block is low and 
can be corrected by using a random error-correcting code. At the receiver, a deinterleaver 
is employed to undo the effect of the interleaver. A block diagram of a coding system 
employing interleaving/deinterleaving is shown in Figure 13.7. 

An interleaver of depth m reads m code words of length n each and arranges them 
in a block with m rows and n columns. Then, this block is read by column and the output 
is sent to the digital modulator. At the receiver, the output of the detector is supplied to the 
deinterleaver, which generates the same m x n block structure. It then reads by row and 
sends the output to the channel decoder. This is shown in Figure 13.8. 

Assume that m = 8 and the code in use is a (15, 1 1) Hamming code capable of cor­
recting one error/code word. Then, the block generated by the interleaver is an 8 x 15 
block containing 120 binary symbols. Obviously, any burst of errors of length 8 or less 
will result in a maximum of 1 error/code word; therefore, it can be corrected. If inter­
leaving/deinterleaving was not employed, an error burst of length 8 could possibly result 
in erroneous detection in 2 code words (or error in detection of up to 22 information 
bits). 
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13.3 CONVOLUTIONAL CODES 

Convolutional codes are different from block codes because of the existence of memory 
in the encoding scheme. In block codes, each block of k input bits is mapped into a block 
of length n of output bits by a rule defined by the code (e.g., by G) and regardless of the 
previous inputs to the encoder. The rate of such a code is given by 

k Re = - . n (13.3.1) 

In convolutional codes, each block of k bits is again mapped into a block of n bits to 
be transmitted over the channel, but these n bits are not only determined by the present k 
information bits, but also by the previous information bits. This dependence on the previous 
information bits causes the encoder to be a finite state machine. 

To be more specific, the block diagram of a convolutional encoder is given in 
Figure 13 .9. The convolutional encoder consists of a shift register with kL stages where 
L is called the constraint length of the code. At each instant of time, k-information bits 
enter the shift register and the contents of the last k stages of the shift register are dropped. 
After the k bits have entered the shift register, n-linear combinations of the contents of 
the shift register, as shown in the figure, are computed and used to generate the encoded 
waveform. From this coding procedure, it is obvious that the n-encoder outputs not only 
depend on the .most recent k bits that have entered the encoder, but also on the (L - l )k 
contents of the first (L - I)k stages of the shift register before the k bits arrived. Therefore, 
the shift register is a finite state machine with 2<L-I)k states. For each k-input bits, we have 
n-output bits, so the rate of this code is simply 

k Re = - . n (13.3.2) 

l�·-��2�����3����������n��� ('._ Encoded , sequence 
to modulator 

Figure 13.9 The block diagram of a convolutional encoder. 
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Example 13.3.1 
A convolutional encoder is shown in Figure 13.10. In this encoder, k = 1, n = 2, and L = 3. 

Therefore, the rate of the code is � and the number of states is 2<L- t)k = 4. One way to 
describe such a code (other than drawing the encoder) is to specify how the two output bits 
of the encoder depend on the contents of the shift register. This is usually done by specifying 
n vectors K t , Kz, . . . , Kn' known as generator sequences of the convolutional code. The ith, 
1 ::::: i ::::: 2kL, component of K j ,  1 ::::: j ::::: n, is 1 if the i th stage of the shift register is connected 
to the combiner corresponding to the jth bit in the output and 0 otherwise. In this example, 
the generator sequences are given by 

K t = [1 0 1] ,  

Kz = [1  1] .  

1 3.3.1 Basic Properties of Convolutional Codes 

• 

Because a convolutional encoder has finite memory, it can easily be represented by a state­
transition diagram. In the state-transition diagram, each state of the convolutional encoder 
is represented by a box, and transitions between states are denoted by lines connecting 
these boxes. On each line, both the input(s) causing that transition and the corresponding 
output(s) are specified. The number of lines emerging from each state is, therefore, equal to 
the number of possible inputs to the encoder at that state, which is equal to 2k . The number 
of lines merging at each state is equal to the number of states from which a transition is 
possible to this state. This is equal to the number of possible combinations of bits that leave 
the encoder as the k bits enter the encoder. This, again, is equal to 2k. Figure 13. 1 1  shows 
the state transition diagram for the convolutional code of Figure 13 . 10. 

A second, and more popular method, to describe convolutional codes is to specify 
their trellis diagram. The trellis diagram is a way to show the transition between various 
states as the time evolves. The trellis diagram is obtained by specifying all states on a 
vertical axis and repeating this vertical axis along the time axis. Then, each transition from 
a state to another state is denoted by a line connecting the two states on two adjacent 
vertical axes. In a sense, the trellis diagram is nothing but a repetition of the state-transition 
diagram along the time axes. As was the case with the state-transition diagram, we again 
have 2k branches of the trellis leaving each state and 2k branches merging at each state. In 
the case where k = 1 ,  it is coITlITlon to denote the branch corresponding to a 0 input by a 

L = 3 

k = l 

'- n = 2  
Figure 13.10 A rate t convolutional 
encoder. 



Section 1 3.3 Convolutional Codes 

States 

0100 

1/01 

00 
a 00 \ 11 \ 

b 01 • 

c 10 • 

\ \ \ \ \ . \ \ \ \ \ 01 

d 11 • • 
Time 

00 00 00 

01 

713 

Figure 13.11 State transition diagram for the 
encoder of Figure 13 . 10. Encoder input and 
outputs are shown on transition lines separated 
by "f'. 

Figure 13.12 Trellis diagram for the 
encoder of Figure 13.10. 

bold line and the branch corresponding to a 1 input to the encoder by a dashed line. Figure 
13 . 12 shows the trellis diagram for the code described by the encoder of Figure 13 . 10. 

Encoding. The encoding procedure in a convolutional code is very simple. We 
assume that the encoder, before the first information bit enters it, is loaded with zeros (the 
all-zero state). The information bits enter the encoder k bits at a time and the corresponding 
n-output bits are transmitted over the channel. This procedure continues until the last group 
of k bits is loaded into the encoder and the corresponding n-output bits are sent over the 
channel. We will assume, for simplicity, that after the last set of k bits, another set of 
k(L - 1) zeros enters the encoder and the corresponding n outputs are transmitted over 
the channel. This returns the encoder to the all-zero state and makes it ready for the next 
transmission. 

Example 13.3.2 
In the convolutional code shown in Figure 13. 10, what is the encoded sequence corresponding 
to the information sequence x = ( 1 10101 1)? 
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Solution It is enough to note that the encoder is in state 0 before transmission, and after 
transmission of the last information bit two 0 bits are transmitted. This means that the trans­
mitted sequence is x1  = (1 10101 100). Using this transmission sequence, we have the code 
word c = (1 1 101000010010101 1) .  • 

The Transfer Function. For every convolutional code, the transfer function gives 
information about the various paths through the trellis that start from the all-zero state 
and return to this state for the first time. According to the coding convention previously 
described, any code word of a convolutional encoder corresponds to a path through the 
trellis that starts from the all-zero state and returns to the all-zero state. As we will see in 
Section 13.3.4, the transfer function of a convolutional code plays a major role in bounding 
the error probability of the code. To obtain the transfer function of a convolutional code, we 
split the all-zero state into two states, one denoting the starting state and one denoting the 
first return to the all-zero state. All the other states are denoted as in-between states. Corre­
sponding to each branch connecting two states, a function of the form Da Nf3 J is defined 
where a denotes the number of ones in the output bit sequence for that branch and f3 is the 
number of ones in the corresponding input sequence for that branch. The trans/ er function 
of the convolutional code is, then, the transfer function of the flow graph between the start­
ing all-zero state and the final all-zero state, and will be a function of the tree parameters 
D, N, and J and denoted by T(D, N, J).  Each element of T(D, N, J) corresponds to a 
path through the trellis starting from the all-zero state and ending at the all-zero state. The 
exponent of J indicates the number of branches spanned by that path, the exponent of D 
shows the number of ones in the code word corresponding to that path (or equivalently the 
Hamming weight of the code word), and finally, the exponent of N indicates the number 
of ones in the input information sequence. Since T (D, N, J) indicates the properties of 
all paths through the trellis starting from the all-zero path and returning to it for the first 
time, then, in deriving it, any self-loop at the all-zero state is ignored. To obtain the trans­
fer function of the convolutional code, we can use all rules that can be used to obtain the 
transfer function of a flow graph. 

Example 13.3.3 

x •. 

Find the transfer function of the convolutional code of Figure 13. 10. 

Solution Figure 13 .13 shows the diagram used to find the transfer function of this code. The 
code has a total of four states denoted by the contents of the first two stages of the shift register. 

NJ 
Figure 13.13 Flow graph for finding the transfer 
function. 
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• 

• 

• 

We denote these states by the following letters: 

oo � a 

01 � b 

10 � c 

1 1  � d. 

As seen in the figure, state a is split into states a' and a" denoting the starting and returning 
state. Using the flow graph relations, we can write 

Xe = Xa1D2Nl + NlXb 

Xb = DlXd + DlXb 

Xd = DNlXe + DNlXd 

Eliminating Xb, Xe, and Xd results in 

Xa" D5Nl3 
T(D, N, l) = 

Xa' 
= 

1 - DNl - DN12 
(13.3.3) 

Now, expanding T(D, N, 1) in a polynomial form, we obtain 

T(D, N, 1) = D5Nl3 + D6N214 + D6
N215 + D1N315 + · · · .  (13.3.4) 

The term D5 N 13 indicates that there exists a path through the trellis starting from the all­
zero state and returning to the all-zero state for the first time, which spans three branches, 
corresponding to an input-information sequence containing one 1 (and, therefore, two O's), and 
the code word for this path has Hamming weight equal to 5. This path is indicated with bold 
lines in the Figure 13. 14. This path is somewhat similar to the minimum-weight code word 
in block codes. In fact, this path corresponds to the code word that is at "minimum distance" 
from the all-zero code word. This minimum distance, which is equal to the minimum power 
of D in the expansion of T(D, N, 1), is called the.free distance of the code and denoted by 
drree· The free distance of this code is equal to 5. The general form of the transfer function is, 
therefore, 

00 00 

• 

00 
T(D, N, l) = L ad Dd

Nf(dJ p<dJ . (13 .3 .5) 

00 

' ' ' ' ' 

• 

- - - - - - · 

00 

d=dcree 

• 

Figure 13.14 The path corresponding to D5 N J3 in 
code represented in Figure 13. 10. 
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A shorter form of transfer function, which only provides information about the weight 
of the code words, can be obtained from T ( D, N, J) by setting N = J = 1 .  This shorter 
form will be denoted by 

00 

T1 (D) = L adDd , (13.3.6) 
d=drree 

and will later be used in deriving bounds on the error probabilities of the convolutional 
codes. 

Example 13.3.4 
For the code of Figure 13 . 10, we have 

D5NJ3 I T1 (D) = 
1 - DNJ - DNJ2 N=l=I vs 
1 - 2D 

= D5 + 2D
6 + 4D7 + · · · 

00 
= Livs+i . i=O • 

Catastrophic Convolutional Codes. A convolutional code maps a (usually long) 
sequence of input information bits into a code word to be transmitted over the channel. The 
purpose of coding is to provide higher levels of protection against channel noise. Obvi­
ously, a code that maps information sequences that are far apart into code words that are 
not far apart is not a good code since these two code words can be mistaken rather easily 
and the result would be a large number of bit errors in the information stream. A limit­
ing case of this undesirable property happens when two different information sequences in 
infinitely many positions are mapped into code words that differ only in a finite number 
of positions. In such a case, since the code words differ in a finite number of bits, there 
always exists the probability that they will be erroneously decoded. This in tum results in 
an infinite number of errors in detecting the input information sequence. Codes that exhibit 
this property are called catastrophic codes and should be avoided. 

As an example of a catastrophic code consider the (2, 1) code described by 

g1 = [1 1 0] 
g2 = [O 1 1 ] .  

The encoder and the state-transition diagram for this code are given in  Figure 13 . 15 . As 
seen in this diagram, there is a self-loop in state "1 1" that corresponds to a "1" input 
to the encoder and the corresponding output consists of all zeros. Therefore, if an input 
information stream consists of all ones, the corresponding output will be 

c = (10010000 . . .  0001001) . 
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0100 

1/00 

Figure 13.15 Encoder and the state-transition diagram for a catastrophic code. 

If we compare this code word with the code word corresponding to the all-zero information 
sequence 

Co = (0000 . . .  000) , 
we observe that although the two information sequences are different in a large number 
of positions, the corresponding output sequences are quite close (the Hamming distance 
being only 4); therefore, they can be mistaken very easily. The existence of such a self­
loop (corresponding to k inputs which are not all zeros and for which the n output bits are 
all zeros) shows that a code is catastrophic and should therefore be avoided. 

13.3.2 Maximum Likelihood Decoding of Convolutional Codes-The Viterbi 
Algorithm 

In our discussion of various decoding schemes for block codes, we saw that there exists 
the possibility of soft- and hard-decision decoding. In soft-decision decoding, y, the vector 
denoting the outputs of the matched filters, is compared with the various signal points in 
the constellation of the coded modulation system and the one closest to it in Euclidean 
distance is chosen. In hard-decision decoding, y is first turned into a binary sequence c by 
making decisions on individual components of y; then the code word, which is closest to 
c in Hamming distance, is chosen. We see that in both approaches, a fundamental task is 
to find a path through the trellis that is at minimum distance from a given sequence. This 
fundamental problem arises in many areas of communications and other disciplines of elec­
trical engineering. Particularly, the same problem is encountered in maximum-likelihood 
sequence estimation when transmitting over bandlimited channels with intersymbol inter­
ference (Section 10.4.3), speech recognition, and some pattern classification schemes, etc. 
All these problems are essentially the same and can be titled as optimal trellis searching 
algorithms. The well-known Viterbi algorithm provides a satisfactory solution to all these 
problems. 
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In hard-decision decoding of convolutional codes, we choose a path through the trel­
lis whose code word, denoted by c, is at minimum Hamming distance from the quantized 
received sequence c. In hard-decision decoding, the channel is binary memoryless (the fact 
that the channel is memoryless follows from the fact that the channel noise is assumed to 
be white). Because the desired path starts from the all-zero state and returns back to the 
all-zero state, we assume that this path spans a total of m branches, and since each branch 
corresponds to n bits of the encoder output, the total number of bits in c (and also in c) is 
mn. We denote the sequence of bits corresponding to the ith branch by c; and c; , respec­
tively, where 1 ::::: i :S m and each c; and c; is of length n.  The Hamming distance between 
c and c is therefore 

m 

d(c, c) = Ld(c; , C;) .  (13.3.7) 
i=l 

In soft-decision decoding, we have a similar situation, but with three differences: 

1. Instead of c, we are dealing directly with the vector y, which is the vector output of 
the optimal (matched filter type or correlator type) digital demodulator. 

2. Instead of the binary sequence c, we are dealing with the corresponding sequence c' 
with 

c'. . = {�' 
lj 

-�. 

Cij = 1 
Cij = 0 

for 1 :S i ::::: m and 1 ::::: j ::::: n.  

3. Instead of Hamming distance, we are using Euclidean distance. This is  a conse­
quence of the fact that the channel under study is an additive white Gaussian noise 
channel. 

Thus, we have 
m 

di(c', y) = Ldi(C: ,  Y;) .  (13.3.8) 
i=l 

From Equations (13.3 .7) and (13 .3 .8), we see that the generic form of the problem we 
have to solve is as follows: Given a sequence a, find a path through the trellis, start at the 
all-zero state S1 = 0 and end at the all-zero state Sm = 0, such that some distance measure 
between a and a sequence b corresponding to that path is minimized. 5 The important fact 
that makes this problem easy to solve is that the distance between a and b in both cases of 
interest can be written as the sum of the distances corresponding to individual branches of 
the path. This is easily observed from Equations (13.3.7) and (13.3.8). 

Assume that the general problem is formulated as minimizing a metric µ., in the form 
m 

µ,(a, b) = L µ,(a; ,  b;) ,  
i=l 

5The problem can also be formulated as a maximization problem. For example, instead of minimizing the 
Euclidean distance, we could maximize the correlation. 
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where, for soft- and hard-decision decoding, µ represents the Euclidean distance and the 
Hamming distance, respectively. First, we observe that if the path (Sr = 0, S; = l , Sm = 
0), 1 S i S m, is the optimal path starting from the all-zero state, terminating at the all­
zero state, and passing through state l at time i ,  then the metric contribution of part of this 
path (Sr = 0, S; = l) is lower than the metric contribution of any other path connecting 
Sr = 0 to S; = l and denoted by (Sr = 0, S; = l) . Otherwise, the path consisting of the 
concatenation of (Sr = 0, S; = l) and (S; = l , Sm = 0) would be the optimal path. This is 
shown in Figure 13 . 16. 

This shows that at each state l at time i ,  only one path connecting the all-zero state to 
state l should be saved. This path is the path corresponding to the lowest metric connecting 
Sr = 0 to S; = l, i.e., the path at the minimum Hamming, or Euclidean, distance from the 
received sequence. The path of minimum metric connecting Sr = 0 to S; = l is called the 
survivor path, or simply the survivor, at S; = l . 

Let A;-r denote the set of states at time i - 1 that are connected with a branch 
to S; = l . If the path from Sr = 0 to S; = l is a survivor, then this path must be the 
concatenation of a survivor path at S;-r = A., for some A. E A;-r ,  and the branch connecting 
S;-r = A. to S; = l. Therefore, in order to find the survivor path at state S; = l, it is 
sufficient to have the survivors (and their metrics) for all S;-r = A. , A. E A;- r ,  then append 
them to the branches connecting the elements of A;-r to S; = l, find the metric of the 
resulting paths from Sr = 0 to S; = l, and pick the one with the minimum metric. This 
will be the new survivor path at S; = l . This process is started at Sr = 0 and is finished at 
Sm = 0. The final survivor at Sm = 0 represents the optimal path and the best (maximum 
likelihood) match to the received sequence. This process is shown in Figure 13 . 17. 

At each step, the new survivor metric is 

µ(Sr = 0, S; = l) = min {µ(Sr = 0, S;-r = A.) + µ(S;-r = A. , S; = l)} . A.EAi-1 (13 .3 .9) 

Having found the survivor metric, the new survivor at S; = l is the path (Sr = 0, S;-r = A. , 
S; = l) for the A. that minimizes the survivor metric in Equation (13 .3.9). 
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Figure 13.16 Comparison of the optimal path (S1 = 0, S, = l, S,. = 0) with a suboptimal path consisting of 
the concatenation of (S1 = 0, S, = l) and (S, = l, Sm = 0). 
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Figure 13.17 Finding a new survivor 
from old survivors. 

This procedure can be summarized in the Viterbi algorithm: 

1. Parse the received sequence into m subsequences, each of length n. 
2. Draw a trellis of depth m for the code under study. For the last L - 1 stages of the 

trellis, draw only paths corresponding to the all-zero input sequences. [This is done 
because we know that the input sequence has been padded with k(L - 1)  zeros.] 

3. Set i = 1 and set the metric of the initial all-zero state equal to zero. 
4. Find the distance from the ith subsequence of the received sequence to all branches 

connecting the ith stage states to the (i + l ) st stage states of the trellis. 
5. Add these distances to the metrics of the ith stage states to obtain the metric candi­

dates for the (i + l ) st stage states. For each state of the (i + l ) st stage, there are 2k 
candidate metrics, each corresponding to one branch ending at that state. 

6. For each state at the (i + l ) st stage, choose the minimum of the metric candidates; 
then, label the branch corresponding to this minimum value as the survivor and 
assign the minimum of the metric candidates as the metrics of the (i + l ) st stage 
states. 

7. If i = m, go to Step 8. Otherwise, increase i by 1 and go to Step 4. 
8. Starting with the all-zero state at the final stage, go back through the trellis along the 

survivors to reach the initial all-zero state. This path is the optimal path and the input 
bit sequence corresponding to it is the maximum likelihood decoded information 
sequence. To obtain the most likely input bit sequence, remove the last k(L - 1) 
zeros from this sequence. 

As seen from this algorithm, the decoding delay and the amount of memory required 
for decoding a long information sequence is unacceptable. The decoding cannot be started 
until the whole sequence (which, in the case of convolutional codes, can be very long) is 
received, and all surviving paths have to be stored. In practice, a suboptimal solution that 
does not cause these problems is desirable. One such approach, called path memory trun­
cation, is that the decoder at each stage only searches 8 stages back in the trellis instead 
of searching back to the start of the trellis. With this approach, at the (8 + l)th stage, the 
decoder makes a decision on the input bits corresponding to the first stage of the trellis 
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(the first k bits) and future received bits do not change this decision. This means that the 
decoding delay will be ko bits, and it is required only to keep the surviving paths cor­
responding to the last 8 stages. Computer simulations have shown that if 8 � SL, the 
degradation in performance due to path memory truncation is negligible. 

Example 13.3.5 
Assume that, in hard-decision decoding, the quantized received sequence is 

c = (01 101 1 1 1010001) . 

The convolutional code is given in Figure 13. 10. Find the maximum likelihood information 
sequence and the number of errors. 

Solution The code is a (2, 1) code with L = 3. The length of the received sequence c is 
14. This means that m = 7 and we have to draw a trellis of depth 7. Also note that because 
the input information sequence is padded with k(L - 1) = 2 zeros, for the final two stages of 
the trellis, we will only draw the branches corresponding to all-zero inputs. This also means 
that the actual length of the input sequence is 5, which, after padding with two zeros, has 
increased to 7. The trellis diagram for this case is shown in Figure 13. 18. The parsed received 
sequence c is also shown in this figure. In drawing the trellis in the last two stages, we have 
considered only the zero inputs to the encoder. In the final two stages, there are no dashed 
lines corresponding to 1 inputs. Now the metric of the initial all-zero state is set to zero and 
the metrics of the next stage are computed. In this step, there is only one branch entering each 
state; therefore, there is no comparison, and the metrics, which are the Hamming distances 
between that part of the received sequence and the branches of the trellis, are added to the 
metric of the previous state. In the next stage, there is no comparison either. In the third stage, 
we actually have two branches entering each state. This means that a comparison has to be 
made, and survivors are to be chosen. From the two branches that enter each state, the one that 
corresponds to the least total accumulated metric remains as a survivor and the other branches 
are deleted (marked with -1- on the graph). If, at any stage, two paths result in the same metric, 
each one of them can be a survivor. Such cases have been marked by a "?" in the trellis 
diagram. The procedure is continued to the final all-zero state of the trellis. Starting from 
that state, we move along the surviving paths to the initial all-zero state. This path, which 

Received __ 01 sequence 10 11 11 01 00 

Figure 13.18 The trellis diagram for the Viterbi decoding of the sequence (01 101 1 1 1010001). 

01 
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is denoted by a heavy path through the trellis, is the optimal path. The input bit sequence 
corresponding to this path is 1 100000 (where the last two zeros are not information bits, but 
are added to return the encoder to the all-zero state). Therefore, the information sequence 
is 1 1000. The corresponding code word for the selected path is 1 1 10101 1000000, which is 
at Hamming distance 4 from the received sequence. No other path through the trellis is at a 
Hamming distance less than 4 from the received c. • 
For soft-decision decoding, a similar procedure is followed with squared Euclidean 

distance substituted for Hamming distance. 

1 3.3.3 Other Decoding Algorithms for Convolutional Codes 

The Viterbi algorithm provides maximum-likelihood decoding for convolutional codes. 
However, as we have already seen, the complexity of the algorithm is proportional to the 
number of states in the trellis diagram. This means that the complexity of the algorithm 
increases exponentially with the constraint length of the convolutional code. Therefore, 
the Viterbi algorithm can be applied only to codes with low constraint lengths. For higher 
constraint-length codes, other suboptimal decoding schemes have been proposed. These 
include the sequential decoding of Wozencraft (1957), the Fano algorithm (1963), the 
stack algorithm [Zigangirov (1966) and Jelinek (1969)], the feedback-decoding algorithm 
[Heller (1975)], and majority logic decoding [Massey (1963)]. 

1 3.3.4 Bounds on the Error Probability of Convolutional Codes 

Study of error performance of convolutional codes is different from that of block codes 
since for these codes there exists no block structure; instead, a long sequence of information 
bits is mapped into a longer binary sequence and then transmitted. The number of bit errors 
in decoding of the information sequence is a random variable that depends on both the 
channel noise and the length of the transmitted sequence. The longer the input sequence, 
the higher the probability of making errors in that sequence. Therefore, it makes sense to 
normalize the number of bit errors by the length of the input sequence. 

A commonly used measure for comparing the performance of convolutional codes is 
the average bit error probability, defined as the expected number of erroneously decoded 
bits per transmitted bit. To find a bound on this quantity, we first derive a bound on the 
average number of bits in error for each information sequence of length k and then nor­
malize the result by dividing it by k. We begin by assuming that the all-zero sequence is 
transmitted6 and up to stage l in the decoding process there has been no error. At this point 
k new information bits enter the encoder and in the decoding, we move to the next stage 
in the trellis. We are interested in finding a bound on the expected number of errors due to 
transmission of these k bits. Because we are assuming that the all-zero sequence is trans­
mitted and there has been no error up to stage l, the all-zero path through the trellis must 
have the minimum metric up to the lth stage. Moving to the next stage, i.e., the (l + l)st 
stage. It is possible that another path through the trellis will have a metric less than the 

6Because of the linearity of convolutional codes we can, without loss of generality, make this assumption. 
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Figure 13.19 The path 
corresponding to the first -error 
event. 
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all-zero path and, therefore, cause errors. If this happens, we must have a path through the 
trellis that merges with the all-zero path, for the first time, at the (l + l )st stage which has a 
metric less than the all-zero path. Such an event is called the first-error event and the cor­
responding probability is called the.first-error-event probability. This situation is depicted 
in Figure 13 . 19. 

Our first step would be bounding the first-error-event probability. Let P2(d) denote 
the probability that a path through the trellis, which is at Hamming distance d from the 
all-zero path, is the survivor at the (l + l )st stage. Denoting the number of paths of weight d by ad, we can bound the first-error-event probability by 

00 

Pe S L adP2(d) , (13.3 . 10) 
d=dfree 

where, on the right-hand side, we have included all paths through the trellis that merge 
with the all-zero path at the (l + l)st stage. The value of P2(d) depends on whether soft-
or hard-decision decoding is employed. _ 

For soft-decision decoding; if antipodal signaling (binary PSK) is used, we have 

� Q (;w) 
� Q (J2R,d:.) ; (13 .3 . 1 1) 

therefore, 

(13.3 . 12) 
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Using the upper bound on the Q function, we have 

(13.3. 13) 

Now, noting that 

(13 .3. 14) 

we finally obtain 

(13.3 .15) 

This is a bound on the first-error-event probability. To find a bound on the aver­
age number of bits in error for k-input bits, Pb (k) , we note that each path through the 
trellis causes a certain number of input bits to be decoded erroneously. For a general 
DdNf(d) Jg(d) in the expansion of T(D, N, J) ,  there are f(d) nonzero-input bits. This 
means that the average number of input bits in error can be obtained by multiplying the 
probability of choosing each path by the total number of input errors that would result if 
that path were chosen. Hence, the average number of bits in error, in the soft-decision case, 
can be bounded by 

If we define 

we have 

00 

= L adDdNf(d) ' 
d=dfree 

Therefore, using Equations (13.3. 16) and (13.3. 1 8), we obtain 

p (k) < � BT2(D, N) I . b 
- 2 BN -Re 'i8b N=l,D=e No 

(13 .3 .16) 

(13.3. 17) 

( 13.3. 18) 

(13 .3. 19) 
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To obtain the average number of bits in error for each input bit, we have to divide this 
bound by k. Thus, the final result is 

- _ 1 aT2 (D, N) I Pb - - � . 2k aN -Rc
"N! 

N=l ,D=e O 

(13 .3 .20) 

For high SNRs, the first term corresponding to the minimum distance is the dominant term, 
and we have the approximation 

(13.3.21) 

For hard-decision decoding, the basic procedure follows this derivation. The only 
difference is the bound on P2(d). It can be shown that (see Problem 13 . 19) P2(d) can be 
bounded by 

P2(d) :S [4p(l - p)]d/2 , (13 .3 .22) 

where p is the crossover probability of the binary symmetric channel. Using this result, 
it is straightforward to show that in hard-decision decoding, the probability of error is 
upperbounded as 

Pb < - . - 1 aT2(D, N) I - k aN N=l,D=�4p(l-p) 
(13.3.23) 

A comparison of hard-decision decoding and soft-decision decoding for convolutional 
codes shows that here, as in the case for linear block codes, soft-decision decoding out­
performs hard-decision decoding by a margin of roughly 2 dB in additive white Gaussian 
noise channels. 

Convolutional Codes with Good Distance Properties. From this analysis, it 
is obvious that drree plays a major role in the performance of convolutional codes. For a 
given n and k, the free distance of a convolutional code depends on the constraint length of 
the code. Searching for convolutional codes with good distance properties has been exten­
sively carried out in the literature. Tables 13 . 1  and 1 3.2 summarize the result of computer 
simulations carried out for rate � and rate � convolutional codes. In these tables, for each 
constraint length, the convolutional code that achieves the highest free distance is tabu­
lated. For this code, the generators g; are given in octal form. The resulting free distance 
of the code is also given in these tables. 

1 3.4 GOOD CODES BASED ON COMBINATION OF SIMPLE CODES 

As we have seen in the preceding sections, the performance of block and convolutional 
codes depends on the distance properties of the code and, in particular, the minimum dis­
tance in block codes and the free distance in convolutional codes. In order to design block 
codes with a given rate and with high minimum distance, we must increase n, the block 
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TABLE 13.1 RATE � MAXIMUM FREE DISTANCE CODES 

Constraint Length L Generators in Octal drree 
3 5 7 5 
4 15 17 6 
5 23 35 7 
6 53 75 8 
7 133 171 10 
8 247 371 10 
9 561 753 12 

10 1 167 1545 12 
11 2335 3661 14 
12 4335 5723 15 
13  10533 17661 16 
14 21675 27123 16 

Odenwalder (1970) and Larsen (1973). 

TABLE 13.2 RATE � MAXIMUM FREE DISTANCE CODES 

Constraint Length L Generators in Octal dfree 
3 5 7 7 8 
4 13  15 17 10 
5 25 33 37 12 
6 47 53 75 13 
7 133 145 175 15 
8 225 331 367 16 
9 557 663 7 1 1  18  

10 1 1 17 1365 1633 20 
1 1  2353 2671 3 175 22 
12 4767 5723 6265 24 
13  10533 10675 17661 24 
14 21645 35661 37133 26 

Odenwalder (1970) and Larsen (1973). 

length of the code. Increasing n increases the complexity of the decoding. In most decod­
ing algorithms, the complexity of the decoding increases exponentially with increasing the 
block length of the code. 

For convolutional codes, increasing the free distance at a given rate requires increas­
ing the constraint length of the code. But increasing the constraint length of the code 
increases the number of states in the code trellis, which in turn increases the decoding 
complexity. Again, the decoding complexity increases exponentially with the constraint 
length of the convolutional code. 
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Various methods have been proposed to increase the effective block length of the 
code while keeping the complexity tractable. Most of these methods are based on com­
bining simple codes to generate more complex codes. The decoding of the resulting code 
is performed by using methods for decoding the simple component codes. The resulting 
decoding is a suboptimal decoding scheme, which usually performs satisfactorily. Here, we 
discuss three widely used methods for combining simple codes to generate more complex 
codes. These techniques generate product codes, concatenated codes, and turbo codes. 

1 3.4.1 Product Codes 

The structure of product codes (or array codes) is very similar to a crossword puzzle. 
Product codes are generated by using two linear block codes arranged in a matrix form. 
Two linear block codes, one with parameters n 1 , ki , and dmin 1 and another with parameters 
nz, kz, and dmin2, are used in a matrix of the form shown in Figure 13.20. The resulting 
code is an (n1n2 , kik2) linear block code. We can show that the minimum distance of 
the resulting code is the product of the minimum distances of the component codes, i.e., 
d d d d . bl f . ldmin l dmin 2- I J  . . l h  d d  . .  

min = min 1 min2 •  an IS capa e o correctmg 2 , usmg optima ar - ec1s1on 
decoding. But we can also decode using the properties of the component codes, as we 
would solve a crossword puzzle. Using the row codes, we can make the best guess for 
the bit values; then, using the column codes, we can improve these guesses. This process, 
which can be repeated in an iterative fashion, improving the quality of the guess in each 
step, is known as iterative decoding and is very similar to the way a crossword puzzle is 
solved. To employ this decoding procedure, we need decoding schemes for the row and 
column codes that are capable of providing guesses about each individual bit. In other 
words, decoding schemes with soft outputs (usually, the likelihood values) are desirable. 
In Section 1 3.5, we will describe such decoding procedures in our discussion of turbo 
codes. 

n1 - k1 Figure 13.20 The structure of a product code. 
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1 3.4.2 Concatenated Codes 

A concatenated code consists of two codes, an inner code and an outer code, connected 
serially, as shown in Figure 13.21. The inner code is a binary block or convolutional code 
and the outer code is typically a Reed-Solomon code. If the inner code is an (n, k) code, 
the combination of the inner encoder, digital modulator, waveform channel, digital demod­
ulator, and the inner decoder can be considered as a channel whose input and output are 
binary blocks of length k or, equivalently, elements of a q-ary alphabet where q = 2k. 
Now the Reed-Solomon code (the outer code) can be used on this q-ary input, q-ary out­
put channel to provide further error protection. It can easily be seen that if the rates of the 
inner and the outer codes are re and Re. respectively, the rate of the concatenated code 
will be 

(13.4.1) 

Also, the minimum distance of the concatenated code is the product of the minimum dis­
tances of the inner and the outer codes. In concatenated codes, the performance of the 
inner code has a major impact on the overall performance of the code. That is why convo­
lutional codes with soft decoding using the Viterbi algorithm are commonly employed for 
the inner code. 

1 3.5 TURBO CODES AND ITERATIVE DECODING 

Shannon's random coding theorem states that codes achieving channel capacity must have 
random, or close to random, structure as well as large block lengths. However, in gen­
eral, for a randomly generated code, the decoding complexity grows exponentially with 
the block length of the code. Hence, lack of structure, as well as large block length, ren­
ders maximum likelihood (ML) decoding of capacity achieving codes impractical. Turbo 
coding is a method to combine two simple codes connected by a pseudorandom interleaver 
of large length to generate a code with close-to-random structure as well as large block 
length. However, because the resulting code is based on combining simple codes, as dis­
cussed in the preceding section, its decoding is possible by an iterative scheme based on 
the decoding of its constituent codes. This decoding method, called iterative decoding, or 

Input 
data Outer 

encoder 
(N, K) 

Inner 
encoder 
(n, k) 

Outer 
decoder 

Modulator 

Inner 
decoder 

Channel 

Demodulator 

Figure 13.21 Block diagram of a communication system with concatenated coding. 
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Figure 13.22 Encoder for parallel concatenated code (turbo code). 
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turbo decoding, is not optimal but for many codes, after a few iterations, has a performance 
close to ML decoding. 

Parallel concatenated convolutional codes (PCCC) with interleaving, also called 
turbo codes, were introduced by Berrou et al. (1993). A turbo encoder, shown in Figure 
13.22, is an encoder that employs two recursive systematic convolutional encoders in par­
allel, where the second encoder is preceded by an interleaver. The two constituent encoders 
are usually identical with rate 1/2. We observe that since information bits at the output of 
the two encoders are sent only once, the nominal rate at the output of the turbo encoder, 
before puncturing, is Re = 1/3. However, by puncturing the parity-check bits at the out­
put of the binary convolutional encoders, we may achieve higher rates, such as 1/2 or 2/3. 
The interleaver, denoted by fl, is usually selected to be a pseudorandom interleaver that 
reorders the bits in the information sequence before feeding them to the second encoder. In 
effect, the use of two recursive convolutional encoders in conjunction with the interleaver 
produces a code that contains very few code words of low weight. This characteristic does 
not necessarily imply that the free distance of the concatenated code is especially large. It, 
however, results in code words that have relatively few nearest neighbors. In other words 
the number of code words at small distance from any code word is very low, and hence, the 
code words are relatively sparse. Hence, the coding gain achieved by a turbo code is due 
in part to this feature, i.e., the reduction in the number of nearest neighboring code words, 
called the multiplicity, that results from interleaving. 

Recursive systematic convofotional codes are systematic convolutional codes, mean­
ing the input bits appear directly as part of the encoded bits, in which the parity-check 
bits are generated by a recursive (feedback) linear filter. An example of a rate 1/2 RSCC 
is shown in Figure 13 .23. In this encoder cCI) = u ;  hence, it is systematic. It is also 
recursive because the parity-check bits cC2) are generated using a linear feedback shift 
register. 
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c(l) 

c<2l Figure 13.23 A recursive systematic 
convolutional encoder. 

I �����---1 + i..�������� 

U; 
• + 

U; 
)o 

Figure 13.24 A 27 /31 RSC encoder. 

The constituent codes in turbo codes are usually described by the ratio of the octal 
representation of the feedforward connection to the octal representation of the feedback 
connection of the encoder. For example, a 27 /3 1 RSC encoder has feedback and feedfor­
ward connections of 3 1  � g 1 = ( 1 1001) and 27 � g 2 = ( 101 1 1  ), respectively. The 
encoder is given by the block diagram shown in Figure 13.24. In this Figure cf denotes the 
stream of parity check bits generated by the encoder. Using this notation it is clear that the 
encoder of Figure 13 .23 is a 517 recursive systematic convolutional encoder. 

The interleaver in turbo codes is usually very long, in the order of thousands of bits. 
Pseudorandom interleavers perform well, although some improvement in the performance 
of the code can be obtained by clever choice of the interleaver. Such improvement is more 
noticeable at short interleaver lengths. Also note that unlike nonrecursive convolutional 
codes in which padding a sequence of zeros to the message sequence guarantees that the 
encoder returns to the all-zero state, for RSCC's returning the encoder to the all-zero state 
requires padding the information sequence with a particular nonzero sequence. Due to the 
existence of the interleaver, it is, in most cases, impossible to return both encoders to the 
all-zero state. 
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Example 13.5.1 
Generate the parity-check bits when the binary sequence u is encoded by the 5/7 RSCC shown 
in Figure 13.23. 

u = [ O 1 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 1 1 ] . 

Assume that the encoder starts from the zero state. 

Solution Passing u through the shift register starting at the all-zero state, we obtain the 
parity-check bits as 

c<2l = [ 0 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 ] . • 

Since turbo codes have two constituent-code components, an iterative algorithm is 
appropriate for their decoding, as discussed in Section 13.4. Any decoding method that 
yields the likelihood of the bits as its output can be used in the iterative decoding of turbo 
codes. One such decoding scheme is the maximum a posteriori probability (MAP) decoding 
method of Bahl, Cocke, Jelinek, and Raviv (BCJR), as described in Bahl et al. (1974). 
Another popular method with lower complexity (and degraded performance) is the soft­
output Viterbi algorithm (SOVA) of Hagenauer and Hoher (1989). Using either method at 
the first decoder, the likelihoods of different information bits are computed and passed to 
the second decoder. The second decoder computes the likelihood ratios and passes them to 
the first decoder; this process is repeated until the likelihoods suggest high probability of 
correct decoding for each bit. At this point, the final decision is made. 

1 3.5.1 MAP Decoding of Convolutional Codes-The BCJR Algorithm 

The BCJR algorithm, named after Bahl et al. (1974), is a symbol by symbol maximum a 
posteriori (MAP) decoding algorithm for convolutional codes. In this algorithm the decoder 
uses the MAP algorithm to decode each input symbol to the decoder rather than looking 
for the the most likely input sequence. 

We assume that the set of states in the convolutional encoder is denoted by S. Because 
the encoder inputs can be either 0 or 1 ,  transition from stage i - 1 to stage i (i.e., from 
a;_1 E S to a; E S) can be either due to u; = 0 or u; = I .  Let us denote by Se the set of all 
(a;-1 , a;) pairs corresponding to u; = e for e =  0, I .  

The symbol-by-symbol maximum a posteriori decoder receives the sequence y = 
(y1 , y2 , • . •  , y N ), the demodulator output, and based on this observation decodes u; using 
the maximum a posteriori rule 

u; = arg max P(u; ly) 
u;E{O, l }  

p(u; , y) 
= arg max ---

u;E{O, l J  p(y) 
= arg maxp(u; , y) 

u;E{O, l }  

= arg max 
fE10,l }  

(cr;-1 ,cr;)ESe 

(13.5 .1) 

p(a;-1 ,  a; , y) , 
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where the last equality follows from the fact that u ;  = e corresponds to all pairs of states 
(a;-1 , a;) E Se for f, = 0, 1 .  

If we define 

we can write 

and we have 

(i-1) - ( (i-1)) Yr - Y r · · · · · Y  , 
(N) ( ) Y;+I = Yi+I • . . .  , YN , 

( (i-1) (N)) 
Y = Y r  , Y; . Y;+r 

( ) ( (i-1) (N)) p a;-1 , a; , y = p a;-1 , a; , Yr , Y; . Y;+r ( (i-1) ) ( (N) I (i- 1) ) = P a;-1 , a; , Y 1 , Y; P Y;+1 a;-1 , a; , Y r , Y; 

(13 .5.2) 

(13.5.3) 

_ ( (i- Il) ( I (i- Il) ( <Nl l u-ri ) 
- P a;-1 , Y r  P a; , Y; a;-1 , Yr P Y;+r  a;-1 , a; , Y r  , Y; ( u-ri) ( I ) ( (NJ I ) 
= p a;-1 , y 1 p a; , Y; a;-1 p Y;+r a; , 

(13 .5.4) 
where the first three steps follow from the chain rule and the last step follows from Markov 
properties of the states in a trellis. 

At this point we assume the received sequence y is fixed and for this sequence we 
define three functions a;-1 (a;_1 ), {3; (a;), and y; (a;_1 , a; ) as 

( ) ( (i-D) a;- 1  a;- 1 = p a;- 1 ,  Yr , ( (N) ) {3; (a;) = p Y;+1 la; , 

Y; (a;-1 , a;) = p (a; , y; la;-1 ) . 

Using these definitions in Equation (13.5.4) we have 

p (a;-1 , a; , y) = a;-1  (a;-1)  y; (a;-1 , a; ) {3; (a;) 

and hence, from Equation (13 .5 .1) we obtain 

u; = arg max L a;-1 (a;-1)  y; (a;-1 , a;) {3; (a;) .  
lE{O, l }  

(cr;-1 ,cr;)ESe 

(13.5.5) 

(13.5.6) 

( 13.5.7) 

Equation (13 .5.7) indicates that for maximum a posteriori decoding we need the values of 
a;-1 (a;-1) , {3; (a;), and y; (a;-1 , a; ) .  

The Forward Recursion for a;  (a;) : We show that a; (a;) can be obtained using aforward 
recursion of the form 

a; (a;) = L y; (a;-1 , a;) a;-r  (a;-1) , 1 :::; i :::; N. 
cr;-1 ES 

(13.5.8) 
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To prove Equation (13.5.8) we use the following set of relations: 

( (i)) ct; (a;) =  p a; , Y 1 

""""' ( (i-1) ) = � p a;-1 , a; , Y 1 , y; 
a;-1ES 

"°' ( c;-1)) ( I (i-1)) = � P a;-1 ,  Y 1 P a; , Y; a;-1 ,  Y 1 
a;-1 ES 

= L P (a;-1 , Yii-I)) P (a; , Y; la;-1) 
a;-1ES 

= L ct;-1 (a;_i) y; (a;_ 1 ,  a;) , 
a;-1ES 
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(13 .5.9) 

which completes the proof of the forward recursion relation for ct; (a;) . This relation means 
that, if we have the values of y; (a;-1 ,  a;) , it is possible to obtain ct; (a;) from ct;-1 (a;-1) . 
If we assume that the trellis starts in the all-zero state, the initial condition for the forward 
recursion becomes 

cto (ao) = P (ao) = . 1 1 ao = 0 
0 ao I- 0 (13.5 .10) 

Equations (13.5.8) and (13 .5 .10) provide a complete set of recursions for computing the 
values of ct. 

The Backward Recursion for {3; (a;) : The backward recursion for computing the values 
of f3 is given by 

f3;-1 (a;-1 ) = L {3; (a;) y; (a;-1 , a;) , 1 :S i  :S N. 
a; ES 

To prove this recursion we note that 

f3i-l (a;-1 ) = P (YiN) la;-1 ) 
= L P  (Y; , Yi�i , a; la;-1 ) 

a; ES 

= L p (a; , y; la;-1) p (Yi�i la; ,  Y; , a;- 1 ) 
a; ES 

= L P  (a; , Y; la;-1 )  P (Yi�i la; ) 
a; ES 

= L Yi (a;-1 ,  a;) {3; (a;) . 
a; ES 

(13.5. 1 1) 

(13 .5 .12) 
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The boundary condition for the backward recursion, assuming that the trellis is ter­
minated in the all-zero state, is 

(13.5. 13) 

The recursive relations (13.5.8) and (13 .5 . 1 1) together with initial conditions 
(13 .5 . 10) and (13.5 . 13) provide the necessary equations to determine a's and f3's when 
y 's are known. We now focus on computation of y 's. 

Computing Yi (a;-1 ,  a;) :  We can write Yi (a;-1 , a;) ,  1 ::; i ::; N, as 

Yi (a;-1 ,  a;) = p (a; , y; la;-1) 
= p (a; la;-1 )  p (y; la; , a;-1) 
= P(u;)p (y; lu;) 
= P(u;)p (Y; lc; ) , 

(13 .5. 14) 

where we have used the fact that there exists a one-to-one correspondence between a pair 
of states (a;_1 ,  a;) and the input u; . The above expression clearly shows the dependence of 
y; (a;_1 ,  a;) on P(u;), the prior probability of the information sequence at time i ,  as well 
as p (Y; I c;) (which depends on the channel characteristics.) If the information sequence is 
equiprobable, an assumption that is usually made when no information is available, then 
P(u; = 0) = P(u; = 1) = ! · Obviously, the above derivation is based on the assumption 
that the state pair (a;_1 ,  a;) is a valid pair, i.e., a transition from a;-1 to a; is possible. 

Equation (13.5.7) together with the forward and backward relations for a and f3 given 
in Equations (13.5.8) and (13.5. 1 1) and Equation (13 .5 . 14) for y are known as the BCJR 
algorithm for symbol-by-symbol MAP decoding of a convolutional code. 

Note that unlike the Viterbi algorithm that looks for the most likely information 
sequence, the BCJR finds the most likely individual bits. The BCJR algorithm also provides 
the values of P (u; ly). These values provide a level of certainty of the decoder about the 
value of u; and are called soft outputs or soft values. Having P (u; jy), we can find the a 
posteriori likelihood values (£-values) as 

P (u; = l jy) L(u;) = ln ---­
p (u; = Ojy) 

= ln 
p (u; = 1, y) 
P (u; = 0, y) 

L a;-1 (a;-1) y; (a;-1 ,  a;) {3; (a;) 
(o-;-1 .o-;)ES1 

= ln ��������������� 
L a;-1 (a;-1) Yi (a;-1 ,  a;) {3; (a;) 

(o-;-1 ,0-; )ESQ 

(13.5 . 15) 

which are also referred as soft outputs. Knowledge of soft outputs is crucial in decoding of 
turbo codes discussed later in this chapter. A decoder such as the BCJR decoder that accepts 
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soft inputs (the vector y) and generates soft outputs is called a soft-input-soft-output (SISO) 
decoder. Note that the decoding rule based on L(ui) soft values is given by 

ui = ! 1 L(ui) ::: 0 . 0 L(ui) < 0 (13 .5 . 16) 

For an AWGN channel we have y = c + n, where c represents the modulated signal 
corresponding to the encoded sequence. In this channel model 

P (ui) ( 1 1Yi - ci ll2 ) 
Yi (ai-1 , ai ) = 

12 exp . (nNo)n No 
(13.5. 17) 

For the special case when n = 2, the convolutional code is systematic, and the 
modulation is BPSK, direct substitution results in 

( ) 
_ 1 ! (yf)2 + (yf)2 + 2% I P( ) 

(2yfcf + 2yf cf ) 
Yi ai-1 ,  ai - -- exp - ui exp , 

re No No No 
(13 .5 .18) 

where superscripts s and p indicate systematic and parity-check components of y and c. 
Direct substitution of Equation ( 13 .5 . 1 8) into Equation (13 .5 .15) yields 

(2y!'c!' ) L ai- 1 (ai-1 ) exp -'-' f3i (ai ) 

L( 
· ) _ 4JC&°yf 1 P (ui = 1) 1 (a;_1 ,a;)ESi 

No 
u, - + n + n P P • No P(ui = 0) "'°"' (2yi ci ) � ai- 1 (ai_i) exp � f3i (ai) 

(a;_1 ,a;)ESo 

( 13 .5. 19) 

Equation ( 13.5. 19) shows that the log likelihood ratio (LLR) of the information bits 
is the sum of three terms: the first term that depends only on the systematic bits, the second 
term that depends only on the prior probabilities, and the third term that depends on the 
parity-check bits. 

One problem with the version of the BCJR algorithm described above is that it is not 
a numerically stable algorithm, particularly for long trellises. An alternative to this algo­
rithm is the log-domain version of it, known as the log-APP (log a posteriori probability) 
algorithm or the log-MAP algorithm. 

In the log-APP algorithm, instead of a, {3, and y , we define their logarithms as 

ai (ai) = ln (a; (a;)) ' 

A (ai ) = ln (f3i (ai)) , 

Yi (a;-1 , ai ) = ln (Y; (ai-1 • ai)) . 

(13.5.20) 
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Straightforward calculation shows that the following forward and backward recursions 
hold for a; (a;) and 'A (a;-1) : 

a; (a;) = ln ( :z:= exp (a;-1 (a;-1) + r; (a;- 1 ,  a;))) , 
a;- 1 ES 

A-1 (a;-1) = ln (:z:= exp (A (a;) + Yi (a;-1 , a;))) 
a; ES 

with initial conditions 

� lo ao (ao) = 
-()() 

ao = 0 
ao I- 0 

and the a posteriori £-values are computed as 

L(u;) = ln [ L exp (a;-1 (a;-1) + Yi  (a;-1 ,  a;) + A (a;))] 
(a;-1 ,a;)ES1 

(13 .5.21) 

(13 .5.22) 

(13.5.23) 

These relations are numerically more stable but are not computationally efficient. In 
order to improve the computational efficiency, we can introduce the following notation: 

max*{x , y} ,§, ln (ex + eY) , 
max*{x, y, z} ,§, ln (ex + eY + ez) .  

Using these definitions, we have the recursions 

a; (a;) = max* {a;-1 (a;-1 )  + Yi  (a;- 1 ,  a;) } ' 
a;- 1 ES 

A-1 (a;-1 )  = max* {A (a;) + Yi (a;-1 ,  a;) } , 
a; ES 

(13 .5 .24) 

(13 .5 .25) 

where the initial conditions for these recursions are given by Equation (13 .5.22). The a 
posteriori £-values are given by 

L(u;) = max* {a;-1 (a;_i) + Yi  (a;-1 ,  a;) + A (a;) } (a;-1 ,a;)ES1 

- max* {a;-1 (a;-1) + Yi  (a;-1 ,  a; ) + A (a; ) } . (a;-1,a;)ESo 

The initial conditions for these recursions are given by Equation (13 .5 .22). 

(13 .5 .26) 
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For binary constituent codes, BPSK modulation, and AWGN channel the expres­
sion for the a posteriori L-values can be obtained using the log-domain quantities in 
Equation (13 .5 . 19). The result is 

L ( ) 
4�yf a * {� ( ) 2yfcf /3� ( ) } u; = --- + L (u; )  + max a;-1 o-;-1 + -- + ; u; No (a;-1 ,a; )ES1 No 

* {� 2yf cf � } 
- max a;-1 (o-;_i) + -- + /3; (a-; ) , 

(a;-1.a;)ESo No 
where we have defined La (u;) as 

a P (u; = 1) 
L (u; ) = ln . 

P (u; = 0) 

(13.5.27) 

(13 .5.28) 

It is seen that in this case the a posteriori L-values can be written as the sum of 

three terms. The first term, 4"'!Yf , depends on the channel output corresponding to the 
systematic bits received by the decoder. The second term, La (u;) ,  depends on the a priori 
probabilities of the information bits. The remaining terms denote the contribution of the 
channel outputs corresponding to the parity bits. 

It can be easily shown that (see Problem 13.22) 
max* {x, y} = max{x, y} + ln (1 + e-lx-yf ) , 

max* {x , y, z} = max* {max* {x , y}, z } . 
(13 .5.29) 

The term ln (1 + e-lx-yf) is small when x and y are not close. Its maximum occurs when 
x = y, for which this term is ln 2. It is clear that for large x and y or when x and y are not 
close, we can use the approximation 

max*{x , y} � max{x, y}. (13.5 .30) 

Under similar conditions we can use the approximation 

max* {x , y, z} � max{x , y, z}. (13 .5 .3 1) 

The approximate relations in Equations (13 .5 .30) and (13 .5.31) are valid when the 
the values of x and y (or x,  y, and z) are not close. In general, approximating max* by 
max in Equation (13.5.25) would result in a small performance degradation. The resulting 
algorithm, which is a suboptimal implementation of the MAP algorithm, is called that 
max-Log-APP algorithm (or, max-log-MAP algorithm) 

Instead of using the approximations given in Equations (13 .5.30) and (13 .5.31), we 
can use a lookup table for values of the correction term ln (1 + e-lx-yl) to speed up the 
algorithm. 

1 3.5.2 Iterative Decoding for Turbo Codes 

We have seen that optimal decoding of turbo codes is impossible due to the large num­
ber of states in the code trellis. A suboptimal iterative decoding algorithm, known as the 
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turbo decoding algorithm, was proposed by Berrou et al. (1993) and achieves excellent 
performance very close to the theoretical bound predicted by Shannon. 

The turbo decoding algorithm is based on iterative usage of the log-APP or the max­
log-APP algorithm. As is seen from Equation ( 13.5.27), the LLR in the case, a rate 1/2 
RSCC can be written as the sum of three terms as 

where 

s 4�yt LcY; = -y;;;-
La (u; ) = In 

P(u; = 1) 
P (u; = 0) 

max* 
(a;-1 ,a;)ESo 

and we have defined Le = �o �-

(13.5.32) 

(13 .5.33) 

The term Lcyf is called the channel L-value and denotes the effect of channel out­
puts corresponding to the systematic bits. The second term La (u;) is the a priori L-value 
and is a function of the a priori probabilities of the information sequence. The final term, 
L(e) (u; ) ,  represents the extrinsic L-value or extrinsic information that is the part of the a 
posteriori L-value and that does not depend on the a priori probabilities and the systematic 
information at the channel output. 

Let us assume that the binary information sequence u = (u 1 ,  u2 , • • •  , uN) is applied 
to the first RSCC with rate 112 and let us denote the parity bits at the output by cP = 
(cf , cf , . . . , c�) .  The information sequence is passed through the interleaver to obtain 
u' = cu; , u;, . . .  , u�), this sequence is then applied to the second encoder to generate 
the parity sequence c'P = (ct , c'f , . . .  , c'f:) .  Sequences u, cP, and c'P are BPSK modu­
lated and transmitted over a Gaussian channel. The corresponding output sequences are 
denoted by ys , yP, and y'P . The MAP decoder for the first constituent code receives the 
pair (ys , yP) .  In the first iteration the decoder assumes all bits are equiprobable and there­
fore the a priori L-values are set to zero. Having access to (ys , yP), the first decoder uses 
Equation (13 .5.27) to compute the a posteriori L-values. At the output of the first con­
stituent decoder, the decoder subtracts the channel L-values from the a posteriori 
L-values to compute the extrinsic L-values. These values are denoted by Li1 Cu;) and are 
permuted by the interleaver n and then used by the second constituent decoder as its a 
priori L-values. In addition to this information, the second decoder is also supplied with 
y'P and a permuted version of ys after passing it through the interleaver fl. The second 
decoder computes the extrinsic L-values denoted by L�e{ (u; ) and after permuting them 
through n-1 supplies them to the first decoder, which in the next iteration uses these val­
ues as its a priori L-values. This process is continued for a fixed number of iterations, or 
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L(e) 
12 II 

yP SISO 1 y'P SIS0 2 

Ys L(u;) L(u;) 
II 

Figure 13.25 Block diagram of a turbo decoder. 

until a certain criterion is met. After the last iteration, the a posteriori L-values L(u;) are 
used to make the final decision. 

The building block of the turbo decoder is a SISO decoder with inputs ys, yP , and 
L<al (u; ) and outputs L<el (u; ) and L(u;) .  In iterative decoding L<al (u; ) is substituted by the 
extrinsic L-values provided by the other decoder. The block diagram of a turbo decoder is 
shown in Figure 13 .25 . 

13.5.3 Performance of Turbo Codes 

Turbo codes are characterized by excellent performance at low SNR's. The performance 
of turbo codes improves with increasing the length of the interleaver and the number of 
iterations. The original turbo code studied by Berrou et al. (1993) used the 21/37 recur­
sive systematic convolutional encoder shown in Figure 13.26. This code was used with an 
interleaver with a constraint length of N = 216 = 65536 and puncturing was employed to 
increase its rate to 1/2. The performance of the resulting code using the BCJR decoding 
algorithm is shown in Figure 13.27. After 18 iterations this code achieves an error proba­
bility of 10-5 at an SNR of 0.7 dB, this is only 0.5 dB away from the Shannon limit for a 
rate 1/2 code. 

One problem with the turbo codes is the existence of the error floor. As seen in 
Figure 13.27, the probability of error decreases sharply with increasing 'll,b/ No up to a 

Figure 13.26 The 21/37 recursive systematic convolutional code. 
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certain point. After this point, the error probability decreases very slowly. The existence 
of the error floor is a consequence of the distance properties of turbo codes. Its turns out 
that, although turbo codes have excellent performance at low signal-to-noise ratios, they 
have rather poor minimum distance. The reason they can perform well is that, although the 
distance properties are poor, the number of paths at low distance (called the multiplicity of 
that distance) is very low. In ordinary convolutional codes, we can design codes with much 
better minimum distance, but much higher multiplicity at low distances. Now referring to 
Equation (13 .3.21), we see that for low SNR's, the multiplicity (admin) has a higher impact 
on the performance of the code, whereas at high SNR's, the minimum distance of the code 
plays a major role; thus, the performance of turbo codes at high SNR's sharply degrades. 

Figure 13.28 compares the performance of the 21/37 turbo code with a rate 1 /2 con­
volutional code with constraint length 14, and soft-decision Viterbi decoding. In the same 
plot, performance bounds (using the union bound) for both codes are also plotted. 

1 3.6 LOW-DENSITY PARITY-CHECK CODES 

Low-density parity-check codes (LDPC) are linear block codes that are characterized by 
a sparse parity-check matrix. These codes were originally introduced in Gallager (1960, 
1963) but were not widely studied for the next 20 years. These codes have been the topic of 
active research in the coding community motivated by their excellent performance, which 
is realized by using an iterative decoding scheme known as the sum-product algorithm. 
In fact, it has been shown that these codes are competitors to turbo codes in terms of 
performance and, if well designed, have better performance than turbo codes. Their excel­
lent performance has resulted in their adoption in several communication and broadcasting 
standards. 

Low-density parity-check codes are linear block codes with very large code word 
length n usually in the thousands. The parity-check matrix H for these codes is a large 
matrix with very few l 's in it. The term low density refers to the low density of l 's  in the 
parity-check matrix of these codes. 

A regular low-density parity-check code can be defined as a linear block code with 
a sparse m x n parity-check matrix H satisfying the following properties. 

1. There are w, l 's in each row of H, where w, « min{m , n}. 
2. There are We l 's in each column of H, where We «  min{m, n}. 

The density of a low-density parity-check code, denoted by r, is defined as the ratio of the 
total number of l 's in H to the total number of elements in H. The density is given by 

from which it is clear that 

Wr We r = - = ­n m 

m 
n w, 

(13 .6.1) 

(13.6.2) 
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If the matrix H is full rank, then m = n - k 

otherwise, 

m We Re = 1 - - = 1 - - , n Wr 

Re = 1 -
rank(H)

. n 

Chapter 1 3  

(13.6.3) 

(13.6.4) 

Low-density parity-check codes are conveniently represented by a graph representa­
tion known as the Tanner graph. Tanner graphs can be used to represent any linear block 
code. The Tanner graph is a graphical representation of cHt = 0 and can be obtained by 
representing each code word component c; , 1 _:::: i _:::: n, as a node i ,  known as a variable 
node and shown by a circle, and each of the n - k constraints given by cHt = 0 as a node 
j ,  1 _:::: j _:::: n - k, known as a check node and shown by a square. Variable node i and 
check node j are connected by an edge if c; appears in the jth parity-check equation. The 
degree of each node is the number of edges connected to it. 

Figure13.29 depicts the Tanner graph for a (7, 4) Hamming code. The parity-check 
equations for this code are (see Example 13.2.4) 

f1 : C1 + C2 + C3 + C5 = 0, 
f2 : C2 + C3 + C4 + C6 = 0, 
f3 : C1 + C2 + C4 + C7 = 0. 

(13.6.5) 

The Tanner graph shown in Figure 13.29 does not represent a regular LDPC code, since 
neither the degrees of the check nodes are equal, nor the degrees of the variable nodes. 
Also note that the graph shown in Figure 13.29 includes cycles-that is, a path on the 
edges that starts from a node and ends in the same node. The length of the shortest cycle 
in a graph is called the girth of the graph. The girth of the graph shown in Figure 13.29 is 
4 (corresponding to the cycle c1 --+ !1 --+ c2 --+ f3 --+ c1). 

In the Tanner graph of Figure 13.29 the variable nodes, which correspond to the 
variables supplied to the Tanner graph, are denoted by circles on the left; and the check 
nodes or constraint nodes, which force a relation between the variables. These nodes are 
denoted by squares on the right. A binary sequence c is a code word if it satisfies the three 
constraints given by Equation (13 .6.5). We also note that in this graph edges can only exists 
between a variable node and a check node, i.e., all edges connect a node on the left to a 
node on the right. Graphs with this property are called bipartite graphs. 

Let us define the indicator function of a proposition P as 

o[P] = 1 1 if P is true 
, 

0 if P is false 
(13.6.6) 

then, for instance, c is a code word of a Hamming code if the three equalities in Equation 
(13.6.5) are satisfied. With the notation just introduced in Equation (13.6.6), this means 
that c is a code word if and only if 

8[c1 + C2 + C3 + C5 = 0]8[c2 + C3 + C4 + C6 = 0]8[c1 + C2 + C4 + C7 = 0] = 1 .  (13.6.7) 
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Figure 13.29 The Tanner graph for the (7, 4) Hamming code. 

The graph shown in Figure 13.29 is a graphical representation of Equation (13.6.7). 
The Tanner graph of a regular low-density parity-check code consists of the usual 

constraint and variable nodes. The low-density and regular constraint of the code, however, 
makes the degree of all constraint (parity-check) nodes equal to Wr , which is much less than 
the code block length. Similarly, the degree of all variable nodes is equal to We. The Tanner 
graph for a regular LDPC code with Wr = 3 and We = 4 is shown in Figure 13.30. 

The Tanner graph of LDPC codes is usually a graph with cycles. We have previously 
defined the girth of a graph as the length of the shortest cycle in that graph. Obviously a 
Tanner graph with cycles has a girth that is least equal to 4. A common decoding technique 
used for LDPC codes is the sum-product algorithm. This algorithm is effective when the 
girth of the Tanner graph of the LDPC code is large. The reason for this behavior is that 
in order for the sum-product algorithm to be effective on a graph with cycles, the value 
of the extrinsic information, that is the information contributed by other variable nodes to 
the decoding of a certain node, must be high. If the girth of the LDPC code is low, the 
information corresponding to a bit loops back to itself very soon, hence providing a little 
amount of extrinsic information and resulting in poor performance. Design techniques for 
LDPC codes with large girth are topics of active research. 
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+ + + 

Figure 13.30 The Tanner graph for a regular LDPC code with w, = 4 and we = 3. 

The low-density parity check codes descibed so far are regular LDPC codes. Irreg­
ular LDPC codes are a generalized class of low-density parity check codes in which the 
number of l 's in rows and columns is variable, but the overall number of l 's in H is 
low. This added flexibility in the structure of irregular LDPC codes makes it possible to 
optimize the distribution of l 's in rows and columns, thus improving the performance. In 
general, irregular LDPC codes perform better than regular LDPC codes. Irregular LDPC 
codes are among the most effective coding schemes that can achieve performance within a 
fraction of dB from channel capacity. 

Example 13.6.1 
The parity check matrix for a (12, 3) regular LDPC code is given in Equation (13.6.8). 

0 0 1 0 0 1 1 0 0 0 0 
1 1 0 0 1 0 0 0 0 0 0 1 
0 0 0 1 0 0 0 0 1 0 
0 1 0 0 0 1 0 0 1 0 0 

H =  1 0 1 0 0 0 0 1 0 0 1 0 (13.6.8) 
0 0 0 0 0 0 1 0 0 1 

0 0 1 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 1 0 0 1 1 
0 0 0 0 0 0 0 0 

Determine We, w" and the density of this code. Write the parity check equations and draw the 
Tanner graph of the code. What is the girth of this code? 

Solution Each row of the parity check matrix contains four l 's and each column of it con-
tains three l 's. Therefore Wr = 3 and We = 4. The density of the code denoted by r is 
given by 

We 4 1 
(13.6.9) r = --;; = 

12 
= 3 · 
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If c = (c1 , c2, • . •  , Cn)  is a code word, then cH' = 0. This relation yields a total of 9 
parity-check equations, each containing We = 4 of the C; 's. The parity-check equations are 
given below 

C3 EB C6 EB C7 EB Cg = 0, 
Cj EB C2 EB C5 EB C12 = 0, 

Cz EB c6 EB C7 EB c10 = 0, 
C1 EB C3 EB Cg EB cu = 0, 

Note that each c; , for 1 :s i :S n, appears in exactly w, = 3 of the nine equations. The Tanner 
graph of the code is shown in Figure 13.3 1 .  From the Tanner graph it can be easily verified 
that the girth of this code is 4 (for instance, there is path of length 4 that starts at c4 and returns 
to c4 after passing through c5). • 

1 3.6.1 Decoding LDPC Codes 

In this section we describe two algorithms for decoding LDPC codes. These algorithms 
are the bit-flipping algorithm and the sum-product algorithm, the latter also referred to as 
the belief propagation algorithm. The bit-flipping algorithm is a hard-decision decoding 
algorithm with low complexity. The sum-product algorithm is a soft-decision algorithm 
with higher complexity. 

The Bit-Flipping Algorithm. The bit-flipping algorithm is a hard-decision 
decoding algorithm. Let us assume that y is the hard channel output (i.e., the channel output 
quantized to 0 or 1.) In the first step of the bit-flipping algorithm, the syndrome s = yH1 
is computed. If the syndrome is zero, then we put c = y and stop. Otherwise, we consider 

Figure 13.31 The Tanner graph for the LDPC code with H given in Equation (13.6.8). 
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the nonzero components of s .  Each of these nonzero components corresponds to a parity­
check equation that is not satisfied. We then update y by flipping those components of 
y for which the number of unsatisfied check equations exceeds a certain threshold. After 
the update, the syndrome is computed again and the whole process is repeated for a fixed 
number of iterations or until the syndrome is equal to zero. The optimal value of the thresh­
old in the bit-flipping algorithm has been computed by Gallager (1963). 

A modified, and much simpler, version of the bit-flipping algorithm is obtained by 
flipping only those bits in y for which the number of unsatisfied parity check equations has 
the largest value among all components of y and then repeating the syndrome computation. 
This process is continued until either the syndrome is zero or a predetermined number of 
iterations is reached. The interested reader can refer to Lin and Costello (2005) for more 
details on bit flipping decoding and its various variations. 

The Sum-Product Algorithm. The sum-product algorithm, which belongs to 
the class of message-passing algorithms, is an iterative decoding algorithm for LDPC 
codes that is based on passing likelihood ratios between variable and check nodes. The 
variable nodes receive the outputs of the channel and pass the likelihoods of code word 
components to the check nodes. Each check node updates and transmits the likelihood of 
each bit to the corresponding variable node by using the received likelihoods from all other 
variable nodes that are connected to it (extrinsic information). This process is repeated 
until a predetermined maximum number of iterations is achieved or until a code word is 
decoded,i.e., all check equations are satisfied. Here we provide only the steps in the sum­
product algorithm for BPSK modulation over AWGN channels. The interested reader can 
refer to Ryan and Lin (2009) for details. . 

For an A WGN channel with BPSK modulation, where 0 is mapped to � and 1 is 
mapped to -�, when the ith channel output is y; , the corresponding likelihood ratio is 
given by 

L(y;) = ln 
p(y; IO) 
p(y; l l )  

e-(y;-�r/No 
= ln 2 

e -(Yi+�) /No 
4� = --y; . 
No 

(13.6. 10) 

The sum-product algorithm is initialized at each node i ,  1 :::; i :::; n, by sending the 
likelihood values in Equation (13 .6.10) to all check nodes j E M(i) , where M(i) denotes 
the set of check nodes connected to the variable node i .  In other words, for all 1 :::; i :::; n, 

and for all j E M(i) , the message passed from node i to node j is 

4� L;_,,j = L; = --y; . 
No 

(13 .6. 1 1) 
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Check node j, after receiving all messages from the variable nodes connected to it, 
computes the message to be sent to node i ,  1 ::::: i ::::: n, using the relation 

(13 .6.12) 

where N (j) denotes the set of variable nodes connected to check node j .  This is done for 
all i E N(j) .  

In the next step, the variable nodes update their information based on the received 
information from the check nodes. In this step, variable node i sends check node j E M(i) 
the updated likelihood 

Li--+j = L; + L Lj'--+i · 
j'EM(i)-{j} 

(13 .6. 13) 

Equations (13 .6.12) and (13 .6.13) are iteratively computed and the updated likeli­
hoods are passed between check and variable nodes until either a preset number of itera­
tions is achieved or a code word is detected. The detection is based on computing the total 
likelihoods at the variable nodes using 

and then detecting c using 

L:otal = L; + L L j--+i 
jEM(i) 

A { 1 ,  
C; = 0, 

if L�ota! < 0 l 
otherwise 

1 3.7 CODING FOR BANDWIDTH-CONSTRAINED CHANNELS 

(13 .6. 14) 

(13 .6. 15) 

In the two major classes of codes studied so far, i.e., block and convolutional codes, an 
improvement in the performance of the communication system is achieved by expanding 
bandwidth. In both cases, the Euclidean distance between the transmitted coded waveforms 
is increased by use of coding, but at the same time, the bandwidth is increased by a factor of 
I = ic. These codes have wide applications in cases where there is enough bandwidth and 
the communication system designer is not under tight bandwidth constraints. An example 
of such a case is a deep-space communication system. However, in many practical applica­
tions, we are dealing with communication channels with strict bandwidth constraints and 
the bandwidth expansion due to coding may not be acceptable. For example, in the trans­
mission of digital data over telephone channels (modem design), we are dealing with a 
restricted-bandwidth channel, and the overhead due to coding imposes a major restriction 
on the transmission rate. In this section, we will discuss an integrated coding and mod­
ulation scheme called trellis-coded modulation that is particularly useful for bandwidth­
constrained channels. 
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1 3.7.1 Combined Coding and Modulation 

Use of block or convolutional codes introduces redundancy that, in tum, causes increased 
Euclidean distance between the coded waveforms. On the other hand, the dimensionality 
of the transmitted signal waveforms, when binary PSK modulation is employed, increases 
from k to n.  This increase in dimensionality results in an increase in bandwidth since band­
width and dimensionality are proportional, as seen from Equation (9.7.5). If we want to 
reap the benefits of coding and, at the same time, not increase the bandwidth, we have to use 
a modulation scheme other than binary BPSK, i.e., a scheme that is more bandwidth effi­
cient. This means that we have to employ a multilevel/multiphase-modulation scheme to 
reduce the bandwidth. Of course using a multilevel/multiphase-modulation scheme results 
in a more "crowded" constellation and, at a constant power level, decreases the minimum 
Euclidean distance within the constellation. This certainly has a negative effect on the 
error performance of the overall coding-modulation scheme. But, as we will see next, this 
reduction of the minimum Euclidean distance within the constellation can be well compen­
sated by an increase in the distance due to coding such that the overall performance shows 
considerable improvement. 

As an example, assume that, in the coding stage, we want to use a rate � code. If the 
rate of the source is R bits/sec, the number of encoder output binary symbols/sec will be 
� R. If we want to use a constellation such that the bandwidth requirement is equal to the 
bandwidth requirement of the uncoded signal (no bandwidth expansion), we must assign m 
dimensions for each output binary symbol such that the resulting number of dimensions/sec 
is equal the number of dimensions/sec of the uncoded data, which is R. Therefore, we must 
have 

hence, 
2 m = -3 

3 R = -Rm; 2 

dimension/binary symbol. 

(13 .7 . 1) 

(13 .7 .2) 

This means that the constellation should be designed so we have two dimensions for every 
three binary symbols. But three binary symbols are equivalent to eight points in the con­
stellation; therefore, we can achieve our goal with an eight-point constellation in the two­
dimensional space. One such constellation is, of course, an 8-PSK modulation scheme. 
Therefore, if we use a rate � code in conjunction with an 8-PSK modulation scheme, there 
will be no bandwidth expansion. 

Now, examine how much coding gain we can obtain from such a scheme. Assuming 
that the available power is P with no coding, we have 

p "&b = - .  R (13.7.3) 

The minimum squared Euclidean distance between two uncoded sequences is d2 = 
(±2,J'&h)2, or 

2 4P d = ­R (13.7.4) 
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If two information bits are mapped into a point in an 8-PSK constellation, the energy of 
this point is 

2P 
'l8s = Ji • (13 .7.5) 

From this, we can derive an expression for the minimum Euclidean distance within the 
constellation (see Figure 13.32) as 

2 2P . 2 TI /;:\ p dmin = 4- sm - = 2(2 - v2 )- .  R 8 R (13 .7.6) 

Obviously, the minimum Euclidean distance has been decreased. To see this effect, we 
derive the loss due to using this constellation: 

d
2 

2 
-2- - .j2 = 2 + ./2 = 3 . 141  "" 5.33 dB. 
dmin 2 -

(13.7.7) 

This loss has to be compensated by the code. Of course, the rate � code employed here 
should not only compensate for this loss, but should also provide additional gain to justify 
its use of the overall coding-modulation scheme. We can use any block or convolutional 
code that can provide the minimum distance required to achieve a certain overall coding 
gain. For example, if we need an overall coding gain of 3 dB, the code must provide a cod­
ing gain of 8.33 dB to compensate for the 5 .33-dB loss due to modulation and to provide 
an extra 3-dB coding gain. A code that can provide such a high coding gain is a very com­
plex code requiring a sophisticated encoder and decoder. However, by interpreting coding 
and modulation as a single entity, as shown in Section 13.7.2, we see that a comparable 
performance can be achieved using a much simpler coding scheme. 

13.7.2 Trellis-Coded Modulation 

Trellis-coded modulation, or TCM, is a simple method for designing coded-modulation 
schemes that can achieve good overall performance. This coding-modulation scheme is 
based on the concept of mapping by set partitioning developed by Ungerboeck (1982). 
Mapping by set partitioning can be used in conjunction with both block and convolutional 
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codes, but due to the existence of a simple optimal soft-decision decoding algorithm for 
convolutional codes (the Viterbi algorithm), it has been mostly used with convolutional 
codes. 

Set Partitioning Principles. The key point in the partitioning of a constellation 
is to find subsets of it that are similar and the points inside each partition that are maximally 
separated. Starting with the original constellation, we partition it into two subsets that are 
congruent and ensure that the points within each partition are maximally apart. Then, we 
apply the same principle to each partition and continue. The point at which the partitioning 
is stopped depends on the code that we are using. This will be discussed shortly. 

An example of set partitioning is shown in Figure 13 .33. We start with an 8-PSK 
constellation with power 'lf;s . The minimum distance within this constellation is 

(13 .7.8) 

This constellation is partitioned into two subsets denoted by Bo and B, . Note that B0 and 
B1 are congruent. There are many ways that the original 8-PSK constellation can be par­
titioned into two congruent subsets, but Bo and B1 provide the maximum intra-partition 
distance. This distance is easily seen to be 

(1 3.7.9) 

We further partition Bo and B1 to obtain Co, c, , C2, and C3. As a result, the intra partition 
distance increases to 

(13 .7. 10) 

We can still go one step further to obtain eight partitions, each containing a single point. 
The corresponding subsets are denoted by Do through D7. Another example of set parti­
tioning applied to a QAM constellation is given in Figure 13.34. This partitioning follows 
the general rules for set partitioning as just described. 

Coded Modulation. The block diagram of a coded-modulation scheme is shown 
in Figure 13 .35. A block of length k information bits is broken into two subblocks of 
lengths k1 and k2, k = k1 + k2. The first k1 bits are applied to an (n1 ,  k1) binary encoder. 
The output of the encoder consists of n1 bits. These bits are used to choose one of 2n1 
subsets in the partitioning of the constellation. After the subset is chosen, the remain­
ing k2 bits are used to choose one of the points in the selected subset. This means that 
there exist 2k2 points in each subset. Therefore, the constellation that is used contains 2n1 
subsets and each subset contains 2k2 points. This gives us a rule for how large a con­
stellation is required and how many steps in partitioning of this constellation must be 
taken. 

Ungerboeck (1982) has shown that, by choosing n1 = k1 + 1  and k2 = 1 and using 
simple convolutional codes, we can design coded modulation schemes that achieve an over­
all coding gain between 3 and 6 dB. One such scheme is shown in Figure 13.36. In this 
coding scheme, k1 = 1, n1 = 2, and k2 = 1 .  The constellation contains 2n1+k2 = 8 points, 
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Figure 13.33 Partitioning of an 8-PSK constellation. 

which are partitioned into 2n1 = 4 subsets, each containing 2k2 = 2 points. The constella­
tion chosen here is an 8-PSK constellation, and it is partitioned as shown in Figure 13.33. 
The convolutional code employed can be any rate � = ! code. The constraint length 
of this code is a design parameter and can be chosen to provide the desired coding gain. 
Higher constraint lengths, of course, provide higher coding gains at the price of increased 
encoder-decoder complexity. In this very simple example, the constraint length has been 
chosen to be equal to 3. The (one-stage) trellis diagram of this code is also shown in 
Figure 13.36. 

The trellis diagram shown in Figure 13.36 is similar to the trellis diagram of an 
ordinary convolutional code. The main difference is that in this trellis we have parallel 
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Figure 13.36 A simple TCM scheme. 

paths (transitions). The reason for this is the existence of the extra k1 = 1 bit, which 
chooses a point in each subset. The two parallel paths connecting two states correspond to 
a subset, and any single path corresponds to a point inside the subset. One final question 
remains to be answered: What is the optimal assignment of the constellation points to the 
branches of the code trellis? Extensive computer simulations as well as heuristic reasoning 
result in the following rules: 

1. Parallel transitions, when they occur, correspond to signal points in a single subset at 
the last stage of partitioning (thus providing the largest Euclidean distance). In this 
example, C0 = {Do, D4} , C2 = {D2, D6}, C, = {D,, Ds}, and C3 = {D3 ,  D1} cor­
respond to parallel transitions. These points are separated by the maximum Euclidean 
distance of d1 = 2,./&;. 
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2. Transitions that have only one common end (i.e., they either originate from the same 
state, or end in the same state) correspond to subsets, in the last stage of partitioning, 
that come from a common parent subset in the preceding stage of set partituioning. 
In this example, {Co, C2} and {C1 , C3} are such subsets, having parents Bo and B1, 
respectively. The maximum distance in this case is d1 = �-

3. The signal points should occur with equal frequency. 

To see how the trellis-coded modulation scheme of Figure 13.36 performs, we have 
to find the minimum Euclidean distance between two paths originating from a node and 
merging into another node. This distance, known as the free Euclidean distance and denoted 
by Dred, is an important characteristic of a trellis-coded modulation scheme. One obvi­
ous candidate for Dred is the Euclidean distance between two parallel transitions. The 
Euclidean distance between two parallel transitions is d2 = 2..,/&;. Another candidate path 
is shown in Figure 13 .37. However, the Euclidean distance between these two paths is 
d2 = d'l; + 2df = 4.58�s ·  Obviously, this is larger than the distance between two parallel 
transitions. It is easily verified that for this code, the free Euclidean distance is Dred = d2 = 
2..,/&;. To compare this result with an uncoded scheme, we note that in an uncoded scheme 
(see Equation 13 .7.4), 

and in the coded scheme (see Equation 13 .7.5), 

d;oded = 4�s = 8�b · 
Therefore, the coding gain is given by 
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Figure 13.37 Two candidate minimum distance paths. 
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(13 .7 . 12) 
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Figure 13.38 An eight-state 
Ungerboeck encoder. 

Thus, this simple coding scheme is capable of achieving a 3-dB coding gain without 
increasing bandwidth. Of course, the. price paid for this better performance is increased 
complexity in encoding and decoding. 

Instead of a 4-state trellis, a trellis with a higher number of states yields higher coding 
gains. Extensive computer simulations by Ungerboeck indicate that with 8, 16, 32, 64, 
128, and 256 states, coding gains in the range of 3.6-5.75 dB can be achieved. The trellis 
diagram for an 8-state trellis is shown in Figure 13.38. 

Decoding of Trellis-Coded Modulation Codes. The decoding of trellis-coded 
modulation is performed in two steps. Because each transition in the trellis corresponds 
to a partition of the signal set, and each partition generally corresponds to a number of 
signal points, the first step is to find the most likely signal point in each partition. This is 
accomplished by finding the point in each partition that is closest in Euclidean distance 
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to the received point. This first step in decoding of a trellis-coded modulation scheme is 
called subset decoding. After this step, corresponding to each transition in the trellis, there 
exists only one point (the rnost likely one), and only one Euclidean distance (the distance 
between the received point and this rnost likely point). The second step of the decoding 
procedure is to use this Euclidean distance to find a path through the trellis whose total 
Euclidean distance frorn the received sequence is minirnurn. This is done by applying the 
Viterbi algorithm. 

1 3.8 PRACTICAL APPLICATIONS OF CODING 

In the previous sections, we have seen that coding can be employed to improve the effective 
SNR and, thus, enhance the performance of the digital communication system. Block and 
convolutional codes and combinations of thern in the form of concatenated and turbo codes 
as discussed earlier, have been applied to communication situations where bandwidth is 
not a major concern; thus, sorne bandwidth expansion due to coding is allowed. On the 
other hand, in cases where bandwidth is a major concern, as in digital communication over 
telephone channels, coded modulation can be employed. By using coding, the performance 
of practical digital communication systems has improved up to 9 dB, depending on the 
application and the type of the code employed. In this section, we discuss applications of 
coding to two digital communication cases. These include deep-space communications, 
and telephone-line moderns. 

1 3.8.1 Coding for Deep-Space Communications 

Deep-space communication channels are characterized by very low SNR's and practically 
no bandwidth limitations. The transmitter power is usually obtained frorn onboard solar 
cells and, therefore, is typically limited to 20-30 watts. The physical dimensions of the 
transmitting antenna is also quite limited and, therefore, its gain is also limited. The enor­
mous distance between the transmitter and the receiver and lack of repeaters results in a 
very low SNR at the receiver. The channel noise can be characterized by a white Gaus­
sian random process. These channels are very well modeled as AWGN channels. Because 
bandwidth is not a major concern on these channels, both block and convolutional codes 
can be applied. 

In the Viking orbiters and landers mission to Mars, a (32, 6) block code (Reed­
Muller code) was employed. It provided a coding gain of approximately 4 dB compared 
to an uncoded PSK system at an error rate of 10-6 . Later, in the Voyager space mission to 
outer planets (Mars, Jupiter, and Saturn), convolutional codes with Viterbi decoding were 
employed. Two codes that were designed at the Jet Propulsion Laboratory (JPL) for that 
mission were a (2, 1) convolutional code with a constraint length of L = 7 with 

g J = ( 1  1 0 1 1 0 1] 
g2 = [ l  0 0 1 1 1 1] 
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and a (3, 1) convolutional code with L = 7 and 

gi = [ 1  1 0 1 0 1 ] ,  

g 2  = [ 1  0 0 1 l ] ,  

g 3  = [1  0 1 0 1 1 1 ] .  

The first code has a free distance of dfree = 10,  and the second code has dfree = 15.  Both 
codes were decoded using a soft-decision Viterbi algorithm, in which the channel output 
was quantized to Q = 8 levels. The first code provides a coding gain of 5 . 1  dB at an error 
rate of 10-5 •  The second code provides a gain of 5.7 dB. Both operate 4.5 dB from the 
theoretical limit predicted by Shannon. 

In subsequent missions of the Voyager to Uranus, in 1986, the (2, 1) convolutional 
code with L = 7 was used as an inner code in a concatenated coding scheme where a 
(255, 223) Reed-Solomon code served as the outer code. Viterbi decoding followed by a 
Reed-Solomon decoder at the Earth terminal provided a total coding gain of 8 dB at an 
error rate of 1 o-6• This system operated at a data rate of approximately 30 kbits/sec. 

Other decoding algorithms for convolutional codes have also been applied to certain 
deep-space communication projects. For NASA's Pioneer 9 mission, a (2, 1) convolutional 
code with a constraint length of L = 21 was designed with generator sequences (in octal 
representation) 

g l = [4 0 0 0 0 0 0] , 

g 2 = [7 1 5 4 7 3 7] . 

The decoder employed Fano's algorithm with a soft-decision decoding scheme and eight 
levels of output quantization. Pioneers 10, 1 1 , and 12 and Helios A and B German solar 
orbiter missions employed a (2, 1 )  convolutional code with a constraint length of L = 32. 
The generator sequences for this code (in octal representation) are 

g l = [7 3 3 5 3 3 6 7 6 7 2], 

g2 = [5 3 3 5 3 3 6 7 6 7 2] . 

This code has a free distance of dfree = 23. For decoding, again, the Pano decoding algo­
rithm with eight-level output quantization was employed. Majority logic decoding has also 
been used in a number of coding schemes designed for the INTELSAT communication 
satellites. As an example, an (8, 7) code with L = 48 designed to operate at 64 kbits/sec 
on an INTELSAT satellite was capable of improving the error rate from 10-4 to 5 x 10-8 .  
In the Galileo space mission, a (4, 1 ,  14) convolutional code was used, resulting in a spec­
tral bit-rate of ± . which at "/i,b/ No of 1 .75 dB, achieved an error probability of 10-5 .  This 
code performed 2.5 dB from the Shannon limit. Using an outer (255, 223) Reed-Solomon 
code improves the coding gain by another 0.8 dB, resulting in a concatenated code oper­
ating 1 .7-dB from the Shannon limit. Turbo codes performing at a spectral-bit rate of 0.5 
and operating only 0.5-dB from the Shannon limit, compare quite favorably with all these 
systems. 
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1 3.8.2 Coding for Telephone-Line Modems 

Telephone-line channels are characterized by a limited bandwidth, typically between 300-
3000 Hz, and a rather high SNR, which is usually 28-30 dB or more. Therefore, in design­
ing coding schemes for telephone-line channels, we are faced with bandwidth limitation. 
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Figure 13.39 (a) Differential encoder, nonlinear convolutional encoder, and (b) signal constellation adopted in 
the V.32 standard. 
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This is in direct contrast to the deep-space communication channel, which is primarily 
power limited. This corresponds to the case of r » 1 in Figure 12.17. Because bandwidth 
is limited, we have to use low dimensional signaling schemes. Since power is rather abun­
dant, we can employ multilevel modulation schemes. As we have already seen in Section 
13.7, trellis-coded modulation is an appropriate scheme to be employed in such a case. 

Historically, the first modems on telephone channels (prior to the 1960s) 
employed frequency-shift keying with asynchronous detection and achieved bit rates in the 
range of 300-1200 bits/sec. Later, in the early 1 960s, the first generation of synchronous 
modems employing 4-PSK modulation achieved bit rates of up to 2400 bits/sec. Advances 
in equalization techniques allowed for more sophisticated constellations, which resulted in 
higher bit rates. These included 8-PSK modems achieving a bit rate of 4800 bits/sec and 16-
point QAM modems that increased the bit rate to 9600 bits/sec. In the early 1980s, modems 
with a bit rate of 14,400 bits/sec were introduced; they employed a 64-point QAM signal 
constellation. All these improvements were results of advances in equalization and signal­
processing techniques and also improvements in the characteristics of telephone lines. 

The advent of trellis-coded modulation made it possible to design coded-modulation 
systems that improved overall system performance without requiring excess bandwidth. 
Trellis-coded modulation schemes based on variations of the original Ungerboeck's codes 
and introduced by Wei ( 1984) were adopted as standard by the CCITT standard com­
mittees. These codes are based on linear or nonlinear convolutional codes to guarantee 
invariance to 180°- or 90°-phase rotations. This is crucial in applications where differential 
encoding is employed to avoid phase ambiguities when a PLL is employed for carrier-phase 
estimation at the receiver. These codes achieve a coding gain comparable to Ungerboeck's 
codes with the same number of states but, at the same time, provide the required phase 
invariance. In Figure 13 .39, we have shown the combination of the differential encoder, 
the nonlinear convolutional encoder, and the signal mapping for the 8-state trellis-coded 
modulation system that is adopted in the CCITT V.32 standard. 

13.9 SUMMARY AND FURTHER READING 

Shannon's noisy channel coding theorem, discussed in Chapter 12, states that reliable com­
munication through a noisy channel is possible if and only if the transmission rate does 
not exceed the capacity of the channel. This theorem, however, is only an existence theo­
rem not a constructive theorem. Although it shows the existence of codes at all rates less 
than capacity, it does not provide a constructive method to design such codes. Motivated 
by the promise of Shannon's theorem a large amount of research activity in the past 60 
years has been focused on the design and implementation of coding schemes that can get 
close to Shannon's bound but at the same time have enough structure to make their decod­
ing tractable. In this chapter we focused on the two class of linear block codes and con­
volutional codes and introduced their structure as well as maximum-likelihood decoding 
algorithms for them. 

We discussed two methods of decoding for block and convolutional codes; soft- and 
hard-decision decoding. The performance of soft-decision decoding is roughly 2 dB better 
than the performance of hard decision decoding. Hard decision decoding is usually the 
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decoding method used for linear block codes, and soft-decision decoding, implemented by 
using the Viterbi algorithm, is the preferred method of decoding for convolutional codes. 

We also introduced methods for combining two codes into more effective codes with 
tractable decoding complexity based on the decoding algorithm of the individual code 
components. Among these codes we emphasized turbo codes and the BCJR soft decision 
decoding used in an iterative fashion for decoding these codes. We also introduced LDPC 
codes and introduced two iterative decoding algorithms for them, the bit-flipping algorithm 
and the sum-product algorithm. 

We finally discussed applications of coding for bandwidth-constrained channels. We 
introduced trellis coded modulation and the notion of combined coding and modulation. 
Ungerboeck's set partitioning rules were introduced and we showed that these rules com­
bined with simple trellis codes can provide coding gains in the range of 3-6 dB. 

Papers by Golay (1949), Hamming (1950), Hocquenghem (1959), Bose and Ray­
Chaudhuri (1960a, 1960b), and Reed and Solomon (1960) are landmark papers in the 
development of block codes. Convolutional codes were introduced by Elias (1955) and 
various methods for their decoding were developed by Wozencraft and Reiffen (1961), 
Fano (1963), Zigangirov (1966), Viterbi ( 1967), and Jelinek (1969). Trellis-coded modula­
tion was introduced by Ungerboeck (1982) and later developed by Forney (1988a, 1988b). 
Product codes were introduced by Elias (1954) and concatenated codes were developed 
and analyzed by Forney (1966). Berrou, Glavieux, and Thitimajshima (1993) introduced 
turbo codes. Low-density parity check codes were introduced by Gallager (1962, 1963). 

The books by Berlekamp (1968), Peterson and Weldon (1972), MacWilliams and 
Sloane (1977), Lin and Costello (2005), Blahut (1983), Wicker (1995), Johannesson and 
Zigangirov (1999), Biglieri et al. ( 1991), and Ryan and Lin (2009) provide comprehensive 
coverage of the topics covered in this chapter. 

PROBLEMS 

13.1 In Example 13 .2 .1 ,  find the minimum distance of the code. Which code word(s) is 
(are) minimum weight? 

13.2 In Example 13.2.3, verify that all code words of the original code satisfy 

cH1 = 0. 

13.3 By listing all code words of the (7, 4) Hamming code, verify that its minimum dis­
tance is equal to 3 .  

13.4 Find the parity check matrix and the generator matrix of a (15 ,  1 1) Hamming code 
in the systematic form. 

13.5 Show that the minimum Hamming distance of a linear block code is equal to the 
minimum number of columns of its parity check matrix that are linearly dependent. 
From this, conclude that the minimum Hamming distance of a Hamming code is 
always equal to 3. 
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13.6 A simple repetition code of blocklength n is a simple code consisting of only two 
code words: (0, 0, . . .  , 0) and (1 ,  1 ,  . . .  , 1) . Find the parity check matrix and the 

"--.-"' '-..,.--' n n 
generator matrix of this code in the systematic form. What is the rate and the mini-
mum distance of this code? 

13.7 The matrix [l 0 0 1 1 OJ G =  0 1 0 1 0 1 
0 0 1 0 1 1 

is the generator matrix of a (6, 3) linear code. This code is extended by adding an 
overall parity check bit to each code word so that the Hamming weight of each 
resulting code word is even. 

1. Find the parity check matrix of the extended code. 

2. What is the minimum distance of the extended code? 

3. Find the coding gain of the extended code. 

13.8 Compare the block error probability of an uncoded system with a system that uses 
a (15 , 1 1) Hamming code. The transmission rate is R = 104 bps and the channel is 
A WGN with a received power of 1 µ.,Watt and a noise power spectral density of �0 = 
10-11 Watts/Hz. The modulation scheme is binary PSK and soft-decision decoding 
is employed. Repeat the comparison when hard-decision decoding is employed. 

13.9 Generate the standard array for a (7, 4) Hamming code. Use it to decode the received 
sequence (1 ,  1 ,  1 ,  0, 1 ,  0, 0) . 

13.10 In a coded communication system, M messages 1 ,  2, . . .  , M = 2k are transmitted 
by M baseband signals x1 (t), x2 (t) ,  . . .  , XM(t) ,  each of duration nT. The general 
form cif x; (t) is given by 

n- 1 
X; (t) = L 1/r;j (t - JT) ,  

j=O 
where 1/rij (t) can be either of the two signals 1fr1 (t) or 1fr2(t) where 1fr1 (t) = 1fr2(t) = 
0 for all t rj [O, T]. We further assume that 1fr1 (t) and 1fr2(t) have equal energy 
'\g and the channel is ideal (no attenuation) with additive white Gaussian noise of 
power spectral density �o . This means that the received signal is r ( t) = x ( t) + n ( t), 
where x(t) is one of the x; (t) 's and n(t) represents the noise. 

1. With 1fr1 (t) = -1fr2(t) ,  show that N, the dimensionality of the signal space, 
satisfies N :::; n. 

2. Show that, in general, N :::; 2n. 
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3. With M = 2, show that for general 1/11 (t) and 1/t2 (t), 

P(Errorlx1 (t) sent) :'.5 j · · · J J f(r lx1)f(r lx2) dr, 
RN 

where r, X i , and x2 are the vector representations of r (t), x1 (t), and x2(t) in the 
N -dimensional space. 

4. Using the result of Part 3, show that for general M, 

P(Errorlxm(t) sent) :'.5 L f · · · f J f(r lxm)f(r lxm1) dr . 
l<m1<M N 

5. Show that 

and therefore, 

-;;,1#-;;, R 

I I !Xm-Xm1 !2 
· · · J f(r lxm)f(r lXm1) dr = e 

-
4No , 

RN 

P(Errorlxm (t) sent) :'.5 L e 

l<m1<M -;;,1#-;,, 

!Xm-Xm1 12 
4No 

13.11 A convolutional code is described by 

g1 = [l  0 O] 
g2 = [ l  0 1 ]  

g3 = [ l  1 l ] .  

1 .  Draw the encoder corresponding to this code. 

2. Draw the state transition diagram for this code. 

3. Draw the trellis diagram for this code. 

4. Find the transfer function and the free distance of this code. 

5. Verify whether this code is catastrophic or not. 

13.12 Show that, in the trellis diagram of a convolutional code, 2k branches enter each 
state and 2k branches leave each state. 

13.13 The block diagram of a binary convolutional code is shown in Figure P-13 . 13 .  
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k = l  

' 1 n = 3  
2 

3 

Figure P-13.13 

1. Draw the state diagram for the code. 

2. Find T(D), the transfer function of the code. 

3. What is drree• the minimum free distance of the code? 

4. Assume that a message has been encoded by this code and transmitted over a 
binary symmetric channel with an error probability of p = 10-5 . If the received 
sequence is r = (1 10, 1 10, 1 10, 1 1 1 ,  010, 101 , 101), use the Viterbi algorithm 
to find the transmitted bit sequence. 

5. Find an upper bound to the bit error probability of the code when the preceding 
binary symmetric channel is employed. Make any reasonable approximations. 

13.14 The block diagram of a (3, 1) convolutional code is shown in Figure P-13. 14. 

k = l  
' 1 n = 3  
2 

3 

Figure P-13.14 

1. Draw the state diagram of the code. 

2. Find the transfer function T (D) of the code. 

3. Find the minimum free distance (drree) of the code and show the corresponding 
path (at distance drree from the all-zero code word) on the trellis. 
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4. Assume that four information bits (x1 ,  x2, x3 , X4), followed by two zero bits, 
have been encoded and sent via a binary symmetric channel with a crossover 
probability equal to 0. 1 .  The received sequence is ( 1 1 1 ,  1 1 1 ,  1 1 1 , 1 1 1 ,  
1 1 1 ,  1 1 1) .  Use the Viterbi decoding algorithm to find the most likely data 
sequence. 

13.15 The convolutional code of Problem 13. 1 1  is used for transmission over an AWGN 
channel with hard-decision decoding. The output of the demodulator-detector is 
( 10100101 1 1 10 1 1 1  . . .  ) .  Using the Viterbi algorithm, find the transmitted sequence. 

13.16 Repeat Problem 13 . 13  for a code with 

g1 = [1 1 0] 

g2 = [1 0 l]  

g3 = [ 1  1 1 ] .  

13.17 Show the paths corresponding to all code words of weight 6 in Example 13 .3.3. 

13.18 Consider the convolutional code generated by the encoder shown in Figure P-13. 18.  

k = l  
C1 = [001] 

� 
C2 = [110] 

Figure P-13.18 

1. Find the transfer function of the code in the form T ( N, D). 
2. Find dfree of the code. 

3. If the code is used on a channel using hard-decision Viterbi decoding, assuming 
the crossover probability of the channel is p = 10-6, use the hard-decision 
bound to find an upper bound on the average bit error probability of the code. 

13.19 Let x1  and x2 be two code words of length n with distance d; assume that these two 
code words are transmitted via a binary symmetric channel with crossover probabil­
ity p. Let P2 (d) denote the error probability in the transmission of these two code 
words. 

1. Show that 2" 
P2(d) :S L jp(y; lx 1 )P(Y; \x2) ,  

i=l 

where the summation is over all binary sequences y; . 



Problems 

2. From your answer to Part 1, conclude that 

d P2(d) :S [4p( l  - p)] 2 . 

3. Using the result of Part 2, prove Equation (13.2.36). 

13.20 The complementary error function erfc(x) is defined by 

erfc(x) = Jn 100 
e-12 dt. 

1. Express Q(x) in terms of erfc(x).  
2. Using the inequality 

erfc (.Jx + y )  :::; erfc (.JX) e-Y x � 0, y � 0, 
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prove that the bound on the average bit error probability of a convolutional 
code is 

Pb :::; 2-erfc (J drreeRc Yb ) edfreeRcYb a T (D' N) I ' 2k BN N=l,D=e-RcYb 

where Yb = �g and we assume that soft-decision decoding is employed. 

13.21 A product code is designed using an (n 1 ,  k1) = (7, 4) systematic Hamming code 
and an (n2 , k2) = (6, 2) systematic code with generator matrix 

G =
[ l O O l l l ] 

0 1 1 1 1 0 

as its component codes. 

1. Determine the minimum distance of the product code. 
2. If the product code is decoded using optimal hard-decision decoding, what is the 

maximum number of errors it can correct? 
3. Consider an information sequence of length k = k1k2 = 8 consisting of all 

l 's. Use an n2 x n1 = 6 x 7 matrix similar to Figure 13.20 to find all the 
n1n2 - k1k2 = 34 parity check bits for this sequence. 

4. Assume that, instead of optimal hard-decision decoding, we employ a simple 
decoding scheme in which hard-decision decoding is first applied to the rows 
and then to the columns. Show that, using this simple strategy, the code can 
correct all error patterns of weight 3 but it cannot correct all error patterns of 
weight 4. 

13.22 Prove Equation (13.5.29). 

13.23 A trellis-coded modulation system uses an 8-ary PAM signal set given by {±1,  ±3, 
±5, ±7} and the 4-state trellis encoder shown in Figure 13.36(a). 
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1 .  Using the set partitioning rules, partition the signal set into four subsets. 

2. If the channel is an additive white Gaussian noise channel, and at the output of 
the matched filter the sequence (-.2, 1 . 1 ,  6, 4, -3, -4.8, 3 .3) is observed, what 
is the most likely transmitted sequence? 

COMPUTER PROBLEMS 

13.1 Error Probability in Repetition Code 

The crossover probability in a binary symmetric channel is p = 0.3. Evaluate and 
plot the error probability Pe for a simple repetition block code of length n, where n 

is odd, for n = 3, 5, . . .  , 41 .  Plot a graph of Pe versus n.  

13.2 Linear Block Codes 

The generator matrix for a (10, 4) linear block code is given by [1 0 0 1 1 1 0 1 1 11 
1 1 1 0 0 0 1 1 1 0 G =  . . 0 1 1 0 1 1 0 1 0 1 
1 1 0 1 1 1 1 0 0 1 

Determine all code words and the minimum weight of the code. 

13.3 Hamming Codes 

The objective of this problem is to determine all the code words of the (15, 1 1) 
Hamming code. 

1. Determine the parity check matrix of the ( 15, 1 1) Hamming code, which has the 
form 

2. Determine the generator matrix G, which has the form 

G = (h l PJ . 
3. Use the generator matric to generate and list all the code words in the code. 

13.4 Performance of Hard-Decision Decoding 

The (15, 1 1) Hamming code is used with antipodal signaling, and hard-decision 
decoding is used at the receiver to detect the code words. The error probability for a 
single bit in any code word is given by 
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where 'i!,b/ N0 is the SNR/bit and Re is the code rate ( 1 1 /15). Compute and plot the 
(upper bound) code word error probability as a function of 'i!,b/ No. 

13.5 Soft-Decision Decoding 
The (15,  1 1) Hamming code is used with antipodal signaling, and soft-decision 
decoding is used at the receiver to detect the code words. Using the upper bound 
on the error probability 

evaluate and graph PM as a function of the SNR/bit 'i!,b/ No. 

13.6 Convolutional Encoder 

Determine the output sequence of the convolutional encoder shown m Figure 
CP-13.6 when the information sequence is 

1 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 . 

Figure CP-13.6 

The encoder is initially in the all-zero state. 

13.7 Viterbi Decoding 

The encoder shown in Figure CP-13.  7 is used to transmit a sequence of 5 information 
bits followed by two zeros to flush out the decoder. The quantized (hard-decision) 
received sequence at the input to the Viterbi decoder is 

y = O l  1 0 1 1 1 1 0 1 0 0 0 1 . 

1. Sketch the trellis for this convolutional code and label the branches. 
2. Determine the maximum-likelihood 5 bit information sequence at the output of 

the Viterbi decoder. 
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k = l  

Figure CP-13.7 

13.8 Write a MATLAB program to generate the parity-check bits when a general binary 
sequence is encoded by the 517 RSCC shown in Figure 13 .24. Then apply the pro­
gram to the input sequence 

u = [O 1 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 1 1] 

and generate the corresponding parity bits. Assume that the encoder starts from the 
zero state. 

13.9 Write a MATLAB program to implement the computation of the forward recursion 
of the BCJR algorithm as given by Equation (13 .5 .8). 

13.10 Write a MATLAB program to implement the computation of the backward recursion 
of the BCJR algorfithm as given by Equation (13.5. 1 1) . .  

13.11 Write a MATLAB program to implement the sum-product algorithm for decoding 
LDPC codes using Equations (13.6. 1 1)-(13 .6.15) 



Data Transmission 
in Fadi ng M ultipath 
Channels 

In Chapters 8, 9, and 10, we described digital modulation and demodulation methods for 
transmission of information over two types of channels, namely, an additive Gaussian noise 
channel and a linear filter channel. Such channel models are appropriate for characterizing 
physical channels that are relatively static; i.e., the channel transmission characteristics are 
generally modeled as time invariant. In this chapter, we treat modulation and demodulation 
techniques that are appropriate for wireless communication channels, such as radio and 
acoustic communication channels, whose transmission characteristics are time varying. 

14.1  CHARACTERIZATION OF PHYSICAL WIRELESS CHANNELS 

Physical channels with time-varying transmission characteristics may be characterized as 
time-varying linear filters. Such linear filters are described by a time-varying impulse 
response c(r; t), where c(r; t) is the response of the channel at time t due to an impulse 
applied at time t - r.  Thus, r denotes the "age" (elapsed time) variable. The time-varying 
linear filter model of the channel with additive noise was previously shown in Figure 1 . 10. 
We cite the following examples of wireless communication channels that can be modeled 
in this manner. 

Signal Transmission via Ionospheric Propagation in the HF Band. We recall 
from our discussion in Chapter 1 that sky-wave propagation, as illustrated in Figure 1 .6, 
results from transmitted signals [in the high-frequency (HF) band] being bent or refracted 
by the ionosphere, which consists of several layers of charged particles ranging in altitude 
from 30 to 250 miles above the surface of the earth. As a consequence of these ionospheric 
layers, the signal arrives at the receiver via different propagation paths at different delays. 
These signal components are called multipath components. The signal multipath compo­
nents generally have different carrier-phase offsets and, hence, they may add destructively 
at times, resulting in a phenomenon called signal fading. Hence, signal fading is a result 

769 
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of multipath signal propagation. To characterize such channel behavior, we adopt a time­
varying impulse-response model. 

Mobile Cellular Transmission. In mobile cellular radio transmission between 
a base station and a mobile telephone, the signal transmitted from the base station to the 
mobile receiver is usually reflected from surrounding buildings, hills, and other obstruc­
tions. As a consequence, we observe multiple propagation paths arriving at the receiver 
at different delays. Hence, the received signal has characteristics similar to those for iono­
spheric propagation. The same is true of transmission from the mobile telephone to the base 
station. Moreover, the speed that the mobile (automobile, train, etc.) is traveling results in 
frequency offsets, called Doppler shifts, of the various frequency components (see Problem 
14. 1 ) of the signal. 

Line-of-sight Microwave Radio Transmission. In line-of-sight (LOS) radio 
transmission of signals, the transmitting and receiving antennas are generally mounted 
on high towers, in order to avoid obstructions, such as buildings and hills, in the path of 
signal propagation. However, when there are tall obstructions or hilly terrain in the path 
of propagation, it is likely that signals will be reflected from the ground to the receiving 
antenna as illustrated in Figure 14. 1 .  This is especially a problem under severe weather 
conditions. In this case, there is a received signal component that arrives via the direct path 
and an ensemble of secondary paths that are reflected from the ground terrain. The latter 
arrive at the receiver with various delays and constitute multipath propagation. Relatively 
narrow-beamwidth antennas are employed in microwave LOS transmission to reduce the 
occurrence of secondary reflections. Nevertheless, some secondary signal reflections are 
frequently observed in practice. Such secondary signal reflections generally vary with time, 
so the channel may be characterized by a time-varying impulse response. 

Airplane-to-Airplane Radio Communications. In radio communications bet­
ween two aircraft, it is possible for secondary signal components to be received from 
ground reflections, as illustrated in Figure 14.2. This is especially the case when omni­
directional antennas are employed in the communication system. The ensemble of ground­
reflected signal components generally arrive at the receiver with different delays and 
different attenuations. In addition, the motions of the aircraft result in Doppler frequency 
offsets in the various signal components. In many respects, this situation is similar to that 
in mobile cellular communications. 

Direct path 

Figure 14.1 Illustration of 
multipath propagation in LOS 

� microwave transmission. 
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Ground 

Figure 14.2 Illustration 
of multipath propagation 
in airplane-to-airplane 
communications. 
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Underwater Acoustic Signal Transmission. A shallow-water acoustic channel 
is generally characterized as a multipath channel due to acoustic signal reflections from the 
surface and the bottom of the sea. Because of wave motion, the signal multipath compo­
nents undergo time-varying propagation delays which result in signal fading. In addition, 
there is frequency-dependent attenuation, which increases proportionally as the square of 
the signal frequency. 

The channels briefly described above may be generally characterized as linear sys­
tems with time-varying impulse responses. Since it is generally difficult, if not impossi­
ble, to characterize the microscopic effects of signal transmission on channels as the ones 
described above in a deterministic fashion, it is logical to adopt a statistical characteriza­
tion. Such an approach is described below. 

14.2 CHANNEL MODELS FOR TIME-VARIANT MULTIPATH CHANNELS 

As we have observed, there are basically two distinct characteristics of the types of chan­
nels described above. One characteristic is that the transmitted signal arrives at the receiver 
via multiple propagation paths, each of which has an associated time delay. For example, if 
we transmit an extremely short pulse, the channel response due to multiple scatterers (such 
as ionized particles in the ionosphere) might appear as shown in Figure 14.3. Because the 
received signal is spread in time due to the multiple scatterers at different delays, we say 
that the channel is time dispersive. 

A second characteristic of the types of channels described above is concerned with 
the time variations in the structure of the medium. As a result of such time variations, the 
response of the channel to any signal transmitted through it will change with time. Hence, 
if we repeat the short pulse transmission experiment over and over, we would observe 
changes in the received signal, which are due to physical changes in the medium. Such 
changes include variations in the relative delays of signals from the multiple scatterers. 
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Transmitted signal 

Jl 
t = t0 

Jl 
t = t, 

Jl 
t = t2 
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Received signal 

Jf\ 
,V\ [\ 

l[\ A Figure 14.3 Illustration 
-0-t'��------.-• of time-variant channel-response 

t characteristics. 

Hence, the received signal might appear as illustrated in Figure 14.3. In other words, the 
impulse response of the channel is varying with time. In general, the time variations in 
the received signal appear to be unpredictable to the user of the channel. This leads us to 
characterize the time-variant multipath channel statistically. 

To obtain a statistical description of the channel, let us consider the transmission of 
an unmodulated carrier 

s(t) = A cos 2nfct. ( 14.2. 1) 

The received signal in the absence of noise may be expressed as 

x(t) = A I>�n(t) cos[2rrfc(t - in (t)] 
n 

(14.2.2) 

where an (t) is the time-variant attenuation factor associated with the nth propagation path 
and Tn (t) is the corresponding propagation delay. The complex-valued signal 

c(t) = L CXn (t) e-j2rrfc<n (t) 
n 

= LCXn(t) e-j<f>n (t) 
n 

(14.2.3) 

represents the response of the channel to the complex exponential exp(j2rrfct) . We note 
that, although the input to the channel is a monochromatic signal; i.e., a signal at a single 
frequency, the output of the channel consists of a signal that contains many different fre­
quency components. These new components are generated as a result of the time variations 
in the channel response. The r.m.s. (root-mean-square) spectral width of c(t) is called the 
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Doppler frequency spread of the channel and is denoted as Bd . This quantity is a measure 
of how rapidly the signal c(t) is changing with time. If c(t) changes slowly, the Doppler 
frequency spread is relatively small, while if c(t) changes rapidly, the Doppler frequency 
spread is large. 

We may view the received complex-valued signal c(t) in Equation (14.2.3) as the 
sum of a number of vectors (phasors) each of which has a time-variant amplitude cxn (t) 
and phase <f>n (t). In general, it takes large dynamic changes in the physical medium to 
cause a large change in {cxn (t) } .  On the other hand, the phases {</>n (t) } will change by 
2n radians whenever {rn (t)} change by 1/fc · But 1/fc is a small number and, hence, the 
phases {</>n (t)} change by 2n or more radians with relatively small changes of the medium 
characteristics. We also expect the delays { rn (t) }  associated with the different signal paths 
to change at different rates and in as unpredictable (random) manner. This implies that 
the complex-valued signal c(t) in Equation (14.2.3) can be modeled as a random process. 
When there are a large number of signal propagation paths, the central limit theorem can 
be applied. Thus, c(t) can be modeled as a complex-valued Gaussian random process. 

The multipath propagation model for the channel, embodied in the received signal 
x (t) or, equivalently, c(t) given by Equation (14.2.3), results in signal fading. The fading 
phenomenon is primarily a result of the time-variant phase factors {</>n (t) } .  At times, the 
complex-valued vectors in c(t) add destructively to reduce the power level of the received 
signal. At other times, the vectors in c(t) add constructively and, thus, produce a large sig­
nal value. The amplitude variations in the received signal due to the time-variant multipath 
propagation in the channel are called signal fading. 

Multipath Spread and Coherence Bandwidth. The time span between the first­
and the last-arriving multipath components in a transmitted signal is called the multipath 
(time) spread of the channel. We denote this channel parameter as Tm . A related parameter 
is the reciprocal of the multipath spread, which provides a measure of the bandwidth over 
which frequency components of the transmitted signal will be affected similarly by the 
channel. Thus, we define the channel parameter 

1 
Bcb = -Tm 

(14.2.4) 

and call it the coherence bandwidth of the channel. For example, all frequency components 
of a transmitted signal that fall within the coherence bandwidth Bcb will fade simultane­
ously. If the transmitted signal has a bandwidth W < Bcb, the channel is called frequency 
nonselective. Thus, at any instant in time, all frequency components of the transmitted 
signal fade simultaneously. On the other hand, if the transmitted signal has a bandwidth 
W > Bcb, the frequencies in the signal separated by an amount greater than Bcb will be 
affected differently by the channel. Hence, at any instant, some frequency components in 
the transmitted signal may fade, whereas other frequency components may not. In such a 
case, the channel is said to be frequency selective. 

Doppler Spread and Coherence Time. Another channel parameter is the recip­
rocal of the Doppler spread, which measures the time interval over which the channel 
response will change very little. Thus, we define the parameter 
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1 Tci = -Bd (14.2.5) 

and call it the coherence time of the channel. For example, a signal that is transmitted at 
two different time instants, separated in time by an amount less that Tei. will be affected 
similarly by the channel. Hence, if the signal that is transmitted in the first time instant is 
highly attenuated by the channel, the signal transmitted in the second time instant will also 
be highly attenuated. On the other hand, if the time interval between the signal transmis­
sions is much greater than the coherence time Tei. the channel will likely affect the two 
signal transmissions differently. 

Example 14.2.1 
A shortwave ionospheric radio channel is characterized by a multipath spread of Tm = 5 ms 
and a Doppler spread of Bd = 0. 1 Hz. Determine the coherence bandwidth and the coherence 
time of the channel. 

Solution The coherence bandwidth of the channel is 

1 
Bcb = - = 200 Hz. 

Tm 

The coherence time of the channel is 

1 
Tct = - = 10 sec. 

Bd 
• 

The Channel Spread Factor. The product TmBd is usually called the channel 
spread factor. If TmBd < 1 ,  the channel is called underspread and if TmBd > 1 , the channel 
is said to be overspread. The spread factor usually provides some indication on whether 
or not phase-coherent demodulation is possible at the receiver. In general, if the channel 
is overspread, due either to a large multipath spread or a large Doppler spread or both, the 
estimation of the carrier phase is extremely difficult because of the rapid time variations 
(Tct « Tm) in the channel that occur in the time interval Tm . On the other hand, if the 
channel is underspread, the channel-time variation is slow relative to the multipath spread 
(Tct » Tm) and, hence, the carrier phase of the received signal can be estimated with good 
precision. Fortunately, most physical time-varying channels encountered in practice are 
underspread. Table 14. 1 lists the values of these channel parameters for several multipath 
channels. 

14.2.1 Frequency Nonselective Fading Channel · 

Let us consider the transmission of a signal s (t) over a linear time-varying channel with 
the frequency response C(f; t) . If S(f) denotes the spectrum of the transmitted signal, the 
received signal is given in the frequency domain as C(f; t)S(f) = R(f) and in the time 
domain as the inverse Fourier transform of R(f) ;  i.e., 

r (t) = £: C(f; t)S(f)ej2rrft df. (14.2.6) 
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TABLE 14.1 MULTIPATH SPREAD, DOPPLER SPREAD, AND SPREAD FACTOR FOR SEVERAL TIME-VARIANT 
MULTIPATH CHANNELS 

Type of Channel Multipath Duration (sec) Doppler Spread (Hz) Spread Factor 

Shortwave ionospheric 10-3 - 10-2 10-1 - 1 10-4 - 10-2 
propagation (HF) 

Ionospheric propagation under 10-3 - 10-2 10 - 100 10-2 - 1 
disturbed auroral conditions 

Ionospheric forward 10-4 10 10-3 
scatter (VHF) 

Tropospheric scatter 10-6 10 10-s 
Mobile cellular (UHF) 10-s 100 10-3 
Wireless indoor LANs 10-1 102 10-s 

at 5 GHz 

Now, suppose that the bandwidth W of the transmitted signal s (t) satisfies the con­
dition W « Bcb, so that the channel is frequency nonselective. This condition implies 
that, over the bandwidth range ( -W, W) occupied by the transmitted signal, the frequency 
response is constant in the frequency variable f and may be denoted as 

C(f; t) 11=0 = C(O; t) = c(t) . (14.2.7) 

Therefore, Equation (14.2.6) simplifies to 

r(t) = c(t) £: S(f)ej2nft df 

= c(t)s (t) .  (14.2.8) 

Consequently, in a frequency nonselective channel, the channel distorts the transmitted 
signal in a multiplicative manner, as illustrated in Figure 14.4. 

Another view of the frequency nonselective channel is obtained when the signal s (t) 
with bandwidth W has a time duration T � 1 / W; because W « Bcb = I / Tm , it fol­
lows that T » Tm. In this case, the time dispersion due to the channel multipath is much 
smaller than the time duration T of the transmitted signal. Hence, the channel multipath 
components, whose amplitudes and phases are given by Equation (14.2.3), are not resolv­
able. Thus, they are seen only as a single disturbance that multiplies the transmitted signal 
s (t) as shown in Figure 14.4 and causes fading. 

Slow Fading Frequency Nonselective Channel. The frequency nonselective 
channel model illustrated in Figure 14.4 applies when the transmitted signal bandwidth W 

Transmitted signal 

s(t) 

c(t) 

Received signal 

r(t) 

AWGN 

Figure 14.4 Model of a frequency 
nonselective time-varying channel 
with AWGN. 
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satisfies the condition W « Bcb· A further simplification occurs when the coherence time 
Tct of the channel is much larger than the signal time duration T (i.e., Tct » T). In this 
case, the channel characteristic c(t) may be treated as a constant over the signal duration 
T and may be expressed as 

c(t) = a(t)ejt/>(t) , 0 :::=: t :::=: T 
= aeN , 0 :::=: t :::=: T · (14.2.9) 

We call such a channel a slowly fading, frequency nonselective channel. 

Example 14.2.2 
Consider the radio channel in Example 14.2. 1 .  The signal s (t) transmitted over the channel 
has a bandwidth W = 50 Hz and a time duration of T � 1 / W = 20 msec. Is this a frequency 
nonselective channel? Is the channel slowly fading? 

Solution Because the bandwidth W « Bcb = 200 Hz, the channel is frequency nonselec­
tive. Furthermore, because T « Tct = 10 sec, the channel is also slowly fading. • 

Frequency Nonselective Rayleigh Fading Channel. In the channel model illus­
trated in Figure 14.4, the complex-valued channel gain may be expressed as 

where 

c(t) = Cr (t) + jc; (t) 
= a(t)ejt/>(t) , 

a (t) = Jc'f:(t) + c?(t) ,  
C; (t) ¢ (t) = arctan -- . 
Cr (t) 

(14.2. 10) 

(14.2. 1 1) 

When c(t), as given by Equation (14.2.3), consists of many nonresolvable multipath com­
ponents having random amplitude and uniformly distributed phases, the two components 
cr(t) and c; (t) are usually modeled as zero-mean, Gaussian random processes with zero 
cross correlation. Therefore, a(t) is characterized statistically by the Rayleigh probability 
distribution and ¢(t) is uniformly distributed over the interval (0, 2n) . As a consequence, 
the channel is called a Rayleigh fading channel. The Rayleigh fading signal amplitude is 
described by the probability density function (PDF) 

f ( ) = .!!:..._ -a2 /a2 a 2 e , 
(j 

and f(a) = 0 for a < 0. The parameter u2 = E(c;) = E(c;) . 

Example 14.2.3 

(14.2. 12) 

Use the method described in Computer Problem 5.2 to generate a sequence of 20,000 statis­
tically independent and identically distributed Rayleigh random variables. Plot the histogram 
for the 20,000 symbols and compare it with the corresponding Rayleigh PDF. 
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(a) Histogram for N=20,000 samples 

Figure 14.5 Plots for Example 14.2.3. 

Solution We may use the equation 

(b) Rayleigh PDF 

1 
2a2 ln -­

l - U; 
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to generate the 20,000 samples from a Rayleigh distribution, where the parameter A is gen­
erated from a uniform distribution in the interval (0, 1)  and a2 may be arbitrary selected as 
unity. Then the actual Rayleigh PDF is given by Equation (14.2.12). Figure 14.5 illustrates the 
histogram and the comparison with the actual Rayleigh PDF. • 

14.2.2 Frequency Selective Fading Channel 

The frequency nonselective, slowly fading channel model described above applies to many 
physical radio channels used for digital communications when the bandwidth W of the 
transmitted signal satisfies the condition W « Bcb· However, there are communication 
systems in which the transmitted signal bandwidth W » Bcb• so that the channel is fre­
quency selective. In such a case, a more complex channel model must be employed. 

Tapped Delay Line Channel Model. A general model for a time-variant mul­
tipath channel is illustrated in Figure 14.6. The channel model consists of a tapped delay 
line with uniformly spaced taps. The tap spacing between adjacent taps is I / W, where W 
is the bandwidth of the signal transmitted through the channel. Hence, I / W is the time 
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Input 
signal 

Channel 
---- output 

Additive 
noise 

Figure 14.6 Model for 
time-variant multipath channel. 

resolution that can be achieved by transmitting a signal of bandwidth W. The tap coeffi­
cients, denoted as {cn (t) = an (t)eN11 <1l }, are usually modeled as complex-valued, Gaussian 
random processes that are mutually uncorrelated. The length of the delay line corresponds 
to the amount of time dispersion in the multipath channel, which is the multipath spread. 
The multipath spread may be expressed as Tm = L / W, where L represents the maximum 
number of possible multipath signal components. 

Example 14.2.4 
Determine an appropriate channel model for two-path ionospheric propagation, where the 
relative time delay between the two received signal paths is 1 msec and the transmitted signal 
bandwidth W is 10 kHz. 

Solution A 10-kHz signal can provide a time resolution of 1 / W  = 0. 1 msec. Because the 
relative time delay between the two received signal paths is 1 msec, the tapped delay line 
model consists of 10  taps. In this case, only the first tap and the last tap have nonzero, time­
varying coefficients, denoted as c1 (t) and c2 (t), as shown in Figure 14.7. Because c1 (t) and 
c2 (t) represent the signal response of a large number of ionized particles from two differ­
ent regions of the ionosphere, c1 (t) and c2 (t) are modeled as complex-valued, uncorrelated 
Gaussian random processes. The rate of variation of the tap coefficients determines the value 
of the Doppler spread for each path. • 

14.2.3 Models for the Doppler Power Spectrum 

When the tap coefficients {ck (t) }  in the tapped delay line channel model are characterized 
as Gaussian random processes, they may be easily generated by passing complex-valued 
white Gaussian noise through a lowpass filter whose bandwidth is selected to match the 
Doppler spread characteristics of the channel. 
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Let us use a simple digital IIR (infinite duration impulse response) filter that is excited by 
complex-valued white Gaussian noise to generate a sampled version of a channel tap weight 
coefficients. The lowpass IIR filter with two identical poles is described by the z-transform 

H -
(1  - p)2 

(z) -
(1 - pz-')2 

(1 - p)2 
(14.2. 13) 

1 - 2pz-' + p2z-2 

and the corresponding difference equation 

c[n] = 2pc[n - 1 ]  - p2c[n - 2] + (1 - p)2w[n] , (14.2. 14) 

where w[n] = Wr[n] + jw; [n] is the additive white Gaussian noise (AWGN) input, c[n] is the 
output, and 0 < p < 1 is the pole position. The position of the pole controls the bandwidth 
of the filter and, hence, the rate of variations of c[n]. When p is close to the unit circle, the 
filter bandwidth is narrow, whereas when p is close to zero, the bandwidth is wide. Generate 
1000 samples of c[n] = Cr[n] + jc; [n] when p = 0.9 and p = 0.99, and plot Cr[n], c;[n] and 
l c[n] [ for each value of p. Also, compute and plot the power spectrum and the autocorrelation 
function ofcr [n] for the two values of p by using the formulas given in Computer Problem 5.3. 

Solution Figure 14.8 illustrates time variation in the values of the tap weight coefficients for 
p = 0.9 and p = 0.99, respectively. Figure 14.9 illustrates the autocorrelation functions and 
power spectra of the corresponding values of p. Note the relationship between the rate of time 
variations in the coefficients with the bandwidth of the power spectrum, which is identical to 
the bandwidth of the digital filter. • 

Jakes' Model for the Doppler Power Spectrum. A widely used model for the 
Doppler power spectrum of a mobile radio channel is the so-called Jakes' model. In this 
model, the autocorrelation of the time-varying transfer function C{fc; t) is given as 

E [ C*(fc; t)C(fc ; t + �t)] = fo(2nfm�t), (14.2. 15) 
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Figure 14.8 Plots of c,[n], c1[n], and Jc[n]J for p = 0.99 (left) and p = 0.9 (right) for Example 14.2.5. Note 
that plots have different vertical scalings. 

S(f) 

Rx[n] 
S(f) 

Figure 14.9 Plots of estimated Rx [n] and S(f) for p = 0.9 (top) and p = 0.99 (bottom) for Example 14.2.5. 

where lo(-) is the zero-order Bessel function of the first kind, which was introduced pre­
viously in Chapter 3 for characterizing the spectrum of an angle-modulated signal, and 
l m = v le/ c is the maximum Doppler frequency, where v is the vehicle speed in meters per 
second (m/sec), le is the carrier frequency, and c is the speed of light (3 x 108 m/sec). The 
Fourier transform of the autocorrelation function in Equation (14.2. 15) yields the Doppler 
power spectrum. That is, 
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Figure 14.10 Doppler power spectrum obtained from Jakes' model. 

= 
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The graph of Sc<f) is shown in Figure 14.10. 

Example 14.2.6 

I l l :s Im 

Il l > Im 

1 .5 

(14.2. 16) 

Determine the Doppler power spectrum of the fading process experienced by a mobile tele­
phone user in an automobile traveling at a speed of 100 km/hour. The carrier frequency for the 
mobile telephone system is 1 GHz. 

Solution At the speed of 100 km/hour, the vehicle speed is v = 28 m/sec. Therefore, the 
maximum Doppler frequency is 

fm = Vfc/C 

= 28 x 109 /3 x 108 

= 93 Hz 

and the Doppler power spectrum is 

1 S(f) = , If I :::: fm 
93nJl - (f /93)2 

and zero for I i i  > fm · • 

14.2.4 Propagation Models for Mobile Radio Channels 

In the link budget calculations that are described in Section 14.5, we characterize the path 
loss of radio waves propagating through free space as being inversely proportional to d2, 
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where d is  the distance between the transmitter and the receiver. However, in a mobile 
radio channel, propagation is generally neither free space nor LOS. The mean path loss 
encountered in mobile radio channels may be characterized as being inversely proportional 
to dP , where 2 :::; p :::; 4, with d4 being a worst-case model. Consequently, the path loss is 
usually much more severe compared to that of free space. 

There are a number of factors affecting the path loss in mobile radio communications. 
Among these factors are base-station antenna height, mobile antenna height, operating 
frequency, atmospheric conditions, and presence or absence of buildings and trees. Various 
mean path loss models have been developed that incorporate such factors. For example, a 
model for a large city in an urban area is the Hata model, in which the mean path loss is 
expressed as 

Loss in dB = 69.55 + 26. 16 log10 f - 13.82 log10 he - a(hr) 
+ (44.9 - 6.55 log10 he) log10 d ,  (14.2.17) 

where f is the operating frequency in MHz (150 < f < 1500), h1 is the transmitter antenna 
height in meters (30 < he < 200) , hr is the receiver antenna height in meters (1  < hr < 10), 
d is the distance between transmitter and receiver in kilometers (1 < d < 20), and 

a(hr) = 3.2(log10 1 l .75hr)2 - 4.97, f 2: 400 MHz. (14.2. 18) 

In mobile radio communications we often encounter the effect of shadowing of the 
signal due to large obstructions, such as large buildings, trees, and hilly terrain between the 
transmitter and the receiver. Shadowing is usually modeled as a multiplicative and, gen­
erally, slowly time-varying random process; i.e., the received signal may be characterized 
mathematically as 

r(t) = Aog(t)s(t), (14.2. 19) 

where A0 represents the mean path loss, s (t) is the transmitted signal, and g (t) is a random 
process that represents the shadowing effect. At any time instant, the shadowing process is 
modeled statistically as lognormally distributed. The PDF for the lognormal distribution is { _I_ e-(Ing-µ,)2/2a2 

J(g) = ./21w2g 
0, 

If we define a new random variable X as X = ln g, then 

(g 2: 0) 

(g < 0) 

- oo < x < 00 .  

(14.2.20) 

(14.2.21) 

The random variable X is proportional to the path loss measured in dB, µ, is the mean path 
loss in dB, and a is the standard deviation of the path loss in dB. For a typical cellular 
environment, a is in the range of 5-12 dB. 
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14.3 PERFORMANCE OF BINARY MODULATION IN RAYLEIGH FADING CHANNELS 

In this section, we determine the probability of error at the receiver of a binary digital com­
munication system that transmits information through a Rayleigh fading channel. Although 
we focus our treatment on binary modulation, the basic concepts carry over to M -ary mod­
ulation without exception. 

14.3.1 Probability of Error in Frequency Nonselective Channels 

The signal bandwidth W is assumed to be much smaller than the coherence bandwidth Bcb 
of the channel. Since the multipath components are not resolvable, the channel is frequency 
nonselective and, hence, the channel impulse response is represented as 

c(r; t) = a(t)8 (r - ro(t)) , (14.3. 1 ) 

where a(t) has a Rayleigh distribution at any instant in  time. 
We assume that the time variations of a(t) and r0(t) are very slow compared to the 

symbol interval, so that within the time interval 0 :::; t :::; T, the channel impulse response 
is constant; i.e., 

c(r; t) = c(r) = a8(r - ro), 

where the amplitude a is  Rayleigh distributed; i.e., 
I ..2!.._e-a2 /2a2 

f(a) = a2 , 
0, otherwise 

(14.3.2) 

(14.3.3) 

Now, suppose that binary antipodal signals, e.g., binary PSK, are used to transmit the 
information through the channel. Hence, the two possible signals are 

(2%; Um (t) = y T cos(2nfct + mn) + n(t) , m = 0, 1 .  (14.3.4) 

The received signal is the interval 0 :::; t :::; T is 

(2%; r(t) = a  y T cos(2nfct + mn + </J) + n(t), (14.3.5) 

where </J is the carrier-phase offset. Let us assume that </J is known to the demodulator, 
which cross correlates r(t) with 

1/r(t) = H cos(2nfct + ¢), 0 :S t  :S T. (14.3.6) 

Hence, the input to the detector at the sampling instant is 

r = aJ<i;,cos mn + n, m = 0, 1 .  (14.3.7) 
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For a fixed value of a, the probability of error i s  the familiar form 

(14.3.8) 

We view Pb (a) as a conditional probability of error for a given value of the channel atten­
uation a. To determine the probability of error averaged over all possible values of a, we 
compute the integral 

Pb = fo00 Pb(a)f(a) da, (14.3.9) 

where f (a) is the Rayleigh PDF given by Equation (14.3.3). This integral has the simple 
closed form expression 

where, by definition, 
- "&b 2 Pb =  -E(a ) . No 

Hence, Pb is the average received SNR/bit and E(a2) = 2cr2. 

(14.3.10) 

(14.3. 1 1) 

If the binary signals are orthogonal, as in orthogonal FSK, where the two possible 
transmitted signals are given as 

the received signal is 

r(t) = af; cos [2n (le + ;) t + ¢ J + n(t) . 

In this case, the received signal is cross correlated with the two signals 

1/r1 (t) = /fr cos(2nfct + ¢) , 

1/r2 (t) = /fr cos[in (fc + 2�) t + <P J . 
If m = 0, for example, the two correlator outputs are 

r1 = ajCi;, + n 1 ,  

(14.3.12) 

(14.3. 13) 

(14.3. 14) 

(14.3. 15) 

where n 1 and n2 are the additive noise components at the outputs of the two correlators. 
Hence, the probability of error is simply the probability that r1 > r1 •  Since the signals are 
orthogonal, the probability of error for a fixed value of a has the familiar form 
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(14.3. 16) 

As in the case of antipodal signals, the average probability of error over all values of a is 
determined by evaluating the integral in Equation (14.3.9). Thus, we obtain 

(14.3. 17) 

where Pb is the average SNR/bit defined by Equation (14.3 . 1 1). 
Figure 14. 1 1  illustrates the average probability of error for binary antipodal and 

orthogonal signals. The striking aspects of these graphs is the slow decay of the proba­
bility of error as a function of SNR. In fact, for large values of Pb, the probability of error 
for binary signals is 

.... 0 .... .... <J) 
] 
ell .... 0 
.€ 
] ell ..c 0 .... 
� 

� 

1 

0.5 

0.2 

10-1 

� 
"'-"� 

""' r-.." 5 

2 
� � Origonal signals 

10-2 

5 

2 

10-3 

5 

2 

10-4 

5 

2 

10-5 
0 5 10 

�' k 
'�""' 

� � 
/""'" ' 

I 
Antipodal 

signals 

15  20 

SNR/bit, dB 

''""' '\ � 
"" 

'\ 

25 30 35 
Figure 14.11 Performance 
of binary signaling on a 
Rayleigh fading channel. 



786 Data Transmission in Fading Multipath Channels 

1 Pb � - antipodal signals 4/)b ' 
1 Pb � - orthogonal signals 2pb , 
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(14.3.18) 

Hence the probability of error in both cases decreases only inversely as the SNR. This is 
in contrast to the exponential decrease in the case of the A WGN channel. We also note 
that the difference in SNR between antipodal signals (binary PSK) and orthogonal signals 
(binary FSK) is 3 dB. 

Two other types of signal modulation are DPSK and noncoherent FSK. For com­
pleteness, we state that the average probability of error for these signals (see Problem 
14.5) is 

1 Pb = , DPSK, 2(1 + Pb) 
1 Pb - --- noncoherent FSK. - 2 + Pb ' 

14.3.2 Performance Improvement Through Signal Diversity 

(14.3. 19) 

(14.3.20) 

The basic problem in digital communication through a fading channel is that a large num­
ber of errors occur when the channel attenuation is large; i.e., when the channel is in a 
deep fade. If we can supply to the receiver two or more replicas of the same information 
signal transmitted through independently fading channels, the probability that all the signal 
components will fade simultaneously is reduced considerably. If p is the probability that 
any one signal will fade below some critical value, than pD is the probability that all D 
independently fading replicas of the same signal will fade below the critical value. There 
are several ways that we can provide the receiver with D independently fading replicas of 
the same information-bearing signal. 

One method for achieving D independently fading versions of the same information­
bearing signal is to transmit the same information on D FDM carrier frequencies, where 
the separation between successive carriers equals or exceeds the coherence bandwidth Bcb 
of the channel. This method is called frequency diversity. 

A second method for achieving D independently fading versions of the same 
information-bearing signal is to transmit the same information in D different time slots, 
where the time separation between successive time slots equals or exceeds the coherence 
time Tct of the channel. This method is called time diversity. 

Another commonly used method for achieving diversity is via use of multiple receiv­
ing antennas, but only one transmitting antenna. The receiving antennas must be spaced 
sufficiently far apart so that the multipath components in the signal have significantly dif­
ferent propagation paths, as illustrated in Figure 14. 12. Usually, a separation of a few wave­
lengths is required between a pair of receiving antennas in order to obtain signals that fade 
independently. 

Other diversity transmission and reception techniques that are used in practice are 
angle-of-arrival diversity and polarization diversity. 
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Given that the information is transmitted to the receiver via D independently fading 
channels, there are several ways that the receiver may extract the transmitted information 
from the received signal. The simplest method is for the receiver to monitor the received 
power level in the D received signals and to select for demodulation and detection the 
strongest signal. In general, this approach results in frequent switching from one signal 
to another. A slight modification that leads to a simpler implementation is to use a signal 
for demodulation and detection as long as the received power level in that signal is above 
a preset threshold. When the signal falls below the threshold, a switch is made to the 
channel which has the largest received power level. This method of signal selection is 
called selection diversity. 

For better performance, we may use one of several more complex methods for com­
bining the independently fading received signals as illustrated in Figure 14. 13 .  One that is 
appropriate for coherent demodulation and detection requires that the receiver estimate and 
correct for the different phase offsets on each of the D received signals after demodulation. 
Then, the phase-corrected signals at the outputs of the D demodulators are summed and fed 
to the detector. This type of signal combining is called equal-gain combining. If, in addi­
tion, the received signal power level is estimated for each of the D received signals, and 
the phase-corrected demodulator outputs are weighted in direct proportion of the received 
signal strength (square root of power level) and then fed to the detector, the combiner is 
called a maximal-ratio combiner. On the other hand, if orthogonal signals are used for 
transmitting the information through D independently fading channels, the receiver may 
employ noncoherent demodulation. In such a case the outputs from the D demodulators 
may be squared, summed, and then fed to detector. This combiner is called a square-law 
combiner. 

All these types of combining methods lead to performance characteristics that result 
in a probability of error which behaves as Kn/ pD where Kn is a constant that depends on 
D, and p is the average SNR/diversity channel. Thus, we achieve an exponential decrease 
in the error probability. Without providing a detailed derivation, we simply state that for 
antipodal signals with maximal ratio combining, the probability of error has the gen­
eral form 

P "' 

Kn 
_ l b "' (4p)D ' p » ' (14.3.21) 
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Figure 14.13 Model of binary digital communication system with D-order diversity. 

where K v is defined as 
(2D - l) l 

Kv = 
D ! (D - 1) !

. (14.3.22) 

For binary orthogonal signals with square-law combining, the probability of error has the 
asymptotic form 

Kv Pb � � , p » 1 .  
p 

(14.3 .23) 

Finally, for binary DPSK with equal gain combining, the probability of error has the 
asymptotic form 

Kv Pb � (2p) D ' 
p » 1 .  ( 14.3.24) 

These error probabilities are plotted in Figure 14. 14 for D = 1 ,  2, 4 as a function of 
the SNR/bit 'Pb = D p. It is apparent that a large reduction in SNR/bit is achieved in having 
D = 2 (dual diversity) compared to no diversity. A further reduction in SNR is achieved 
by increasing the order of diversity to D = 4, although the additional gain from D = 2 
to D = 4 is smaller than going from D = 1 to D = 2. Beyond D = 4, the additional 
reduction in SNR is significantly smaller. 
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-

-

D = 1 

This analysis of the performance of binary modulation focused on Rayleigh fading 
signal statistics. In general, the Rayleigh distribution is suitable for modeling the signal 
fading that occurs in ionospheric propagation and mobile cellular systems. However, there 
are other statistical models that have been used for a variety of fading multipath channels. 
The most common of these are the Nakagami distribution and the Rician distribution. 

Benefits of Coding in Achieving Signal Diversity. These performance results 
illustrate that efficient use of transmitter power in a Rayleigh fading channel can be 
achieved by using some form of diversity to provide the receiver with several indepen­
dently fading signals all carrying the same information. The types of diversity that we 
described (time or frequency) are a form of channel coding usually called repetition coding 
where the code rate is 1/  D. Thus, if each information bit is transmitted twice in two widely 
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separated time slots or in two widely separated frequency bands, we have a dual diversity 
(D = 2) system obtained with a repetition code of rate Re = 1/2. However, in general, a 
nontrivial code of rate 1/2 will yield significantly better performance if the coded bits are 
interleaved prior to transmission, as described in Chapter 13 , so that the fading on each bit 
of a code word is statistically independent. In particular, a binary linear (n , k) code with 
minimum Hamming distance dmin results in a performance that is equivalent to a repetition 
code of diversity dmin when soft-decision decoding is used and dmin/2 when hard-decision 
decoding is used. Therefore, for any code rate 1 / D, a nontrivial code can be selected which 
has a minimum Hamming distance dmin > D and, thus, provides a larger order of diversity 
than the corresponding repetition code of the same rate. 

Example 14.3.1 
Compare the error-rate performance of binary orthogonal FSK with dual diversity with the 
performance of the rate 1/2, dmin = 8, extended Golay (24, 12) code in which binary orthog­
onal FSK is used to transmit each code bit. The channel is a Rayleigh fading channel and the 
receiver employs square-law combining and detection for both types of signals. 

Solution Let us assume that signal diversity is obtained by interleaving the coded bits so 
that we have statistically independent fading among the coded bits for both signals. Note that, 
the repetition code and the Golay (24, 12) code, are rate 1 /2 codes. For the repetition code, we 
combine the square-law detected FSK signals in the two (interleaved) signal intervals. Hence, 
if a 0 is transmitted, the two metrics at the combiner output corresponding to a 0 and a 1 ,  
respectively, are 

ro = la1/Ci, eN1 + no1 12 + la2/Ci,eN'2 + no2 12 ,  
r1 = lnu 12 + lnd2 , 

(14.3.25) 

where the {nij } are statistically independent and identically distributed (i.i.d.) complex-valued, 
zero-mean Gaussian random variables. The probability of error is simply the probability that 
r2 > ri ,  and is given as 

j5 » 1 ,  (14.3.26) 

where the average SNR/bit is Pb · In the Golay code, there are 2 12 = 4096 code words, so that 
there are 4096 metrics at the output of the square-law combiner. To compute the probability 
of error, we may assume that the all-zero code word is transmitted. Then the combiner output 
corresponding to the all-zero code word is the metric 

24 
ro = L lak /Ci, ei'i>k + nok 12 .  (14.3.27) 

k=I 
In the Golay (24, 12) code, there are 759 code words having distance dmin = 8 from the all-zero 
code words. Since any one of these code words differs in 8 bits from the all-zero code word 
and is identical with the all-zero word in 16 bits, the combiner output corresponding to any 
one of these 759 code words is statistically equivalent to the metric 

8 24 r1 = L lnlk l2 + L lak/Ci, ei'i>k + nok l2 • 
k=I k=9 

(14.3.28) 
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Hence, the difference between r0 and r1 is 

8 
ro - r1 = L [1anf1g ei<Pk + nok 12 - ln1d J .  

k=I 

791 

(14.3.29) 

We observe that this difference is a function of summing the received signal over eight inde­
pendently fading bits and, consequently, the code provides an order of diversity of dmin = 8. 
This implies that the error rate for the Golay code decays inversely as ·;J8; i.e., the bit-error 
rate is 

K K 
p � - = ---2 

p8 (pb/2)8
, (14.3.30) 

where K is a constant independent of SNR, p b = p /Re is the SNR/bit and Re is the code 
rate. Figure 14. 15 illustrates the error probability for the two types of signals. Note that the 
Golay code outperforms the repetition code by over 8 dB at a bit-error probability of 10-4. 
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The difference is even greater at lower error rates. In conclusion, a nontrivial code with inter­

leaving generally provides more signal diversity than a repetition code of the same code 
rate. • 

14.3.3 The RAKE Demodulator and Its Performance in Frequency Selective Channels 

Let us consider the case in which the available channel bandwidth W exceeds the coherence 
bandwidth Bcb of the channel, and we transmit digital information at a symbol rate 1/T 
by modulating a single carrier frequency. We assume that the symbol duration T satisfies 
the condition T « Tei· Consequently, the channel characteristics change very slowly in 
time, so that the channel is slowly fading, but it is frequency selective because W » Bcb· 
Furthermore, we assume that T » Tm so that ISI is negligible. 

Since W is the bandwidth of the bandpass signal, the bandwidth occupancy of the 
equivalent lowpass signal is W /2. Hence, we employ a band-limited lowpass signal s(t). 
Using the channel model for the frequency selective channel shown in Figure 10.4, we may 
express the received signal as 

L 
r (t) = I>n (t)s(t - n/W) + n(t), (14.3.31) 

n=l 

where n(t) represents the AWGN. Therefore, the frequency selective channel provides 
the receiver with up to L replicas of the transmitted signal, where each signal component 
is multiplied by a corresponding channel tap weight cn (t), n = 1 ,  2, . . .  , L. Based on 
the slow fading assumption, the channel coefficients are considered as constant over the 
duration of one or more symbol intervals. 

Since there are up to L replicas of the transmitted signal s (t) in r(t), a receiver that 
processes the received signal in an optimum manner will achieve the performance that is 
equivalent to that of a communication system with diversity equal to the number of received 
(resolvable) signal components. 

Let us consider binary signaling over the channel. Suppose we have two equal energy 
signals SJ (t) and s2 (t) ,  which are orthogonal, with a time duration T » Tm . Since the inter­
symbol interference (ISI) is negligible, the optimum receiver consists of two correlators 
or two matched filters that are matched to the received signals. Let us use the correla­
tor structure that is illustrated in Figure 14. 16. The received signal is passed through a 
tapped delay-line filter with tap spacing of 1 / W, as in the channel model. The number of 
taps is selected to match the total number of resolvable signal components. At each tap, 
the signal is multiplied with each of the two possible transmitted signals SJ (t) and s2(t) ,  
and, then, each multiplier output is phase corrected and weighted by multiplication with 
c�(t) ,  n = 1 ,  2, . . . , L . Then, the corresponding phase-aligned and weighted signal com­
ponents are integrated over the duration of the symbol interval T and the two integrator 
outputs are sampled periodically every T sec. Their outputs are then sent to the detector. 
Thus, we have cross correlated the received signal with each of the two possible transmit­
ted signals at all possible delays introduced by the channel. Note that the multiplication 
of the signal at each tap with the corresponding tap coefficient c�(t) results in weighting 
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Figure 14.16 RAKE demodulator for signal transmitted through a frequency selective channel. 
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the signal components by the corresponding signal strengths. Hence, the combining of the 
phase-corrected and weighted signal components corresponds to maximal ratio combining. 

In order to perform maximal ratio combining, it is necessary to estimate the channel­
tap coefficients Cn (t) from the received signal. Since these coefficients are time varying, it 
is necessary for the estimator to be adaptive, i.e., to be able to track the time variations. 

The demodulator structure shown in Figure 14. 16 is called a RAKE demodulator. 
Because this demodulator has equally spaced taps with tap coefficients that essentially 
collect all the signal components in the received signal, its operation has been likened to 
that of an ordinary garden rake. 

Assuming that there are L signal components in the received signal, with correspond­
ing signal strengths that are distinct and Rayleigh distributed, the probability of error for 
binary signals is well approximated as 
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L 1 Pb = KL n -[2-_-(l----)]
, 

k=t Pk Yr 

where Pk is the average SNR for the kth-signal component; i.e., 

- 'f!,b ( 2) Pk = -E ak , 
No 

Chapter 14  

(14.3.32) 

(14.3.33) 

where ak = !ck I is the amplitude of the kth-tap coefficient, Yr = -1 for antipodal signals 
and Yr = 0 for orthogonal signals, and KL is the constant defined in Equation (14.3 .22). In 
the special case where all the signal components have the same strength, the error probabil­
ity for antipodal signals in Equation (14.3.32) reduces to that given by Equation (14.3.21) 
with D = L. 

14.3.4 OFDM Signal Transmission in Frequency Selective Channels 

From the viewpoint of communication system performance, the RAKE demodulator is the 
optimum demodulator for reception of a single carrier signal transmitted over a frequency 
selective channel in which the symbol duration is designed to satisfy the condition T » Tm 
and T « Tct; i.e., 

Tm « T « Tct · (14.3.34) 

Furthermore, for a frequency selective channel, the bandwidth of the transmitted signal 
satisfies the condition 

W » Bcb· (14.3.35) 

The combination of the conditions in Equations (14.3.34) and (14.3.35) implies that 
TW » 1 or, equivalently, W » J · We note that the condition T » Tm is imposed on 
the signal design to avoid the effects of ISI, which generally degrades the performance of 
the system. Consequently, the data (symbol) rate must be reduced in order to satisfy the 
condition T » Tm or, equivalently, the bandwidth W of the transmitted signal is selected 
such that WT » 1 .  

A more bandwidth-efficient modulation method for a frequency selective channel is 
OFDM, where the signal bandwidth W is subdivided into a large number N of subchannels 
for which the symbol duration of the signal transmitted on each subchannel is selected to 
satisfy the condition T » Tm . Hence, ISI is rendered negligible in each subchannel and can 
be totally eliminated by the use of a time guard band of duration Tm or a cyclic prefix. Thus, 
the frequency separation between adjacent subchannels is �f = 1/T and the number of 
subchannels is N = W / �f, so that each subchannel is basically characterized as frequency 
nonselective. To combat signal fading in this situation, the same information symbol can 
be transmitted in two or more subchannels separated in frequency by an amount equal to or 
exceeding the channel coherence bandwidth Bcb in order to obtain signal diversity through 
statistically independent fading. The following illustrative problem describes the OFDM 
signal design process. 
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Example 14.3.2 
Suppose a communication channel having a bandwidth W = 10 kHz is characterized as a 
multipath channel with multipath spread Tm = 10 ms and a Doppler spread Bd = 0. 1 Hz. 
Select the parameters of an OFDM system such that the bandwidth loss due to the cyclic 
prefix (or time guard band) does not exceed 10%. 

Solution We may select the symbol duration to be T = 100 msec to satisfy the bandwidth 
loss constraint. Therefore, D..f = l/T = 10 Hz and, hence, the number of subchannels is 
N = 104 /10 = 1000. The channel has a coherence time of Tcr = 1/ Bd = 10 seconds, so we 
have satisfied the condition that T « Tet· The channel coherence bandwidth Beb = 1 /Tm = 
100 Hz. To combat signal fading in a subchannel, we may transmit the same symbol on multi­
ple subchannels having a frequency separation of at least 100 Hz. Thus, the symbol throughput 
achieved on this channel is N / T = ION symbols/sec without diversity and the throughput 
symbol rate Rs = ION/ D symbols/sec with diversity of order D. • 

Example 14.3.3 
Consider an HF channel which has a nominal bandwidth of 3200 Hz and a multipath spread 
of T,n = 1 msec. Design a multiple-carrier OFDM signal that achieves a data rate of 4800 
bits/sec. 

Solution We may select the number N of subcarriers to be as large as we like so as to 
achieve the desired condition that Tse » T,n , where Tse is the symbol duration for each sub­
carrier. However, the complexity of the demodulator increases, as N log2 N [computational 
complexity of fast Fourier transform (FFT) algorithm] and the demodulation delay for deliv­
ering the information to the user increases (linearly) with N. Therefore, it is desirable to keep 
N as small as possible. Suppose we select N such that Tse = 100 msec. Then, each subchannel 
may be as narrow' as Wse � f.- = 10 Hz. Note that Wse « Beb = 1000 Hz as desired. If we 
employ four-phase (PSK or DPSK) modulation in each subchannel, we achieve a bit rate of 
20 bits/sec, per subchannel. With N = 240 subchannels, we achieve the desired data rate of 
4800 bps. • 

14.4 MULTIPLE ANTENNA SYSTEMS 

The use of two or more antennas at the receiving terminal of a digital communication 
system is a commonly employed method for achieving spatial diversity and, thus, for mit­
igating the effects of signal fading. Typically, the receiving antennas must be separated by 
one or more wavelengths to ensure that the received signals undergo statistically indepen­
dent fading. Spatial receiver diversity is especially attractive because the signal diversity is 
achieved without expanding the signal transmission bandwidth. 

Spatial diversity can also be achieved by using multiple antennas at the transmit­
ter. For example, we will demonstrate that it is possible to achieve dual diversity with 
two transmitting antennas and one receiving antenna. Furthermore, multiple transmitting 
antennas can be used to create multiple spatial channels and, thus, provide the capability 
to increase the data rate. This method is called spatial multiplexing. 

A communication system employing NT transmit antennas and NR receive anten­
nas is generally called a multiple-input, multiple-output (MIMO) system and the resulting 
spatial channel in such a system is called a MIMO channel. 

1 In practice, it will be necessary to have some excess bandwidth in each subchannel. The excess bandwidth 
may be in the range of 15-25%. 
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The special case in which NT = NR = 1 i s  called a single-input, single-output 
(SISO) system, and the corresponding channel is called a SISO channel. A second special 
case is one in which NT = 1 and N R 2: 2. The resulting system is called a single-input, 
multiple-output (SIMO) system, and the corresponding channel is called a SIMO channel. 
Finally, a third special case is one in which NT 2: 2 and NR = 1 .  The resulting system is 
called a multiple-input, single-output (MISO) system, and the corresponding channel is a 
MISO channel. 

14.4.1 Channel Models for Multiple Antenna Systems 

In a MIMO system with NT transmit antennas and N R receive antennas, we denote the 
impulse response between the j th transmit antenna and the i th receive antenna by c; j ( r ; t), 
where r is the delay variable and t is the time variable in a general linear, time-varying 
channel. Thus, a randomly time-varying channel is characterized by the N R x NT matrix 
C(r; t), defined as [ C11 (r; t) 

C21 (r ;  t) 
C(r ;  t) = . 

CNRl (r ;  t) 

cn(r; t) 
C22(r; t) 

C1Ny (r; t) ] 
C2Ny (r ; t) . 

CNRN� (r; t) . .  
For a frequency nonselective channel, the channel matrix C is expressed as [ C11 (t) 

C21 (t) C(t) = . 

CN� 1 (t) 

C12 (t) 
c22(t) 

C!Ny (t) ] 
C2Ny (t) 

CN�Ny (t) • 

(14.4. 1) 

(14.4.2) 

Suppose that the signal transmitted from the jth transmit antenna is Sj (t) ,  j = 1 ,  
2 ,  . . .  , NT . Then the signal received at the ith antenna may be expressed as 

Ny 
r;(t) = L:Cij (t)sj (t) , i = 1 ,  2, . . .  , NR 

j=I 
and, in matrix form, the received signal vector r (t) is given as 

r (t) = C(t)s(t) ,  

(14.4.3) 

(14.4.4) 

where s(t) is an NT x 1 vector and r (t) is an NR x 1 vector. Furthermore, if the time 
variations of the channel impulse response are very slow within a time interval 0 ::; t ::; T, 
when T may be either the symbol interval or some general time interval, Equation (14.4.4) 
may be simply expressed as 

r (t) = Cs(t), 0 ::;  t ::; T, (14.4.5) 

where C is constant within the time interval 0 ::; t ::; T. 
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The slowly time-variant frequency nonselective channel model embodied in Equation 
(14.4.5) is the simplest model for signal transmission in a MIMO channel. In this section, 
we employ this model to illustrate the performance characteristics of MIMO systems. 

14.4.2 Signal Transmission in a Slow Fading Frequency Nonselective MIMO Channel 

Consider a wireless communication system that employs multiple transmitting and receiv­
ing antennas, as shown in Figure 14. 17. We assume that there are Nr transmitting antennas 
and NR receiving antennas. As illustrated in Figure 14. 17, a block of Nr symbols is con­
verted from serial to parallel and each symbol is fed to one of Nr identical modulators, 
where each modulator is connected to a spatially separate antenna. Thus, the Nr symbols 
are transmitted in parallel and received on N R spatially separated receiving antennas. In 
this section, we assume that the Nr symbols are uncoded. 

Let us assume that each signal from a transmitting antenna to a receiving antenna 
undergoes frequency nonselective Rayleigh fading. We also assume that the differences in 
propagation times of the signals from the Nr transmitting to the NR receiving antennas 
are small relative to the symbol duration T, so that for all practical purposes, the signals 
from the Nr transmitting antennas to any receiving antenna are synchronous. Hence, we 
can represent the received signals at the receiving antennas in a signaling interval as 

Nr 
rm (t) = L SnCmngr (t) + Zm (t) , 0 :S t  :S T, m = 1 ,  2, . . .  , NR , 

n=I 

Output 

data 
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data 
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converter 
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converter sNr 

Modulator 

NT antennas 
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NR antennas 

Demodulator 
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Figure 14.17 A communication system with multiple transmitting and receiving antennas. 

(14.4.6) 
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where gT (t) i s  the pulse shape (impulse response) of the modulation filters, Cllin is the 
complex-valued zero-mean Gaussian channel gain between the nth transmitting antenna 
and the mth receiving antenna, Sn is the symbol transmitted on the nth antenna, and Zm (t) 
is a sample function of an A WGN noise process. The channel gains {cmn} are modeled as 
identically distributed and statistically independent from channel to channel. The Gaussian 
sample functions {zm (t)} are assumed to be identically distributed and mutually statisti­
cally independent, each having zero mean and two-sided power spectral density No/2. The 
information symbols {sn} are drawn from either a binary or M-ary PSK or QAM signal 
constellation. 

The demodulator for the signal at each of the N R receiving antennas consists of 
a matched filter to the pulse gT (t) ,  whose output is sampled at the end of each symbol 
interval. The output of the demodulator corresponding to the mth receiving antenna can be 
represented as 

Ny 
Ym = LSnCmn + TJm , m = 1, 2, . . . , NR , 

n=I 
(14.4.7) 

where the energy of the signal pulse gT (t) is normalized to unity and T/m is the additive 
Gaussian noise component. The N R soft outputs from the demodulators are passed to 
the signal detector. For mathematical convenience, Equation (14.4.7) may be expressed 
in matrix form as 

y = Cs +  'f/,  (14.4.8) 

where y = [y1 , y2 , . . .  , YNR]1 , s = [s1 ,  s2 , . . .  , SNy]1 , 'f/ = [TJ1 ,  TJ2 , . . .  , TJNR]1 and C is the 
N R x NT matrix of channel gains. Figure 14. 18 illustrates the discrete-time model for the 
multiple transmitter and receiver signals in each signaling interval. 

In the formulation of a MIMO system as described above, we observe that the trans­
mitted symbols on the NT transmitting antennas overlap totally in both time and frequency. 
As a consequence, there is interchannel interference in the signals {Ym , 1 ::; m ::; N R } 

1'/J 

Serial- S2 Parallel-
Input to- to- Output 

parallel 
Detector 

serial data data 
converter converter 

Figure 14.18 Discrete-time model of the communication system with multiple transmit and receive antennas 
in frequency nonselective slow fading channel. 
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received from the spatial channel. In the following section, we consider three different 
detectors for recovering the transmitted data symbols in a MIMO system. 

Example 14.4.1 
Suppose Nr = NR = 2. Generate the elements of the channel matrix C for a Rayleigh fading 
AWGN channel and the corresponding inputs to the detectors at the two receive antennas. 

Solution The elements of C are c11 , c12, c2i .  and c22• For the Rayleigh fading channel, these 
parameters are complex-valued, statistically independent, zero-mean Gaussian random vari­
ables with identical variances u'f . Hence, the two inputs to the detectors at the two antennas are 

Y2 = C21S1 + C22S2 + T/2, 

where s1 and s2 are the transmitted symbols from the two transmit antennas and (T/1 , T/2) 
are the statistically independent additive Gaussian noise terms with zero mean and equal 
variances u; . • 

14.4.3 Detection of Data Symbols in a MIMO System 

Based on the frequency nonselective MIMO channel model described in Section 14.4.2, we 
consider three different detectors for recovering the transmitted data symbols and evaluate 
their performance for Rayleigh fading and additive white Gaussian noise. Throughout this 
development, we assume that the detector knows the elements of the channel matrix C 
perfectly. In practice, the elements of C are estimated by using channel probe signals. 

Maximum-Likelihood Detector. The maximum-likelihood detector (MLD) is 
the optimum detector in the sense that it minimizes the probability of error. Because the 
additive noise terms at the N R receiving antennas are statistically independent and iden­
tically distributed (i.i.d.), zero-mean Gaussian, the joint conditional PDF f(y ls) is Gaus­
sian. Therefore, the MLD selects the symbol vector s that minimizes the Euclidean distance 
metric 

(14.4.9) 

Minimum Mean-Square-Error Detector. The rmmmum mean-square-error 
(MMSE) detector linearly combines the received signals {Ym , 1 :::: m :::: N R }  to form an 
estimate of the transmitted symbols { s n ,  1 :::: n :::: NT } .  The linear combining is represented 
in matrix form as 

(14.4. 10) 

where W is an N R x NT weighting matrix, which is selected to minimize the mean square 
error 

(14.4. 1 1) 
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Minimization of J(W) leads to the solution for the optimum weight vectors w 1 ,  w2, . . .  , 
WNT as 

R-1 Wn = yy rSnY •  n = 1 ,  2 ,  . . .  , Nr , (14.4. 12) 

where Ryy = E[yyH] = CRss CH + Nol is the (NR x NR) autocorrelation matrix of 
the received signal vector y, Rss = E [ssH] ,  rsn Y = E[s�y] and E[1717H] = Nol. When 
the signal vector has uncorrelated, zero-mean components, Rss is a diagonal matrix. Each 
component of the estimate s is quantized to the closest transmitted symbol value. 

Inverse Channel Detector. The inverse channel detector (ICD) also forms an 
estimate of s by linearly combining the received signals {ym , 1 :::; m :::; NR }. However, 
in this case, we set Nr = N R and select the weighting matrix W so that the interchannel 
interference is �ompletely eliminated; that is, WH = c-I and, hence, 

S = c-ly 

= s + c-111 
(14.4. 13) 

Each element of the estimate s is then quantized to the closest transmitted symbol value. 
We note that the ICD estimate s is not corrupted by interchannel interference. However, 
this also implies that the ICD does not exploit the signal diversity inherent in the received 
signal, as we will observe below. 

When NR > Nr, the weighting matrix W may be selected as the pseudoinverse of 
the channel matrix; that is, 

( 14.4. 14) 

The three detectors are implemented in MATLAB in Computer Problem 14.9. 

14.4.4 Error Rate Performance of the Detectors 

The error rate performance of the three detectors in a Rayleigh fading channel is most 
easily evaluated by Monte Carlo computer simulation. 

Example 14.4.2 
Perform a Monte Carlo simulation to assess the error rate performance of an (NT , NR) MIMO 
system in a Rayleigh fading AWGN channel. The modulation is binary PSK (or binary PAM). 

Solution Figures 14. 19  and 14.20 illustrate the binary error rate (BER) for binary PSK mod­
ulation with (NT , NR) = (2, 2) and (NT , NR) = (2, 3), respectively. In both cases, the vari­
ances of the channel gains are identical and their sum is normalized to unity; that is, 

( 14.4. 15) 
n,m 

The BER for binary PSK modulation is plotted as a function of the average SNR per bit. With 
the normalization of the variances in the channel gains {cmn }  as given by Equation (14.4.15), 
the average received energy is simply the transmitted signal energy per symbol. 

The performance results in Figures 14. 19 and 14.20 illustrate that the MLD exploits 
the full diversity of order N R available in the received signal and, thus, its performance is 
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comparable to that of a maximal ratio combiner (MRC) of the N R received signals, without the 
presence of interchannel interference; that is, (Ny , NR) = ( 1 ,  N R). The two linear detectors, 
the MMSE detector and the ICD, achieve an error rate that decreases inversely as the SNR 
raised to the (NR - 1) power for Ny = 2 transmitting antennas. Thus, when NR = 2, the 
two linear detectors achieve no diversity, and when N R = 3, the linear detectors achieve dual 
diversity. We also note that the MMSE detector outperforms the ICD, although both achieve 
the same order of diversity. In general, with spatial multiplexing (Ny antennas transmitting 
independent data streams), the MLD detector achieves a diversity of order NR and the linear 
detectors achieve a diversity of order NR - Ny + l ,  for any NR ::'.'.: Ny . In effect, with Ny 
antennas transmitting independent data streams and N R receiving antennas, a linear detector 
has NR degrees of freedom. In detecting any one data stream, in the presence of Ny - 1 
interfering signals from the other transmitting antennas, the linear detectors utilize Ny - l 
degrees of freedom to cancel the Ny - 1 interfering signals. Therefore, the effective order of 
diversity for the linear detectors is NR - (Ny - 1) = NR - Ny + 1 .  • 

It is interesting to compare the computational complexity of the three detectors. We 
note that the complexity of the MLD grows exponentially as MNy , where M is the number 
of points (symbols) in the signal constellation, whereas the linear detectors have a com­
plexity that grows linearly with Nr and NR. Therefore, the computational complexity of 
the MLD is significantly larger than that of the linear detectors when NT and M are large. 
However, for a small number of transmit antennas and small number of signal constellation 
symbols (i.e., Nr :::; 4 and M = 4), the computational complexity of MLD is reasonable. 

14.4.5 Space-Time Codes for MIMO Systems 

Let us now consider the MIMO system illustrated in Figure 14.21 .  At the transmitter, the 
sequence of information bits is fed into a symbol mapper that maps a block of bits into 
signal points {s; } selected from a signal constellation such as PAM, PSK, or QAM, con­
sisting of M = 2b signal points. These signal points are fed as a block to a space-time 
encoder that maps the information symbols to a parallel set of identical modulators. In 
turn, the modulators map the signal points into corresponding waveforms that are trans­
mitted simultaneously on the Nr antennas. Below, we describe two types of space-time 
codes: block codes and trellis codes. 

Space-Time Block Codes. A space-time block code (STBC) is defined by a 
generator matrix G, having N rows and NT columns, of the form [ gll g12 . . . g!Ny ] 

g21 g22 . . . g2Ny 

gNI gN2 . . .  gNNy 

G =  (14.4. 16) 

in which the elements {g;j } are signal points resulting from a mapping of information bits to 
corresponding signal points from a binary or M-ary signal constellation. By employing Nr 
transmit antennas, each row of G may contain up to Nr different signal points (symbols), 
which are transmitted on the Nr antennas in a time slot. Thus, the first row of symbols in 
G is transmitted on the Nr antennas in the first time slot, the second row of symbols in G 
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is transmitted on the NT antennas in the second time slot, and the Nth row of symbols in G 
is transmitted on the NT antennas in the Nth time slot. Therefore, N time slots are used to 
transmit the symbols in the N rows of the generator matrix G. The ratio of the number of 
different symbols transmitted to the number of time slots is called the spatial code rate Rs . 

In the design of the generator matrix of a STBC, it is desirable to focus on three 
principal objectives: (a) achieving the highest possible diversity of NTNR, (b) achieving 
the highest possible (throughput) rate, and (c) minimizing the complexity of the MLD. 
Our treatment considers these three objectives. 

The Alamouti STBC. Alamouti (1998) devised a STBC for NT = 2 transmit 
antennas and N R = 1 receive antenna. The generator matrix for the Alamouti code is 
given as 

(14.4. 17) 

where s1 and s2 are two signal points selected from an M-ary PAM, or PSK or QAM signal 
constellation with M = 2b signal points. Thus, 2b data bits are mapped into two signal 
points (symbols) s1 and s2 from the M-ary signal constellation. The symbols s1 and s2 
are transmitted on the two antennas in the first time slot and the symbols -si and s� are 
transmitted on the two antennas in the second time slot. Thus, two symbols, s1 and s2 , are 
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transmitted in two time slots. Consequently, the spatial code rate Rs, which i s  defined as 
the ratio of the number of symbols transmitted to the numbers of time slots used to transmit 
the symbols, is 1 for the Alamouti code. This is the highest possible rate for a (orthogonal) 
STBC. 

Let us assume that the symbols s1 and s2 are signal points in a QAM signal constella­
tion. These signal points modulate the quadrature carriers cos 2n Jct and sin 2n Jct .  Hence, 
the modulator output signals fed to the two antennas in the first time interval 0 < t :=:: T are 

u�i (t) = Amcl8T (t) cos 2nJct - Ams18T (t) sin 2nJct, 

u�i (t) = Amc28T (t) cos 2nJct - Ams28T (t) sin 2nJct, 
(14.4. 18) 

where s; = (�Amci �Amsi) , i = 1 ,  2, and gT (t) is a rectangular pulse, defined as 

gT (t) = 1./ T  - -
. 

I fi O < t < T 
0 otherwise 

(14.4. 19) 

The superscripts on Um1 (t) and Um2(t) denote the signal transmitted in the first interval. In 
the second time interval (T < t :S 2T), the signal points to be transmitted are -s� and sr. 
Hence the signals to be transmitted on the two antennas are 

· 

u�i (t) = -Amc28T (t - T) cos 2nJc (t - T) - Ams28T (t - T) sin 2nJc(t - T), 

u�i (t) = AmcigT (t - T) cos 2nJc(t - T) + AmslgT (t - T) sin 2nJc(t - T). 
(14.4.20) 

The MISO channel matrix for the Nr = 2, NR = 1 channel, based on a frequency 
nonselective model, is 

C = [c1 1  c12] . (14.4.21) 

In the decoding of the STBC, we assume that C is constant over the two time slots and that 
it is known at the receiver. Hence, the received signal in the first time interval is 

(14.4.22) 

and in the second time interval 

(14.4.23) 

where nOl (t) and n<2l (t) are the AWGN noise terms. 
At the receiver the, r<ll (t) is cross correlated with the basis functions i/11 (t) and i/!2(t) 

i/!1 (t) = gT (t) cos 2nJct, 

i/!2 (t) = -gT (t) sin 2nJct, 
(14.4.24) 
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and r<2l (t) is cross correlated with 1/rI (t - T) and 1/r2 (t - T). Consequently, the outputs of 
the correlators at the sampling instants t = T and t = 2T for the two time slots are 

YI = cusI + cI2s2 + 'f/I , 

Y2 = -cus; + c12s� + 'f/2 , 
(14.4.25) 

where 'f/I and ry2 are zero-mean, circularly symmetric complex valued uncorrelated 
Gaussian random variables with equal variance a;. 

The correlator outputs YI and y2 in Equation (14.4.25) are fed to the detector, which 
computes the estimates of the symbols sI and s2 as follows: 

(14.4.26) 

and it selects the symbol sI and s2 that are closest to sI and s2 in Euclidean distance. If we 
substitute for YI and Y2 in (14.4.26) and carry out the multiplications, we obtain 

SI = [ lcu l2 + lc12 12] SI + c;I 'f/I + C121J; , 
(14.4.27) 

We make the following observations on the Alamouti STBC. First, we observe that 
the code achieves dual diversity, which is the largest possible for transmission over the 
two transmit antenna and one receive antenna. Second, the MLD that computes Equation 
(14.4.26) is very simple. These two desirable properties were achieved as a result of the 
orthogonality characteristic of the generator matrix G for the Alamouti code, which we 
may express as 

G = [ 8I 82 J -8; 8; (14.4.28) 

We observe that the column vectors VI = (8I , -8;>1 and v2 = (82 , 8D1 are orthogonal 
(i.e. VI · vf = 0) and, furthermore, 

(14.4.29) 

where I 2 is a 2 x 2 identity matrix. As a consequence of this orthogonality property, when 
we express the received signal given in Equation (14.4.25) as 

or 

(14.4.30) 
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and form the estimates s1 and s2 as prescribed in Equation (14.4.26) from y in Equation 
(14.4.30), we obtain 

[��] = [��� ���J [��] 
= C�C21s + C�T/ (14.4.31) = [ lc11 l2 + l c12 12] s + c� T/ 

Therefore, 

(14.4.32) 

Thus, full diversity and low decoding complexity are achieved as a consequence of the 
property of G given in Equation (14.4.29). 

Example 14.4.3 
Perform a Monte Carlo simulation to estimate the error rate performance of an Nr = 2, 
N R = 1 multiple antenna system that employs the Alamouti STBC. Hence, generate the input 
to the detector as given in Equation (14.4.25), where the signal points are selected from a 
QPSK constellation; ell and e12 are statistically independent, complex-valued, zero-mean 
Gaussian random variables with unit variance; and 171 and 172 are also statistically indepen­
dent, complex-valued, zero-mean Gaussian random variables with variance rr2. The detector 
computes the estimates as in Equation (14.4.26) and decides on which symbols are closest 
to s1 and s2 in Euclidean distance. Perform the above computations for N = 10,000 itera­
tions for any given value of rr2, where in each iteration the channel coefficients (ell ,  e!2), the 
signal points (s1 ,  s2), and, additive noise terms (171 , 172) are selected independently. Plot the 
measured symbol error rate as a function of the SNR = 10 log1 (f!,b/2rr2), where 'i8b = 'i8s/2 
is the energy per bit, which may be normalized to unity for convenience. 

Solution The graph for the estimated error rates as a function of SNR is shown in Figure 
14.22. We observe that the probability of error decreases inversely as the square of the SNR, 
i.e., the Alamouti code yields dual diversity when (Nr , NR) = (2, 1) .  • 

The Alamouti code is an example of orthogonal complex matrix design for Ny = 2. 
It has been shown in the literature [see Jafarkhani (2005) and Tarokh et al. (1999)] that 
orthogonal complex matrix designs with Rs = 1 do not exist for Ny > 2 transmit anten­
nas. However, by dropping the constraint that the generator matrix G be square, it is pos­
sible to devise orthogonal designs for either one-dimensional or two-dimensional signal 
constellations. For example, an orthogonal generator matrix for a STBC that transmits four 
complex-valued (PSK or QAM) symbols on Ny = 4 transmit antennas is 

S1 s2 S3 S4 
-s2 S1 -S4 S3 
-S3 S4 S1 -s2 

G =  
-S4 -S3 s2 S ]  

(14.4.33) 
s* s* s * s* I 2 3 4 

-
si s * 

I -s4 s
* 
3 

-s; s
* 
4 s

* 
I -si 

-s4 -s; s* 
2 s* I 
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Figure 14.22 Plot for Example 14.4.3. 

For this code generator, the four complex-valued symbols are transmitted in eight consec­
utive time slots. Hence the spatial rate for this code is Rs = 1/2. We also observe that 

4 

GH G = �)ls; l2] /4 (14.4.34) 
i=l 

so that this code provides fourth-order diversity in the case of one receive antenna and 4NR 
diversity with N R receive antennas. 

Complex orthogonal matrices with rate Rs = 1/2 exist for any number of transmit 
antennas. However, Wang and Xia (2003) have shown that complex orthogonal matrices 
for rates Rs > 3 / 4 do not exist. Rate Rs = 3 / 4 complex orthogonal matrices do exist. The 
following Rs = 3/4 complex orthogonal generator matrix is designed for NT = 3 transmit 
antennas in which the three symbols s1 , s2, and s3 are transmitted in four time slots and 
determine the order of diversity achieved by the STBC. 

(14.4.35) 

Example 14.4.4 
Express the input to the detector for the rate Rs = 3 / 4 code having the generator matrix given 
by Equation (14.4.35) and determine the expression for the estimates s1 , s2, and s3 computed 
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b y  the detector. Assume that the channel coefficients cu , c12 , c13 are time invariant over the 
four time slots and determine the order of diversity achieved by the STBC. 

Solution The inputs to the detector are the outputs of the correlators for the signals received 
in the four time slots, i.e., 

or, equivalently, 

Y2 = -cus; + c12s� + 7/2 

Y3 = cus; - c13s� + 7)3 

Y4 = c12s; - c13s; + 7)4 

It is easily verified that the symbol estimates are obtained from the following linear combina­
tions of Y1 ,  yz, y3 ,  y4: 

or, in matrix form, 

S2 = cr2Y1 - C11Yi - C13y; 

S3 = c73Y1 + cuy; + C12Y; 

s = Cfiy . 

By substituting in the equation for y we obtain 

s = CfiC31s + Cfi11 

= [ lcu 12 + lc12 12 + lc13 12] s + cfi 11· 

Therefore, this STBC results in third-order diversity. • 

Space-Time Trellis Codes. Space-time trellis codes (STTCs) are similar to trel­
lis codes in trellis-coded modulation (TCM) in that they are formed by combining a trellis 
code with an appropriately selected signal constellation with the objective of achieving 
a coding gain. In the case of a space-time code, the primary objective is to achieve the 
largest possible spatial diversity at the highest coding rate. STTCs may be designed either 
manually or with the aid of a computer, following some simple rules, similar in nature to 
the rules for designing trellis codes for TCM. 

As an example of a STTC, we consider the four-state trellis code shown in Figure 
14.23, which is designed for two transmit antennas and QPSK modulation. The states are 
denoted as S1 = 0, 1 ,  2, 3 .  The input to the encoder is a pair of bits (00, 01 ,  10, 1 1) that 
are mapped into the corresponding phases, which are numbered (0, 1 ,  2, 3) , respectively. 
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Antenna 1: 0 0 2 3 1 

Antenna 2: 0 2 3 1 0 Figure 14.23 4-PSK, four-state, 
3 space-time trellis code. 

The indices 0, 1 ,  2, 3 correspond to the four phases, which are called symbols. Initially, 
the encoder is in state S1 = 0. Then, for each pair of input bits that are mapped into 
a corresponding symbol, the encoder generates a pair of symbols, the first of which is 
transmitted on the first antenna and the second of which is transmitted simultaneously on 
the second antenna. For example, when the encoder is in state S1 = 0 and the input bits are 
1 1 , the symbol is a 3 .  The STTC outputs the pair of symbols (0, 3), corresponding to the 
phases 0 and 3n/2. The zero phase signal is transmitted in the first antenna and the 3n/2 
phase signal is transmitted on the second antenna. At this point the encoder goes to state 
S1 = 3 .  If the next two input bits are 01 ,  the encoder outputs the symbols (3 , 1) , which are 
transmitted on the two antennas. Then the encoder goes to state S1 = 1 ,  and this procedure 
continues. At the end of a block of input bits, say a frame of data, zeros are inserted in the 
data stream to return the encoder to the state S1 = 0. Thus the STTC transmits at a bit rate 
of 2 bps/Hz. We note that it satisfies the two design rules given above and achieves full 
rank of NT = 2. 

In decoding a STTC, the maximum-likelihood sequence detection (MLSD) criterion 
provides the optimum performance. MLSD is efficiently implemented by use of the Viterbi 
algorithm. For two transmit antennas., the branch metrics may be expressed as 

NR 
/.Lb(s1 , s2) = L IYj - CJj s1 - C2j s2 12 , 

j=l 
(14.4.36) 

where {y j , 1 ::; j ::; N R} are the outputs of the matched filters at the N R receive antennas, 
{ c1j , 1 ::; j ::; N R } and { c2j , 1 ::; j ::; N R} are the channel coefficients in a frequency nons­
elective channel, and (s1 , s2) denote the symbols transmitted on the two antennas. By using 
these branch metrics in the Viterbi algorithm to form the path metrics of valid paths through 
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the trellis, we can find the path that minimizes the overall metric and, thus, determine the 
sequence of transmitted symbols corresponding to the path having the smallest path metric. 

14.5 LINK BUDGET ANALYSIS FOR RADIO CHANNELS 

In the design of radio communication systems that transmit over LOS microwave satellite 
channels, we must also consider the effect of the antenna characteristics on determining the 
SNR at the receiver that is required to achieve a given level of performance. The system 
design procedure is described next. 

Suppose that a transmitting antenna radiates isotropically in free space at a power 
level PT Watts, as shown in Figure 14.24. The power density at a distance d from the 
antenna is PT /4rrd2 W/m2. If the transmitting antenna has directivity in a particular direc­
tion, the power density in that direction is increased by a factor called the antenna gain 
GT . Then, the power density at a distance d is PTGTf4rrd2 W /m2• The product PTGT 
is usually called the effective isotropically radiated power (EIRP), which is basically the 
radiated power relative to an isotropic antenna for which GT = 1 .  

A receiving antenna pointed in the direction of the radiated power gathers a portion 
of the power that is proportional to its cross-sectional area. Hence, the received power 
extracted by the antenna is expressed as 

PT GT AR PR = 4rrd2 , ( 14.5 . 1 )  

where AR is  the effective area of the antenna. The basic relationship between the antenna 
gain GR and its effective area; obtained from basic electromagnetic theory, is 

GRA.2 2 AR = -- , m  4rr (14.5 .2) 

where A. is the wavelength of the transmitted signal. 
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If we substitute for AR from Equation (14.5.2) into Equation (14.5. 1), we obtain the 
expression for the received power: 

(14.5.3) 

The factor (4nd/A.)2 = $, is the free-space path loss. Other losses that may be encoun­
tered in the transmission of the signal, such as atmospheric losses, are accounted for by 
introducing an additional loss factor :b'a. Therefore, the received power may be 
expressed as 

(14.5.4) 

or, equivalently, 

(14.5.5) 

The effective area for an antenna generally depends on the wavelength A. of the radi­
ated power and the physical dimension of the antenna. For example, a parabolic (dish) 
antenna of diameter D has an effective area 

nD2 
AR = -

4
-TJ , (14.5.6) 

where nD2 /4 is the physical area and T/ is the illumination efficiency factor, which is typ­
ically in the range 0.5 :::; TJ :::; 0.6. Hence, the antenna gain for a parabolic antenna of 
diameter D is 

for a parabolic antenna. (14.5.7) 

As a second example, a horn antenna of physical area A has an efficiency factor of 
0.8, an effective area of AR = 0.8A, and a gain of 

for a horn antenna. (14.5.8) 

Another parameter that is related to the gain (directivity) of an antenna is its 
beam width, which is denoted as e B and illustrated in Figure 14.25. usually, the beam width 
is measured as the -3 dB width of the antenna pattern. For example, the -3 dB beam width 
of a parabolic antenna is approximately 

Gs � 70A./D deg, 

so that Gr is inversely proportional to 8� . Hence, a decrease of the beamwidth by a factor 
of two, which is obtained by doubling the diameter, increases the antenna gain by a factor 
of four (6 dB). 
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Beamwidth ® B 

(a) Beamwidth 

®s ®s -2 T 
(b) Antenna pattern 

Figure 14.25 A narrow beam 
antenna and its radiating pattern. 

Example 14.5.1 
A satellite in geosynchronous orbit (36,000 km above the earth's surface) radiates 100 W 
of power (20 dBW). The transmitting antenna has a gain of 1 8  dB, so that the EIRP = 38 
dBW. The earth station employs a 3-m parabolic antenna, and the downlink is transmitting at 
a frequency of 4 GHz. Determine the received power. 

Solution The wavelength ).. = 0.075 m. Hence, the free-space path loss is (4nd) �lcts = 20 log T = 195.6 dB. 

Assuming that T/ = 0.5, the antenna gain is 39 dB. Since no other losses are assumed, 
it follows that 

or equivalently, 

PR ldBW = 20 + 18  + 39 - 195.6 
= - 1 1 8.6 dBW, 

We may carry the computation one step further by relating the <t!,b/ N0 required to 
achieve a specified level of performance to PR. Since 

cgb TbPR 1 PR 
No No Rb No ' (14.5.9) 
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i t  follows that PR �b) - - Rb -No 
- No req

' (14.5.10) 

where r:gb/ No)req is the required SNR/bit to achieve the desired performance. The relation in 
Equation (14.5.10) allows us to determine the bit rate Rb. We have 

Example 14.S.2 

10 log10 Rb = (PR) - IO log10 ('(gb) . 
No dB No req 

(14.5. 1 1) 

• 

If r:gb/ No)req = IO dB, determine the bit rate for the satellite communication system in 
Example 14.5 .1 .  Assume that the front end of the receiver has a noise temperature of 300 K, 
which is typical for a receiver in the 4-GHz range. 

Solution Since T0 = 290 K and Te = 10 K, it follows that 

No = kT = 4. 1 x 10-21W/Hz, 

or equivalently, -203.9 dBW/Hz. Then, 

(PR) = -1 18.6 + 203.9. 
No dB 

Therefore, from Equation (14.5. 1 1), we obtain 

or equivalently, 

IO log10 Rb = 85.3 - IO 
= 75.3, 

Rb = 33.9 x 106 bps. 

We conclude that this satellite channel can support a bit rate of 33.9 Mbps. • 

14.6 SUMMARY AND FURTHER READING 

In this chapter, we treated digital signal transmission in fading multipath channels. We 
began with the characterization of physical wireless channels and constructed mathemat­
ical models for frequency selective and frequency nonselective fading channels. We also 
presented models for the Doppler effects that account for a frequency spread in the received 
signal due to motion that occurs in the physical channel or in a moving platform, such as 
a receiver in mobile communications. Propagation models for mobile radio channels that 
account for path loss and shadowing were also described. 

In Section 14.3, we evaluated the probability of error of binary modulation schemes 
in frequency nonselective Rayleigh fading channels with additive white Gaussian noise 
(AWGN). We observed that in such channels, the probability of error decreases inversely 
with signal-to-noise ratio (SNR), which means that a large SNR is required to achieve 
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a sufficiently small error probability. On the other hand, we demonstrated that the SNR 
required to achieve good performance can be significantly reduced by signal diversity, 
which can be achieved by transmitting the same symbol on multiple independently fading 
channels. We also demonstrated that signal diversity is achieved in a more bandwidth­
efficient manner by employing coding, provided that the coded symbols are interleaved in 
either time or frequency or both, so that they undergo independent fading. For frequency 
selective fading channels, we described the RAKE demodulator, which is optimum in the 
sense of collecting and summing the energies in the resolvable multipath signal compo­
nents. Thus, the RAKE demodulator achieves signal diversity from the processing of the 
resolvable signal components in the received signal. In this section, we also demonstrated 
that OFDM may be used instead of single carrier transmission in a frequency selective 
channel. The primary objective in employing OFDM rather than single carrier is that each 
subchannel in OFDM is designed to be sufficiently narrowband so that it becomes fre­
quency nonselective. Then, to combat signal fading on the individual subchannels, the 
same symbol is transmitted on two or more subchannels separated in frequency by the 
coherence bandwidth of the channel. Thus, signal diversity is achieved. 

Our evaluation of the error rate performance of binary modulation techniques in fad­
ing channels was focused on the Rayleigh fading channel model. Although other statistical 
models, such as the Rician and Nakagami fading models, may be more appropriate for 
characterizing fading on some real channels, the general approach for designing reliable 
digital communications via signal diversity is still applicable. 

In Section 14.4, we introduced the reader to the use of multiple transmit and receive 
antennas for increasing the transmission rate and obtaining signal diversity through spa­
tial multiplexing in wireless communication systems. In particular, we presented detection 
methods for use in multiple antenna systems and evaluated their performance in Rayleigh 
fading channels. Methods for mapping digital signals for transmission on multiple anten­
nas were also presented, including space-time block codes, such as the Alamouti code, and 
trellis codes. 

The final topic treated in this chapter is link budget analysis for digital communica­
tion on radio channels. The link budget analysis described in the last section of this chapter 
applies generally to free space line-of-sight (LOS) channels and is especially relevant to 
the design of LOS microwave radio communications and satellite communication systems. 
Radio propagation in non-LOS terrestrial channels is significantly more variable due to 
terrain characteristics and, consequently, signal attenuation is generally greater than in free 
space. For example, the modeling of path losses in cellular radio communications is treated 
in the book by Rappaport (1996). 

More extensive and advanced treatments in fading multipath channels are found in 
the books by Schwartz et al. (1966) and Proakis and Salahi (2008). The pioneering work on 
the characterization of fading multipath channels and on the signal and receiver design for 
reliable digital communication over such channels was done by Price (1954, 1956). This 
early work was followed by significant contributions from Price and Green ( 1958, 1960), 
Kailath (1960, 1961), and Green (1962). Diversity transmission and diversity combining 
techniques under a variety of channel conditions have been treated by Pierce (1958), Bren­
nan (1959), Turin (1961, 1962), Pierce and Stein (1960), Barrow (1963), Bello and Nellin 
( 1962a, 1962b, 1963), Price ( 1962a, 1962b), and Lindsey ( 1964). 
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PROBLEMS 

14.1 In the transmission and reception of signals to and from moving vehicles, the trans­
mitted signal frequency is shifted in direct proportion to the speed of the vehicle. The 
so-called Doppler frequency shift imparted to a signal that is received in a vehicle 
traveling at a velocity v relative to a (fixed) transmitter is given by the formula 

v fv = ±J..: , 

where 'A is the wavelength, and the sign depends on the direction (moving toward or 
moving away) that the vehicle is traveling relative to the transmitter. Suppose that a 
vehicle is traveling at a speed of 100 km/hour relative to a base station in a mobile 
cellular communication system. The signal is a narrowband signal transmitted at a 
carrier frequency of 1 GHz. 

1. Determine the Doppler frequency shift. 

2. What should be the bandwidth of a Doppler frequency tracking loop if the loop 
is designed to track Doppler frequency shifts for vehicles traveling at speeds up 
to 100 km/hr? 

3. Suppose the transmitted signal bandwidth is 1 MHz centered at 1 GHz. Deter­
mine the Doppler frequency spread between the upper and lower frequencies in 
the signal. 

14.2 A multipath fading channel has a multipath spread of Tm = 1 sec and a Doppler 
spread Bd = 0.01 Hz. The total channel bandwidth at bandpass available for signal 
transmission is W = 5 Hz. To reduce the effect of intersymbol interference, the 
signal designer selects a pulse duration of T = 10 sec. 

1. Determine the coherence bandwidth and the coherence time. 

2. Is the channel frequency selective? Explain. 

3. Is the channel fading slowly or rapidly? Explain. 

4. Suppose that the channel is used to transmit binary data via (antipodal) coher­
ently detected PSK in a frequency diversity mode. Explain how you would use 
the available channel bandwidth to obtain frequency diversity and determine 
how much diversity is available. 

5. For the case in (4), what is the approximate SNR required/diversity to achieve 
an error probability of 10-6? 

14.3 Determine an appropriate channel model for an airplane-to-airplane communica­
tion link in which there is a direct signal propagation path, and a secondary prop­
agation resulting from signal scattering due to the surrounding ground terrain. The 
secondary path has a propagation delay of r0 = 10 µsec relative to the propagation 
delay of the direct path. The signal bandwidth is W = 100 kHz. 
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14.4 Determine the appropriate channel model for the airplane-to-airplane communica­
tion link described in Problem 14.3, but now assume that the transmitted signal 
bandwidth is 10  kHz. 

14.5 The probability of error for binary DPSK and binary FSK with noncoherent detec­
tion in an AWGN channel is 

where c = 1 for DPSK and c = � for FSK, and Pb = a��b , where a is the attenuation 
factor. By averaging Pb over the Rayleigh distributed variable a, as indicated by 
Equation (14.3.9), verify the expression for the probability of error for DPSK and 
FSK in a Rayleigh fading channel. 

14.6 A communication system employs dual antenna diversity and binary orthogonal 
FSK modulation. The received signals at the two antennae are 

ri (t) = a1s (t) + n1 (t) , 
r1 (t) = a2s (t) + n2 (t) , 

where a1 and a2 are statistically i.i.d. Rayleigh random variables, and n1 (t) and 
n2(t) are statistically independent, zero-mean white Gaussian random processes 
with power-spectral density N0/2 W/Hz. The two signals are demodulated, squared, 
and then combined (summed) prior to detection. 

1. Sketch the functional block diagram of the entire receiver including the demod­
ulator, the combiner, and the detector. 

2. Plot the probability of error for the detector and compare the result with the case 
of no diversity. 

14.7 A binary communication system transmits the same information on two diversity 
channels. The two received signals are 

ri = ±.ftb + n1 ,  
r1 = ±.ftb + n2 , 

where E(n1) = E(n2) = 0, E(nf) = Uf and E(n�) = u:J: , and n1 and n2 are uncor­
related Gaussian variables. The detector bases its decision on the linear combination 
of r1 and r2, i.e., 

1. Determine the value of k that minimizes the probability of error. 

2. Plot the probability of error for Uf = 1 ,  u:J: = 3 and either k = 1 or k is the 
optimum value found in Part 1 .  Compare the results. 
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14.8 Suppose the binary antipodal signals ±s(t) are transmitted over a fading channel 
and the received signal is 

r(t) = ±as (t) + n(t), 0 :::: t :::=: T, 

where n(t) is zero-mean white Gaussian noise with autocorrelation function �0 8 ( r) .  
The energy in the transmitted signal is cg = J0

T Is ( t) 12 d t. The channel gain a is 
specified by the PDF p(a) = 0. 18(a) + 0.98(a - 2) . 

1. Determine the average probability of error Pe for the demodulator which employs 
a filter matched to s (t). 

2. What value does Pe approach as ;0 approaches infinity? 

3. Suppose the same signal is transmitted over two statistically independently fad­
ing channels with gains a1 and a2, where 

p(ak) = 0.18(ak) + 0.98(ak - 2) , k = 1, 2. 

The noises on the two channels are statistically independent and identically dis­
tributed. The demodulator employs a matched filter for each channel and simply 
adds the two filter outputs to form the decision variable. Determine the aver­
age Pe. 

4. For the case in (3) what value does Pe approach as ! approaches infinity? 

14.9 Consider the frequency nonselective channel model shown in Figure 14.4. Binary 
orthogonal signals u1 (t) and u2(t) are used to transmit information over this chan­
nel. The symbol duration Tb « Tei ,  so that the channel is assumed to be constant 
over a time interval (time window) of NTb, where N is a positive integer. The out­
puts of the matched filters at the sampling instants are either 

Y1k = c� + n1k 
or 

when u lk is transmitted or 

Y1k = n1b 

Yzk = c� + n2k 

when u2(t) is transmitted. c = aeN is the complex-valued channel coefficient, 
which is assumed to be constant over the time window 0 :::: t :::: NTb. 
To detect the signal coherently over the time window, the channel coefficient c is 
estimated by averaging the matched filter outputs for 1 :::: k :::: N. Thus, the esti­
mate is 
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Assuming that the noise terms are statistically independent, zero-mean Gaussian 
random variables with equal variance a

2 = N0/2, (a) show that the mean value of 
c is the actual channel coefficient c, and (b) show that the variance of the estimate 
decreases as N is increased. (c) If a; is defined as the variance of the estimate and 
1/a1 is defined as the SNR of the estimate, determine the expression for 1/a1 and 
thus show that the SNR increases linearly with N and with cgb· 

14.10 Suppose that an HF channel with a nominal bandwidth allocation of 3200 Hz is to 
be used for transmitting digital information at a rate of either (1) 4800 bits/sec or 
(2) 20 bits/sec. The channel multipath spread is Tm = 5 msec. Specify a modulation 
method for achieving the desired data rates and indicate whether or not an equalizer 
is necessary at the receiver for the intersymbol interference. 

14.11 Repeat Example 14.2.6 for a train traveling at a speed of 200 km/hour and a carrier 
frequency of 1 GHz. 

14.12 Repeat Example 14.3.2 for a channel with bandwidth W 
spread Tm = 10 µ,s and a Doppler spread Bd = 10 Hz. 

800 kHz, multipath 

14.13 Show that the conditions in (14.3 .34) and (14.3.35) imply that the time-bandwidth 
product T W » 1 .  

14.14 The generator matrix for a MISO system with (NT , NR) = (4, 1) antennas is  given 
as follows: [ S] S2 S3 0 ] 

G 
_ -si sj 0 s3 
-

sj 0 -sj s2 
· 

0 sj -si -s1 

Thus, this STBC results in a spatial rate Rs = 3/4. The channel matrix for this 
system consists of the elements c1 1 ,  c12 , c13,  and c14 . Show that this generator matrix 
is orthogonal and results in a fourth-order diversity when used in a fading channel. 

14.15 A radio transmitter has a power output of PT = 1 Watt at a frequency of 109 Hz 
(1 GHz). The transmitting and receiving antennas are parabolic dishes with a diam­
eter D = 3 m. 

1. Determine the antenna gains. 

2. Determine the EIRP for the transmitter. 

3. The distance (free space) between the transmitting and receiving antennas is 
20 km. Determine the signal power at the output of the receiving antenna in dBm. 
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14.16 A radio communication system transmits at a power level of 0. 1 Watt at 1 GHz. The 
transmitting and receiving antennas are parabolic, and each has a diameter of 1 m. 
The receiver is located 30 km from the transmitter. 

1. Determine the gains of the transmitting and receiving antennas. 

2. Determine the EIRP of the transmitted signal. 

3. Determine the signal power from the receiving antenna. 

14.17 A satellite in synchronous orbit is used to communicate with an earth station at a 
distance of 4 x 107 m. The satellite has an antenna with a gain of 15 dB and a 
transmitter power of 3 W. The earth station uses a 10-m parabolic antenna with an 
efficiency of 0.6. The frequency band is at f = 10 GHz. Determine the received 
power level at the output of the receiver antenna. 

14.18 A spacecraft located 108 m from the earth is sending data at a rate of R bps. The 
frequency band is centered at 2 GHz and the transmitted power is 10 W. The earth 
station uses a parabolic antenna 50 m in diameter, and the spacecraft has an antenna 
with a gain of 10 dB. The noise temperature of the receiver front end is T = 300° K. 

1. Determine the received power level. 

2. If the desired 't/,b/ No = 10 dB, determine the maximum bit rate that the space­
craft can transmit. 

14.19 Consider the front end of the receiver that is shown in the block diagram in Figure 
P-14.19. The received signal power at the input to the first amplifier is -1 13 dBm, 
and the received noise power spectral density is -175 dBm/Hz. The bandpass filter 
has a bandwidth of 10 MHz, and gains and noise figures are as shown. Determine 
the signal-to-noise ratio Psi Pn at the input to the demodulator. 

G = lO dB 
F =  5 dB 

Figure P-14.19 

Local 
oscillator 

G = -1 dB 
F = 2 dB 

G = 25 dB 
F = 5 dB 

To 
demodulator 

14.20 A satellite in geosynchronous orbit is used as a regenerative repeater in a digital 
communication system. Consider the satellite-to-earth link in which the satellite 
antenna has a gain of 6 dB and the earth station antenna has a gain of 50 dB. The 
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downlink is operated at a center frequency of 4 GHz, and the signal bandwidth is 1 
MHz. If the required ("&b/ N0) for reliable communication is 15 dB, determine the 
transmitted power for the satellite downlink. Assume that No = 4. 1 x 10-21 W/Hz. 

14.21 One of the Mariner spacecrafts that traveled to the planet Mercury sent its data 
to earth over a distance of 1 .6  x 101 1 m. The transmitting antenna had a gain of 
27 dB and operated at a frequency f = 2.3 GHz. The transmitter power was 17 W. 
The earth station employed a parabolic antenna with a 64-meter diameter and an 
efficiency of 0.55. The receiver had an effective noise temperature of Te = 15° K. 
If the desired SNR/bit ("&b/ No) was 6 dB, determine the data rate that could have 
been supported by the communication link. 

COMPUTER PROBLEMS 

14.1 Simulation of a Two-Path Rayleigh Fading Channel 
Figure CP-14.1  illustrates a two-path channel model where the time delay between 
the two paths is Td. The tap weights c1 [n] and c2 [n] are statistically independent, 
zero-mean, complex-valued Gaussian random variables. Hence, the channel is a 
Rayleigh fading channel. The additive noise is a zero-mean, complex-valued white 
Gaussian noise sequence w[n] = wr [n] + jw; [n], where the real and imaginary 
components are statistically independent. Write a MATLAB program that simulates 
the channel model with the following conditions: 

1. The tap weight sequences c1 [n] and c2[n] are the outputs of two identical low­
pass filters described by the difference equation 

ck [n] = 0.9ck [n - 1 ] + Zk [n] k = 1, 2, 

where Zk[n] = Zkr [n] + jzk; [n] and the real and imaginary components of Zk [n] 
are statistically independent, zero-mean, and unit variance white Gaussian noise 
sequences. 

2. The additive white Gaussian noise sequence has zero mean and variance aJ; 
(a variable). 

3. The time delay Td is a positive integer, which is also a variable. 

Simulate the appropriate channel model for a two-path ionospheric propagation 
channel in which the relative time delay between the two received signal paths is 
1 msec and the transmitted signal bandwidth is W = 10 kHz. Note that a 10  kHz 
signal provides a time resolution of 1 / W = 0. 1 msec, so that the time delay Td = 10 
signal samples corresponds to the delay of 1 msec. 

Generate and plot {c1 [n[} and {c2 [n[} separately for 1 ::::: n ::::: 1000. Compute and 
plot the channel output {y[n[} when the input sequence x [n] = 1 for 1 ::::: n ::::: 1000, 
for each value of aJ; = 0, 0.5, 1 .  

Repeat this simulation when the signal bandwidth is reduced to 5 kHz. 
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Channel input 

x(n) 

Figure CP-14.1 

Delay 
Td 

Channel output 
1------;� y(n) 

Additive noise 
w(n) 

14.2 Simulation of Antipodal Signals in Rayleigh Fading Channel 

821 

Perform a Monte Carlo simulation to estimate and plot the error probability of 
a binary antipodal signaling coIIlIIlunication system in frequency-nonselective 
Rayleigh fading. Thus, simulate the input to the detector as given in Equation 
(14.3.7), where the additive noise is Gaussian, with zero mean and unit variance and 
a Rayleigh distributed with CY2 selected to be unity. Then vary the average SNR Pb 
in the simulation. Plot the estimated error probability and the theoretical value given 
in Equation (14.3 .10) .  Select the sample size for the simulation to be N = 10,000. 

14.3 Simulation of Orthogonal Signals in Rayleigh Fading with Dual Diversity 

A digital coIIlIIlunication system for transmitting information through a frequency­
nonselective Rayleigh fading AWGN channel employs dual diversity by transmit­
ting each information bit on two carrier frequencies having a separation that exceeds 
the coherence bandwidth of the channel. Thus, the two signals fade independently. 
The signals used for transmission on each carrier frequency are orthogonal. There­
fore, the correlator outputs for the orthogonal signals, when the transmitted infor­
mation bit is a 1 ,  is 

and 

where a1 and a2 are statistically independent Rayleigh distributed random variables 
and {nij , i = 1 ,  2, j = 1 ,  2} are mutually statistically independent complex-valued 
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Gaussian random variables with zero mean and unit variance. The correlator per­
forms square law combining of the two signals, that is, it computes 

R1 = \ru \2 + \r21 \2 , 
R2 = \ru\2 + \rz2\2 

and feeds R1 and R2 to the detector, which decides in favor of the detected bit 
corresponding to the larger of (R1 , R2) . Perform a Monte Carlo simulation to esti­
mate and plot the error probability for the dual diversity system as a function of 
the SNR/bit in dB. Select the sample size for the simulation to be N = 100,000. 
For comparison, also plot the theoretical values of the error probability given by 
Equation (14.3.23) for large SNR, say Pb :=::: 15 dB. Note that Pb = Dp, where D is 
the order of diversity. 

14.4 Simulation of Rayleigh Distributed Random Variables 

Repeat Example 14.2.3 when the parameter <J2 in the Rayleigh distribution takes on 
the values <J2 = 1 ,  5, 10. 

14.5 RAKE Demodulator for Two-Path Channel 

Perform a Monte Carlo simulation to estimate and plot the error probability of a 
binary antipodal signaling communication system in which the channel is charac­
terized by two resolvable Rayleigh fading signal paths. Thus, the received signal in 
the interval 0 s t s T is, for a slowly fading channel, 

r(t) = ±c1s(t) ± c2s (t - 1 /W) + n(t), 

where c1 and c2 are uncorrelated, complex-valued Gaussian random variables with 
zero mean and unit variance, and n(t) is a complex-valued AWGN process. The 
received signal is passed through a RAKE demodulator that cross correlates r(t) 
with s (t) and s (t - 1/ Wf Consequently, the output of the correlators may be 
expressed as 

r1 = c1.J<i;,cos mn + n1 ,  m = 0 ,  1 ,  

r2 = c2J<i;cosmn + n2, m = 0, 1 , 

where the noise terms n1 and n2 are uncorrelated complex-valued Gaussian random 
variables with zero mean and identical variance <J; = 1 .  Suppose that the receiver 
has perfect estimates of c1 and c2 and computes the decision variable at the input to 
the detector as 

R = Re [crr1 + c;r2] 

= ±J<i;, [\c1 \2 + \c2 \2] cosmn + Re [crn1 + c;n2] 

= (af + ai)J<i;, cos mn + n, m = 0, 1 .  
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Therefore, the Monte Carlo simulation may be performed by generating the deci­
sion variable R at the input to the detector, with a1 and a2 being two statisti­
cally independent and identically distributed Rayleigh random variables and n being 
a real-valued zero-mean Gaussian random variable with unit variance. Note that 
the {c; } are independently selected in each symbol transmitted. Compare the esti­
mated error probability from the Monte Carlo simulation with the theoretical (large 
SNR) results given by Equation (14.3.32). Perform the simulation for N = 100,000 
sample. 

14.6 Generation of Channel Matrix for MIMO Systems 

Write the MATLAB code for generating the channel matrix C of a MIMO system 
that employs Ny transmit and N R receive antennas, where the channel is frequency 
nonselective and slowly fading, and elements of C are zero-mean, complex-valued 
Gaussian with identical variances equal to unity. 

14.7 Generation of the Channel Matrix and Inputs to the Detector 

Suppose Ny = N R = 2. Generate the elements of the channel matrix C for a 
Rayleigh fading A WGN channel and the corresponding inputs to the detectors at 
the two receive antennas. 

14.8 Implementation of MIMO Detectors 

Implement the three types of detectors described in Section 14.4.3 in MATLAB. 

14.9 Simulation of an Ny = 2, NR = 1 MISO System with Alamouti Code 

Perform a Monte Carlo simulation to estimate the error rate performance of an 
Ny = 2, N R = 1 multiple antenna system that employs the Alamouti STBC. 
Hence, generate the input to the detector as given in Equation (14.4.25), where the 
signal points are selected from a QPSK constellation; c11 and c12 are statistically 
independent, complex-valued, zero-mean Gaussian random variables with unit vari­
ance; and 171 and 172 are also statistically independent, complex-valued, zero-mean 
Gaussian random variables with variance cr2• The detector computes the estimates 
as in Equation (14.4.26) and decides on which symbols are closest to s1 and s2 in 
Euclidean distance. Perform the above computations for N = 10,000 iterations for 
any given value of cr2, where in each iteration the channel coefficients (c1 1 ,  c12) ,  the 
signal points (s1 , s2) ,  and, additive noise terms (17 1 ,  172) are selected independently. 
Plot the measured symbol error rate as a function of the SNR = 10 log1 ('gb/2cr2) , 
where cgb = 'gs/2 is  the energy per bit, which may be normalized to unity for 
convenience. 

14.10 Simulation of MIMO Systems 

Suppose we add a second receive antenna to the system in Computer Problem 14.9 
that employs the Alamouti code. The channel coefficients for the received signal at 
the second antenna are c21 and c22. Simulate the (Ny , NR) = (2, 2) MIMO systems 
in a Rayleigh fading AWGN channel and plot the error probability as a function 
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of the SNR/bit. Thus, demonstrate that this MIMO system achieves an order of 
diversity of NTN R = 4. 

14.11 Simulation of Space-Time Trellis Code 

Write the MATLAB code for implementing the 4-PSK, four-state trellis encoder 
shown in Figure 14.23. 



Spread-Spectrum 
Communication 
Systems 

In our treatment of signal design for digital communication over an additive white Gaussian 
noise (AWGN) channel, the major objective has been the efficient utilization of transmit­
ter power and channel bandwidth. As shown in Chapter 13 , channel coding allows us to 
reduce the transmitter power by increasing the transmitted signal bandwidth through code 
redundancy; this allows us to trade off transmitter power with channel bandwidth. To be 
specific, let R denote the information (bit) rate at the input to the transmitter and let W 
denote the channel bandwidth. We also define the ratio W / R as the bandwidth expansion 
factor, denoted as Be, of the channel coded transmitted signal. The factor Be represents 
the amount of redundancy introduced through channel coding. Thus, by increasing Be, we 
can reduce the power in the transmitted signal that is required to achieve a specific level of 
performance. In most practical communication systems, Be is in the range of 2 :::: Be :'.': 5 . 
This is  the basic methodology for the design of digital communication systems for AWGN 
channels. 

In practice, other factors influence the design of an efficient digital communication 
system. For example, in multiple-access communication when two or more transmitters 
use the same common channel to transmit information, the interference created by the 
users of the channel limits the performance achieved by the system. The existence of such 
interference must be considered in the design of a reliable digital communication system. 

Even in this complex design problem, the basic system design parameters are trans­
mitter power and channel bandwidth. To overcome the degradation in performance caused 
by interference, we may further increase the bandwidth of the transmitted signal so that the 
bandwidth expansion factor Be = W / R is much greater than unity. This is one character­
istic of a spread-spectrum signal. A second important characteristic is that the information 
signal at the modulator is spread in bandwidth by means of a code that is independent of the 
information sequence. This code has the property of being pseudorandom, i.e., it appears 
random to receivers other than the intended receiver, which uses the knowledge of the 
code to demodulate the signal. This second characteristic distinguishes a spread-spectrum 
communication system from the conventional communication system that expands the 
transmitted signal bandwidth by means of channel code redundancy, as described in 

825 
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Chapter 13 . However, channel coding is an important element in the design of an efficient 
spread-spectrum communication system. 

Spread-spectrum signals for digital communications were originally developed and 
used for military communications either (a) to provide resistance to jamming (antijam pro­
tection), or (b) to hide the signal by transmitting it at low power, which made it difficult 
for an unintended listener to detect its presence in noise (low probability of intercept). 
However, spread-spectrum signals now provide reliable communications in a variety of 
commercial applications, including digital cellular communications, cordless telephones, 
and interoffice wireless communications. 

In this chapter, we present the basic characteristics of spread-spectrum signals and 
assess their performance in terms of probability of error. We concentrate our discussion on 
two methods for spreading the signal bandwidth, namely, by direct sequence modulation 
and by frequency hopping. Both methods require the use of pseudorandom code sequences 
whose generation is also described. Several applications of spread-spectrum signals are 
presented. 

15. 1  MODEL OF A SPREAD-SPECTRUM DIGITAL COMMUNICATION SYSTEM 

The basic elements of a spread-spectrum digital communication system are illustrated 
in Figure 15 . 1 .  The channel encoder and decoder and the modulator and demodulator 
are the basic elements of a conventional digital communication system. In addition, a 
spread-spectrum system employs two identical pseudorandom sequence generators, one 
that interfaces with the modulator at the transmitting end and one that interfaces with 
the demodulator at the receiving end. These two generators produce a pseudorandom or 
pseudonoise (PN) binary-valued sequence, which is used to spread the transmitted signal 
at the modulator and to despread the received signal at the demodulator. 

Time synchronization of the PN sequence generated at the receiver with the PN 
sequence contained in the received signal is required to properly despread the received 
spread-spectrum signal. In a practical system, synchronization is established prior to the 
transmission of information; this is achieved by transmitting a fixed PN bit pattern, which 
is designed so that the receiver will detect it with high probability in the presence of inter­
ference. After time synchronization of the PN sequence generators is established, the trans­
mission of information commences. In the data mode, the communication syst�m usually 
tracks the timing of the incoming received signal and keeps the PN sequence generator in 
synchronism. 

Information 
.-----. sequence Channel 

encoder 
Modulator 

Pseudorandom 
pattern 

generator 

Channel Demodulator 

Pseudorandom 
pattern 

generator 

Figure 15.1 Model of a spread-spectrum digital communication system. 

Channel 
decoder 
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Interference is introduced in the transmission of the spread-spectrum signal through 
the channel. The characteristics of the interference depend to a large extent on its origin. 
The interference may be generally categorized as either broadband or narrowband (partial 
band) relative to the bandwidth of the information-bearing signal and either continuous in 
time or discontinuous (pulsed) in time. For example, an interfering signal may consist of 
a high-power sinusoid in the bandwidth occupied by the information-bearing signal. Such 
a signal is narrowband. As a second example, the interference generated by other users 
in a multiple-access channel depends on the type of spread-spectrum signals that are used 
to transmit information. If all users employ broadband signals, the interference may be 
characterized as an equivalent broadband noise. If the users employ frequency hopping to 
generate spread-spectrum signals, the interference from other users may be characterized 
as narrowband. 

Our discussion will focus on the performance of spread-spectrum signals for digi­
tal communication in the presence of narrowband and broadband interference. Two types 
of digital modulation are considered, namely, phase-shift keying (PSK) and frequency­
shift keying (FSK). PSK modulation is appropriate for applications where phase coher­
ence between the transmitted signal and the received signal can be maintained over a time 
interval that spans several symbol (or bit) intervals. On the other hand, FSK modulation is 
appropriate in applications where phase coherence of the carrier cannot be maintained due 
to time variations in the transmission characteristics of the communications channel. For 
example, this may be the case in a communications link between two high-speed aircraft 
or between a high-speed aircraft and a ground-based terminal. 

The PN sequence generated at the modulator is used in conjunction with the PSK 
modulation to shift the phase of the PSK signal pseudorandomly at a rate that is an integer 
multiple of the bit rate. The resulting modulated signal is called a direct sequence (DS) 
spread-spectrum signal. When used in conjunction with binary or M-ary (M > 2) FSK, 
the PN sequence is used to select the frequency of the transmitted signal pseudorandomly. 
The resulting signal is called afrequency-hopped (FH) spread-spectrum signal. Although 
other types of spread-spectrum signals can be generated, our treatment will emphasize DS 
and FH spread-spectrum communication systems, which are generally used in practice. 

1 5.2 DIRECT SEQUENCE SPREAD-SPECTRUM SYSTEMS 

Consider the transmission of a binary information sequence by means of binary PSK. The 
information rate is R bits per second, and the bit interval is Tb = 1/  R seconds. The avail­
able channel bandwidth is Be Hz, where Be » R. At the modulator, the bandwidth of the 
information signal is expanded to W = Be Hz by shifting the phase of the carrier pseudo­
randomly at a rate of W times per second according to the pattern of the PN generator. The 
basic method for accomplishing the spreading is shown in Figure 15.2. 

The information-bearing baseband signal is denoted as v(t) and is expressed as 

00 

v (t) = L angr (t - nTb) , (15 .2. 1) 
n=-oa 
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Tb 
- 1  
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v(t) c (t) 

+1  1--

t 

-1 - --- -

Tb · '  
( c) Product signal 

Figure 15.2 Generation of a DS spread-spectrum signal. 

where {an = ± 1 ,  -oo < n < oo} and g T ( t) is a rectangular pulse of duration Tb. This sig­
nal is multiplied by the signal from the PN sequence generator, which may be expressed as 

00 

c(t) = L Cnp(t - nTc) , (15.2.2) 
n=-oo 

where {en} represents the binary PN code sequence of ± l's and p(t) is a rectangular pulse 
of duration Tc, as illustrated in Figure 15.2. This multiplication operation serves to spread 
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Figure 15.3 Convolution of the spectra of the (a) data signal with the (b) PN code signal. 

829 

f 

f 

the bandwidth of the information-bearing signal (whose bandwidth is approximately R 
Hz) into the wider bandwidth occupied by PN generator signal c(t) (whose bandwidth 
is approximately l /Tc). The spectrum spreading is illustrated in Figure 15.3, which uses 
simple rectangular spectra to show the convolution of the two spectra, the narrow spectrum 
corresponding to the information-bearing signal and the wide spectrum corresponding to 
the signal from the PN generator. 

The product signal v(t)c(t) amplitude modulates the carrier Ac cos 2nfct and gen­
erates the double-sideband suppressed-carrier (DSB-SC) signal 

u (t) = Acv(t)c(t) cos 2nfct. (15.2.3) 

Since v(t)c(t) = ±1 for any t, it follows that the carrier modulated transmitted signal may 
also be expressed as 

u (t) = Ac cos[2nfct + B(t)] ,  (15.2.4) 



830 Spread-Spectrum Communication Systems Chapter 1 5  

where B (t) = 0 when v(t)c(t) 1 and B (t) = n when v(t)c(t) = -1 .  Therefore, the 
transmitted signal is a binary PSK signal. 

The rectangular pulse p(t) is usually called a chip, and its time duration Tc is called 
the chip interval. The reciprocal 1/Tc is called the chip rate and corresponds (approxi­
mately) to the bandwidth W of the transmitted signal. In practical spread-spectrum sys­
tems, the ratio of the bit interval Tb to the chip interval Tc is usually selected to be an 
integer. We denote this ratio as 

Tb Le = -. Tc (15.2.5) 

Hence, Le is the number of chips of the PN code sequence per information bit. Another 
interpretation is that Le represents the number of possible 180° phase transitions in the 
transmitted signal during the bit interval Tb. 

The demodulation of the signal is illustrated in Figure 15.4. The received signal is 
first multiplied by a replica of the waveform c(t) generated by the PN code sequence 
generator at the receiver, which is synchronized to the PN code in the received signal. This 
operation is called (spectrum) despreading, since the effect of multiplication by c(t) at the 
receiver is to undo the spreading operation at the transmitter. Thus, we have 

(15.2.6) 

since c2 (t) = 1 for all t. The resulting signal Acv(t) cos 2nfct occupies a bandwidth 
(approximately) of R Hz, which is the bandwidth of the information-bearing signal. There­
fore, the demodulator for the despread signal is simply the conventional cross correlator or 
matched filter that was described in Chapter 8. Since the demodulator has a bandwidth that 
is identical to the bandwidth of the despread signal, the only additive noise that corrupts 
the signal at the demodulator is the noise that falls within the information bandwidth of the 
received signal. 

1 5.2.1 Effect of Despreading on a Narrowband Interference 

It is interesting to investigate the effect of an interfering signal on the demodulation of the 
desired information-bearing signal. Suppose that the received signal is 

r(t) 

Received 
signal 

PN signal 
generator 

r(t) = Acv(t)c(t) cos lnfct + i (t), 

gy(t) cos 2nfct 

1Tb ( ) dt 
0 

To 
decoder 

Sampler t--__,,... 

Clock 
signal 

(15.2.7) 

Figure 15.4 Demodulation of 
DS spread-spectrum signal. 
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where i (t) denotes the interference. The despreading operation at the receiver yields 

r(t)c(t) = Acv(t) cos 2rcfct + i (t)c(t) . (15.2.8) 

The effect of multiplying the interference i (t) with c(t) is to spread the bandwidth of i (t) 
to W Hz. 

As an example, consider the sinusoidal interfering signal 

(15.2.9) 

where fl is a frequency within the bandwidth of the transmitted signal. Its multiplication 
with c(t) results in a wideband interference with power spectral density Io = Pif W, 
where P1 = A y /2 is the average power of the interference. Since the desired signal is 
demodulated by a matched filter (or correlator) that has a bandwidth R, the total power in 
the interference at the output of the demodulator is 

(15.2.10) 

Therefore, the power in the interfering signal is reduced by an amount equal to the band­
width expansion factor W/R. The factor W/R = Tb/Tc = Le is called the processing 
gain of the spread-spectrum system. The reduction in interference power is the basic rea­
son for using spread-spectrum signals to transmit digital information over channels with 
interference. 

In summary, the PN code sequence is used at the transmitter to spread the information­
bearing signal into a wide bandwidth for transmission over the channel. By multiplying 
the received signal with a synchronized replica of the PN code signal, the desired signal 
is despread back to a narrow bandwidth while any interference signals are spread over a 
wide bandwidth. The net effect is a reduction in the interference power by the factor W / R, 
which is the processing gain of the spread-spectrum system. 

The PN code sequence {en} is assumed to be known only to the intended receiver. 
Any other receiver that does not have knowledge of the PN code sequence cannot demod­
ulate the signal. Consequently, the use of a PN code sequence provides a degree of privacy 
(or security) that is not possible with conventional modulation. The primary cost for this 
security and performance gain against interference is an increase in channel bandwidth 
utilization and in the complexity of the communication system. 

1 5.2.2 Probability of Error at the Detector 

To derive the probability of error for a direct sequence spread-spectrum system, we assume 
that the information is transmitted via binary PSK. Within the bit interval 0 .::; t .::; Tb, the 
transmitted signal is 

s (t) = a0gr(t)c(t) cos 2rtfct, 0 :'S t  :'S Tb, (15.2. 1 1 )  
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where a0 = ±1 is the information symbol, the pulse gT (t) is defined as { /ifi-, 0 :S t :S Tb 
gT (t) = , 

0, otherwise 

Chapter 1 5  

(15 .2 .12) 

and c(t) is the output of the PN code generator which, over a bit interval, is expressed as 

Lc-1 
c(t) = L Cnp(t - nTc) , (15.2. 13) 

n=O 
where Le is the number of chips per bit, Tc is the chip interval, and {en} denotes the PN 
code sequence. The code chip sequence {en} is uncorrelated (white), i.e., 

(15 .2. 14) 

and each chip is + 1 or - 1  with equal probability. These conditions imply that E[cn] = 0 
and E [c�] = 1 .  

The received signal i s  assumed to be corrupted by an additive interfering signal i (t) .  
Hence, 

(15.2.15) 

where td represents the propagation delay through the channel and cf> represents the carrier 
phase shift. Since the received signal r(t) is the output of an ideal bandpass filter in the front 
end of the receiver, the interference i ( t) is also a bandpass signal and may be represented as 

i (t) = ic(t) cos 2nfct - is(t) sin 2nfct , (15 .2.16) 

where ic(t) and is(t) are the two quadrature components. 
Assuming that the receiver is perfectly synchronized to the received signal, we may 

set td = 0 for convenience. In addition, the carrier phase is assumed to be perfectly 
estimated by a phase-locked loop (PLL). Then, the signal r(t) is demodulated by first 
despreading through multiplication by c(t) and then through cross correlating with 
gT (t) cos(2nfct + cf>), as shown in Figure 15 .5. At the sampling instant t = Tb, the output 
of the correlator is 

(15.2. 17) 

where y; (Tb) represents the interference component, which has the form 

{Tb 
Y; (Tb) = Jo c(t)i (t)gT (t) cos(2nfct + cf>)dt 

(15.2. 18) 



Section 1 5.2 Direct Sequence Spread-Spectrum Systems 

Input r(t) 

c(t) 

PN signal 
generator 

PLL 

Figure 15.5 DS spread-spectrum signal demodulator. 

where, by definition, 

1(n+l)Tc 
Vn = i (t) cos(2rrfct + ¢)dt. 

nTc 

833 

Sample at y(Tb) 
t = Tb 

Clock 
signal 

(15.2. 19) 

The probability of error depends on the statistical characteristics of the interference 
component. Clearly, its mean value is 

E[y; (Tb)] = 0. (15.2.20) 

Its variance is 

But E[cncm] = Omn · Therefore, 

(15.2.21) 

where v = Vn , as given by Equation (15.2. 19). To determine the variance of v, we must 
postulate the form of the interference. 

First, we will assume that the interference is sinusoidal. Specifically, we assume that 
the interference is at the carrier frequency and has the form 

i (t) = J2P; cos(2nfct + 81), (15.2.22) 
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where P1 is the average power and 8 / is the phase of the interference, which we assume 
to be random and uniformly distributed over the interval (0, 2n) . If we substitute for i (t) 
in Equation (15.2. 19), we obtain 

1(n+l)Tc 
Vn = J2i; cos(2nfct + 81) cos(2nfct + </>)dt 

nTc 

= -Jli; cos(81 - <f>)dt = _!_Jlp; cos(81 - </>) . 
1 1(n+l)Tc T, 
2 nTc 2 

Since e / is a random variable, vn is also random. Its mean value is zero, i.e. , 

E[vn] = _!_Jlp; - cos(81 - <f>)d81 = 0. T, 1
2" 

1 
2 0 2n 

Its mean square value is 

2 Tc2 P1 1 1
2" 

2 E[v ] = -- - cos (81 - <f>)d81 n 2 2n o 
T(P1 

4 
We may now substitute for E[v2] into Equation (15.2.21). Thus, we obtain 

E [Yf (Tb)] = 
'fl,b�1 Tc . 

(15.2.23) 

(15.2.24) 

(15.2.25) 

(15.2.26) 

The ratio of {E[y(Tb)]}2 to E [Yf (Tb) J is the signal-to-noise ratio (SNR) at the detector. In 
this case, we have 

(SNR) - 'fl,� 2'fl,b 
D 

- 'f6bP1Tc/2 P1Tc 
(15.2.27) 

To see the effect of the spread-spectrum signal, we express the transmitted energy 'fl,b as 

(15.2.28) 

where Ps is the average signal power. Then, if we substitute for 'fl,b in Equation (15.2.27), 
we obtain 

2PsTb 2Ps (SNR)v = P1Tc = PI/Le ' (15.2.29) 

where Le = Tb/Tc is the processing gain. Therefore, the spread-spectrum signal has 
reduced the power of the interference by the factor Le. 

Another interpretation of the effect of the spread-spectrum signal on the sinusoidal 
interference is obtained if we express P1 Tc in Equation (15 .2.29) as a power spectral den­
sity. Since Tc ::::: 1 / W, we have 

(15 .2.30) 

where Io is the power spectral density of an equivalent interference in a bandwidth W. 
In effect, the spread-spectrum signal has spread the sinusoidal interference over the wide 
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bandwidth W, creating an equivalent spectrally flat noise with the power spectral density 
Io. Hence, 

2�b 
(SNR)v = - .  

Io 
(15.2.3 1) 

The probability of error for a direct sequence spread-spectrum system with binary 
PSK modulation is easily obtained from the SNR at the detector, if we make an assumption 
on the probability distribution of the sample y; (Tb). From Equation (15.2. 1 8), we note that 
y; (Tb) consists of a sum of Le uncorrelated random variables {cnvn , 0 ::;  n ::;  Le - 1 } ,  all 
of which are identically distributed. Since the processing gain Le is usually large in any 
practical system, we may use the central limit theorem to justify a Gaussian probability 
distribution for y; (Tb). Under this assumption, the probability of error for the sinusoidal 
interference is 

(15.2.32) 

where Io is the power spectral density of an equivalent broadband interference. A similar 
expression for the error probability is obtained when the interference i (t) is a zero-mean 
broadband random process with a constant power spectral density Io over the bandwidth 
W of the spread-spectrum signal. 

Example 15.2.1 
The SNR required at the detector to achieve reliable communication in a DS spread-spectrum 
communication system is 13 dB. If the interference-to-signal power at the receiver is 20 dB, 
determine the processing gain required to achieve reliable communication. 

Solution We are given (Pd Ps)as = 20 dB or, equivalently, Pd Ps = 100. We are also 
given (SNR)v = 13 dB, or equivalently, (SNR)v = 20. The relation in Equation (15.2.29) 
may be used to solve for Le. Thus, 

1 ( Pr ) 
Le = - - (SNR)v = 1000. 

2 Ps 

Therefore, the processing gain required is 1000 or, equivalently, 30 dB. • 

The Interference Margin. We may express �; in the Q-function in Equation 
(15 .2.32) as 

�b PsTb Ps/R 
Io PI/W  PI/W  

W/R 
Pif Ps 

(15 .2.33) 

Also, suppose we specify a required �bf Io to achieve a desired level of performance. Then, 
using a logarithmic scale, we may express Equation (15.2.33) as 

P1 W (�b) 10 log- = 10 log- - 10 log -
Ps R Io 

(15 .2.34) 
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The ratio (P1 / Ps)dB is called the inteiference margin. This is the relative power advantage 
that an interference may have without disrupting the communication system. 

Example 15.2.2 
Suppose we require an (€,b/ Io)cts = 10 dB to achieve reliable communication. What is the 
processing gain that is necessary to provide an interference margin of 20 dB? 

Solution Clearly, if W/R = 1000, then (W/R)cts = 30 dB and the interference margin is 
(P1 / Ps)dB = 20 dB. This means that the average interference power at the receiver may be 
100 times the power Ps of the desired signal and we can still maintain reliable 
communication. • 

1 5.2.3 Performance of Coded Spread-Spectrum Signals 

As shown in Chapter 13, when the transmitted information is coded by a binary linear 
(block or convolutional) code, the SNR at the output of a soft-decision decoder, at large 
SNR, is increased by the coding gain, defined as 

coding gain = Rcd:/,.in , (15 .2.35) 

where Re is the code rate and df:u0 is the minimum Hamming distance of the code. There­
fore, the effect of coding is to increase the interference margin by the coding gain. Thus, 
Equation (15 .2.34) may be modified as 

(P1 ) = (W) + (CG)dB - (cgb) ' 
Ps dB R dB Io dB 

where (CG)dB denotes the coding gain in dB. 

1 5.3 SOME APPLICATIONS OF DS SPREAD-SPECTRUM SIGNALS 

(15.2.36) 

In this section, we briefly describe the use of DS spread-spectrum signals in four appli­
cations. First, we consider an application in which the signal is transmitted at very low 
power, so that a listener trying to detect the presence of the signal would encounter great 
difficulty in doing so. A second application is multiple access radio communications. A 
third application involves the use of a DS spread-spectrum signal to resolve the multipath 
in a time-dispersive radio channel. The fourth application is the use ofDS spread-spectrum 
signals in wireless local area networks (LANs). 

1 5.3.1 Low-Detectability Signal Transmission 

In this application, the information-bearing signal is transmitted at a very low power level 
relative to the background channel noise and thermal noise that is generated in the front 
end of a receiver. If the DS spread-spectrum signal occupies a bandwidth W and the power 
spectral density of the additive noise is No W/Hz, the average noise power in the bandwidth 
W is PN = WNo. 
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The average received signal power at the intended receiver is PR . If we wish to hide 
the presence of the signal from receivers that are in the vicinity of the intended receiver, 
the signal is transmitted at a power level such that PR/ PN « 1 .  The intended receiver can 
recover the weak information-bearing signal from the background noise with the aid of the 
processing gain and the coding gain. However, any other receiver that has no knowledge 
of the PN code sequence is unable to take advantage of the processing gain and the coding 
gain. Consequently, the presence of the information-bearing signal is difficult to detect. We 
say that the transmitted signal has a low probability of being intercepted (LPI), and it is 
called an LP! signal. 

The probability of error given in Section 15.2.2 also applies to the demodulation and 
decoding of LPI signals at the intended receiver. 

Example 15.3.1 
A DS spread-spectrum signal is designed so that the power ratio PR/ PN at the intended 
receiver is 10-2 • If the desired '7!,b/ N0 = 10 for acceptable performance, determine the mini­
mum value of the processing gain. 

Solution We may write '7!,b/ N0 as 

Since '7!,b/ No = 10 and PR/ PN = 10-2, it follows that the necessary processing gain is 
Le = 1000. • 

1 5.3.2 Code Division Multiple Access 

The enhancement in performance obtained from a DS spread-spectrum signal through 
the processing gain and the coding gain can enable many DS spread-spectrum signals to 
occupy the same channel bandwidth provided that ea.ch signal has its own pseudorandom 
(signature) sequence. Thus, it is possible to have several users transmit messages simulta­
neously over the same channel bandwidth. This type of digital communication, in which 
each transmitter-receiver user pair has its own distinct signature code for transmitting over 
a common channel bandwidth, is called code division multiple access (CDMA). 

In the demodulation of each DS spread-spectrum signal, the signals from the other 
simultaneous users of the channel appear as additive interference. The level of interference 
varies as a function of the number of users of the channel at any given time. A major advan­
tage of CDMA is that a large number of users can be accommodated if each user transmits 
messages for a short period of time. In such a multiple access system, it is relatively easy 
to add new users or to decrease the number of users without reconfiguring the system. 

Next, we determine the number of simultaneous signals that can be accommodated 
in a CDMA system. For simplicity, we assume that all signals have identical average pow­
ers. In many practical systems, the received signal power level from each user is monitored 
at a central station and power control is exercised over all simultaneous users via a con­
trol channel that instructs the users on whether to increase or decrease their power level. 
With such power control, if there are Nu simultaneous users, the desired signal-to-noise 
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interference power ratio at a given receiver is 

Ps 

(Nu - l ) Ps 

1 

Nu - 1  
(15.3.1) 

From this relation, we can determine the number of users that can be accommodated simul­
taneously. Example 15.3.2 illustrates the computation. 

Example 15.3.2 

Suppose that the desired level of performance for a user in a CDMA system is an error proba­
bility of 10-6, which is achieved when cgb/ Io = 20 (13 dB). Determine the maximum number 
of simultaneous users that can be accommodated in a CDMA system if the bandwidth-to-bit­
rate ratio is 1000 and the coding gain is Red!0 = 4 (6 dB). 

Solution From the relationships given in Equations (15.2.36) and (15.3 .1), we have 

cgb 
Io 

Ifwe solve for Nu, we obtain 

W/R H Nu = 2{) Redmin + 1 .  

For W / R = 1000 and Red!0 = 4, we obtain the result that Nu = 201 .  • 

In determining the maximum number of simultaneous users of the channel, we 
implicitly assumed that the pseudorandom code sequences used by the various users are 
uncorrelated and that the interference from other users adds on a power basis only. How­
ever, orthogonality of the psetidorandom sequences among Nu users is generally difficult 
to achieve, especially if Nu is large. In fact, the design of a large set of pseudorandom 
sequences with good correlation properties is an important problem that has received 
considerable attention in the technical literature. We shall briefly treat this problem in 
Section 15.4. 

CDMA is a viable method for providing digital cellular telephone service to mobile 
users. In Section 15 .  7 .2, we describe the basic characteristics of the North American digital 
cellular system that employs CDMA. 

1 5.3.3 Communication over Channels with Multipath 

In Chapter 14, we described the characteristics of fading multipath channels and the design 
of signals for effective communication through such channels. One example of a fad­
ing multipath channel is ionospheric propagation in the HF frequency band (3-30 MHz), 
where the ionospheric layers serve as signal reflectors. Another example occurs in mobile 
radio communication systems, where the multipath propagation is due to reflection from 
buildings, trees, and other obstacles located between the transmitter and the receiver. 

Our discussion on signal design in Chapter 14 focused on frequency selective chan­
nels, where the signal bandwidth W is larger than the coherence bandwidth Bcb of the 
channel. If W > Bcb, we may consider two approaches to signal design. One approach is 
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to use orthogonal frequency-division multiplexing (OFDM). Thus, we subdivide the avail­
able bandwidth W into N subchannels such that the bandwidth per channel "* < Bcb ·  In 
this way, each subchannel is frequency non-selective and the signals in each subchannel 
satisfy the condition that the symbol interval T » Tm, where Tm is the multipath spread of 
the channel. Thus, intersymbol interference is avoided. A second approach is to design the 
signal to utilize the entire signal bandwidth W and transmit it on a single carrier. In this 
case, the channel is frequency selective and the multipath components with differential 
delays of W or greater become resolvable. 

DS spread spectrum is a particularly effective way to generate a wideband signal 
for resolving multipath signal components. By separating the multipath components, we 
may also reduce the effects of fading. For example, in line-of-sight (LOS) communica­
tion systems where there is a direct path and a secondary propagation path resulting from 
signals reflecting from buildings and surrounding terrain, the demodulator at the receiver 
may synchronize to the direct signal component and ignore the existence of the multi­
path component. In such a case, the multipath component becomes a form of interference 
[intersymbol interference (ISI)] on the demodulation of subsequent transmitted signals. 

ISI can be avoided if we are willing to reduce the symbol rate J, such that T » Tm. 
In this case, we employ a DS spread-spectrum signal with a bandwidth W to resolve the 
multipath. Thus, the channel is frequency selective and the appropriate channel model 
is the tapped-delay-line model with time-varying coefficients, as shown in Figure 14.6. 
The optimum demodulator for this channel is a filter matched to the tapped-delay channel 
model called the RAKE demodulator, as described in Section 14.3.3. 

15.3.4 Wireless LANs 

Spread-spectrum signals have been used in the IEEE wireless LAN standards 802. 1 1  and 
802. 1 1  b, which operate in the 2.4 GHz ISM (industrial, scientific, and medical) unlicensed 
frequency band. The available bandwidth is subdivided into 14 overlapping 22 MHz chan­
nels, although not all channels are used in all countries. In the United States, only channels 
1 through 1 1  are used. 

In the 802. 1 1  standard, an 1 1 -chip Barker sequence is modulated and transmitted at 
a chip rate of 1 1  MHz, i.e., the chip duration is 0.909 µ,sec. The 1 1-chip Barker sequence 
is { 1 ,  - 1 ,  1 ,  1 ,  - 1 ,  1 ,  1 ,  1 ,  - 1 ,  - 1 ,  - 1 } .  As described in the next section, this sequence is 
desirable because its autocorrelation has sidelobes of less than or equal to 1 ,  compared with 
the peak autocorrelation value of 1 1 .  The Barker sequence is modulated either with BPSK 
or QPSK. When BPSK is used with 1 1  chips per bit, a data rate of 1 Mbps is achieved. 
When QPSK modulation is used with 1 1  chips per symbol (2 bits), a data rate of 2 Mbps 
is achieved. 

Direct sequence spread spectrum is also used in the higher speed (second generation) 
IEEE 802. 1 1  b wireless LAN standard, which operates in the same 2.4 GHz ISM band. In 
802. l lb, the 1 1-MHz chip rate is maintained, but the Barker sequence is replaced by a 
set of 8-chip waveform sequences, called complementary code shift keying (CCK), which 
can be viewed as direct-sequence spread-spectrum modulation with multiple spreading 
sequences. The use of CCK modulation results in a data rate of 1 1  Mbps. 
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1 5.4 GENERATION O F  PN SEQUENCES 

A pseudorandom or pseudonoise sequence is a code sequence of 1 's and O's whose autocor­
relation has properties similar to those of white noise. In this section, we briefly describe 
the construction of some PN sequences and their autocorrelation and cross-correlation 
properties. 

The most widely known binary PN code sequences are the maximum-length shift­
register sequences. A maximum-length shift-register sequence, or m-sequence for short, 
has the length L = 2m - 1 bits and is generated by an m-stage shift register with lin­
ear feedback, as illustrated in Figure 15.6. The sequence is periodic with period L. Each 
period contains 2m-l ones and 2m-l - 1 zeros. Table 15 . 1 lists shift register connections 
for generating maximum-length sequences. 

In DS spread-spectrum applications, the binary sequence with elements {O, 1 }  is 
mapped into a corresponding binary sequence with elements { -1 ,  1 } .  We shall call the 
equivalent sequence { Cn} with elements {- 1 ,  1 }  a bipolar sequence. 

-----------m stages ----------+-

Output 
1 2 m - l  m 

Figure 15.6 General m-stage shift register with linear feedback. 

TABLE 1 5.1 SHIFT-REGISTER CONNECTIONS FOR GENERATING MAXIMUM-LENGTH SEQUENCES 

Stages Connected Stages Connected Stages Connected 

m to Modulo-2-Adder m to Modulo-2-Adder m to Modulo-2 Adder 

2 1, 2 13 l ,  10, 1 1 , 13 24 1 ,  18, 23, 24 

3 1, 3 14 1, 5, 9, 14 25 1, 23 

4 1, 4 15 1 ,  15  26 1 ,  21,  25, 26 
5 1 ,  4 16 1 ,  5, 14, 16  27 1 , 23, 26, 27 
6 1, 6 17 1 ,  15 28 1 ,  26 

7 1, 7 18 1 ,  12 29 1, 28 

8 1 ,  5, 6, 7 19  1 ,  15 ,  18 ,  19 30 1, 8, 29, 30 
9 1, 6 20 1 ,  18  3 1  1 ,  29 
10 1 ,  8 21 1 ,  20 32 1 ,  1 1 ,  3 1 ,  32 
1 1  1 ,  1 0  22 1 ,  22 33 1, 21 
12 1 , 7, 9, 12 23 1, 19  34 1 ,  8, 33, 34 
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An important characteristic of a periodic PN.sequence is its autocorrelation function, 
which is usually defined in terms of the bipolar sequences {en } as 

L 

Rc[m] = L CnCn+m • 0 :S m  :S L - 1 ,  
n=I 

(15.4. 1) 

where L is the period of the sequence. Since the sequence £en } is periodic with period L, 
the autocorrelation sequence {Rc[m]} is also periodic with period L. 

Ideally, a PN sequence should have an autocorrelation function that has correlation 
properties similar to white noise. That is, the ideal autocorrelation sequence for £en } is 
Rc[O] = L and Rc[m] = 0 for 1 :::; m :::; L - 1 .  In the case of m-sequences, the autocorre­
lation sequence is 

{ L ,  
Rc[m] = 

- 1 ,  
(15.4.2) 

l :S m :S L - 1  

For long m-sequences, the size of the off-peak values of Rc[m] relative.to the peak value 
Rc[O], i.e., the ratio Rc[m]/ Rc[O] = - 1/ L, is small and, from a practical viewpoint, incon­
sequential. Therefore, m-sequences are very close to ideal PN sequences when viewed in 
terms of their autocorrelation function. 

In some applications, the cross correlation properties of PN sequences are as impor­
tant as the autocorrelation properties. For example, in CDMA, each user is assigned a 
particular PN sequence. Ideally, the PN sequences among users should be mutually uncor­
related so that the level of interference experienced by one user from the transmissions 
of other users adds on a power basis. However, in practice, the PN sequences of different 
users exhibit some correlation. 

To be specific, consider the class of m-sequences. We know that the periodic cross 
correlation function between a pair of m-sequences of the same period can have relatively 
large peaks. Table 15.2 lists the peak magnitude Rmax for the periodic cross correlation 
between pairs of m-sequences for 3 :::; m :::; 12. It also lists the number of m-sequences 
of length L = 2m - 1 for 3 :::; m :::; 12. We observe that the number of m-sequences 
of length L increases rapidly with m.  We also observe that, for most sequences, the peak 
magnitude Rmax of the cross-correlation function is a large percentage of the peak value of 
the autocorrelation function. Consequently, m-sequences are not suitable for CDMA com­
munication systems. Although it is possible to select a small subset of m-sequences that 
have a relatively lower cross-correlation peak value than Rmax. the number of sequences in 
the set is usually too small for CDMA applications. 

Methods for generating PN sequences with better periodic cross-correlation proper­
ties than m-sequences have been developed by Gold (1967, 1968) and by Kasarni (1966). 
Gold sequences are constructed by taking a pair of specially selected m-sequences, called 
preferred m-sequences, and forming the modulo-2 sum of the two sequences for each of 
L cyclicly shifted versions of one sequence relative to the other sequence. Thus, L Gold 
sequences are generated as illustrated in Figure 15.7. For m odd, the maximum value of 
the cross-correlation function between any pair of Gold sequences is Rmax = ,JU. For m 
even, Rmax = ./L. 
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TABLE 1 5.2 PEAK CROSS CORRELATIONS OF M-SEQUENCES AND GOLD SEQUENCES 

m Sequences 
Peak: Cross Gold Sequences 

m L = 2m-1 Number Correlation Rmox Rmoxl R(O) Rmox Rm1n/R[O] 
3 7 2 5 0.71 5 0.71 

4 15 2 9 0.60 9 0.60 
5 3 1  6 1 1  0.35 9 0.29 
6 63 6 23 0.36 17 0.27 
7 127 18 41 0.32 17 0. 13 
8 255 16 95 0.37 33 0.13 
9 5 1 1  48 1 13 0.22 33 0.06 
10 1023 60 383 0.37 65 0.06 
1 1  2047 176 287 0.14 65 0.03 
12 4095 144 1407 0.34 129 0.03 

Figure 15. 7 Generation of Gold sequences of length 31 .  

Kasami ( 1966) described a method for constructing PN sequences by decimating an 
m-sequence. In Kasami's method of construction, every 2m/Z + 1 bit of an m-sequence is 
selected. This method of construction yields a smaller set of PN sequences compared with 
Gold sequences, but their maximum cross-correlation value is Rmax = ,/I. 

It is interesting to compare the peak value of the cross-correlation function for Gold 
sequences and for Kasami sequences with a known lower bound for the maximum cross 
correlation between any pair of binary sequences of length L.  Given a set of N sequences 
of period L, a lower bound on their maximum cross correlation is 

(15.4.3) 

which, for large values of L and N, is well approximated as Rmax 2: ,/I. Hence, Kasami 
sequences satisfy the lower bound, and they are optimal. On the other hand, Gold sequences 
with m odd have an Rmax = .JU. Hence, they are slightly suboptimal. 
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1 5.5 FREQUENCY-HOPPED SPREAD SPECTRUM 

In FH spread spectrum, the available channel bandwidth W is subdivided into a large num­
ber of nonoverlapping frequency slots. In any signaling interval, the transmitted signal 
occupies one or more of the available frequency slots. The selection of the frequency slot 
(s) in each signal interval is made pseudorandornly according to the output from a PN 
generator. 

A block diagram of the transmitter and receiver for an FH spread-spectrum sys­
tem is shown in Figure 15.8. The modulation is either binary or M-ary FSK (MFSK). For 
example, if binary FSK is employed, the modulator selects one of two frequencies, such as 
Jo or /1 , corresponding to the transmission of a 0 or a 1 .  The resulting binary FSK signal is 
translated in frequency by an amount determined by the output sequence from a PN gener­
ator, which is used to select a frequency fc that is synthesized by the frequency synthesizer. 
This frequency is mixed with the output of the FSK modulator and the resultant signal is 
transmitted over the channel. For example, by taking m bits from the PN generator, we may 
specify 2m - 1 possible carrier frequencies. Figure 15 .9 illustrates an FH signal pattern. 

At the receiver, there is an identical PN sequence generator, which is synchronized 
with the received signal and is used to control the output of the frequency synthesizer. 
Thus, the pseudorandom frequency translation introduced at the transmitter is removed at 
the demodulator by mixing the synthesizer output with the received signal. The resultant 
signal is then demodulated via an FSK demodulator. A signal for maintaining synchronism 
of the PN sequence generator with the FH received signal is usually extracted from the 
received signal. 

Binary PSK modulation generally yields better performance than binary FSK. How­
ever, it is difficult to maintain phase coherence in the synthesis of the frequencies used in 
the hopping pattern and, also, in the propagation of the signal over the channel as the sig­
nal is hopped from one frequency to another over a wide bandwidth. Consequently, FSK 
modulation with noncoherent demodulation is usually employed in FH spread-spectrum 
systems. 

The frequency-hopping rate, denoted as Rh , may be either equal to the symbol rate, 
lower than the symbol rate, or higher than the symbol rate. If Rh is equal to or lower than 
the symbol rate, the FH system is called a slow hopping system. If Rh is higher than the 
symbol rate, i.e., there are multiple hops per symbol, the FH system is called a fast hopping 

Information 

Enccxler FSK 
modulator 

PN 
sequence 
generator 

Figure 15.8 Block diagram of an FH spread-spectrum system. 
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system. However, there is a penalty incurred in subdividing an information symbol into 
several frequency-hopped elements, because the energy from these separate elements is 
combined noncoherently. 

FH spread-spectrum signals may be used in CDMA where many users share a com­
mon bandwidth. In some cases, an FH signal is preferred because of the stringent syn­
chronization requirements inherent in DS spread-spectrum signals. Specifically, in a DS 
system, timing and synchronization must be established to within a fraction of a chip inter­
val Tc = 1 / W. On the other hand, in an FH system, the chip interval Tc is the time spent in 
transmitting a signal in a particular frequency slot of bandwidth B « W. But this interval 
is approximately 1 / B, which is much larger than 1 / W. Hence, the timing requirements in 
an FH system are not as stringent as in a DS system. 

Next, we shall evaluate the 
·
performance of FH spread-spectrum systems under the 

condition that the system is slow hopping. 

1 5.5.1 Slow Frequency-Hopping Systems and Partial-Band Interference 

Consider a slow frequency-hopping system in which the hop rate Rh = 1 hop per bit. We 
assume that the interference on the channel is broadband and is characterized as AWGN 
with power spectral density I0• Under these conditions, the probability of error for the 
detection of noncoherently demodulated binary FSK is 

where Pb = 'll,b/ Io is the SNR per bit. 

P2 = �e-Pbfz, 
2 (15.5.1) 
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As in the case of a DS spread-spectrum system, we observe that �b, the energy 
per bit, can be expressed as �b = PsTb = Psi R, where Ps is the average transmitted 
power and R is the bit rate. Similarly, Io = P1 / W, where P1 is the average power of the 
broadband interference and W is the available channel bandwidth. Therefore, the SNR Pb 
can be expressed as 

�b W/R 
Pb = 

Io 
= 

P1 I Ps ' (15 .5 .2) 

where W / R is the processing gain and P1 / Ps is the interference margin for the FH spread­
spectrum signal. Note that the relationship in Equation ( 15  .5 .2) for the FH spread-spectrum 
signal is identical to that given by Equation (15.2.33) for the DS spread-spectrum sig­
nal. Therefore, frequency hopping provides basically the same benefits as direct sequence 
spreading. 

Slow FH spread-spectrum systems are particularly vulnerable to partial-band inter­
ference that may result in FH CDMA systems. To be specific, suppose that the partial-band 
interference is modeled as a zero-mean Gaussian random process with a flat power spec­
tral density over a fraction of the total bandwidth W and zero in the remainder of the 
frequency band. In the region or regions where the power spectral density is nonzero, its 
value is S 1 (f) = Io/ f3,  where 0 < f3 :::; I .  In other words, the interference average power 
P1 is assumed to be constant. 

Let us consider the worst case partial-band interference by selecting the value of 
f3 that maximizes the error probability. In an uncoded slow-hopping system with binary 
FSK modulation and noncoherent detection, the transmitted frequencies are selected with 
uniform probability in the frequency band W. Consequently, the received signal will be 
corrupted by interference with probability f3.  When the interference is present, the proba­
bility of error is 1/2 exp(-f3Pb/2) and when it is not, the detection of the signal is assumed 
to be error free. Therefore, the average probability of error is 

Pb(f3) = !!_ e-f!Pb/2 
2 

f3 ( {J W/R ) = 2 exp - 2PJ/Ps · (15.5.3) 

Figure 15 .10 illustrates the error rate as a function of Pb for several values of {3. By 
differentiating Pb (fJ),  and solving for the value of f3 that maximizes Pb (f3), we find that 

{3* = 
( 2/ Pb , 

1 ,  

The corresponding error probability for the worst case partial-band interference is 

Pb 2: 2 

Pb <  2 

(15.5.4) 

(15.5.5) 

which is also shown in Figure 15  . 10. Whereas the error probability decreases exponentially 
for full-band interference as given by Equation (15 .5 . 1  ), the error probability for worst case 
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partial-band interference decreases only inversely with "gb/ lo. This result is similar to the 
error probability for binary FSK in a Rayleigh fading channel. 

In our discussion of signal design for efficient and reliable communication over a 
fading channel in Chapter 14, we found that diversity, which can be obtained by simple 
repetition of the transmitted information bit on different frequencies (or by means of block 
or convolutional coding), provides a significant improvement in performance relative to 
uncoded signal transmission. It should not be surprising that the same type of signal coding 
is also effective on partial-band interference channels. In fact, it has been shown by Viterbi 
and Jacobs (1975) that by optimizing the code design for the partial-band interference, the 
communication system can achieve an average bit-error probability of 

(15.5.6) 

Therefore, the probability of error achieved with the optimum code design decreases expo­
nentially with an increase in SNR and is within 3 dB of the performance obtained in an 
AWGN channel. Thus, the penalty due to partial-band interference is reduced significantly. 
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15.5.2 Fast Frequency Hopping 

In fast FH systems, the frequency-hop rate Rh is some multiple of the symbol rate. Basi­
cally, each (M-ary) symbol interval is subdivided into N subintervals, which are called 
chips and one of M frequencies is transmitted in each subinterval. Fast FH systems are 
particularly attractive for military communications. In such systems, the hop rate Rh may 
be selected sufficiently high so that a potential intentional interferer does not have suffi­
cient time to detect the presence of the transmitted frequency and to synthesize a jamming 
signal that occupies the same bandwidth. 

To recover the information at the receiver, the received signal is first de-hopped by 
mixing it with the hopped carrier frequency. This operation removes the hopping pattern 
and brings the received signal in all subintervals (chips) to a common frequency band that 
encompasses the M possible transmitted frequencies. The signal in each subinterval is then 
passed through the M matched filters (or correlators) tuned to the M possible transmitted 
frequencies which are sampled at the end of each subinterval and passed to the detec­
tor. The detection of the FSK signals is noncoherent. Hence, decisions are based on the 
magnitude of the matched filter (or correlator) outputs. 

Since each symbol is transmitted over N chips, the decoding may be performed 
either on the basis of hard decisions or soft decisions. The following example illustrates 
the decoding based on hard decisions. 

Example 15.5.1 
Suppose that binary FSK is used to transmit binary symbols, and each symbol is transmitted 
over N frequency hops, where N is odd. Determine the probability of error for an AWGN 
channel if hard-decision decoding is used. 

Solution The probability of error for noncoherent detection of binary FSK for each hop is 

where 

1 p = _ e-Pb/2N 
2 

Pb %b/N 
N No 

(15.5.7) 

(15.5.8) 

is the SNR/chip and 1!,b is the total bit energy. The decoder decides in favor of the transmitted 
frequency that is larger in at least (N + 1)/2 chips. Thus, the decision is made on the basis 
of a majority vote given the decisions on the N chips. Consequently, the probability of a bit 
error is 

(15.5.9) 

where p is given by Equation (15.5.7). We should note that the error probability Pb for hard­
decision decoding of the N chips will be higher than the error probability for a single hop/bit 
FSK system, which is given by Equation (15.5.1), when the SNR/bit Pb is the same in the two 
systems (see Problem 15.17). • 

The alternative to hard-decision decoding is soft-decision decoding in which the 
magnitudes (or magnitudes squared) of the corresponding matched filter outputs are 
summed over the N chips and a single decision is made based on the frequency giving the 
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largest output. For example, if binary orthogonal FSK is used to transmit the information, 
the two soft-decision metrics for the N chips based on square-law combining are 

N l eg 12 
DM1 = L ; + Vlk ' 

k=l 
N 

DM2 = L l v2k11 , 
k=l 

(15.5. 10) 

where { vlk} and { v2d are the noise components from the two matched filters for the 
N chips. Since frequency Ji is assumed to have been transmitted, a decision error occurs 
when DM2 > DM1 • The probability of this event error for additive Gaussian noise may be 
obtained in closed form, although its derivation is cumbersome. The final result is 

N-1 . 
Pb =  _1 _ e-Pb/2 '°" K; (P2

b )' ' 
22N-l L., 

i=O 

where the set { K; } are constants, which may be expressed as _ 1 
N-l-i ( 2N - 1 ) K - '°" 

' -
· 1 L., r 

. 
l .  r=O 

(15 .5 . 1 1) 

(15.5. 12) 

The error probability for soft-decision decoding given by Equation (15.5 . 1 1) is lower 
than that for hard-decision decoding given by Equation (15.5.9) for the same <&b/ N0. The 
difference in performance is the loss in hard-decision decoding. 

If soft-decision decoding is used in the presence of partial-band interference, it is 
important to scale (or normalize) the matched filter outputs in each hop, so that a strong 
interference that falls within the transmitted signal band in any hop does not dominate the 
output of the combiner. A good strategy in such a case is to normalize, or clip, the matched 
filter outputs from each hop if their values exceed some threshold that is set near (slightly 
above) the mean of the signal-plus-noise power level. Alternatively, we may monitor the 
noise power level and scale the matched filter outputs for each hop by the reciprocal of the 
noise power level. Thus, the noise power levels from the matched filter outputs are normal­
ized. Therefore, with proper scaling, a fast FH spread-spectrum system will not be as vul­
nerable to partial-band interference because the transmitted information/bit is distributed 
(or spread) over N frequency hops. 

1 5.5.3 Applications of FH Spread Spectrum 

FH spread spectrum is a viable alternative to DS spread spectrum for protection against 
narrowband and broadband interference that is encountered in CDMA. In CDMA systems 
based on frequency hopping each transmitter-receiver pair is assigned its own pseudoran­
dom frequency-hopping pattern. Aside from this distinguishing feature, the transmitters 
and receivers of all users may be identical; i.e., they have identical encoders, decoders, 
modulators, and demodulators. 
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CDMA systems based on FH spread-spectrum signals are particularly attractive for 
mobile (land, air, sea) users because timing (synchronization) requirements are not as strin­
gent as in a DS spread-spectrum system. In addition, frequency-synthesis techniques and 
associated hardware have been developed that make it possible to frequency-hop over 
bandwidths that are significantly larger, by one or more orders of magnitude, than those 
currently possible with DS spread-spectrum signals. Consequently, larger processing gains 
are possible by FH, which more than offset the loss in performance inherent in noncoherent 
detection of the FSK-type signals. 

FH is also effective against intentional interference. As we have described above, 
an FH M-ary (M '.'.:: 2) FSK system that employs coding, or simply repeats the informa­
tion symbol on multiple hops (repetition coding), is very effective against a partial-band 
interference. As a consequence, the interferer's threat is reduced to that of an equivalent 
broadband noise interference whose transmitter power is spread across the channel band­
width W. 

1 5.6 SYNCHRONIZATION OF SPREAD-SPECTRUM SYSTEMS 

Time synchronization of the receiver to the received spread-spectrum signal may be sep­
arated into two distinct phases. There is an initial acquisition phase, during which time 
the receiver establishes time synchronization by detecting the presence of a special initial 
acquisition sequence. The initial acquisition phase is followed by the transmission of data, 
during which period the receiver must track the signal timing. 

1 5.6.1 Acquisition Phase 

In a DS spread-spectrum system, the PN code sequence must be synchronized in time to 
within a small fraction of the chip interval Tc = 1 / W. The problem of initial synchroniza­
tion may be viewed as one in which we attempt to synchronize the receiver clock to the 
transmitter clock. Usually, extremely accurate and stable time clocks are used in spread­
spectrum systems in order to reduce the time uncertainty between the receiver clock and 
the transmitter clock. Nevertheless, there is always an initial timing uncertainty that is due 
to propagation delay in the transmission of the signal through the channel. This is espe­
cially a problem when communication is taking place between two mobile users. In any 
case, the usual procedure for establishing initial synchronization is for the transmitter to 
send a known pseudorandom sequence to the receiver. The receiver is continuously in a 
search mode looking for this sequence in order to establish initial synchronization. 

Suppose that the initial timing uncertainty is Tu seconds and the chip duration is Tc. 
Since initial synchronization takes place in the presence of additive noise and, perhaps 
other interference, it is necessary to dwell for Td = NTc sec in order to test synchronism 
at each time instant, where N is some positive integer. If we search over the time uncer­
tainty interval in (coarse) time steps of Tc/2, then the time required to establish initial 
synchronization is 

Tu '.linit sync = -- Td = 2NTu . Tc/2 
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Clearly, the synchronization sequence transmitted to the receiver must be at least as long 
as 2NTc seconds in order for the receiver to have sufficient time to perform the necessary 
search in a serial fashion. 

In principle, matched filtering or cross correlation are optimum methods for estab­
lishing initial synchronization in the presence of additive Gaussian noise. A filter matched 
to the known data waveform generated from the known pseudorandom sequence continu­
ously compares its output with a predetermined threshold. When the threshold is exceeded, 
initial synchronization is established and the demodulator enters the "data receive" mode. 

Alternatively, we may implement a sliding correlator as shown in Figure 15. 1 1 .  The 
correlator cycles through the time uncertainty, usually in discrete-time intervals of Tcf2 
seconds or less. The cross correlation is performed over the time interval NTc,  where N is 
the number of chips in the synchronization sequence, and the correlator output is compared 
with a threshold to determine if the known signal sequence is present. If the threshold is not 
exceeded, the known reference sequence is advanced by Tcf 2 seconds and the correlation 
process is repeated. These operations are performed until a signal is detected or until the 
search has been performed over the time uncertainty interval Tu . In the case of the latter 
outcome, the search process is repeated. 

A similar procedure may be used for FH signals. In this case, the problem is to 
synchronize the PN code sequence generated at the receiver that controls the hopped­
frequency pattern. To accomplish this initial synchronization, a known frequency-hopped 
signal is transmitted to the receiver. The initial acquisition system at the receiver looks for 
this known FH signal pattern. For example, a band of matched filters tuned to the trans­
mitted frequencies in the known pattern may be employed. Their outputs must be properly 
delayed, envelope or square-law detected, weighted, if necessary, and added to produce 
the signal output which is compared with a threshold. A signal present (signal acquisition) 
is declared when the threshold is exceeded. The search process is usually performed con­
tinuously in time until a threshold is exceeded. A block diagram illustrating their signal 
acquisition scheme is given in Figure 15. 12. As an alternative, a single matched filter and 
envelope detector may be used preceded by a frequency-hopping pattern generator and fol­
lowed by a threshold detector. This configuration, which is shown in Figure 15. 13, is based 
on a serial search and is akin to the sliding correlator for DS spread-spectrum signals. 

The sliding correlator for DS signals and its counterpart shown in Figure 15 . 13  for 
FH signals basically perform a serial search that is generally time consuming. As an 
alternative, one may employ some degree of parallelism by having two or more such 
correlators operating in parallel and searching over nonoverlapping time slots. In such 
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a case, the search time is reduced at the expense of a more complex and costly 
implementation. 

During the search mode, there may be false alarms that occur occasionally due to 
additive noise and other interference. To handle the occasional false alarms, it is necessary 
to have an additional method or circuit that checks to confirm that the received signal at 
the output of the correlator remains above the threshold. With such a detection strategy, 
a large noise pulse that causes the matched filter output to exceed the threshold will have 
only a transient effect on synchronization, since the matched filter output will fall below 
the threshold once the large noise pulse passes through the filter. On the other hand, when 
a signal is present, the correlator or matched filter output will remain above the threshold 
for the duration of the transmitted signal. Thus, if confirmation fails, the search for signal 
synchronization is resumed. 

In the above discussion, we considered only time uncertainty in establishing initial 
synchronization. However, another aspect of initial synchronization is frequency uncer­
tainty. If the transmitter and, or, the receiver are mobile, the relative velocity between them 
results in a Doppler frequency shift in the received signal relative to the transmitted signal. 
Since the receiver does not know the relative velocity, a priori, the Doppler frequency shift 
is unknown and must be determined by means of a frequency-search method. Such a search 
is usually accomplished in parallel over a suitably quantized frequency uncertainty interval 
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and serially over the time uncertainty interval. A block diagram of this scheme for DS 
spread-spectrum signals is shown in Figure 15. 14. Appropriate Doppler frequency-search 
methods can also be devised for FH signals. 

1 5.6.2 Tracking 

Once the signal is acquired, the initial synchronization process is stopped and fine synchro­
nization and tracking begins. The tracking maintains the PN code generator at the receiver 
in synchronism with the received signal. Tracking includes fine-chip synchronization. 

For a DS spread-spectrum signal, tracking is usually performed by means of a track­
ing loop, called a delay-locked loop (DLL), as shown in Figure 15 .15 . In this tracking loop, 
the received signal is applied to two multipliers, where it is multiplied by two outputs from 
the local PN code generator which are delayed relative to each other by an amount of 
28 :::; Tc . Thus, the product signals are the cross correlations between the received signal 
and the PN sequence at the two values of delay. These products are bandpass filtered, enve­
lope (or square-law) detected, and then subtracted. This difference signal is applied to the 
loop filter that drives the voltage-controlled clock (VCC). The VCC output serves as the 
clock for the PN code signal generator. 

If the synchronism is not exact, the filtered output from one correlator will exceed 
the other and the VCC will be appropriately advanced or delayed. At the equilibrium point, 
the two filtered correlator outputs will be equally displaced from the peak value, and the 
PN code generator output will be exactly synchronized to the received signal which is fed 
to the demodulator. We observe that this implementation of the DLL for tracking the DS 
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signal is equivalent to the early-late gate bit-tracking synchronizer previously described 
in Chapter 8. 

An alternative method for time tracking a DS signal is to use a tau-dither loop (TDL), 
which is illustrated by the block diagram in Figure 15. 16. The TDL employs only a single 
"arm" instead of the two "arms" shown in Figure 15 .15 .  By providing a suitable gating 
waveform, it is possible to make this single "arm" implementation appear to be equivalent 
to the two "arm" realization. In this case, the cross correlator output is regularly sampled 
at two values of delay, by stepping the code clock forward and backward in time by an 
amount 8 .  The envelope of the cross correlation that is sampled at ±8 has an amplitude 
modulation whose phase relative to the tau-dither modulator determines the sign of the 
tracking error. 

One advantage of the TDL is the less costly implementation resulting from elimina­
tion of one of the two arms that are employed in the conventional DLL. A second and less 
apparent advantage is that the TDL does not suffer from performance degradation that is 
inherent in the DLL when the amplitude gain in the two arms is not properly balanced. 

Both the DLL and the TDL generate an error signal by sampling the signal correla­
tion function at ±8 off the peak, as shown in Figure 15 . 17(a). This generates an error signal 
as shown in Figure 15 . l  7(b). The analysis of the performance of the DLL is similar to that 
for the PLL, previously described in Chapter 8. If it were not for the envelope detectors in 
the two arms of the DLL, the loop resembles a Costas loop. In general, the variance of the 
time-estimation error in the DLL is inversely proportional to the loop SNR, which depends 
on the input SNR to the loop and on the loop bandwidth. Its performance is somewhat 
degraded as in the squaring PLL by the nonlinearities inherent in the envelope detectors, 
but this degradation is relatively small. 

A tracking method for FH spread-spectrum signals is illustrated in Figure 15. 18.  
This method is based on the premise that, although initial acquisition has been achieved, 
there is a small timing error between the received signal and the received clock. The band­
pass filter is tuned to a single intermediate frequency and its bandwidth is of the order of 
I / Tc, where Tc is the chip interval. Its output is envelope detected and then multiplied by 
the clock signal to produce a three-level signal, as shown in Figure 15. 19, which drives 
the loop filter. Note that when the chip transitions from the locally generated sinusoidal 
waveform do not occur at the same time as the transitions in the incoming received signal, 
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Figure 15.18 Tracking method for FH signals. (From paper by Pickholtz et al.; © 1992 IEEE. Reprinted with 
permission.) 
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Figure 15.19 Waveforms for the tracking method ofFH signals shown in Figure 15.18. 

the output of the loop filter will be either negative or positive, depending on whether the 
VCC is lagging or advanced relative to the timing of the input signal. This error signal 
from the loop filter will provide the control signal for adjusting the VCC timing signal so 
as to drive the frequency synthesized FH signal to proper synchronism with the received 
signal. 

1 5.7 DIGITAL CELLULAR COMMUNICATION SYSTEMS 

The demand to provide telephone service for people traveling in automobiles, buses, trains, 
and airplanes has been steadily increasing over the past three to four decades. To meet 
this demand, radio-transmission systems have been developed to link the mobile-telephone 
user to the terrestrial-telephone network. Today, radio-based systems make it possible for 
people to communicate via telephone while traveling on airplanes and motor vehicles. In 
this section, we will briefly describe the cellular telephone system that provides telephone 
service to people with handheld mobile telephones. 

A major problem with the establishment of any radio communication system is the 
availability of a portion of the radio spectrum. In the case of radio telephone service, the 
Federal Communications Commission (FCC) in the United States has assigned parts of 
the UHF band in the range 806--890 MHz and in the 1900 MHz band for this use. Similar 
frequency assignments in the UHF band have been made in Europe and Japan. 
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Figure 15.20 Mobile-radio base station. 

The cellular-radio concept was adopted as a method for the efficient utilization of the 
available frequency spectrum, especially in highly populated metropolitan areas, where the 
demand for mobile telephone services is the greatest. A geographic area is subdivided into 
cells, each of which contains a base station, as illustrated in Figure 15.20. Each base station 
is connected via telephone lines to a mobile-telephone-switching office (MTSO) which, in 
tum, is connected via telephone lines to a telephone central office (CO) of the terrestrial 
telephone network. 

A mobile user communicates via radio with the base station within the cell. The base 
station routes the call through the MTSO to another base station (if the called party is 
located in another cell) or to the central office of the terrestrial-telephone network (if the 
called party is not a mobile) . Each mobile telephone is identified by its telephone number 
and the telephone serial number assigned by the manufacturer. These numbers are auto­
matically transmitted to the MTSO during the initialization of the call for authentication 
and billing purposes. 

A mobile user initiates a telephone call in the usual manner by keying in the desired 
telephone number and pressing the "send" button. The MTSO checks the authentication of 
the mobile user and assigns an available frequency channel for the radio transmission of 
the voice signal from the mobile to the base station. The frequency assignment is sent to the 
mobile telephone via a supervisory control channel. A second frequency is assigned for the 
radio transmission from the base station to the mobile user. The simultaneous transmission 
between the two parties is called full-duplex operation. The MTSO interfaces with the cen­
tral office of the telephone network to complete the connection to the called party. All tele­
phone communications between the MTSO and the telephone network are via wideband 
trunk lines that carry speech signals from many users. Upon completion of the telephone 
call, the two parties hang up and the radio channel becomes available for other users. 

During the phone call, the MTSO monitors the signal strength of the radio transmis­
sion from the mobile user to the base station. If the signal strength drops below a preset 
threshold, the MTSO views this as an indication that the mobile user is moving out of the 
initial cell into a neighboring cell. By communicating with the base stations of neighboring 
cells, the MTSO finds a neighboring cell that receives a stronger signal and automatically 
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switches or hands-off the mobile user to the base station of the adjacent cell. The switching 
is performed in a fraction of a second and is generally transparent to the two parties. 

The cellular radio telephone system is designed such that the transmitter powers of 
the base station and the mobile users are sufficiently small, so that signals do not propa­
gate beyond immediately adjacent cells. This allows frequencies to be reused in other cells 
outside of the adjacent cells. Consequently, by making the cells smaller and reducing the 
radiated power, it is possible to increase frequency reuse and, thus, to increase the band­
width efficiency and the number of mobile users. Current cellular systems employ cells 
with a radius in the range of 5-18 km. 

Below, we present an overview of two types of current digital cellular communica­
tion systems. One is the GSM (Global System for Mobile Communication) system that 
is widely used in Europe and other parts of the world. The second is the CDMA system, 
which is widely used in North America and some countries in the Far East. 

There are three basic methods that are currently used to provide channel access to 
multiple users in a communication network. One simple method is to subdivide the avail­
able channel bandwidth into a number, say, K, of frequency nonoverlapping subchannels 
and to assign a subchannel to each user upon request. This method is called frequency­
division multiple access (FDMA). It is commonly used in wireline channels to accommo­
date multiple users for voice and data transmission. FDMA is also used in the first gen­
eration of cellular communication systems in which analog FM is employed, as described 
above. 

A second method for providing access to multiple users is to subdivide a time inter­
val, called a frame, into K nonoverlapping subintervals, each of duration Tj/ K, where 
T1 is the frame duration. Then, each user is assigned to a particular subinterval, or time 
slot, within a frame. This multiple access method is called time-division multiple access 
(TDMA), and it is used in the GSM system described in Section 15.7. 1 .  

The third method for providing multiple access is CDMA, which was described in 
Section 15.3.2. In CDMA, each user is assigned a unique spreading sequence, such as, a 
Gold sequence or a Kasami sequence. All users are allowed to transmit simultaneously over 
the same channel. In FDMA and TDMA, the signals of the multiple users are nonoverlap­
ping in either frequency or time; however, in CDMA, the transmitted signals completely 
overlap in both time and frequency. By assigning unique code sequences to multiple users, 
each user is able to separate its desired signal (via cross correlation) from the other user sig­
nals, which appear as interference. The digital cellular system based on the IS-95 standard 
employs CDMA. This system is described in Section 15.7.2. 

1 5. 7.1 The GSM System 

GSM was developed in Europe to provide a common digital cellular communication sys­
tem that would serve all of Europe. It is now widely used in many parts of the world. 
The GSM system employs the frequency band 890-915 MHz for signal transmission from 
mobile transmitters to base station receivers-( uplink or reverse link) and the frequency band 
935-960 MHz for transmission from the base stations to the mobile receivers (downlink or 
forward link). The two 25-MHz frequency bands are each subdivided into 125 channels, 
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N = 7  

Figure 15.21 Frequency reuse in a cellular system with a reuse factor N = 4 or N = 7. 

where each channel has a bandwidth of 200 kHz. There are two methods to reduce trans­
mission interference from adjacent cells. First, different sets of frequencies are assigned 
to adjacent base stations. Second, frequencies are reused according to some design plan, 
such as the frequency plans shown in Figure 15.21 ,  where the frequency reuse factor is 
either N = 4 or N = 7. Larger values of N increase the distance d, between two base 
stations using the same set of frequencies, thus, reducing co-channel interference. On the 
other hand, a large value of N reduces the spectral efficiency of the cellular system, since 
fewer frequencies are assigned to each cell. The maximum radius for a cell is 35 km. 

Each 200-kHz frequency band accollllllodates eight users by creating eight TDMA 
nonoverlapping time slots, as shown in Figure 15.22. The eight time slots constitute a frame 
of duration 4.615 msec, and each time slot has a time duration of 576.875 µ,sec. The infor­
mation data from the users is transmitted in bursts at a rate of 270.833 kbps. Figure 15.23 
illustrates the basic GSM frame structure, where 26 frames form a multiframe and 51 multi­
frames form a superframe. The framing hierarchy facilitates synchronization and network 
control. To reduce the effect of fading and interference and provide signal diversity, the 
carrier frequency is hopped at the frame rate of (nominally) 217 hops/sec. 

The functional block diagram of the transmitter and receiver in the GSM system is 
shown in Figure 15.24. The speech coder is based on a type of linear predictive coding 
(LPC) called residual pulse-excited (RPE) linear predictive coding (RPE-LPC). RPE-LPC 
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Figure 15.22 TDMA frame in GSM. 
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TDMA format supporting eight simultaneous users 

i..1 •--- 6.12 sec ---
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1 superframe 
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156.25 bits 
(2 data bursts) 

Figure 15.23 GSM frame structure. 

delivers 260 bits in each 20-msec time interval-hence, a bit rate of 13  kbps. The most 
significant bits are encoded by a rate 1 /2, constraint length L = 5 convolutional encoder, 
and the coded and uncoded bits are block interleaved to produce data at a rate of 22.8 kbps. 
Thus, the 260 information bits are transformed into 456 coded bits in each 20-msec time 
interval. The coded bit stream is encrypted. Then, it is organized for burst transmission 
in time slots that carry 1 14 coded bits and some overhead bits, as shown in Figure 15.23, 
including a sequence of 26 bits that measure the channel characteristics in each time slot. 
Therefore, the 456 coded bits are transmitted in four consecutive bursts, where each burst 
contains 1 14 coded bits and occupies one time slot. 

To transmit the bits in each time slot, we use GMSK modulation with B T  = 0.3. 
This signal pulse is illustrated in Figure 9.25(e). The output of the GMSK modulator is 
translated to the desired carrier frequency, which is hopped to a different frequency in each 
frame. 

At the receiver, the received signal is dehopped and translated to baseband; this cre­
ates in-phase (/) and quadrature ( Q) signal components, which are sampled and buffered. 
The 26 known transmitted bits measure the channel characteristics; thus, they specify the 
matched filter to the channel corrupted signal. The data bits are passed through the matched 
filter and the matched filter output is processed by a channel equalizer, which may be real­
ized either as a decision-feedback equalizer (DFE) or a maximum-likelihood sequence 
detector that is efficiently implemented via the Viterbi algorithm. The bits in a burst at the 
output of the equalizer are deassembled, deencrypted, deinterleaved and passed to the chan­
nel decoder. The decoded bits are used to synthesize the speech signal that was encoded 
via RPE-LPC. 
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TABLE 1 5.3 SUMMARY OF PARAMETERS IN A GSM SYSTEM 

System Parameter 

Uplink frequency band 
Downlink frequency band 
Number of carriers/band 
Bandwidth/carrier 
Multiple access method 
Number of users/carrier 
Data rate/carrier 
Speech coding rate 
Speech encoder 
Coded speech rate 
Modulation 
Demodulation 
Interleaver 
Frequency hopping rate 

Specification 

890-915 MHz 
935-960 MHz 
125 
200 kHz 
TDMA 

8 
270.8 kbps 
13 kHz 
RPE-LPC 
22.8 kbps 
GMSK with BT = 0.30 
Matched filter + equalizer 
Block 
217 hops/sec 

Chapter 1 5 

In addition to the channels that transmit the digitized speech signals, there are other 
channels that handle various control and synchronization functions, such as paging, fre­
quency correction, synchronization, and requests for access to send messages. These con­
trol channels are additional time slots that contain known sequences of bits for performing 
the control functions. 

Table 15.3 provides a summary of the basic parameters in the GSM system. 

1 5.7.2 CDMA System Based on IS-95 

As described in Section 15.2, the enhancement in performance obtained from a DS spread­
spectrum signal through the processing gain and coding gain can enable many DS spread­
spectrum signals to simultaneously occupy the same channel bandwidth provided that 
each signal has its own distinct pseudorandom sequence. Direct sequence CDMA has 
been adopted as one multiple-access method for digital cellular voice communications 
in North America. This first generation digital cellular (CDMA) communication system 
was developed by Qualcomm, and it has been standardized and designated as IS-95 by 
the Telecommunications Industry Association (TIA) for use in the 800 MHz and the 1900 
MHz frequency bands. A major advantage of CDMA over other multiple access methods 
is that the entire frequency band is available at each base station, i.e., the frequency reuse 
factor N = 1 .  

The nominal bandwidth used for transmission from a base station to the mobile 
receivers (forward link) is 1 .25 MHz. A separate channel, also with a bandwidth of 1 .25 
MHz, is used for signal transmission from mobile receivers to a base station (reverse link). 
The signals transmitted in both the forward and the reverse links are DS spread spectrum 
signal and they have a chip rate of 1 .2288 x 106 chips per second ( l .2288 Mchips/sec). 

Forward Link. A block diagram of the modulator for the signals transmitted 
from a base station to the mobile receivers is shown in Figure 15.25. The speech coder is 
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a code-excited linear predictive (CELP) coder that generates data at the variable rates of 
9600, 4800, 2400, and 1200 bits/sec, where the data rate is a function of the user's speech 
activity in frame intervals of 20 msec. The data from the speech coder is encoded by a rate 
1 /2, constraint length L = 9 convolutional code. For lower speech activity, where the data 
rates are 4800, 2400, or 1200 bits/sec, the output symbols from the convolutional encoder 
are repeated either twice, four times, or eight times to maintain a constant bit rate of 9600 
bits/sec. At the lower speech activity rates, the transmitter power is reduced by either 3, 6, 
or 9 dB, so that the transmitted energy per bit remains constant for all speech rates. Thus, 
a lower speech activity results in a lower transmitter power and, hence, a lower level of 
interference to other users. 

The encoded bits for each frame are passed through a block interleaver, which over­
comes the effects of burst errors that may occur in transmission through the charmel. The 
data bits at the output of the block interleaver, which occur at a rate of 19 .2 kbits/sec, are 
scrambled by multiplication with the output of a long code (period N = 242 - 1) generator 
running at the chip rate of 1 .2288 Mchips/sec, but whose output is decimated by a factor 
of 64 to 19.2 kchips/sec. The long code uniquely identifies a call of a mobile station on the 
forward and reverse links. 

Each channel user is assigned a Hadamard (also called a Walsh) sequence of length 
64. There are 64 orthogonal Hadamard sequences assigned to each base station; thus, there 
are 64 channels available. One Hadamard sequence (the all-zero sequence) is used to trans­
mit a pilot signal, which serves as a means for measuring the charmel characteristics, 
including the signal strength and the carrier phase offset. These parameters are used at 
the receiver to perform phase coherent demodulation. Another Hadamard sequence is used 
to provide time synchronization. One channel, and possibly more if necessary, is used for 
paging. That leaves up to 61  channels for allocation to different users. 
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Each user, using the assigned Hadamard sequence, multiplies the data sequence 
oy the assigned Hadamard sequence. Thus, each encoded data bit is multiplied by the 
Hadamard sequence of length 64. The resulting binary sequence is now spread by multipli­
cation with two PN sequences of length N = 215 ; this creates in-phase (/) and quadrature 
(Q) signal components. Thus, the binary data signal is converted to a four-phase signal 
and both the I and Q components are filtered by baseband spectral-shaping filters. Differ­
ent base stations are identified by different offsets of these PN sequences. The signals for 
all 64 channels are transmitted synchronously so that, in the absence of channel multipath 
distortion, other signals received at any mobile receiver do not interfere because of the 
orthogonality of the Hadamard sequences. 

At the receiver, a RAKE demodulator resolves the major multipath signal compo­
nents. These components are then phase-aligned and weighted according to their signal 
strength, using the estimates of phase and signal strength derived from the pilot signal. 
These components are combined and passed to the Viterbi soft-decision decoder. 

Reverse link. The reverse link modulator from a mobile transmitter to a base 
station is different from the forward link modulator. A block diagram of the modulator 
is shown in Figure 15 .26. An important consideration in the design of the modulator is 
that signals transmitted from the various mobile transmitters to the base station are asyn­
chronous; hence, there is significantly more interference among users. In addition, the 
mobile transmitters are usually battery operated; consequently, these transmissions are 
power limited. To compensate for these major limitations, a rate 1/3, K = 9 convolu­
tional code is used in the reverse link. This code has essentially the same coding gain in 
an A WGN channel as the rate 1 /2 code used in the forward link. However, it has a much 
higher coding gain in a fading channel. Again, for lower speech activity, output bits from 
the convolutional encoder are repeated either two, four, or eight times. However, the coded 
bit rate is 28.8 kbits/sec. 

For each 20-msec frame, the 576 encoded bits are block-interleaved and passed to the 
modulator. The data are modulated using an M = 64 orthogonal signal set of Hadamard 
sequences each of length 64. Thus, a 6-bit block of data is mapped into one of the 64 
Hadamard sequences. The result is a bit (or chip) rate of 307 .2 kbits/sec at the output of the 
modulator. Note that 64-ary orthogonal modulation at an error probability of 10-6 requires 
approximately 3.5 dB less SNR per bit than binary antipodal signaling in an AWGN 
channel. 

To reduce interference to other users, the time position of the transmitted code sym­
bol repetitions is randomized; thus, at the lower speech activity, consecutive bursts are not 
evenly spaced in time. Following the randomizer, the signal is spread by the output of the 
long code PN generator, which is running at a rate of 1 .2288 Mchips/sec. Hence, there are 
only four PN chips for every bit of the Hadamard sequence from the modulator, so the 
processing gain in the reverse link is very small. The resulting 1 .2288-Mchips/sec binary 
sequences of length N = 215 , whose rate is also 1 .2288 Mchips/sec, create I and Q sig­
nals (a QPSK signal) that are filtered by baseband spectral shaping filters and then passed 
to quadrature mixers. The Q-channel signal is delayed in time by one-half PN chip relative 
to the I -channel signal prior to the baseband filter. In effect, the signal at the output of the 
two baseband filters is an offset QPSK signal. 
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TABLE 15.4 SUMMARY OF PARAMETERS IN THE IS-95 SYSTEM 

System Parameter 

Uplink frequency band 
Downlink frequency band 
Number of carriers/band 
Bandwidth/carrier 
Multiple access method 
Number of users/carrier 
Chip rate 
Speech coder 
Speech rate 
Interleaver 
Channel encoder 

Modulation 

Demodulation 

Signature sequences 
PN sequence 

Specification 

824--849 MHz 
869-894 MHz 
20 
1 .25 MHz 
CDMA 
60 
1 .2288 Mcps 
Variable rate CELP 
9600, 4800, 2400, 1200 bps 
Block 
R = 1/2, L = 9 (D) 
R = 1 /3, L = 9 (U) 
BPSK with QPSK spreading (D) 
64-ary orthogonal with QPSK 
spreading (U) 
RAKE matched filter with 
maximal-ratio combining 
Hadamard (Walsh) of length 64 
N = 242 - 1 (Long code) 
N = 215 (spreading codes) 

Chapter 1 5  

Although the chips are transmitted as an offset QPSK signal, the demodulator 
employs noncoherent demodulation of the M = 64 orthogonal Hadamard waveforms 
to recover the encoded data bits. A computationally efficient (fast) Hadamard transform 
reduces the computational complexity in the demodulation process. The output of the 
demodulator is then fed to the Viterbi decoder, whose output synthesizes the speech signal. 

Table 15 .4 provides a summary of the basic parameters in the IS-95 system. 

1 5. 7.3 Third Generation Cellular Communication Systems and Beyond 

The first generation cellular radio systems employed analog signal transmission. The GSM 
and IS-95 digital cellular systems described above are usually called second generation 
cellular radio systems. They are designed primarily for voice transmission using digital 
modulation for transmission. These systems have the capability of providing low-rate data 
transmission, i.e., 64 kbps. 

To accommodate the need for multimedia applications, such as internet access, image 
transmission, and video conferencing, higher data rate cellular systems have been devel­
oped. These new systems are third generation cellular radio systems and have the potential 
to provide data rates of 5 Mbps. 

The evolution ofIS-95 is called CDMA-2000. The channel bandwidth is increased to 
3 .75 MHz, rather than the 1 .25 MHz bandwidth used in IS-95. The corresponding chip rate 
is 3.684 Mcps. QPSK modulation is used in the downlink to achieve a peak data rate of up 
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to 2.4 Mbps. BPSK is used in the uplink. Higher data rates can be achieved by transmitting 
on multiple channels. 

The evolution of GSM is called UMTS or wideband CDMA (WCDMA). A nominal 
channel bandwidth of 5 MHz supports a chip rate of 3.84 Mcps. The modulation for both 
uplink and downlink is BPSK. WCDMA offers symmetrical data rates of 384 kbps at a 
mobile terminal speed of 120 km/hour, 128 kbps at a mobile terminal speed of up to 300 
km/hour, and a data rate of 2 Mbps at pedestrian speed. 

Third generation cellular systems are designed differently from the older generation 
systems which were optimized for voice transmission. The basic difference in providing 
data services is the requirement for very high data rates in the downlink (forward link) 
from the base station to the mobile users. This requirement has resulted in a basic change 
by which the base station transmits to the mobile receivers. Specifically, the downlink 
operates in a time-shared manner (TDMA method) in transmitting to the mobile receivers. 
Thus, the downlink serves one user at a time and operates in a time-multiplexing manner. 

In order to optimize the system throughput, the signal-to-noise ratio (SNR) level of 
each mobile receiver is used by the base station to determine the data rate for each user in 
the downlink. The SNR level is measured in each user receiver and sent back to the base 
station via the uplink (reverse link). Thus, on the basis of the SNR value, the base station 
selects the data rate to be transmitted to the user in a particular time slot. The key element 
employed at the base station to determine the manner in which the users are serviced is the 
scheduler, which is programmed to operate in a way that ensures some degree of fairness 
and latency (service delay). For example, a round robin method of service guarantees fair­
ness, but does not yield a high throughput because a user with a low SNR is served at a low 
data rate and, consequently, must be assigned more time slots. In contrast, throughput is 
optimized by allocating more time slots to users having a high SNR, since the base station 
can employ high level M -ary modulation to provide a high data rate. But such a method 
may result in long service delays (large latency) to users with low SNR. In practice, the 
scheduler employs an algorithm that provides some degree of fairness and simultaneously 
constrains the latency to an acceptable level. Thus, the design of the scheduling algorithm 
involves a compromise among throughput, fairness and latency. To further increase the 
data rate to the users in the downlink, the base station may use multiple transmit antennas 
to achieve spatial multiplexing, as described in Section 14.4. 

With the increase use of mobile devices, such as smart phones, tablet computers and 
laptop computers, even third generation cellular systems do not provide sufficient capacity 
and data speed to satisfy the demand for new services. This increase in demand has resulted 
in a new world-wide fourth generation (4G) standard, called long-term evolution (LTE). 
Some of the major capabilities and characteristics of 4G-LTE are 

1. Spectrum flexibility with possible bandwidths of 1 .4 MHz, 5 MHz, 10  MHz, 15 
MHz, and 20 MHz. 

2. Peak data rates of up to 300 Mbits/sec on the downlink and 75 Mbits/sec on the 
uplink when using a 20 MHz bandwidth and 4 x 4 (MIMO) antennas. 

3. Also supports peak data rates of up to 100 Mbits/sec on the downlink and 50 Mbits/sec 
on the uplink when using a 20 MHz channel bandwidth with a single antenna at the 
mobile and two receive antennas at the base station. 
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4. Supports mobility for terminals moving up to 350 km/hour or 500 km/hour, depend­
ing on the frequency band. 

5. OFDM is used for the downlink and a modified form of OFDM is used for the uplink. 

4G-LTE is being provided by all major cellular service providers around the world. 

1 5.8 SUMMARY AND FURTHER READING 

In this chapter we introduced the reader to spread spectrum digital communication tech­
niques and their use in combating interference, both intentional, usually called jamming, 
and unintentional, the latter arising from other users of the same channel. In particular, 
we treated direct sequence (DS) spread spectrum and frequency-hopped (FH) spread spec­
trum, and their performance characteristics in the presence of interference. We showed 
that in DS spread spectrum, the transmitted signal is spread in frequency by multiplying 
the information-bearing signal by a pseudo-noise (PN) signal that has the characteristics of 
white noise. · At the receiver, the wideband received signal is despread by multiplying the 
received signal by a replica of the PN sequence. DS spreading was shown to be especially 
effective in combating narrowband interference. The probability of error for the detector 
was evaluated in the presence of narrowband interference. We also observed the benefits 
of coding in a DS spread spectrum system. 

We cited four applications of DS spread spectrum in digital communications. Specif­
ically, we described the use ofDS spread spectrum signals in low detectability signal trans­
mission, in code division multiple access (CDMA) systems in which multiple users share 
the same common channel, in communication over multipath channels to resolve the signal 
multipath components, and in wireless LANs, such as those based on the 802. 1 1  (WiFi) 
standard. We also described the generation of PN sequences for use in spreading the spec­
trum of the transmitted signal. 

In FH spread-spectrum systems, a PN sequence is used to pseudorandomly select the 
carrier frequency within the large bandwidth of the channel. We described slow frequency 
hopping systems, where the carrier frequency is changed at the symbol rate or slower, and 
fast frequency hopping systems, where the carrier frequency is changed multiple times 
within the symbol interval. We observed that slow frequency hopping systems are vulnera­
ble to partial-band interference, but we also noted that by providing signal diversity in the 
design of the transmitted signal, this type of interference can be mitigated. Applications of 
FH spread spectrum signals were also cited. 

Synchronization of the locally generated PN sequence at the receiver with the PN 
sequence in the received signal is necessary in the demodulation of the received signal and 
in the recovery of the transmitted information. We described time synchronization that is 
performed in two phases, the initial acquisition phase and the tracking phase. 

In the final topic treated in this chapter, we described the use of spread spectrum in 
digital cellular communication systems, including 2nd, 3rd and 4th generation (2G, 3G, 
4G) cellular systems. 

Historically, the primary application of spread spectrum signals had been in the 
design of secure digital communication systems for military applications. However, in 
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the last three decades, we have seen the widespread use of spread spectrum signals in 
commercial applications, especially in mobile cellular communications, in multiple access 
communications via satellites, and in interoffice radio communications. 

A historical account on the development of spread spectrum communications cov­
ering the period 1920-1960 is given in the paper by Scholtz (1982). Tutorial treatments 
of spread spectrum signals that deal with basic concepts are found in papers by Scholtz 
(1977) and Pickholtz, et al. (1982). These papers also contain a large number of references 
to the previous work. Two tutorial papers by Viterbi (1979, 1985) contain a basic analysis 
of the performance characteristics of DS and FH spread-spectrum signals. 

Comprehensive treatments of various aspects concerning the analysis and design of 
spread-spectrum signals and systems, including synchronization techniques, are found in 
books by Simon et al. (1985), Ziemer and Peterson (1985), and Holmes (1982). Also, 
special issues of the IEEE Transactions on Communications (August 1977, May 1982) are 
devoted to spread-spectrum communications. These special issues contain a collection of 
papers devoted to a variety of topics, including multiple-access techniques, synchronization 
techniques, and performance analysis with various types of channel interference. A number 
of important papers that have been published in IEEE journals have been reprinted in book 
form by the IEEE press. [See Dixon (1976) and Cook et al. (1983).] 

PROBLEMS 

15.1 Demonstrate that a DS spread spectrum signal without coding provides no improve­
ment in performance against additive white Gaussian noise. 

15.2 A total of 30 equal-power users are to share a common communication channel by 
CDMA. Each user transmits information at a rate of 10 kbps via DS spread spectrum 
and binary PSK. Determine the minimum chip rate needed to obtain a bit error prob­
ability of 10-5 . Additive noise at the receiver may be ignored in this computation. 

15.3 A CDMA system is designed based on DS spread spectrum with a processing gain 
of 1000 and binary PSK modulation. Determine the number of users, if each user 
has equal power and the desired level of performance is an error probability of 1 o-6. 
Repeat the computation if the processing gain is changed to 500. 

15.4 A DS spread spectrum system transmits at a rate of 1000 bps in the presence of a 
tone interference. The interference power is 20 dB greater than the desired signal, 
and the required 1/,b/ 10 to achieve satisfactory performance is 10 dB. Determine the 
spreading bandwidth required to meet the specifications. 

15.5 A DS spread spectrum system is used to resolve the multipath signal component in a 
two-path radio signal propagation scenario. If the path length of the secondary path is 
300 m longer than that of the direct path, determine the minimum chip rate necessary 
to resolve the multipath component. 
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15.6 A CDMA system consists of 15  equal-power users who transmit information at a 
rate of 10,000 bps each. They use a DS spread spectrum signal operating at a chip 
rate of 1 MHz. The modulation is binary PSK. 

1. Determine the 'if,b/ Io, where Io is the spectral density of the combined interfer­
ence. 

2. What is the processing gain? 

3. How much should the processing gain be increased to allow for doubling the 
number of users without affecting the output SNR? 

15.7 An FH binary orthogonal FSK system employs an m = 15 stage linear feedback 
shift register that generates a maximal length sequence. Each state of the shift reg­
ister selects one of N nonoverlapping frequency bands in the hopping pattern. The 
bit rate is 100 bits/sec and the hop rate is once per bit. The demodulator employs 
noncoherent detection. 

1. Determine the hopping bandwidth for this channel. 

2. What is the processing gain? 

3. What is the probability of error in the presence of AWGN? 

15.8 A DS binary PSK spread spectrum system has a processing gain of 500. What is 
the interference margin against a continuous tone interference if the desired error 
probability is 10-57 

15.9 Suppose that {ci ; }  and{c2; } are two binary (0, 1) periodic sequences with periods L 1  
and L2, respectively. Determine the period of the sequence obtained by forming the 
modulo 2 sum of {c1; }  and{c2; } .  

15.10 An m = 10 maximum-length shift register generates the pseudorandom sequence in 
a DS spread spectrum system. The chip duration is Tc = lµsec and the bit duration 
is Tb = LTc, where L is the length (period) of the m-sequence. 

1. Determine the processing gain of the system in dB. 

2. Determine the interference margin if the required C/f,b/ Io = 10 and the interfer­
ence is a tone interference with an average power Pav· 

15.11 Figure P-15 . 1 1  illustrates the average power multipath delay profile in cellular com­
munication for (a) suburban and urban areas and (b) hilly terrain area. In a GSM 
system, the bit rate is 270.8 kbps; in an IS-95 system (forward link), the bit rate 
is 19.2 kbps. Determine the number of bits affected by intersymbol interference 
in the transmission of the signal through the channels (a) and (b) for each cellular 
system. 
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15.12 For the multipath delay profiles shown in Figure P-15. 1 1 , determine the number of 
taps in a RAKE demodulator for the IS-95 forward link that would be needed to span 
the multipath for channels (a) and (b). Of the total number of RAKE taps, how many 
will contain signal components and how many will have no signal for channel (b)? 

15.13 A widely used model for the Doppler power spectrum of a mobile radio channel is 
the so-called Jakes' model, given as { 1 1 

S(f) = rcfm JI - (f/fm)2 '  

0, 

I i i ::::: fm 

otherwise 

where fm = vfo/ c is the maximum Doppler frequency, v is the vehicle speed in mis, 
fo is the carrier frequency, and c is the speed of light (3 x 108 m/sec). Determine fm 
for an automobile traveling at 100 km/hour and for a train traveling at 200 km/hour. 
Plot S(f) for the two vehicles for a cellular communication system with a carrier 
frequency of 900 MHz. 
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15.14 In Example 15.3 .1 ,  suppose that the DS spread spectrum signal is transmitted via 
radio to a receiver at a distance of 2000 km. The transmitter antenna has a gain 
of 20 dB, while the receiver antenna is omnidirectional. The carrier frequency is 3 
MHz, the available channel bandwidth W = 105 Hz, and the receiver has a noise 
temperature of 300° K. Determine the required transmitter power and the bit rate of 
the DS spread spectrum system. 

15.15 A rate 1 /2 convolutional code with dtree = 10 is used to encode a data sequence 
occurring at a rate of 1000 bits/sec. The modulation is binary PSK. The DS spread 
spectrum sequence has a chip rate of 10 MHz. 

1. Determine the coding gain. 

2. Determine the processing gain. 

3. Determine the interference margin assuming an %b/ I0 = 10. 

15.16 Consider the FH binary orthogonal FSK system described in Problem 15.7. Sup­
pose that the hop rate is increased to two hops/bit. The receiver uses square-law 
combining to combine the signal over the two hops. 

1. Determine the hopping bandwidth for the channel. 

2. What is the processing gain? 

3. What is the error probability in the presence of AWGN? 

15.17 In a fast FH spread-spectrum system, the information is transmitted via FSK, with 
noncoherent detection. Suppose there are N = 3 hops/bit, with hard-decision decod­
ing of the signal in each hop. 

1. Determine the probability of error for this system in an A WGN channel with 
power-spectral density �0 and an SNR = 13  dB (total SNR over the three 
hops). 

2. Compare the result in (1)  with the error probability of an FH spread-spectrum 
system that hops once/bit. 

15.18 A slow FH binary FSK system with noncoherent detection operates at an 
%b/ Io = 10, with a hopping bandwidth of 2 GHz, and a bit rate of 10 Kbps. 

1. What is the processing gain for the system? 

2. In the case of a partial-band interference, what is the bandwidth occupancy for 
worst-case performance? 

3. What is the probability of error for the worst-case partial-band interference? 
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COMPUTER PROBLEMS 

15.1 Simulation of Direct Sequence Spread Spectrum Signals 

The objective of this problem is to demonstrate the effectiveness of a DS spread 
spectrum signal in suppressing sinusoidal interference via Monte Carlo simulation. 
The block diagram of the system to be simulated is illustrated in Figure CP-15.1 .  

Uniform 
RNG 

WGN 
generator 

.-----t Data (:±:1)  

Repeat 
Le times 

Uniform 
RNG 

(PN sequence) 

Sinusoidal 
generator 

Detector 

Output 
decision 

'-------------� Compare i.--------------' 

Figure CP-15.1 

Error 
counter 

A uniform random number generator (RNG) generates a sequence of binary informa­
tion symbols (±1).  Each information bit is repeated Le times, where Le corresponds 
to the number of PN chips per information bit. The resulting sequence, which con­
tains Le repetitions per bit, is multiplied by a PN sequence c(n) generated by another 
uniform RNG. To this product sequence, we add white Gaussian noise with variance 
a2 = No/2 and sinusoidal interference of the form 

i (n) = A sin won, 

where 0 < wo < n and the amplitude of the sinusoid is selected to satisfy A < Le. 
The demodulator performs the cross correlation with the PN sequence and sums 
(integrates) the blocks of Le signal samples that constitute each information bit. The 
output of the summer is fed to the detector, which compares this signal with the 
threshold of zero and decides whether the transmitted bit is + 1 or - 1 .  The error 
counter tallies the number of errors made by the detector. Plot the measured error 
probability as a function of the SNR for three different values of the amplitude A = 
0, A = 3, and A = 10 of the sinusoidal interference with Le = 20. The SNR is 
defined as "&bf No and can be varied by setting "&b = 1 and scaling the variance a2 of 
the additive Gaussian noise. 
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15.2 
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Simulation of Synchronous CDMA System 

Write a MATLAB program that performs a Monte Carlo simulation of four time-
synchronous CDMA users when each user employs a distinct Gold sequence of 
length L = 3 1 .  The four Gold sequences are as follows: 

0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 1 
0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 
0 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 
1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 

The users employ the binary (±1) modulation of their representative Gold sequences 
with the number of chips per bit equal to 3 1. The receiver for each user correlates the 
composite CDMA received signal, which is corrupted by additive white Gaussian 
noise (added on a chip-by-chip basis) with their respective sequence. Using Monte 
Carlo simulation with N = 10,000 information bits, estimate and plot the probabil­
ity of error for each user as a function of SNR. 

15.3 Simulation of Asynchronous CDMA system 

Repeat Problem 15.2 when the four users transmit asynchronously. For example, 
simulate the case when the four-user CDMA signals are offset in time by one chip 
relative to one of the other signals. That is, the CDMA signal of user 2 is delayed 
by one chip relative to the first user, the CDMA signal of user 3 is delayed by one 
chip relative to the signal of user 2, and the CDMA signal of user 4 is delayed by 
one chip relative to the signal of user 3. Compare the error probability obtained with 
asynchronous transmission to that obtained with synchronous transmission. 

15.4 Generation of a Maximal Length Shift Register Sequence 

Write a MATLAB program that implements an m = 12-stage maximum-length shift 
register and generate three periods of the sequence. Compute and graph the peri­
odic autocorrelation function of the equivalent bipolar sequence given by Equation 
(15.4. 1) .  

15.5 Detection of an LPI Signal 

An LPI signal is generated by binary modulation of an m-sequence from a 10-stage 
shift register, (L = 1023) and, hence, the number of chips per information bit is 
1023. The output of the shift register is mapped into the bipolar sequence 

Ck = { 1 

- 1  

if the shift register output is a 1 

if the shift register output is a 0 

The transmitted sequence of chips is corrupted by AWGN, so the received signal 
sequence at the output of the chip matched filter is 

rk = sck + nb k = 1 ,  2, . . .  , 1023 
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· where the binary data bit s is either + 1 or - 1 ,  for the entire sequence 0 :S k :S 1023. 

1. Generate the m-sequence {cd and verify Equation (15.4.2) is satisfied. 

2. Use the m-sequence generated in part 1 to construct the received signal sequence 
{rk} and plot it for k = 1 ,  2, . . .  , 1023, when the variance of the Gaussian noise 
samples is o-2 = 10. Is the transmitted signal sequence xk = set. 1 s k s 1023 
discernable in {rd? 

3. Compute the cross correlation of {rd with {cd and plot the result 

n 
Yn = Lrkck . n = 1 ,  2, . . .  , 1023 

k=l 
Comment on the result of this correlator output. 

15.6 Simulation of Frequency Hopped FSK 

An FH binary orthogonal FSK system employs an m = 7-state shift register to gener­
ate a periodic maximum-length sequence of length L = 127. Each stage of the shift 
register selects one of N = 127 nonoverlapping frequency bands in the hopping pat­
tern. Write a MATLAB program that simulates the selection of the center frequency 
and the generation of the two frequencies in each of the N = 127 frequency bands. 
Show the frequency selection pattern for the first 10 bit intervals. 

15.7 Simulation of an FSK System with Partial Band Interference 

Via Monte C¥lo simulation, demonstrate the performance of an FH digital com­
munication system that employs binary FSK and is corrupted by worst-case partial­
band interference. The block diagram of the system to be simulated is shown in 
Figure CP-15.7. A uniform random number generator (RNG) is used to generate a 
binary information sequence, which is the input to the FSK modulator. The output 
of the FSK modulator is corrupted by additive Gaussian noise with probability {3, 
where 0 < f3 S 1 .  A second uniform RNG is used to determine when the additive 
Gaussian noise corrupts the signal and when it does not. In the presence of noise, the 
input to the detector, assuming that a 0 is transmitted, is 

r1 = (�cos <P + nc) 2 + (� sin <P + ns r 
2 2 r2 = n2c + n2s 

where ¢ represents the channel phase shift and n 1c, n 1,, n2c, n2s represent the additive 
noise components. In the absence of noise, we have 

and, hence, no errors occur at the detector. The variance of each of the noise com­
ponents is o-2 = lo/2{3, where f3 is given by Equation (15 .5 .4). For simplicity, we 
may set ¢ = 0 and normalize lo by setting it equal to unity. Then Pb = 'f!,b/ lo = 'f!,b· 
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Because a2 = J0/2f3 and f3 = 2/ Pb , it follows that, in the presence of partial-band 
interference, a2 = 'f!,b/4 and f3 = 2/'f!,b, where 'f!,b is constrained to 'f!,b ::::: 2. Perform 
the simulation for 10,000 data bits for the signal energies in the range of 5 dB to 
25 dB, and plot the error probability. 
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Orthogonal complement, 697 
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Parseval's relation, 56-58 

Partial response signals, 566 

detection of, 566-577 
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Power-type signals, 29-3 1 ,  89, 92-95 

PPM, See Pulse position modulation 

(PPM) 

Preemphasis filter, defined, 275 

Preemphasis filtering, 274-277 

Prefix condition, 656 

Presampling filter, 313  

Probability density function (PDF:), 195 

Probability of error: 

for binary signals, 382 

for binary-coded signals, 501 

at the detector, 83 1-836 

for DPSK, 418-419 

in frequency nonselective channels, 

783-786 
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for M-ary simplex signals, 498-499 
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(SISO) decoder 
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Symbol-by-symbol detection of data with 
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450-451 
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Systems: 

causal, 41 

classification of, 38-41 

continuous-time, 39 

discrete-time, 39 

linear, 39-40 

901 

linear time-invariant (LTI), 40, 41-42 

analysis in the time domain, 41  

response to periodic signals, 54-56 

noncausal, 41 

nonlinear, 39-40 
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Time-varying systems, 40-41 

Timing recovery method for QAM, block 

diagram of, 455 
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