
COMPUTABILITY

COMPUTABILITY

NIGEL CUTLAND

UNIVERSITY PRESS

Contents

Preface viii

Prologue. Prerequisites and notation 1
1 Sets 1
2 Functions 2
3 Relations and predicates 4
4 Logical notation 4
5 References 5

1 Computable functions 7
1 Algorithms, or effective procedures 7
2 The unlimited register machine 9
3 URM-computable functions 16
4 Decidable predicates and problems 22
5 Computability on other domains 23

2 Generating computable functions 25
1 The basic functions 25
2 Joining programs together 25
3 Substitution 29
4 Recursion 32
5 Minimalisation 42

3 Other approaches to computability: Church's thesis 48
1 Other approaches to computability 48
2 Partial recursive functions (Godel-Kleene) 49
3 A digression: the primitive recursive functions 51
4 Turing-computability 52
5 Symbol manipulation systems of Post and Markov 57
6 Computability on domains other than M 65
7 Church's thesis 67

4 Numbering computable functions 72
1 Numbering programs 72
2 Numbering computable functions 76
3 Discussion: the diagonal method 79
4 The s-m-n theorem 81

Contents vi

5 Universal programs 85
1 Universal functions and universal programs 85
2 Two applications of the universal program 90
3 Effective operations on computable functions 93
Appendix. Computability of the function crn 95

6 Decidability, undecidability and partial decidability 100
1 Undecidable problems in computability 101
2 The word problem for groups 106
3 Diophantine equations 107
4 Sturm's algorithm 108
5 Mathematical logic 109
6 Partially decidable predicates 112

7 Recursive and recursively enumerable sets 121
1 Recursive sets 121
2 Recursively enumerable sets 123
3 Productive and creative sets 133
4 Simple sets 140

8 Arithmetic and Godel's incompleteness theorem 143
1 Formal arithmetic 143
2 Incompleteness 146
3 Godel's incompleteness theorem 149
4 Undecidability 155

9 Reducibility and degrees 157
1 Many-one reducibility 158
2 Degrees 161
3 m-complete r.e. sets 165
4 Relative computability 167
5 Turing reducibility and Turing degrees 174

10 Effective operations on partial functions 182
1 Recursive operators 182
2 Effective operations on computable functions 189
3 The first Recursion theorem 192
4 An application to the semantics of programming languages 196

11 The second Recursion theorem 200
1 The second Recursion theorem 200
2 Discussion 207
3 Myhill's theorem 210

12 Complexity of computation 212
1 Complexity and complexity measures 213
2 The Speed-up theorem 218
3 Complexity classes 223
4 The elementary functions 225

Contents vii

13 Further study 236
Bibliography 239
Index of notation 241
Subject Index 246

Preface

The emergence of the concept of a computable function over fifty years
ago marked the birth of a new branch of mathematics: its importance may
be judged from the t fac that it has had applications and implications in
fields as diverse as computer science, philosophy and the foundations of
mathematics, as well as in many other areas of mathematics itself. This
book is designed to be an introduction to the basic ideas and results of
computability theory (or recursion theory, as it is traditionally known
among mathematicians).

The initial purpose of computability theory is to make precise the
intuitive idea of a computable function; that is, a function whose values
can be calculated in some kind of automatic or effective way. Thereby we
can gain a clearer understanding of this intuitive idea; and only thereby
can we begin to explore in a mathematical way the concept of compu-
tability as well as the many related ideas such as decidability and effective
enumerability. A rich theory then arises, having both positive and
negative aspects (here we are thinking of non-computability and wrcdeci-
dability results), which it is the aim of this book to introduce.

We could describe computability theory, from the viewpoint of
computer science, as beginning with the question What can computers do
in principle (without restrictions of space, time or money)?-and, by
implication - What are their inherent theoretical limitations? Thus this
book is not about real computers and their hardware, nor is it about
programming languages and techniques. Nevertheless, our subject
matter is part of the theoretical o background t the real world of
computers and their use, and should be of interest to the computing
community.

For the basic definition of computability we have used the 'idealised
computer' or register machine approach; we have found that this is readily
grasped by students, most of whom are aware of the idea of a computer.
(We do not, however, assume such an awareness (although it is helpful)

Preface ix

and even less do we s assume any practical experience with computer or
calculators.) Our approach is mathematically equivalent to the many
others that have been discovered, including Turing machines, the
favourite of many. (We discuss these equivalences in chapter 3.)

This text grew out of a course given to undergraduates in mathematics
and computer science at the University of Hull. The reader envisaged is a
mathematics student with no prior knowledge of this subject, or a student
of computer science who may wish to supplement his practical expertise
with something of the theoretical background to his e subject. W have
aimed at the second or third year undergraduate level, although the
earlier chapters covering the basic theory (chapters 1-7) should be within
the grasp of good students in sixth forms, high schools and colleges (and
their teachers). The only prerequisites are knowledge of the mathemati-
cal language of sets and functions (reviewed in the Prologue) and the
ability to follow a line of mathematical reasoning.

The later chapters (8-12) are largely independent of each other. Thus a
short introductory course could consist of chapters 1-7 supplemented by
selection according to taste from chapters 8-12. It has been our aim in
these later chapters to provide an introduction to some of the
ramifications and applications of basic computability theory, and thereby
provide a stepping stone towards more advanced study. To this end, the
final chapter contains a brief survey of possible directions for further
study, and some suggestions for further reading. (The two main texts that
might be regarded as natural sequels to this one are M. L. Minsky,
Computation: Finite and Infinite Machines, which would complement the
present volume by its broad and comprehensive study of computation (as
opposed to computability), and H. Rogers, Theory of Recursive Functions
and Effective Computability, which provides a more advanced treatment
of recursion theory in depth.)

Many people have helped towards the writing of this book. I would first
thank John Cleave, who taught me recursive function theory in a gradu-
ate course at the University of Bristol in 1966, and introduced me to the
register machine approach that I have used here. I have greatly appreci-
ated the sustained interest and encouragement from Stan Wainer (who
also made valuable suggestions for the material in chapters 10 and 12)
and David Jordan: I thank them. I would also like to thank David Jordan
and Dick Epstein for reading a draft of the manuscript and making many
valuable comments and corrections. I am grateful to the Cambridge
University Press for their interest and advice which has resulted in the
emergence of the completed manuscript.

Preface x

Finally, a big thank you to my wife Mary for her patience and
encouragement during the many phases of writing and preparation of this
book; her idealism and understanding have been a sustaining influence
throughout.

Prologue
Prerequisites and notation

The only prerequisite to be able to read this book is familiarity with the
basic notations of sets and functions, and the basic ideas of mathematical
reasoning. Here we shall review these matters, and explain the notation
and terminology that we shall use. This is mostly standard; so for the
reader who r prefers to move straight to chapter 1 and refe back to this
prologue only as necessary, we point out that we shall use the word
function to mean a partial function in general. We discuss this more fully
below.

1. Sets
Generally we shall use capital letters A, B, C, . . . to denote sets.

We write x € A to mean that * is a member of A, and we write x& A to
mean that x is not a member of A. The notation {x: . . . x...} where
. . . JC. .. is some statement involving x means the set of all objects x for

which . . . JC . . . is true. Thus {JC : x is an even natural number} is the set
{0,2,4,6, . . .} .

If A, B are sets, we write A c B to mean that A is contained in B (or A
is a subset of B); we use the notation A <= B to mean that A c B but A^B
(i.e. A is a proper subset of B). The union of the sets A, B is the set
{JC : JC € A or JC € B (or both)}, and is denoted b y A u 5 ; the intersection of
A, B is the set {jc:jceA and xeB} and is denoted by AnB. The
difference (or relative complement) of the sets A, B is the set {JC : x e A
and JC£ B} and is denoted by A \B.

The empty set is denoted by 0 . We use the standard symbol f̂l to
denote the set of natural numbers {0,1, 2, 3 , . . . } . If A is a set of natural
numbers (i.e. A c M) we write A to denote the complement of A relative
to N, i.e. N\A. We write N+ for the set of positive natural numbers
{1, 2, 3 , . . . }, and as usual Z denotes the set of integers.

Prologue 2

We write (x, y) to denote the ordered pair of elements x and y; thus
(x9 y) 5* (y, JC) in general. If A, Z? are sets, the Cartesian product of A and B
is the set {(*, y): xeA and y 6 £ } , and is denoted by A x B.

More generally, for elements x\,..., xn we write U i , . . . , xn) to
denote the ordered n-tuple of xu • • •, xn; an n-tuple is often represented
by a single boldfaced symbol such as x. If Au • • •, An are sets we write
AiX.. .xAn for the set of n-tuples {(JCI, . . . , xn): xie A\ and Jt2e
A 2 . . . xn e An}. The product Ax Ax... x A (n times) is abbreviated by
A"; A 1 means A.

2. Functions
We assume familiarity with the basic idea of a function, and the

distinction between a function / and a particular value f(x) at any given x
where / is defined.1 If / is a function, the domain of / is the set {x: f(x) is
defined}, and is denoted Dom(/); we say that f(x) is undefined if
jc£Dom(/). The set {/(*): x eDom(/)} is called the range of /, and is
denoted by Ran(/). If A and B are sets we say that / is a function from A to
B if Dom(/) c A and Ran(/) c B. We use the notation / : A -* 5 to mean
that / is a function from A to B with Dom(/) = A.

A function / is said to be injective if whenever JC, y e Dom(f) and x ^ y,
then /(JC) #/(y). If / , is injective then f~l denotes the inverse of /, i.e. the
unique function g such that Dom(g) = Ran(/) and g(/0c)) = Jc for x e
Dom(/). A function / from A to B is surjective if Ran(/) = B.

If / : A -> Z?, we say that / is an injection (from A to £) if it is injective,
and a surjection (from A to B) if it is surjective. It is a bijection if it is both
an injection and a surjection.

Suppose that / is a function and X is a set. The restriction of / to X>
denoted by f\X, is the function with domain X c\ Dom(/) whose value for
x eX nDom(/) is /(JC). We write /(AT) for Ran(/|X). If Y is a set, then
the inverse image of Yunderf is the set / - 1(y) = {x: f(x)e Y}. (Note that
this is defined even when / is not injective.)

If /, g are functions, we say that g extends f if Dom(/) c Dom(g) and
f(x) = g(x) for all n ;ceDom(/): i short, /=g|Dom(/) . This is written

1 Usually in mathematical texts a function / is defined to be a set of ordered pairs
such that if (x, y) e / and (*, z) e /, then y = 2, and /(JC) is defined to be this y. We
do not insist on this definition of a function, but our exposition is consistent with
it.

2 Functions 3

The composition of two functions /, g is the function whose domain is
the set {JC: jc€Dom(g) and g(jc)eDom(/)}, and whose value is f(g(x))
when defined. This function is denoted /°g.

We denote by f0 the function that is defined nowhere; i.e. f0 has the
property that Dom(/ 0) = Ran(/0) = 0 . Clearly f0 = g 10 for any
function g.

Often in computability we shall encounter functions, or expressions
involving functions, that are not always defined. In such situations the
following notation is very useful. Suppose that a(x) and 0(x) are expres-
sions involving the variables x = (JCI, . . . xn). Then we write

a(x)~fi(x)
to mean that for any x> the expressions a(x) and /3(x) are either both
defined, or both undefined, and if defined they are equal. Thus, for
example, if/, g are functions, writing/(JC) — g(x) is another way of saying
that / = g; and for aiiy number y, /(JC) — y means that f(x) is defined and
fix) = y (since y is always defined).

Functions of natural numbers For most of this book we shall be
concerned with functions of natural numbers; that is, functions from Nn

to l\l for various n, most commonly n = 1 or 2.
A function / from f̂ Jn to N is called an n-ary function. The value of / at

an n-tuple (JCI, . . . , xn)e Dom(/) is written /(JCI, . . . , jcn), or /(*), if x
represents (JCI, . . . , xn). In some texts the phrase partial function is used
to describe a function from N" to N whose domain is not necessarily the
whole of Nn. For us the word function means partial function. On
occasion we will, nevertheless, write partial function to emphasise this
fact. A total function from Nn to N is a function whose domain is the whole
oiNn.

Particularly with number theoretic functions, we shall blur the dis-
tinction between a function and its particular values in two fairly standard
and unambiguous ways. First we shall allow a phrase such as 'Let
/(JCI, . . . xn) be a function . . . ' as a means of indicating that / is an n-ary
function. Second, we shall often describe a function in terms of its general
value when this is given by a formula. For instance, 'the function x2' means

 'the unary function / whose value at any jc€f̂ i is JC2'; similarly, 'the
function x + y' is the binary function whose value at (JC, y)e N2 is JC + y.

We describe the zero function f̂ -> W by 0; and generally, for m e N, we
denote the function N-*M whose value is always m by the boldface
symbol m.

Prologue 4

3. Relations and predicates
If A is a set, a property M(xu • . . , xn) that holds (or is true) for

some H-tuples from An and does not hold (or is false) for all other n-tuples
from A is called an /i-ary relation or predicate on A.2

For example, the property x < y is a binary relation (or predicate) on N;
2 < 3 holds (or is true) whereas 9 < 5 does not hold (or is false). As another
example, any rc-ary function / from M" to M gives rise to an (n + l)-ary
predicate M(x, y) given by

M(JCI, . . . , xn, y) if and only if f(xu . . . , * „) * y.

Equivalence relations and orders (The student unfamilar with these
notions may prefer to delay reading this paragraph until it is needed in
chapter 9.) In chapter 9 we shall encounter two special kinds of relations
on a set A.
(a) A binary relation i?ona set A is called an equivalence relation if it
has the following properties for all x,y,zeA:

(i) (reflexivity) £(*,*);
(ii) (symmetry) if R(x,y) then R(y, x)\
(iii) (transitivity) if R(x, y) and R(y9z) then R(x9z).

We think of R(x, y) as saying that x, y are equivalent (in some particular
sense). Then we define the equivalence class of x as the set {y: R(x> y)},
consisting of all things equivalent to x.
(b) A binary relation R on a set A is called a partial order if, for all

(i) (irreflexivity) not R(x,x)',
(ii) (transitivity) if R(x, y) and R(y, z) then R(x, z).

A partial order is usually denoted by the symbol <, and we write x < y
rather than <(x,y). A partial order is often defined by first defining <
(meaning < or =), with the properties

(i) x<x\
(ii) if JC < y and y < x then x = y;
(iii) < is transitive;

and then defining JC < y to mean x^y and x ^ y.

4. Logical notation
Our logical notation and usage will be standard throughout. We

use the word iff as an abbreviation for if and only if. The symbol =

2 Often an n-ary relation or predicate M(x) on a set A is identified with the set
{ JC: x e An and M(x) holds}. We do not insist on this identification here, although
our exposition is consistent with this approach.

4 Logical notation 5

denotes definitional equivalence, while => denotes implies, and <=>
denotes implies and is implied by. We use the symbols V, 3 to mean 'for
all' and 'there exists' in the standard way.

The symbol D is used in the text to indicate the end of a proof.

5. References
Each chapter is divided into sections, and items in each section

are numbered consecutively. A reference such as theorem 5-1.4 means
theorem 1.4 of chapter 5: this is the fourth numbered item of § 1 in that
chapter. When referring within a chapter the number of the chapter is
omitted. Exercises are included in this system of numbering. Thus
exercise 6-1.8(2) means the second exercise of exercises 1.8, found in
chapter 6.

Reference to s entries in the bibliography i made by citing the author
and year of publication of the work referred to.

1
Computable functions

We begin this chapter with a discussion of the fundamental idea of an
algorithm or effective procedure. In subsequent sections we describe the
way in which this idea can be made precise using a kind of idealised
computer; this lays the foundation for a mathematical theory of compu-
tability and computable functions.

1. Algorithms, or effective procedures
When taught arithmetic in junior school we all learnt to add and

to multiply two numbers. We were not merely taught that any two
numbers have a sum and a product - we were given methods or rules for
finding sums and products. Such methods or rules are examples of
algorithms or effective procedures. Their implementation requires no
ingenuity or even intelligence beyond that needed to obey the teacher's
instructions.

More generally, an algorithm or effective procedure is a mechanical
rule, or automatic method, or programme for performing some mathe-
matical operation. Some more examples of operations for which easy
algorithms can be given are

(1.1) (a) given n, finding the nth prime number,
(b) differentiating a polynomial,
(c) finding the highest common factor of two numbers (the
Euclidean algorithm),
(d) given two numbers JC, y deciding whether x is a multiple of y.

Algorithms can be represented informally as shown in fig. la.
The input is the raw data or object on which the operation is to be
performed (e.g. a polynomial for (1.1) (b), a pair of numbers for (1.1) (c)
and (d)) and the output is the result of the operation (e.g. for (1.1) (b), the
derived polynomial, and for (1.1) (d), the answer yes or no). The output is
produced mechanically by the black box - which could be thought of as a

1 Computable functions

Output
i

Black box

calculating machine, a computer, or a schoolboy correctly taught-or
even a very clever dog trained appropriately. The algorithm is the
procedure or method that is carried out by the black box to obtain the
output from the input.

When an algorithm or effective procedure is used to calculate the
values of a numerical function then the function in question is described
by phrases such as effectively calculable, or algorithmically computable, or
effectively computable, or just computable. For instance, the functions xy,
HCF(JC, y) = the highest common factor of x and y, and f(n) = the nth
prime number, are computable in this informal sense, as already
indicated. Consider, on the other hand, the following function:

II if there is a run of exactly n consecutive 7s
in the decimal expansion of n,

0 otherwise.
Most mathematicians would accept that g is a perfectly legitimate
function. But is g computable? There is a mechanical procedure for
generating successive digits in the decimal expansion of TT,1 SO the
following 'procedure' for computing g suggests itself.

'Given n, start generating the decimal expansion of n, one digit at a
time, and watch for 7s. If at some stage a run of exactly n consecutive 7s
has appeared, then stop the process and put g(n) = 1. If no such sequence
of 7s appears put g(n) = 0.'

The problem with this 'procedure' is that, if for a particular n there is no
sequence of exactly n consecutive 7s, then there is no stage in the process
where we can stop and conclude that this is the case. For all we know at
any particular stage, such a sequence of 7s could appear in the part of the
expansion of w that has not yet been examined. Thus the 'procedure' will
go on for ever for inputs n such that g(n) = 0; so it is not an effective
procedure. (It is conceivable that there is an effective procedure for
computing g based, perhaps, on some theoretical properties of n. At the
present time, however, no such procedure is known.)

This will be established in chapter 3 (example 7.1(3)).

2 The unlimited register machine 9

This example pinpoints two features implicit in the idea of an effective
procedure - namely, that such a procedure is carried out in a sequence of
stages or steps (each completed in a finite time), and that any output
should emerge after a finite number of steps.

So far we have described informally the idea of an algorithm, or
effective procedure, and the associated notion of computable function.
These ideas must be made precise before they can become the basis for a
mathematical theory of computability - and no/i-computability.

We shall make our definitions in terms of a simple 'idealised computer'
that operates programs. Clearly, the procedures that can be carried out by
a real computer are examples of effective procedures. Any particular real
computer, however, is limited both in the size of the numbers that it can
receive as input, and in the amount of working space available; it is in
these respects that our 'computer' will be idealised in accordance with the
informal idea of an algorithm. The programs for our machine will be
finite, and we will require that a completed computation takes only a
finite number of steps. Inputs and outputs will be restricted to natural
numbers; this is not a significant restriction, since operations involving
other kinds of object can be coded as operations on natural numbers. (We
discuss this more fully in § 5.)

2. The unlimited register machine
Our mathematical idealisation of a computer is called an

unlimited register machine (URM); it is a slight variation of a machine
first conceived by Shepherdson & Sturgis [1963]. In this section we
describe the URM and how it works; we begin to explore what it can do in
§3.

The URM has an infinite number of registers labelled Ri, R2, R 3 , . . . ,
each of which at any moment of time contains a natural number; we
denote the number contained in Rn by rn. This can be represented as
follows

Ri R2 R3 R4 R5 R6 R7

The contents of the registers may be altered by the URM in response to
certain instructions that it can recognise. These instructions correspond to
very simple operations used in performing calculations with numbers. A
finite list of instructions constitutes a program. The instructions are of four
kinds, as follows.

 1 Computable functions 10

Zero instructions For each n = 1, 2, 3 , . . . there is a zero instruction
Z(n). The response of the URM to the instruction Z(n) is to change the
contents of Rn to 0, leaving all other registers unaltered.

Example Suppose that the URM is in the following
configuration

Rx R2 R3 R4 R5 Re

23 0

and obeys the zero instruction Z(3). Then the resulting configuration is

(*) 0 23 0

The response of the URM to a zero instruction Z(n) is denoted by 0 -* Rn,
or rn := 0 (this is read rn becomes 0).

Successor i n s t r u c t i o n s F o r e a c h n = l , 2 , 3 , . . . t h e r e i s a successor
instruction S(n). The response of the URM to the instruction S(n) is to
increase the number contained in Rn by 1, leaving all other registers
unaltered.

Example Suppose that the URM is in the configuration (*)
above and obeys the successor instruction S(5). Then the new con-
figuration is

Ri R2 R3 R4 R5 R6

0 23 8 0

The effect of a successor instruction S(n) is denoted by
rn := rn + 1 (rn becomes rn +1).

l-*Rn , or

Transfer instructions For each m = 1, 2, 3 , . . . and n = 1, 2, 3 , . . . there
is a transfer instruction T(m,n). The response of the URM to the
instruction T(m, n) is to replace the contents of Rn by the number rm

contained in Rm (i.e. transfer rm into Rn); all other registers (including
Rm) are unaltered.

Example Suppose that the URM is in the configuration (**)
above and obeys the transfer instruction T(5,1). Then the resulting

2 The unlimited register machine 11

configuration is
Ri R2 R3 R4 R5 R6

8 0 23 8 0

The response of the URM to a transfer instruction T(ra, y n) is denoted b
rm -» R m or rn := rm (rn becomes rm).

Jump instructions In the operation of an informal algorithm there may
be a stage when alternative courses of action are prescribed, depending
on the progress of the operation up to that stage. In other situations it may
be necessary to repeat a given routine several times. The URM is able to
reflect such procedures as these using jump instructions; these will allow
jumps backwards or forwards in the list of instructions. We shall, for
example, be able to use a jump instruction to produce the following
response:

'If r2 = r6, go to the 10th instruction in the program; otherwise, go
on to the next instruction in the program.'

The instruction eliciting this response will be written J(2, 6, 10).
Generally, for each m = 1, 2, 3 , . . . , n = 1, 2, 3 , . . . and q = 1, 2, 3 , . . .

there is a jump instruction J(m, n, q). The response of the URM to the
instruction J(m,nyq) is as follows. Suppose that this instruction is
encountered in a program P. The contents of Rm and Rn are compared,
but all registers are left unaltered. Then

if rm = rn, the URM proceeds to the qih instruction of P;
if rm T* rn, the URM proceeds to the next instruction in P.

If the jump is impossible because P has less than q instructions, then the
URM stops operation.

Zero, successor and transfer instructions are called arithmetic instruc-
tions.

We summarise the response of the URM to the four kinds of instruc-
tion in table 1.

Computations To perform a computation the URM must be provided
with a program P and an initial configuration - i.e. a sequence
0i»02>03»-«« of natural numbers in the registers Ri, R2, R3, • • • •
Suppose that P consists of s instructions /1, h,..., Is. The URM begins
the computation by obeying Iu then J2,13, and so on unless a jump

1 Computable functions 12

Table 1

Type of instruction Instruction Response of the URM

Zero Z(n) Replace rn by 0. (0 -> Rn, or rn := 0)
Successor S(n) Add 1 to rn. (rn +1 -* Rn, or rn := rrt +

1)
Transfer T(m, n) Replace rn by rm. (r m -» Rn, or rn := rm)
Jump J(m, n, 4) If rm = rn, jump to the qth instruction;

otherwise go on to the next instruc-
tion in the program.

instruction, say J(m, n, q), is encountered. In this case the URM proceeds
to the instruction prescribed by J(m, n, q) and the current contents of the
registers Rm and Rn. We illustrate this with an example.

2.1. Example
Consider the following program:

h Jd,2,6)
h S(2)
h S(3)
/4 J(l,2,6)
/s J(l, 1,2)
/6 T(3,l)

Let us consider the computation by the URM under this program with
initial configuration

Ri

9

R2

7

R3

0

R4

0

Rs

0

(We are not concerned at the moment about what function this program
actually computes; we wish to illustrate the way in which the URM
operates programs in a purely mechanical fashion without needing to
understand the algorithm that is being carried out.)

We can represent the progress of the computation by writing down the
successive configurations that occur, together with the next instruction to
be obeyed at the completion of each stage.

2 The unlimited register machine 13

Initial
initial
config-
uranon

Ri

9

R2

7

R3

0

R4

0

R5

0

 9 7 0 0 0

9 8 0 0 0

9 8 1 0 0

9 8 1 0 0

9 8 1 0 0

Next instruction

I2 (since rx ^ r2)

U

Is (since r\ ^ r2)

I2 (since r\ =

and so on. (We shall continue this computation later.)

We can describe the operation of the URM under a program P =
/ i , / 2 , . . . , Is in general as follows. The URM starts by obeying instruc-
tion 11. At any future stage in the computation, suppose that the URM is
obeying instruction Ik. Then having done so it proceeds to the next
instruction in the computation, defined as follows:

if Ik is not a jump instruction, the next instruction is Ik+i\
if rm = rm

-i otherwise,
where rm, rn are the current contents of Rm and Rn.

The URM proceeds thus as long as possible; the computation stops
when, and only when, there is no next instruction; i.e. if the URM has just
obeyed instruction Ik and the 'next instruction in the computation'
according to the above definition is Iv where v>s. This can happen in the
following ways:

(i) if k = s (the last instruction in P has been obeyed) and Is is an
arithmetic instruction,
(ii) if Ik = J(m, n, q), rm = rn and q > s,
(iii) if Ik = J(m, n, q),rm^ rn and k = s.

We say then that the computation stops after instruction Ik; the final
configuration is the sequence ru ̂ 2, r3 , . . . , the contents of the registers at
this stage.

if Ik = J(m, n, q) the next instruction is

1 Computable functions 14

Let us now continue the computation begun in example 2.1.

Example 2.1 (continued)
Ri R2 R3 R4 R5

Final
config-
uration

 9 8 1 0 0

 9 9 1 0 0

 9 9 2 0 0

 9 9 2 0 0

2 9 2 0 0

Next instruction

h

h

U

h (since r\ = r2)

I7: STOP.

This computation stops as indicated because there is no seventh
instruction in the program.

2.2. Exercise
Carry out the computation under the program of example 2.1

with initial configuration 8,4, 2, 0, 0 , . . .

The essence of a program and the progress of computations under it is
often conveniently described informally using a flow diagram. For
example, a flow diagram representing the program of example 2.1 is given
in fig. \b. (We have indicated alongside the flow diagram the typical
configuration of the registers at various stages in a computation.) Note the
convention that tests or questions (corresponding to jump instructions)
are placed in diamond shaped boxes.

The translation of this flow diagram into the program of exercise 2.1 is
almost self-explanatory. Notice that the backwards jump on answer 'No'
to the second question lri.= r2T is achieved by the fifth instruction
J(l, 1, 2) which is an unconditional jump: we always have r^ = ru so this
instruction causes a jump to I2 whenever it is encountered.

When writing a program to perform a given procedure it is often
helpful to write an informal flow diagram as an intermediate step: the
translation of a flow diagram into a program is then usually routine.

2 The unlimited register machine 15

Fig. \b. Flow diagram for the program of example 2.1.

START

Typical configuration

Ri R2 R3

After /c cycles round the loop
in this program:

y+k z+k

If JC = y + fc:

z+fc

STOP

There are, of course, computations that never stop: for example, no
computation under the simple program S(l), J(l, 1,1) ever stops.
Computation under this program is represented by the flow diagram in
fig. lc. The jump instruction invariably causes the URM to return, or loop
back, to the instruction . S(l)

There are more sophisticated ways in which a computation may run for
ever, but always this is caused essentially by the above kind of repetition
or looping back in the execution of the program.

1 Computable functions 16

Fig. lc.
START

1
r,:=r, + l

T

2.3 Exercise
Show that the n computatio under the program of example 2.1

with initial configuration 2, 3, 0, 0, 0 , . . . never stops.

The question of deciding whether a particular computation eventually
stops or not is one to which we will return later.

Some notation will help us now in our discussion. Let a\, a2, a 3, . . . be
an infinite sequence from N and let P be a program; we will write

(i) P{a\9 02, 03, • • •) for the computation under P with initial
configuration au 02, 03, • • • ;
(ii) P(tf i, 02, 0 3 , . . . U to mean that the computation
P(o,u 02, 03, • • •) eventually stops;
(in) P(0i, 0 2, 0 3 , . . .)t to mean that the computation
P(a\, 02, 0 3 , . . .) never stops.

In most initial configurations that we shall consider, all but finitely
many of the 0, will be 0. Thus the following notation is useful. Let
01, 0 2 , . . . , 0n be a finite sequence of natural numbers; we write

(iv) P(au a2,...,an) for the computation
P(au 0 2 , . . . , an, 0 , 0 , 0 , . . .) ,

Hence
(v) P(au 02, • • •, 0n)4 means that P(au 02, •. •, am 0 , 0 , 0 , . . .) | ;
(vi) P(au 0 2 , . . . , 0n)t means that P(au 02,. • . , 0 « , 0 , 0 , 0 , . . .) | .

Often a computation that stops is said to converge, and one that never
stops is said to diverge,

3. URM-computable functions
Suppose that / i s a function from f̂ ln to N (n > 1); what does it

mean to say that / is computable by the URM? It is natural to think in
terms of computing a value / (0 i , . . . , an) by means of a program P on
initial configuration au 02, • • . , 0n, 0, 0 , That is, we consider
computations of the form P{au <*2, • - •, an). If any such computation

3 URM-computable functions . 17

stops, we need to have a single number that we can regard as the output or
result of the computation; we make the convention that this is the number
ri finally contained in Ri. The final contents of the other registers can be
regarded as rough work or jottings, that can be ignored once we have the
desired result in Rx.

Since a computation P(au . . . , an) may not stop, we can allow our
definition of computability to apply to functions / from Mn to N whose
domain may not be f all o Nn; i.e. partial functions. We shall require that
the relevant computations stop (and give the correct result!) precisely for
inputs from the domain of /. Thus we make the following definitions.

3.1 Definitions
Let / be a partial function from Mn to N.

(a) Suppose that P is a program, and let au a2i..., an, b € N.
(i) The computation P(au a2,..., an) converges to b if
P(au #2 , . . •, dn)i and in the final configuration b is in Ri. We
write this P(au • • . , an)ib\
(ii) P URM-computes f if, for every au...,an9b
P(au...,an)lb if and only if (ai,...,an)eDom(f) and
f(au • • • ,an) = b. (In particular, this m e a n s that P(au . . . , a n U if
and only if (# i , . . . , an) e D o m (/) .)

(b) The function / is URM-computable if there is a program that
URM-computes /.

The class of URM-computable functions is denoted by % and n-ary
URM-computable functions by ^ From now on we will use the term
computable to mean URM-computable, except in chapter 3 where other
notions of computability are discussed.

We now consider some easy examples of computable functions.

3.2 Examples
(a) x + y.

We obtain x + y by adding 1 to x (using the successor instruction) y
times. A program to compute x + y must begin on initial configuration
x, y, 0, 0, 0 , . . . ; our program will keep adding 1 to ru using R3 as a
counter to keep a record of how many times r\ is thus increased. A typical
configuration during the computation is

Ri R2 R3 R4 R5

x + k y k 0 0 . . .

1 Computable functions 18

The program will be designed to stop when k?=y, leaving x + y in Rx as
required.

The procedure we wish to embody in our program is represented by the
flow diagram in fig. Id. A program that achieves this is the following:

h J(3,2,5) < - -
h S(l)
h S(3)
h J(l, 1,1) •

(The dotted arrow, which is not part of the program, is to indicate to the
reader that the final instruction has the effect of always jumping back to
the first instruction.) Note that the STOP has been achieved by a jump
instruction to *I5\ which does not exist. Thus, x + y is computable.

Fig. Id. Flow diagram for addition (example 3.2(a)).
START

-+>

r,:=f

No

1 + *

t

k + 1

Yes
STOP

- ' - f tx-1 i fjt>0,

(Since we are restricting ourselves to functions from 1̂1 to N, this is the best
approximation to the function x - 1 .)

We will write a program embodying the following procedure. Given
initial configuration x, 0 , 0 , 0 , . . . , first check whether x = 0; if so, stop;
otherwise, run two counters, containing k and k +1 , starting with k = 0.
A typical configuration during a computation will be

Ri R2 R3 R4

k Jfc + 1 0

3 URM-computable functions 19

Check whether x = k +1 ; if so, the required result is k; otherwise increase
both counters by 1,. and check again.

A flow diagram representing this procedure is given in fig. le. A
program that carries out this procedure is the following:

h Jd,4,9)
h S(3)
I3 J(l,3,7) «-
h S(2)
Is S(3)
h Jd, 1,3)
h T(2,l)

Thus the function x — 1 is computable.

Fig. le. Flow diagram for x — 1 (example 3.2(b)).

START Typical configuration

R, R2 R3

• %

NO

C + 1
• • STOP

1 Computable functions 20

(c) f(x) = (^ ft* is even,
I undefined if x is odd.

In this example, Dom(/) = E (the even natural numbers) so we must
ensure that our program does not stop on odd inputs.

A procedure for computing f(x) is as follows. Run two counters,
containing k and 2k for k = 0 , 1 , 2 , 3 , . . . ; for successive values of k,
check whether x = 2k;if so, the answer is k; otherwise increase k by one,
and repeat. If x is odd, this procedure will clearly continue for ever.

The typical configuration will be

1 I\ .2 JCV3 Jtv*

2k

with k = 0 initially. A flow diagram for the above process is given in fig. If.

Fig. 1/. Flow diagram for example 3.2(c)).

START

STOP

3 URM-computable functions 21

A program that executes it is
A JU.2,6)
h S(3)
h S(2)
h S(2)
h J (l . l . l)

Hence / is computable.
Note. The programs in these examples are in no sense the only programs
that will compute the functions in question.

Given any program P (i.e. any finite list of instructions), and n > 1, by
thinking of the effect of P on initial configurations of the form
au a2,..., am 0, 0 , . . . we see that there is a unique n-ary function that P
computes, denoted by f(p\ From the definition it is clear that

rthe unique b such that P(au..., an)ib9

f p \ a u . . . , a n) = < if P (a l y . . . , a n) U
(.undefined, if P (a i , . . . , a n) | .

In a later chapter we shall consider the problem of determining / P } for
any given program P.

It is clear that a particular computable function can be computed by
many different programs; for instance, any program can be altered by
adding instructions that have no effect. Less trivially, there may be
different informal methods for calculating a particular function, and when
formalised as programs these would give different programs for the same
function. In terms of the notation we have introduced, we can have
different programs Pi and P2, with fp] = f£l for some (or all) n. Later we
shall consider the problem of deciding whether or not two programs
compute the same functions.

3.3 Exercises
1. Show that the following functions are computable by devising

programs that will compute them.
| 0 if JC = 0,
11 if JC ^ 0;

(b) f(x) = 5;

1 Computable functions 22

HZ
f 3 * itx ls a multiple of 3,
1undefined otherwise;

(/) /(*) = [2JC/3]. ([2] denotes the greatest integer < z).
2. Let P be the program in example 2.1. What is fp)f>
3. Suppose that P is a program without any jump instructions. Show

that there is a number m such that either
/£>(*) = m, for all JC,

or
fp)(x) = x + m> for all JC.

4. Show that for each transfer instruction T(m, n) there is a pro-
gram without any transfer instructions that has exactly the same
effect as T(rn,n) on any configuration of the URM. (Thus
transfer instructions are really redundant in the formulation of
our URM; it is nevertheless natural and convenient to have
transfer as a basic facility of the URM.)

4. Decidable predicates and problems
In mathematics a common task is to r decide whethe numbers

possess a given property. For instance, the task described in (1.1) (d) is to
decide, given numbers JC, y, whether they have the property that x is a
multiple of y. An algorithm for this operation would be an effective
procedure that on inputs JC, y gives output Yes or No. If we adopt the
convention that 1 means Yes, and 0 means No, then the operation
amounts to calculation of the function

.. . f 1 if x is a multiple of y,
fix v)== 1

10 if JC is not a multiple of y.
Thus we can say that the property or predicate 'JC is a multiple of y' is
algorithmically or effectively decidable, or just decidable if this function /
is computable.

Generally, suppose that M(JCI, JC2, . . . , JC«) is an n-ary predicate of
natural numbers. The characteristic function cM(x) (setting x =
(xu .. .,*„)) y is given b

(1 if M(x) holds,
CM X ~ lO if M(x) doesn't hold.

5 Computability on other domains 23

4.1 Definition
The predicate Af Or) is decidable if the function cM is compu-

table; Af Or) is undecidable if Af Or) is not decidable.

4.2 Examples
The following predicates are decidable:
(a) 'x 5* y': the function /of exercise 3.3 (lc) is the characteristic
function of this predicate.
(b) lx = 0': the characteristic function is given by

f 1 if x = 0,
if x * 0.

The following simple program computes g:
Jd,2,3)
J(l, 1,4) .
S(2)
T(2,1)
(c) 'x is a multiple of y': it is possible to write a program for the
characteristic function, d but this would be somewhat lengthy an
complicated. A simpler demonstration that this predicate is
decidable will emerge from the next chapter, where techniques
for generating more complex computable functions are
developed.

Note that when discussing decidability (or undecidability) we are
always concerned with the computability (or non-computability) of total
functions.

In the context of decidability, properties or predicates are sometimes
described as problems. Thus we might say that the problem 'x ^ y' is
decidable. In chapter 6 we will study undecidable problems.

4.3 Exercise
Show that the following predicates are decidable.
(a) ' * < y \
(b) *x*l\
(c) 'JC is even'.

5. Computability on other domains
Since the URM handles only natural numbers, our definition of

computability and decidability applies only to functions and predicates

1 Computable functions 24

of natural numbers. These notions are easily extended to other kinds of
object (e.g. integers, polynomials, matrices, etc.) by means of coding, as
follows.

A coding of a domain D of objects is an explicit and effective injection
a: D -» N. We say that an object d e D is coded by the natural number
a(d). Suppose now that / is a function from D to D\ then / is naturally
cotied by the function /* from N to M that maps the code of an object
d £ Dom(/) to the code of f(d). Explicitly we have

/* =a° / °a"1 .
Now we may extend the definition of URM-computability to D by saying
that / is computable if /* is a computable function of natural numbers.

5.1 Example
Consider the domain Z. An explicit coding is given by the

function a where
, x [2 n i f n > 0 ,

l - 2 / t - l i f n < 0 .

Then a"1 is given by

-i/ \ _ f 2^ if mis even,
« (m) = l _ i (m + l) if OT fa odd.

Consider now the function x — 1 on Z; if we call this function /, then
/*: 1̂1 -> fol is given by

fl if Jc=O(i.e. x = a(0)),
/*(*) = < * - 2 if jc>0and;c is even (i.e. x = a(n), /t >0),

[JC+2 if x is odd. (i.e. JC = a(n), n <0).

It is a routine exercise to write a program that computes /*; hence x -1 is
a computable function on Z.

The definitions of computable n-ary function on a domain D and
decidable predicate on D are obtained by the obvious extension of the
above idea.

5.2 Exercises
1. Show that the function 2x on Z is computable.
2. Show that the predicate 'x > 0' is a decidable predicate on Z.

2
Generating computable
functions

In this chapter we shall see that various methods of combining compu-
table functions give rise to other computable functions. This will enable
us to show quite rapidly that many commonly occurring functions are
computable, without writing a program each time - a task that would be
rather laborious and tedious.

1. The basic functions
First we note that some particularly simple functions are

computable; from these basic functions (defined in lemma 1.1 below) we
shall then build more complicated computable functions using the tech-
niques developed in subsequent sections.

1.1. Lemma
The following basic functions are computable:
(a) the zero function O(O(JC) = 0 for all JC);
(b) the successor function x + \\
(c) for each n > 1 and 1 < / < n, the projection function U? given
by U?(xux2,.. .,*„) = *,.

Proof. These functions correspond to the arithmetic instructions for
the URM. Specifically, programs are as follows:

(a) 0: program Z(l);
(b) Jt + l: program S(l);
(c) U": program T(i, 1). •

2. Joining programs together
In each of §§ 3-5 below we need to write programs that

incorporate other programs as subprograms or subroutines. In this section
we deal with some technical matters so as to make the program writing of
later sections as straightforward as possible.

2 Generating computable functions 26

A simple example of program building is when we have programs P
and Q, and we wish to write a program for the composite procedure: first
do P, and then do Q. Our instinct is to simply write down the instructions
in P followed by the instructions in Q. But there are two technical points
to consider.

Suppose that P = Iu 7 2 , . . . , I5- A computation under P is completed
when the 'next instruction for the computation' is Iv for some v >s; we
then require the computation under our composite program to proceed
to the first instruction of Q. This will happen automatically if v = 5 4-1, but
not otherwise. Thus for building composite programs we must confine our
attention to programs that t invariably stop because the nex instruction is
/s+i. Such programs are said to be in standard form. Clearly it is only jump
instructions that can cause a program to stop in non-standard fashion.
Thus we have the following definition.

2.1. Definition
A program P = 7i, 7 2 , . . . , / s is in standard form if, for every

jump instruction J(m, n, q) in P we have q^s + 1.

Examples. In examples 1-3.2 the programs for (a) and (c) are in
standard form, whereas the program in (b) is not.

Insisting on standard form if necessary is no restriction, as we now see.

2.2. Lemma
For any program P there is a program P* in standard form such

that any computation under P* is identical to the corresponding compu-
tation under P, except possibly in the manner of stopping. In particular, for
any au • ..,an,b,

P(au • • •, an) I b if and only ifP*{au . . . , aH)ib9

and hence f? =/£* for every n>0.
Proof. Suppose that P = / i , / 2 , . . . , Is. To obtain P* from P simply

change the jump instructions so that all jump stops occur because the
jump is to J,+1. Explicitly, put P* = /*, / * , . . . , / ? where

if Ik is not a jump instruction, then / * = Ik;

if/*-««,«,,), then/*-{{* +1.
u(m, AI, 5-hi)

Then clearly P* is as required. D

2 Joining programs together 27

Let us assume now that the programs P and Q are in standard form.
The second problem when e joining P and Q concerns th jump instruc-
tions in Q. A jump J(m, n, q) occurring in Q commands a jump to the qth
instruction of Q (if rm = /•„). But the <?th instruction of Q will bf come the
s + qth instruction in the composite program; thus each jump J(m, n, q) in
Q must be modified to become J(m, n, s + q) in the composite program if
the sense is to be preserved.

Now without any further e worry we can defin the join or concatenation
of two programs in standard form:

2.3. Definition
Let P and Q be programs of lengths s, t respectively, in standard

P
form. The join or concatenation of P and Q> written PQ or , is the

program Iu h, • • • > 1$, Is+\ • • •, L+t where P = IU...,IS, and the
instructions J s +i , . . . , Is+t are the instructions of Q with each jump
J(m, n, (?) replaced by J(m, n, s

With this definition it is clear that the effect of PQ is as desired: any
computation under PQ is identical to the corresponding computation
under P followed by the computation under Q whose initial configuration
is the final configuration from the computation under P.

There are two further considerations before we can proceed to the
major tasks of this chapter. Suppose that we wish to compose a program
Q having a given program P as a subroutine. To write Q it is often
important to be able to find some registers that are unaffected by
computations under P. This can be done as follows.

Since P is finite, there is a smallest number u such that none of the
registers Rt, for v > u is mentioned in P; i.e. if Z(n), or S(/i), or T(m, /t),
or J(m, n, q) is an instruction in P, then m,n<u. Clearly, during any
computation under P, the contents of Rv for v > u remain unaltered, and
have no effect on the values of ru • • •, ru. Thus when writing our new
program Q the registers R^ for v > u can be used, for example, to store
information without affecting any computation under the subroutine P.
We denote the number u by p(P).

Finally, we introduce some notation that will greatly simplify the main
proofs of this chapter. Suppose that P is a program in standard form
designed to compute a function f(xi,..., xn). Often when using P as a

2 Generating computable functions 28

subroutine in a larger program the inputs Jt i , . . . , jcn for which
/(JCI, . . . , xn) is desired may be held in registers Rix,..., Rin rather than
R i , . . . , Rn as the program P requires; further, the output f(x\,..., xn)
may be required for future purposes to be in some register R/ rather than
the conventional Ri; and finally the working registers R i , . . . , Kp{P) for P
may contain all kinds of unwanted information. We can modify P to take
account of all of these points as follows.

We write P[lu - • •, L -»/] for the program in fig. 2a that translates the
flow diagram alongside. The program P[lu . . . , / „ -W] has the effect of
computing/(/•/!,..., rln) and placing the result in R/. Moreover, the only
registers affected by this program are (at most) Ri, R 2 , . . . , RP<p) and R,.
(We have assumed in defining P[lu , L -* /] that Rll9..., R/n are
distinct from R i , . . . , Rn; this will be the case in all our uses of this
notation. The reader should be able to modify the definition for situations
where this is not the case.)

Fig. 2a. Flow diagram for P[lu

START

1
Transfer x from

k / | , . . . , R / n to R , , . . . J

Clear R n + 1 , . . . , R p (P

Z(n +

)-* R, (using P)

I
STOP

3 Substitution 29

3. Substitution
A common way of manufacturing new functions from old is to

substitute functions into other functions, otherwise known as composi-
tion of functions. In the following theorem we show that when this
process is applied to computable functions, the resulting functions are
also computable. In short, we say that <# is closed under the operation of
substitution.

3.1. Theorem
Suppose that f(yu . . . , yk) and g i (x) , . . . , gk(x) are computable

functions, where x = (xu . . . , xn). Then the function h(x) given by

is computable.
(Note. h(x) is defined if and only if gi(x),..., gk(x) are all defined and
(gi(x),.. . ,gfc(jr))eDom(/); thus, if / and gu . . . , gk are all total
functions, then h is total.)

Proof. Suppose that F,GU . . . ,Gk are programs in standard form
which compute /, gu..., gk respectively. We will write a program H
that embodies the following natural procedure for computing h. 'Given
JC, use the programs Gu... ,Gk to compute in succession
gi(x), gi(x),..., gfc(x), making a note of these values as they are
obtained. Then use the program F to compute f(gi(x),..., gfc (*)).'

We must take a little care to avoid losing information needed at later
stages in the procedure, namely JC and those values gt(x) already
obtained. Putting m = max(n, k, p(F), p(Gi),..., p(Gk)), we shall begin
by storing x in R m +i , . . . , Rm+n; the registers Rm + n + i , • • •, Rm+*+fc will
be used to store the values g,(jc) as they are computed for / = 1, 2 , . . . , k.
These registers are completely ignored by computations under
F, Gu • •, Gk. A typical configuration during computation under H will
be

Storage registers

R l • • • Rm Rm + 1 • • • Rm + + n Rm+n + 1 Rm n+2 • • • Rm + n / +

gi(x)

An informal flow diagram for computing h is given in fig. 2b. This is
easily translated into the following program H that computes h:

2 Generating computable functions

T(l ,m

T(n, m+n)

Gi[ra + 1, m + 2 , . . . , m

Gk[m + l, ra+2, . . . , m
F[m + n + 1 , . . . , rn+n

(Recall the meaning
of this notation from
§2.)

Fig. 2b. Substitution (theorem 3.1).

START1
Store x in Rm + , , . . . , Rm+n

1

r

f(g\(x),. . .gfc(x))-*R,

STOP

3 Substitution 31

Clearly a computation H(x) will stop if and only if each computation
Gi(x) stops (1 < i < k) and the computation F(gi(x),..., gk(x)) stops,
which is exactly as required. •

New functions can be obtained from any given function by rearranging
or identifying its variables, or by adding new dummy variables; for
instance, from a function f{yu yi) we can obtain

hi(xu x 2) ^f(x2y xi) (rearrangement),
h2(x) -fix, x) (identification),

h$(x\, x2, X3)=*f(x2, X3) (adding dummy variables).

The following application of theorem 3.1 shows that any of these opera-
tions (or a combination of them) transforms computable functions into
computable functions.

3.2. Theorem
Suppose that f{yu - - •, y*) is a computable function and that

xiiy xi2,..., xik is a sequence ofk of the variables X\,... ,xn (possibly with
repetitions). Then the function h given by

h(xu.. .,xn)z*f(xil9.. ,,xik)

is computable.
Proof. Writing JC = (xi9..., xn) we have that

which is computable, by Lemma l. l(c) and theorem 3.1. •

Using this result we can o see that theorem 3.1 als holds when the
functions g i , . . . , gk substituted into / are not necessarily functions of all
of the variables JCI, . . . , xn, as in the following example.

3.3. Example
The function/(JCI, x2, X3) = JCI + x2 + *3 is computable; this can be

deduced from the fact that x + y is computable (example 1-3.2(<z)), by
substituting *i 4- x2 for JC, and x3 for y in x + y.

2 Generating computable functions 32

Substitution combined with the principle described in the next section
gives a powerful method of generating computable functions.

3.4. Exercises
1. Without writing any programs, show that for every meN the

following functions are computable:
(a) m (recall that m(x) = m, for all JC),
(b) mx.

2. Suppose that f(x, y) is computable, and m e N. Show that the
function
h(x)=*f(x,m)
is computable.

3. Suppose that g(x) is a total computable function. Show that the
predicate M(x, y) given by
AfU, y)s'g(jc) = y'
is decidable.

4. Recursion
Recursion is a method of defining a function by specifying each of

its values in terms of previously defined values, and possibly using other
already defined functions.

To be precise, suppose that f(x) and g(x, y, z) are functions (not
necessarily total or computable). Consider the following 'definition' of a
new function h{x, y)\

(4.1) (i) ft(jr,O)«/(*),

(ii) *(x,y + l)

At first sight this may seem a little dubious as a definition, for in the
second line it appears that h is being defined in terms of itself - a circular
definition! However, with a little thought we can convince ourselves that
this is a valid definition: to find the value of /Z(JC, 3) for instance, first find
/I(JC, 0) using (4.1)(i); then, knowing h(*, 0), use (4.1)(ii) to obtain h(x, 1);
similarly, obtain h(x> 2), and finally h{x, 3) by further applications of
(4.1)(ii). Thus, circularity is avoided by thinking of the values of h(x, y) as
being defined one at a time, always in terms of a value already obtained.

4 Recursion 33

A function h defined thus is said to be defined by recursion from the
functions / and g; the equations 4.1 are known as recursion equations.
Unless both / and g are total, then h as defined by (4.1) may not be total;
the domain of h will satisfy the conditions

 (x,0)€Dom(fc) iff jreDom(/),
Or, y + l)eDom(/i) iff (jr, y)eDom(h)

and (jr, y, h(x, y))e Dom(g).
Let us summarise the above discussion in a theorem, whose proof we

omit.

4.2. Theorem
Let x = U i , . . . , xn)y and suppose that f(x) and g(jr, y, z) are

functions; then there is a unique function h(x> y) satisfying the recursion
equations

(,0) « / (*) ,
h(x9 y +1) =*g(x, y, h(x, y)).

Note. When n = 0 (i.e. the parameters x do not appear) the recursion
equations take the form

where a e N.

4.3. Examples
(a) Addition: for any JC, y we have

Thus addition (i.e. the function h(x> y) = x + y) is defined by recursion
from the functions f(x) = x and g(jc, y, z) = z +1 .

(£) y!: with the convention that 0! = 1, we have that
0! = l,

Thus the function y! is defined by recursion from 1 and the function
g(y,z) =

There are forms of definition by recursion that are more general than
the one we have discussed; we shall encounter an example of this in § 5,
and a fuller discussion of this topic is included in chapter 10. In contexts

2 Generating computable functions 34

where general kinds of recursion are being considered, the particularly
simple kind of definition given by (4.1) is called primitive recursion.

Many commonly occurring functions have easy definitions by (primi-
tive) recursion, so for establishing computability the next theorem is
extremely useful. Briefly, it shows that <£ is closed under definition by
recursion.

4.4. Theorem
Suppose that f(x) and g(x, y, z) are computable functions, where

x = (JCI, . . . , xn)\ then the function h(x,y) obtained from f and g by
recursion is computable.

Proof. Let F and G be programs in standard form which compute the
functions/(*) and g(x, y, z). We will devise a program H for the function
h(x, y) given by the recursion equations 4.1. Given an initial configura-
tion JCI, . . . , xm y, 0, 0, 0 . . . H will first compute h(x, 0) (using F);
then, if y^O, H will use G to compute successively h(x, 1),
h(x, 2) , . . . , h(x, y), and then stop.

Let m = max(n + 2, p(F), p{G))\ we begin by storing JC, y in
Rm +1, . . . , Rm +n+1; the next two registers will be used to store the current
value of the numbers k and h(x, k) for k = 0, 1, 2 , . . . , y. Writing t for
m+n, a typical configuration during the procedure will thus be

Storage registers

i . . . Rm Rm+i . . . Rr Rr+i Rr+2 RJ+3

Hx,k)

with k = 0 initially.
An informal flow diagram for the procedure is given in fig. 2c. This flow

diagram translates easily into the following program H that computes h:
T(l,m + 1)

Iq

/P T(r + 3,1)
Hence h is computable. •

4 Recursion

Fig. 2c. Recursion (theorem 4.4).

START

1
Store x, y in R m + I , . . . ,R ,+ = 0 initially)

/(*)(= fc(x,0))->Rr+3

(At this stage the
configuration is (*))

STOP

We now proceed to use theorems 3.1 and 4.4 to compile a collection of
computable functions. The collection is potentially infinite, so our choice
is influenced by (i) the needs of subsequent development of our theory,
and (ii) the desire to give credence to the thesis that all functions that we
would regard as computable in the informal sense are indeed URM-
computable. For reasons which will become apparent later we shall
include some functions such as x + y and x — 1 for which we have already
written programs.

We shall use repeatedly the fact that,by theorem 3.2, in a definition by
recursion such as (4.1), the computable functions / and g need not
be functions f of all o the named variables for the function h to be
computable.

2 Generating computable functions 36

4.5. Theorem
The following functions are computable. (Proofs are given as the

functions are listed.)
{a) jc + y Proof. Example 4.3(a) gives a definition by recursion

from the computable functions JC and z +1.
{b) xy Proof. JCO = O,

is a definition by recursion from the computable
functions O(JC) and z + JC.

jcy+1 = JCVJC; by recursion and {b).

(d) J c - 1 Proof. 0 - 1 = 0,
(JC 4-1) — 1 = JC ; by recursion.

{e) x-y = * y , *".y> {cut-offsubtraction)
10 otherwise.

JC — (y +1) = (JC — y) — 1; by recursion and {d).
(/) sg{x) = (° F* = °' (Cf. exercises l-3.3(la))

11 ifx T* 0.
Proof. sg(0) = 0,

sg(jc +1) = 1; by recursion.
(g)sgU) = {J if

if
X

x^ (cf. example 1-4.2(6))
Proof, sg(jc) = 1 -sg(jc); by substitution, {e) and (/).

(/i)|jc-y| Proof. \x-y\ = (JC — y) + {y ~JC); by substitution,
{a) and {e).

(/) JC! PWO/. Example 4.3(ft) gives a definition by recursion
from computable functions.

(/) min(jc, y) = minimum of x and y.
Proof. min(jc, y) = JC — (JC — y); by substitution.

(fc) max(x, y) = maximum of x and y.
Proof. max(jc, y) = JC 4- (y — JC); by substitution.

(/) rm(jc, y) = remainder when y is divided by x {to obtain a total
function, we adopt the convention rm(0, y) = y).

Proof. We have
f rm(:c, y) +1 if rm(x, y) 4-1 # JC,

rm(jc, >'"I"1) = 1Q

This gives the following definition by recursion:
rm(jt, 0) = 0,
rmOc, y +1) = (rm(x, y) +1) sg(|x - (rm(x, y) +1)|)

4 Recursion 37

The second equation can be written
rm(x, y 4-1) = g(x, rm(x, y))
where g(x,z) = (z + l)sg(\x-(z + l)\)\ and g is
computable by several applications of substitution.
Hence rm(jc, y) is computable.

(m) qt(jc, y) = quotient when y is divided by x (to obtain a total
function we define qt(O, y) = 0).

Proof. Since
) + l ifrmU, y) + l=Jt,

(n) divU,y) =

we have the following definition by recursion from
computable functions:
qtOt,0) = 0,
qt(x, y + 1) = qt(jc, y) + sg(|jc -(rm(jc, y) + 1)|).

1 //Ac|y (x divides y),

he convention that 0\0 but 0^y if y 9^0.) Hence
x | y /s decidable (recall definition 1-4.1).

Proof div(*, y) = sg(rm(jc, y)), computable by substi-
tution. •

The following are useful corollaries involving decidable predicates.

4.6. Corollary (Definition by cases)
Suppose that f\{x) /*(*) are total computable functions, and

M\(x),..., Mk(x) are decidable predicates, such that for every x exactly
one ofMi(x),..., Mk(x) holds. Then the function g(x) given by

/i(jr) if M^x) holds,
) holds,

fk(x) if Mk{x) holds,
is computable.

Proof. g(x) = cMl(x)f\(x) + .. . + cMk(x)fk(x\ computable by substitu-
tion using addition and multiplication. •

4.7. Corollary (Algebra of decidability)
Suppose that M(x) and Q(x) are decidable predicates; then the

following are also decidable.
(a) 'notMixY

2 Generating computable functions 38

(b) 'Mix) and Q(x)y

(c) iM(x)orO(xV
Proof. The characteristic functions of these predicates are as follows:

(a) 'notM(jr)': l^cM(x)9

(b) 'Mix) and <?(*)': cM(*) co (*),
(c) 'Af (x) or (?(x)': max(cM(*), CQ(*)) (where we take 'or' in the
inclusive sense).

Each of the functions on the right is computable provided cM and CQ are,
by substitution in functions from theorem 4.5. D

Recursion can be used to establish the computability of functions
obtained by other function building techniques, which we now describe.
First, we introduce some notation.

Suppose that/(x, z) is any function; the bounded sum Zz<y/(*> z) and
the bounded product Ylz<yf(x, z) are the functions of JC, y given by the
following recursion equations.

4.10. Theorem
Suppose that f(x, z) is a total computable function; then the

functions Zz<y/(*> z) and Ilz<y/(^» z) are computable.
Proof. The equations 4.8 and 4.9 are definitions by recursion from

computable functions. •

It is easily seen that if the bound on z in a bounded sum or product is
given by any computable function, the result is still computable, as
follows.

4.11. Corollary
Suppose that f(x, z) and k(x, w) are total computable functions;

then so are the functions Z2<fcu,*)/(*>z) and Ylz<k(x,w)f(x> z) (both
functions of x, w).

4 Recursion 39

Proof. By substitution of k(x,w) for y in the bounded sum Z z < y / (x , z)
and the bounded product rL<y/(*> z). •

We now describe another useful function building technique which
yields computable functions. We write

for 'the least z less than y such that. . . \ In order that this expression be
totally defined, we give it the value y when no such z exists. Then, for
example, given a function /(*, z) we can define a new function g by

the least z<y such that f(x, z) = 0, if such a z exists;
y if there is no such z.

The operator ixz<y is called a bounded minimalisation operator, or
bounded fi-operator.

4.12. Theorem
Suppose that f{x, y) is a total computable function; then so is the

function /j,z<y(f(x, z) = 0).
Proof. Consider the function

h(x,v)= n sg(/(*,K)),

which is computable by corollary 4.11. For a given x, y, suppose that
z0 = fjLZ<y(f(x,z) = 0). It is easy to see that

if i? < z 0 , then h(x, v) = 1;
if z 0 ^ i> < y, then h(x> v) = 0.

Thus
z0 = the number of vs less than y such that A(x, v) = 1,

= I h(x,v).
v<y

Hence

v<y

and is computable by theorem 4.10. •

As with bounded sums and products, the bound in bounded mini-
malisation can be given by any computable function:

2 Generating computable functions 40

4.13. Corollary
Iff(x, z) andk{x, w) are total computable functions, then so is the

function

Proof By substitution of k{x, w) for y in the computable function
z) = 0). •

Theorems 4.10 and 4.12 give us the following applications involving
decidable predicates.

4.14. Corollary
Suppose that R{x, y) is a decidable predicate: then

(a) the function f{x, y) = fxz<y R{x, z) is computable,
{b) the following predicates are decidable:

(i) MI(JT, y) = Vz<y R{x, z),
(ii) M2{x,y)^3z<yR{x,z).

Proof.
{a) /(*, y) = »z < y{sg{cR{x, z)) = 0).
{b) (i) cMl{x, y) = Yl2<ycR{x,z).

(ii) M2{x, y) s not {Vz<y (not R{x, z)))
which is decidable by {b){\) and 4.7{a). D
Note. As in 4.11 and 4.13, the bound on z in this corollary could be any
total computable function.

We now use the above techniques to enlarge our collection of parti-
cular computable functions and decidable properties.

4.15. Theorem
The following functions are computable.
{a) D(x) = the number of divisors of x {convention: D(0) = 1),

if x is prime,
10 if x is not prime

{i.e. *JC is prime' is decidable).
{c) px = the jcth prime number {as a convention we set p0 = 0, then

Pi = 2, p2 = 3, etc.)
the exponent of py in the prime factorisation of x, for

{d) {x)y =

0

x, y > 0 ,

4 Recursion 41

Proof.
(a) D(x) = Xy=sx div(y, x) (where div is as in theorem 4.5(n)).

{ 1 if D(x) = 2 (i.e. x > 1 and the only divisors of x
are 1 and x)9

0 otherwise
= sg(|D(x)-2|).

(c) Po = 0,

px+i = iiz < (px! 4- l)(z > p x and z is prime),
which is a definition by recursion; the predicate 4z > y and z is
prime' is decidable, so using corollary 4.14 (and the note follow-
ing) we have a computable function.
(d) (x)y = fiz <x(pz

y
+1fx), which is computable since the pre-

dicate 4p y+* % x' is decidable. •

Afote. The function (jc)y is needed in the following kind of situation. A
sequence s = (fli, a2, ^ 3 , . . . , an) from M can be coded by the single
number b = p?1+1p22+1 . • • pSw+1; then the length n of 5 and the numbers
a, can be recovered effectively from b as follows:

Alternative ways of coding pairs and sequences are indicated in
exercises 4.16 (2, 5) below.

4.16. Exercises
1. Show that the following functions are computable:

(a) Any polynomial function ao + tfi* + . . . + anjtn, where
a 0 , a i , . . . , * „ € N,
(b) [V*],
(c) LCM(*, y) = the least common multiple of x and y,
(d) HCF(JC, y) = the highest common factor of x and y,
(e) /(*) = number of prime divisors of x,
(/) <f>(x) = the number of positive integers less than x which are
relatively prime to x. (Euler's function) (We say that JC, y are
relatively prime if HCF(JC, y) = 1.)

2. Let TT(JC, y) = 2x(2y +1) - 1 . Show that n is a computable bijec-
tion from N2 to M, and that the functions TTI, TT2 such that
7r(7ri(z), TT2(Z)) = z for all z are computable.

3. Suppose f(x) is defined by

2 Generating computable functions 42

/ (* + 2) = / (*) + / (* + 1).
(/(*) is the Fibonacci sequence.)
Show that / is computable. (Hint: first show that the function
g(x) = 2 / (x)3 / u + 1) is computable, using recursion.)

4. Show that the following problems are decidable:
(a) x is odd,
(b) x is a power of a prime number,
(c) x is a perfect cube.

5. Any number xeN has a unique expression as
(1) x = £° l 0 «i2', with a, = 0 or 1, all /. Hence, if x > 0, there are
unique expressions for x in the forms
(2) x = 2hx + 2*2 + . . . + 2*1, with 0 < bx < b2 <... < bx and / > 1.
and
(3) JC = 2fll + 2a i + a* + 1 + . # + 2ai+a2~K"+a'c+/c~1

Putting
a(if x) = a, as in the expression (1);

(I as in (2), ifjc>0,
Kx) = <

lo otherwise;
rft,, as in (2), if JC > 0 and 1 < / < /,

b{Ux)=\
10 otherwise;
(ah as in (3), if x> 0 and 1 < / < /,

a(i,x) = j
10 otherwise;

show that each of the functions a, /, b9 a is computable. (The
expression (3) is a way of regarding x as coding the sequence
(ai, a2,..., fl/) of numbers, and will be used in chapter 5.)

5. Minimalisation
In the previous section we have seen that a large collection of

functions can be shown to be computable using the operations of substi-
tution and recursion, and operations derived from these. There is a third
important operation which generates further computable functions,
namely unbounded minimalisation, or just minimalisation, which we now
describe.

Suppose that f{x, y) is a function (not necessarily total) and we wish to
define a function g(x) by

g(x) = the least y such that /(JC, y) = 0,

5 Minimalisation 43

in such a way that if / is computable then so is g. Two problems can arise.
First, for some x there may not be any h y suc that /(JC, y) = 0. Second,
assuming that / is computable, consider the following natural algorithm
for computing g(jc). 'Compute/(JC, 0), /(JC, 1) , . . . until y is found such that
f(x> y) = 0'. This procedure may not terminate if / is not total, even if such
a y exists; for instance, if /(JC, 0) is undefined but f(x, 1) = 0.

Thus we are led to the following definition of the minimalisation
operator /x, which yields computable functions from computable
functions.

5.1. Definition
For any function /(JC, y)

the least y such that
(i) /(JC, Z) is defined, allz < y, and

(ii) /(JC, y) = 0, if such a y exists,

. undefined, if there is no such y.
/xy(...) is read 'the least y such that.. . ' . This operator is sometimes
called simply the /x-operator.

The next theorem shows that ^ is closed under minimalisation.

5.2. Theorem
Suppose that f(x, y) is computable; then so is the function g(x) =

Proof. Suppose that JC = (JCI, . . . , xn) and that F is a program in stan-
dard form that computes the function /(JC, y). Let m = max(n + 1, p(F)).
We write a program G that embodies the natural algorithm for g: for
k = 0,1,2 . . . , compute /(JC, k) until a value of k is found such that
/(JC, k) = 0; this value of k is the required output.

The value of x and the current value of k will be stored in registers
R m+ i , . . . , Rm+n+i before computing/(JC, k): thus the typical configura-
tion will be

Storage registers

A * * * 91% 99% "< A * * * 9'9% "» 9% W l ** 9% ̂ > X r # l "r y j ̂ r ^

with k = 0 initially. Note that rm+n+2 is always 0.

2 Generating computable functions

A flow diagram that carries out the above procedure for g is given in fig.
2d. This translates easily into the following program G for g:

T(l,m + 1)

T(n, m+n)
Ip F[m + l , m + 2 , . . . ,m + n + l - * l]

J (l , m + n + 2 , q)

(7P is the first instruction of the subroutine F[m +1 , m + 2 , . . . -> 1].) •

Fig. 2d. Minimalisation (theorem 5.2).

START

0 initially)

STOP

5 Minimalisation 45

5.3. Corollary
Suppose that R(x, y) is a decidable predicate; then the function

_ Uhe least y such that R(x,y) holds, if there is such a y,
I undefined otherwise,

is computable
Proof g(x) = fiy(sg(cR(xyy)) = O). •

In view of this corollary, the /^-operator is often called a search
operator. Given a decidable predicate R(x> y) the function g(x) searches
for a y such that R(x, y) holds, and moreover , finds the least such y if
there is one .

The / i -operator may generate a non-total computable function from a
total computable function; for instance, putting f(x,y) = \x — y2\9 and
g(x) — /xy(/U» y) = 0), we have that g is the non-total function

(VJC if x is a perfect square,
g(x) = \

[undefined otherwise.
Thus, in a trivial sense, using the /u-operator together with substitution
and recursion, we can generate from the basic functions more functions
than can be obtained using only substitution and recursion (since these
operations always yield total functions from total functions). There are
also, however, h total functions for whic the use of the /i-operator is
essential. Example 5.5 below gives one such function; we present another
example in chapter 5. Thus we see that, in a strong sense, minimalisation,
unlike bounded minimalisation, cannot be defined in terms of substitu-
tion and recursion. It turns out, nevertheless, that most commonly
occurring computable total functions can be built up from the basic
functions using substitution and recursion only: such functions are called
primitive recursive, and are discussed further in chapter 3 § 3. In practice,
of course, we might establish the computability of these functions by what
amounts to a non-essential use of minimalisation, if this makes the task
easier.

5.4. Exercises
1. Suppose that f(x) is a total injective computable function; prove

that f~l is computable.
2. Suppose that p(x) is a polynomial with integer coefficients; show

that the function

2 Generating computable functions 46

f(a) = least non-negative integral root of p (x (a) - a e M)
is computable (f(a) is undefined if there is no such root).

3. Show that the function

[x/y if y #0and y \x9

I undefined otherwise,

is computable.

We conclude this chapter with an example of a function that makes
essential use of the ^-operator; it also shows how this operator can be
used not only to search for a single number possessing a given property,
but to search for finite sequences or sets of numbers, or other objects
coded by a single number. The function is a modification by Peter of an
example due to Ackermann, r after whom it is named. It is rathe more
complicated than any function we have considered so far.

5.5. Example (The Ackermann function)
The function 0(x, y) given by the following equations is

computable:

0(O,y) = y + l,

0(* +1 , y +1) - 0(x, 0(JC + 1 , y)).

This definition involves a kind of double recursion that is stronger than
the primitive recursion discussed in § 3. To see, nevertheless, that these
equations do unambiguously define a function, notice that any value
0(*, y) (x >0) is defined in terms of 'earlier' values 0(JCI, yi) with xi < x
or x\ = x and yx < y. In fact, 0(JC, y) can be obtained by using only a finite
number of such earlier values: this is easily •established by induction on x
and y. Hence 0 is computable in the informal sense. For instance, it is easy
to calculate that 0(1,1) = 3 and 0(2,1) = 5.

To show rigorously that 0 is computable is quite difficult. We sketch a
proof using the idea of a suitable set of triples 5. The essential property of
a suitable set S (defined below) is that if (xt y, z) e 5, then

(5.6) (i) z = 0(jc,y),
(ii) 5 contains all the earlier triples
(*i> yi> 0(*i> yi)) that are needed to calculate 0(x, y).

5 Minimalisation 47

Definition
A finite set of triples 5 is said to be suitable if the following

conditions are satisfied:
(a) if (0, y, z)eS then z = y + l,
(ft) if (JC + 1 , 0 , z) e S then (*, l,z)<=5,
(c) if (JC +1 , y + 1 , z) e S then there is u such that (JC + 1 , y, w) € 5
and (JC, w, z) eS .

These three conditions correspond to the three clauses in the definition of
if/: for instance, (a) corresponds to the statement: if z = (^(0, y), then
z = y + 1 ; (c) corresponds to the statement: if z = if/(x + 1 , y +1), then
there is u such that u = </r(jc +1 , y) and z = ̂ r(jt, «).

The definition of a suitable set 5 ensures that (5.6) is satisfied.
Moreover, for any particular pair of numbers (m, n) there is a suitable set
5 such that (m, n, i//(m, n))eS; for example, let 5 be the set of triples
(JC, y, tff(x9 y)) that are used in the calculation of if/(m, n).

Now a triple (JC, y, z) can be coded by the single positive number
u = 2x3y 5 2; a finite set of positive numbers {MI, . . . , uk} can be coded by
the single number pUlpu2 • • • Puk- Hence a finite set of triples can be coded
by a single number v say. Let Sv denote the set of triples coded by the
number v. Then we have

(JC, y, z) £ Sv <=> p2*3y5z divides v,
so 'U, y, z) e Sv' is a decidable predicate of J:, y, z, t?; and if it holds, then xy

y, z <v. Hence, using the techniques and functions of earlier sections we
can show that the following predicate is decidable:

R (JC, y, v) = lv is the code number of a suitable set
of triples and 3z<v ((JC, y, Z)G5 1)) . '

Thus the function

is a computable function that searches for the code of a suitable set
containing (JC, y, z) for some z. Hence

<AU, y) = Atz((x, y, z) e 5/(x,y))
which shows that & is computable.

A more sophisticated proof that t/f is computable will be given in
chapter 10 as an application of more advanced theoretical results.

We do not prove here that t/r cannot be shown to be computable using
substitution and recursion alone. This matter is further discussed in § 3 of
the next chapter.

Other approaches to
computability: Church's thesis

Over the past fifty years there have been many proposals for a precise
mathematical characterisation of the intuitive idea of effective compu-
tability. The URM approach is one of the more recent of these. In this
chapter we pause in our investigation of URM-computability itself to
consider two related questions.

1. How do the many different approaches to the characterisation of
computability compare with each other, and in particular with
URM-computability?

2. How well do these approaches (particularly the URM approach)
characterise the informal idea of effective computability?

The first question will be discussed in §§ 1-6; the second will be taken
up in § 7. The reader interested only in the technical development of the
theory in this book may omit §§ 3-6; none of the development in later
chapters depends on these sections.

1. Other approaches to computability
The following are some of the alternative characterisations that

have been proposed:
(a) Godel-Herbrand-Kleene (1936). General recursive
functions denned by means of an equation calculus. (Kleene
[1952], Mendelson [1964].)
(b) Church (1936). A-definable functions. (Church [1936] or
[1941].)
(c) Godel-Kleene (1936). /^-recursive functions and partial
recursive functions (§ 2 of this chapter.).
(d) Turing (1936). Functions computable by finite machines
known as Turing machines. (Turing [1936]; § 4 of this chapter.)
(e) Post (1943). Functions defined from canonical deduction
systems. (Post [1943], Minsky [1967]; § 5 of this chapter.)

2 Partial recursive functions 49

(/) Markov (1951). Functions given by certain algorithms over a
finite alphabet. (Markov [1954], Mendelson [1964]; § 5 of this
chapter.)
(g) Shepherdson-Sturgis (1963). URM-computable functions.
(Shepherdson & Sturgis [1963].)

There is great diversity among these various approaches; each has its
own rationale for being considered a plausible characterisation of
computability. The remarkable result of investigation by many resear-
chers is the following:

1.1. The Fundamental result
Each of the above proposals for a characterisation of the notion of

effective computability rise class gives to the same of functions, the class that
we have denoted c€.

Thus we have the simplest possible answer to the first question posed
above. Before discussing the second question, we shall examine briefly
the approaches of Gddel-Kleene, Turing, Post and Markov, mentioned
above, and we will sketch some of the proofs of the equivalence of these
with the URM approach. The reader interested to discover full details of
these and other approaches, and proofs of all the equivalences in the
Fundamental result, may consult the references indicated.

2. Partial recursive functions (Gddel-Kleene)

2.1. Definition
The class 5? of partial recursive functions is the smallest class of

partial functions that contains the basic functions 0, * + l, U? (lemma
2-1.1) and is closed under the operations of substitution, recursion and
minimalisation. (Equivalently, 01 is the class of partial functions that can
be built up from the basic functions by a finite number of operations of
substitution, recursion or minimalisation.)

Note that in the definition of the class 31, no restriction is placed on the
use of the ^-operator, so that 91 contains non-total functions. Godel and
Kleene originally confined their attention to total functions; the class of
functions first considered was the class 31Q of fi-recursive functions,
defined like 31 above, except that applications of the ^-operator are
allowed only if a total function results. Thus 3l0 is a class of total
functions, and clearly 91Q><^31. In fact, 3l0 contains all of the total

 50

functions that are in although this is not immediately obvious; see
corollary 2.3 below for a proof. Hence is a natural extension of to a
class of partial functions.

The term is used nowadays to describe /i-recursive
functions; so a recursive function is always total-it is a totally defined
partial recursive function. The term function is some-
times used to describe /^-recursive functions, although historically, this
was the name Kleene gave to the total functions given by his equation
calculus approach ((a) in § 1). It was Kleene who proved the equivalence
of general recursive functions (given by the equation calculus) and
/^-recursive functions.

We now outline a proof of

2.2.

 From the main results of chapter 2 (lemma 1.1, theorems 3.1,
4.4, 5.2) it follows that c <#.

For the converse, suppose that is a URM-computable function,
computed by a program = . . . , Js. By a in a computation) we
mean the implementation of one instruction. Consider the following
functions connected with computations under

contents of after steps in the computation
 if has not already stopped;

the final contents of if has stopped
after fewer than steps.
number of the next instruction, when steps of
the computation have been performed,

if has not stopped after steps or fewer;

0 if has stopped after steps or fewer.

Clearly c and are total functions.
If is defined, then converges after exactly steps, where

and then

If, on the other hand, is not defined, then diverges, and so
is never zero. Thus = 0) is undefined. Hence, in either case, we

3 Primitive recursive functions 51

have

So, to show that / is partial recursive, it is sufficient to show that c and j
are recursive functions. It is clear that s these function are computable in
the informal sense - we can simply simulate the computation P(x) for up
to t steps. By a detailed analysis of computations P(x) and utilising many
of the functions obtained in chapter 2, it is not difficult, though rather
tedious, to show that c and j are recursive; in fact, they can be obtained
from the basic functions without the use of minimalisation (so they are
primitive recursive - see § 3 of this chapter). (A detailed proof of rather
more than this will be given in chapter 5 -theorem 1.2 and Appendix).
Hence / is partial recursive. •

2.3. Corollary
Every total function in 5? belongs to @t0.

Proof Suppose that f(x) is a total function in 31; then / is URM-
computable by a program P. Let c and j be the functions defined in the
proof of theorem 2.2; as noted there, these can be obtained without any
use of minimalisation, so in particular they are in 5?0- Further, since / is
total, P(x) converges for every x, so the function fjit(j(x, t) = 0) is total and
belongs to $ 0 . Now

so / also is in £%0- •

A predicate M(x) whose characteristic function cM is recursive is called
a recursive predicate. In view of theorem 2.2, a recursive predicate is the
same as a decidable predicate.

3. A digression: the primitive recursive functions
This is a natural point to mention an important subclass of 3?, the

class of primitive recursive functions, although they do not form part of the
main line of thought in this chapter. These functions were referred to in
chapter 2 § 5.

3.1. Definition
(a) The class 9*91 of primitive recursive functions is the smallest
class of functions that contains the basic functions 0, x +1, U",
and is closed under the operations of substitution and recursion.

3 Other approaches to computability 52

(b) A primitive recursive predicate is one whose characteristic
function is primitive recursive.

All of the particular computable functions obtained in §§ 1, 3, 4 of
chapter 2 are primitive recursive, since minimalisation was not used
there. We have already noted that the functions c and / used in the proof
of theorem 2.2 are primitive recursive. Further, from theorems 2-4.10
and 2-4.12 we see that 901 is closed under bounded sums and products,
and under bounded minimalisation. Thus the class of primitive recursive
functions is quite extensive.

There are nevertheless recursive functions (or, equivalently, total
computable functions) that are not primitive recursive. Indeed, the
Ackermann function tp of example 2-5.5 was given as an instance of such
a function. A detailed proof that the Ackermann function is not primitive
recursive is rather lengthy, and we refer the reader to Peter [1967,
chapter 9] or Mendelson [1964, p. 250, exercise 11]. Essentially one
shows that ip grows faster than any given primitive recursive function. (To
see how fast i// grows try to calculate a few simple values.)

In chapter 5 we will be able to give an example of a total computable
(i.e. recursive) function that we shall prove is not primitive recursive.

Our conclusion is that although the primitive recursive functions form a
natural and very extensive class, they do not include all computable
functions and thus fall short as a possible characterisation of the informal
notion of computability.

4. Turing-computability
The definition of computability proposed by A. M. Turing [1936]

is based on an analysis of a human agent's implementation of an
algorithm, using pen and paper. Turing viewed this as a succession of very
simple acts of the following kinds

(a) writing or erasing a single symbol.
(b) transferring attention from one part of the paper to another.

At each stage the algorithm specifies the action to be performed next.
This depends only on (i) the symbol on the part of the paper currently
being scrutinised by the agent, and (ii) the current state (of mind) of the
agent. For the purposes of implementing the algorithm this is assumed to
be determined entirely by the algorithm and the history of the operation
so far. It may incorporate a partial record of what has happened to date,
but it will not reflect the mood or intelligence , of the agent or the state of
his indigestion. Moreover, there are only finitely many distinguishable

states in which the agent can be, because he is finite. The state of the agent
may, of course, change as a result of the action taken at this stage.

Turing devised finite machines that carry out algorithms conceived in
this way. There is a different machine for each algorithm. We shall briefly
describe these machines, which have become known as

4. .
A Turing machine is a finite device, which performs opera-

tions on a paper tape. This tape is infinite in both directions, and is divided
into single squares along its length. (The tape represents the paper used
by a human agent implementing an algorithm; each square represents a
portion of the paper capable of being viewed in a given instant. In any
particular terminating computation under M only a finite part of the tape
will be used, although we may not know in advance how much will be
needed. The tape is nevertheless infinite, corresponding to the human
situation where we envisage an unlimited supply of clean paper.)

At any given time each square of the tape is either blank or contains a
single symbol from a fixed finite list of symbols Si, $ 2 , . . . , sn, the
of We will let denote a blank, and count it as the symbol s0 belonging
to M's alphabet.

M has a which at any given time scans or reads a single
square of the tape. We can visualise this as shown in fig.

 is capable of three kinds of simple operation on the tape, namely:

Fig. 3<2. A Turing machine.

4 -

Current state
.display window

Tape

Reading head

\ Square being scanned

 54

 erase the symbol in the square g bein scanned and replace it
by another symbol from the alphabet of ;

 move the reading head one square to the right of that being
scanned (or, equivalently, move the tape one square to the left);
(c) move the reading head one square to the left of that being
scanned (or, equivalently, move the tape one square to the right).

At any given time is in one of a fixed finite number of states,
represented by symbols . . . , During operation the state of can
change. We may envisage the symbol for the current state as being
displayed in a window on the exterior of (as in fig. 3a), and think of this
as a partial guide to what has happened to date and what will happen in
the future.

The action that takes at any instant depends on the current state of
 and on the symbol currently being scanned. This dependence is

described in 's which consists of a finite set of quadru-
ples, each of which takes one of the following forms

A quadruple in specifies the action to be taken by when it
is in the state and scanning the symbol as follows:

1.Operate on the tape thus:
 if = erase s, and write in the square being scanned;
 if = move the reading head one square to the right;

(c) if = L, move the reading head one square to the left;
2. Change into state

The specification is such that for every pair there is at most one
quadruple of the form ; otherwise there could be ambiguity about
what does next.

To begin a computation, must be provided with a tape and posi-
tioned so that a specified square is being scanned; further, must be set
in some prescribed initial state. Then, if is in the state and scans the
symbol s7, it acts as described above provided that there is a quadruple of
the form in Q. This kind of action is then repeated for the new state
and symbol scanned, and so s on. continues in thi way for as long as
possible. The operation of terminates only when it is in a state
scanning a symbol such that there is no quadruple of the form in

 i.e. there is no quadruple in that specifies what to do next. (It is
possible that this never happens.)

4.2.
Let M be a Turing machine whose alphabet consists of the

symbols 0,1, (and a blank of course) and whose possible states are and
 The specification of is

Suppose that is provided with the tape

I

scanning the square marked J, and initially in state It is easy to see that
 's action is to work from left to right along the tape, replacing alternate

Is by the symbol 0; stops when it scans the first blank square since
there is no quadruple that specifies what it should do. The resulting tape

0 1 0 1 0 1 0 1 0 1

with the square marked j being scanned, and is in state
On the other hand, if is provided with a tape such that every square

contains the symbol 0 or 1, then the operation of never stops.

It is clear from this example that a Turing machine is a device for
effecting an algorithm that operates on tapes. Complete details of the
algorithm are contained in the specification of Thus, for the
mathematician, a Turing machine is to be the set of quadruples
that specify it. It is not usual to build physical Turing machines, except for
illustrative purposes.

4.3.
In order to regard a Turing machine as computing a numerical

function, we must use some convention for representing numbers on a
tape. One way is as follows: suppose, for convenience of exposition, that
the symbol of M's alphabet is 1. We use 1 as a 'tally symbol', and then

3 Other approaches to computability

represent a number x on the tape as follows (ignore the marker j for the
moment):

< x +1 squares •

We use x + 1 tallys to represent JC, so as to distinguish 0 from a blank tape.
The partial function f(x) computed by M is defined as follows. Consider

the computation by M on the above tape, starting in state qu and initially
scanning the square marked | . Then

[the total number of occurrences of the symbol 1
f(x) = \ o n t n e final tape, if this computation eventually stops;

I undefined otherwise.
Similarly, the rc-ary partial function f(xu . . . , xn) computed by M is

defined by counting the number of Is on the final tape when M is started
in state q\ and scanning the square marked 4 on the following tape:

1

squares squares squares

4.4. Definition
A partial function is Turing-computable if there is a Turing

machine that computes it. The class of all Turing-computable functions is
denoted

4.5. Example
The function JC + V is Turing-computable; the Turing machine

given by the following specification Turing-computes this function.

qiBRq2

qilBq3

q2BRq2

5 Systems of Post and Markov 57

The tape representation of (JC, y) contains x + y+ 2 occurrences of the
symbol 1, so the machine M is designed to erase the first two of these
occurrences starting from the left. The details are easy to check by trying a
few particular values for x, y.

4.6. Exercises
1. What unary function is Turing-computed by the machine in

example 4.2?
2. Devise Turing machines that will Turing-compute the functions

It is not our purpose here to develop the theory of Turing machines and
Turing-computable functions; the interested reader should consult the
books by Davis [1958] or Minsky [1967] listed in the bibliography.

The fundamental result linking Turing-computability with partial
recursive functions and URM-computability is the following.

4.7. Theorem

Proof. There are various ways of establishing this result, which we
indicate in barest outline.

A direct proof that c $1 is somewhat similar to the proof that « c «
(theorem 2.2). The tape configurations and states of a Turing machine
during a computation can be coded by natural numbers, and the opera-
tion of the machine is then represented by recursive functions of these
numbers.

For the converse inclusion, 91 c J"<g, one can show directly that ST<€
contains the basic functions and is closed under substitution, recursion,
and minimalisation. This is done in detail in Davis [1958]. Alternatively,
one can show that <# c 3~% by showing that URMs are equivalent in
power to a succession of simpler machines, ending with Turing machines.
This is the proof given in their original paper by Shepherdson & Sturgis
[1963]. •

5. Symbol manipulation systems of Post and Markov
E. L. Post and A. A. Markov formulated their ideas of

effectiveness in terms of strings of symbols. They recognised that objects
(including numbers) to which effective processes apply can always be
represented as strings of symbols; in fact, in contexts such as symbolic
logic, abstract algebra and the analysis of languages the objects actually

 58

are strings of symbols. Both Post and Markov, from different points of
view, considered that effective operations on strings of symbols are those
that are built up from very simple manipulations of the strings them-
selves.

Post's central idea was that of a which we describe
below. Such systems e do not compute functions; they generat sets of
strings. This is because Post aimed to characterise ;
i.e. systems that generate from by the mechanical
application of rules of logic. Thus a notion of effectiveness emerges from
Post's work, initially in the guise of (or

 We shall see how a notion of a Post-computable function can be
derived from this.

In paragraph 5.17 below we explain the way in which Markov's
approach is related to that of Post.

We must now define some notation to aid our discussion. Let =
{ a i , . . . , be a finite set of symbols, called an from
is any sequence ... of symbols from Strings are sometimes
called by analogy with ordinary language. For any alphabet we
write J£* to denote the set of all strings from Included in J* is the

 denoted that has no symbols. If = ... and r = ...
are strings then denotes the string The empty string

 has the property that for any string

5.1.
In elementary algebra a common operation is to replace the

string - +) whenever it occurs by the string 2). This string
manipulation may be denoted by writing

where and 52 are arbitrary strings.
A more s general manipulation of a string, yet still regarded by Post a

elementary, takes the form

(5.2) g 0 S i g i 5 2 • • • . . .

where
(i) go, • • . , are fixed strings (and may be null),
(ii) the subscripts I'I, . . . , / „ are all from 1, 2 , . . . , m, and need
not be distinct.

5 59

Post called an operation of the form (5.2) a it may be
applied to any string that can be analysed as

<r= , are strings),
to produce the string . . .

5.3.
Let = {a, ft}; consider the production
(TT) aSiZ>S2 ->

Then the effect of (TT) on some strings is given in the table

 Strings produced by

 and
 does not apply.

(The entries in the second line correspond to the two possible analyses of
 , x r' r and ~ TO

5.4.
Examine the ways in which the production

applies to the string

Productions form the main ingredient of Post's

5.5.
 consists of

 a finite alphabet
 a finite subset of the of
 a finite set of productions of the form (5.2), whose fixed

strings are in
We say that is a

We write => r if the string r can be obtained from the string cr by a
finite succession of applications of productions in ; then we write ^ r if
there is an axiom such that ̂ >r. In this case we say that r is

 by the Post-system; the set of all strings in generated by ^ is
denoted i.e.

 60

The set is also called the set of of ^, reflecting the original
motivation of Post.

5.6.
Let ^ be the Post-system with alphabet = axioms

and productions 5 -> and 5 -> Then is the set of
the strings reading the same in either direction, such as

Sometimes, in order to generate a particular set of strings in J* it is
necessary to use auxiliary symbols in the generation process. This leads to
the following definition:

5.7.
Let be an alphabet and let c 2* . Then is if

there is an alphabet 3 and a Post-system over such that is the
set of strings in 2 * that are generated by i.e. =

Post proved a remarkable theorem showing that really only very simple
productions are needed to generate Post-generable sets. A set of produc-
tions (and any system in which they occur) is said to be if all the
productions have the form

Post proved

5.8. (Post's normal form theorem)

For an excellent proof consult Minsky [1967].

Post-systems having only productions of the kind

 ->

give models of grammars and languages. They reflect the way in which
complex sentences of a language are built up from certain basic units
according to the rules e of grammar. Restrictions on th nature of and
provide the and languages of Chomsky,
which provide useful models of languages used in computer program-
ming. We cannot pursue this interesting topic here: the reader may
consult the books of Arbib [1969] and Manna [1974] for further
information.

5 Systems of Post and Markov 61

5.9. Post-systems and other approaches to computability
As we have seen, Post-systems give a characterisation of the

notion of an effectively generated set. We may compare this with the
corresponding notion that emerges from the other approaches to compu-
tability. For URM-computability (or Turing-computability, etc.)
effectively generated sets of numbers are called recursively enumerable
(r.e.); these are the sets that are the range of some URM-computable
function. (We shall study r.e. sets in chapter 7.)

To compare sets of strings with sets of numbers, we choose an (intui-
tively) effective coding functionA: 2"* -»N under which the string a el* is
coded by the number a. A convenient method for an alphabet I =
{au..., ak) is by the k-adic coding where A: 1* -> Py is defined by A = 0;
'a^777ai^ = ro + rik + .. . + rmkm. It is easily seen that A is actually a
bijection, so if the inverse of is denoted by : N^>Z* we also have a
representation of each number n by a string h.

Suppose now that AT is a set of strings: let X = {&: a eX}, the set of
numbers coding X. We have the equivalence result:

5.10. Theorem
X is Post-generable iff X is r.e.

Proof. We sketch one proof of this result. Let X c J* and suppose first
that X is r.e. Let X = Ran(/), where / is URM-computable. Using earlier
equivalences we can design a Turing machine M whose symbols include
the alphabet 2", so that when in state q\ and given initial tape

M halts if and only if m e Dom(/), and does so in the following configura-
tion

i.e. the symbols on the non-blank part of the tape indicated constitute the
string f(m) from I, and M is in a special halting state qH scanning the
square marked | . Now devise a Post-system ^ to simulate the behaviour
of M on its tape; the alphabet of ^ will include 1 and the symbols and

62

states of M; ^ will generate strings of the form

... ...

to represent any situation

that occurs during the computation by from an initial tape of the form
(*). To get things going, ^ will generate all strings of the form

< m + l —

^il 11 . . . 11, which represent such initial tapes. If we include in ^ the
production -»5, then the strings from J* generated by ^ will be the
s e t , , -

Thus = so is Post generable.
Conversely, if is Post-generable by a Post-system show that the

relation
 is generated by ^ using at most productions'

is decidable; from the theory of r.e. sets (chapter 7) it follows easily that
is r.e. •

5.11.
We now explain two ways to derive a concept of computable

function from Post-systems.In both cases the concept is defined first for
functions on J*, and then extended to M by coding or representation.

Suppose that /: -* J* is a partial function. Select a symbol • not in
and consider the set of strings

from the alphabet u {•}. The set contains all information about /,
and we define:

5.12.
/: is if is Post-generable.

5.13.
Let = {1} and consider the function /: given by

5 63

The set is generated by the following Post-system:
 {1, •}

 • 52 -* Sil •
The single production of this system applies to a string of the form

11 . . . 1 1 • 1 1 1 . . . I l l
« — — • « •

to produce the string
11 . . . I l l • 111 . . . 1 1 1 1 1 . . . 1 1 1 1 . . . 1 1 1 .
<—n 4-1—> < — — —• «— —•

Hence / is Post-computable.

Suppose that is generated by a Post-system To see that / is
computable in the informal sense, consider the following algorithm for
finding (where

'Generate the strings in some systematic fashion; examine these as
they appear, looking for a string of the form • r with T G I * . Such a
string will eventually be produced if, and only if, Dom(/), and then
r=/(<r).'

The definition (5.12) extends in an obvious way to partial functions
 Post-computability on M is then defined using any effective

representation ~: in the natural way:

5.14.
Let g: f̂ n ->N be a partial function, and let

 be the function defined by

 m 2 , . . . , . . . ,m«) . . . , N).
Then is if is Post-computable.

If we let denote the class of Post-computable functions of natural
numbers, we have the equivalence:

5.15.
 = « = = (We omit a proof. When the reader has

studied chapters o 6 and 7 he should be able t see that this follows from
theorem 5.10 and the results of chapters 6 and 7 linking r.e. sets with
URM-computable functions.)

 64

An alternative way to derive a notion of computability from Post-
systems is to simulate computations by a machine directly. This can be
done by using sets of productions such that one production in
can apply to any given string. Such sets, h and the systems in whic they
occur, are called A monogenic system operates sequentially

like a machine. It is convenient for the following to write 4>| r to mean
o

that => r but no production in applies to r.
We have the following characterisation of Post-computability.

5.16

 3

 4>|r iff and is the string

 The symbols and are needed to distinguish 'input' strings
from 'output' strings. Otherwise a desired output string would be
regarded as a new input string to which further productions might apply.)

 The implication may be obtained by first showing
that / is computable by a Turing machine M, and then devising a
monogenic set of productions to simulate M In fact it is possible to obtain
a monogenic set of productions for this task.

For (Z?) => (a) it is quite straightforward to show that the function
 coding/ is partial recursive, then apply theorem 5.15. •

This equivalence extends to functions /: by considering
'inputs' of the form • • • • '

For a fuller discussion of Post systems the reader is referred to the
excellent chapters in Minsky [1967].

5.17.
Markov's notion of computability is very similar to that derived

from Post-systems by the second method above. Rather than restrict
attention to monogenic systems, however, Markov gave rules to deter-
mine uniquely which of the available productions to apply next. Details
are, briefly, as follows:

6 Domains other than N 65

A Markov normal algorithm over an alphabet I is essentially a list Q of
productions over I with the following features:

(i) every production in Q has the form S\gS2 -* S\hS2,
(ii) certain productions in Q are singled out as being terminal.

Given an input string or, a Markov algorithm applies productions in Q
sequentially, according to the following rules.

(a) if more than one production in Q applies to a string or, use the
first one in the list Q,
(b) if a production S\gS2 -»SihS2 applies to a in more than one
way, apply it to the leftmost occurrence of g in cr,
(c) the process halts having produced a string r either when a
terminal production is used or if no production in Q applies to r.

With these rules, the definition of Markov-computable function f: I* ->
I* is given in the obvious way. A Markov normal algorithm to compute /
may use an alphabet extending 1. It is quite straightforward to establish:

5.18. Theorem
Let f:Z*^>Z*. Then f is is Markov-computable iff f Post-

computable.

Markov-computability on N is defined by using some system of
representing numbers in the usual way, and thus coincides with the other
approaches to computability.

6. Computability on domains other than N
In chapter 1 § 5 we showed how any notion of computability on M can

be extended to other domains by the device of coding. By contrast, in the
previous section the definition of Post-computability on the domain of
strings on a finite alphabet was given directly in terms of the objects
(strings) and their intrinsic structure. A variety of such direct approaches
to computability on other domains is possible: we give two examples.

6.1. Example
D = Z. The URM idea may be extended to handle integers by

making the following modifications:
(a) each register contains an integer,
(b) there is an additional instruction S~(n) for each n =
1, 2, 3 , . . . that has the effect of subtracting 1 from the contents of
register Rn.

 66

6.2.
 where The class of

 on is the smallest class of partial functions such that
 the basic functions

(i)
(ii)

(iv) the projection functions U?(c7i,. . . , =
are in 3?D,
(6) is closed under substitution,
(c) 5? D is closed under primitive recursive definitions of the following
form:

 ra) = gi(o-, r, r))

where/,
 is closed under if is in S? D, so is the

function given by

where means the first r in the natural ordering a,
. . . .

For each of these, and other approaches to computability on a domain
 that utilise the intrinsic structure of we find as expected that they are

equivalent to the approach that transfers the notion of computability
from N by using coding. And, vice versa, any natural notion of compu-
tability on a domain induces an alternative (but equivalent) notion of
computability on M via coding, as with Post-computability in § 5.

6.3.
1. Prove that URM-computability on Z as outlined in example 6.1

is equivalent to URM-computability via coding (example 1-5.1).
2. Prove that the class of partial recursive functions on J*, as

defined in example 6.2, is identical to the Post-computable
functions o n l * .

3. Suggest natural definitions of computability on the domains
3 x 3 matrices, (rational numbers).

4. Give a natural definition of Turing-computability on J*, where
 is any finite alphabet.

7 Church's thesis 67

7. Church's thesis
We now turn our attention to the second question of the intro-

duction to this chapter: how well is the informal and intuitive idea of
effectively computable function captured by the various formal charac-
terisations?

In the light of their investigations, Church, Turing and Markov each
put forward the claim that the class of functions he had defined coincides
with the informally f defined class o effectively computable functions. In
view of the Fundamental result (1.1), these claims are all mathematically
equivalent. The name Church's thesis (sometimes the Church-Turing
thesis) is now used to describe any of these other claims. Thus, in terms of
the URM approach, we can state:

Church 's thesis
The intuitively and informally defined class of effectively

computable partial functions coincides exactly with the class <€ of URM-
computable functions.

Note immediately that this thesis is not a theorem which is susceptible
to mathematical proof; it has the status of a claim or belief which must be
substantiated by evidence. The evidence for Church's thesis, which we
summarise below, is impressive.

1. The Fundamental result: many independent proposals for a
precise formulation of the intuitive idea have led to the same
class of functions, which we have called c€.

2. A vast collection of effectively computable functions has been
shown explicitly to belong to <#; the particular functions of
chapter 2 constitute the beginning of such a collection, which can
be enlarged ad infinitum by the techniques of that chapter, and
other more sophisticated methods.

3. The implementation of a program P on the URM to compute a
function is clearly an example of an algorithm; thus, directly from
the definition of the class <#, we see that all functions in <# are
computable in the informal sense. Similarly with all the other
equivalent classes, the very definitions are such as to demon-
strate that the functions involved are effectively computable.

4. No one has ever found a function that would be accepted as
computable in the informal sense, that does not belong to <#.

On the basis of this evidence, and that of their own experience, most
mathematicians are led to accept Church's thesis. For our part, we

 68

propose to accept and use Church's thesis throughout the rest of this
book, in a way that we now explain.

Suppose that we have r an informally described algorithm fo computing
the values of a function /. Such an algorithm may be described in English,
or by means of diagrams, or in semi-formal mathematical terms, or by any
other means that communicate unambiguously how to effectively cal-
culate the values of /, where defined, in a finite amount of time. In such a
situation we may wish to prove that / is URM-computable. There are,
broadly, two methods open to us.

 Write a program that URM-computes / (and prove that it
does so), or prove by indirect h means t tha suc a program exists. This could
be done, for instance, by the methods of chapter 2, or by showing that /
belongs to one of the many classes shown by the Fundamental result to be
equivalent to <#.

Such a full and formal proof that / is URM-computable may be a long
and rather technical process. Essentially it would involve translation of
the informally described algorithm into a program or into the language of
one of the other formal characterisations. Probably there would be
various flow diagrams as intermediate translations.

 2. Give an informal (though rigorous) proof that the given
informal algorithm is indeed an algorithm that serves to compute /. Then
appeal to Church's thesis and conclude immediately that / is URM-
computable.

We propose to accept method 2 as a valid method of proof, which we
call

7.1.
1. Let be a URM program; define a function / by

II if after or fewer steps
of the computation

0 otherwise.
An informal algorithm for computing / is as follows.

'Given (JC, y, simulate the computation (on a piece of
paper, for example, as in example 1-2.1), carrying out steps of

 unless this computation stops after fewer than steps. If
 stops after or fewer steps, with y finally in Ri, then

 Otherwise (i.e. if stops in or fewer steps with

7 69

some number other than y in Ri, or if has not stopped after
steps) we have /(JC, y, 0 = 0.'

Simulation of for at most steps is clearly a mechanical
procedure, which can be completed in a finite amount of time.
Thus, effectively computable. Hence, by Church's thesis, / is
URM-computable.

2. Suppose that / and g are unary effectively computable functions.
Define a function by

if JC e Dom(/) or Dom(g),
I undefined otherwise.

An algorithm for can be described in terms of given algorithms
for the effectively computable functions / and g as follows:

'Given JC, start the algorithms for computing /(JC) and g(jc)
simultaneously. (Envisage two agents or machines working
simultaneously, or one agent who does one step of each
algorithm alternately.) If and when one of these computations
terminates, then stop altogether, and set Otherwise,
continue indefinitely.'

This algorithm gives = 1 for any JC such that either/(JC) or
g(jc) is defined; and it goes on for ever if neither is defined. Thus
we have an algorithm for computing so by Church's thesis is
URM-computable.
Let digit in the decimal expansion of =
3.14159 . . . (so we have /(0) = 3, /(I) = 1, /(2) = 4, etc.). We can
obtain an informal algorithm for computing as follows.
Consider Hutton's series for TT

12 I

1 4 r 2 / l \ 2 x 4 / l \ 2

(« ! 2 n) 2 [1 2 / 1 y . 1 4 / 1 V

Let = Zn=o ; by the elementary theory of infinite series

Now is rational, so the decimal expansion of s* can be
effectively calculated to any desired number of places using long
division. Thus the following is an effective method for calculating

 (given a number

 70

'Find the first such that the decimal expansion

does nor have all of • • •, equal to 9. (Such an AT exists,
for otherwise the decimal expansion of would end in recurring
9, making rational.) Then put = a n.'

To see that this gives the required value, suppose that
with Then by the above

Hence < 1)...
so the nth decimal place of is indeed

Hence by Church's thesis, / is computable.

The student should try to provide complete formal proofs (method 1)
that the functions in these examples are URM-computable (assuming, for
example 2, that / and are URM-computable). For all of them it is a
lengthy and tedious task.

Note that in using Church's thesis we are not proposing to abandon all
thought of proof, as if Church's thesis is a magic wand which we can wave
instead. A proof by Church's thesis will always involve proof that is
careful, and sometimes complicated, although informal. Moreover, any-
one using Church's s thesi in the way we propose should be able to provide
a formal proof if challenged. (As if to anticipate such a challenge, we
provide in the appendix to chapter 5 an alternative formal proof of one
fundamental theorem in that chapter (theorem 5-1.2) on which almost all
later development depends. This then serves to substantiate further
Church's thesis; incidentally, it is a simple formal corollary that the
functions in the first two examples above are URM-computable also.)

Church's thesis not s only keep proofs shorter, but also prevents the
main idea of a proof or construction from being obscured by a mass of
technical details. It remains, however, an expression of faith or
confidence. The validity of faith depends on the evidence that can be
mustered. In the case of Church's thesis, there is the mathematical
evidence already outlined. For the practised student there is the addi-
tional evidence of his own experience in translating informal algorithms
into formal counterparts. For the beginner, our use of Church's thesis in
subsequent chapters may call on his willingness to place confidence in the
ability of others until self confidence is developed.

7 71

To conclude:

7.2.
1. Suppose that and are effectively computable functions.

Prove, using Church's thesis, that the function given by
 i fx €Dom(/)nDom(g) ,

1 undefined otherwise
is URM-computable.

2. Suppose that / is a total unary computable function. Prove,
by Church's thesis, that the following function is URM-
computable

I undefined otherwise.
3. Give a detailed proof by Church's thesis that the Ackermann

function (example 2-5.5) is computable.
4. Prove by Church's thesis that the function given by

 = digit in the decimal expansion of e
is computable (where the number e is the basis for natural
logarithms).

Numbering computable
functions

We return now to the study of URM-computable functions. Henceforth
the term computable standing alone means URM-computable, and
program means URM program.

The key fact established in this chapter is that the set of all programs is
effectively denumerable: in other words there is an effective coding of
programs by the set of all natural numbers. Among other things, it follows
that the class % is denumerable, which implies that there are many
functions that are not computable. In § 3 we discuss Cantor's diagonal
method, whereby this is established.

The numbering or coding of programs, and particularly its effective-
ness, is absolutely fundamental to the development of the theory of
computability. We cannot overemphasise its importance. From it we
obtain codes or indices for computable functions, and this means that we
are able to pursue the idea of effective operations involving such codes.

In § 4 we prove the first of two important theorems involving codes of
functions: the so-called s-m-n theorem of Kleene. (The second theorem
is the main result of chapter 5.)

1. Numbering programs
We first explain the terminology that we shall use.

1.1. Definitions
(a) A set X is denumerable if there is a bijection f: X-*N.
(Note. The term countable is normally used to mean finite or
denumerable; thus, for infinite sets, countable means the same as
denumerable. The term countably infinite is used by some
authors instead of denumerable.)
(b) An enumeration of a set X is a surjection g: N^X\ this is
often represented by writing

1 Numbering programs 73

where xn = g(n). This is an enumeration without repetitions if g is
injective.
(c) Let AT be a set of finite objects (for example a set of integers,
or a set of instructions, or a set of programs); then X is effectively
denumerable if there is a bijection / : X -> fol such that both / and
f~l are effectively computable functions.
{Note. We mean here the informal notion of effectively
computable. This is compelled on us since, in general, there is no
available formal notion of computability of functions from X to
IU1 In cases where some formal notion does apply, we take this to
be the meaning, as for example in theorem 1.2(a).)
Clearly, a set is denumerable if and only if it can be enumerated
without repetitions.

For the main result of this section we need the following (recall that N4"
denotes the set of all positive natural numbers):

1.2. Theorem
The following sets are effectively denumerable.
(a)
(b)
(c) Ufc>o N \ the set of all finite sequences of natural numbers.

Proof
(a) A bijection n: N x N -* N is defined by
7r(m,n) = 2m(2n + l)-l.
It is clear from the definition that n is in fact a computable
function; to see that the inverse is effectively computable observe
that TT~X is given by

where TTI, TT2 are the computable functions defined by TTI(JC) =
(* + l)i, ir2(x) = i((jc + l) /2 i r » (x) - l) . (Cf. exercise 2-4.16(2).)
(b) An explicit bijection (: N+ x N+ x N+ -* N is given, using the
function TT of (a), by
f (m, n, q) = 7r(7r(m -l,n-l)9q-1).
Then we have

\ 1).

To say that we should s use a notion of computability based on some coding beg
the whole question, since a coding is an effective (in the informal sense) function.

4 Numbering computable functions 74

Since the functions TT, TTI, TT2 are effectively computable, then so
are £ and £~1.
(c) A bijection r: Ufc>o Nfc -* N is defined by

Clearly r is an effectively computable function. To see that r is a
bijection, and to calculate r~l(x), we use the fact that each
natural number has a unique expression as a binary decimal.
Thus, given JC, we can effectively find unique numbers k > 1 and
0 < bi b < 2 . . . < bk such that
jt + l = 2 6 l + 262 + . . . + 2*k

from which we obtain
r~\x) = (f l i , . ..,ak),

where ai = fti and a,+i = £ , + ! - £ , - 1 (1 ^ i<k). (Cf. exercise
2-4.16(5), where functions closely connected with the cal-
culation of T~1 are to be proved computable.) •

Let us now denote the set of all URM instructions by J>, and the set of
all programs by 9>. A program consists of a finite list of instructions, so we
next consider the set $>.

1.3. Theorem
$ is effectively denumerable.

Proof. We define an explicit bijection 0: ^-*N that maps the four
kinds of instruction onto natural numbers of the forms 4w, 4w 4-1, Au + 2,
4M + 3 respectively; we use the functions TT and £ defined in the proof of
theorem 1.2.

0(T(m, /i) = 47r(m - 1 , n - 1) + 2,

This explicit definition shows that /3 is effectively computable. To find
/S~ 1(JC), first find w, r such that * = Au + r with 0 < r < 4 . The value of r
indicates which kind of instruction (3~l(x) is, and from u we can
effectively find the particular instruction of that kind. Specifically:

if r = 0, then 0~l(x) = Z(w +1);
if r = 1, then p~\x) = S(w 4-1);

1 Numbering programs 75

~\if r = 2, then 0~\x) = T(TTI(W) + 1 , TT2(M) +1);
if r = 3, then)8~1(jc) = J(m, n, 4), where (ra, n, q) = (~1(u).

Hence @~l is also effectively computable. •
Now we can prove:

1.4. Theorem
8P is effectively denumerable.

Proof. Define an explicit bijection y.&^N as follows, using the
bijections r and @ of theorems 1.2 and 1.3: if P = Iu I2,..., Is then

Since r and /3 are bijections, so is y; the fact that r, @ and their inverses
are effectively computable ensures that y and y" 1 are also effectively
computable. •

The bijection y will play e an important rol in subsequent development.
For a program P, the number y(P) is called the code number of P, or the
Godel2 number of P, or just the number of P. We define

Pn - the program with (code) number n
= 7~\n),

and say that Pn is the nth program. By construction of y, if m ^ n, then Pm

differs from Pny although these programs may compute the same
functions.

It is of the utmost importance for later results that the functions y and
y"1 are effectively computable; i.e.

(a) Given a particular program P, we can effectively find the
code number y(P);
(b) given a number n, we can effectively find the program
Pn = y~1(n).

In order to emphasise this we give two simple illustrations.

1.5. Examples
(a) Let P be the program T(l, 3), S(4), Z(6). We will calculate
y(P).

/3(Z(6)) =
2 The term Godel number is used after K. Godel who first exploited the idea of

coding non-numerical objects by numbers in his famous paper (Godel [1931]).

4 Numbering computable functions 76

Hence y(P) = 218 + 232 4- 253 - 1

(/>) Let n = 4127; we will find JP4127.
4127 = 25 -f- 212 - 1 ; thus P4127 is a program with two instructions
/1 , / 2 where

= 5 = 4 x 1 + 1,

Hence from the definition of 0,7X = S(2) and I2 = T(2,1), so Pil27

is
S(2)
T(2,1)

There are, of course, many other possible effective bijections from 0> to
M; our choice in defining the details of y was somewhat arbitrary. What is
vital, we again emphasise, is that y and y~l are effectively computable.
The particular details of y are not so important. For subsequent theory,
any other bijection y' would suffice, provided that y' and its inverse are
effectively computable. However, we have to fix on one particular
numbering of programs, and we have chosen that given by y. For the rest
of this book, y remains fixed, so that for each particular number n, the
meaning ofPn does not change. Thus, for instance, P4127 always means the
program S(2), T(2,1).

1.6. Exercise
Find

(a) 0(J(3,4,2)),
(b) /T1^),
(c) the code number of the following program:
T(3,4),S(3),Z(1),

id) P100.

2. Numbering computable functions
Using our fixed numbering of programs, we can now number

computable functions and their domains and ranges. We introduce some
important notation which is basic to the rest of the book.

2.1. Definition
For each a e N, and n > 1:

2 Numbering computable functions 77

L n)(a) 0Ln) = the n-ary function computed by Pa

= /pj in the notation of chapter 1 § 3,

(b) W(
a
n) = domain of 0(

fl
n) ={(xu . . . , xn): Pa(xu . . . , xn)i}9

E^ = range of <(>(
a

n\
We shall be mainly concerned with unary computable functions in later

chapters, so for convenience we omit the superscript (1) when it occurs;
thus we write 0 a for 0 (

a
n, Wa for Wla\ and Ea for E™.

2.2. Example
Let a =4127; from the previous section we know that P4127 is

S(2),T(2,1). Hence

and
<t>4n i2i(xu...,xn) = x2 + l if n>l.

Thus
^4127 = ^ , £4127 = {1};

W4127 = Nn , ^4"i27 = M+ if n > 1.

Suppose that / is a unary computable function. Then there is a program
P, say, that computes /, so / = <f>a, where a = y(P). We say then that a is an
mdejc for/. Since there are many different programs that compute a given
function, we cannot say that a is the index for/; in fact, each computable
function has infinitely many indices.

We conclude that every unary computable function appears in the
enumeration

00, 01, 02,
and that this is an enumeration with repetitions.

Similar remarks apply to n-ary functions and their enumeration.

2.3. Exercise
Prove that every computable function has infinitely many

indices.

Recall that we denoted the set of all n-ary computable function by ^n.

2.4. Theorem
^n is denumerable.

4 Numbering computable functions 78

Proof. We use the enumeration <f>on\ <f>[n). <t>{
2

n\ . . . (which has repeti-
tions) to construct one without repetitions.

Then

4>fiOh <f>f(l)> <f>H2) » • • •
is an enumeration of <#„ without repetitions. •
Note. We are not claiming that / as defined in this proof is computable; in
fact, we will be able to show later that this is not the case. It is possible,
nevertheless, to give a complicated construction of a total computable
function h such that 4>lh(oh <£MI), . . . is an enumeration of <#„ without
repetitions. This was proved by Friedberg [1958].

2.5. Corollary
<€ is denumerable.

Proof. Since <# = U«^i *„, this follows from the fact that a denumer-
able union of denumerable sets is denumerable.

Explicitly, for each n let/„ be the function used in theorem 2.4 to give
an enumeration of <#„ without repetitions. Let n be the bijection NxN->
N of theorem 1.2. Define 6: <g -* N by

Clearly 6 is a bijection. •

The next theorem shows that there are functions that are not compu-
table. The idea of the proof is as important as the result itself.

2.6. Theorem
There is a total unary function that is not computable.

Proof. We shall construct a total function / that is simultaneously
different from every function in the enumeration 4>o*4>u4>i*--- of * i .
Explicitly, define

f>n (n) +1 if <f>n (n) is defined,
) if (f>n (n) is undefined.

Notice that we have constructed / so that for each n, / differs from <f>n at n:
if <f>n(n) is defined, then/ differs from <f>n in that f(n)^4>n(n);
if </>n (n) is undefined, then / differs from <f>n in that f(n) is defined.

3 The diagonal method 79

Since / differs from every unary computable function <f>n, f does not
appear in the enumeration of ^i and is thus not itself computable. Clearly
/ is total. D

3. Discussion: the diagonal method
The method of constructing the function / in theorem 2.6 is an

example of the diagonal method of construction, due to Cantor. Many
readers will be familiar with this method as used in proofs of the
uncountability of the set of real numbers. The underlying idea is appli-
cable in a wide variety of situations, and is central in the proofs of many
results concerning computability and decidability.

To see why the term diagonal is used, consider again the construction
of / in theorem 2.6. Complete details of the functions <f>0, <f>u •. • can be
represented by the following infinite table:

<t>l

0O(D

We suppose that in this table the word 'undefined' is written whenever
0n (m) is not defined.

The function / was constructed by taking the diagonal entries on this
table (circled)

and systematically changing them, obtaining

such that /(w) differs from (f>n(n)> for each n. Note that there was
considerable freedom in choosing the value of f(n)\ we only had to ensure
that it differed from <f>n(n). Thus

bn(n) + 21n if <f>n(n) is defined,
i2 if <f>n(n) is undefined,

is another non-computable total function.

4 Numbering computable functions 80

We can summarise the diagonal method as we shall be using it, in the
following way. Suppose that xo, #i» X2, • • • is an enumeration of objects of
a certain kind (functions or sets of natural numbers). Then we can
construct an object \ of the same kind that is different from every *„,
using the following motto:

'Make x and xn differ at n"
The interpretation of the phrase differ at n depends on the kind of object
involved. Functions may differ at n over whether they are defined, or in
their values at n if defined there; with functions, there is usually freedom
to construct x so as to meet specific extra requirements; for instance, that
X be computable, or that its domain (or range) should differ from that of
each Xn.

In the case of sets, the question at n i is whether or not n s a member.
We illustrate the diagonal construction when sets are involved.

3.1. Example
Suppose that Ao, Au A2,... is an enumeration of subsets of f̂ J.

We can define a new set B, using the diagonal motto, by
n e B if and only if n £ An.

Clearly, for each n,B^ An.

There are important applications of the diagonal method in the next
two chapters.

3.2. Exercises
1. Suppose that f(x, y) is a total computable function. For each ra,

let gm be the computable function given by
gm(y)=/(ra, y).

Construct a total computable function h such that for each m,

2. Let /0 , /1 , . . . be an enumeration of partial functions from f
Construct a function g from ÎJ to N such that Dom(g) ^ Dom(/,)
for each /.

3. Let/be a partial function from N to N, and let m e N . Construct a
non-computable function g such that
g(x)^f(x) forx<m.

A.(a) (Cantor) Show that the set of all functions from N to f̂ i is not
denumerable.

4 The s-m-n theorem 81

(b) Show that the set of all non-computable total functions from
f̂ to N is not denumerable.

4. The s-m-n theorem
In the final section of this chapter we prove a theorem that has

many important uses, especially in conjunction with the main theorem of
the next chapter.

Suppose that /(JC, y) is a computable function (not necessarily total).
Then for each fixed value a of x, f gives rise to a unary computable
function ga, where

ga(y)-f(a,y).
Since ga is computable, it has an index e, say, so that

The next theorem shows that such an index e can be obtained effectively
from a. This is a particular case of a more general theorem, known as the
s-m-n theorem, which we prove below. (The reason for this name will be
explained after theorem 4.3.) For most purposes in this book, the
following suffices.

4.1. Theorem (The s-m-n theorem, simple form)
Suppose that f(x, y) is a computable function. There is a total

computable function k{x) such that
f(x,y)^<f>k(x)(y).

Proof For each fixed a,k(a) will be the code number of a program Qa
which, given initial configuration

R i

computes/(a, y).

Let F be a program that computes /. Then for Qa we write down F
prefaced by instructions that transform the configuration (*) to

R i

4 Numbering computable functions 82

Thus, define Qa to be the following program

[S(D
a times < ;

F
Now define

k(a) = the code number of the program <?a.
Since F is fixed, and from the fact that our numbering y of programs is
effective, we see that k is an effectively computable function. Hence, by
Church's thesis, k is computable. By construction

for each a. •
The s-m-n theorem is sometimes called the Parametrisation theorem

because it shows e that an index for a computabl function (such as ga in the
discussion above) can be found effectively from a parameter (such as a)
on which it effectively depends.

Before giving the full s-m-n theorem we give some simple illustrations
of the use of theorem 4.1 in effectively indexing certain sequences of
computable functions or their domains or ranges.

4.2. Examples
1. Let /(JC, y) = yx. By theorem 4.1 there is a total computable k

such that <t>k(X)(y) = yx. Hence, for each fixed n, k(n) is an index
for the function yn.

(y if y is a multiple of x
2. Let/(*,y) = j

Undefined otherwise.
Then / is computable, so let k be a computable function such that
<f>k(X)(y) —f(x, y). Then, for each fixed n
<f>k(n)(y) is defined iff y is a multiple of n

iff y is in the range
i.e.
Wkin) = n N (= the set of all multiples of n)

= £fc(n)-
So we have an effective indexing of the sequence of sets (n N) as
(i) the domains of computable functions, (ii) the ranges of
computable functions.

4 The s-m-n theorem 83

One obvious way to generalise theorem 4.1 is to replace the single
variables x, y by m- and ^-tuples x and y respectively. We can also reflect
the fact that the function k defined in the proof of theorem 4.1 depended
effectively on a particular program for the original function /. Thus,
instead of considering a fixed computable function /(JC, y) we consider a
general computable function <f>(

e
m+n)(x, y), and the question of effectively

finding, for each e and *, a number z such that

4.3. Theorem (The s-m-n theorem)
For each m,n>l there is a total computable (m + \)~ary function

s™(e, x) such that

Proof. We generalise the proof of theorem 4.1.
For any / > 1 let Q(i, x) be the subroutine

- x times

that replaces the current contents of R, by x. Then for fixed m, n define
5™(e, jr) to be the code number of the following program:

T(n, m + n)

T(2,m+2)
L,m + 1)

This part of the program transforms any configuration

Ri

y\ 0 0

into

yi y- 0
0(2 , *2)

Q(m,xm)

Pe

From this explicit definition, and the effectiveness of y and y ~ \ we get
that s™ is effectively computable, hence computable, by Church's
thesis. •

4 Numbering computable functions 84

The notation s™ for the function given by theorem 4.3 has given rise to
the standard description of this result as the s-m-n theorem. We will also
use this name to describe the simpler version given in theorem 4.1.

It is not hard to see that the function 5 IT as defined above is in fact
primitive recursive. With a little thought it is also possible to see that for
each m there is a function sm (also primitive recursive) that suffices in
theorem 4.3 for all n. See the exercises 4.4(5) below.

4.4. Exercises
1. Show that there is a total computable function k such that for

each n, k(n) is an index of the function [\/x].
2. Show that there is a total computable function k such that for

each n, Wk(n) = the set of perfect nth powers.
3. Let n > 1. Show that there is a total computable function s such

that

4. Show that the functions s™ defined in theorem 4.3 are all
primitive recursive.

5. Show that for each m there is a total (m + l)-ary computable
function sm such that for all n

where JC, y are m- and n-tuples respectively.
(Hint. Consider the definition of s™(e9 x) given in the proof of
theorem 4.3. The only way in which n was used was in determi-
ning how many of the ru r2,... to transfer to Rm+U #m+2,
Now recall that the effect of Pe depends only on the original
contents of R i , . . . , RP(pe), where p is the function defined in
chapter 2 § 2; p(Pe) is independent of n.) Show further that there
is such a function sm that is primitive recursive.

Universal programs

In this chapter we establish the somewhat surprising result that there are
universal programs', i.e. programs that in a sense embody all other
programs. This result is one of the twin pillars that support computability
theory (the other is the s-m-n theorem); both rest on the numbering of
programs given in chapter 4.

Important among the applications of universal programs is the
construction of specific non-computable functions and undecidable
predicates, a topic pursued in chapter 6. We give a foretaste of such
applications in § 2 of this chapter; we also use a universal program to
construct a total computable function that is not primitive recursive, as
promised in chapter 3.

The final section of this chapter is devoted to some illustrations of the
use of the s-m-n theorem in conjunction with universal programs to show
that certain operations on the indices of computable functions are
effective (a foretaste of the topic of chapter 10).

1. Universal functions and universal programs
Consider the function if/(x, y) defined by

There is an obvious sense in which the single function if/ embodies all the
unary computable functions <f)0, <f>\> 4>i> • • •, since for any particular m,
the function g given by

is just the computable function <t>m. Thus we describe if/ as the universal
function for unary computable functions. Generally, we make the
following definition.

5 Universal programs 86

1.1. Definition
The universal function for n-ary computable functions is the

(n + l)-ary function tfv defined by
4>u)(e9xl,...9xn)~<t>i:)(xu..->xn).

We write (/OJ for tf/^.

The question arises, is IKJ (or, generally, <^u}) a computable function?
If so, then any program P that computes <Au would appear to embody all
other programs, and P would y be aptl called a universal program. At first,
perhaps, the existence of a universal program seems unlikely. Neverthe-
less, it is not hard to see that t̂ u is indeed computable. The point is that a
universal program P does not need to contain all other programs Pe in
itself; P only needs the ability to decode any number e and hence mimic

1.2. Theorem
For each n, the universal function if/^ is computable.

Proof. Fix n, and suppose that we are given an index e and an n-tuple x.
An informal procedure for computing tAu^e, x) is as follows:

'Decode the number e and write out the program Pe. Now mimic the
computation Pe(x) step by step, at each step writing down the configura-
tion of the registers and the next instruction to be obeyed (as was done in
example 1-2.1). If and when this computation stops, then the required
value (Au^e, x) is the number currently in Ri.'

We could conclude immediately (using Church's thesis) that if/u] (e, x) is
computable. Because of the importance of this theorem, however, we
prefer to outline the beginnings of a formal proof and then make a rather
less sweeping appeal to Church's thesis. (For the sake of completeness of
our exposition we shall provide the rest of the formal proof in an appendix
to this chapter.)

The plan for a formal proof is to show first how to use a single number or
to code the current situation during a computation; then we show that
there is a computable function expressing the dependence of a on (a) the
program number e, (b) the input x, (c) the number of steps of the
computation that have been completed. e W will see that this suffices to
prove the theorem.

Let us return, then, to e th computation Pe(x) considered above. As we
have seen in examples, the current situation during a computation is
completely specified by (i) the current configuration of the registers

1 Universal functions and universal programs 87

?i> ri> ^3 , . . . and (ii) the number j of the next instruction in the compu-
tation. Since only finitely many of the numbers rt are not zero, the current
configuration can be specified by the single number

(Recall that p, is the /th prime number.) We call this number the
configuration code or just the configuration if there is no ambiguity. Note
that the contents r, of Ri can be easily recovered from c; in fact r, = (c),
(using the function of theorem 2-4.15(<i)).

The complete description of the current situation can now be d code by
the single number cr = 7r(c,/), which we call the current state of the
computation Pe(x). (Here TT is the pairing function used in the proof of
theorem 4-1.2.) We will make the convention that if the computation has
stopped, then / = 0 and c is the final configuration. Note that c = TTI(<X)

and / = 7T2(cr) where w\, TT2 are the computable functions defined in
theorem 4-1.2.

Now c, /, a change during the computation; their dependence on the
program number e, the input x and the number t of steps completed is
expressed by defining the following (n + 2)-ary functions:
(1) cn(e9 x, t) = the configuration after / steps of

Pe{x) have been completed
(= the final configuration if Pe(x)i in t

or fewer steps).
the number1 of the if Pe (x) has
next instruction for not stopped
Pe(x) when t steps after t or
have been completed, fewer steps,

0 if Pe(x)i in t or fewer steps.

(3) <rn(e, x, t) = the state of the computation Pe(x)
after t steps

= ir(cn(e,x9t)9jn(e,x,t)).
The aim now is to show that arn (and hence cn and /„) are computable

functions. To see why this is sufficient, suppose that this has been done.
Clearly, if the computation Pe(x) stops it does so in /jLt(jn(e,x,t) = 0)
steps; then the final configuration is cn(e, x, ixt(jn(e, x, t) = 0)), and so we

We mean here the number / such that the next instruction / is the /th instruction
of Pe\ we do not mean the code number 0(7).

5 Universal programs

have

(using substitution andThus, if cn and jn are computable, so is
minimalisation) and our proof is complete.

We now use Church's thesis to show that orn (and hence cn and jn) are
computable. We have the following informal algorithm for obtaining
an (e> x, t + 1) effectively from an (e, x> t) and e:

'Decode crn(e, x, t) to find the numbers c = cn(e, x, t) and j =jn(e, x,t).
If y = 0, then crn(e9 x, f +1) = o-n(e, x, t). Otherwise, write out the
configuration coded by c,

say, and by decoding e write out the program Pe. Now find the yth
instruction in Pe and operate with it on the configuration (*), producing a
ne"w configuration with code c' say. Find also the number /' of the new
next instruction (with/' = 0 if the computation has now terminated). Then
we have

o-n(<?,x,f + l) = 7r(c',/').
This shows informally that crn (e, x, t) is computable by recursion in t, since
for t = 0 we have

crn(e,jr,0) = 7 r (2X l 3 ^ . . . p ^ l)

to start the recursion off. Hence, by Church's thesis, an is computable,
and our theorem is now proved. •

Note. Since this e theorem is so basic to further development, w provide
in the appendix a complete formal proof that an (and hence 4*\J*) is
computable. This then provides further evidence for Church's thesis.
(Our formal proof also gives us the extra information that <rn is actually
primitive recursive.)

From the proof of this theorem we obtain:

1.3. Corollary
For each n ^ 1, the following predicates are decidable.
(a) Sn(e, x, y, t) = iPe(x)ty in t or fewer steps\
(b) Hn(eyx, t)^iPe(x)i in t or fewer steps'.

Proof, (a) Sn(e, x, y, t) s'/„(*, JC, r) = 0 and (cn(e, jr, f))i = y'.
(*) tfw(e,jr,0 = 7n(e,*,f) = 0 \ •

1 Universal functions and universal programs 89

The significance of the next corollary is discussed in the first note
below.

1.4. Corollary (Kleene's normal form theorem)
There is a total computable function U(x) and for each n > 1 a

decidable predicate Tn(e, x, z) such that
(a) <t>{

e
n\x) is defined if and only if 3zTn(e,x,z),

(b) <f>i
e
n)(x)^U(fjLzTn(eix,z)).

Proof. To discover whether <f>(
e

n) (x) is defined, and the value if it is, we
need to search for a pair of numbers y, t such that Sn(e, x, y, /). We have
the ^-operator that enables us to search effectively for a single number
having a given property. To use this in searching for a pair of numbers, we
can think of a single number z as coding the pair of numbers (z)i and (z)2.
Then, as z runs through IM, the pair ((z)i, (z)2) runs through N x N. So we
define

Tn(e,x,z) = Sn(e,x9(z)u(z)2)-
For (a), suppose that <£ln)(jr) is defined; then there are y, t such that
Sn(e9 x, y, t), so putting z = 2 y3' we have Tn(e, x, z).

Conversely, if there is z such that Tn (e, x, z), then from the definition of
TH9 Pe(x)U i.e. <t>[n){x) is defined.

For (b), it is clear from the definition of Tn that if <f>(
e
n)(x) is defined,

then for any z such that Tn{e, JC, Z), we have <£(
e
n)(x) = (z)i. So if we put

l/(z) = (2)1 then
() T n (e , x , z)) . •

Notes
1. From the appendix to this chapter it follows that the functions cn

and jn are primitive recursive. Hence, the predicates Sn, Hn, Tn in
corollaries 1.3 and 1.4 are also primitive recursive. Thus, in particular,
the Kleene normal form theorem shows that every computable function
(or partial recursive function) can be obtained from primitive recursive
functions by using at most one application of the /tx-operator. The
theorem gives, moreover, a standard way of doing this.

2. The technique of searching for pairs of numbers by thinking of a
single number z as coding the pair (2)1, (z) 2 (as used in the proof of
corollary 1.4) is often used in computability theory. We give an exercise
needing this technique below (exercise 1.5(1)).

The technique can also be used in searching for sequences
(xi,x2,... ,xn)for any n>\.

5 Universal programs 90

1.5. Exercises
1. (i) Show that there is a decidable predicate Q(x, y, z) such that

(a) y E Ex if and only if 3z Q(x, y, z),
(£) if y e £x , and Q(JC, y, z), then <^(U)i) = y.
(ii) Deduce that there is a computable function g(jt, y) such that
(a) g(x, y) is defined if and only if y 6 Ex.
(b) if y e £ x, then g(*, y)e Wx and < x̂(g(x, y)) = y; i.e. gU, y)e

(iii) Deduce that if / is a computable injective function (not
necessarily total or surjective) then f~x is computable, (cf. exer-
cise 2-5.4 (1)).

2. (cf. example 3-7.1(2)) Suppose that / and g are unary comput-
able functions; assuming that Tx has been formally proved to be
decidable, prove formally that the function h(x) defined by

f 1 if x e Dom(/) or x e Dom(g),
[undefined otherwise,

is computable.

2. Two applications of the universal program
We illustrate now the use of the computability of universal functions in

diagonal constructions. This kind of application will be explored more
thoroughly in the next chapter.

2.1. Theorem
The problem '<t>x is total' is undecidable.

Proof. Let g be the characteristic function of this problem; i.e.
[1 if <f>x is total,

if <f>x is not total.
We must show that g is not computable. To achieve this, we use the
diagonal method to construct a total function / that is different from every
computable function, yet such that if g is computable, then so is /.
Explicitly, define / by

1<f>x (x) + 1 if <f>x is total,
0 if <f>x is not total.

Clearly, / is total and differs from every computable function 4>x- Now,
using g and if/u we can write / as follows:

2 Two applications of the universal program 91

Now suppose that g is computable; since <Au is computable, then, by
Church's thesis, so is /, which is a contradiction. Hence g is not
computable. •

Our second application here fulfils the promise made in chapter 3 § 3.

2.2. Theorem
There is a total computable function that is not primitive recursive.

Proof. We give an informal proof. Recall that the primitive recursive
functions are those functions that can be built up from the basic functions
by a sequence of applications of the operations of substitution and
recursion. Thus each primitive recursive function can be specified by a
plan that indicates the basic functions used and the exact sequence of
operations performed in its construction. To describe such a plan it is
convenient to adopt some notation such as the following:

Sub(/; gi, g2, • • . , gm) denotes the function obtained by substituting
g i , . . . , gm into / (assuming that / is m-ary, and gu ..., gm are n-ary for
some n)\

Rec(/, g) denotes the function obtained from / and g by recursion
(assuming that / is n-ary and g is (n +2)-ary for some n).

If we write S for the function x + 1 , then we have, for example, the
following plan for the function f(x) = x2. We use letters g i , . . . , g4 to
denote intermediate functions.

Plan Explanation of the steps
Step 1. gi = Sub(S;U^). Si(*,y,z) = U|(xf y,z) + l = z + l.

Step 2. g2 = Rec(Ui,gi). .
Ig2(*, y +1) = giU, y, g2(x, y))

Sog2(x, y) =
Step 3. g3 = Sub(g2; U?, U|). gsU, y,z) = g2(x, z) = x + z.
e* A o /A \ fg4(x,0) = 0,
Step 4. g4 = Rec(0, g3). \

l g U y +1) = gaU, y, g4 U, y))

Sog4 U, y) = jcy.
Step 5. / = Sub(g4;Ul,Ul). f(x) = g4(x, x) = x\
Thus a plan is somewhat akin to a program, in that it is a finite and explicit
specification of a function.

We now restrict our attention to plans for unary primitive recursive
functions. As with programs, we can number these plans in an effective

5 Universal programs 92

way, so that we may then define

0n = the unary primitive recursive function
defined by plan number n.

Then 0O, #i, &2, • • • is an effective enumeration of all unary primitive
recursive functions.

From chapter 2 we know that every primitive recursive function is
computable. Hence there is a total function p such that for each n, p(n) is
the number of a program that computes 8n; i.e.

Now the crucial point is that we can find such a function p that is
computable. We argue informally using Church's thesis.

Recall the proofs of theorems 2-3.1 and 2-4.4. There we showed
explicitly how to obtain a program for the function

Sub(/ ;g i , . . . , gm)

given programs for /, gu . . . , gm; and also, how to obtain a program for
the function

Rec(/,g)

given programs for / and g. (In the next section (example 3.1(5)) we use
the s-m-n theorem to show in detail that for each n there is a computable
function r such that for any eu e2 an index for Rec(<£(

e"}, <t>(
e
n

2
+2)) is given by

r(ei, £2); we can do a similar thing for substitution (see exercise 3.2(5a)).)
We also have explicit programs for the basic functions. Hence, given a
plan for a primitive recursive function / involving intermediate functions
g i , . . . , gk, say, we can effectively find programs for gu g 2 , . . . , gk, and
finally /. Thus there is an effectively computable function p such that

0 n = <t>p(n)>
By Church's thesis, p is computable.

Now for the payoff! From p and the universal function t/oj we can define
a total computable function g that differs from every primitive recursive
function 0n. We use a diagonal construction as follows:

From this we see immediately that g is a total function that is not primitive
recursive; but g is computable, by the computability of fa and p. •

3 Effective operations on computable functions 93

3. Effective operations on computable functions
In this section we illustrate another important application of the

computability of the universal functions, this time in conjunction with the
s-m-n theorem.

Consider the following operations on computable functions or their
domains:

{a) combining <t>x and 4>y to form the product (f>x <f>y;
(b) forming the union Wx u Wy from Wx and Wy.

We are all familiar with a wide variety of operations of a similar kind,
usually defined explicitly like these. Is there any sense in which these
operations can be thought of as effective operations? Inasmuch as these
are operations involving infinite objects (functions or sets), they seem to
lie outside the scope of even our informal notion of computability, which
implicitly applies only to finite objects. Nevertheless, we will see, for
instance, that an index for the function <f>x<f>y can be obtained effectively
from the indices JC, y. In the following examples and exercises we see that
many other operations are effective when viewed thus as operations on
indices of the objects involved. (We will return to the topic of effective
operations on functions in chapter 10.)

3.1. Examples
1. There is a total computable function S(JC, y) such that for all JC, y

<f>s(x,y) - <f>x<f>y
Proof. Let /(JC, y, z) — <f>x(z)<f>y(z)

— (AuU, ^)^u(y, <z)-
Thus / is computable, so by the s-m-n theorem there is a total

computable function S(JC, y) such that/(jc, y,z) — <£s(x,y)(z); hence
<t>s(x,y) = <t>x<t>y

2 . Taking g(jc) = 5(JC, JC), with s as an example 1, we have (<f>x)2 =
<f>g(x)>

3. There is a total computable function S(JC, y) such that
Wsix,y)=WxuWy.

if z € Wx or
Pwo/. Let/(jc,y,z) = ^

[undefined otherwise.
By Church's thesis and the computability of tf/\j9 f is compu-

table; so there is a total computable function s(x,y) such that
fix, y, z) =*<£s(x,y)(z). Then clearly Ws(Xty) = Wx u Wy.

5 Universal programs 94

4. Effectiveness of taking inverses. Let g(x,y) be a computable
function as described in exercise 1.5; i.e. such that
(tf) gU, y) is defined if and only if y e Ex ,
(6) if y e Ex, then g(x, y) £ Wx and <f>x(g{x, y)) = y.
By the s-m-n theorem there is a total computable function k
such that g(x, y) — 4>k(x)(y)- Then from (a) and (b) we have
(a') W4(x) = £ x,

(ii) if y € £x, then 0x(<£fc(*)(y)) = y.
Hence, if <t>x is injective, then 0fc(x) = <£x * and £k(X) = Wx.

5. Effectiveness of recursion. Let jr = (JCI, . . . , xn) and consider the
(n + 3)-ary function /defined by

f(eu e2, Jr, y +1) - <££+2) (x, y, f(eu e2, x, y)).
Then using the universal functions (Au) and ifrv +2) to rewrite the
expressions on the right, this is a definition by recursion from
computable functions, s o / is computable. Moreover, for fixed ei,
ei the function g(x, y)— f(e\, e^ x, y) is the function obtained
from <f>^ and <f>(

e
n

2
+2) by recursion.

By the s-m-n theorem there is a total computable function
r(ei,e2) such that

Hence r(e\, e2) is an index for the (n + l)-ary function obtained
from <f>(^ and (f>(

e
n

2
+2) by recursion. e In th notation of theorem 2.2

for all e\y e2.

The following exercises give more examples of the use of the s-m-n
theorem in showing that operations are effective on indices.

3.2. Exercises
1. Show that there is a total computable function k(e) such that for

any e, if <f>e is the characteristic function for a decidable predicate
M(x), then <f>k(e) is the characteristic function for 'not M(x)\

2. Show that there is a total computable function k(x) such that for
every xy Ekix) = Wx.

3. Show that t there is a total computable function s(x, y) such tha
for all xy y, E5(x, y) = Ex u £y.

4. Suppose that f{x) is computable; show that there is a total
computable function k(x) such that for all *, W /P

fc(X)=/~1(Wx).

Appendix. Computability of an 95

5. Prove the equivalent of example 5 above for the operations of
substitution and minimalisation, namely:
(a) Fix m, n>\\ there is a total computable function
s(e, ei,..., em) such that (in the notation of theorem 2.2)

(b) Fix n > 1; there is a total computable function k(e) such that
for all e,

(We could extend the notation of theorem 2.2 in the obvious way
and write 4>{#e) = Min(<£(

e
n+1)).)

Appendix
Computability of the function crn

In this appendix we give a formal proof that the function an
defined in the proof of theorem 1.2 is computable (in fact, primitive
recursive) thus completing a formal proof of the computability of the
universal function t//u\

Theorem.
The function crn is primitive recursive.
Proof. For the definition of crn and the functions cn and /„ coded

by <7n, refer to the proof of theorem 1.2.
We define two functions 'config' and 'nxt' that describe the changes in

cn and]n during computations. Suppose that at some stage during
computation under Pe the current state is a - TT(C9 /), and suppose that Pe
has s instructions. We can describe the effect of the yth instruction of Pe on
the state or by defining

the new configuration
after the yth instruction if 1 < / < s,

config(e, or) =

nxt(e, a) =

of Pe has been obeyed,
c
the number of the next
instruction for the
computation, after the
/th instruction of Pe has
been executed on the
configuration c,

otherwise.
if l < / < 5
and this next
instruction
exists in P€ ,

otherwise.

5 Universal programs 96

Now crn can be obtained from config and nxt by the following recursion
equations:

<Tn(e9x,0) = 7r(V>3x>...px
n",l),

crn(e9 x, t + 1) = 7r(config(e, crn(ey x, t)), nxt(e, an(ey x, t))).

Thus, crn is primitive recursive if config and nxt are primitive recursive; we
proceed to show that they are.

We must be careful now to distinguish between the code number (3(1)
of an instruction / and its number in any program in which it occurs (i.e.
the number y such that / is the yth instruction). We will always use the
term code number when 0(1) is intended.

It is sufficient to establish that the following four functions are primitive
recursive:

(1) ln(e) = the number of instructions in program Pe;

I the code number of the yth
instruction in Pe9 if 1 < / < \n(e),

0 otherwise;
(3) ch(c, z) = the configuration resulting when the

configuration c is operated on by the
instruction with code number z;

' the number /' of the
'next instruction for the
computation' when the
configuration c is operated on

(4) v(c,j,z) = by the instruction with code if j > 0,
z, and this occurs as the
yth instruction in a program,

. 0 otherwise

(The 'next instruction for the computation' here is as defined in chapter 1
§ 2, so /' =y + 1 or, if I, is a jump instruction J(mi, ra2, q) we may have

If these four functions are primitive recursive, then remembering that
a = TT(C, y) where c = ni(cr) and y = TT2((T) we have

fch(7n(cr), gn(e, 7T2(o-))) if 1 ^ 7r2(cr)
configU?, a) = < .

li) otherwise.

Appendix. Computability of an 97

f n(*?, 7T2(<r)))

if this number is < \n(e),
0 otherwise.

Thus config and nxt are primitive recursive, by the methods of chapter 2.
It remains to show that the functions (l)-(4) above are primitive

recursive. A sequence of auxiliary functions is needed to decode the code
numbers of programs and instructions. We use freely the standard
functions e and techniques of chapter 2 §§ 1-4, together with th functions
defined in chapter 4 § 1 for coding instructions and programs.
(5) The functions «(/, JC), /(*), b(i, x) and a(i, x) of exercise 2-4.16(5) are
primitive recursive.

Proof, (i) * =X*L0<*('*>*)2'; so we have qt(2',x) = a(i,x) +
a(i + 1 , x)2 + . . . and hence a(/, x) = rm(2, qt(2', x)).

(ii) l(x) = number of is such that a(i, x) = 1; hence
i<x

(iii) If J C > 0 , JC = 2M 1 'x) + 2 M 2 'x) + . . . + 2 M / (x) 'x) ; thus, if l < / <
then b(U x) is the ith index k such that a(k, x) = 1. Hence

_,. , \ny<x(I a(k9x) = i) i f l < / < / (j c) a n d j c > 0 ,
b(i,x) = < \k^y)

LO otherwise.
(iv) From the definition:

From the above explicit formulae, using the techniques of chapter 2,
these functions are all primitive recursive.
(6) The functions \n(e) and gn(e,y) are primitive recursive.

Proof. From the definitions of the coding function y:

where / and a are the functions in (5).
(7) There are primitive recursive functions M, UU "2, Vu V2, V3 such that:

if ± =/3(Z(m)), then u(z) = m9

if z = 0(S(m)), then M(Z) = m,
if z = 0(T(m!, m2)), then ux(z) = mi and w2(z) = m2,
if z = /8(J(mi, m2, <f)), then «i(z) = mu v2(z) = m2 ,

and

5 Universal programs 98

Proof. From the definition of 0, and writing (z/4) for qt(4, z), take

u(z) = (z/4) + l,

(8) The following functions are primitive recursive:

(i) zero(c, m) = the change in the configuration c
effected by instruction Z(m),

(ii) suc(c, m) = the change in the configuration c
effected by instruction S(m),

(iii) transfer(c, m, n) = the change in the configuration c
effected by instruction T(m, n),

(9) The function ch(c, z) (defined in (3) above) is primitive recursive.
Proof.

zero(c, u (z))

suc(c, u(z))

ch(c,z) =

ifrm(4, z) = O(i.e. z
is the code of a
zero instruction),

if rm(4, z) = 1 (i.e. z
is the code of a
successor instruction),

transfer(c, ui(z), M2U)) if rm(4, z) = 2 (i.e. z
is the code of a
transfer instruction),

otherwise.

Appendix. Computability of crn 99

(10) The function v{c,j, z) (defined in (4) above) is primitive recursive.
Proof. We have

/ + 1 if (c)Vliz)̂ (c)V2(z)

v3(z) if

(i.e. z is the
code of an
arithmetic
instruction),

if rm(4, z) = 3
(i.e. z is the code of
a jump instruction).

From this definition by cases, we see that v is primitive recursive.
We have now shown that the functions (l)-(4) above are primitive

recursive, so the proof of the theorem is complete. •

6
Decidability, undecidability and
partial decidability

In previous chapters we have noted several decidable problems, but so far
we have encountered only one explicit example of undecidability: the
problem '<t>x is total' (theorem 5-2.1). It is of considerable interest to
identify decidable and undecidable problems; the latter, particularly,
indicate the limitations of computability, and hence demonstrate the
theoretical limits to the power of real world computers.

In this chapter the emphasis is largely on undecidability. In § 1 we give
a survey of undecidable problems arising in the theory of computability
itself, and discuss some methods for establishing undecidability. Sections
2-5 are devoted to a sample of decidable and undecidable problems from
other areas of mathematics: these sections will not be needed in later
chapters and may be omitted. In the final section we discuss partial
decidability, a notion closely related to decidability.

Let us recall from chapter 1 that a predicate M(x) is said to be decidable
if its characteristic function cM, given by

if M{x) holds,
if M(x) does not hold,

is computable. This is the same as saying that M(x) is recursive (see
chapter 3 § 2). The predicate M{x) is undecidable if it is not decidable. In
the literature all of the following phrases are used to mean that M(x) is
decidable.

M(x) is recursively decidable,
M{x) has recursive decision problem,
Mix) is solvable,
Mix) is recursively solvable,
Mix) is computable.

An algorithm for computing CM is called a decision procedure for Mix).

1 Undecidable problems in computability 101

1. Undecidable problems in computability
Most proofs of undecidability rest on a diagonal construction, as

in the following important example.

1.1. Theorem
'xeWx' {or, equivalently, i(f>x{x) is defined', or iPx{x)i', or

'^uU, x) is defined') is undecidable.
Proof. The characteristic function / of this problem is given by

ifxe Wx,
iix£Wx.

Suppose that / is computable; we shall obtain a contradiction.
Specifically, we make a diagonal construction of a computable function g
such that Dom(g)^ Wx{ = Dom{<f>x)) for every x; this is obviously
contradictory.

The diagonal motto tells us to ensure that Dom(g) differs from Wx at x;
so we aim to make

xeDom(g) <=> x£ Wx.
Let us define g, then, by

iix£Wx{i.e.iff{x) = 0),
I undefined if xe Wx (i.e. if f{x) = 1).

Since / is computable, then so is g (by Church's thesis); so we have our
contradiction. (To see this in detail: since g is computable take m such
that g = <f>m', then m e Wm <^> m e Dom(g) <£> m£ Wm, a contradiction).

We conclude that / is not computable, and so the problem lx£ Wx is
undecidable. •

Note that this theorem does not say that we cannot tell for any
particular number a whether <f>a{a) is defined. For some numbers this is
quite simple; for instance, if we have written a program P that computes a
total function, and P = Pa, then we know immediately that <t>a{a) is
defined. What the theorem says is that there is no single general method
for deciding whether </>x{x) is defined; i.e. there is no method that works
for every x.

An easy corollary to the above result is

1.2. Corollary
There is a computable function h such that the problems 'JC e

Dom(A)' and '* e Ran(/i)' are both undecidable.

6 Decidability, undecidability and partial decidability 102

Proof. Let

1 undefined if x & Wx.
Then h is computable, by Church's thesis and the computability of the
universal function t̂ u (or, formally, we have that h(x) — x l(i//\j(x, x))
which is computable by substitution). Clearly we have xeDom(h) <̂>
xeWx <£> jteRan(/i), so the problems 'xeDomihY and 'jteRan(/i)'
are undecidable. •

Another important undecidable problem is derived easily from
theorem 1.1:

1.3. Theorem (the Halting problem)
The problem i<t>x(y) is defined' (or, equivalently lPx(y)V or 'ye

Wx') i5 undecidable.
Proof. Arguing informally, if the problem '</>x(y) is defined' is deci-

dable then so is the problem '<f>x(x) is defined', which is if anything easier.
But this contradicts theorem 1.1.

Giving this argument in full detail, let g be the characteristic function
for l<(>x(y) is defined'; i.e.

1 if <f>x(y) is defined,
if <f>x(y) is not defined.

If g is computable, then so is the function f(x) = g(x, x); but / is the
characteristic function of lx e Wx, and is not computable by theorem 1.1.
Hence g is not computable; so '<£*(y) is defined' is undecidable. •

Theorem 1.3 is often described as the Unsolvability of the Halting
problem (for URM programs): there is no effective general method for
discovering whether a given program running on a given input eventually
halts. The implication of this for the theory of computer programming is
obvious: there can be no perfectly general method for checking programs
to see if they are free from possible infinite loops.

The undecidable problem '*e Wx' of theorem 1.1 is important for
several reasons. Among these is the fact that many problems can be
shown to be undecidable by showing that they are at least as difficult as
this one. We have already done this in a simple way in showing that the
Halting problem is undecidable (theorem 1.3): this process is known as
reducing one problem to another.

1 Undecidable problems in computability 103

Speaking generally, consider a problem M(x). Often we can show that
a solution to the general problem M{x) would lead to a solution to the
general problem 'xe Wx\ Then we say that the problem 'xeWx' is
reduced to the problem M(x). In other words, we can give a decision
procedure for 'x e Wx if only we could find one for M(x). In this case, the
decidability of M(x) implies the decidability of 'x e Wx\ from which we
conclude immediately that M(x) is undecidable.

The s-m-n theorem is often useful in reducing 'xe Wx' to other
problems, as illustrated in the proof of the next result.

1.4. Theorem
The problem '<£x = 0' is undecidable.

Proof. Consider the function / defined by
(0 iixeWx,
1 undefined if x £ Wx.

We have defined / anticipating that we shall use the s-m-n theorem;
thus we are thinking of x as a parameter, and are concerned about the
functions gx where gx(y)— /(x, y). We have actually designed / so that
gx=0<* xeWx.

By Church's thesis (or by substitution using 0 and fa) f is computable;
so there is a total computable function k(x) given by the s-m-n theorem
such that/(x, y) - fawiy)', i-e. <t>k(X) = gx> Thus from the definition of /we
see that
(*) X € Wx <=> <f>k(x) — 0 .

Hence, a particular question Is x e Wxl can be settled by answering the
question Is <t>k(X) = 0? We have thus reduced the general problem 'x e Wx'
to the general problem '<£x = 0'; the former is undecidable, hence so is the
latter, as was to be proved.

Let us present the final part of this argument in more detail as it is the
first example of its kind. Let g be the characteristic function of '<£x = 0';
i.e.

f 1 if (f>x = 0,

Suppose that g is computable; then so is the function h(x) = g(k(x)). But
from (*) above we have

if <t>k(x)= 0; i.e. x e Wx,
10 if d>k(x) ̂0; i.e. x £ Wx.

6 Decidability, undecidability and partial decidability 104

So by theorem 1.1 h is not computable. Hence g is not computable, and
the problem '</>* = 0' is undecidable. •

From theorem 1.4 we can see that there are inherent limitations when it
comes to checking the correctness of computer programs; this theorem
shows that there can be no perfectly general effective method for check-
ing whether a program will compute the zero function. By adapting the
proof of theorem 1.4 we can see that the same is true for any particular
computable function (see exercise 1.8(1/) below).

The following easy corollary to theorem 1.4 shows that the question of
whether two programs compute the same unary function is undecidable.
Again there are obvious implications for computer programming theory.

1.5. Corollary
The problem '<£x = <f>y

9 is undecidable.
Proof. We can easily see that this is a harder problem than the problem

Let c be a number such that <t>c = 0; if /(*, y) is the characteristic
function of the problem </>x = </>y, then the function g{x) =f(x, c) is the
characteristic function of '<£x = 0'. By theorem 1.4, g is not computable,
so neither is /. Thus '0X = <£/ is undecidable. D

We use the o s-m-n theorem again t reduce the problem 'x e Wx in the
following results.

1.6. Theorem
Let c be any number. The following problems are undecidable.
(a) (the Input or Acceptance problem) 'ce Wx (equivalently,

(b) (the Output or Printing problem) 'c eEx
9 (equivalently, 'c €

Proof. We are able to reduce 'xe Wx' to these problems simul-
taneously. Consider the function f(x, y) given by

\y itxeWx,
I undefined otherwise.

(With the s-m-n theorem in mind, we are concerned about the functions
gx where gx(y) — f(x9 y): we have designed / so that c eDom(gx) <£

1 Undecidable problems in computability 105

xeWx » c e R a n (g J .) By Church's thesis / is computable, and so
the s-m-n theorem provides a total computable function k such that
f(x, y) — <t>k(x)(y)> From the definition of / we see that

x e Wx => Wkix) = Ekix) = N, so c e Wk(x) and c e Ekix);
and

Thus we have reduced the problem *JC€ Wx to each of the problems

Completing the proof of (a) in detail, we see that if g is the charac-
teristic function of 'c e Wx\ then

itxe Wx,

This function is not computable (theorem 1.1), so g cannot be compu-
table. Hence 'c e Wx is undecidable.

A detailed proof of (b) is similar. •

We conclude this section with a very general undecidability result, from
which theorems 1.4 and 1.6 follow immediately. It is another use of the
s-m-n theorem to reduce 'JC € Wx\

1.7. Theorem (Rice's theorem)
Suppose that & c <igu and 3b * 0 , <#i. Then the problem *<f>xe3b'

is undecidable.
Proof. From the algebra of decidability (theorem 2-4.7) we know that

'<t>xe38' is decidable iff '<£x € ^ASS' is decidable; so we may assume
without any loss of generality that the function f® that is nowhere defined
does not belong to 38 (if not, prove the result for ^i\S8).

Choose a function g e 3&. Consider the function /(*, y) defined by

/(xy)-(g(y)
n ' y) Undefined iix&Wx.

The s-m-n theorem provides a total computable function k{x) such that
/(*, y) ^ 0fc(x)(y). Thus we see that

x 6 Wx => <f>kix) = g, i .e. <f>k(x) £ 38;
xt Wx => <hc(*) = /0,i.e.<£ fc(x)*S8.

So we have reduced the problem 'xeWx' to the problem l<f>x e 38' using
the computable function it. In the standard way we conclude that '4>x e 38'
is undecidable. •

6 Decidability, undecidability and partial decidability 106

Theorem 1.4, for example, is obtained immediately from Rice's
theorem by taking 3& ={0}, and theorem 1.6(a) by taking 58 =
{ge^i'.ce Dom(g)}. Rice's theorem may be similarly applied in several
of the exercises below.

1.8. Exercises
1. Show that the following problems are undecidable.

(a) 'xeEx1 (Hint. Either use a direct diagonal construction, or
reduce 'xeWx' to this problem using the s-m-n theorem.),
(b) lWx = Wy' (Hint. Reduce '<t>x is total' to this problem.),
(c) i</>x(x) = 0\
(d) '<My) = 0\
(e) lxeEy\
(/) '(f>x is total and constant',
(g) 'W, = 0 \
(h) 'Ex is infinite'.
(i) '4>x = g\ where g is any fixed computable function.

2. Show that there is no total computable function f(x, y) with the
following property: if Px(y) stops, then it does so in /(*, y) or
fewer steps. (Hint. Show that if such a function exists, then the
Halting problem is decidable.)

Decidability and undecidability in other areas of mathema-
tics In many areas of mathematics there arise general problems for
which the informal idea of decidability is meaningful. Generally such
problems involve finite objects from a particular field of study. The idea
of decidability of some property involving these objects can always be
made precise using a suitable coding by natural numbers.

Much research has been directed towards identifying both decidable
and undecidable problems in a variety of mathematical situations: in the
next sections we give a small sample of the results that have been
obtained.

2. The word problem for groups1

Suppose that G is a group with identity element 1, and that G is
generated by a set of elements S = {gi, g2, gs,...} £ G. A word on S is

1 The reader with no knowledge of group theory should omit this section.

3 Diophantine equations 107

any expression such as g^gtgigigs involving the elements of 5 and the
group operations. Each word represents an element of G, and to say that
G is generated by 5 means that every element of G is represented by
some word on 5.

The word problem for G (relative to 5) is the problem of deciding for
which words w on 5 is it the case that w = 1.

There are many groups with decidable word problem: for example any
finite group (with 5 finite, of course). For many years mathematicians
searched for an example of a finitely presented2 group with wndecidable
word problem. Eventually it was shown by Novikov in 1955 and Boone in
1957 that such groups do exist. Proofs of the Novikov-Boone Theorem
are beyond the scope of this survey: the reader is referred to expositions
in Rotman [1965] or Manin [1977].

Group theory, and modern algebra in general, abounds with interes-
ting decidable and undecidable problems; a great many of them involve
properties of words or generators akin to the basic word problem for
groups.

3. Diophantine equations
Suppose that p(x\, *2, • • • > xn) is a polynomial in the variables

JCI, . . . , xn, with integer coefficients. Then the equation

for which integer solutions are sought is called a diophantine equation.
Diophantine equations do not always have solutions: for instance the
equation JC 2 -2 = 0.

Hilbert's tenth problem, posed in 1900, asks whether there is an
effective procedure that will determine whether any given diophantine
equation has a solution. It was shown in 1970 by Y. Matiyasevich that
there is no such procedure; his proof was the culmination of earlier work
by M. Davis, J. Robinson and H. Putnam.

Actually Matiyasevich established rather more than the unsolvability
of Hilbert's tenth problem; the full Matiyasevich theorem and its appli-
cation to Hubert's tenth problem are discussed in § 6. For complete
details consult Davis [1973] or Manin [1977], or Bell & Machover
[1977].

2 A group G is finitely presented if there is a finite set of generators S and a finite set
B of relations of the form w - 1 (where w is a word on S) such that (i) all relations
in B are true in G, and (ii) all other relations holding in G can be deduced from
those in B by using the group axioms alone.

6 Decidability, undecidability and partial decidability 108

4. Sturm's algorithm
To redress the emphasis on undecidability in the previous two

sections, we now mention a theorem of Sturm that gives us positive results
for computability and decidability in connection with the zeros of poly-
nomials.

4.1. Sturm 's theorem
Let p(x) be a real polynomial, and let po, pi,... ,pr be the sequence

of real polynomials given by
(a) po = 0,
(b) Pi = p' (the derivative ofp),
(c) for 0 < i < r, there is a polynomialqt such thatpi-i = p,*?, - p,+i
with pt+i ^ 0 and degree(p,+i)<degree(p,) (so thatqt and -pi+i
are the quotient and remainder respectively when p,_i is divided by
Pt),
(d) pr-i = Prqr-

For any real number c denote by S(c) the number of sign changes in the
sequence po(c),..., pr(c) (ignoring zeros).

Suppose that a, b are real numbers that are not zeros ofp(x), and a<b.
Then the number of zeros ofp(x) in the interval [a, b] is S (a) -8(b), (each
zero being counted once only).

This is not the place to give a proof of Sturm's theorem, which the
reader may find clearly expounded in Cohn [1977] or Van der Waerden
[1949]. From our point of view, Sturm's theorem is interesting because of
the algorithm it embodies. It gives us positive results about the compu-
tability of the number of zeros of a polynomial, and the decidability of
statements about zeros of polynomials.

To frame such results, we must restrict attention to polynomials over
the rational numbers, denoted by Q, so that the objects we are dealing
with are finite. Thus we are thinking in terms of computability over the
domain Q (which can be d define in terms of computability on M by the
usual coding device); note that a polynomial p(x) with coefficients in Q is
essentially a sequence of rational numbers.

A sample of the results that follow from Sturm's theorem is the
following.

4.2. Theorem
(a) There is an effective procedure for calculating the number of
real zeros of a polynomial over Q;

5 Mathematical logic 109

(b) The predicate "p has a zero in [a, b]' is decidable, where p
denotes a polynomial over Q and a, beQ.

Proof. Given any polynomial p, the polynomials po, pi, •.., pr defined
in Sturm's theorem may be found effectively by using the standard rules
for differentiation and the division algorithm for polynomials.

For (a), it is a routine matter to find for any polynomial p(x) a rational
number M > 0 such that all the zeros of p lie in the interval]-M, M[. In
fact, if p(x) = ao + aix + ... + anx", the number

Af l

suffices. Then by Sturm's theorem the number of zeros of p is 8(-M) —
8(M) which may be calculated effectively.

For (b), suppose that we are given a polynomial p and rationals a, b. To
decide whether p has a zero in [a, b\ first calculate p(a) and p(b); if
neither of these is zero, calculate 8(a)-S(b) and apply Sturm's
theorem. •

Of course, Sturm's theorem can be used to show that many other
questions about polynomials over Q are computable or decidable.

4.3. Exercise
Show that there is an effective procedure, given a polynomial p

and rational numbers a, b, for finding the number of zeros of p in [a, b].
(Remember that a or b may be zeros of p.)

5. Mathematical logic
Early investigations into the idea of effective computability were

very much linked with the development of mathematical logic, because
decidability was regarded as a basic question about any formalisation of
mathematics. We shall describe some of the results that have been
obtained in this area, in general terms that do not assume any acquain-
tance with mathematical logic. (The reader interested to learn the basics
of this subject may consult one of the many introductory texts, such as
Margaris [1966].)

The simplest logical system reflecting something of mathematical
reasoning is the propositional calculus. In this calculus compound state-
ments are formed from basic propositions using symbols for the logical
connectives 'not', 'and', 4or', and implies'. It is quite easy, once the

6 Decidability, undecidability and partial decidability 110

propositional calculus has been carefully defined, to see that it is deci-
dable. By this we mean that there is an effective procedure for deciding
whether a statement a of the calculus is (universally) valid; i.e. true in all
possible situations. The method of truth tables gives an algorithm for this
that will be familiar to many readers.

A logical system that has greater expressive power than the pro-
positional calculus is the (first-order) predicate calculus: using the
language of this calculus it is possible to formalise a great deal of
mathematics. The basic statements are formed from symbols represen-
ting individual objects (or elements) and predicates and functions of
them. The compound statements are formed using the logical symbols of
the propositional calculus together with V and 3.

There is a precise notion of a proof of a statement of the predicate
calculus, such that a statement is provable if and only if it is valid.3 In 1936
Church showed that provability (and hence validity) in the predicate
calculus is undecidable, unlike the simpler propositional calculus. (This
result was regarded by Hilbert as the most fundamental undecidability
result for the whole of mathematics.)

We can use the URM to give an easy proof of the undecidability of
validity, although this calls upon a certain familiarity with the predicate
calculus. We advise the reader who does not have a rudimentary know-
ledge of predicate logic to omit the proof that we now sketch.

5.1. Theorem
Validity in the first-order predicate calculus is undecidable.

Proof. (Not advised for strangers to the predicate calculus.)
Let P be a program in standard form having instructions Iu . . . , 7S and

let u = p(P) (as defined in chapter 2 § 2). We use the following symbols of
the predicate calculus.

0 a symbol for an individual,
' a symbol for a unary function (whose value at x is x')>
R a symbol for a (u + l)-ary relation,
Xi, X2,. . . xu, y symbols for variable individuals.

The interpretation we have in mind is that 0 represents the number 0 , ;

represents the function jt+1, and R represents the possible states of a
computation under P. Thus e if w write 1 for 0', 2 for 0", etc. the statement

3 This is described by saying that the notion of provability is completet and is the
content of Godel's completeness theorem.

5 Mathematical logic 111

where ru • • • rUf k e N means that the state

. . . ; next instruction Ik

occurs in the computation.
Now for each instruction /, we can write down a statement T, of the

predicate calculus that describes the effect of /, on states, using the symbol
A for 'and' and -* for 'implies':

(a) if // = Z(n) let r, be the statement

V x i . . . Vxtt: R(x i , . . . , x n , . . . , xM, i)-»R(xi, . . . , 0 , . . . , xM, i').

(b) If /, = S(n) let Tt be the statement
V x i . . . VxM: R (x i , . . . , x n , . . . , xM, i) -> R (x i , . . . , x'n,..., xM, i').
(c) If /, =T(m, n) let r, be the statement
V x i . . . VxM: R (x i , . . . , x n , . . . , xM, i) -> R (x 1 ? . . . , x m , . . . , xM, i').
(d) If /, = J(m, n, q) let r, be the statement
V x i . . . Vxu : R (x i , . . . , xM, i) ^ ((xm = xn -» R (x i , . . . , xM, q))

A (x m ^ x n ^ R (x i , . . . , x M , i'))).
Now for any a e M let cra be the statement

-» 3 x x . . . 3x u R(x i , . . . , xM, s+1) ,

where T0 is the statement VxVy((x' = y'-^x = y)AxV0) . (This ensures
that in any interpretation, if m, n e M and m = n then m = n.)

The statement R(a, 0 , . . . , 0,1) corresponds to a starting state

a 0 0 . . . ; next instruction Iu

and any statement R(x i , . . . , xM, s+1) corresponds to a halting state
(since there is no instruction /$+i). Thus we shall see that

(*) P(a)i » cra is valid.

Suppose first that P(a)l> and that we have a structure in which T0, . . . , rs

and R(a, 0 , . . . , 0,1) hold. Using the statements TO, . . . , r s we find that
each of the statements R(r-i,..., ru, k) corresponding to the successive
states in the computation also holds. Eventually we find that a halting
statement R(b i , . . . , bu, s +1) holds, for some bi,..., bu e N, and hence
3 x i . . . 3xM R(x i , . . . , xM, s +1) holds. Thus aa is valid.

6 Decidability, undecidability and partial decidability 112

Conversely, if cra is valid, it holds in particular in the structure N with
the predicate symbol R interpreted by the predicate Ra where

Ra(ai,..., aM, k) = At some stage in the computation P(a) the
registers contain ai, a2> • • • > #u> 0, 0 , . . . and
the next instruction is Ik.

Then r 0 , . . . , rs and R(a, 0 , . . . , 0, 1) all hold in this structure, hence so
does 3 x i . . . 3xM R(xi, . . . , xM, s+1). Therefore P(a)i.

If we take P to be a program that computes the function i//u(x, JC), the
equivalence (*) gives a reduction of the problem 'JC e Wx to the problem
V is valid'. Hence the latter is undecidable. •

The field of mathematical logic abounds with decidability and undeci-
dability results. A common type of problem that arises is whether a
statement is true in all mathematical structures of a certain kind. It has
been shown, for example, that the problem

'a- is a statement that is true in all groups'
is undecidable (here <r is a statement of the first-order predicate language
appropriate to groups), whereas the problem

'<r is a statement that is true in all abelian groups'
is decidable. (We say that the first-order theory of groups is undecidable
whereas the first-order theory of abelian groups is decidable.) It was
shown by Tarski [1951] that the problem

V is true in the field of real numbers'
is decidable. On the other hand, many problems connected with the
formalisation of ordinary arithmetic on the natural numbers are
undecidable, as we shall see in chapter 8.

For further examples and proofs of decidability and undecidability
results in logic the reader should consult books such as Tarski, Mostowski
& Robinson [1953], or Boolos & Jeffrey [1974].

6. Partially decidable predicates
Although the predicate 4JCE Wx has non-computable charac-

teristic function, the following function connected with this problem is
computable:

ifxeWx,
I undefined if JC £ Wx.

If we continue to think of 1 as a code for Yes, then any algorithm for / is a

6 Partially decidable predicates 113

procedure that gives answer Yes when x £ Wx, but goes on for ever when
x e Wx does not hold. Such a procedure is called a partial decision
procedure for the problem 'jte Wx\ and we say that this problem or
predicate is partially decidable.

Many undecidable predicates turn out to be partially decidable: let us
formulate the general definition.

6.1. Definition
A predicate M(x) of natural numbers is partially decidable if the

function / given by

if M(x) holds,
I undefined if M(x) does not hold,

is computable. (This function is called the partial characteristic function
for M) If M is partially decidable, any algorithm for computing/ is called
a partial decision procedure for M.
Note. In the literature the terms partially solvable, semi-computable, and
recursively enumerable4 are used with the same meaning as partially
decidable.

6.2. Examples
1. The Halting problem (theorem 1.3) is partially decidable, since

its partial characteristic function

I undefined otherwise,

is computable, by Church's thesis (or by observing that /(JC, y) —

2. Any decidable predicate is partially decidable: simply arrange
for the decision procedure to enter a loop whenever it gives
output 0.

3. For any computable function g(x) the problem 'jreDom(g)' is
partially decidable, since it has the computable partial charac-
teristic function l(g(x)). (Cf. corollary 1.2.)

4. The problem '*£ Wx is not partially decidable: for if / is its
partial characteristic function, then

*eDom(/) & x£Wx.

Thus Dom(/) differs from the domain of every unary computable
function: hence / is not computable.

4 The reason for the use of this term will be explained in the next chapter.

6 Decidability, undecidability and partial decidability 114

We proceed to establish some of the important characteristics of
partially decidable predicates. First we have the alternative charac-
terisation that is given essentially in example 6.2(3) above.

6.3. Theorem
A predicate Mix) is partially decidable if and only if there is a

computable function g(x) such that
Mix) iff x e Dom(g).

Proof. If Mix) is partially decidable with computable partial charac-
teristic function fix), then from the definition we have M(x) iff
x £ Dom(/). The converse is given by example 6.2(3) above. •

The following characterisation of partially decidable predicates shows
how they are related to decidable predicates.

6.4. Theorem
A predicate M(x) is partially decidable if and only if there is a

decidable predicate R(x,y) such that
M(x) iff3yR(x,y).

Proof Suppose that R(x, y) is a decidable predicate and that M(x) iff
3yR(x, y). By corollary 2-5.3 the function g(x) — fiyR(x, y) is compu-
table; clearly

Af(jr) <=> jreDom(g),
so M(x) is partially decidable by theorem 6.3.

For the converse, suppose that M(x) is partially decidable, with partial
decision procedure given by a program P. Define a predicate R(x, y) by

R(x,y) s P(x)i in y steps.
By corollary 5-1.3, R(x, y) is decidable. Moreover,

M{x) O Pix)i

as required. D
Note. From the appendix to chapter 5 it follows that the predicate R in

this characterisation may be taken to be primitive recursive (see the
note 1 following corollary 5-1.4).

The characterisation given by theorem 6.4 indicates an important way
to think of partially decidable predicates. It shows that partial decision
procedures can always be cast in the form of an unbounded search for a

6 Partially decidable predicates 115

number y having some decidable property JR(JT, y). This search is most
naturally carried out by examining successively y = 0,1 , 2 , . . . to find
such a y. The search halts if and when y is found such that R(x, y) holds;
otherwise the search goes on for ever.

We can use theorem 6.4 to establish some further properties of
partially decidable predicates, that aid us in their recognition.

6.5. Theorem
If M(x, y) is partially decidable, then so is the predicate

3yM(jr, y).
Proof. Take a decidable predicate R(x, y, z) such that M(x, y) iff

3zR(x, y, z). Then we have
3yM(jr, y) <S> 3y3zR(x, y, z).

We can use the standard technique of coding the pair of numbers y, z by
the single number u = 2 y3z ; then the search for a pair y, z such that
R(x, y, z) reduces to the search for a single number u such that
R(x, (w)i, (w)2), i.e.

3yM (*, y) <S> 3uR(x,(u)u(u)2).

The predicate S(x,u) = R(x, (u)u (w)2) is decidable (by substitution) and
so by theorem 6.4 3yM(x, y) is partially decidable. •

Theorem 6.5 is described by saying that partially decidable predicates
are closed under existential quantification. Its repeated application gives

6.6. Corollary
IfM(x, y) is partially decidable, where y = (y i , . . . , y m), then so is

the predicate 3 y i . . . 3ym M(x, yu . . . , ym).

Let us now consider some applications of the above results.

6.7. Examples
1. The following predicates are partially decidable.

(a) xeE{
y
n) (n fixed). (The Printing problem: cf. theorem 1.6.)

(b) Wx*0 (Cf. exercise 1.8(lg).)
Proofs

(a) xeE{
y
n) <£> 3 z i . . . 3 z n 3 r (P y (z i , ...,zn)lx in t steps). The

predicate in the brackets on the right is decidable; apply coro-
llary 6.6.
(b) Wx 5* 0 » 3y3r(Px(y)| in t steps); again the predicate in
brackets is decidable, so corollary 6.6 applies.

6 Decidability, undecidability and partial decidability 116

2. Provability in the predicate calculus is partially decidable (this is
for those who have read § 5).

Proof. We proceed informally; in the predicate calculus a
proof is defined as a finite object (usually a sequence of state-
ments) in such a way that the predicate
Pr(d, a) = 'd is a proof of the statement cr'
is decidable. Then we have
a is provable « 3d Pr(d, a),
hence 'or is provable' is partially decidable.

6.8. Diophantine predicates (cf. § 3)
Suppose that p(*i, . . . , * „ , y i , . . . , ym) is a polynomial with

integer coefficients. Then the predicate M(x) given by
M{x) = 3 y i . . . 3ym(p(x, y i , . . . , ym) = 0)

is called a diophantine predicate, because of its obvious connection with
diophantine equations. (The quantifiers 3yu.. •, 3ym are taken as
ranging over M.)

Example The predicate '* is a perfect square' is diophantine,
since it is equivalent to 3y (x - y2 = 0).

From corollary 6.6 we have immediately

6.9. Theorem
Diophantine predicates are partially decidable.

Proof. The predicate p(x, y) = 0 is decidable; apply corollary 6.6. •

Clearly, diophantine predicates are partially decidable predicates that
can be cast in a relatively simple form, and for a long time it was not
known whether any undecidable diophantine predicates existed. This
question is closely connected with Hilbert's tenth problem (§ 3), as we
shall see. It was a most remarkable achievement, therefore, when Mati-
yasevich proved in 1970:

6.10. Theorem
Every partially decidable predicate is diophantine.

The proof of this result by Matiyasevich rested heavily on earlier work
of Davis, Robinson and Putnam, and is far too long to present here. Full

6 Partially decidable predicates 117

proofs are given in Davis [1973], Bell & Machover [1977] and Manin
[1977]. The major part of the proof consists in showing that diophantine
predicates are closed under bounded universal quantification; i.e. if
M(x, y) is diophantine then so is the predicate Vz<yAf (JC, Z). (It is an
easy exercise to show that partially decidable predicates are closed under
bounded universal quantification; see exercise 6.14(5) below.)

We can see how a negative solution to Hilbert's tenth problem is easily
derived from Matiyasevich's theorem. First note that if the problem
posed by Hilbert is decidable, then so is the problem of deciding for a
general polynomial equation p(xi,..., xn) = 0 (with integer coefficients)
whether it has a solution in the natural numbers: this is because any
natural number is expressible as the sum of four squares, so we simply
look for integer solutions to

p(s\ +1\ + u\ + v2
u ..., sl+ t2

n + ul + vl) = 0.

Now take a polynomial p(x, yu . . . , ym) such that

x e Wx <=> 3 y x . . . 3ym(p(x, yu ..., ym) = 0)
(this is possible by Matiyasevich's theorem). Then a decision procedure
for Hilbert's problem would give the following decision procedure for
'xeW^: to test whether a e Wa see whether the polynomial
q(yu • • •, ym)z=p(a> y i , . . . , ym) has a solution in N. So lxe Wx' has been
reduced to Hilbert's problem; hence the latter is undecidable.

We shall mention another (surprising) consequence of Matiyasevich's
theorem in the next chapter.

We conclude this chapter with two important results, linking partially
decidable predicates with decidable predicates (theorem 6.11) and
computable functions (theorem 6.13).

6.11. Theorem
A predicate M(x) is decidable if and only if both M{x) and 'not

M(xY are partially decidable.
Proof. If M{x) is decidable, so is 'not M(x)\ so both are partially

decidable.
Conversely, suppose that partial decision procedures for M(x) and 'not

M(JC)' are given by programs F, G. Then

F(x)i <S> M(x) holds
and

G(x)i » 'not M(xY holds.
Moreover, for any x, either F(x)i or G(x)i but not both. Thus
the following is an algorithm for deciding M(x). Given xy run the

6 Decidability, undecidability and partial decidability 118

computations F(x) and G(x) simultaneously (or carry out alternately one
step in each computation), and go on until one of them stops. If it is F(x)
that stops, then conclude that M(x) holds; if it is G(x) that stops, then
M(x) does not hold. •

This theorem gives an alternative proof that the predicate 'x&WS is
not partially decidable. Similarly we have

6.12. Corollary
The predicate '^ (y) ! ' (the Divergence problem: equivalently,

'yg Wx\ or '0x(y) is undefined'1) is not partially decidable.
Proof. If this problem were partially decidable, then by theorem 6.11

and example 6.2(1) the Halting problem Px(y)i would be decidable. •

The final result of this chapter gives a useful way to show that a function
is computable.

6.13. Theorem
Letf(x) be a partial function. Then f is computable if and only if

the predicate

is partially decidable.
Proof. If / is computable by a program P, then we have

/(*)=* y » 3t(P(x)iy in t steps).
The predicate on the right is partially decidable by theorem 6.4 and
corollary 5-1.3.

Conversely, suppose that the predicate 'fix) — y' is partially decidable.
Let R(x, y, i) be a decidable predicate such that f{x) — y O 3tR(x, y, t).
Then we have the following algorithm for computing/(jr).

Search for a pair of numbers y, t such that R (x, y, t) holds; if and when
such a pair is found, then f(x) — y.

Hence / is computable. (A formal proof of the computability of / could
be given by the standard technique of coding a pair y, t by the single
number z = 2y3'. See exercise 6.14(8) below.) •

Further properties of partially decidable predicates are given in the
exercises below (see in particular exercises 6.14(4, 5, 9)).

In the next chapter we will be studying unary partially decidable
predicates in greater detail, in the guise of recursively enumerable sets. We

6 Partially decidable predicates 119

shall see in particular why partially decidable predicates are often
described as recursively enumerable predicates.

6.14. Exercises
1. Show that the following predicates are partially decidable:

(a) '£"i")#0'(n fixed),
(b) '<£x(y) is a perfect square',
ic) 'n is a Fermat number'. (We say that n is a Fermat number if
there are numbers *, y, z > 0 such that xn + yn = zn.)
(d) There is a run of exactly x consecutive 7s in the decimal
expansion of TT'.

2. (For those knowing some group theory) Show that the word
problem for any finitely presented group is partially decidable.

3. A finite set S of 3 x 3 matrices is said to be mortal if there is a
finite product of members of 5 that equals the zero matrix. Show
that the predicate 'S is mortal' is partially decidable. (It has been
shown that this problem is not decidable; see Paterson [1970].)

4. Suppose that Mix) and N(x) are partially decidable; prove that
the predicates 'Mix) and N(x)\ 'Mix) or N(xY are partially
decidable. Show that the predicate 'not Mix)1 is not necessarily
partially decidable.

5. Suppose that M(x, y) is partially decidable. Show that
(a) l3y<zM(x9 y)' is partially decidable,
(b) 'Vy<zM(jr, y)' is partially decidable.
(Hint. If f{x, y) is the partial characteristic function of M,
consider the function Y\y<zfix, y).)
ic) 'VyAf (*, y)' is not necessarily partially decidable.

6. Show that the following predicates are diophantine.
ia) 'x is even',
ib) 'x divides y\

7. (This exercise shows how the technique of reducibility (§ 1) may
be used to show that a predicate is not partially decidable.)
(a) Suppose that Mix) is a predicate and k a total computable
function such that x e Wx iff M(k(x)) does not hold. Prove that
Mix) is not partially decidable.
ib) Prove that '<£* is not total' is not partially decidable.
iHint. Consider the function k in the proof of theorem 1.6.)
ic) By considering the function

(1 if Pxix) does not converge in y or

fewer steps,

6 Decidability, undecidability and partial decidability 120

show that '<£x is total' is not partially decidable. {Hint. Use the
s-m-n theorem and (a).)

8. Give a formal proof of the second half of Theorem 6.13; i.e. if
'/(*) — y' is partially decidable, then / is computable.

9. Suppose that M(xu • . . , xn) is partially decidable and gu • . . , gn
are computable partial functions. Show that the predicate N(y)
given by

is partially decidable. (We take this to mean that N(y) does not
hold if any one of gt(y),..., gn(y) is undefined.)

Recursive and recursively
enumerable sets

The sets mentioned in the title to this chapter are subsets of M cor-
responding to decidable and partially decidable predicates. We discuss
recursive sets briefly in § 1. The major part of this chapter is devoted to
the study of recursively enumerable sets, beginning in § 2; many of the
basic properties of these sets are derived directly from the results about
partially decidable predicates in the previous chapter. The central new
result in § 2 is the characterisation of recursively enumerable sets that
gives them their name: they are sets that can be enumerated by a
recursive (or computable) function.

In §§ 3 and 4 we introduce creative sets and simple sets: these are
special kinds of recursively enumerable sets that are in marked contrast to
each other; they give a hint of the great variety existing within this class of
sets.

1. Recursive sets
There is a close connection between unary predicates of natural

numbers and subsets of M: corresponding to any predicate M(x) we have
the set {x : M(x) holds}, called the extent of M (which could, of course, be
0) ; while to a set A <^N there corresponds the predicate 'x e A'.1 The
name recursive is given to sets corresponding in this way to predicates that
are decidable.

1.1. Definition
Let A be a subset of IU The characteristic function of A is the

function cA given by
l ifxeA,

10
f

1

As mentioned in a footnote to § 3 of the Prologue, predicates a*e often identified
with their extent: that view would not be inconsistent with our exposition.

7 Recursive and recursively enumerable sets 122

Then A is said to be recursive if cA is computable, or equivalently, if
'x e A' is a decidable predicate.
Notes
1. For obvious reasons, recursive sets are also called computable sets.
2. If cA is primitive recursive, the set A is said to be primitive recursive.
3. The idea of a recursive set can be extended in the obvious way to
subsets of N" (n > 1), although in the text we shall (as is common practice)
restrict the use of the term to subsets of N. There is no loss of generality in
doing this, because recursive subsets of Nn can easily be coded as
recursive subsets of N. See exercise 1.4(2) below for details.

1.2. Examples
1. The following sets are recursive.

(a) N,
(b) E (the even numbers),
(c) any finite set,
{d) the set of prime numbers.

2. The following sets are not recursive.
{a) {x : <t>x is total} (theorem 5-2.1),
(b) {x:xeWx} (theorem 6-1.1),
(c) {x : <f>x = 0} (theorem 6-1.4).

The algebra of decidability (corollary 2-4.7) gives us the following
properties of recursive sets immediately.

1.3. Theorem
If A, B are recursive sets, then so are the sets A, AnB, AKJB,

A\B.
Proof. Direct translation of corollary 2-4.7. •

Further facts about recursive sets will emerge in § 2.

1.4. Exercises
1. Let A, B be subsets of N. Define sets A®B and A®B by

A®B={2x:xeA}u{2x + l:xeB}
A®B ={-rr(x, y):xeA and y eJ3},
where n is the pairing function ir{x, y) = 2x(2y + 1)-1 of
theorem 4-1.2. Prove that
(a) A@B is recursive iff A and B are both recursive,
(b) If A, B T* 0 , then A®B is recursive iff A and B are both
recursive.

2 Recursively enumerable sets 123

2. (a) Let B g N and let n > 1; prove that if B is recursive then the
predicate M(xi,..., xn) given by

is decidable.
(b) Let Acf^ n; define A to be recursive if the predicate
'xeA' is decidable. Prove that A is recursive iff
{2Xl3*2... px": (JCI, . . . , xn) £ A} is recursive.

2. Recursively enumerable sets
We turn now to the subsets of N that correspond to partially

decidable predicates. These constitute an important class, if only because
of the many situations in which they occur.

2.1. Definition
Let A be a subset of M. Then A is recursively enumerable if the

function / given by
if x € A,

[undefined ifx£A
is computable (or, equivalently, if the predicate 'xeA' is partially
decidable). The phrase recursively enumerable is almost universally
abbreviated r.e.
Notes
1. The terms semi-recursive sets and semi-computable sets are also used
to describe r.e. sets; indeed, from the above definition these names would
appear more appropriate than recursively enumerable. We will, neverthe-
less, adhere to the standard name recursively enumerable, which stems
from the fact that these sets may also be defined as sets that can be
enumerated by a recursive (or computable) function. This alternative
characterisation is given in theorem 2.7 below.
2. As with recursive sets, the idea of r.e. sets can be extended in the
obvious way to subsets of Nn (n > 1), but there is no loss of generality in
confining attention (as we do in the text) to r.e. subsets of N. See exercise
2.18(9) below.

2.2. Examples
1. Let K = {x:x£ Wx}\ then K is an r.e. set that is not recursive,

(example 6-6.2(1)). Its complement K is not r.e. (example
6-6.2(4)).

2. Any recursive set is r.e. (example 6-6.2(2)).

7 Recursive and recursively enumerable sets 124

3. The set {x:Wx* 0 } is r.e. (example 6-6.
4. If / is a computable function, then Ran(/) is r.e. (example

6-6.7(la); cf. theorem 2.7 below).

Note. K is the standard notation for the set {x: x £ Wx) (example
1 above), which plays a prominent role in the study of r.e. sets.

Most of the results for partially decidable predicates in chapter
6 § 6 translate immediately into the language of r.e. sets. We
begin with

2.3. Theorem
A set is r.e. if and only if it is the domain of a unary computable

function.
Proof. Theorem 6-6.3. •

We conclude from this theorem that the enumeration

Wo, Wu W2,...
is an enumeration (with repetitions) of all r.e. sets. If A = We, then e is
called an index for A.

From theorem 6-6.4 we obtain the next characterisation of r.e. sets.

2.4. Theorem
The set A is r. e. if and only if there is a decidable predicate R(x,y)

such that
xeA iff 3yR(x9y).

(From the note following the proof of theorem 6-6.4 this predicate R may
be taken to be primitive recursive.)

We also have the following immediately from theorem 6-6.5.

2.5. Theorem
Suppose that M(x, y i , . . . , yn) is partially decidable; then the set

{ x : 3 y i . . . 3ynM(x, y i , . . . , yn)} is r.e.

The following link between r.e. sets and recursive sets is an immediate
application of theorem 6-6.11.

2.6. Theorem
The set A is recursive if and only if A and A are r.e.

2 Recursively enumerable sets 125

Proof. This is immediate from theorem 6-6.11, but it is instructive to
give a formal proof of the non-trivial half of the proof. Suppose then that
R and 5 are decidable predicates such that

xe A <^> 3yR(x, y)
x<=A <=> 3yS(x,y)

(we are using theorem 2.4). Now define a function f(x) by
f(x) = /jLy(R(x, y) or S(x, y)).

By the results of chapter 2, / is computable; further, since for every x,
either x e e A or x A, f(x) is always defined, and we have

xeA o / ? (* , / (*)) .
Thus 4JC e A' is decidable, so A is recursive. •

We now turn to the characterisation of r.e. sets that gives them their
name.

2.7. Theorem
Let Acfy, Then the following are equivalent:
{a) A is r.e.,
(b) A = 0 or A is the range of a unary total computable function,
(c) A is the range of a (partial) computable function.

Proof. We shall prove the chain of implications (a) => (b) => (c) =>
(a).
(a)^(b) Suppose that A ^ 0 and that A = Dom(/), where / is
computed by a program P. Choose an element a £ A. Then A is the range
of the following total binary function:

f x if P(x)i in t steps,
\a otherwise.

Clearly g is computable. To complete the proof we construct a unary total
computable function h having the same range as g. Let

h(z) = g((z)u(z)2).
Clearly Ran(/i) = Ran(g) = A.
(b) => (c) is trivial.
(c) ^> (a) Suppose that A = Ran(/i) where h is an n-ary computable
function. Then

xeA <=> 3 y i . . . 3yn(h(yu . . . , y n) ^ x) .
The predicate in brackets on the right is partially decidable (theorem
6-6.13) so applying theorem 2.5 we see that A is r.e. D

7 Recursive and recursively enumerable sets 126

(The reader may have noticed that various parts of this theorem have
been given, more or less explicitly, in examples and exercises earlier in
this and other chapters.)

Notice that it is from theorem 2J(b) particularly that the name
recursively enumerable comes: a non-empty r.e. set is a set that can be
enumerated as A = {/i(0), /z(l), h(2),...} where h is a recursive (i.e. total
computable) function. In fact, by using the results of chapter 5 (and
appendix) it is easily seen that the enumerating function h in the proof of
(a) => (b) is primitive recursive.

Note also that theorem 2.7 tells us that the enumeration £"0, Eu E2,...
of the f ranges o unary computable functions is another enumeration (with
repetitions) of all r.e. sets. In informal terms, theorem 2.7 shows that r.e.
sets are the same as effectively generated sets. We would call a set A
effectively generated if there is an informal effective procedure for
compiling a list of the members of A. Such a procedure would from time
to time (not necessarily at regular intervals) output a number to be added
to the list. The procedure may go on ad infinitum (and certainly must if A
is infinite). To see that a set A generated in this way is r.e., simply put

/(0) = 1st number listed by the procedure,

f(n) = (n + l)th number listed by the procedure,

where/(n) is defined iff there is an (n + l)th number listed. Then clearly/
is computable, and A = Ran(/) is r.e.

We can illustrate this with an example.

2.8. Example
The set {JC: there is a run of exactly x consecutive 7s in the

decimal expansion of n} is r.e. (cf. exercise 6-6.14(l<i)). The following is
an informal procedure that generates this set of numbers. 'Run an
algorithm that computes successive digits in the decimal expansion of n.
Each time a run of 7s appears, count the number of consecutive 7s in the
run and add this number to the list.'

The characterisation of theorem 2.7 gives us a straightforward diagonal
proof that total computable functions cannot be recursively enumerated.

2.9. Theorem
The set {x: <f>x is total) is not r.e.

2 Recursively enumerable sets 127

Proof. (Cf. the suggested proof of this result given in exercise 6-
6.14(7c).)

Suppose to the contrary that / is a total unary compu-
table function that enumerates this set; i.e. 0/(O), <£/u), <t>nih • • • is a list of
all unary computable functions. Then we can easily make a diagonal
construction of a total computable function g that differs from every
function in this list. The diagonal motto says 'make g differ from <£/<„) at
n\ so we put

Then g is computable and total, but g # <£/(m) for every m. This is a
contradiction. •

There is one important result about partially decidable predicates that
we have so far omitted to transfer to the setting of r.e. sets, namely the
connection with diophantine predicates. First we make a definition.

2.10. Definition
A set Acf^j is diophantine if there is a polynomial

p(jt, y i , . . . , yn) with integer coefficients such that

xeA iff 3yj ...3yn(p(x, y i , . . . , yn) = 0).

Of course, diophantine sets are r.e., and Matiyasevich's theorem
(6-6.10) may be expressed (as it often is) as:

2.11. Theorem (Matiyasevich)
All r.e. sets are diophantine.

This is an appropriate place to mention a surprising (but easy)
consequence of Matiyasevich's theorem.

2.12. Theorem
A set is r.e. if and only if it is the set of non-negative values

taken by some polynomial p(xi, . . . , * „) with integer coefficients (for values
ofxu. ..,xnfrom M).

Proof. Suppose that A is the set of non-negative values taken by
p(*i, . . . , * „) : then x e A <=> 3*i . . . 3xn{p{xu . • •, *„) = *), so A is
clearly r.e.

Conversely, if A is r.e. then by Matiyasevich's theorem there is a
polynomial <J(JC, y i , . . . , ym) such that

xeA » 3yi. . .3ym(<y(*,yi, . . . , y m) = 0).

7 Recursive and recursively enumerable sets 128

Then consider the polynomial p(x, y) given by

p(x, y) is non-negative if, and only if, q(x, y) = 0, and then it takes the
value x. Thus A is the set of non-negative values taken by p(x, y) as
x, yu • • •, ym run through M. •

(The restriction of x\,..., xn to f̂J in the statement of this theorem is
somewhat arbitrary; it s i an easy exercise to see that the theorem is valid
when * ! , . . . , # „ are allowed to range over Z.)

One application of this result that has aroused considerable interest
among mathematicians is to the set of prime numbers: this set, being r.e.,
is the set of positive values taken by a polynomial with integer
coefficients, a result thought to be most unlikely before Matiyasevich
came on the scene.

A refinement of theorem 2.12 shows that there is a single universal
polynomial, which generates all r.e. sets; i.e. a polynomial
p(z, x, y i , . . . , ym) with the property that for any r.e. set A there is a
number z such that

xeA <$ 3yi . . . 3ym(p(z, x9 yu • . . , y m) = 0).
To see this, simply note that the Halting problem 'x e Wz' is diophantine
and take z to be an index for A.

At this stage we should summarise the various characterisations of r.e.
sets that we now have available. The following are all equivalent condi-
tions on a set A of natural numbers:

(1) 'x 6 A' is partially decidable (we have taken this as our basic
definition),
(2) A is the domain of a unary computable function; i.e. A= We

for some e (theorem 2.3),
(3) For some decidable predicate R(x, y), x e A <=> 3y R(x, y)
(theorem 2.4),
(4) For some partially decidable predicate M(x9 y i , . . . , yn),

 X € i 4 o 3 y i . . . 3 y,,M (x, ylf..., yn) (theorem 2.5),
(5) If A T* 0 , A is the range of a total unary computable function
(theorem 2.7),
(6) A is the range of a computable function (theorem 2.7),
(7) A is diophantine (theorem 2.11),
(8) A is the set of non-negative values taken by a polynomial
with integer coefficients (theorem 2.12).

2 Recurisvely enumerable sets 129

Naturally, when working with r.e. sets one chooses the characterisation
that is most convenient for the purpose in hand. We illustrate this in the
proof of the next theorem.

2.13. Theorem
If A and B are r.e., then so are AnB and AuB.

Proof. For AnB use characterisation (2). Suppose that A = Dom(/)
and B = Dom(g) with/, g computable. Then AnB = Dom(/g), and fg
is computable.

For A u B use characterisation (5). If A = 0 or B = 0 there is nothing
to prove. So suppose that A = Ran(/) and B = Ran(g) where /, g are total
computable. Define h by

Then h is computable and clearly Ran(/t) = AuB. •
(It is instructive to find proofs for this theorem using each of the other

characterisations of r.e. sets.)

Our next theorem gives another link between r.e. sets and recursive
sets.

2.14. Theorem
An infinite set is recursive if and only if it is the range of a total

increasing computable function, i.e. if it can be recursively enumerated in
increasing order.

Proof. Suppose that A is recursive and infinite; then A is enumerated
by the increasing function / given by

f(n +1) = fiy(y e A and y >f(n)).
Moreover, / is computable by minimalisation, recursion and the recur-
siveness of A.

Conversely, suppose that A is the range of the computable total
increasing function / ; i.e. /(0) < / (l) </(2) < . . . It is clear that if y =f(n)
then n < y. Hence we have

yeA O yeRan(/)

and the predicate on the right is decidable. Hence A is recursive. •

7 Recursive and recursively enumerable sets 130

(An alternative proof could be given by showing that A is r.e.; we leave
this as an exercise for the reader.)

The above theorem may be applied to prove

2.15. Theorem
Every infinite r.e. set has an infinite recursive subset.

Proof. Let A = Ran(/) where / is a total computable function. We can
effectively enumerate a subset of A in increasing order by a function g as
follows

g(0)=/(0),

g(n +1) =/(*), where x = fiy(f(y) > g(n)).

Since A = Ran(/) is infinite, g is totally defined. By construction,
Ran(g) c Ran(/) and g is increasing. It is clear that g is computable, by
minimalisation and recursion. Hence by theorem 2.14, Ran(g) is an
infinite recursive subset of A. •

We conclude this section with a theorem of Rice and Shapiro about r.e.
sets of indices. We shall need this result in chapter 10, and there are other
applications we can make immediately, but it is of significance in its own
right. The theorem and its proof are generalisations of Rice's theorem
(6-1.7). (In the statement of this theorem, by a finite function 6 we mean a
function whose domain is finite: note that all finite functions are
computable.)

2.16. Theorem (Rice-Shapiro)
Suppose that si is a set of unary computable functions such that the

set {x: <t>x € si} is r.e. Then for any unary computable function /,

fesi iff there is a finite function 6 ^fwith de si.

Before we prove this result, let us illustrate how it can be used to give
quick proofs of non-recursive enumerability. (Further applications of this
kind are given in exercises 2.18 below.)

2.17. Corollary
The sets {x: <f>x is total} and {x: <f>x is not total} are not r.e.

Proof. For A = {x: <f>x is total} we apply the Rice-Shapiro theorem to
the set si = {/: / e <€ x and / is total}. For no / e si is there a finite 6 g / with
6 € si. Hence A is not r.e.

2 Recursively enumerable sets 131

For B = {x : <f>x is not total}, consider the set 33 = {/: fe <€ x and / is not
total}. Then if / is any total computable function, / £ 33; but every finite
function 6^f is in 33. So B cannot be r.e., by the Rice-Shapiro
theorem. •

{Note. This is the third proof we have of the non-recursive enumerability
of the indices of total functions: others are exercise 6-6.14(7c) and
theorem 2.9 above. The reader will see that the proof suggested in the
first of these is actually the specialisation of the following proof.)

We return to the proof of the Rice-Shapiro theorem.

Proof of theorem 2.16
Let A={x:<f>xe sd}. We are given that A is r.e. We shall show

that if either implication in the statement of the theorem is false, then the
problem 'x e K' can be reduced to '* eA\ (Recall from example 2.2(1)
that K = {x:x e Wx}.) This would show that K is r.e., a contradiction.

Suppose first that/e sd but d&s£ior all finite 6 c / . Let P be a program
such that P(z)i ift z eK. Define a computable function g{z, t) by

//(/) r if P{z)l in t or fewe steps,
a(z t) —)

I undefined if P(z) | in t or fewer steps.
The s-m-n theorem provides a total computable function s{z) such that
g(z, t) — (f>s(z)(t). Note that by construction <£s(2)e/ for all z. We claim
further that

(zeK 4> 4>s{z) is finite (hence <f>siz) £ si\
\z£K => <f>s(z)=zf (hence <frsiz)est).

For if z e K, there is t such that P{z)[in f steps. Then g(z, t') =* <£,<*>(*') is
undefined for tf > t. Hence (f>siz) is finite. On the other hand, if z£ K, then
g(z, t)^f(t) for all t9 so <f>S(z) = f

Now (*) means that z eK <=> s(z)e A, which implies that K is r.e., a
contradiction. Hence there must be a finite c/ 6 with ^ e i .

For the reverse implication, suppose that / is a computable function,
 such that there is a finite function 6 € sd with 6 g /, but /£ ^. Define a

computable function g(z, f) by
if re Dom(0) or ze AT,|

1 undefined otherwise.
The s-m-n theorem provides a total computable s(z) such that g(z, /)
<£s(z)(0- From the definition of g and the fact that 6 c / we see that

z€A T => <f>S(z)=f (hence

7 Recursive and recursively enumerable sets 132

and
z£K => <f>S(Z) = f\Dom($) = d {hence <f>s(z)esi).

But this means that z eK <$ s(z)eA, again showing that K is r.e., a
contradiction. Thus fe si as required. •

We leave it as an exercise for the reader to see how the Rice-Shapiro
theorem generalises Rice's theorem (exercise 2.18(12) below).

2.18. Exercises
1. For any a eN, let aWe = {x:4>e(x) = a}. Show that aWe is r.e. (all

a). Does the enumeration aW0, aWu
 aW2i... include all r.e.

sets?
2. Show that the set {x: <f>x is not injective} is r.e.
3. Show that there are total computable functions fc, / such that for

every x, Wx = Ekix) and Ex = Wlix).
4. Suppose that A is an r.e. set. Show that the sets U*€ A WX and

UXEA Ex are both r.e.
Show that Plx€ A Wx is not necessarily r.e. as follows. For any t

let Kt = {JC : Px(x)i in r steps}. Show that for any t, Kt is recursive;
 moreover K = UfeN ^r and K = Plr€ N ̂ f.

5. Let / be a unary computable function, and suppose that A c
Dom(/), and let g = / | A. Prove that g is computable iff A is r.e.

6. Let / be a unary function. Prove that / is computable iff the set
{2x 3 / (x):jteDom(/)}isr.e.

7. (Cf. theorem 2.14.) Let A be an infinite r.e. set. Show that A can
be enumerated without repetitions by a total computable
function.

8. Which of the following sets are recursive? Which are r.e.? Which
have r.e. complement?
(a) {x:xeEx},
(b) {x: x is a perfect square},
(c) {x.(t>x is injective},
(d) {JC: there is a run of at least x consecutive 7s in the decimal
expansion of TT},
(e) {x:Pm(xm (mis fixed).

9. (Cf. Exercise 1.4(2).) (a) Let B c N and let n > 1; prove that if B
is r.e. then the predicate M(x\, . . . , * „) given by
M(jc1 , . . . , jcJ^2X l3X 2 . . .p x

n-eB
is partially decidable.

3 Productive and creative sets 133

(b) Let Ag^j"; define A to be r.e. if the predicate \ r €A ' is
partially decidable. Prove that A is r.e. iff

(c) Prove that A s N " is r.e. iff A = 0 or there is a total
computable function f:N-*Nn such that A = Ran(/). (By a
computable function f from M to N" we mean an «-tuple / =
(fu •. • >/n) where each ft is a unary computable function and

10. Suppose that e / is a total computabl function, A a recursive set
and B an r.e. set. Show that f~l(A) is recursive and that /(A),
f(B) and/^CB) are r.e. but not necessarily recursive. What extra
information about these sets can be obtained if / is a bijection?

11. Use the Rice-Shapiro theorem to show that the following prob-
lems are not partially decidable: (a)' Wx = 0\ (b) 'Wx is finite',
(c) ' Wx is infinite', (d) '<t>x = 0', (e) '</>, * 0'.

12. Prove Rice's theorem (theorem 6-1.7) from the Rice-Shapiro
theorem (theorem 2.16). {Hint. Suppose that 4<£x €55 ' is deci-
dable; then both S3 and <^i\38 satisfy the conditions of Rice-
Shapiro: consider the cases / 0 G S and / 0 £ 53.)

13. (a) Let K0 = {x: <f>x{x) = 0} and Ki={x\ (t>x{x) = 1}. Show that Ko
and K\ are r.e., and that they are recursively inseparable, i.e.
KonKi = 0 and there is no recursive set C such that Ko£ C
and i^i c C; in particular neither AT0 nor # i is recursive. (Hint.
Suppose that there is such a set C and let m be an index for its
characteristic function; consider whether or not m e C.) (b) Show
that two disjoint sets A, B are recursively inseparable (in the
above sense) iff whenever A c Wa9 B<^Wb and War\Wb = 0 ,
then there is a number x£Wa\jWb. (Note. Recursive
inseparability for a pair of disjoint sets corresponds to non-
recursiveness for a single set; pairs of recursively inseparable sets
that are also r.e. correspond to r.e. sets that are not recursive.)

3. Productive and creative sets
Our chief concern in this section is to discuss a special class of r.e.

sets called creative sets. These are r.e. sets whose complement fails to be
r.e. in a rather strong way. Thus we begin by considering a class of
non-r.e. sets, among whose complements creative sets are to be found.

Suppose that A is any set that is not r.e.; then if Wx is an r.e. set
contained in A, there must be a number y € A \ Wx. This number y is a
witness to the fact that A •£ Wx. It turns out that for some non-r.e. sets it is

7 Recursive and recursively enumerable sets 134

possible to find such a witness in an effective way. Consider, for example,
the non-r.e., set K = {x: x & Wx). If Wx g K, we cannot have xe\Vx (for
then xeK, so WX<£K)\ hence xeK\Wx. So x itself is a witness that

The name productive is used to describe non-r.e. sets for which a
witness can always be computed in this way.

3.1. Definition
A set A is productive if there is a total computable function g

such that whenever Wx e A, then g(x)eA\Wx. The function g is called a
productive function for A. This is illustrated by fig. la.

Example. The set i^ is productive, with productive function g(x) = x.

Many examples of productive sets are obtained from the following
theorem, which incorporates the idea of reducibility that was discussed in
the previous chapter.

3.2. Theorem
Suppose that A and B are sets such that A is productive, and there

is a total computable function f such that x € A iff f(x)eB. Then B is
productive.

Proof. Let g be a productive function for A. Suppose that WX^B.
Then f~l(Wx)Gr1{B) = A; moreover, f~l(Wx) is r.e., so there is z such
that /"*(Wx) = Wz. Now Wz c A, and so g(z)e A \ Wz, from which we see

Fig. la. A productive set.

3 Productive and creative sets 135

Fig. lb. Theorem 3.2.

that f(g(z)) e B \ Wx; i.e. f{g(z)) is a witness to the fact that Wx * B (fig.
lb).

We now need to obtain the witness f(g(z)) effectively from x. A simple
application of the s-m-n theorem provides a total computable function
k(x) such that Wk(x) = /~1(Wx) (apply the s-m-n theorem to the function
<t>x(f(y)))- Then putting z = k(x) we see from the above reasoning that if
WX ^B then f(g(k(x))) € B \ Wx. Hence B is productive, with productive
function f(g(k(x))). •

3.3. Examples
The following sets are productive:
(a) {JC:0X*O},
(6) {JC:C£ W*} (c a fixed number),
(c) { x : c ^ £ x } (ca fixed number).

(For each of these sets apply theorem 3.2 using K and the functions
obtained in theorem 6-1.4 (for (a)) and theorem 6-1.6 (for (b) and (c)).)

The above examples of productive sets and many more may be
obtained from the following general application of theorem 3.2, based on
our proof of Rice's theorem.

3.4. Theorem
Suppose that 38 is a set of unary computable functions with f&t®

and SB^^i. Then the set B ={x:<f>xe&} is productive.
Proof. Choose a computable function g& 38. Proceeding exactly as in

the proof of Rice's theorem (6-1.7) obtain a total computable function

7 Recursive and recursively enumerable sets 136

k(x) such that

I.e. xeK iff k(x)eB. By theorem 3.2, B is productive. •

3.5. Example
The set {x:c(>x is not total} is productive, immediately from

theorem 3.4.

Our chief interest in productive sets is when they occur as the comple-
ment of an r.e. set:

3.6. Definition
A set A is creative if it is r.e. and its complement A is productive.

The simplest example of a creative set is of course K. Using theorem
2.6 we can say that a creative set is an r.e. set that fails to be recursive in a
very strong way. We will see in chapter 9 that there is a sense in which
creative sets are the r.e. sets having the most difficult decision problem.

3.7. Examples
The following sets are creative
(a) {x: c e Wx}) (the complements of these sets were
(b) {x: c e Ex}j shown to be productive in examples 3.3).
(c) The set A={x:4>x(x) = 0}. Clearly A is r.e.; to obtain a
productive function for A, use the s-m-n theorem to construct a
total computable function g such that

</>gU)(v) = 0 <=> <f>x(y) is defined.
Then g(x)e A <£> g(x) e Wx; so if WX^A we must have g(x) e
A\ Wx. Thus g is a productive function for A.

Many examples of creative sets of indices are provided from the
following application of theorem 3.4.

3.8. Theorem
Suppose that stf^^i and let A = {x : <f>x e s4). If A is r.e. and

A^0orN, then A is creative.
Proof. Suppose that A is r.e. and A^0,N. If / 0 e i then A is

productive, by theorem 3.4; this is a contradiction. Thus f<z&s&, so A is
productive (theorem 3.4), hence A is creative. •

3 Productive and creative sets 137

The examples 3.7(a), (b) could be obtained by immediate application
of this theorem; similarly we have:

3.9. Example
The set A = {x : Wx ̂ 0 } is creative; this set is obviously r.e. and

corresponds to the set d = {/e ^

Many of the exercises at the end of the section may be done with the aid
of theorem 3.8.

All examples of non-recursive r.e. sets that we have encountered so far
are creative. (The reader might care to prove this for the examples that we
have not dealt h wit explicitly.) The question then arises as to whether all
non-recursive r.e. sets are creative. The idea that this might be the case is
reinforced by theorem 3.8, and further examples in the exercises below. It
turns out, however, that this conjecture is false: by a special construction
we can obtain r.e. sets that are neither recursive nor creative. Section 4
will be devoted to that task.

The construction to be made in the next section is inspired by theorem
3.11 below, which will show that a productive set (and hence the
complement of a creative set), although not itself r.e., does contain an
infinite r.e. subset. (The secret of constructing an r.e. set A that is neither
recursive nor creative will be to ensure that A does not have this
property.)

The proof of the theorem will be facilitated by first isolating the
following technical result.

3.10. Lemma
Suppose that g is a a total computable function. Then there is total

computable function k such that for all x, Wk(X) =WXKJ {g(x)}.
Proof. Using the s-m-n theorem, take k(x) to be a total computable

function such that
, x fl ifyeWxory = g(x),

kix) I undefined otherwise. •

3.11. Theorem
A productive set contains an infinite r.e. subset.

Proof. Let A be a productive set with productive function g. The idea is
to enumerate without repetition an infinite set B = {y0, y i , . . . } £ A in the
following way.

7 Recursive and recursively enumerable sets 138

(1) Take e0 such that Weo=0; since Weo^A, then g(eo)zA. Put

yo = g (0 -
(2) For rc^O, suppose that yo,...,yn have been given so that

{yo,. • •, yn} g A. Find an index en+i such that {y 0, . . . , yn} = H^n+1 c A.
Then g(en+i)eA\Wen+l\ thus if we put yn+x = g(en+i) we have y« + i eA
and yn+l * y 0 , . . . , yn (see fig. 7 c).

To see that this enumeration of y0, y i , . . . is an effective one, we use
lemma 3.10. From the above discussion, when looking for the index en+i
we require that

W€n +X = Wen u{yn}= Wen u{g(en)}

(where k is the function given by lemma 3.10). Thus we may define en+1 to
be k(en); then the sequence e0, eu... is given by the recursion equations

e0 = some index for 0 ,

and is hence computable. Now yn = g(en), so the sequence y0, y i , . . . is
also computable. Thus B = {y0, y i , . . . } , being the range of a computable
function, is r.e. By construction, B^A and B is infinite. •

For the record, we state the obvious

3.12. Corollary
If A is creative, then A contains an infinite r.e. subset.

3.13. Exercises
1. Show that the following sets are productive:

(a) {x:Wx is finite},

Fig. 7c. Enumerating an infinite subset of A (theorem 3.11).

3 Productive and creative sets 139

(b) {x:<f>x is not surjective},
(c) {x: <f>x is injective},
(d) {x:<f>x is not a polynomial function}.

2. Prove that the following sets are creative:
(a) {x:xeEx},
(b) {x:E[n)*0}(n fixed),
(c) {x:<t>x is not injective},
(d) {x: <f)x(x)€ A}, where A is any non-empty r.e. set.
(e) {x: <f>x(x) = /(*)}, where / is any total computable function.

3. Prove that if B is r.e. and A nl? is productive, then A is
productive.

4. Prove that if C is creative and A is an r.e. set such that
AnC = 0 , then C u A i s creative.

5. Prove that every productive set contains an infinite recursive
subset.

6. For any sets A, B define the sets A ®B and A ® B as in exercise
1.4(1). Suppose that B is r.e. Show that (a) if A is creative, then
so are A®B and A®B (provided B * 0) ,
(b) if B is recursive, then the implications in (a) reverse.

7. Let S3 be a set of unary computable functions, and suppose that
g e 38 is such that for all finite 8 c g, 0g ^. Prove that the set
{JC : </>x G S3} is productive.
(///nf. Follow the first part of the proof of the Rice-Shapiro
theorem.)

8. Use the result of question 7 to show that the following sets are
productive:
(a) {x:<f>x is total},
(b) {x:4>x is a polynomial function}.

9. (Cf. exercise 2.18(13).) Disjoint sets A, B are said to be
effectively recursively inseparable if there is a total computable
function / such that whenever A^Wa,B^Wb and WanWb =
0 , then /(a, b)£ Wa u Wb (see fig. 7</).
(a) Prove that the sets Ko = {x:<f>x(x) = 0} and ATi =
{*: <£*(*) = 1} are effectively recursively inseparable.
(Hint. Find a total computable function / such that if WanWb =
0,then

iixeWb,
otherwise.)

7 Recursive and recursively enumerable sets 140

Fig. Id. Effectively recursively inseparable sets (exercise 3.13(9)).

(b) Suppose that A, B are effectively recursively inseparable.
Prove that if A, B are both r.e. then they are both creative.
(Note. Extending the idea of effectiveness to a pair of recursively
inseparable sets in m this way parallels the step fro a non-
recursive set to a set having productive complement; the coun-
terpart to a single creative set is then a pair of effectively
recursively inseparable sets that are both r.e.)

4. Simple sets
Our task in this section is to show that there are sets satisfying the

following definition and hence (in view of theorem 4.2 below) to establish
that not all non-recursive r.e. sets are creative.

4.1. Definition
A set A is simple if
(a) A is r.e.,
(b) A is infinite,
(c) A contains no infinite r.e. subset.

The idea in (b), (c) of this definition is to pinpoint some features of a set
that are not possessed by any recursive or creative set. Thus, although as
yet we have no examples of simple sets, we can easily see that

4.2. Theorem
A simple set is neither recursive nor creative.

4 Simple sets 141

Proof. Suppose that A is a simple set. From (b) and (c) of the
definition, A is not r.e., so A is not recursive. By theorem 3.11 and f (c) o
the definition, A is not creative. •

The following construction of a simple set is due to Post.

4.3. Theorem
There is a simple set.

Proof. We shall define a computable partial function / such that the
range of / contains at least one member from every infinite r.e. set. This is
done by arranging that if <f>x is total and Ex is infinite, then f(x)e Ex. To
make Ran(/) simple we must at the same time ensure that Ran(/) is
infinite. We shall see that both conditions are met by the function /
defined informally as follows:

To compute /(*): compute 4>x(0), <t>x(l), • • • in succession (do not
proceed to the computation of <f>x(y + 1) unless and until </>x(y) has been
computed); stop if and only if a number z is found such that 4>x \z) > 2x; in
that case put f(x) = <f>x(z). (Formally we have f(x) = ct>x(fiz (z)(<£* > 2x)),
demonstrating clearly that / is computable.)

Put A = Ran(/); then A is r.e. We now verify that A is simple.
Suppose that B is any infinite r.e. set. Then there is a total computable

function <t>b such that B = Eb. Since B is infinite, the construction ensures
that f(b) is defined and f(b) e Eb = B. Hence B £ A.

To see that A is infinite, note that if f(x) is defined, then f(x)>2x.
Thus, for any rc, the members of A that are in the set {0, 1, 2 , . . . , 2n} are
among /(0), ...,f(n-1). This means that A contains more than n
elements, for any n. Hence A is infinite. •

The construction of a simple set is but the first and one of the easiest of a
wide variety of constructions that yield r.e. sets with all kinds of special
properties. These are beyond the scope of this book; the interested reader
should consult a text such as Rogers [1967], where he will find r.e. sets
rejoicing in names such a hypersimple, hyperhypersimple, pseudocrea-
tive, and maximal. (See also exercise 4.4(3) below for an example of an
r.e. set that is neither recursive, creative nor simple.)

4.4. Exercises
1. Suppose that A and B are simple sets. Show that the set A ®B is

simple. (For the definition of © see exercise 1.4(1).)

7 Recursive and recursively enumerable sets 142

2. Suppose that / is a total injective computable function such that
Ran(/) is not recursive. (Exercise 2.18(7) showed that such
functions abound.) Show that the set

A={x:3y(y>x and/(y)</(*))}
is simple. (Hint. To see that A is infinite, assume the contrary and
show that there would then be a sequence of numbers y0 < y i <
y 2 < . . . such that / (y o) > / (y i) > / (y 2) > . . . To see that A does
not contain an infinite r.e. set B, suppose to the contrary that
B c A. Then show that the problem z e Ran(/) is decidable as
follows. Given z, find neB such that f(n)>z\ now use the fact
that n & A to devise a finite procedure for testing whether z e
Ran(/).)

3. Show that if A is simple, then A ®N is r.e., but neither recursive,
creative nor simple (see exercise 3.13(6)).

4. Let A, B be simple sets. Prove that A®B is not simple but that
A®B is simple.

8
Arithmetic and Godel's
incompleteness theorem

The celebrated incompleteness theorem of Godel [1931] is one of many
results about formal arithmetic that involve an interplay between
computability and logic. Although full proofs in this area are beyond the
scope of this book, we are able to outline some of the arguments
discovered by Godel and others. We shall highlight particularly the part
played by computability theory, which in many cases can be viewed as an
application of the phenomenon of creative and productive sets.

In §§ 1 and 2 we present some results about formal arithmetic that lead
up to the full Godel incompleteness theorem in § 3. In the final section the
question of undecidability in formal arithmetic, already touched upon in
§ 1, is taken up again. Our presentation in this chapter does not assume
any knowledge of formal logic.

1. Formal arithmetic
The formalisation of arithmetic begins by specifying a formal

logical language L that is adequate for making statements of ordinary
arithmetic of the natural numbers. The language L has its own alphabet,
which includes the symbols 0, 1, +, x, = (having the obvious meanings),
and also symbols for logical notions as follows: ~i ('not'), A ('and'), v
('or'), -> ('implies'), V ('for all'), 3 ('there exists'). (In this chapter we will
reserve the symbols V, 3 for use in L, and write the phrase 'for all' and
'there exists' when needed in informal contexts.) In addition, L has
symbols x, y, z , . . . for variables, and brackets (and), and there may be
other symbols besides.

The statements (or formulas) of L are defined to be the meaningful
finite sequences of symbols from the alphabet of L. For instance, the
statement

3y(yx(1 + i) = x)
is the formal counterpart of the informal statement 'JC is even'. It is helpful

8 Arithmetic and GodeVs theorem 144

to abbreviate the expression 1 + 1 by 2, (1 +1) +1 by 3, and so on for all
natural numbers. Then the false informal statement '5 is even' would be
expressed formally in L by the statement

3y(yx2 = 5).
We can similarly express in L formal counterparts of many informal
statements of ordinary arithmetic: for 'JC > y' we would write

(The statement —i(z = 0) is often abbreviated by z # 0.) For lx is prime' we
would write

(x * 0) A (x * 1) A Vy Vz(x = y x z -»(y = 1 v z = 1)).

Let us denote by 5̂ the set of all possible meaningful statements of the
language L. Then Sf divides into two important sets, namely

3" = the set of all statements that are true in the
ordinary arithmetic of M,

3F = the set of all statements that are false in the
ordinary arithmetic of M.

Mathematicians would like to discover as much as possible about the
set &'. A natural question from the point of view of computability is

(l.l)(a) Is J" recursive, or even recursively enumerable?
Another question, important for the mathematician and philosopher
alike is
(l.l)(b) Is there a simple-minded subset of ST (a set of axioms) from

which all other statements in ST can be proved?
We shall discover that the answer to both of these questions is no.

Question 1.1 (a) above can be made precise by means of a standard
coding procedure. It is quite routine to specify an effective enumeration
of the set S? without repetitions, using a procedure similar to that used to
enumerate programs in chapter 4. Let us assume that this has been done,
and let us denote by 6n the (n + l)th statement of 5̂ in this enumeration,
so that

The effectiveness of this enumeration means that given n we can
effectively find and write down the statement 6n> and conversely, given
any statement a in Sf we can effectively compute the code number n such
that cr = 6n.

1 Formal arithmetic 145

This coding of statements is now used to code any set of statements
by the set of numbers

X = {n:0ne X).

We say that X is<

recursive
r.e.
productive
creative
etc.

>ifATis<

recursive
r.e.
productive
creative
etc.

This gives the question 1.1 (a) above a precise meaning.
One of the key results that makes computability an extremely useful

tool when investigating formal arithmetic is the following, due to Godel;
we present it without any proof.

1.2. Lemma
Suppose that M(JCI, . . . , xn) is a decidable predicate. Then it is

possible to construct a statement cr(xi , . . . , xn) of L that is a formal
counterpart of M{xu • • •, xn) in the following sense: for any a\,..., an e N

M(au . • . , an) holds iff a(au ...,an)e3~.
Consider now the creative set K. By theorem 7-2.4 there is a decidable.

predicate R(x,y) such that
x e K <?> there is y such that R (JC, y).

Applying lemma 1.2 to the predicate R(x, y) let us fix on one particular
formal counterpart of this predicate, which we denote by aR(x, y). Then
for any neN the statement 3ycrR(n,y) is a formal counterpart for
'neK\ and —i3ycr/?(n,y) is a formal counterpart of 'n£K\ Let us
therefore write

neK for 3yo-jR(n,y)
and

n£K for

Then using lemma 1.2 we have immediately

1.3. Lemma
For any n eN
(a) neKiffneKeST
(b) n£Kiffn£KeF

We are almost ready to answer the question 1.1 (a) above; we shall
need the following lemma.

8 Arithmetic and GodeVs theorem 146

1.4. Lemma
There is a total computable function g such that for all n, 0g(n) is

n*!K
Proof. This is immediate from the effectiveness of the coding of

statements, since given n we can effectively write down the statement
)). •

Now we have, in answer to question 1.1 (a):

1.5. Theorem
2T is not r.e.; in fact 3~ is productive.

Proof Let T = {n: 6n £ ST}\ taking g as in lemma 1.4 we have
neK » n£K

<=> n & KG ST (by lemma 1.3).
<=> g(n)e T (by lemma 1.4).

So, since K is not r.e., neither isT. In fact, by theorem 7-3.2 we see thatT
is productive. •

1.6. Exercise
Show that 9 is productive.

2. Incompleteness
A simple version of Godel's incompleteness theorem follows

easily from theorem 1.5. We must first describe the setting of this famous
result.

Consider the second question (1.1(6)) posed in § 1. This question is
made precise by using the idea of a formal system. A formal system (sd, 3))
(for the language L) consists of a set sd g tf (the axioms) and an explicit
definition 3) of the notion of a formal proof oi a statement in $f from these
axioms, satisfying the conditions:

(2.1) (a) Proofs are finite objects (hence capable of being coded),
(b) The explicit definition 2) of proof is such that if si is recursive
then the relation
'p is a proof of the statement a from the axioms sd'
is decidable.

We can now interpret the question 1.1(6) as asking whether there is a
formal system for L such that

(2.2) (a) sd is recursive (so we are taking simple-minded in a fairly
wide sense),
(6) The provable statements are precisely those in ST.

2 Incompleteness 147

The condition e (b) poses a problem for th philosopher who may be
trying to define the very notion of arithmetic truth by means of a formal
system. For him, this condition is meaningless, and must be replaced by
conditions reflecting some of the properties to be expected of truth, such
as

(2.2)(b')Consistency: there is no statement a such that both or and no-
are provable,

{2.2)(b")Completeness: for any statement a, either a is provable or ~icr is
provable.

A simplified version of Godel's theorem shows that there is no formal
system of arithmetic satisfying the conditions 2.2(a) and (b). This is easily
derived from theorem 1.5, and is given below. The full theorem of Godel
[1931] together with its improvement by Rosser shows that there is no
formal system of arithmetic (of a certain minimal strength) satisfying
conditions 2.2(a) and (£')> (b"). In other words, any consistent formal
system of arithmetic having a recursive set of axioms is incomplete. This
will be proved in § 3.

We shall need the following lemma to establish the simplified Godel
theorem.

2.3. Lemma
In any recursively axiomatised formal system the set of provable

statements is r.e.
Proof. Let tyt be the set of statements in Sf that are provable. Since

proofs are finite, they can be effectively numbered; then if d is a recursive
set of axioms the predicate

A/(JC, y) = 'y is the number of a proof of 6X from the axioms si'

is decidable, by (2.1)(b). Then
6X is provable <=> there is y such t tha M(x, y) holds.

Hence, by theorem 7-2.4, 0>i is r.e. •

Now we have

2.4. Theorem. (The simplified Godel incompleteness theorem)
Suppose that (si, Q)) is a recursively axiomatised formal system in

which all provable statements are true. Then there is a statement a that is
true but not provable (and consequently —\<r is not provable either).

8 Arithmetic and GodeVs theorem 148

Proof, By lemma 2.3, the set 0>* of provable statements is r.e., and we
are given that 9>i c ST. Now 3~ is not r.e. (theorem 1.5) so we immediately
have a statement a e ST\&*\ i.e. a is true but not provable. Clearly icr is
not provable either (otherwise ~ia would be true). •

(Using the productiveness of &~ (theorem 1.5) we could strengthen this
theorem to say that the statement cr can be obtained effectively from a
specification of the formal system (which would yield an index for 0**).)

To aid an understanding of the proof of the full Godel theorem in § 3 it
is useful to examine the inner workings that were hidden when we
applied theorem 1.5 in the above proof to obtain the statement cr.

Let us say that a statement is refutable if its negation is provable.
Consider the sets of numbers Pr* and Ref* given by

Pr* = {n: n € K is provable},
Ref* = {n: n e K is refutable}

= {n: n £ K is provable}

(where g is the computable function given by lemma 1.4 and used in the
proof of theorem 1.5). The assumption that provable statements are true
means in particular that Pr* c K and Ref* c K. Now Ref* is r.e. (from the
fact that n e Ref*<=>0g(n) e £?*, and <3>i, is r.e.), so there is a number m
such that Ref* = Wm.

By the productiveness of K we have immediately that m Gi^\Ref*,
i.e. m£K, and m £ K if not provable. Taking a to be the statement m £ K
we thus see that a is true but not provable (and ~KT is not provable, as
before). The argument is illustrated by fig. 8a. (For comparison with the

Fig. 8a. Simplified Godel incompleteness (theorem 2.4).

3 Godel's incompleteness theorem 149

proof of the full Godel theorem in the next section, note that the
non-provability of ~icr can be seen as a consequence of the fact that
PT*QK: for m£K (as above), so m£Pr*, i.e. meK is not provable.
Then, by the rules of formal proof —im£ K (i.e. —ior) is not provable.)

Notice now the intended meaning of the statement or thus obtained: a
is the formal counterpart of the statement m£K,i.e.m& Wm. But we have

m£ Wm <=> m^Ref*
<=> m £ K is not provable

Thus or is a formal counterpart of the statement 'a is not provable'; i.e.
speaking rather loosely, a says 'I am not provable'. This is reminiscent of
the paradox of the liar, involving the informal statement

A =4I am lying'.
Informal reasoning about A results in the paradox

A is true iff A is not true.
If the same informal reasoning is applied to the informal statement 'I am
not provable' the paradox is avoided by the conclusion that provable is not
the same as true. This informal conclusion is rigorously justified by the
proof of theorem 2.4.

3. Godel's incompleteness theorem
We proceed in this section to show how the idea behind the proof

of theorem 2.4 can be refined s so a to avoid any reference to truth.
For the moment we fix on a particular formal system of arithmetic

known as Peano arithmetic. The axioms for this system consist of a
recursive subset of Sf known as Peano"s axioms; these reflect the simple
properties of the successor operation on M, and the recursive definition of
addition and multiplication in terms of it, together with an axiom scheme
reflecting the principle of induction on IU The notion of a formal proof is
taken as that defined for the first-order predicate calculus. Full details of
Peano arithmetic (sometimes called formal number theory) may be found
in any textbook on mathematical logic. For our purposes, the important
fact we need to know about Peano arithmetic is given by the following
lemma, to which a substantial part of Godel's proof is devoted.

3.1. Lemma
LetM(x\, • • •, xn) be a decidablepredicate, and leta(xi,..., xrt)

be the statement of L that is the formal counterpart of M(xi,..., xn) as

8 Arithmetic and GodeVs theorem 150

given by lemma 1.2. Then M is represented in Peano arithmetic in the
following sense: for any ax ,..., an e N

(a) if M{a\, • •, cxn) holds, then <r(3u . . . , an) is provable,
(b) if M(ai,... > an) does not hold, then - icr(ai , . . . , an) is
provable.

(For a proof refer to a textbook such as Mendelson [1964].) •

Consider now the statement n e K (i.e. 3yoj?(x, y)) that we took in § 1
as a formal counterpart of the statement neK. Then from lemma 3.1 we
can obtain

3.2. Corollary
For any natural number n,ifneK then neK/5 provable in Peano

arithmetic.
Proof. Suppose that n e K. Then there is a natural number m such that

R(n, m) holds, so by lemma 3.1 we have that aR(n, m) is provable. The
rules of the predicate calculus are such that we can immediately find a
proof of 3yo7*(n, y); i.e. n e K is provable.

For part of his proof, Godel needed an extra technical condition called
co-consistency: a formal system is said to be co-consistent if there is no
statement r(y) such that all of the following are provable:

3yr(y), -ir(0), - IT(1) , ~ I T (2) , . . .

(co-consistency is a stronger condition than consistency (2.2)(b')).
We can easily derive the converse of corollary 3.2 from lemma 3.1, with

the assumption of co-consistency.

3.3. Lemma
Suppose that Peano arithmetic is co-consistent; then for any natural

number n,ifneK is provable then neK.
Proof. Suppose that n£K\ then for every meNv/e have that R(n,m)

does not hold, so by lemma 3.1, icrR(n, m) is provable. Thus, if n e K is
provable but n & K, all of the following are provable

(n, y), -icrR(n, 0), - i o^ (n , 1) , . . .

in contradiction of co-consistency for the statement r(y) = crR(n, y). •

3 Godel's incompleteness theorem 151

We can now present a proof of

3.4. Theorem (Godel's incompleteness theorem [1931])
There is a statement or of L such that
(a) if Peano arithmetic is consistent, not then a is provable,
{b) if Peano arithmetic is co-consistent, then ~i cr is not provable.

Proof.
(a) Recall the sets Pr* = {n: n e K is provable},

Ref * = {n:neK is refutable},
that we defined in the discussion at the end of the previous
section. By corollary 3.2 we have ATcpr*; consistency implies
that Pr*nRef* = 0 , and so Ref* c if. We can now argue as
before: Ref* is r.e., so take m such that Ref* = Wm. The situation
is illustrated by fig. Sb, which should be compared with that in
fig. 8a.

By the productiveness of K, we have that meXARef*; in
particular, m£ Ref* means that m £ K is not provable. Hence (a)
is established, by taking a to be the statement m £ K.
(b) The condition of co-consistency implies (by lemma 3.3) that
Pr* c K, and hence Pr* = K. Thus, with ^-consistency, fig. Sb is
modified to become fig. 8c. Thus m£ K means that m£Pr*; i.e.
m G K is not provable. The rules of the predicate calculus tell us
immediately that ~ia (i.e. - im £ K) is not provable. •

Notes
1. The statement a produced by Godel's theorem is called an undeci-
dable or an undecided statement of Peano arithmetic. As discussed at the

Fig. 8£. Godel incompleteness (theorem 3.4(a)).

8 Arithmetic and Godel's theorem 152

Fig. 8c. Godel incompleteness (theorem 3.4 (b)).

end of § 2, or has the informal meaning 4I am not provable', and is, on an
intuitive level, true.
2. Clearly Godel's theorem applies to any recursively axiomatised
formal system in which all decidable relations can be represented (in the
sense of lemma 3.1). In particular, this is true for any such system that is
stronger than Peano arithmetic. In consequence, there is no way to avoid
the incompleteness phenomenon by adding new axioms: for example or
or -io\ The resulting formal system would have a new undecided
statement.
3. Note that the undecided statement or can be constructed explicitly
from a specification of Peano arithmetic, since from such a specification,
we could effectively find an index m for Ref*. This constructive aspect of
Godel's theorem is a consequence of the fact that K is creative. An
analysis of the proof would show that we can demonstrate the mere
existence of an undecided statement using any non-recursive r.e. set A in
place of K.
4. Although not entirely clear from our presentation, the proof of part
(a) of Godel's theorem is a finitist proof: that is, it shows explicitly how,
given a formal proof of the statement <x, to construct a proof of ~ia (thus
demonstrating inconsistency). We cannot make the same remark about
(b), because ^-consistency is not a finitist notion.

In 1936 J. B. Rosser saw how to eliminate the assumption of co-
consistency in part (b) of Godel's theorem. We shall now see that Rosser's
refinement of Godel's method can be viewed as an application of the
effective recursive inseparability of the r.e. sets

3 GodeVs incompleteness theorem 153

(that we discussed in exercise 7-3.13(9)), in place of the use of the
creative set K. (Our treatment below does not assume familiarity with this
exercise.)

We begin by describing some statements of 9> that are formal counter-
parts of the statements n e Ko and n £ Kx; these are slightly more complex
than the formal version of n e K used earlier. Select decidable predicates
Ro(x, y) and Ri(x, y) such that

n e Ko » there is y such that Ro(n, y)
and

n 6 Ki <=> there is y such that R\{n, y).
Now clearly Ko n K\ = 0 , so we also have
(*) n e Ko <=> there is y such that (i) R0(n, y) and

(ii) for all z < y, R\{n, z) does not hold,
and there is a similar equivalence for n e K\. Now take statements <rRo,
aRl representing Ro, R\ in Peano arithmetic as given by lemma 3.1.
Rosser's trick was (essentially) to use the following statement (based on
(*) above)
(**) 3y(^0(n, y) A VZ < y(-. ^ (n , z)))
as the formal counterpart of n e Ko, rather than the simpler statement
3yoK0(n, y). Let us write n e Ko for the statement (**) above. Similarly we

 write n € Ki for the statement
3y(orRl(n, y) A V Z < y(-icr/?0(n, z))).

Now it is quite straightforward to establish the following key lemma
(which should be compared with corollary 3.2):

3.5. Lemma
In Peano arithmetic, for any natural number n
(a) ifne Ko, then n e Ko is provable,

 (b) ifneKi, then n€K i is provable,
(c) if n € Ki is provable, then n £ Ko is also provable.

The proof of this lemma uses some technical properties of Peano
arithmetic,) and we therefore omit it. It is to obtain 3.5(c particularly that
the more complex formal representations of neK0 and neKi are
needed. (For those familiar with mathematical logic we should mention
that lemma 3.5 is easily established once the following statements have
been shown to be provable in Peano arithmetic:

8 Arithmetic and GodeVs theorem 154

(3.6) (a) ForanymeN:
Vz < m(z = 0 v z = 1 v . . . v z = m),
(b) VyVz(y<zvz<y).)

We can now complete the proof of

3.7. Theorem (The Godel-Rosser incompleteness theorem)
There is a statement r such that if Peano arithmetic is consistent,

neither r nor —i r is provable.
Proof. Define the sets

Pr** = {n: n e Ko is provable}
Ref** = {n:n€K 0 is refutable}

= {n: n & Ko is provable}.
Consistency means that Pr** n Ref** = 0 .

From lemma 3.5(#) we have
ATo^Pr**.

Also, for any n, combining lemma 3.5(&) and (c) we have
n € JRTI => n ^ Ko is provable;

i.e.

Now Pr** and Ref** are both r.e. (this uses the fact that 0>* is r.e.) so the
recursive inseparability of Ko and Kx (exercise 7-2.18(13/?)) means that
there is a number p£ Pr** u Ref**. The state of affairs is illustrated in fig.
8d. Now pt Pr** means that p 6 Ko is not provable, and pt Ref** means

Fig. Sd. Godel-Rosser incompleteness (theorem 3.7).

4 Undecidability 155

that p £ Ko is not provable, so the theorem is established, by taking r to be
the statement p e Ko.

Although the proof of the theorem as stated is complete, let us now see
how the numper p (hence the statement T) can be explicitly constructed.
From an explicit specification of Peano arithmetic, we can effectively find
an index p such that

l ifrcePr**,
if/teRef**,

I undefined otherwise.
We can now see that p£ Pr** u Ref**, as follows:

(i) if pePr**, then <f>p(p) = l, so peKu hence p€Ref** ,
contradicting consistency. Hence p<£ Pr**.
(ii) if p e Ref**, then <t>p(p) = 0, so p e KOf hence p e Pr**, ano-
ther contradiction. Hence p£ Ref**.

(The fact that p can thus be obtained explicitly uses essentially the
effective recursive inseparability of Ko and K\ (see exercise 7-
3.13(9).) •

Notes
1. The statement - I T constructed in this theorem corresponds to the

undecided statement a of theorem 3.4; it is easily seen that IT also has
the informal interpretation 'I am not provable', and is intuitively true.

2. The Godel-Rosser theorem applies to any recursively axiomatised
formal system of arithmetic in which all decidable relations can be
represented and for which lemma 3.5 can be established. (Lemma 3.5
always holds for systems in which statements 3.6 (a), (b) can be proved:
such systems are called Rosser systems.) Again, there is thus no possibility
of avoiding incompleteness by adding new axioms.

3. The Godel-Rosser theorem is a completely finitist theorem: the
proof (when given in full detail) shows how to demonstrate inconsistency
explicitly if we were given a proof of either r or -IT.

4. Undecidability
We have already seen that the set 3T of true statements of

arithmetic is not recursive (theorem 1.5): this is often described by saying
that 3~ is undecidable. In general, when considering sets of statements the
terms decidable and undecidable are often used to mean recursive and
non-recursive.

We can ask particularly of any formal system of arithmetic, is the set 0^
of provable statements decidable? The answer is invariably no, and there

8 Arithmetic and GodeVs theorem 156

are various ways to see this. We confine ourselves to one of the many
results in this area, using the ideas of the previous section.

4.1. Theorem
Suppose that (si, 3)) is an co-consistent formal system of arithmetic

in which all decidable predicates are representable (in the sense of lemma
3.1). Then the set of provable statements is creative.

Proof The assumption of the theorem means that Godel's theorem 3.4
applies, so in particular we have from the proof of theorem 3.4:

K = Pr* = {n: n e K is provable}.
Now let Pr = {n: 6n is provable}; we can find a computable function h such
that n € K is 0hin)9 and then

n e K <=> n e Pr*
<$ h(n) e?r.

So by theorem 7-3.2, Pr is creative. •

4.2. Corollary
If Peano arithmetic is (o-consistent then the provable statements

form a creative set. (This is the case in particular if all provable statements
are true.)

The counterpart to 1 theorem 4. and corollary 4.2 using Rosser's ideas
is given in the following exercise.

4.3. Exercise
Suppose that (si, 2)) is a consistent recursively axiomatised

formal system for which lemmas 3.1 and 3.5 hold. Let Pr** and Ref** be
the sets defined in the proof of theorem 3.6.

(a) Show that Pr** and Ref** are effectively recursively
inseparable.
(b) Let Pr = {n: 6n is provable} and Ref = {n: -i0n is provable}.
Prove that Pr and Ref are effectively recursively inseparable.
(Hint. Extend the idea of theorem/7-3.2 to pairs of effectively
recursively inseparable sets.)

The presentation of the results in this chapter is derived largely from
the books of Kleene [1967] and Smullyan [1961]. For further discussion
of incompleteness and undecidability in arithmetic and related areas, the
reader is referred to Bell & Machover [1977], Boolos & Jeffrey [1974], or
Rogers [1971].

9
Reducibility and degrees

In m earlier chapters we have used the technique of reducing one proble to
another, often as means of demonstrating undecidability. We did this, for
instance, in the proof of theorem 6-1.4 by showing that there is a total
computable function k such that x e Wx <=> <£k(X) = 0, i.e. we used the
function k to transform or reduce each instance of the general problem
4JC e Wx' to an instance of the general problem '<f>x = 0'. In this chapter we
consider two ways of making the idea of reducibility precise, and for each
we discuss the associated notion of degree (of difficulty) that arises.

It is more convenient to deal with reducibility between sets rather than
between problems, remembering that any problem is represented by a set
of numbers. The informal idea of a set A being reducible to a set B can be
expressed in various ways: for instance

(a) 'Given a decision procedure for the problem 'x e B\ we can
construct one for 'JC € A'.'
(b) Tor someone who knows all about B, there is a mechanical
procedure (that uses his knowledge of B) for deciding questions
about A.'
(c) 'Questions about A are no harder than questions about B."
(d) The degree of difficulty of the problem 'x e A' is no greater
than that of the problem 4JC sB\'

It turns out that there are several non-equivalent ways of making this
idea precise. The differences between these consist in the manner and
extent to which information about B is allowed to be used to settle
questions about A. In §§ 1-3 we shall investigate one of the simplest
notions of reducibility, called many-one reducibility, which includes all of
our earlier uses of the informal idea. In the final sections we shall discuss a
more general notion known as Turing reducibility.

9 Reducibility and degrees 158

1. Many-one reducibility

1.1. Definition
The set A is many-one reducible (abbreviated m-reducible) to

the set B if there is a total computable function / such that for all x

xeA iff f(x)eB.
We shall write this A <mJ5; and we shall write/: A < m £ to indicate that/
is a total computable function demonstrating that A < m B.
Note. The phrase many-one is used to distinguish this kind of reducibility
from a related notion called one-one reducibility, for which the function /
is required to be injective.

We have used m-reducibility implicitly on many occasions in earlier
chapters. The s-m-n theorem is often needed to establish many-one
reducibility, as we see in the following examples.

1.2. Examples
1. In chapter VI we showed that K is m-reducible to each of the

following sets:
(a) {x:<t>x = 0} (theorem 6-1.4, quoted above),
(b) {x:ce\Vx} (theorem 6-1.6).

2. If we examine the function k given in the proof of theorem 6-1.6
we see that x e K <=> <f>kix) is total. Hence
k\K<m{x\<t>x is total}.

3. Rice's theorem (theorem 6-1.7) is proved by showing that
K ^m{x:<t>x e S8}, where 59 is y an non-empty subset of %\ such
that / 0 g 53.

4. {x :<t>x is total} <m{jc:0x = O}.
Proof. Using the s-m-n theorem obtain a total computable
function k such that <t>k(x) = O°0X, for all x. Then
k: {x: <f>xis total} <m {*: <f>x = 0}.

The following theorem gives some of the elementary proper-
ties of m-reducibility.

1.3. Theorem
LetA,B, C be sets.
(a) <m is reflexive (i.e. A <m A) and transitive (i.e. if A ^mB and
B<
(b)

1 Many-one reducibility 159

(c) if A is recursive and B <m A, then B is recursive,
(d) if A is recursive and B # 0 , M, fftett A ^mJ5,
(e) / /A is re. and B ^ m A, then B is r.e.,
(/) (i) A < m

(ii) A < m 0
(g) (i) N< m

(ii) 0 < m

(a) Reflexive, i: A < m A, where i is the identity function. Tran-
sitive. If /: A <m B and g:B <mC, then clearly g°f:A<mC.
(b) If g:A<mB, then JC e A <=> g(ar)GB; hence xe A <̂> gU)e
E; hence g:A<mJ5.
(c) Suppose that g:B<mA\ then CB(JC) = cA(gU)), so cB is
computable.
(rf) Choose b e B and c^ B, and define / by

if x e A,

Then / is computable (since A is recursive), and x £ A <=> /(*) €
B\ hence / :A< m R
(e) Suppose that g:B^mA and A = Dom(/i), with h compu-
table; then B = Dom(/i °g), and /i °g is computable, so J5 is r.e.
(/) (i) By (a), N<mN. Conversely, suppose that /: A <mN; i.e.

 / U) € N . Then clearly A = N.

(ii) is dual to (i): A <m 0 » A <mf̂ i » A = N<=>A = 0 .
(g) (i) Suppose that / : N <m A ; then A = Ran(/), so A # 0
(since / is total). Conversely, suppose that A # 0 , and choose
ceA. Then if we define g(x) = c (all x), we have g:N<m A.

(ii) is dual to (i): 0 <m A <=> N< mA « A # 0 O A # M . D

From (e) of this theorem we obtain the following example of non-
reducibility:

1.4. Corollary
Neither of the sets {x: <f>x is total}, {x: <f>x is not total] is m-reducible

toK.
Proof. From corollary 7-2.17 neither of these sets is r.e.; apply

theorem 1.3(^). •

9 Reducibility and degrees 160

The exceptional behaviour of the sets 0 , fol as given in theorem
(/), (g) is part of the price that d has to be pai for the simplicity of the
notion of m-reducibility. Another rather unsatisfactory feature is that the
sets A and A are not necessarily inter-reducible (contrary to the intuition
that the problems 'jceA' and 'x£A' should be equally difficult), as we
now see:

1.5. Corollary
If A is an r.e. set that is not recursive, then A^mA and A ^ m A .

Proof. By theorem 1.3(e)if A < m A, then A is r.e., a contradiction. For
A £ m A , use theorem 13(b). •

The next result shows again the key role played by the r.e. set K.

1.6. Theorem
A set A is r.e. if and only if A ^mK.

Proof If A <mK, then theorem 1.3(e) tells us that A is r.e. Conversely
let A be any r.e. set. Define a computable function f(x, y) by

if x E A,
[undefined if

The s-m-n theorem gives a total computable function s(x) such that
f(x, y) — 4>s(X)(y)> It is clear from the definition of / that

xeA <=> 4>S(x)(s(x)) is defined

<S> s(x)eK.

l.e.A<mK. a

This theorem may be interpreted as saying that the problem "x e K" is
the most difficult partially decidable problem.

1.7. Exercises
1. Show that K is m-reducible to each of the following sets:

(a){x:<f>x(x) = 0}9

(b) {x:xeEx}.
2. Show that for any sets A, B, if B # 0 then A <m A ® B. (Recall

that A ®B = {<rr(a, b): aeA,be B}.)
3. Show that

(a) {x:<(>x =0}^m{x:<f>x is total and constant},
(b) {x\<f>x is total}<m{jc: Wx is infinite}.

2 Degrees 161

4. Show that none of the sets in exercise 3 above is m-reducible to
an r.e. set.

5. Suppose that A, B are r.e. sets such that A u B = N and AnB *
0 . Prove that A <m A n B.

2. Degrees
For any notion of reducibility there is an associated notion of

equivalence between sets: this corresponds to the informal idea of two
sets or problems having the same degree of difficulty. Thus, for m-
reducibility we have:

2.1. Definition
The sets A and B are many-one equivalent (abbreviated m-

equivalent) if A <mB and B ^mA. We write this A =mB.

The use of the word equivalent in this definition is justified by

2.2. Theorem
The relation =m is an equivalence relation. (See Prologue § 3 for

definition.)
Proof. Reflexivity and transitivity follow immediately from theorem

1.3(#); symmetry is obvious from the definition. •

2.3. Examples
1. Let c beany number; then{*:ce Wx}=mK, by example 1.2(16)

and theorem 1.6.
2. For every recursive set A other than 0 , N, we have A = m A by

theorem 1.3(d).
3. If A is r.e. but not recursive, then A &mA, by corollary 1.5.
4. {x: <f>x = 0} =m{jc: <f>x is total}. One half of this is given by example

1.2(4); to see the reverse reduction, use the s-m-n theorem to
obtain a total computable function k such that

I undefined otherwise.
Then clearly <f>x = 0 <=> <̂ fc(x) is total.

For any set A, the equivalence class of A under the relation =m is the
class of sets dm(A) given by

This can be thought of as the class of all those sets having the same degree

9 Reducibility and degrees 162

of difficulty (with respect to <m) as the set A; hence dm(A) is called the
m-degree of A.

2.4. Definition
An m-degree is an equivalence class of sets under the relation

= m; i.e. it is any class of sets of the form dm(A) for some set A.

It is conventional to use lower case bold face letters such as a, ft, c to
denote degrees.1 It is worth making a strong mental note that although
lower case letters f are used, these are sets o sets. Thus it is meaningful to
write A 6 a, where a is a degree and A is a set, although at first this may
appear a little odd.

The relation < m on sets induces a partial ordering (see Prologue § 3 for
definition) on m-degrees, also denoted < m , as follows:

2.5. Definition
Let a, ft be m-degrees.
(a) a ^mb if there are Aea and B eb such that A ^mB,
(b) a <mb if a <mft but a * ft.

Note. It is immediate from the definition of = m that a ^ m b i ffA<m5 for
every Aea, B eb.

2.6. Theorem
The relation <m is a partial ordering of m-degrees.

Proof. From theorem 1.3(a) we have immediately that a <ma
(reflexivity) and that a ^ m ft, ft ^mc implies a ^mc (transitivity). Suppose
now that a < m b and b ^ma. We have to show that a = b. Let Aea and
B eb; then from the definition we have A ^mB and B ^ m A , so A =mZ?.
Hence a = b. •

The name recursive m-degree is given to any m-degree that contains a
recursive set; similarly, an r.e. m-degree is one that contains . an r.e set.
We can translate parts of theorem 1.3 and theorem 1.6 into the language
of degrees as follows.

2.7. Theorem
(a) { 0 } and {N} are m-degrees, which we denote by o and n
respectively; o and n are recursive m-degrees.

1 Although we have also used a on occasions to denote an n-tuple (f t i , . . . , a n), the
context will resolve any possible ambiguity.

2 Degrees 163

(b) There is one other recursive m-degree, denoted Om, that
consists of all recursive sets except 0 and M, moreover, Om ^ m a for
any m-degree a other than o, n.
(c) For any m-degree a, we have o < m a provided a^n, and
n < m a provided a ^ o.
(d) Any r.e. m-degree consists only of r.e. sets.
(e) If a <mb and b is an r.e. m-degree, then a is also an r.e.
m-degree.
(/) There is a maximum r.e. m-degree, namely dm(K), which is
denoted Q'm.

Proof
(a) Follows from theorem 1.3(/);
(b) from theorem 1.3(c), (d);
(c) from theorem 1.3(g);
(d) from theorem 1.3(e);
(e) from theorem 1.3(e)\
(/) from theorem 1.6. •

Theorem 2.7 gives us a picture of the m-degrees as shown in fig. 9a. (In
this diagram, we position a degree a below a degree b to indicate that
a <mb.) We shall see later (as this picture suggests) that there are r.e.
m-degrees other than 8m and Om-

The structure of the collection of m-degrees under their partial order-
ing has been studied extensively. The following theorem means that this
structure is what is known as an upper semi-lattice.

Fig. 9a. The m-degrees.

non r.e.

9 Reducibility and degrees 164

2.8. Theorem
Any pair of m-degrees a, b have a least upper bound; i.e. there is an

m-degree c such that
(i) a<mc and b<mc (c is an upper bound),
(ii) c <many other upper bound of a, b.

Proof. Pick A £ a, B £ b and let C = A © B, i.e.

Then x £ A » 2x £ C, so A < m C, and x £ B <=> 2x +1 £ C, so B < m C.
Thus, putting c = dm(C) we have that c is an upper bound of a, b.

Suppose now that d is an m-degree such that a < m d and A < m rf.
Choose a set D £ rf, and suppose that/: A < m £> and g: B ^m £>. Then we
have

x £ C » (JC is even & £JC € A) or (JC is odd & \(x - l) e f l)
» (JC is even & /(§*)€ D) or (JC is odd & g{\{x -1)) e D)

Thus we have /i: C <m£> if we define h by
[/(§*) if JC is even,

h(x)=\ i
Hence c<md. D

It is clear that the least s upper bound c of any pair of m-degree a, b is
uniquely determined; moreover, it is easy to see that if a, b are r.e. so is c
(see exercise 2.9(5) below).

When considering the structure of the m-degrees, it is natural to
examine in particular the structure of the r.e. m-degrees. (These include,
of course, the s recursive m-degree 0m, o, n.) We have already seen in
theorem 2.7 (and indicated in fig. 9a) the following basic facts about r.e.
m-degrees:

(a) if we ignore the exceptional m-degrees o, n there is a
minimum r.e. m-degree 0m (in fact 0m is minimum among all
m-degrees);
(b) the r.e. m-degrees form an initial segment of the m-degrees;
i.e. anything below an r.e. m-degree is also r.e.
(c) there is a maximum r.e. m-degree - namely Om-

Moreover, it is easy to see that while there are uncountably many
m-degrees, only countably many of these are r.e. (exercise 2.9(6) below).

It has emerged from much research over the past twenty-five years that
the structure of the r.e. m-degrees is exceedingly complex. Within the
scope of this book it is only possible to show that it is not completely
simple; this we shall see in the next section.

3 m-complete r.e. sets 165

2.9. Exercises
1. Show that each of the following sets is m-equivalent to K:

(a) {x:xeEx},
(b) {x:4>x(x) = 0}.

2. (a) Show that A =mA®Nfor any set A,
(b) Let 5 b e a non-empty recursive set. Show that A =mA®B
for any A provided that A ^ N.

3. (Cf. examples 2.3(2,3).) Is it true that if A=mA then A is
recursive? (See exercise 5d below.)

4. Show that the following sets all belong to the same m-degree:
(a) {x:<t>x=0}9
(b) {x\(t>x is total and constant},
(c) {JC: Wx is infinite}.

5. Let a, b be m-degrees.
(a) Show that the least upper bound of a, b is uniquely deter-
mined; denote this by a u b;
(b) Show that if a <mb then a ub = b;
(c) Show that if a, b are r.e., then so is a u A;
(d) Let Aea and let a* denote dm(A). (Check that a* is
independent of the choice of Aea.) Show that (aufl*)* =
a uc* .

6. (a) Show that any m-degree a is denumerable (i.e. there are
denumerably many sets Aea).
(b) Show that there are uncountably many m-degrees.
(c) Show that there are countably many r.e. m-degrees.

3. m-complete r.e. sets
We have seen that Om, the m-degree of K is maximum among all

r.e. m-degrees. This is also described by saying that the set K is an
m-complete r.e. set, or just an m-complete set.2 (There is a corresponding
notion for any other kind of reducibility.)

3.1. Definition
A set is m-complete if it is r.e. and any r.e. set is m-reducible to it.

From theorem 1.6 we have immediately:

3.2. Theorem
(a) K is m-complete,

2 It is possible to have a notion of m-complete sets for classes other than the class of
r.e. sets; it is then necessary to keep the reference to r.e. here.

9 Reducibility and degrees 166

(b) A is m-complete iff A = m K iff A is r.e. and K < m A,
(c) Om consists exactly of all m-complete sets.

Applying this we have the following:

3.3. Examples
The following sets are m-complete.
(a) {x:ceWx} (example 1.2(1*)),
(b) any non-trivial r.e. set of the form {x: <f>x e 38} where 38 c <gx

(the proofs of theorems 7-3.4 and 3.8 show that K <msuch a set),
(c) {x:cf>x(x
, ,v r i - i > Exercise 1.7(1).
(rf) {JC:JCG£} J

The reader may have realised that m-reducibility appeared implicitly in
the statement of theorem 7-3.2, which implies immediately that

3.4. Theorem
Any m-complete set is creative.

Proof. If A is m-complete, then K < m A, so K <m A, and by Theorem
7-3.2 A is productive. •

It is very pleasing to find that the converse of this theorem is also true,
giving us a precise characterisation of m-complete sets:

3.5. Theorem (Myhill)
Creative sets are m-complete.

We must wait until chapter 11 for a new tool - the Second Recursion
theorem - with which to prove this result. Note, however, that we have
already established it for creative sets of indices in example 3.3(6).

As an immediate corollary to theorem 3.4 we can use simple sets to
show that 0m and Om are not the only r.e. degrees:

3.6. Corollary (to theorem 3.4)
Simple sets are not m-complete; hence if a is the m-degree of any

simple set, then 0m < m a <m 0m .
Proof. Simple sets are designed to be neither recursive nor

creative. •
This corollary justifies the inclusion of something between 0m and 0m in

fig. 9a; it does not, however, justify the suggestion in that picture that
there is more than one non-recursive r.e. m-degree other than 0^. In fact
there are infinitely many such m-degrees, although we shall not prove this
here.

4 Relative computability 167

It is beyond the scope of this book to investigate further the structure of
the m-degrees under their partial ordering <m , which, as already
mentioned, is very complex. Much of this complexity can be deduced
from results about the complex nature of the Turing degrees, which we
discuss in the next sections.

4. Relative computability
We saw in § 1 that m-reducibility has two rather unsatisfactory

features: the exceptional behaviour of 0 and M, and the fact that we do
not always have A =m A. These features stem from the restricted nature
of m-reducibility: we have A ^mB only if each question 4JC G A ? ' can be
settled by answering a single prescribed question about B in a prescribed
way. The idea of Turing reducibility, which we shall define in § 5, is that
'JC e A?' can be settled in a mechanical way by answering several ques-
tions about B, the nature and (finite) number of which are not necessarily
known in advance. This idea is made precise in terms of relative compu-
tability, which we describe in this section.

Suppose that x is any total unary function. Informally we say that a
function / is computable relative to x> or just \-computable, if / can be
computed by an algorithm that is effective in the usual sense, except that
from time to time during computations we are allowed access to values of
the function \- Such an algorithm is called a x-algorithm. We can think of
a ^-algorithm as being linked to some external agent or oracle that can
supply values of x on demand. The ^-algorithm operates in a purely
mechanical fashion, and a value x(n) is requested from the oracle only as
dictated by the algorithm.

We can formulate a precise definition of relative computability using a
modification of our URM, called e an Unlimited Register Machin with
Oracle, or URMO for short.

4.1. Definition
The URMO is like the URM in all respects except that it can

recognize a fifth kind of instruction O(n) for every n > 1. The instruction
O(n) is called an oracle instruction.

To be able to obey oracle instructions the URMO must be linked to an
oracle, which supplies values of some given function x on demand. We say
then that the URMO has the function x in its oracle. The function x is not
thought of as part of the URMO itself.

The e response of th URMO to an oracle instruction O(n) is as follows:
if x is in the oracle, then replace rn (the contents of register Rn) by *(rn).

9 Reducibility and degrees 168

This d is denote in flow diagrams by

rn'=x(fn) or *(rn)-»Rn.

The URMO, with x m its oracle and obeying the instruction O(n) may
be envisaged as shown in fig. 9b.

A program is, as before, a finite sequence of instructions. The URMO
operates under a URMO program P in the same way as the URM, with
the following additional stipulation: after obeying an oracle instruction Ik
in P the next instruction is /fc+i.

We emphasise that in a URMO program P no particular function x is
mentioned. Thus the meaning of P varies according to the function
supplied in the oracle. However, a computation under P can be carried
out only when a particular function x is supplied, so we write Px to denote
the program P when used with the function x in the oracle. Thus we write

Px(au...,an)

for the computation by P, with x in the oracle, and with initial configura-
tion d\> a2,..., am 0, 0 , . . . ; and we write

P*{a)lb
to mean that the computation P*(a) stops with the number b in register
Ri.

We can now make the following definitions (parallel with definition
1-3.1).

Fig. 9b.
Oracle

R, R2 R3

With resulting configuration

4 Relative computability 169

4.2. Definition
Let x be a unary total function, and suppose that / is a partial

function from Nn to N.
(a) Let P be a URMO program. Then P URMO-computes f
relative to x (or / is x-computed by P) if, for every a £ Nn and
beN,
Px{a)ib iff f(a)~b.

(b) The function / is URMO-computable relative to x (or just
X-computable) if there is a URMO program that URMO-
computes it relative to x-

We write (€ x to denote the class of all ^-computable functions.
We are now in a position where we could define Turing-reducibility.

However, to aid a better understanding of this concept when we come to
it, we shall first outline a little of the development of the theory of relative
computability.

Most methods and results from unrelativised computability have
counterparts in relative computability. Thus in many of the theorems that
follow we supply only a sketch proof or a reference to the unrelativised
version of the same result. Throughout this section x stands for a total
unary function.

4.3. Theorem

(c) ifx is computable, then % = <#*,
(d) r4x is closed under substitution, recursion and minimalisation,
(e) if iff is a total unary function that is x-computable> then
<€* c <e*.

(a) Use the URMO program O(l).
(b) Any URM program is a URMO program.
(c) In view of (b), we need only show that <€* c <g. Suppose that/
is ^-computable and that x is computable. Proceeding
informally, we can compute any value of / as follows: use the
^-algorithm for /, and whenever a value of x is requested simply
compute it using the algorithm for x- This is an effective pro-
cedure, so by Church's thesis / is computable. (We leave the
reader to provide a formal proof of this result; see exercise
4.10(3).)

9 Reducibility and degrees 170

(d) The proofs are identical to those of theorems 2-3.1, 2-4.4
and 2-5.2.
(e) The proof is similar to that for (c) (which is really a special
case of (e)). •

Other approaches to relativised computability Any alternative
approach to computability can be modified to provide a corresponding
notion of relative computability. A relativised version of the Fundamen-
tal result (theorem 3-1.1) can then be proved, and this leads to the
formulation of Church's thesis for relativised computability.

We mention here only the relativised notion of partial recursive
function:

4.4. Definition
The class 2frx of \-partial recursive functions is the smallest class

of functions such that
(a) the basic functions are in 3lx,

(c) £%* is closed under substitution, recursion and minimalisa-
tion.

The phrases partial recursive in x o r partial recursive relative to x are
also used with the same meaning as ^-partial recursive.

The notions x-recursive (or recursive in, or relative to, x) and x-P^ifnitiue
recursive (or primitive recursive in, or relative to, x) are defined in the
obvious way.

Corresponding to theorem 3-2.2 (and proved in the same way) we have

4.5. Theorem

Numbering programs and functions URMO programs can be
effectively numbered or coded by an easy adaptation of the method used
in chapter 4 for URM programs. Let us assume that this has been done, so
that we have a fixed effective enumeration (without repetitions)

Qo, Oi, O 2 , . . .
of all URMO programs.3 Then we write

<f>%n for the n-ary function ^-computed by Qm,

Each URM program P appears in this list ; in most cases, however, its number
here will be different from that assigned to it in chapter 4.

4 Relative computability 171

EiforRan^*,) .
The s-m-n theorem (4-4.3) has a relativised counterpart with identical

proof:

4.6. Theorem (The relativised s-m-n theorem)
For each m, n > 1 there is a total computable (m + \)-ary function

s™(e, x) such that for any x

Note. The function s™ here differs, of course, from the function given the
same name in theorem 4-4.3. Note, however, that s™ here is still
computable (not merely ^-computable) and does not depend on x-

Universal programs for relative computability Relativisation of the
proof of theorem 5-1.2 gives immediately:

4.7. Theorem
For each n, the universal function t^u" for n-ary x-computable

functions given by

is X'Computable.

Remark. A careful examination of the full formal proof of theorem 5-1.2
would show that there is a URMO program Qu*, independent of #, that
^-computes i/f{j" for any x-

X-recursive and x-r.e. sets The relativised notions of recursive and r.e.
sets are given by:

4.8. Definition
Let A be a set
(a) A is x-recursive (or recursive in x) if cA is ^-computable,
(b) A is X"r-e> (o r r-e> m x) if the partial characteristic function

if x £ A,
I undefined iix£A,

is ^-computable.

9 Reducibility and degrees 111

The following selection of basic results about ^-recursive and *-r.e. sets
is proved by the addition of the prefix x~ a t the appropriate places in the
proofs of the corresponding unrelativised results in chapter 7:

4.9. Theorem
(a) For any set A, A is x-recursive iff A and are A x-r.e.
(b) For any set A, the following are equivalent

(i) A is x-r-e->
(ii) A = W*m for some m,
(iii) A = Ex

m for some m,
(iv) A = 0 or A is the range of a total x-computable function,
(v) for some x-decidable predicate R (x, y),

xeA <=> 3yJR(jc,y)
(R is x-decidable if its characteristic function is ^-computable).

(c) Let K* = {x: x e W*}\ then Kx is X'r^- but not x-recursive.

Computability relative to a set For any set A, we define computability
relative to A (or just A-computability) to mean computability relative to
cA, the characteristic function of A. Thus we write

PA for P c* (if P is a URMO program),
<£A for <TA,

for

KAforKc*,
A-recursive for cA-recursive,
A-r.e. for CA-r.e.,
etc.

In the next section we shall define Turing reducibility in terms of
computability relative to a set. For a set A, we can summarise the basic
idea that we have presented in this section, in a nutshell, as follows:
A-computability is computability for anyone who knows all about A. To
be a little more precise, we should expand this to: for anyone who can
answer any question of the form 'x e A?'. This excludes knowledge of
'infinite' facts about A, such as whether A has infinitely many even
members.

4 Relative computability 173

4.10. Exercises
1. Let x, <A be total unary functions, and suppose that <f>x is total. Is

<f>t necessarily total?
2. Suppose that Xi^X2, •..»#* are total unary functions. Define

<3lXx '*2 *k to be the smallest class of functions containing the
basic functions and xu • • • , Xk, and closed under substitutions,
recursion and minimalisation. Formulate a definition of the set
(g*i--*k of functions computable relative to xu • • •» *fc such that
<g*,.-.*k=a[^1.....^ ^ - ^ £-/ r ^ r define a machine having jfc
oracles, or find a single unary function x such that 3?*1 Xk =
®\)

3. Provide a full formal proof of theorem 4.3(c): if x is compu-
table, then « = « \

4. Show that there is a total computable function k (independent of
X) such that Wx

k(a,b) = Wx
a u Ŵ J for all indices a, b.

5. Verify theorem 4.9.
6. Let A be any set.

(a) Show that for any r.e. set B, there is an index e such that
B = Wf,
(ft) Show that if A is recursive , then Wf is r.e. for all e,
(c) Show that if A is recursive, then A^ is r.e. but not
recursive.

7. Let A, B, C, be sets. Prove that
{a) if A is 5-recursive and B is C-recursive, then A is C-
recursive,
(ft) if A is B-r.e. and £ is C-recursive, then A is C-r.e.,
(c) if A is B-recursive and B is C-r.e., then A is not necessarily
C-r.e.

8. (Relativisation of theorem 1.6.) Let A be any set. Show that for
any set B,

BisA-r.e. <=> B<mKA.

9. Show that there is a single number d such that

10. (a) We say that a set A is #-s/mpfe if (i) A is *-r-e-> (ii) A is
infinite, (iii) A contains no infinite *-r.e. subset. Show that there
is a #-simple set.
(ft) Formulate the definition of a ^-creative set. Show that a
^-simple set is not ^-creative.

9 Reducibility and degrees 174

5. Turing reducibility and Turing degrees
Using relative computability we make the following definitions:

5.1. Definitions
(a) The set A is Turing reducible (or just T-reducible) to the set
B if A is B-recursive (equivalently, if cA is ^-computable). This is
written A <TB.
(b) The sets A, B are Turing equivalent (or T-equivalent) if
A <TB and B < T A. (The use of the word equivalent is justified
in theorem 5.2(6) below.) We write this A = TS.

Let us consider informally the meaning of Turing reducibility. Suppose
that A <TB and that P is a URMO program that computes cA relative to
B. Then for any x, PB(x) converges and

PB(x)il itxeA,
PB(x)i0 if** A.

During any completed computation PB(x) there will have been a finite
number of requests to the oracle for a value cB(n) of CB, as dictated by P
and the progress of the computation. These requests amount to a finite
number of questions of the form 7i e B ?'. So for any x, 'x e A V is settled
in a mechanical way by answering a finite number of questions about
B. Thus we see that Turing reducibility accords with the informal notion
of reducibility discussed at the beginning of § 4.

Some of the basic properties of the relations ^ T and =T are given in the
next theorem.

5.2. Theorem
(a) <T is reflexive and transitive,
(b) =T is an equivalence relation,
(c) if A<mB then A<TB,
{d) A=TAforallA,
(e) if A is recursive, then A < T5 for all B,
(/) if A is recursive and B <TA then B is recursive,
(g) if A is r.e. then A <TK.

Proof.
(a) and (b) follow immediately from the observation that
A <T £ <=> <#A S <€ B (by theorem 4.3(a), (e))
and hence
A =TB O <€ A = <€ B.

5 Turing reducibility degrees and Turing 175

(c) Suppose that f:A<mB, and let P be a URM program in
standard form that computes /. Then the URMO program
P, O(l) is easily seen to ^-compute cA>
(d) Since CA = sg © cA, A is A-recursive (by substitution); hence
A < T A ; and A <T A similarly.
(e) By theorem 4.3(6).
(/) By theorem 4.3(c).
(g) By (c) above and theorem 1.6. •

Remarks
1. From (d), (e), (/) of this theorem we see that T-reducibility does not
have the defects of m-reducibility; this also shows us that these two
notions are distinct.
2. Part (g) of the above theorem shows that A" is a T-complete (r.e.) set,
according to the following definition:

5.3. Definition
A set A is T-complete if A is r.e. and B < T A for every r.e. set B.

The name Turing degree is given to any equivalence class of sets under
the relation =T- again, we think of a degree as a collection of sets all
having the same degree of difficulty.

5.4. Definitions
(a) Let A be a set; the equivalence class

is called the Turing degree of A, abbreviated the T-degree of A.
(b) Any T-degree containing a recursive set is called a recursive
T-degree.
(c) Any T-degree containing an r.e. set is called an r.e. T-degree.

The notions of Turing reducibility and Turing degree are widely
accepted as the most basic among all other similar notions. Hence the
term reducible without qualification is often used to mean Turing
reducible; similarly, Turing degrees are often referred to merely as
degrees, or degrees unsolvability. of We shall adopt this practice in the
remainder of our chapter. As before, the letters a, b, c, etc. are used for
degrees.

The relation ^ T on sets induces a partial ordering on degrees, as
with <m :

9 Reducibility and degrees 176

5.5. Definition
Let a, b be degrees.
(a) a^b if for some (equivalently, for all) Aea and Beb,
A^TB;
(b) a <b if a<b and a *b.

(We leave it as an easy exercise for the reader to verify that < is a partial
ordering on degrees (cf. theorem 2.6).)

We can reformulate much of theorem 5.2 in terms of degrees as
follows:

5.6. Theorem
(a) There is a single recursive degree, which is denoted 0; 0
consists of all the recursive sets, and is the unique minimum degree.
(b) Let 0' denote the degree of K\ then 0 < 0 ' and 0' is a
maximum among all r.e. degrees.
(c) For any sets A, B

(i) dm(A)cdT(A),
(ii) / /dm(A)< m dm (£) , then dT(A)<dT(B).

Proof.
(a) This is immediate from theorem 5.2(e) and (/).
(b) From (a) 0^0'; and 05*0' since K is not recursive. By
theorem 5.2(g), if a is any r.e. degree, a < 0 \
(c) Immediate from theorem 5.2(c). •

There are two fundamental features of the structure of Turing degrees
under their partial ordering that we should now mention.

The jump operation We have seen that the step from recursive sets to
T-complete sets such as K is a definite increase in degree of difficulty,
expressed in the language of T-degrees by writing 0<0 r . We now show
that for any degree a there is a corresponding step or jump to a higher
degree a', known as the jump of a. This is defined using the set
KA = {x:xe W?} (for any set Aea): but first we need the following
theorem.

5.7. Theorem
Let A, B be any sets,
(a) (i) KAisA-r.e.y

(ii) ifB isA-r.e., then B <TKA.

5 Turing reducibility and Turing degrees 111

(b) If A is recursive then KA=TK.
(c) A<TKA.
(d) (i) IfA<TBthenKA<TKB,

(ii) ifA=TBthenKA=TKB.
Proof.

(a) (i) is given by theorem 4.9(c); for (ii), a straightforward
relativisation of theorem 1.6 (using the relativised s-m-n
theorem) shows that if B is A-r.e. then B ^mKA.
{b) Clearly K <TKA, since K is A-r.e. for any A\ on the other
hand, if A is recursive then the A-computable partial charac-
teristic function of KA is actually computable (theorem 4.3(c));
hence KA is r.e. Thus KA <TK.
(c) A <TKA is given by (a)(ii); A &TKA is given by theorem
4.9(c).
(d) (i) If A <TB, then since KA is A-r.e. it is also B-r.e, (see
exercise 4.10(7*)). Hence KA<TKB by (a)(ii).
(ii) follows immediately from (i). •

Part (a) of this theorem tells us that KA is what we would call a
T-complete A-r.e. set; it is sometimes called the completion of A, but
usually it is called the jump of A and denoted A'.

Notice that for any A e 0, the degree of KA is 0' (by (b) of the above
theorem). This leads to the following definition of the jump operator on
degrees.

5.8.

for any Aea

Definition
For any degree a, the jump of a, denoted a', is the degree of KJ

Aea.

Remarks
1. Theorem 5.1 {d) tells us that this is a valid definition because the
degree of KA is the same for every Aea.
2. By theorem 5.1 (b) the new definition of 0' here as the jump of 0
accords with our earlier definition of 0' as the degree of K (theorem 5.6).

We can immediately write down the basic properties of the jump
operator:

5.9. Theorem
For any degrees a, b

9 Reducibility and degrees 178

(a) a<a\
(ft) if a <A then a'<6',
(c) 0'<a',
(d) if Be b,Aea and B is A-r.e., then b < a'.

P/w/.
(a) By theorem 5.7(c).
(ft) By theorem 5.7(d).
(c) From (ft), since 0 < a.
(d) By theorem 5.7(a). D

The second fundamental feature of the structure of the Turing degrees
is one we have seen already for the m-degrees: they form an upper
semi-lattice:

5.10. Theorem
Any degrees a, b have a unique least upper bound.

Proof. We merely mention that the least upper bound of a, b is (as with
m-degrees) the degree of A ®B for any sets A e a, B e A, and leave the
rest of the proof as an exercise, which is similar to the proof of theorem
2.8. •

The least upper bound of degrees a, b is denoted by a u *: it is clear
from the construction that if a, b are r.e. then so is 0 u ft.

The structure of the Turing degrees under their partial ordering, and
equipped with the operations' and u, has been studied extensively, and is
still by no means fully understood. Particular attention has been given to
the structure of the r.e. degrees (these do not form an initial segment of
the Turing degrees, as was the case with the r.e. m-degrees: see theorem
5.18 below). It is now known that the structure of the T-degrees and the
r.e. T-degrees is extremely rich and complex. For a long time, however,
even the following d simply pose question was unsettled:

5.11. Post's problem
Is there an r.e. degree a such that 0 < a <0'?

This problem was posed by Post in 1944. The simple sets, invented by
Post, did not , provide an answer as they did with corresponding question
for m-degrees (corollary 3.6). One reason for this is seen in the following
result of Dekker, which shows in particular that 0; contains a simple set.

Turing reducibility and Turing degrees 179

5.12. Theorem
Any non-recursive r.e. degree contains a simple set.

Proof (sketch). Let B be an r.e. set that is not recursive, and let
B = Ran(/) where / is a total injective computable function (exercise
7-2.18(7)). Let A be the set given by

A={x:3y(y>x andf(y)<f(x))}.
In exercise 7-4.4(2) we gave the hint for showing that A is simple. We
leave the proof that A = T B as an exercise (exercise 5.21(6) below). •

This theorem underlines the difference between m-degrees and T-
degrees, since it shows that 0', unlike 0m, contains many r.e. sets that are
not m-complete.

The breakthrough on Post's problem came in 1956 when Friedberg
and Muchnik independently proved:

5.13. Theorem
There are r.e. sets A, B such that A&TB and B £ T A. Hence, if

a, b are dT(A), dT(B) respectively, aSb andb^a, and thus 0 < a <0' and
0<*<0'.

(Degrees a, b such that a£b and b&a are called incomparable
degrees; this is written a\b.)

For a proof of the Friedberg-Muchnik theorem, which is well beyond
the scope of this book, we refer the reader to books such as Rogers [1967]
or Shoenfield [1971]. Friedberg and Muchnik used a new technique
known as the priority method, which opened the way to the discovery of
the complex nature of the structure of the Turing-degrees.

There are many results s about degree that, like the Friedberg-Much-
nik theorem, are easy to formulate but difficult to prove. We give below a
sample of these, to illustrate the complexity of the T-degrees.

5.14. Theorem
For any r.e. degree a > 0, there is an r.e. degree b such that b | a.

5.15. Sacks' Density theorem
For any r.e. degrees a < b there is an r.e. degree c with a < c < b.

5.16. Sacks' Splitting theorem
For any r.e. degree a > 0 there are r.e. degrees A, c such that

b<a, c<a and a = buc (hence b c).|

9 Reducibility and degrees 180

5.17. Theorem (Lachlan, Yates)
{a) There are r.e. degrees a, b > 0 such that 0 is the greatest lower
bound of a and b.
(b) There are r.e, degrees a, b having no greatest lower bound
(either among all degrees or among r.e. degrees).

Turning to non r.e. degrees, a surprising result is

5.18 Theorem (Shoenfield)
There is a non-r.e. degree a < 0'.

A minimal degree is a degree m > 0 such that there is no degree a with
0<a<m. By Sacks' Density theorem there can be no minimal r.e.
degree. However, Spector proved:

5.19. Theorem
There is a minimal degree.

For proofs e of thes and other results about degrees we refer the reader
again to the books of Rogers and Shoenfield. The article by Simpson
[1977] gives a very readable survey of more recent results that are not
included in these books.

T'degrees and m-degrees Often results about T-degrees give informa-
tion about the structure of the m-degrees almost immediately, via
theorem 5.6(c). We illustrate with

5.20. Corollary (to theorem 5.14)
For any r.e. m-degree a >m 0m, there is an r.e. m-degree b such that

b\a.
Proof. Let A e a; A is r.e. so by theorem 5.14 take an r.e. T-degree c

such that <1T(A)\C. Let B be an r.e. set d in c, an let b = dm(B). Then if
«<mA or b<ma, by theorem 5.6(c) we have d T(A)<c or c<dT (A),
contradicting dT(A) | c. Hence a \ b. •

Other reducibilities There are other notions of reducibility that e li
between the restricted notion of m-reducibility and the broader T-
reducibility. The book of Rogers [1967] provides a full and detailed
discussion of these.

5 Turing reducibility and Turing degrees 181

5.21. Exercises
1. Show that each of the following sets is T-complete:

(a) {x:xeEx},
(b) {x:Wx = 0}.

2. Improve theorem 5.7(d) by showing that A < T # iff
KA <m KB, and A ^ T B iff KA =m KB.

3. Show that the previous question can be made effective in the
following sense: there is a total computable function / such that
for any A, J5, if cA = <£f, then <t>ne)\KA <mKB.
{Hint. Find total computable functions g, h such that (i) if
cA = <{>f then KA = WB

(eh (ii) <f>hie): WB <mKB, for all e.)
4. For any set A define a sequence of sets A(n) by

A(0) = A ; A (- D = A : A<-

and let AM = {7r(m, n):me A(n)}.
(a) Show that Ain)<TA(to) for all n.
(fc) Show that there is a total computable function h such that
cAo> =<f>Aln) for all n.
(c) Suppose that 5 is a set such that A (n) < T # for all n in the
following strong way: there is a total computable function / such
that cA^ = <f>nnh all n. Show that AM<TB.
{d) Show that if A < T B then A (n) < T £ (n) all n, and A(a)) <T^(a>) .
(Hint Use question 3 above, together with (b) and (c).)

5. Prove theorem 5.10.
6. Complete the proof of theorem 5.12.
7. Prove as a corollary to theorem 5.17(a) that there are r.e.

m-degrees such that 0 m is the greatest lower bound of a and b.

10
Effective operations on partial
functions

Once we have studied effectively computable operations on numbers it is
natural to ask whether there is a comparable notion for operations on
functions. The essential difference between functions and numbers as
basic objects is that functions are usually infinite rather than finite. With
this in mind, in § 1 of this chapter we discuss the features we might
reasonably expect of an effective operator on partial functions: this leads
to the formulation of the definition of recursive operators on partial
functions.

In § 2 we shall see that there is a close connection between recursive
operators and those effective operations on computable functions that we
discussed in Chapter 5 § 3. In § 3 we prove the important fixed point
theorem for recursive operators known as the first Recursion theorem.
The final part of this chapter provides a discussion of some of the
applications of this theorem in computability and the theory of pro-
gramming.

1. Recursive operators
Let us denote by 9*n (n > 1) the class of all partial functions from

Nn to N. We use the word operator to describe a function <P:tFm^>!Fn; the
letters <£, % . . . l will invariably denote operators in this chapter. We shal
confine our attention to totally defined operators <P:&*m-»3>n\ i.e. such
that the domain of <P is the whole of ^m .

The chief problem when trying to formulate the idea of a computable
(or effective) operator <P: 2F\ -* &u say, is that both an 'input' function /
and the 'output' function <P(f) are likely to be infinite objects, and hence
incapable of being given in a finite time. Yet our intuition about effective
processes is that in some sense they should be completed within a finite
time.

To see how this problem can be overcome, consider the following
operators from 3F\ to 3F\:

1 Recursive operators 183

(a) 0 i (/) = 2/.
(*) # 2 (/) = S, where g(*) = Iy s s x / (y) .

These operators are certainly down to earth and explicit. Intuitively we
might regard them as effective operators: but why? Let fe&i and let
gi-^iif)', notice that any particular value gi(x) (if defined) can be
calculated in finite time from the single value f(x) of / ; if we set
g2 = 0 2 (/) , then to calculate gi{x) (if defined) we need to know the finite
number of values /(0), / (I) , . . . , / (*) . Thus in both cases any defined
value of the output function (<P\(f) or (Piif)) can be effectively calculated
in a finite time using only a finite part of the input function /. This is
essentially the definition of a recursive operator given below.

One consequence of the definition will be the following: suppose that
#(/)(*) = y is calculated using only a finite part 6 of /; then if g is any
other function having 6 as a finite part we must expect that <P(g)(x) = y
also.

To frame our definition precisely there are some technical considera-
tions. First, let us agree that by a 'finite part' of a function / we mean a
finite function 6 extended by /. (We say that 6 is a finite function if its
domain is a finite set.) For convenience we adopt the convention

6 always denotes a finite function in this chapter.

The above discussion shows that the definition of recursive operator
will involve effective calculations with finite functions. We make this
precise by coding each finite function 6 by a number § and using ordinary
computability. A suitable coding for our purposes is defined as follows:
suppose that 6 e 9*n . The n-tuple x = (JCI, . . . , xn) is coded by the number
(x) = p? 1 + 1 p£2 + 1 . . . p*»+1; then define the code 6 for 6 by

0 = H Poo)+1 provided that Dom(<9)#0,
jt€Dom(0)

0 = 0 i f D o m (0) = 0
(in which case 6 =/0).

There is a simple effective procedure to decide for any number z whether
z = 6 for some finite function 6; and if so, to decide whether a given jr
belongs to Dom(0), and calculate 6{x) if it does.

Now we have our definition:

1.1. Definition
Let <P:&m^>&n. Then <P is a recursive operator if there is a

c o m p u t a b l e f u n c t i o n <fr(z,x) s u c h t h a t f o r a l l f e & m a n d x e N n , y e N

10 Effective operations on partial functions 184

<p(f)(x) ~ y iff there is finite 0 c / such that 4>{6, x) =* y.
(Note that 0 is not required to be total.)

1.2. Example
The operator <P(f) = 2 / is a recursive operator: to see this define

(20(JC) if z = 0and*eDom(0),
1 undefined otherwise.

By Church's thesis, <f> is computable: now for any /, x, y we have
<p(f)(x) =* y » A: € Dom(/) and y = 2/(x)

» there is 0 c / with JC € Dom(0) and y = 20(JC)

<=> there is 0 c / such that 0(0, * H y.
Hence <£> is a recursive operator.

Further examples will be given in 1.6 below.
An important feature of recursive operators is that they are continuous

and monotone in the following sense.

1.3. Definition
Let <P: 3*m -» &n be an operator.
(a) 0 is continuous if for any fe tFm , and all x, y:
<p(f)(x) =* y iff there is finite 0 c / with #(0)(JC) =- y;
(b) <P is monotone if whenever /, g e ^ m with / ^ g, then

These properties are easily established for recursive operators, and as
we shall see they aid the recognition of such operators.

1.4. Theorem
A recursive operator is continuous and monotone.

Proof. Let (p:^m-^^n be a recursive operator, with computable
function <f> as required by the definition. Suppose that <P(f)(x) =« y, and let
0 ^ / such that <t>(0, x)-y. Since 0 c 0 , it follows immediately that
<P(0)(x) =* y. Conversely, if 0 c / and 0(0)(jr)» y, there is 0i c 0 such that
0(0i, x) — y; but then 0 i ^ / , so we have that <P(f)(x)~y. Hence 4> is
continuous.

Monotonicity follows directly from continuity: suppose t h a t / c g and
<P(f)(x)^y. Take 0 c / such that <P{6){x)^y\ then 0 c g , so by
continuity, <P{g)(x) — y. •

1 Recursive operators 185

The use of the term continuous to describe the property 1.3(a) is
justified informally as follows. Suppose that 0:^^^ satisfies 1.3(a)
and fe &x. Then given any xu • . . , xk for which <P(f)(xt) (1 < / < k) are
defined, using 1.3(a) we can obtain a finite 0 c / such that <£(0)(JC,) =

*,) (l ^ i ^ f c) . Thus, whenever g ^ 0 , by 1.3(a) again, we have
/) = #(/)(») (1 ^ / ^ fc). i.e. if g is 'near' t o / (in the sense that they

agree on the finite set Dom(0)) then <P(g) is 'near' to <P(f) (in the sense
that they agree on the finite set JCI, . . . , * *) . Thus, informally, <P is
continuous.

The continuity property 1.3(a) specifies that a value <P{f)(x) is deter-
mined (if at all) by a finite amount of positive information about /. This
means information asserting that / is defined at certain points and takes
certain values there, as opposed to negative information that would
indicate points where / is not defined. Using this idea the term continuous
can be rigorously justified as follows.

The positive information topology1 on $Fm is defined by taking as base of
open neighbourhoods sets of the form

Ue={f:6c:f) (0 e 9my finite).
Thus /belongs to Ue iff 6 is correct positive information about/. It is then
an easy exercise to see that an operator is continuous with respect to the
positive information topology precisely when it possesses property

The following characterisation of recursive operators using continuity
will make it easy to establish recursiveness of various operators.

1.5. Theorem
Let <P\ $Fm -» 3Fn be an operator. Then 0 is a recursive operator iff
(a) <P is continuous,
(b) the function <f>(z, x) given by
(4>(§9x)~<P(e)(x) forde9m,
\<f>(z, x) is undefined for all other z,
is computable.

Proof. Suppose that <P is recursive with computable function <f>\ such
that

1 The reader unfamiliar with topology will lose nothing in further development by
omitting this paragraph.

10 Effective operations on partial functions 186

Then taking <f> as given in the theorem, we have

<f>(0, x) - y O 30i(0i c <9 and <£i(0i, *) ~ y);
the relation on the right is partially decidable, so <j) is computable by
theorem 6-6.13.

Conversely, suppose that conditions (a) and (b) of the theorem hold:
then

<P(f)(x) ~ y <* 30(0 Gf and <P(6)(x)~y) (by (a))

whence 0 is a recursive operator. •

This theorem enables us to show quite easily that the following
operators are all recursive:

1.6. Examples
(a) (The diagonalisation operator) <P(f)(x)=*f(x,x) (fe&2)>
0 is obviously continuous, and <f>(0, x) — 0(x, x) is computable.
(b) <P(f)(x)^l^xf(y)(fe^1)

This is the second example discussed at the beginning of this
section. We saw there that <P is continuous; and clearly <f>(6, x) —
Zy<x 0(y) is computable.
(c) Let computable.Definege&ibe <P:&n ->3Fn by <P{f) = g0/.
Obviously <P is continuous, and <f>(0, x) — g(0(x)) is computable.
(d) (The Ackermann operator). Let <P\ 3F2-* &2 be given by

#(/)((>, y) = y + l,

To see that <P is continuous, note that &(f)(x, y) depends on at
most two particular values off. For recursiveness, it is immediate
by Church's thesis that the function cf> given by

is computable.
{e) (The /Lt-operator.) Consider <P\ &n+\-*&n, given by
<P(f)(x) — /Jiy(f(x, y) = 0). It is immediate that this operator is
continuous, and that the function <$> given by

is computable.

1 Recursive operators 187

When the definition 1.1 of a recursive operator <P: &m -* &n is extended
to the case n = 0, we have what is called a recursive functional The
members of 3*0 are 0-ary functions; i.e. constants. Just as 9*n (n^l)
includes the function that is defined nowhere, ^ 0 includes the 'undefined'
constant, which is denoted by <o. Thus &0 = Nu{<o}, and an operator
<P: 9>m -* &o is a recursive functional if there is a computable function <j> (x)

 such that for any / € ^m, and yeN:

<P(f)~y iff 30(0c/and<£(0Hy).
We write <P{f) = a) if # (/) is undefined; this emphasises that <P is still
thought of as being a total operator.

We should point out that in some texts the term partial recursive
functional 2Fm -> 3*n is used to describe recursive operators, including the
case n = 0. In such contexts the word partial describes the kind of object
being operated on rather than the domain of definition of the operation.

We shall not discuss here the extension of the ideas of this section to
partially defined operators and the corresponding partial recursive opera -
tors <P\&„->&„ The reader is referred to Rogers [1967] for a full
discussion of these and related matters.

1.7. Exercises
1. Show that the following operators are recursive.

(a) *(/)=/2(/e^),
(b) <P(f) = g (fe &n), where g is a fixed computable function in
&u
(c) (P{f)-f°g (fe&i) where g is a fixed computable function in

(d) Let he&n+i be a fixed computable function; define

fO (y f
#(/)(*, y) ~ | / (* +1, y) +1 if h(xt y) is defined and *0,

[undefined otherwise
(The significance of this operator will be seen later.)

2. Prove that if 0 is a recursive operator and / is computable then so
is * (/) .

3. Decide whether the following operators <P\&\^>&\ are (i)
monotonic, (ii) continuous, (iii) recursive.

tfM if Dom(/) is finite,
(a) 0(/)(jt)— V

(undefined if Dom(/) is infinite.

10 Effective operations on partial functions 188

J° if/U) is defined,

{u n d e f i n e d otherwise.

undefined otherwise.
undefined if Dom(/) is finite,

. { D o m (^ i s i n f i n i t e

4. Suppose that <P:&m -»̂ Vt and #": $%, -» ^ p are recursive opera-
tors. Prove that ^ ° $: f m ->^p is recursive.

5. Show how to extend the definition of recursive operator to
include operators <P: ^m i x ^m2 x . . . x &mk -» ^n , and prove
appropriate versions of theorems 1.4 and 1.5 for your definition.
Prove that the following operators are recursive:
(a) &:&!
above);
(b) 4>:3>n

<P(f,h)(x,

+ l X j

y) —

0

given by &(f>g)=f°g (cf.

* &n+i given by

/ (x + l , y) + l
undefined

if h(x, y) = 0,
if h(x, y) is defined
otherwise

question

and is not

lc

0,

(cf. Id above).
6. (For those who know some topology.)

(a) Prove that an operator is continuous in the sense of
definition 1.3(a) iff it is continuous in the positive information
topology.
(b) Prove that the following are equivalent for V c f n :
(i) V is open in the positive information topology,
(ii) fe V iff 36(6g;/ and 6e V).

7. Let <P: 3*m -»3*n and W: 3*n -* 3^p be continuous operators; prove
that ^o<f:^ m->fp is continuous.
Let ̂ (f^l) denote the class of all subsets of N; formulate a
definition of a recursive operator <P: 0>(N)->9*{N) that parallels
the notion of a recursive operator from 3^\-^^\. Frame and
prove theorems corresponding to theorems 1.4 and 1.5.
(Hint. The question of membership x e <P(A) should depend
effectively on a finite amount of positive information about
membership of the set A.)

(Effective operators 3P(N)^>8P(N) are called enumeration
operators and are discussed in full in Rogers [1967].)

2 Effective operations on computable functions 189

2. Effective operations on computable functions
In chapter 5 § 3 we considered that certain operations on

computable functions should be called effective because they can be given
by total computable functions acting on indices. For instance, in example
5-3.1(2) we saw that there is a total computable function g such that for

 a l l * € l \ l , (<j>e)2 = <t>g(e).
We shall see in this section that any recursive operator <£, when

restricted to computable functions, yields an effective operation of this
kind on indices. This is the first part of a theorem of Myhill and
Shepherdson. They proved, moreover, that all such operations on indices
of computable functions arise in this way.

We shall prove the two parts of the Myhill-Shepherdson result
separately, taking the easier part first.

2.1. Theorem (Myhill-Shepherdson, part I)
Suppose that #": $Fm -* 3^n is a recursive operator. Then there is a

total computable function h such that

Proof. Let ^ be a computable function showing that ^ is a recursive
operator according to definition 1.1. Then for any e we have

V(<t>(
e
m))(x) - y <S> 36(6 c <£<m) and <A(<9, JC) - y).

We shall show that the function g defined by

is computable, by showing that the relation g(e, x)-y is partially deci-
dable. To this end, consider the relation R(z, e, JC, y) given by

R(z,e,x,y) = 36(z = 6 and 6^^e
m) and tA(0, Jc)-y).

Then R is partially decidable, with the following informal partial decision
procedure.

(1) Decide whether z = 6 for some 6; if so obtain Xi,..., xk e
Nm and y i , . . . , yfc such that Dom(0) = {*i,..., xk} and 0(jt/) = y,
(l< /< fc) ; then
(2) for i = 1 , . . . , k compute <t>{

e
m){Xi)\ if, for 1 < i < k, <t>{

e
m\xi) is

defined and equals yh then
(3) compute e/r(z, JC) and if defined check whether it equals y.

If R (z, etx,y) holds, this is a mechanical procedure that will tell us so in
finite time, as required.

10 Effective operations on partial functions 190

Since R(z, e, x, y) is partially decidable, so is the relation
3z R(z, e, x, y) (by theorem 6-6.5): but

3zR(z, e, x, y) <̂> V((f>{
e
m))(x) - y (from the definition of R)

<=> g(e, x) — y (from the definition of g).
Thus g(e, x) — y is partially decidable, so by theorem 6-6.13 g is comput-
able.

Now the s-m-n theorem provides a total computable function h such
that * i r i () t e)

from which we have 4>(tfe) = V{<f>(
e
m)). D

Notice that the function h given by this theorem for a recursive
operator V\8Fi-* 2F\ is extensional in the following sense.

2.2. Definition
A total function h: ftsl -> N is extensional if for all a, Z>, if <£a = <f>b

then (f>h{a) = <t>Hb)-

Now we can state the other half of Myhill and Shepherdson's result.

2.3. Theorem (Myhill-Shepherdson, part II)
Suppose that h is an extensional total computable function. Then

there is a unique recursive operator W such that ty(<t>e) = <t>we) for all e.
Proof. At the heart of our proof lies an application of the Rice-Shapiro

theorem (theorem 7-2.16).
Let h be an extensional total computable function. Then h defines an

operator Vo: <€i -* <#i by

^o is well defined since h is extensional. We have to show that there is a
unique recursive operator #": 9*\ -» 5F\ that extends ^o-

First note that Vo(0) is defined for all finite 6, since finite functions are
computable. Thus any recursive operator #" extending ^o, being
continuous, must be defined by

(2.4) ¥(f)(x)**y » 3 0 (0 c / a n d ¥b(0)(*)~y).
So such a ŷ , if it exists, is unique. To prove the theorem we must now
show that

(i) (2.4) does define an operator %
(ii) V extends ^0 ,

2 Effective operations on computable functions 191

(iii) ^ is recursive.
We first use the Rice-Shapiro theorem to show that ty0 is continuous in
the following sense: for computable functions /

(2.5) * 0 (/) (x) ~ y » 30(0 <=/and ^ o(0) (*) -y) .
To see this, fix x, y and let si = {fe « i : ¥o(f)(x)**y}. Then the set
A = {e: <£c e si} = {e: <£h(e)0c) — y} is e r.e.; so by th Rice-Shapiro theorem,
if / is computable then

fed <£> 30(0 cf and (9 e si),
which is precisely (2.5).

Now we establish (i), (ii), (iii) above.
(i) Let / be any partial function; we must show that for any JC, (2.4)

defines #"(/)(*) uniquely (if at all). Suppose then that 0i, 0 2 ^ / and
Vo(0i)(x)« yi and xPo(62)(x)« y2. Take a finite function 0 2 02, #2 (say,
0 = / |Dom(0i) uDom(02)); by (2.5)

Thus (2.4) defines an operator W unambiguously.
(ii) This is immediate from) (2.5 and the definition (2.4).
(iii) We show that #" satisfies the conditions of theorem 1.5. Clearly V

is continuous, from the definition. For the other condition we must show
that the function i/r given by

i)/(z,x) is undefined if z # 0,
is computable. Now it is easily seen by using Church's thesis that there is a
computable function c such that for any finite function 0, c(0) is an index
for 0; i.e. 0 = <frci$). Thus

— <f>h{c{0))(x),

so if/ is computable, since h and c are. Hence V is a recursive
operator. •

Remarks
1. The proof of theorem 2.3 actually shows that for any extensional
computable h there is a unique continuous operator W: 3*\ ~* $F\ such that
Witfre) = <£ft(e), aH £> anc* that this operator is recursive.
2. Theorem 2.3 extends in a natural way to cover operators from
3*m -* ^n- The proof is almost identical, using the natural extension of the
Rice-Shapiro theorem to subsets of <#m; see exercise 2.6(2) below.

10 Effective operations on partial functions 192

2.6. Exercises
1. Suppose that <P, & are recursive operators $F\ -» SF\; knowing

that 0 o \{r is continuous (exercise 1.7(7)) use the two parts of the
Myhill-Shepherdson theorem together with the first remark
above to show that <P° V is recursive.

2. State and prove a general version of theorem 2.3 for operators
from <#m -• <€ H.

3. Formulate and prove versions of the Myhill-Shepherdson
theorem (both parts) appropriate for the operators you have
defined (a) in exercise 1.7(5), (b) in exercise 1.7(8).

3. The first Recursion theorem
The first Recursion theorem of Kleene is a fixed point theorem

for recursive operators, and is often referred to as the Fixed point
theorem (of recursion theory). We shall see later that it is a very useful
result.

3.1. The first Recursion theorem (Kleene)
Suppose that <P: 3*m -» 3<m is a recursive operator. Then there is a

computable function f& that is the least fixed point of <P\ i.e.
(a) * (/ *)= /* ,
(b) if<P(g) = g, thenU eg.

Hence, if ftp is total, it is the only fixed point of <P.
Proof. We use the continuity and monotonicity of <P to construct the

least fixed point f& as follows. Define a sequence of functions {/„} (n e N)
by

/o -f<z> (the function with empty domain),

/«+i = #(/„).

Then fo = fz>^f\\ and if fn e / n + 1, by monotonicity we have that / n + 1 =
(/ „)£ *(/« +i) =/n+2. Hence fn c / n + 1 for all n. Now let

by which we mean

/ • U) ~ y iff 3/i such that/n(or) = y.

We shall show that f& is a fixed point for <P.
For all. n,

. /*£/•

3 The first Recursion theorem 193

hence

/n + l = *(/n)S *(/*);

thus

/•<=*(/*).

Conversely, suppose that <P(/<j>)(jr)-y; then there is finite O^fa such
that #(0)(JT) - y; take n such that 6 c /n ; then by continuity <P(fn)(x) ~ y.
That is, /n+i(*) - y. Hence /*(*) - y. Thus <£(/*) c /* , and so * (/ •) = / *
as required.

To see that/* is the /easf fixed point of # , suppose that #(g) = g; then
clearly /o = / 0 ^ g , and by induction we see that /„ e g for all n. Hence
f<t> c g, as required. Moreover, if f<p is total, then /$> = g, so /<*> is the only
fixed point of <t>.

Finally we show that f<p is computable. Use theorem 2.1 to obtain a
total computable function h such that for all e

Let e0 be an index for /0 ; define a computable function k by

Then /„ =<t>k{n) for each w; thus

The relation on the right hand side is partially decidable, and hence f<p is
computable. •

Remark. The recursiveness of the operator 0 was used in this proof only
in showing that fa is computable. The first part of the proof shows that
any continuous operator has a least fixed point.

We shall see in the following examples that a recursive operator may
have many fixed points, and that the least fixed point is not necessarily a
total function.

3.2. Examples
1. Let 0 be the recursive operator given by

* (/) (* + l) ~ / (* +2).

Then the least fixed point is I v ; ~~ ' „ ,
if<p(x +1) = undefined.

Other fixed points of * take the form K ' '

10 Effective operations on partial functions 194

2. Recall the definition of the Ackermann function & in example
2-5.5:

The first Recursion theorem gives a neat proof that these equa-
tions do define a unique function <A and that <A is total and
computable. Let <P be the Ackermann operator given in example
1.6(d). The fixed points of 0 are the functions that satisfy the
above equations. Let if/ = f&; then & is a computable function
satisfying these equations, so we have only to show that i// is total.
Clearly, if/(0, y) is defined for all y; if i//(x, y) is defined for all y,
then by induction on y we see that ê (jc +1 , y) is defined for all y.
Hence if/(x, y) is defined for all JC, y; i.e. 0 is total.
Let h(x,y) be a fixed computable function and let <P be the
recursive operator given in exercises 1.7(ld). Then the least
fixed point /# is a computable function satisfying

TO i f*(* , j) = O,
U(x, y)^\ U(x +1 , y) +1 if /I(JC, y) is defined and not 0,

[undefined otherwise.
But what is this rather strange looking function? We can quite
easily check that

as follows. First suppose that ^Z(/I(JC + Z, y) = 0) = m; then
h(x + z, y) is defined and not Ofor all z <m, and /I(JC + m, y) = 0.
Hence

U(x, y) = U(x + 1, y)+ I = ... = f<p(x + z, z y) + (z<m)

Suppose on the other hand that f<p(x,y) = m; then from the
equations this must be because
m =U(x, y)=U(x +1 , y) +1 = . . . =/*(* 4- m, y) + m
and /I(JC + z, y) is defined and not 0 for z < m; then/^U + m,y) =
0, so h(x 4-m, j) = 0. Thus m = /nz(ft(jt + z, y) = 0).

We can infer from this example that the function /#(0, y) —
/j,z(h(z, y) = 0) is computable; of course, there is no use pretending that
we have a new and clever proof of the closure of ^ under the /i-operator,
since we have used this property of ^ implicitly in our proof of the first

3 The first Recursion theorem 195

Recursion theorem. (In Kleene's equation calculus approach (see chapter
3 § 1), however, the first Recursion theorem is proved without the use of
the /x-operator, so closure under the ^-operator is established by this
example.)

We can see from the above examples why the first Recursion theorem is
so called. The general idea of recursion is that of defining a function 'in
terms of itself. A simple instance of this is primitive recursion, discussed
in chapter 2. We have seen more general forms of recursion in the
definitions of Ackerman's function, and the function f<p in example 3.2(3)
above.

We were able to see quite easily in chapter 2 that primitive recursive
definitions are meaningful, but with more complex recursive definitions
this is not so obvious; conceivably there are no functions satisfying the
proposed definition. This is where the first Recursion theorem comes in.
Very general kinds of definition by recursion are represented by an
equation of the form

where <P is a recursive operator. The first Recursion theorem shows that
such a definition is meaningful; there is even a computable function
satisfying it. Since in mathematics we require that definitions define
things uniquely, we can say that the recursive definition (3.3) defines the
least fixed point of the operator <P. Thus, according to the first Recursion
theorem, the class of computable functions is closed under a very general
form of definition by recursion.

3.4. Exercises
1. Find the least fixed point of the following operators:

(a) <*>(/)=/

l / U l / (t , y)) if*>0.
2. (McCarthy) Show t tha the function m(x) given by

if;c<100,
10 otherwise,

is the only fixed point of the recursive operator <P given by

(91
I * -

- 1 0 otherwise.

10 Effective operations on partial functions 196

3. Suppose that <P and #" are recursive operators f i X ^ ^ 9 \ (in
the sense you have defined in exercise 1.7(5)). Show that there is
a least pair of functions /, g such that
/=<*>(/, g)

and /, g are computable.
4. Suppose that <P\2Fn x&m-+&n is a recursive operator (in the

sense you have defined in exercise 1.7(5)). For each ge&m let
&g:&n-+ SFn be the operator given by <Pg(f) = <P(f, g).
Show that the operator #"(g) = least fixed point of <Pg is a
recursive operator 3*m -* &n.

4. An application to the semantics of programming languages
We shall see in this section how the first Recursion theorem helps

to resolve a problem in the semantics of computer programming
languages - the area that deals with the question of giving meaning to
programs. Our discussion is necessarily given in terms of a general and
unspecified programming language, but this is adequate to explain the
basic idea.

Suppose, then, that L is a general programming language. The basic
symbols of L will have been chosen with a particular meaning in mind, so
that the meaning of compound expressions built from them is also clear.
We may then envisage a simple program for a function as follows.
Suppose that r(x) is an expression of L such that whenever the variables x
are given particular e values a, then r(a) can b unambiguously evaluated
according to the semantics of L. If we now take a function symbol f of L
that does not occur in T, then
(4.1) / (*) = T(JC)

is a simple program for a function /„ that has the obvious meaning: for any
numbers a, fT(a) is obtained by evaluating the expression r(a) according
to the semantics of L.

Suppose now that r is an expression in which the symbol f does occur.
We indicate this by writing r(/, x). Then the program (4.1) becomes

This is now what is called a recursive program. Situations occur where this
is the most natural and economical way to describe a function that we may
desire the computer to compute. Yet the meaning of the 'program' (4.2) is
not entirely clear. The fundamental problem with any recursive program

4 An application to programming languages 197

is: how do we give it a precise meaning? It can hardly be called a program
until this question is settled.

There are basically two approaches that provide an answer to this
question:

(a) The computational approach. Here the function taken to be
defined by a recursive program is given in terms of a method of
computing it. This approach reflects the fact that the computer
scientist needs to know not only what a program means, but also
how to implement it.
(b) The fixed point approach gives a meaning to a recursive
program by an e application of the first Recursion theorem. Th
fixed point theory also resolves some problems raised by the
computational approach, and actually shows that the two
approaches may be viewed as complementary rather than
competing.

Let us now briefly explain these two approaches and see how first
Recursion theorem enters the picture.

The computational approach This is best described by giving some
examples. Consider the recursive program

if JC>0.

(We are assuming that in L we can formulate conditional expressions such
as e this.) Using the equation (4.3) we can formally evaluate the valu /(3),
for instance, as follows:

/ (3) - 2 x / (2) - 2 x 2 x / (l) - 2 x 2 x 2 x / (0) - 8 ;
here we have made successive substitutions and simplifications using the
formal equation (4.3). Hence if fT is the function deemed to be given by
the program (4.3) we would have /T(3) = 8.

With more complicated recursive programs there may be more than
one way to use the formal equation f(x) - r(/, JC) in such an evaluation
procedure. Consider, for instance, the recursive program

if JC = 0,
(4.4) JWJi]r/ , , ^ y)) {tx>0

Suppose that we try formally to evaluate /(I, 0). We have
(4.5) / (l ,0)- /(0, /(l ,0)) .
But now there is a choice of occurrences of / for which to substitute

10 Effective operations on partial functions 198

r(/, JT). Choosing the leftmost one and simplifying we have
/(I, 0) ~/(0, /(I, 0)) = 1 (since x = 0).

If, on the other hand, we substitute for the rightmost occurrence of / each
time, we obtain from (4.5)

and in this case no 'value' for /(I,0) emerges.
A computation rule is a rule R that specifies how to proceed when

confronted with such a choice of possible substitutions during any formal
evaluation procedure. The computational rules we considered for the
recursive program (4.4) were 'leftmost' (LM) and 'rightmost' (RM).
There are many other possible rules. For any computation rule R, and
recursive program f(x) = r(/, x) we define the function fTtR by: /T,/?(fl) is
the value obtained when f(a) is formally evaluated using the rule R. If no
value is thus obtained, /T,J?(<I) *s undefined. (Thus for the recursive
program (4.4) we have /T,LM(1, 0) = 1, and /T,RM(1, 0) is undefined.)

So we see that each computation rule gives a meaning to any recursive
program (and, at the same time, a method of implementing it).

The above example demonstrates that different computation rules may
give different meanings to any particular recursive program. The problem
now for the computer scientist who chooses this computational approach
is to decide which computation rule to choose. Moreover, for any rule R9
there is the question of determining in what sense, if any, the function fTfR
satisfies the equation

The fixed point approach, using the first Recursion theorem, avoids
these problems, and in fact sheds light on both of them, as we shall see.

The fixed point approach An expression r(/, x) of L gives rise to an
operator <t>\ 3Fn -* &n by setting

&(g)(x)-r(g,x)
for any g e 3<n. Moreover, in most programming languages the finite and
explicit nature of the expression r(f,x) ensures that <P is a recursive
operator. The first Recursion theorem now tells us that 4> has a compu-
table least fixed point, which we may denote by fT. Thus we may define
the function given by the program (4.2) as /T. This is quite reasonable,
because fT is computable, and moreover we know that /,-(*) —r(/T, x),
which is surely what the programmer intended.

4 An application to programming languages 199

There remains the matter of finding good practical procedures for
implementing the program (4.2) with its meaning defined in this way. It
can be shown that for any computation rule R, fTtR c /T; further, there are
computation rules R for which fTtR = fr for all r. Any one of these may be
chosen as a practical way of implementing recursive programs. Then we
can say that the computational and fixed point approaches are comple-
mentary rather than opposed to each other: the fixed point approach, via
the first Recursion theorem, gives theoretical justification for the parti-
cular computation rule chosen.

There are further advantages in adopting the fixed point approach (or a
computation rule equivalent to it): there is a variety of useful induction
techniques for proving correctness, equivalence, and other properties of
recursive programs with fixed point semantics, and these can all be
rigorously justified.

For a full discussion of this whole topic the reader is referred to the
books of Bird [1976] and Manna [1974]. Here we have slightly simplified
the framework within which the computer scientist works; in fact the
fixed point fT he chooses is least in a slightly different sense (but still given
by a version of the first Recursion theorem).

11
The second Recursion theorem

The first Recursion theorem, together with the Myhill-Shepherdson
theorem in the previous chapter, shows that for any extensional total
computable function / there is a number n such that

<f>f(n) = <f>n-
The second Recursion theorem says that there is such an n even when / is
not extensional: we shall prove this in § 1 of this chapter.

This theorem (and its proof) may seem a little strange at first. Never-
theless it plays an important role in more advanced parts of the theory of
computability. We shall use it in the promised proof of Myhill's theorem
(theorem 9-3.5) and in the proof of the Speed-up theorem in the next
chapter.

In § 1, after proving the simplest version of the second Recursion
theorem, we describe some applications and interpretations of it; § 2 is
devoted to a discussion of the idea underlying the proof of the theorem,
and other matters, including the relationship between the two Recursion
theorems. A more general version of the second Recursion theorem is
proved in § 3, and is used to give the proof of Myhill's theorem.

1. The second Recursion theorem
First let us prove the theorem, and then see how we can under-

stand it.

1.1. Theorem (The second Recursion theorem)
Let f be a total unary computable function; then there is a number n

such that

Proof. By the s-m-n theorem there is a total computable function s{x)
such that for all x

1 The second Recursion theorem 201

(If <t>x(x) is undefined, we mean the expression on the left of (*) to be
undefined; alternatively, we can take the left of (*) to denote

Now take any m such that s = <bm; rewriting (*) we have

Then, putting x = m and taking n = <f>m(m) (which is defined, since <f>m is
total) we have

<f>f(niy)-4>n(y)
as required. •

In spite of its appearance, for non-extensional functions / this is not a
genuine fixed-point theorem: there is no induced mapping <f>x -* </>f(x) of
computable functions for which <t>n could be called a fixed point.
However, we do have an induced mapping /* of programs given by

To expect a fixed point for /* in general would be too much: this would be
a program Pn such that /*(Pn) and Pn are the same; i.e. /(n) = n. But what
theorem 1.1 says is that there is a program Pn such that/*(P n) and Pn have
the same effect (when computing unary functions); i.e. <f>f(n) = <j>n. Thus the
second Recursion theorem is loosely called a pseudo-fixed point theorem;
and for convenience, any number n such that <f>fin) = <f>n is called a fixed
point or /Jjted pomf value for /.

The second Recursion theorem is a result about indices for computable
functions; it may be thought therefore that the proof rests on some special
feature of the particular numbering of programs that has been chosen.
Inspection of the proof shows, however, that we used only the s-m-n
theorem and the computability of the universal function; neither of these
results depends in any essential way on the details of our numbering.
Moreover, theorem 1.1 can be used to establish the second Recursion
theorem corresponding to any suitable numbering of programs; see
exercise 1.10(9) below.

There are various ways in which theorem 1.1 can be generalised,
although the idea underlying the proof remains the same. In exercise
1.10(7) we have the generalisation to fc-ary functions for k>l; in
theorem 3.1 it is shown that a fixed point can be calculated effectively
from various parameters that may be connected with /.

We continue this section with some corollaries and applications of the
second Recursion theorem.

11 The second Recursion theorem 202

1.2. Corollary

If f is a total number computable function, there is a n such that

W/(n) = Wn and Ef{n) = En.

Proof. If </>/(n) = <t>n, then Wf{n) = Wn and Ef{n) = En. D

1.3. Corollary
If f is a total computable function there are arbitrarily large

numbers n such that <£/•<„)= <t>n-
Proof Pick any number k; take a number c such that

Define a function g by

{ c if x ^ k

Then g is computable; let « be a fixed point for g. If n<k, then
<£g(n) = <t>c ^ <f>n, a contradiction. Hence n > k, so /(rc) = g(«) and n is a
fixed point for /. •

(In exercise 1.10(8) we shall indicate how the proof of theorem 1.1 can
be modified to obtain an increasing effective enumeration of fixed points
for/.)

The following corollary summarises the way that the second Recursion
theorem is often applied, in conjunction with the s-m-n theorem.

1.4. Corollary
Let f(xy y) be any computable function; then there is an index e

such that

<t>e(y)=f(e,y).
Proof Use the s-m-n theorem to obtain a total computable function s

such that <f>s(X)(y)—f(x, y); now apply theorem 1.1, taking e as a fixed
point for s. D

As simple applications of this corollary, we have

1.5. Examples
(a) There is a number n such that <f>n(x) = xn, all x: apply
corollary 1.4 with /(m, x) = xm;

1 The second Recursion theorem 203

(b) there is a number n such that Wn ={n}: apply corollary 1.4
with

x) J
lundefined otherwise,

obtaining an index n such that <j>n{y) is defined iff y = n.

The d secon Recursion theorem received its name because, like the first
Recursion theorem, it justifies certain very general definitions 'by recur-
sion'. Consider, for example, the following 'definition' of a function </>e, in
terms of a given total computable function /:

<f>e = <t>f(e)>
The function <f>€ is 'defined' effectively in terms of an algorithm for
computing itself (coded by the number e). In spite of its appearance as a
circular definition, we are told by the second Recursion theorem that
there are computable functions <f>e satisfying such a definition.

It is often useful in advanced computability theory to be able to make
an even more general definition of a function <f>e 'by recursion' of the kind

<f>e(x) ~ g(e, x),

where g is a given total computable function. Again, think of <f>e as
'defined' effectively in terms of a code for its own algorithm. Then the
second Recursion theorem, in the guise of corollary 1.4, makes.this kind
of definition meaningful also. We shall use this fact in the Speed-up
theorem in the next chapter.

We continue this section with some further straightforward, but some-
times surprising, consequences of theorem 1.1. First, we show how it can
be used to give a simple proof of Rice's theorem (6-1.7).

1.6. Theorem (Rice).
Suppose that 0 c si ci <£u and let A = {x: <f>x e si}. Then A is not

recursive.
Proof. Let aeA and b£ A. If A is recursive, then the function / given

by
fa ifx£A,
\b i f x e A ,

is computable. Further, / has the property that x e A <=> f(x) & A, for all x.
On the other hand, by theorem 1.1, there is a number n such that

4>nn) = 4>n, so f(n) € A <=> n e A, a contradiction. •

11 The second Recursion theorem 204

Another application of the second Recursion theorem shows, as prom-
ised in chapter 4 § 2, that the 'natural' enumeration of computable
functions without repetitions is not computable.

1.7. Theorem
Suppose that f is a total increasing function such that
(a) ifm^n, then <f>f(m) * <t>nnh
(b) f(n) is the least index of the function <£/(„>.

Then f is not computable.
Proof. Suppose that / satisfies the conditions of the theorem. By (a), /

cannot be the identity function, so there must be a number k such that
f(n)>n (n>k\

whence, by (b)
<f>nn)^4>n (n>fc) .

On the other hand, if / is computable, then by corollary 1.3 there is a
number n > k such that <f>fin) = <£„, a contradiction. D

Applications of the second Recursion theorem such as the following
can be interpreted in anthropomorphic terms.

Let P be a program. We can regard the code number y(P) as a
description of P. We could regard the program P as capable of self-
reproduction if for all inputs x the computation P(x) gave as output its
own description, y(P). At first glance, it would seem difficult to construct
a self-reproducing program P, since to construct P we would need to
know y(P), and hence P itself, in advance. Nevertheless, the second
Recursion theorem shows that there are such programs.

1.8. Theorem
There is a program P such that for all x, P(x)iy(P)\ i.e. P is

self-reproducing.
Proof. If we write n for y(P), the theorem says that there is a number n

such that
<f>n{x) = n (for all JC).

To establish this, simply apply corollary 1.4 to the function /(m, JC) =
m. •

We turn now to psychology! Recall the notation and terminology of
chapter 5. There we defined a total computable function a(e, x, t) that

1 The second Recursion theorem 205

codes the state of the computation Pe(x) after t steps; a{e, x, t) contains
information about the contents of the registers and the number of the
next instruction to be obeyed at stage t. It is clear, then, that complete
details of the first t steps of the computation Pe(x) are encoded by the
number

Let us call the number cr*(e, x, t) the code of the computation Pe(x) to t
steps. Clearly <r* is computable.

Suppose now that we are given a total computable function i// and a
program P. By the ^-analysis of the computation P(x) we mean the code
of the computation P(x) to </>(*) steps. We call a program P ^-intro-
spective at x if P(x) converges and gives as output its own (^-analysis;
we call P totally (//-introspective if it is (^-introspective at all x.

1.9. Theorem
There is a program P that is totally \\t-introspective.

Proof. Simply apply corollary 1.4 to the computable function f{e, x) =
cr*(e, x, <AU)), obtaining a number n such that

<t>n (x) = /(n, x) = the (/^analysis of Pn {x). •

We close this section with a tale in which the second Recursion theorem
appears in military dress.

'We are at war. An operation is mounted to sabotage the enemy's
central computer facility. Our special agents have penetrated the enemy
defences and found a means of entry to the high security building that
houses all the programs

Po, P\, P2» • • •
for the central computer. The mission will be accomplished if our agents
can systematically sabotage all of these programs, ensuring that
subsequently no program will operate as the enemy thinks it will. Simply
to destroy the programs is not sufficient: the enemy would soon discover
this d an set about rewriting them. What is needed is a subtle alteration to
each program, so that, unknown to the enemy, the computer will give
wrong results. Swiftly and silently our men move into action . ..

Alas, defeat at the hands of the second Recursion theorem! Whatever
systematic plan is devised to modify the programs, it will define an
effectively computable function / by

f(x) = the code of the modification of Px.

11 The second Recursion theorem 206

The second Recursion theorem springs into action, producing a number n
such that Pn and its transform P/(n) have the same effect (on unary inputs,
at least). The operation was bound to fail.

(Sometime later, back at HQ, our master strategists consider recruiting
a chimpanzee whose mission is to alter the programs in random
fashion . . .) '

1.10. Exercises
1. Show that there is a number n such that <f>n(x) = [$x].
2. Show that there is a number n such that Wn = En = nN.
3. Show that there is a number e such that 4>e(x) = e2 for all x.
4. Is there a number n such that Wn = {x:<f>n(x)\}?
5. Suppose that si c <gu and let A = {x: <f>x e si}. Show that A ^ m A.

Deduce theorem 1.6.
6. Give an example of a total computable function / such that (i) if

<f>x is total, then so is 4>nxh 00 there is no fixed point n for / with
<f>n total.

7. Prove the second Recursion theorem for fc-ary computable
functions: if / is a total computable function there is a number n
such that

<P/(n) — <Pn •
8. Show that theorem 1.1 may be improved to: For any total

computable function /, there is an increasing recursive function
n(t) such that for every f, <£n(r) = 4>nmt))' (Hint. Examine the
proof of theorem 1.1; note first that from our proof of the s-m-n
theorem we have s(x) > x for all x (or else show that by adding
some redundant instructions to the end of P5{x) an equally
suitable computable function s'(x) can be found, with s'(x) > x).
Now observe that given any number k we can effectively find an
index m for s(x) with m>k. Then, following the proof of
theorem 1.1, we have that n =s(m) is a fixed point for /, and
n=s{m)>m>k. It is now a simple matter to construct a
function n(t) as required.)

9. Prove that the second Recursion theorem does not depend on
the particular effective numbering of programs that is chosen.
(Hint. Let 8 be another effective numbering of programs; let
Qm = program given code number m by 8; let tf/m = the unary
function computed by Qm. We have to prove that for any total
computable function / there is a number n such that i//f(n) = &n.

2 Discussion 207

For this, show that there is a computable bijection r such that
Px = Qnxh then show that it is sufficient to establish that there is a
number m such that <f>r-lfr{m) = <t>m-)

10. Suppose that in the tale just before these exercises, our special
agents find that the enemy's computer operators have become
extremely sophisticated - they have only one program, a uni-
versal program. Can our men now completely accomplish their
task?

11. Could a chimpanzee succeed where the special agents failed? (A
philosophical problem.)

2. Discussion
The second Recursion theorem and its proof may seem a little

mysterious at first. We shall see, however, that it is essentially a simple
diagonal argument applied to effective enumerations of computable
functions.

Suppose that h is a computable function. If h is total, then the
enumeration E given by

E'-<t>WQh <f>h(lh <f>h(2h • • -

is an effective enumeration of computable functions. If h is not total, we
can still regard h as enumerating a sequence of computable functions E
by adopting the convention that for any x the expression <f>h(X) denotes the
function given by

_ (<t>h(X)(y) ifh(x) is defined,
{undefined if h (x) is undefined.

Thus, if h(x) is undefined, 4>hix) is the function that is nowhere defined.
The following lemma shows that the sequence E thus enumerated by h

is an effective enumeration even when h is not total.

2.1. Lemma
Suppose that h is a computable function. There is a total compu-

table function h' such that h and h' enumerate the same sequence of
computable functions.

Proof. The s-m-n theorem gives a total h' such that
<^' (x)(y)-<MM*),y). •

We can now explain the idea underlying the proof of the Recursion
theorem. For any k, let us denote by Ek the sequence of computable

11 The second Recursion theorem 208

functions effectively enumerated by <t>k\ then the list E0,Ei,E2i...
includes all possible effective enumerations of computable functions. We
can display the details of these enumerations as follows (ignore the
circles):

E 0 \ Qfr<t>o(o7) <t>4>0(\) <t><t>o(2) • • • <t><t>o(k)

^2(1) C^to^W * * * ^*2(k)

Then the diagonal enumeration, D, circled on this array, is given by

D : <t><t>0(0), < £ < M I) » <f><t>2(2h • • •
Thus D is an effective enumeration, given by the computable function
h(x) — <f>x(x). Moreover, D has an entry in common with each effective
enumeration E\ in fact, for each fc, D and Ek have their (k 4- l)th entry
<f><t>k(k) in c o m m o n .

Suppose now that / is a total computable function. Then we can
'operate' on D to give an enumeration D* given by

^ * : <f>f(4>o(0)h <f>f(<t>i(l)h <f>f(<t>2(2))> • • •

Now Z>* is an effective enumeration of computable functions (given by
f(h (*))) so there is a number m such that D* = Em. By lemma 2.1 we may
assume that <f>m is total. As noted above, D and Em have their (m + l)th
entry in common, i.e.

Since <f>m is total, the number <f>m(m) = n, say, is defined, and

<t>n = <f>f{n)-

The argument is simply illustrated as follows:
D:

Eo:
E,:

<t>f«t>2(2)) • • • <f>fi<f>m(m)) -<f><t>m(m)

So n = <f>m(m) is a fixed point.
Note. This proof can be rephrased to appear similar to standard diagonal
arguments as follows. Suppose that / is a total function such that <t>fin) ^ <f>n

2 Discussion 209

for all n: then using / on the diagonal enumeration D, the enumeration
D* is constructed so as to differ from Ek at k (fulfilling the requirements
of the diagonal motto). Hence Z>* is not an effective enumeration, so /
cannot be computable.

The second Recursion theorem can thus be viewed as a generalisation
of many earlier diagonal arguments. To illustrate this, we show how to use
the second Recursion theorem to prove that K is not recursive, one of the
fundamental diagonal arguments.

2.2. Theorem
K is not recursive.

Proof. Let a, b be indices such that Wa = 0 and Wb = M. If K is
recursive, then the function g defined by

\a iixeK,
\b iix£K,

is computable. Notice that g has the property that for all x

(since x e Wg(x) <=> Wg{x) = N <=> g(x) = b <2> x£ Wx). This is in contra-
diction to the second Recursion theorem. •

Remark. We have, of course, used a sledge hammer to crack a nut. The
point about this proof is that all diagonalisation is hidden inside the
application of the Second Recursion theorem. We are not suggesting that
the earlier proof should be replaced by this one.

The relationship between the two Recursion theorems Suppose that
0:3Fi^>3Fi is a recursive operator, and that h is a total computable
function such that <P{<t>x) = <f>h(X) for all x (as given by the Myhill-
Shepherdson theorem). If n is a fixed point for h, then <t>h(n) = <t>n, i.e.
<P(<t>n) = <t>n> Thus the second Recursion theorem tells us (as does the first
theorem) that <£has a computable fixed point; it does not tell us, however,
that 0 has a computable least fixed point. So, for recursive operators the
first Recursion theorem gives us more information.

On the other hand, the second Recursion theorem applies to non-
extensional computable functions as well; i.e. functions that do not arise
from recursive operators. Thus the second theorem has a wider range of
application than the first theorem, although in the area of overlap it
generally gives less information. Thus, these two theorems are best
regarded as complementary, although a case is made by Rogers [1967]
for the l view that the second theorem is the more genera of the two.

11 The second Recursion theorem 210

3. Myhill's theorem
Let us now formulate and prove the generalisation of theorem

1.1 needed for Myhill's theorem. Suppose we have a total computable
function /(*, z); theorem 1.1 shows that for any particular value of the
parameters z there is a number n such that <£/(«,*> = <f>n- We now show that
n can be obtained effectively from z.

3.1. Theorem (The second Recursion theorem)
Suppose that fix, z) is a total computable function. There is a total

computable function n(z) such that for all z
<f>f(n(z),z) = <t>n(z)-

Proof We simply introduce the parameter at appropriate points in the
proof of theorem 1.1.

By the s-m-n theorem there is a total computable function s(x, z) such
that

Then, again by using the s-m-n theorem, there is a total computable
function m(z) such that s(x, z) = <£m(r)0c). Rewriting (*) we have

<t> f(4x(x),z) =4>4mia)(x)-
Then, putting x = m(z) and setting n(z) = <£m(z)(m(z)) we have

<t>f(n(z),z) =<f>n(z)-
as required. •

We proceed immediately with the proof of Myhill's theorem (theorem
9-3.5).

3.2. MyhilVs theorem
Any creative set is m-complete.

Proof Suppose that A is creative and B is r.e.; we must prove that

Let p be a productive function for A. Define a function /(JC, y, z) by
if z = p(*)andy eB,

I undefined otherwise.
Then / is computable, so by the s-m-n theorem there is a total compu-
table function s(x, y) such that

3 MyhilVs theorem 211

Then, in particular

10 otherwise.
By the second Recursion theorem (theorem 3.1) there is a total compu-
table function n(y) such that

for all y. Thus, for all y

w [{p(n[y))} ityeB,
M(y) 1 0 otherwise.

We claim now that

(**) y e £ iff p(n(y))eA.
(a) Suppose that yeB; then Wn(y) = {p(n(y))}. If p(n(y))4A,
then ^ (y) C A , so by the productive property of p,
p(n(y))£ Wn(y). This is a contradiction. Hence p(n(y))e A.
(b) Suppose that ygB; then Wniy) = 0 c A . B y the productive
property of p, p(w (y)) e A.

The claim (**) is thus established, so B < m A since p(rc(y)) is compu-
table. D

3.3. Corollary
The m-degree Om consists of all creative sets.

3.4. Exercises
1. Prove the following generalisation of theorem 3.1: For any

number k there is a total computable function n(e, z) (where
z = (z i , . . . , Zfc)) with the following property: if z is such that
4>l

e
k+1)(x9 z) is defined for all JC, then

(Hint. This can in fact be derived as a corollary to theorem 3.1.)
2. Formulate and prove the result that improves theorem 3.1 in the

same way that exercise 1.10(8) improves theorem 1.1.

12
Complexity of computation

In the real world of computing, the critical question about a function / is
not Is / computable?, but rather Is / computable in practical terms? In
other words, Is there a program for / that will compute / in the time (or
space) we have available? The answer depends partly on our skill in
writing programs and the sophistication of our computers; but intuitively
we feel that there is an additional factor which can be described as the
'intrinsic complexity' of the function / itself. The theory of computational
complexity, which we introduce in this chapter, has been developed in
order to be able to discuss such questions and to aid the study of the more
practical aspects of computability.

Using the URM approach, we can measure the time taken to compute
each value of a function / by a particular program, on the assumption that
each step of a URM computation is performed in unit time. The time of
computation thus defined is an example of a computational complexity
measure that reflects the complexity or efficiency of the program being
used. (Later we shall mention other complexity measures.)

With a notion of complexity of computation made precise, it is possible
to pursue questions such as How intrinsically complex is a computable
function /? and Is it possible to find a 'best' program for computing /?

The theory of computational complexity is a relatively new field of
research; we shall present a small sample of results that have a bearing on
the questions raised above. At the end of the chapter we shall provide
suggestions for the reader wishing to pursue c this topi further.

We begin in § 1 by defining some notation; after some discussion we
proceed to show that there are arbitrarily complex computable functions.
Section 2 is devoted to the surprising and curious Speed-up theorem of
M. Blum, which shows in particular that there are computable functions
having no 'best' program. In § 3 we introduce the idea of complexity
classes and prove Borodin's Gap theorem; in the final section we show
how we can use complexity classes to give a pleasant characterisation of

1 Complexity measures 213

the elementary functions - an important subclass of the primitive recur-
sive functions.

1. Complexity and complexity measures
We begin by establishing some notation.

1.1. Notation
(a) For any program P, we write t{p) fof the function given by

f the number of steps taken
t(p\x)=< by P to compute fp\x), YLf$\x) is defined,

I undefined otherwise,
= fit(P(x)i in t steps).

(b) For any index e we write t(
e
n\x) for t{£{x). We shall write tP

for tpl) and te for t(
e
l) as is customary.

The collection of time functions t(
e
n) constitutes an example of a

computational complexity measure. Some simple but important properties
of these functions are given in the following lemma.

1.2. Lemma
(a) Dom(rln)) = Dom(<^n)), all n, e.
(b) For each n the predicate M(e, x, y) defined by M(ef xt y) =
t{

e
n) (x) = y is decidable.

Proof, (a) is obvious; (b) follows from corollary 5-1.3(ft). •

Remark. The property (b) is used frequently in complexity theory; it
stands in marked contrast to the fact that <t>{

e
n)(x)~y is an undecidable

predicate.
Often in complexity theory a property holds for all sufficiently large

numbers n, though not necessarily for all n. Thus we make the following
definition.

1.3. Definition
A predicate M(n) holds for almost all n, or almost everywhere

(a.e.) if M(n) holds for all but finitely many natural numbers n (or,
equivalently, if there is a number n0 such that M(n) holds whenever
n >n0) .

We can now state our first theorem, which shows that there are
arbitrarily complex computable functions.

12 Complexity of computation 214

1.4. Theorem
Let b be a total total computable function. There is a computable

function /, taking only the values 0 ,1 , such that if e is any index for /, then

te(n)>b(n)a.e.

Proof The reader should not be surprised to find that / is obtained by a
diagonal construction. The essence of the construction is to ensure that if
ti(m)<b(m) for infinitely many values m, then / differs from <f>(at one of
those values. We define / by recursion as follows.

At each stage n in the construction of / we shall either define an index
/„, or decide in a finite amount of time that in is to be undefined. We then
ensure that f(n) differs from 4>in (n) if /„ is defined. In detail, assuming that
/ (0) , . . . , f(n - 1) have been thus defined, we put

(/xi[i ^ n and / differs from all previously
in = < defined ik and u{n) < b(n)] if such an / exists,

[undefined otherwise.

1 if in is defined and <f>in (n) = 0,
0 otherwise.

There is a finite procedure that tells us for a given i whether ft(/t)<
b(n), since

and the right hand side is decidable by lemma 1.2(6). Hence there is an
effective procedure to decide whether /„ is defined, and if so, to find its
value. Moreover, if in is defined, then so is (f>tn(n). Hence / is a well-
defined total computable function.

Suppose now that / - <t>e; by construction e # /„ whenever in is defined.
We shall show that if / is any index such that ti{m)<b(m) for infinitely
many m, then / = /„ for some n, and hence / -^ e. This is sufficient to show
that te(m)>b(m) for almost all m.

Suppose then that U{m)<b{m) for infinitely many m. Let p =
1 4- max{fc: ik is defined and ik < i) (put p = 0 if there are no defined ik < i).
Choose n such that n>i,p and tt(n) < b(n). If / = ik for some k < n9 there
is nothing further to prove. Assuming then that / 5* ik for all k < n, we
have at stage n :

/ < n and / differs from all previously defined ik and ti(n)< b(n).
Thus, from the definition of /„, /„ is defined and /„ ^ /. But since n^p, we
must have in > i. Hence /„ = /, as required. D

1 Complexity measures 215

We cannot in general improve this theorem to obtain the conclusion
te(n)>b(n) for all n\ this is because for any / we can always write a
program that computes / quickly for some particular value a, simply by
specifying the value of f(a) in a preface to the program. For example,
suppose that /(a) = 1; let F be a program that computes /. Then the
program F' based on the flow diagram in fig. 12a also computes/. Clearly
we have tp-{a) = a +3. Thus, if b is a computable function such that
b{x) > x + 3 for some JC, then we cannot obtain the conclusion of theorem
1.4 with te(n)>b(n) for alln.

Using a similar idea we can write a program that computes / quickly for
any given finite number of values: see exercise 1.8(1) below. This shows
that te(n)>b(n) a.e. is the best possible conclusion in theorem 1.4.

Other computational complexity measures There are many other
natural ways to measure the complexity of a computation, of which the
following are a few examples. For simplicity we restrict our discussion to
unary computations.

Fig. 12fl.

START

STOP

12 Complexity of computation 216

1.5. Examples
1. (number of jumps made1 in executing Pe(x),

<Pe(x)=\ ifftUU,
I undefined otherwise.

This measure is closely associated with the number of loops
performed when executing Pe(x), which is in turn related to the
time of computation te(x).

the maximum number held in any of the registers
at any time during the computation Pe(x)

undefined otherwise.
This measure obviously relates to the amount of storage space
needed to carry out the computation Pe(x) on a real computer.

3. With the Turing machine approach, two natural complexity
measures are (i) the number of steps needed to perform a Turing
computation and (ii) the amount of tape used to perform a
computation.

In general, an abstract computational complexity measure (for unary
computations) is defined to be any collection of functions <Pe having the
abstract properties that were given by lemma 1.2 for te.

1.6. Definition
A computational complexity measure is a collection of functions

<Pe with the following properties:
(a) Dom($ e) = Dom((/>e), for all e\
(b) The predicate l<Pe(x) =-y' is decidable.

1.7. Lemma
The functions given in examples 1.5 above are computational

complexity measures.
Proof. We give sketch proofs for the examples 1.5(1) and 1.5(2),

leaving 1.5(3) as an exercise (1.8(3) below). In each case it is only part (b)
of definition 1.6 that requires any thought.

(1) To decide 4#e(jc) == y \ where <Pe(x) = number of jumps made
during Pe(x). Suppose that Pe has s instructions; then at most s

1 We mean here that if a jump instruction J(m, n, p) is encountered, then a jump (to
Ip) is made if rm = rn; but not otherwise.

1 Complexity measures 217

consecutive steps of Pe(x) can be performed without making a
jump. So run Pe(x) for up to 1 + (y + l)s steps. If Pe(x) stops in
fewer than this number of steps, then count the number of jumps
made to see if it is y. Otherwise (i.e. if Pe(x) has not stopped after
1 + (y +1)$ steps) Pe(x) will have performed at least y +1 jumps,
so we conclude that (pe(x)^ y.
(2) To decide '<Pe{x) — y', where <Pe(x) = maximum number held
in any register during Pe(x). Let u=p(Pe), and consider all
possible non-halting states under the program Pe with
r i , . . . , ru < y. There are s(y + l)w such states that are distinct.
Run jPe(jc) for up to 1 + s(y + 1)M steps. If /*.(*) stops after this
number of steps or fewer, then find the maximum number that
has occurred in any of the registers and see if it is y. Otherwise (if
Pe(x) has not stopped) one of two possibilities will have occurred:
(i) the computation has been in the same state on two separate
occasions, so Pe(x) is in a loop and <Pe(x) is undefined; (ii) there
has been no repetition of states, in which case some register has
contained a number greater than y. In both cases we conclude

e(jc)5*y. •

Note that in proving theorem 1.4 we used only the properties of te given
by lemma 1.2. Thus theorem 1.4 holds for any computational complexity
measure. There are many other results in complexity theory which do not
depend on any particular measure of complexity. Such results are said to
be machine independent. The Speed-up theorem of the next section and
the Gap theorem of § 3 are further examples of such results.

1.8. Exercises
1. Let / be a total computable function that takes only the values

0, 1. Show that for any m there is a program F for / such that
tF(x)<2x + 3 for all x<m. Deduce that if b is a computable
function such that b(x) > 2x + 3, then the restriction to almost all
n in theorem 1.4 cannot be improved.

2. Let <Pe be the complexity measure given in example 1.5(2). Show
that whenever <f>e(x) is defined, then 4>e(x)^max0t, <f>e(x)).

Let / be any total computable function, and let X be a finite
subset of Dom(/). Prove that there is a program Pe for / that is
the best possible on X (for this measure); i.e. <Pe(x) =
max(x, <f>e(x)) for xeX.

12 Complexity of computation 218

3. For the complexity measures given in example 1.5(3), verify
lemma 1.6, expressed in the following terms. For any Turing
machine M, let fM be the unary function computed by M. Then
show that
(a) Dom(<PM) = Dom(fM),
(b) 4 # M U) — y' is decidable
(i) when

[the number of steps taken in computing/MU)
(PM(X) = < using M, itfM(x) is defined,

[undefined otherwise,
(ii) when

f the length of tape actually used2 in the
&M(X) = J computation of fM(x) by M, iifM(x) is defined,

(undefined otherv/ise.
4. Suppose that <Pe(x) and ¥e(x) are two abstract computational

complexity measures. Show that <Pe and tye are recursively related
in the following sense: there is a recursive function r such that for
any e

for almost all n for which &e(n) and tye(n) are defined. (Hint.
Consider the function r defined by r(n, m) = max{<Pe(n), Ve(n)\
e<n and <Pe{n) = m or Ve{n) = m}.)

Show further that if <Pe(n), Ve(n)>n whenever defined, there
is a recursive function r such that ^(n)^r (0 e(«)) and * e(/i)<
r{Ve{n)) whenever <Pe(n) and }P€ (n) are defined.

2. The Speed-up theorem
Suppose that P and Q are programs for computing a total

function /, such that for any x
2tQ(x)<tP(x).

We would naturally say that Q is more than twice as fast as P. One
instance of the Speed-up theorem tells us that there is a total function /
with the following property: if P is any program for /, then there is
another program for / that is more than twice as fast on almost all inputs.
Thus, in particular, there can be no best program for computing /.

2 We say that a square on the tape is used if it is scanned during the computation or
lies between the outermost non-blank squares on the initial tape (including these
outermost squares).

2 The Speed-up theorem 219

The Speed-up theorem will give speed-up by any preassigned
(computable) factor: the example above represents speed-up by a factor
of 2, given by the computable function r(jc) = 2jc. The proof of this
theorem is probably the most e difficult in this book. First we prov a
pseudo-speed-up theorem, which contains most of the work. The Speed-
up theorem then follows quite easily.

2.1, The pseudo-Speed-up theorem (Blum)
Let r be a total computable function. There is a total computable

function f such that given any program Pi for f, we can find a P} with the
properties

(a) <f>j is total and (f>j(x)=f(x) a.e.,
(b) r(ti(x))<ti(x)a.e.

(Note. This is pseudo-speed-up in that we do not necessarily have
<f>j(x)=f(x) for all x, as will be the case in the Speed-up theorem.)

Proof. First we must fix a particular total computable function s given
by the s-m-n theorem, such that <£(

e
2)(w, x)~<t>S(e>u)(x).

We shall find a particular index e such that 4>™ is total and has the
following properties, where we write gu for the function given by gu(x) =

(#) go = /, the function required in the statement of the theorem,
(b) for any u, gu(x) = go(x) a.e.,
(c) if / = <f>i then there is an index / for gi+i such that r(tj(x))<
ti(x) a.e.; in fact we can take/ = s(e, z + 1).

Clearly this is sufficient to prove the theorem.
For the moment think of e as arbitrary but fixed. Thinking of u as a

parameter, we shall define a computable function g(w, *), which will also
depend implicitly on e in an effective way. For a particular e which will be
chosen later, g will be the function <£(*2) above. The definition of g is by
recursion on x, with u fixed, as follows.

For any x, g(w, x) is defined only if g(w, 0) , . . . , g(w, x - 1) have all been
defined, and in the process some finite sets of cancelled indices
C*,o> Cu , i , . . . , CUtX-i have been defined. Suppose that this is the case.
Now set

: M < / <Jt, /£ U C",y a n d *i(*) — r(ts(e.i + l)(x))}

if f*<e.i+nU) is defined for u < i < x,
. undefined otherwise.

(Of course, if x < u then CUtX = 0 and is defined). Note that for any /, if
fs<e.i+i)U) is defined, we can decide whether rl U)<r(r5(e, I+i)U)) (using
lemma 1.2(6)), whether or not tt(x) is defined.

12 Complexity of computation 220

Then g(w, x) is given by

f 1 +max{<£,(jc): / e CUtX} if CUtX is defined,
Undefined otherwise.

(If CUtX is defined, then for any / € Cu,x we must have <£,(•*) defined, so
g{u, x) is certainly defined in this case.)

By Church's thesis, g, as thus defined, is a computable partial function
which depends implicitly e and effectively on the valu of e. Hence, by
corollary 11-1.4 to the second Recursion theorem (slightly generalised)
there is an index e such that

From now on let e be a fixed index such that (*) holds; then e is the index
mentioned at the beginning of the proof. We must verify that it has the
required properties.

First we show that (*) implies that g is total. Fix x; for u > JC, CUtX = 0 so
g(w,JC) = 1 immediately from the definition. For u<x we show that
g(«, JC) is defined by reverse induction on u. Suppose then that g(jc, JC),
g(x - 1 , J C) , . . . , g(u + 2, JC), g(u + 1 , x) are all defined. Then from (*) and
the definition of s we have 4>S(e,X)(x), <f>S(e,x-i)(x),..., 4>s(e.u+i)(x) are all
defined; hence so are /,<e.i+i)(*) for u < / < x. This in turn means that CUtX

is defined, hence g(w, x) is defined also. Thus g(«, x) is a total function.
Now, writing gu for.the function given by gu(x) = g(w, JC) we have

gu(x) = g(u, x)

= 4>s{e,u)W (by definition of s).

We must verify the properties (a)-(c) above.
(a) If we put / = go, then / is certainly total, as required by the
theorem.
(b) Fix a number u; we must show that g(0, x) and g(w, JC) differ
for only finitely many JC. It is clear from the construction of the
sets CMfJC that for any JC

Cu%x = COtX n{w, u + 1 , . . . , JC - 1 } .

Since the sets COtX are all disjoint (by construction) we can find
the number v = max{jc: Co.* contains an index / < u}. Jhen for
JC> v we have C 0,x ^ {w, w + 1 , . . . , JC - 1 } , and hence COtX = CUfX.
This means that g(0,jc) = g(«,JC) for x>v. Thus goU) = g«(jc)
a.e.

2 The Speed-up theorem 221

(c) Suppose that / is an index for / ; taking / = s(e, / +1) we have
that <t>j = <t>S(e,i+\) = gi+i (from above), soy is an index for g/+1. We
can prove that

r(t,ix)) = r(tsieJ+l)(x))<ti(x) for all x > j.

If this were not the case, then / would have been cancelled in the
definition of g(0, x) for some x > i\ i.e. there would have been
x > i with / e Co.*. But then, by construction of g, we would have
g(0, x)^(f>i{x), a contradiction. This completes the proof. •

Note that the pseudo-Speed-up theorem is effective: given a program P
for / we can effectively find another program that computes / almost
everywhere, and is almost everywhere faster than P.

We now show how to modify the above proof to obtain

2.2. The Speed-up theorem (Blum)
Let r be any total computable function. There is a total computable

function f such that, given any program Pi for f, there is another program Pk

for f such that r(tk(x))<ti(x) a.e.
Proof We may assume without any loss of generality that r is an

increasing function (or else replace r by a larger increasing computable
function). First, by a slight modification of the proof of theorem 2.1 we
obtain a total computable function / such that given any program P, for /,
there is a program P ; such that

(a) <f>j is total and <£/(*) = /(*) a.e.,
(b) r(ti(x) + x)<ti(x)2i.c.

To do this, simply rewrite the definition of CUtX replacing ' . . . and
ti(x)^r(tsM+i)(x)y by ' . . . and f,U)<r('s(e..+i)(*) + *))'• We shall show
that the function / so obtained is the function required by the theorem.

Suppose then that / = <£, and / is chosen with the properties (a), (b)
above. Our aim now is to modify P, to produce a program P,-* that
computes/for allx. Suppose that <f>,(x)=f(x) for all x > v. Let/(m) = bm

for m^v. We modify P, by writing some extra instructions at the
beginning designed to give these values for m^v. Specifically, let Pj* be
the program that embodies the flow diagram given in fig. 126. Clearly P;*
computes/; moreover, there is a number c such that the extra instructions
add at most c steps to any computation; i.e. for all x

12 Complexity of computation

Fig. 126. Speed-up from pseudo-Speed-up.

START

T i * = On

T i *^ t? 1

STOP

Thus we have
r(tp(x)) ^ r(tj(x) + c) (since r is increasing)

</•(/,•(*) + *) for * > c
<f,(x)a.e.

Hence, taking k = /* the theorem is proved. •

Remarks
1. The above proofs of the pseudo-Speed-up and Speed-up theorems are
adapted from Young [1973]. Both results hold for arbitrary complexity
measures; in the case of theorem 2.1 it is clear that our proof uses only the
abstract properties of the time measure /,(*); in the proof of theorem 2.2,
however, we have used some special details of the URM time measure, in
estimating the relationship between f7* and th In Young's paper the above
proof is generalised so as to work for any complexity measure.

3 Complexity classes 223

2. It can be shown that the Speed-up theorem is not in general effective.

The Speed-up theorem pinpoints a problem when we try to define the
complexity of a computable function / (rather than the complexity of any
particular algorithm for /). We cannot define this as the complexity of the
best, or fastest, algorithm for / simply because / may not have a best
program.

We conclude this section with an amusing consequence of the Speed-
up theorem. Suppose that we have a URM that performs 1 step per
second, and we replace this with a new super-improved machine that is
100 times as fast. Then a computation Pt(x) that took u{x) seconds to
perform on the old machine will be performed in rl(jc)/100 seconds on the
new model. Consider now the function / given by the Speed-up theorem
with speed-up factor of 100. Suppose that / is being computed by P(on
the new fast machine. By the Speed-up theorem there is a program P, for/
such that lOOtj(x) < tt(x) a.e.; i.e. t f(x) < f,(jt)/100. Thus for almost all JC,
the old machine using P t computes / faster than the new machine using Pt.
We conclude that for some functions at least the new machine is no
superior to the old one (on most inputs)!

2.3. Exercises
1. Show that in general the limitation e of th inequality r(tk(x))<

tt(x) in the Speed-up theorem to almost all x cannot be
improved.

2. Why should we regard" the conclusion of the discussion in the
preceding paragraph (about new and old URMs) as of theoretical
rather than practical significance?

3. Complexity classes
Suppose that e b is any total computable function. From th point

of view of complexity, a natural class of functions comprises those
functions having a program whose running time is bounded by b. Thus we
define

3.1. Definition
Let b be a total computable function. The complexity class of b,

(£*> is defined by
£*> ={<(>e-<f>e is total and fc(jt)<6(jt) a.e.}

= {/*:/ is total, computable and has a program Pe with te(x)<
b(x) a.e.}.

12 Complexity of computation 224

Remark. The class £&, as thus defined, is the complexity class of b relative
to the time measure te{x)\ for any measure <&(*), we could define the
complexity class S f in the obvious way.

If b' is another total computable function, with b'(x) ^ b(x) for all JC, of
course £*• 2 £*; if &'(*) > &(*) for all x, we would naturally expect that ©*.
contains some new functions not in (£*,, especially if b'(x) is much larger
than b(x). The next theorem shows that this intuition is false: we can find
b, b' with b' greater than b by any preassigned computable factor, such
that &£' = £*>; in fact, the theorem shows that b, b' can be chosen so that
there is no running time te(x) that lies between b(x) and b'(x) for more
than finitely many x. Thus the theorem is called the Gap theorem.

3.1. The Gap theorem (Borodin)
Let rbe a total computable function such that r(x) ^ x. Then there

is a total computable function b such that
(a) for any e and x > e, if te(x) is defined and te(x)>b(x), then
te(x)>r(b(x))\ hence
(b) <E6 = <£,.*.

Proof. We define b(x) informally as follows. Define a sequence of
numbers k0 < k\ <... < kx by

Consider the disjoint intervals3 [kh r(/c,)] for 0 < / < J C . There are * + l
such intervals, so there is at least one that does not contain any of the
numbers te(x) for e < JC, since there are at most x such numbers that are
defined. Choose ix = the least / such that

te{x)£[ki,r{ki)]ior2\\e<x,
and set b(x) = kix.

Now, given that ix as defined above exists on theoretical grounds, there
is an effective procedure which will find it; we simply make repeated use
of lemma 12{b) to check te(x)e [kh r(kt)] for various e and 1. We conclude
that b is a computable function, by Church's thesis.

For the conclusion of the theorem, (a), suppose that x > e and te{x)>
b(x); by construction of b(x), we have te(x)&[b(x), r(b{x))]. Hence
te(x)>r(b(x)).

By the interval [c, d] we mean the set of natural numbers {x

4 The elementary functions 225

For part (b), we obviously have S 6 cg r o 6 ; now note that if fe
r»d\@fc, then / has a program Pe with

but
te(x) > b(x) infinitely often (otherwise / € Sfc).

This clearly contradicts (a). Hence £* - SrO6. D

Note. This proof is based on that given by Young [1973]. It is easy to see
that the function b in the theorem can be made larger than any pre-
assigned computable function c, simply by setting ko = c{x) instead of
k0 = 0 in the proof. It is also clear from the proof that the Gap theorem is
machine independent.

4. The elementary functions
In this final section we introduce the class of elementary functions as an

example of a class of computable functions that can be characterised very
neatly in terms of the complexity classes corresponding to time of
computation. The elementary functions form a natural and extensive
subclass of the primitive recursive functions, as we shall see. They have
been studied in some depth, and are of interest in their own right, quite
apart from complexity theory.

4.1. Definition
(a) The class <£ of elementary functions is the smallest class such

that
(i) the functions x + 1, UT(1 ^ / ^ n), x — y, x + y, xy are all in #,
(ii) ? is closed under substitution,
(iii) <£ is closed under the operations of forming bounded sums
and bounded products (i.e. if f(x, z) is in % then so are the
functions Zz<y/(*> z) and n2<y/(*> z)9 as defined in chapter 2
§4).

(b) A predicate M(x) is elementary if its characteristic function cM is
elementary.

Roughly speaking, % is the class of functions that can be obtained by
iteration of the operations of ordinary arithmetic. It is clear that elemen-
tary functions are computable; in fact they are all primitive recursive, by
the results of chapter 2 § 4. The next lemma helps to compile some
examples of elementary functions and predicates.

12 Complexity of computation 226

4.2. Lemma
(a) % is closed under bounded minimalisation.
(b) Elementary predicates are closed under 'not\ kand\ 'or\ and
the bounded quantifiers 4Vz<y' and ' 3 z < y \

(a) Suppose that /(*, z) is elementary; recall from the proof of
theorem 2-4.12 that

Mz<y(/(*,z) = 0)= I n sg(/0rf«)).
u<y u^v

To see that this is elementary, just notice that sg is elementary,
since sg(*) = x — (x — 1), and 1 = (x +1) — x.
(b) We leave the proof as an easy exercise. •

The next theorem gives an indication of the fact that % is quite
extensive.

4.3. Theorem
The functions m listed {for m e N), and all of the functions in

theorems 2-4.5 and 4.15 are elementary.
Proof. We shall sketch proofs for a few functions where the proof is

non-trivial or differs significantly from that given in chapter 2. The
terminology of chapter 2 is used throughout.

(0 X\ * y=ni<y*=IL<yU?(X,l) .

(iii) rm. rm(x, y) = y - x qt(x, y).
(iv) px. Assuming that the function Pr(jc) (the characteristic
function of lx is prime') has been proved elementary, we have
px = fxy < 22* (x = 0 or y is the jcth prime)

(= I Pr(z))

*(L- I Pr(z)|=o).

(The bound px < 2 is easily proved by induction, using the fact
thatpx +i<p>p 2. . .p* + l.)

We leave the proofs for the other functions as an exercise for
the reader. •

4 The elementary functions 227

We now show that % is even closed under definitions by primitive
recursion, provided that we know in advance some elementary bound on
the function being defined by the recursion equations.

4.4. Theorem
Let f(x) and g(x, y, z) be elementary and let h be the function

defined from /, g by

h(x9y + l) = g(x9y9h(x9y)).
Suppose that there is an elementary function b(x,y) such that h(xt y)<
b(x, y) for all x, y. Then h is elementary.

Proof Fix JT, y; then the calculation of h (x, y) in the usual way requires
the calculation of the sequence of numbers h(x, 0), h{x, 1) , . . . , h(x, y).
These can be coded by the single number s where:

5 = 2 3 . . . p y + l

- n pft*'

s Tl p"*i1) = c(*,y),say,

where c(x, y) is an elementary function. The key facts about s are
(i) (5)i = A(jr,O) =/(*) , (ii) for z<y9 (s)z+2 = h(x, z + l) = g(jc, z9 (s)z+ i)
and (iii) h(x,y) = (s)y+i. Thus we have

, y) = \jis ^c(x9 y)((5)! =/() and
Vz<y((5)x+2 = g(x,z,(5)2+i)))] y+i.

This expression for /i shows that h is elementary, by the results proved
above. •

The principle of definition described in this theorem is called limited
(primitive) recursion. We shall see later that this is a weaker principle than
primitive recursion. The above result is concisely expressed by saying that
% is closed under limited recursion.

4.5. Corollary
The state function anj hence the functions cn and /„, defined in the

proof of theorem 5-1.2 (computability of the universal functions) are
elementary. Hence also the predicate Tn ofKleene's normal form {theorem
5-1.4) is elementary.

12 Complexity of computation 228

Proof We refer to the formal proof of theorem 5-1.2 as given in
chapter 5 and completed in the appendix to that chapter. It is mostly
routine to establish, by using the above results, that the functions used to
build <rn are all elementary. For the actual definition of <rn by primitive
recursion, note that we can obtain an elementary bound on an as follows.

It is easy to see that for any t

and

These two bounds are elementary functions of e, x, t once we have shown
that p(Pe) and \n(e) are elementary functions. Putting these bounds
together we then have an elementary bound for crn, and theorem 4.4 may
be applied. The remainder of the proof that crn is elementary consists of
showing that p{Pe), \n(e) and all the other functions defined in the
appendix to chapter 5 are elementary. This is left as an exercise for the
reader. (The only general principle needed but not explicitly mentioned
already is that elementary functions are closed under definition by cases;
see exercise 4.12(4a) below).

The elementary nature of cn , jn and Tn follows immediately since these
are all defined explicitly by substitution from an and other elementary
functions. D

The following corollary is often expressed by saying that functions
computable in elementary time are elementary.

4.6. Corollary
(a) Suppose that b(x) is elementary and <f>(

e
n) is a total function

such that t{
e
n)(x)<b(x) a.e.4 Then <f>(

e
n) is elementary.

(b) Ifb(x) is elementary, then Sb c fg.
Proof, (b) is obviously a restatement of (a) for unary functions. To

prove (a), suppose that t(e
tl)(x)^b(x) a.e. Then the function

is elementary, and we have

4 Here we are extending the use of a.e. to n-ary predicates M(x) in the obvious
way: M(x) holds a.e. if it holds for all but finitely many ^-tuples JC.

4 The elementary functions 229

By the results we have proved, the right hand side is an elementary
function. To conclude that <f>(

e
n) is elementary, we observe that a function

that is almost everywhere the same as an elementary function is elemen-
tary (see exercise 4.12(4fe) below). •

At this e stage the reader might well b wondering whether the elemen-
tary functions coincide with the primitive recursive functions. All parti-
cular examples of primitive recursive functions from earlier chapters have
been shown to be elementary. The only detectable difference between
these classes is that for % we have only been able to prove closure under
limited recursion. Could it be that this is only an apparent distinction?
The answer, as we shall see below, is no. Limited recursion is a definition
principle that is really weaker than primitive recursion. We will find a
function that is primitive recursive but not elementary as a consequence
of the next theorem to be proved below.

Nevertheless, % is an extremely large class of functions, and contains
most of the functions used in practical mathematics. The class % is a
natural first suggestion for the class of total effectively computable
functions, based as it is on the ordinary operations of arithmetic. Indeed,
it has been argued (for example, by Brainerd & Landweber [1974]) that £
contains all practically computable functions. They argue that if f(x) is
practically computable, then there must be some number k such that/(jc)
can be computed in at most

steps for almost all x. After all, for practical purposes, this number of
steps quickly becomes very large in comparison with x, even for small
values of k. Now, since the function

is elementary (for fixed fc), this means that / is elementary, by corollary
4.6.

Our goal in the remainder of this section is to show that the elementary
functions can be characterised as precisely those functions that are
computable in time

12 Complexity of computation 230

for some k. As a first step towards that goal, we have the following, which
incidentally will give a non-elementary primitive recursive function.

4.7. Theorem
Iff(x) is elementary, a there is number k such that for all jr,

2max(x)

/(*)^2 2/" .
Proof. Let us write bk(z) for

then, explicitly, we have bo(z) = z, bi(z) = 2z
9 and bk+i(z) = 2bk(z) in

general. (Thus, by 2T~ is meant 2i2*\ not (22)\ etc.). Note that 6k+/(z) =
bk(bi(z)). We shall use implicitly below the fact that bk is increasing and
thatz2<2 2* for all z.

To establish the theorem, we consider each of the clauses whereby a
function / can get into <£. Referring to definition 4.1:

(i) x + l < 2 * ;

x — y <max(;t, y);
jt + y<2maxU,y)<2m a x (x ' y) ;

(ii) Suppose that h(x) = / (g i (x) , . . . , gm(x))9 and fci,..., fcm, /
are such that g/(ji;)<6k.(max(jt)) (1 < / < W) , and
b[(meix(y)). Let /c = max(fci,..., km). Then we have

) , . . . , gm(jc)))

(iii) Suppose that g(x, y) = I 2 < y / (x , z), and that /(*, z) <
c, z)). Then we have

The case when g is a bounded product is similar, and is left as an exercise
(4.12(6) below). •

4 The elementary functions 231

4.8. Corollary
The function

is primitive recursive but not elementary.
Proof. To see that / is primitive recursive, notice that f(x) = g(x, x),

where g is defined by

(so g is primitive recursive).
To see that / is not elementary, notice that for every k

so there is no k such that f(x)<bk(x) for all x. (Note that / is obtained by
'diagonalising out of g \) •

The penultimate step towards our goal is to show that elementary
functions can be computed in elementary time.

4.9. Theorem
If fix) is elementary, there is a program P for f such thatt{p\x) is

elementary.
Proof. We must examine the ways in which a function gets into %. It is

helpful to prove first the following general lemma.

4.10. Lemma
Letx = U i , . . . , xn). Suppose thath(x, y) is elementary, and has a

definition by recursion from functions f(x) and g(x, y, z) which can be
computed in elementary time. Then h can be computed in elementary time.

Proof. Take programsF, G for/, gt in standard form, such that tF and
tG are elementary. (For notational convenience we omit here and else-
where the superscripts from fp° for any program P whenever the
meaning is clear.) We shall take the program H for h as given in the
proof of theorem 2-4.4, and show that tH is elementary. We simply
calculate tHix,y) by reference to the flow diagram in fig. 2c and the
explicit program H that is its translation. We reproduce this flow diagram
in fig. 12c, indicating alongside each component the number of steps it
contributes when executed by the program H. It is now a simple matter

12 Complexity of computation

to calculate that

which is clearly an elementary function, since tF, tG and h are all
elementary. •

Proof of theorem 4.9
Let us consider each of the clauses in the definition of %\
(i) The functions x +1 and U?(x) can each be computed by single
step programs. For x — y, x + y, xy we use lemma 4.10. Consider
JC + y, for example: this is defined by recursion from the functions
f(x) = x and g(jc, y, z) = z + 1 , both of which are computable in

Fig. 12c. The number of steps in a computation by recursion.

START

Store xy y in

rt +1 steps

p(F) + tF(x)+\ steps

1 step for each
k < y for this loop back

>
1 step for ^

each /c < y

No
y

/

\ /

V p(G) + tc(x,k,h(x,k))+\
steps for each /c < y

Yes

1 step for each k ^ y,
= y + 1 steps

• 1 step

STOP

4 The elementary functions 233

elementary time. Now apply lemma 4.10. Similarly for x — y and
xy (for x - y we must first prove the result for x — 1, again by
using lemma 4.10).
(ii) Substitution. Suppose that h(x)=f(gl(x),..., gm(x)), and
each of /, gu..., gm is computable in elementary time by
programs F, Gu . . , Gm in standard form. Let H be the pro-
gram for h given in the proof of theorem 2-3.1. Calculating
directly from that program we have

which is an elementary function, by substitution,
(iii) Bounded sums and products. The result is established by
using lemma 4.10. Suppose that g(jc, y) =]Tz<y/(jr, z), and / is
computable in elementary time. Then g is obtained by recursion
from the functions 0 and z +/(*, y) both of which are computable
in elementary time (from (i) and (ii) above). Hence, by lemma
4.10, g is computable in elementary time.

The proof for bounded products is similar, and is left as an
exercise (4.12(8) below). •

We have now done all of the hard work! To express the charac-
terisation of 8f towards which we have been working, it is helpful to
extend complexity classes to include n-ary functions for all n. Suppose,
then, that b{x) is a total function; let us write

S* = {/: / is total and / = <f>(
e

n) for some e with

Clearly £* = E* n Unary functions.
Now our final theorem is

4.11. Theorem
A total function f(x) is elementary iff it is computable in time

=£ Mmax(jr)), for some k. I.e.

Proof Since for each it, 6k(max(jr)) is an elementary function, we have
*k £ % by corollary 4.6; hence

12 Complexity of computation 234

For the converse inclusion, let f(x) be an elementary function. By
theorem 4.9 there is a program F for / such that tF is elementary; now by
theorem 4.7 find a number k such that fF (x)<Mmax(jr)). Then/€ £*k,
so our proof is complete. •

4.12. Exercises
1. Show that it was not strictly necessary to include the functions

x + y and xy in the definition of %. (Hint. First obtain xy as
a bounded sum; then obtain x + y from suitable products,
using —).

2. Prove lemma 4.2(6).
3. Complete the proof of theorem 4.3.
4. (a) Show that % is closed under definition by cases, when the

functions and predicates in the definition are all elementary.
(b) Show that if f(x) is elementary and g(x) =f(x) a.e., then g(x)
is elementary.

5. Check all the details in the proof of corollary 4.5.
6. Complete the proof m of theore 4.7 by showing that if g(x, y) =

X\z<yf(x,z) and /(*, z)<*k(max(x, *)), then g(x, y)<
6k+3(max(x, y)).

7. Give an example of a unary primitive recursive function that is
not elementary, different from that of corollary 4.8.

8. Prove that if / is computable in elementary time and g(x9 y) =
Y\2<yf(x, z), then g is computable in elementary time.

9. Suppose that <Pe is a complexity measure for unary functions that
is related to te by an elementary function r. I.e. for any e, and
almost all x for which te(x) is defined,
<pe(x) < r(x, te(x)) and te(x) < r(x, #*(*)).
For any total function b(x), let Sf be the complexity class of b
relative to <P, i.e.
Sf = {<f>e: <f>e is total and <Pe(x) < b(x) a.e.}.
Prove that Uk^o Sf k= £i, the unary elementary functions.

Further reading For a fuller treatment of the machine independent
theory of complexity, the reader should consult the basic paper of Blum
[1967], or e the readabl overview of the theory by Hartmanis & Hopcroft
[1971]. The paper of Young [1973], which we have already cited in
earlier sections, simplifies some of the proofs of basic theorems. The book
of Brainerd & Landweber [1974] has a good chapter on complexity, and

4 The elementary functions 235

also gives the characterisation of various subrecursive classes of functions
(including <£) in terms of time of computation. Similar characterisations
are also discussed in the early (in the history of complexity theory) papers
of Ritchie [1963] and Cobham [1965], using the Turing machine tape
measure of complexity.

13
Further study

Our basic study of computability has been designed so that it could serve
as a stepping stone to more advanced or more detailed study in any of
several directions. In this brief postlude, we shall mention some of the
areas in which further study could be pursued, and we offer some
suggestions for further reading. The divisions below are not hard and fast,
and there are many interrelations between the various areas we mention.

Computability Further study of the theoretical notion of computability
(the starting point of this book) could be pursued in two directions: (a)
more detailed examination of other equivalent approaches to compu-
tability (which we surveyed in chapter 3); (b) examination of more
restricted notions of effective computability, involving, for instance, finite
automata and similar devices.

Some references (several historical) for (a) were given in chapter 3. For
both (a) and (b) we suggest the books of Minsky [1967] (a very compre-
hensive treatment), Arbib [1969], or Engeler [1973].

Recursion theory We use this traditional title under which to mention
more advanced ideas arising out of the notion of computability on W, such
as we began to pursue in chapters 7, and 9 to 11. Specific areas include:

Hierarchies: there are various ways to extend the sequence
beginning 'recursive, r .e . , . . . ' to obtain a hierarchy of kinds of set, each
kind of set having more difficult decision problem than the preceding one.
Among the important hierarchies that have been studied are the arith-
metic hierarchy, the hyperarithmetic hierarchy, and the analytical
hierarchy.

Reducibilities and degrees: between <m and < T there is a spec-
trum of reducibilities that could be investigated. For the student wishing
to delve further into Turing reducibility, the next step would be to master

Further study 237

a proof of the Friedberg-Muchnik solution to Post's problem, before
proceeding to further results and proofs in this area, some of which we
mentioned in chapter 9.

Recursion in higher types: we considered briefly in chapter 10
the question of computable functions of functions. This study can be
extended to computability of functions o of functions f functions, etc.
Hierarchies occur naturally here also.

The book of Rogers [1967] is the best single reference for each of these
areas, in that it is a more advanced and comprehensive textbook which
continues these topics where we have concluded our introduction. More
specific sources of information about degrees are Sacks [1963],
Shoenfield [1971] and Simpson [1977].

Under this heading we should also mention

Generalised recursion theory. This is a relatively new field of
study, in which ideas arising in computability on M are transferred to
other structures that are not merely coded-up disguises of N. This
development has been particularly successful on certain sets called
admissible ordinals. An introductory article having a large annotated
bibliography is provided by Shore [1977] in the Handbook of Mathe-
matical Logic (Barwise [1977]).

Decidability and undecidability A good survey of unsolvable prob-
lems in general is provided in the article by Davis [1977] in the Handbook
of Mathematical Logic.

For an introduction to mathematical logic, and decidability and
undecidability in this area, there are numerous basic tests, such as
Mendelson [1964] or Robbin [1969]. These books also give a complete
treatment of Godel's theorem and related results. For more advanced
study in this area & there are texts such as Bell Machover [1977], and
Boolos & Jeffrey [1974]. The article by Rabin [1977] surveys methods and
results on the decidability of mathematical theories.

Computer science The study of topics included under the heading
Computability above, especially finite automata, is of course relevant to
computer science - which could be called the realm of practical compu-
tability. Within this realm there are two areas we have touched on, albeit
briefly:

13 Further study 238

Programs and programming', further study here could include
topics such as the generation of programming languages and the structure
of programs; and the semantics of programming languages (which we
touched upon in chapter 10). Texts which cover these matters include
Arbib [1969], Bird [1976], Brainerd & Landweber [1974], Engeler
[1973] and Manna [1974].

Complexity theory, at the end of chapter 12 we offered some
suggestions for further reading in this area. There is considerable interest
in identifying functions f{x) that can be computed in an amount of time
bounded by some polynomial in x. A major unsolved problem here is the
so-called P = NP problem: machines are considered in which there is a
certain amount of freedom in choosing the next step in a computation
(such machines are called non-deterministic). By making good guesses (or
choices) one can often obtain a quicker computation than by systemati-
cally working through all possible cases in a deterministic way. The
P = NP problem asks whether every function computable on a non-
deterministic machine in polynomial time is computable in polynomial
time on ordinary (deterministic) machines. This problem is mentioned in
Rabin [1977] and discussed fully by Karp [1972].

Bibliography

Arbib, M. A. [1969]. Theories of Abstract Automata. Prentice-Hall, Englewood
Cliffs, N.J.

Barwise, J. (ed.) [1977]. Handbook of Mathematical Logic. North-Holland,
Amsterdam.

Bell, J. & M. Machover [1977]. A Course in Mathematical Logic. North-Holland,
Amsterdam.

Bird, R. [1976]. Programs and Machines. Wiley, London-New York.
Blum, M. [1967]. A machine-independent theory of the complexity of recursive

functions. /. Assoc. Computing Machinery 14, 322-36.
Boolos, G. & R. Jeffrey [1974]. Computability and Logic, Cambridge University

Press.
Brainerd, W. S & L. H. Landweber [1974]. Theory of Computation. Wiley, New

York.
Church, A. [1936]. An unsolvable problem of elementary number theory. Am. J.

Math. 58, 345-63. (Reprinted in Davis [1965].)
Church, A. [1941]. The Calculi of Lambda-Conversion. Annals of Mathematics

Studies no. 6, Princeton.
Cobham, A. [1965]. The intrinsic computational difficulty of functions. In

Proceedings of the 1964 International Congress for Logic, Methodology and
Philosophy of Science (ed. Y. Bar-Hillel), pp. 24-30. North-Holland,
Amsterdam.

Cohn, P. M. [1977]. Algebra, vol. 2. Wiley, London-New York.
Davis, M. [1958]. Computability and Unsolvability. McGraw-Hill, New York.
Davis, M. (ed.) [1965]. The Undecidable. Raven, New York.
Davis, M. [1973]. Hilbert's tenth problem is unsolvable. Am. Math. Monthly 80,

233-69.
Davis, M. [1977]. Unsolvable problems. In Barwise [1977, pp. 567-94].
Engeler, E. [1973]. Introduction to the Theory of Computation. Academic Press,

New York.
Friedberg, R. M. [1958]. Three theorems on recursive enumeration: I Decom-

position, II Maximal set, III Enumeration without duplication. /. Symbolic
Logic 23, 309-16.

Godel, K. [1931]. Uber formal unentscheidbare Satze der Principia Mathematica
und verwandter System I. Monatschefte Math. Phys. 38, 173-98. (English
translation in Davis [1965].)

Hartmanis, J. & J. E. Hopcroft [1971]. An overview of the theory of compu-
tational complexity. J. Assoc. Computing Machinery 18, 444-75.

Karp, R. M. [1972]. Reducibility among combinatorial problems. In Complexity
of Computer Computations (eds. R. Miller & J. Thatcher), pp. 85-104. Plenum
Press, New York.

Bibliography 240

Kleene, S. C. [1952]. Introduction in Metamathematics. Van Nostrand, Princeton
and North-Holland, Amsterdam.

Kleene, S. C. [1967]. Mathematical Logic. Wiley, London-New York.
Manin, Y. I. [1977], A Course in Mathematical Logic (Graduate Texts in

Mathematics 53). Springer-Verlag, New York.
Manna, Z. [1974]. Mathematical Theory of Computation. McGraw-Hill, New

York.
Margaris, A. [1966]. First Order Mathematical Logic. Blaisdell, Waltham, Mass.
Markov, A. A. [1954]. The Theory of Algorithms, Trudy Math. Inst. Steklov, vol.

42. (English translation, 1961, National Science Foundation, Washington
D.C.)

Mendelson, E. [1964]. Introduction to Mathematical Logic. Van Nostrand,
Princeton.

Minsky, M. L. [1967]. Computation: Finite and Infinite Machines. Prentice-Hall,
Englewood Cliffs, N.J.

Paterson, M. S. [1970]. Unsolvability in 3 x 3 matrices. Stud. Appl. Math. 49,
105-7.

Peter, R. [1967]. Recursive Functions. Academic Press, New York.
Post, E. [1943]. Formal reductions of the general combinatorial decision prob-

lem. Am. J. Math. 65, 197-215.
Rabin, M. O. [1977]. Decidable theories. In Barwise [1977, pp. 595-629].
Ritchie, R. W. [1963]. Classes of predictably computable functions. Trans. Am.

Math. Soc. 106,139-73.
Robbin, . J. W [1969]. Mathematical Logic-a First Course, Benjamin, New York.
Rogers, H. [1967]. Theory of Recursive Functions and Effective Computability.

McGraw-Hill, New York.
Rogers, R. [1971]. Mathematical Logic and Formalized Theories. North-

Holland, Amsterdam.
Rotman, J. J. [1965]. The Theory of Groups'. An Introduction. Allyn and Bacon,

Boston.
Sacks, G. [1963]. Degrees of Unsolvability. Annals of Mathematics Studies,

no. 55, Princeton.
Shepherdson, J. C. & H. E. Sturgis [1963]. Computability of recursive functions.

/ . Assoc. Computing Machinery 10, 217-55.
Shoenfield, J. R. [1971]. Degrees of Unsolvability. North-Holland, Amsterdam.
Shore, R. A. [1977] a-Recursion theory. In Barwise [1977, pp. 653-80].
Simpson, S. G. [1977]. Degrees of unsolvability: a survey of results. In Barwise

[1977, pp. 631-52].
Smullyan, R. M. [1961]. Theory of Formal Systems. Annals of Mathematics

Studies no. 47, Princeton.
Tarski, A. [1951]. A Decision Method for Elementary Algebra and Geometry. The

Rand Corporation, Santa Monica, Ca.
Tarski, A., A. Mostowski & R. M. Robinson [1953]. Undecidable Theories.

North-Holland, Amsterdam.
Turing, A. M. [1936]. On computable numbers, with an application to the

Entscheidungsproblem. Proc. Lond. Math. Soc. 42, 230-65; 43, 544-6.
(Reprinted in Davis [1965].)

Van der Waerden, B. L. [1949]. Modern Algebra, vol. 1. Ungar, New York.
Young, P. [1973]. Easy constructions in complexity theory: gap and speed-up

theorems. Proc. Am. Math. Soc. 37, 555-63.

Notation

Chapter 1
Rn nth register 9
rn contents of Rn 9
Z(n) zero instruction 10
S(n) successor instruction 10
T(m, n) transfer instruction 10
J(m, n, q)

jump instruction 11
rn

 : = x rn becomes x 10
P(aua2,...)

computation under program P 16
P(aua2,...)l

the computation stops 16
P(fli,a2 ,...)t

the computation never stops 16

the final value in Ri is b 17
<€, ^n computable functions 17
fp] n-ary function computed by P 21
CM characteristic function of M 22

Chapter 2
U,n projection functions 25

PQorP
Q

concatenation of programs 27
p(P) denotes registers affected by P 27
/ > [/ „ . . . , / „ - > /] 28
x — y cut-off subtraction 36

Notation

sgU),sgU)
signum functions 36

rm(x, y), qt(x, y)
remainder and quotient functions 36, 37

nz<y(...)
least z less than y 39

px jcth prime number 40
(jc)y power of py occurring in x 40
ff(x,y) a pairing function 41

242

minimalisation operator 43

Chapter 3
(partial) recursive functions 49
primitive recursive functions 51
Turing-computable functions 56

=> obtained by productions in Q 59
\^ Post-system ^ generates 59
Ty strings generated by ^ 59
& coding of a word a 61
n word representing n 61
G(f) graph of/ 62
0 ^ Post-computable functions 63

Chapter 4
J* URM instructions 74
^ URM programs 74
y program coding function 75
Pn /ith program = y~\n) 75
<£an), <£a functions computed by Pa 76-77
W a y "a

domain of <f>{a\ <t>a 77
E{:\ g r a n g e of <t>(

a
n\<(>a 77

Chapter 5

universal functions 86
cn(e,xy t)

configuration code 87

Notation 243

next instruction 87
<rn(e,x, t)

state function 87
Tn(e9x,t)

Kleene T-predicate 89
Rec(/f g)

function obtained by recursion from /, g 91
Sub(/, g i , . . . ,gm)

function obtained by substitution from /, g i , . . . , gm 91

Chapter 6
Q rational numbers 108
A, -> logical symbols for 'and', implies' 111

R I symbols in a logical language 110I
.j
Chapter 7

A®B {2x:xeA}v{2x + l:xeB} 122
A®B {7r(x,y):xeAandyeB} 122
K {x:xeWx} 123

Chapter 8
—i, v logical symbols for 'not' , 'or' 143
y statements of language L 144
3~, & true, false statements of L 144
0n (n + l)th statement of <f 144
n e K formal counterpart of n e K 145
(Pt provable statements 147
Pr* {n.neK is provable} 148
Ref* {n : n £ K is provable} 148

Chapter 9
A<mB A is many-one reducible to B 158
=m many-one equivalent 161
dmtA) the m-degree of A 161
a <m i partial order on m-degrees 162
0m m-degree of recursive sets 163
o, n m-degrees of 0 and M 162
0^ m-degree of AT 163

Notation 244

aub least upper bound of degrees a, b 165
O(n) oracle instruction 167
P* URMO program P with x i n the oracle 168
<€* ^-computable functions 169
<3lx ^-partial recursive functions 170

functions computed by Qm 170-171
rY m» •*-• m

domain and range of 4>x
m 171

\jj\j1 universal function for ^-computability 171
K* ={x:xeW*} 111
PA,<%A,<f>tWtEtKA

relativised notions for A-computability 172
A <TB A is Turing reducible to B 174
=T Turing equivalent 174
dT(A) Turing degree of A 175
a < b partial order on T-degrees 176
0 T-degree of recursive sets 176
0' T-degree of K 176
A' jump of A 177
a1 jump of a 111
a\b a,b are incomparable degrees 179

Chapter 10
&n n-ary partial functions 182
6 a finite function 183
6 code for a finite function 6 183
f<p least fixed point for <P 192
fr function defined by program r 196

Chapter 11
Ek sequence of computable functions enumerated by <f>k 208
D diagonal enumeration 208

Chapter 12
t{p\x) number of steps taken by P to compute fP{x) 213
tK:\x) t%\x) 213

complexity classes of b 223, 233

Notation 245

9 elementary functions 225

bk(z) ."* 230
2 2 /

Index

A-computable 172
A-r.e. 172
A-recursive 172
acceptance problem 104
Ackermann function 46, 52, 19.4
addition, program for 17
admissible ordinal 237
algorithm 7-9

Markov 65
almost everywhere (a.e.) 213
alphabet

of Post system 58
of Turing machine 53

Arbib, MA. 60, 236, 238
arithmetic 143-56

axioms for 144, 149
statements of, see statements of

arithmetic
axioms 58, 59

for arithmetic 144, 146, 149

basic functions 25
Bell, J. L. 107, 117, 156,237
bijection 2
Bird, R. 199, 238
Blum, M. 212, 219, 221, 234
Boolos, G. 112, 156, 237
Boone, W. W. 107
Borodin, A. 212, 224
bounded minimalisation 39, 226
bounded pi-operator 39, 226
bounded product 38, 225
bounded quantifiers 40, 226
bounded sum 38, 225
Brainerd, W. S. 229, 234, 238

canonical system 58
Cantor, G. 79

diagonal method 79-80
characteristic function 22, 121

partial 113
Chomsky, N. 60
Church, A. 48, 67

Church's thesis 67-71, 88
proof by 68

coding
of computable functions 76
of a domain of computation 24, 65
of pairs 41, 89
of programs 75
of sequences 41, 42

Cohn, P. M. 108
completeness 147
completion of a set 177
complexity class 223, 233
complexity of computation 212-18, 238
complexity measure 212-13, 215-16

abstract 216
composition of functions 3
computability

approaches other than URM 48-71
on domains other than N 23-4, 65-6
informal notion of 8
on integers 24, 65-6
limitations of 78, 100, 104
Markov- 49
relative 167-73
on strings 58-65
Turing- 48, 52-7
URM- 7-24
URMO- 167-9

computable functions 7-24
coding of 76
index of 77
informal notion of 8
Markov- 64-5
numbering of 72-84
not primitive recursive 52, 91
Post- 62-4
Turing- 55-7
URM- 16-22

computable predicate or problem 100
computable set 122
computation

complexity of 212-18
convergent 16

Index 247

computation (cont.)
divergent 16
Turing machine 53-4
URM, see URM computation

computation rule 198
computers viii, 9, 100, 212, 223, 237
configuration

code of 87
final 13
initial 11

consistency 147
a>-consistency 150

context free 60
context sensitive 60
continuous operator 184
convergent computation 16
countable 72
creative set 121, 133, 136-40, 143, 152,

166, 210

Davis, M. 57, 107, 116,237
decidable predicate or problem 22-3,

100-12, 121
decidability 100-20, 237

algebra of 37
partial 112

decision problem, recursive 100
decision procedure 100

partial 113
definition by cases 37
degree 157

m-degree 162
minimal degree 180
r.e. T-degree 175
recursive T-degree 175
T-degree 175
of unsoivability 175

Dekker, J. C. 178
denumerable 72

<€ is denumerable 78, 204
effectively 72

deterministic machines 238
diagonal method 79-80, 101, 126, 207
diagonal motto 80
diophantine equation 107
diophantine predicate 116-17
diophantine set 127
divergence problem 118
divergent computation 16
domain

of computation 24, 65
of a function 2

e (base for natural logarithms) 71
effective denumerability

of finite sequences 73
of instructions 74
of programs 75, 206

effective operation
on computable functions 93-5, 189-92
on indices 93
on partial functions 182-99

effective procedure 7-9
effectively decidable predicate 22-3,

100-12
effectively denumerable 72
effectively generated set 58, 61, 126
elementary function 213, 225-35
elementary predicate 225
enumerable, recursively, see r.e. set
enumeration operator 188
equivalence relation 4
Euler's function 41
extensional function 190, 200

Fibonacci sequence 42
finite automata 236, 237
fixed point semantics 196-9
fixed point theorem, see Recursion

theorems
flow diagram 14
formal number theory 149, 155
formal system 58, 146
Friedberg, R. M. 179
functions

Ackermann 46, 52, 194
basic 25
characteristic 22, 121
composition of 3
computable, see computable functions
constant 3
definition by recursion 32-4, 195, 203
domain of 2
elementary 213, 225-35
equality of 3
extensional 190, 200
general recursive 48, 50
injective 2
inverse of 2, 90, 94
Markov-computable 64-5
/x-recursive 48, 49-51
of natural numbers 3
non-computable 78
notation for 2-3
pairing 41
partial 1, 3
partial recursive 48, 49-51
Post-computable 62-4
primitive recursive 45, 51-2, 91, 229,

231
projection 25
range of 2
restriction of 2
substitution of 29-32
successor 25

Index

functions (cont.)
surjective 2
total 3
Turing-computable 55-7
universal 85-90, 171
URM-computable 16-22
URM-computed by a program 21
zero 3, 25

Fundamental result of computability 49

y, an effective numbering of URM
programs 75

gap theorem 224
generalised recursion theory 237
general recursive function 48
Godel, K. 48, 75n, 143

incompleteness theorem 149-55;
simplified version 147

Godel number 75
Gddel-Rosser theorem 154
groups

abelian 112
finitely presented 107
theory of 112
word problem 106-7

halting problem 102, 113
Herbrand, J. 48
hierarchies 236
Hilbert, D. 107, 110

tenth problem 107, 116-17

iff 4
incompleteness theorem 146-55
index

of a computable function 77
of an r.e. set 124

injective function 2
input problem 104
instruction

effective denumerability of 74
next 13
oracle 167
URM, see URM instructions

integers, computability on 24, 65-6
introspective program 205
inverse of a function 90, 94
inverse image of a set 2

Jeffrey, R. 112, 156,237
joining programs 25-28
jump instruction 11
jump

of a degree 176-77
of a set 177

jump, unconditional 14

K, the set {x:xeWx} 123, 134, 152,
160, 165, 209

^-algorithm 167
^-computable 167, 169
^-creative set 173
^-partial recursive function 170
^-primitive recursive function 170
^-recursive function 170
^-recursive set 171
X-r.e. set 171
^-simple set 173
Kleene, S. C. 48, 156

normal form theorem 89

Lachlan, A. H. 180
Landweber, L. H. 229, 234, 238
languages

context free 60
context sensitive 60

least number operator 42-7
limited recursion 227, 229
logic, see mathematical logic
logical notation 4-5
logical system 58
loops 15

checking for 102

machine independent 217
Machover, M. 107, 117, 156, 237
Manna, Z. 60, 199, 238
many-one degree (m-degree) 162

recursive 162
r.e. 162

many-one equivalent (m-equivalent) 161
many-one reducible (m-reducible)

158-61
Margaris, A. 109
Markov, A. A. 49, 57, 64, 67
Markov-computable function 64-5
Markov normal algorithm 65
mathematical logic

predicate calculus 110; validity in
110-12

propositional calculus 109
undecidable problems in 109-12

Matiyasevich, Y. 107
theorem 107, 116, 127

m-complete r.e. set 165-6, 210
Mendelson, E. 49, 52, 150, 237
minimal degree 180
minimalisation 42-7

bounded 39, 226
computability of 43
operator, see /^-operator

Minsky, M. L. ix, 48, 236
monotone operator 184
Muchnik, A. 179

Index 249

/x-operator 43, 49, 194-5
bounded 39

/Lt-recursive function 48, 49-51
Myhill, J. 166

theorem 166, 210
Myhill-Shepherdson theorem 189, 192,

209

natural numbers 1
functions of 3
theory of 112, 143-56

non-deterministic machine 238
normal algorithm (Markov) 65
normal form theorem

Kleene's 89, 227
Post's 60

normal Post-system 60
normal production 60
Novikov, P. 107
numbering

computable functions 72-84
domains of computable functions 76
programs 75
ranges of computable functions 76

operator 182
continuous 184
enumeration 188
monotone 184
on partial functions 182
partial recursive 187
recursive 182-8

oracle 167
oracle instruction 167
order, partial 4
output problem 104

IT (the number), computation of decimal
expansion 69, 126

P = NP problem 238
palindromes 60
parametrisation theorem 82
partial characteristic function 113
partial decidability 112-20, 121
partial decision procedure 113
partial function 1, 3
partial order 4
partial recursive function 48, 49-51

over an alphabet 66
partial recursive functional 187
partially decidable predicate 112-20, 121
Peano arithmetic 149

undecidability of 155-6
Peano's axioms 149
Peter, R. 46, 52
polynomials

computing zeros of 108

universal 128
positive information topology 185
Post, E. 48, 57, 141, 178
Post's problem 178
Post-computable function 62-4
Post-generable set 60, 61
Post's normal form theorem 60
Post-system 57-64

alphabet 58
axioms 58, 59
normal 60
production 59; monogenic 64;

normal 60
set generated by 59
strings 58
theorems of 58, 60

predicate 4
computable 100
decidable 22-3, 100-12, 121
diophantine 116-17
elementary 225
partially decibable 112-20,121
primitive recursive 52
recursive 51
semi-computable 113
undecidable 23, 100-12; see also

undecidable problems
predicate calculus 110

proof in 116
undecidability of validity 110-12

prime numbers 40
primitive recursion 34
primitive recursive

function 45, 51-2, 91, 229, 231
predicate 52
set 122

printing problem 104
priority method 179
problem

decidable 22-3, 100-12, 121
solvable 100
undecidable, see undecidable problems

product, bounded 38, 225
productive set 134-7, 143, 146
program

introspective 205
recursive 196
self-reproducing 204
URM, see URM program

programming languages 60, 104, 196-9
projection function 25
proof

by Church's thesis 68
in mathematical logic 116, 146

propositional calculus 109
provable statements 144, 147-9
Putnam, H. 107, 116

Index 250

r.e. sets 61, 118, 123-42
index of 124
m-complete 165-6, 210
T-complete 175

range of a function 2
real numbers, theory of 112
recursion 32-42

closure of <# under 34
definition by 32-4, 195, 203
limited 227, 229
primitive 34
equations 33

Recursion theorems
first 192-6
second 200-9

recursive decision problem 100
recursive function 50

general 48
/t-recursive 48, 49-51
partial 48, 49-51

recursive functional 187
recursive operator 182-8
recursive predicate (or relation) 51
recursive program 196
recursive set 121-3
recursively decidable 100
recursively enumerable, see r.e.
recursively inseparable sets 133

effectively 139, 152
recursively related measures 218
recursively solvable 100
reducibility 102, 157-81, 236

many-one 158-61
one-one 158
Turing 157, 174-81

reducing problems 102, 157
references 5
registers of URM 9
relation {see also predicate) 4

equivalence 4
relative computability 167-73

to a function x 167-9
to a set A 111
see also ^-computable, etc. and A-

computable, etc.
representation of numbers by strings 61
Rice's theorem 105, 130, 133, 135, 203
Rice-Shapiro theorem 130, 133, 191
Robinson, J. 107, 116
Rogers, H. ix, 141, 179, 180, 209, 237
root of a polynomial 46, 108-9
Rosser, J. B. 147, 152, 156

Godel-Rosser theorem 154
Rosser systems 155

Sacks, G. 179
density theorem 179

splitting theorem 179
search operator, see pt-operator
search, unbounded 114
searching for pairs 89
self-reproducing program 204
semi-computable 113, 123
sets

computable 122
creative 121, 133, 136-40, 143, 152,

166, 210
diophantine 127
effectively generated 58, 61, 126; by

Post-system 60
effectively recursively inseparable 139
notation for 1-2
primitive recursive 122
productive 134-7, 143
recursive 121-3
recursively enumerable, see r.e. sets
recursively inseparable 133
semi-computable 123
semi-recursive 123
simple 121, 140-2, 166, 179

Shapiro, N. 130
Shepherdson, J. C. 9, 49, 57
Shepherdson-Myhill theorem 189, 192,

209
Shoenfield, J. 179, 180
simple sets 121, 140-2, 166, 179
s-m-n theorem 81-4, 85, 103

relativised 171
Smullyan, R. 156
solvable, recursively 100
Speed-up theorem 212, 218-23
standard form program 26
state

of a computation 87
of a Turing machine 54

step in a computation 50, 212-13
statements of arithmetic 143

true 144
false 144
provable 144, 147-9
refutable 148
undecidable 151
undecided 151

string of symbols 58
empty 58

Sturgis, H. E. 9, 49, 57
Sturm's algorithm 108-9
Sturm's theorem 108
subprogram 25
subroutine 25
substitution 29-32
subtraction, program for 18
sum, bounded 38, 225
surjection 2

251

surjective 2
symbol manipulation 57

Tarski, A. 112
theorems, of a Post system 58, 60
total function 3
T-reducibility 167, 174-81

T-complete set 175
T-degree 175-81
T-equivalent 174

Turing, A. M. 48, 52, 67
Turing-computability 48, 52-7
Turing-computable function 55-7
Turing-reducibility, see T-reducibility
Turing degree 175-81
Turing machine 48, 53-5, 216

alphabet 53
computation 53-4
specification 54
state 54

Turing's thesis 67

undecidable predicate (or relation) 23,
100-12

undecidable problems 23, 100-12
acceptance problem 104
in computability 101-6
in formal arithmetic 112, 155-6
halting problem 102
input problem 104
in mathematics 106
in mathematical logic 109-12
output problem 104
printing problem 104
validity in predicate calculus 110
word problem for groups 106-7
xe Wx 101, 102
<f>x is total 90
<t>x=0 103

undecidable statement 151
undecided statement 151
unlimited register machine, see URM

with oracle, see URMO
universal function 85-90, 171
universal polynomial 128
universal program 85-99

for relative computability 171
URM

definition of 9-16
instructions, see URM instructions
operation of 13
program, see URM program

see also URM computation
URM-computable function 16-22

domain of 17
URM computation 11-16

convergent 16
divergent 16
final configuration 13
initial configuration 11
next instruction 13
state of 87
step in 50, 212-13
stopping 13
that never stops 15

URM instructions 9-11
arithmetic 11
jump 11
successor 10
transfer 10
zero 10
summary table 12

URM program 9
for addition 17
coding of 75
concatenation 27
effective denumerability of 75, 206
function computed by 21
Godel number of 75
joining programs 25-9
numbering 75
standard form 26
subprogram 25
for subtraction 18
universal 85-99, 171, 207

URMO 167-9
computability 169

validity, see predicate calculus,
propositional calculus

variables
dummy 31
identification 31
rearrangement of 31

word (in Post system) 58
word problem 106

Yates, C. E. M. 180
Young, P. 222, 225, 234

zero function 3, 25, 104

	Cover
	Title Page
	Contents
	Preface
	Prologue Prerequisites and notation
	1 Computable functions
	2 Generating computable functions
	3 Other approaches to computability: Church's thesis
	4 Numbering computable functions
	5 Universal programs
	6 Decidability, undecidability and partial decidability
	7 Recursive and recursively enumerable sets
	8 Arithmetic and Godel's incompleteness theorem
	9 Reducibility and degrees
	10 Effective operations on partial functions
	11 The second Recursion theorem
	12 Complexity of computation
	13 Further study
	Bibliography
	Notation
	Index

