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Preface

The emergence  of  the  concept  of  a computable function  over fifty years
ago marked the birth of a new branch of mathematics: its importance may
be judged  from  the t fac  that  it  has  had applications  and implications  in
fields as diverse  as computer science, philosophy  and the foundations  of
mathematics,  as well  as  in many other  areas  of  mathematics  itself.  This
book  is designed  to  be  an introduction  to  the  basic  ideas  and  results  of
computability  theory  (or  recursion  theory,  as  it  is  traditionally  known
among mathematicians).

The  initial  purpose  of  computability  theory  is  to  make  precise  the
intuitive  idea  of  a computable  function; that is, a function  whose  values
can be calculated in some kind of automatic or effective  way. Thereby we
can gain a clearer understanding  of  this intuitive  idea; and only  thereby
can we  begin  to  explore  in  a mathematical  way  the  concept  of  compu-
tability as well as the many related ideas such as decidability and effective
enumerability.  A  rich  theory  then  arises,  having  both  positive  and
negative  aspects (here we are thinking of  non-computability  and wrcdeci-
dability  results), which it is the  aim of  this book  to  introduce.

We  could  describe  computability  theory,  from  the  viewpoint  of
computer science, as beginning with the question What can computers do
in  principle  (without  restrictions  of  space,  time  or  money)?-and,  by
implication  -  What  are  their  inherent  theoretical  limitations? Thus  this
book  is  not  about  real  computers  and  their  hardware,  nor  is  it  about
programming  languages  and  techniques.  Nevertheless,  our  subject
matter  is  part  of  the  theoretical o background  t  the  real  world  of
computers  and  their  use,  and  should  be  of  interest  to  the  computing
community.

For  the  basic  definition  of  computability  we  have  used  the  'idealised
computer' or register machine approach; we have found that this is readily
grasped by students, most of whom are aware of  the idea of  a computer.
(We do not,  however,  assume such  an awareness  (although it is  helpful)
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and even less do we s assume  any practical  experience  with computer  or
calculators.)  Our  approach  is  mathematically  equivalent  to  the  many
others  that  have  been  discovered,  including  Turing  machines,  the
favourite  of  many.  (We discuss these equivalences  in chapter  3.)

This text grew out of a course given to undergraduates in mathematics
and computer science at the University of Hull. The reader envisaged is a
mathematics student with no prior knowledge of this subject, or a student
of  computer science who may wish to supplement  his practical  expertise
with  something  of  the  theoretical  background  to  his e subject.  W  have
aimed  at  the  second  or  third  year  undergraduate  level,  although  the
earlier chapters covering the basic theory (chapters 1-7)  should be within
the grasp of good students in sixth forms, high schools  and colleges  (and
their teachers). The only prerequisites are knowledge of the mathemati-
cal  language  of  sets  and  functions  (reviewed  in  the  Prologue)  and  the
ability to follow  a line  of  mathematical  reasoning.

The later chapters (8-12) are largely independent of each other. Thus a
short introductory course could consist of chapters  1-7  supplemented by
selection  according to  taste  from  chapters 8-12.  It  has been  our  aim in
these  later  chapters  to  provide  an  introduction  to  some  of  the
ramifications  and applications of basic computability theory, and thereby
provide  a stepping stone towards more advanced study. To this end, the
final  chapter  contains  a  brief  survey  of  possible  directions  for  further
study, and some suggestions for further reading. (The two main texts that
might  be  regarded  as  natural  sequels  to  this  one  are  M.  L.  Minsky,
Computation: Finite and Infinite Machines,  which would complement the
present volume by its broad and comprehensive study of computation  (as
opposed to computability), and H. Rogers,  Theory of Recursive Functions
and Effective  Computability,  which provides a more  advanced  treatment
of  recursion theory  in depth.)

Many people have helped towards the writing of this book. I would  first
thank John Cleave, who taught me recursive function  theory in a gradu-
ate course  at the University of Bristol  in 1966,  and introduced me to the
register machine  approach that I have used here. I have greatly appreci-
ated  the  sustained  interest  and encouragement  from  Stan Wainer  (who
also  made  valuable  suggestions  for  the  material  in  chapters  10  and  12)
and David Jordan: I thank them. I would also like to thank David Jordan
and Dick Epstein for reading a draft of the manuscript and making many
valuable  comments  and  corrections.  I  am  grateful  to  the  Cambridge
University  Press  for  their  interest  and  advice  which  has resulted  in  the
emergence  of  the completed  manuscript.
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Finally,  a  big  thank  you  to  my  wife  Mary  for  her  patience  and
encouragement during the many phases of writing and preparation of this
book;  her  idealism  and understanding  have been  a sustaining  influence
throughout.



Prologue
Prerequisites  and  notation

The only prerequisite  to be able to read this book  is familiarity  with the
basic notations of sets and functions,  and the basic ideas of mathematical
reasoning. Here we shall review these matters, and explain the notation
and  terminology  that  we  shall  use.  This  is  mostly  standard;  so  for  the
reader  who r prefers  to move straight  to chapter  1 and  refe  back to this
prologue  only  as  necessary,  we  point  out  that  we  shall  use  the  word
function  to mean a partial function  in general. We discuss this more  fully
below.

1.  Sets
Generally we shall use capital letters A, B, C, . . .  to denote sets.

We write x €  A  to mean that *  is a member  of A, and we write x& A  to
mean  that  x  is  not  a  member  of  A.  The  notation  {x: . . .  x...}  where
. . .  JC. ..  is some statement  involving x  means the set  of all objects x  for

which . . .  JC . . .  is true. Thus  {JC : x  is an  even  natural  number} is the set
{0,2,4,6, . . .} .

If A, B  are sets, we write A c  B  to mean that A is contained in B  (or A
is a subset of B);  we use the notation A  <= B to mean that A c  B but  A^B
(i.e.  A  is  a  proper subset  of  B).  The  union  of  the  sets  A, B  is the  set
{JC :  JC €  A or  JC €  B  (or both)}, and is denoted b y A u 5 ; the intersection  of
A, B  is  the  set  {jc:jceA  and  xeB}  and  is  denoted  by  AnB.  The
difference  (or  relative  complement)  of  the  sets A, B  is the  set  {JC : x e  A
and  JC£ B}  and is denoted  by A  \B.

The  empty  set  is denoted  by 0 .  We  use  the  standard  symbol  f̂l to
denote the set of natural numbers {0,1, 2, 3 , . . . } .  If A  is a set of natural
numbers (i.e. A c  M) we write A to denote the complement  of A relative
to  N,  i.e.  N\A.  We  write  N+  for  the  set  of  positive  natural  numbers
{1, 2, 3 , . . . }, and as usual Z denotes the set  of integers.
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We  write  (x, y)  to  denote  the  ordered pair  of  elements  x  and  y;  thus
(x9 y)  5* (y,  JC) in general. If A,  Z? are sets, the Cartesian product  of A and  B
is the  set  {(*, y):  xeA  and  y 6 £ } , and  is denoted  by A  x  B.

More  generally,  for  elements  x\,...,  xn  we  write  U i , . . . ,  xn)  to
denote the  ordered n-tuple  of  xu  •  •  •, xn;  an n-tuple  is often  represented
by  a single  boldfaced  symbol  such  as  x.  If  Au  •  •  •, An  are  sets we  write
AiX..  .xAn  for  the  set  of  n-tuples  {(JCI, . . . ,  xn):  xie  A\  and  Jt2e
A 2 . . .  xn  e An}.  The product  Ax  Ax...  x A  (n  times)  is abbreviated  by
A"; A 1  means  A.

2.  Functions
We assume familiarity  with the basic idea  of a function,  and the

distinction between a function /  and a particular value f(x)  at any given x
where /  is defined.1  If /  is a function,  the domain  of /  is the set {x: f(x)  is
defined},  and  is  denoted  Dom(/);  we  say  that  f(x)  is  undefined  if
jc£Dom(/).  The  set  {/(*): x eDom(/)}  is  called  the  range  of /,  and  is
denoted by Ran(/). If A and B are sets we say that /  is a function from A to
B  if Dom(/) c  A and Ran(/) c  B. We use the notation / :  A -* 5  to mean
that /  is a function  from  A  to B  with Dom(/) = A.

A function /  is said to be injective  if whenever  JC, y e Dom(f)  and x ^  y,
then /(JC) #/(y).  If / , is injective  then f~l  denotes the inverse  of /, i.e. the
unique  function  g  such  that  Dom(g) = Ran(/)  and  g(/0c)) =  Jc for  x e
Dom(/). A function  /  from  A to B  is surjective  if Ran(/) = B.

If / : A -> Z?,  we say that /  is an injection  (from A to £)  if it is injective,
and a surjection  (from A to B)  if it is surjective. It is a bijection  if it is both
an injection  and a  surjection.

Suppose that /  is a function  and X  is  a set. The  restriction  of /  to X>
denoted by f\X,  is the function  with domain X c\ Dom(/) whose value for
x eX  nDom(/)  is  /(JC). We write /(AT) for Ran(/|X).  If  Y  is a set, then
the inverse image of Yunderf  is the set / - 1(y)  = {x: f(x)e  Y}. (Note that
this is defined  even when /  is not  injective.)

If /,  g  are functions,  we say that  g extends f  if Dom(/) c  Dom(g)  and
f(x)  = g(x)  for  all n ;ceDom(/):  i  short, /=g|Dom(/) .  This  is  written

1  Usually in mathematical texts a function /  is defined to be a set of ordered pairs
such that if  (x, y) e /  and (*,  z) e /, then y = 2, and /(JC ) is defined to be this y. We
do not insist on this definition of a function, but our exposition is consistent with
it.
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The  composition  of  two functions /,  g  is the function  whose  domain  is
the  set  {JC:   jc€Dom(g )  and g(jc)eDom(/)},  and  whose  value  is  f(g(x))
when defined.  This function  is denoted /°g.

We denote  by f0  the  function  that  is defined  nowhere; i.e. f0  has the
property  that  Dom(/ 0)  = Ran(/0)  = 0 .  Clearly  f0  = g 10  for  any
function  g.

Often  in  computability  we  shall  encounter  functions,  or  expressions
involving  functions,  that  are  not  always  defined.  In  such  situations  the
following notation is very useful.  Suppose that a(x)  and 0(x)  are expres-
sions involving the variables x  = (JCI, . . .  xn).  Then we  write

a(x)~fi(x)
to  mean  that  for  any  x>  the  expressions  a(x)  and  /3(x)  are  either  both
defined,  or  both  undefined,  and  if  defined  they  are  equal.  Thus,  for
example, if/,  g are functions,  writing/(JC) — g(x)  is another way of saying
that / =  g;  and for aiiy number  y, /(JC) — y means that f(x)  is defined  and
fix)  = y  (since  y  is always  defined).

Functions  of  natural  numbers  For  most  of  this  book  we  shall  be
concerned  with functions  of  natural  numbers; that is, functions  from  Nn

to  l\l for  various  n, most commonly  n =  1 or 2.
A function /  from  f̂ Jn to N is called an n-ary  function. The value of /  at

an  n-tuple  (JCI, . . . ,  xn)e  Dom(/)  is  written  /(JCI, . . . ,  jcn),  or /(*),  if  x
represents  (JCI, . . . ,  xn).  In some texts the phrase partial function  is used
to describe  a function  from  N" to N whose  domain  is not necessarily  the
whole  of  Nn.  For  us  the  word  function  means  partial  function.  On
occasion  we  will,  nevertheless,  write  partial  function  to  emphasise  this
fact. A total function  from Nn to N is a function whose domain is the whole
oiNn.

Particularly  with  number  theoretic  functions,  we  shall  blur  the  dis-
tinction between a function and its particular values in two fairly standard
and  unambiguous  ways.  First  we  shall  allow  a  phrase  such  as  'Let
/(JCI, . . .  xn)  be a function . . . '  as a means of  indicating that /  is an  n-ary
function. Second, we shall often describe a function in terms of its general
value when this is given by a formula. For instance, 'the function x2'  means

 'the  unary  function  /  whose  value  at  any  jc€f̂ i  is  JC2'; similarly,  'the
function  x + y'  is  the  binary  function  whose  value  at  (JC, y)e  N2  is  JC + y.

We describe the zero function  f̂ -> W by 0; and generally, for m e N, we
denote  the  function  N-*M  whose  value  is  always  m  by  the  boldface
symbol  m.
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3.  Relations and predicates
If A  is a set, a property M(xu  • . . ,  xn)  that holds (or is true)  for

some H-tuples from An  and does not hold (or is false) for all other n-tuples
from  A  is called  an /i-ary relation  or predicate  on A.2

For example, the property x < y is a binary relation (or predicate) on N;
2 < 3 holds (or is true) whereas 9 < 5 does not hold (or is false). As another
example,  any rc-ary function  /  from  M" to M  gives rise to  an  (n + l)-ary
predicate M(x, y) given by

M(JCI, . . . ,  xn, y)  if and only if f(xu  . . . , * „ ) *  y.

Equivalence  relations and  orders  (The  student  unfamilar  with  these
notions  may prefer  to delay reading this paragraph  until  it  is needed  in
chapter 9.) In chapter 9 we shall encounter two special kinds of relations
on a set  A.
(a)  A binary relation i?ona  set A  is called  an equivalence relation  if it
has the following properties  for  all  x,y,zeA:

(i)  (reflexivity) £(*,*);
(ii)  (symmetry)  if R(x,y)  then  R(y,  x)\
(iii)  (transitivity)  if R(x,  y)  and R(y9z)  then  R(x9z).

We think  of R(x,  y) as saying that x, y are equivalent  (in some particular
sense). Then we define  the  equivalence class of x  as the set {y: R(x>  y)},
consisting  of  all things equivalent to  x.
(b)  A  binary  relation  R  on  a  set  A  is  called  a  partial order if,  for  all

(i)  (irreflexivity)  not  R(x,x)',
(ii)  (transitivity)  if R(x,  y)  and R(y,  z)  then  R(x,  z).

A partial  order  is usually denoted  by the  symbol <,  and  we write x < y
rather  than  <(x,y).  A partial  order  is often  defined  by first defining  <
(meaning <  or =), with the properties

(i)  x<x\
(ii)  if  JC < y and  y < x  then x = y;
(iii)  <  is transitive;

and then defining  JC < y to mean x^y  and x ^  y.

4.  Logical notation
Our logical notation and usage will be standard throughout. We

use  the  word  iff  as  an  abbreviation  for  if  and  only  if.  The  symbol  =

2  Often  an  n-ary  relation  or predicate  M(x)  on  a set  A  is  identified  with  the  set
{  JC:  x e An  and M(x)  holds}. We do not insist on this identification  here, although
our exposition  is consistent  with this approach.
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denotes  definitional  equivalence,  while  =>  denotes  implies,  and  <=>
denotes implies and is implied by. We use the symbols V, 3 to mean  'for
all' and 'there exists' in the standard way.

The symbol D is used in the text to indicate the end  of a proof.

5.  References
Each chapter  is divided into sections, and items in each section

are numbered  consecutively. A reference  such as theorem  5-1.4  means
theorem  1.4  of chapter 5: this is the fourth  numbered item of  § 1 in that
chapter.  When  referring  within  a chapter  the  number  of  the  chapter  is
omitted.  Exercises  are  included  in  this  system  of  numbering.  Thus
exercise  6-1.8(2)  means  the  second  exercise  of  exercises  1.8,  found  in
chapter 6.

Reference  to s entries  in the bibliography  i  made  by citing the  author
and year  of publication  of the work referred  to.





1
Computable  functions

We  begin  this  chapter  with  a  discussion  of  the  fundamental  idea  of  an
algorithm or effective  procedure. In subsequent sections we describe the
way  in  which  this  idea  can  be  made  precise  using  a  kind  of  idealised
computer;  this lays the foundation  for  a mathematical  theory  of  compu-
tability and computable  functions.

1.  Algorithms,  or effective  procedures
When taught arithmetic in junior school we all learnt to add and

to  multiply  two  numbers.  We  were  not  merely  taught  that  any  two
numbers have a sum and a product -  we were given methods or rules  for
finding  sums  and  products.  Such  methods  or  rules  are  examples  of
algorithms  or  effective procedures. Their  implementation  requires  no
ingenuity or even intelligence beyond that  needed to obey the  teacher's
instructions.

More  generally,  an  algorithm  or  effective procedure is  a  mechanical
rule, or  automatic method,  or programme  for  performing  some mathe-
matical  operation.  Some  more  examples  of  operations  for  which  easy
algorithms can be given are

(1.1)  (a)  given  n, finding the  nth prime  number,
(b)  differentiating  a polynomial,
(c)  finding  the  highest  common  factor  of  two  numbers  (the
Euclidean  algorithm),
(d)  given two numbers  JC, y deciding whether x  is a multiple of y.

Algorithms  can  be  represented  informally  as  shown  in  fig.  la.
The  input  is  the  raw  data  or  object  on  which  the  operation  is  to  be
performed  (e.g. a polynomial for  (1.1) (b), a pair of numbers for  (1.1) (c)
and (d)) and the output is the result of the operation (e.g. for (1.1) (b), the
derived polynomial, and for (1.1) (d), the answer yes or no). The output is
produced mechanically by the black box -  which could be thought of as a
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Output
i

Black box

calculating  machine,  a  computer,  or  a  schoolboy  correctly  taught-or
even  a  very  clever  dog  trained  appropriately.  The  algorithm  is  the
procedure  or  method  that  is  carried  out  by the  black  box  to  obtain  the
output  from  the  input.

When  an  algorithm  or  effective  procedure  is  used  to  calculate  the
values of  a numerical  function  then the function  in question  is described
by phrases such as effectively calculable,  or algorithmically  computable,  or
effectively computable,  or just computable.  For instance, the functions  xy,
HCF(JC, y) = the  highest  common  factor  of  x  and  y,  and  f(n)  = the  nth
prime  number,  are  computable  in  this  informal  sense,  as  already
indicated.  Consider, on the other  hand, the following  function:

II  if there is a run of exactly n consecutive  7s
in the decimal expansion of  n,

0  otherwise.
Most  mathematicians  would  accept  that  g  is  a  perfectly  legitimate
function.  But  is  g  computable?  There  is  a  mechanical  procedure  for
generating  successive  digits  in  the  decimal  expansion  of  TT,1 SO the
following  'procedure'  for computing  g  suggests  itself.

'Given  n,  start  generating  the  decimal  expansion  of  n,  one  digit  at a
time, and watch for 7s.  If  at some stage a run of exactly  n consecutive  7s
has appeared, then stop the process and put g(n)  =  1. If no such sequence
of  7s appears put  g(n)  = 0.'

The problem with this 'procedure' is that, if for a particular n there is no
sequence of exactly n consecutive 7s, then there is no stage in the process
where we can stop and conclude  that this is the case. For all we know at
any particular stage, such a sequence of 7s could appear in the part of the
expansion of  w that has not yet been examined. Thus the 'procedure' will
go  on  for  ever  for  inputs  n  such  that  g(n)  = 0;  so  it  is  not  an  effective
procedure.  (It  is  conceivable  that  there  is  an  effective  procedure  for
computing  g based, perhaps, on some theoretical properties of  n. At the
present time, however,  no such procedure  is known.)

This will  be established  in chapter 3 (example  7.1(3)).
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This example pinpoints two features  implicit in the idea of an  effective
procedure -  namely, that such a procedure  is carried out in a sequence of
stages  or  steps  (each  completed  in  a  finite  time),  and  that  any  output
should emerge  after  a finite number  of steps.

So  far  we  have  described  informally  the  idea  of  an  algorithm,  or
effective  procedure,  and  the  associated  notion  of  computable  function.
These ideas must be made precise before  they can become the basis for a
mathematical  theory  of  computability -  and  no/i-computability.

We shall make our definitions in terms of a simple 'idealised computer'
that operates programs. Clearly, the procedures that can be carried out by
a real computer are examples of effective procedures. Any particular real
computer, however, is limited both  in the size of the numbers that it can
receive  as input,  and  in the  amount  of  working  space  available;  it  is in
these respects that our 'computer' will be idealised in accordance with the
informal  idea  of  an  algorithm.  The  programs  for  our  machine  will  be
finite,  and  we  will  require  that  a  completed  computation  takes  only  a
finite number  of  steps.  Inputs  and  outputs  will  be  restricted  to  natural
numbers; this  is not  a significant  restriction,  since operations  involving
other kinds of object can be coded as operations on natural numbers. (We
discuss this more fully  in  § 5.)

2.  The unlimited register  machine
Our  mathematical  idealisation  of  a  computer  is  called  an

unlimited register machine  (URM);  it  is a slight  variation  of  a  machine
first  conceived  by  Shepherdson  &  Sturgis  [1963].  In  this  section  we
describe the URM and how it works; we begin to explore what it can do in
§3.

The URM has an infinite  number  of  registers  labelled Ri, R2, R 3 , . . . ,
each  of  which  at  any  moment  of  time  contains  a  natural  number;  we
denote  the  number  contained  in  Rn  by  rn. This  can  be  represented  as
follows

Ri  R2  R3  R4  R5  R6  R7

The contents of the registers may be altered by the URM in response to
certain instructions that it can recognise. These instructions correspond to
very simple operations used in performing  calculations with numbers. A
finite  list of instructions constitutes a program. The instructions are of four
kinds, as follows.
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Zero  instructions  For  each  n =  1, 2, 3 , . . .  there  is  a  zero  instruction
Z(n).  The response  of  the URM to the instruction  Z(n)  is to change  the
contents  of  Rn  to 0,  leaving  all other registers  unaltered.

Example  Suppose  that  the  URM  is  in  the  following
configuration

Rx  R2  R3  R4  R5  Re

23 0

and obeys  the zero instruction Z(3). Then the resulting configuration  is

(*) 0 23 0

The response of the URM to a zero instruction Z(n)  is denoted by 0  -*  Rn,
or  rn  := 0  (this is read  rn becomes  0).

Successor  i n s t r u c t i o n s  F o r  e a c h  n = l , 2 , 3 , . . .  t h e r e  i s  a  successor
instruction S(n).  The  response  of  the  URM  to the  instruction  S(n)  is to
increase  the  number  contained  in  Rn  by  1,  leaving  all  other  registers
unaltered.

Example  Suppose  that  the  URM  is  in  the  configuration  (*)
above  and  obeys  the  successor  instruction  S(5).  Then  the  new  con-
figuration is

Ri  R2  R3  R4  R5  R6

0  23 8 0

The  effect  of  a successor  instruction  S(n)  is  denoted  by
rn := rn +  1  (rn becomes rn +1).

l-*Rn ,  or

Transfer instructions  For each m =  1, 2, 3 , . . . and n =  1, 2, 3 , . . . there
is  a  transfer  instruction  T(m,n).  The  response  of  the  URM  to  the
instruction  T(m,  n)  is  to  replace  the  contents  of  Rn  by  the  number  rm

contained  in Rm  (i.e.  transfer  rm  into Rn);  all  other  registers  (including
Rm)  are unaltered.

Example  Suppose  that  the  URM  is  in  the  configuration  (**)
above  and  obeys  the  transfer  instruction  T(5,1).  Then  the  resulting
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configuration  is
Ri  R2  R3  R4  R5  R6

8 0 23 8 0

The response  of the URM to a transfer  instruction T(ra, y n) is denoted b
rm  -» R m  or  rn  :=  rm  (rn  becomes  rm).

Jump instructions  In the operation  of an informal  algorithm there may
be a stage when alternative  courses  of  action  are prescribed,  depending
on the progress of the operation up to that stage. In other situations it may
be necessary to repeat a given routine several times. The URM is able to
reflect  such procedures as these using jump instructions;  these will allow
jumps  backwards  or  forwards  in  the  list  of  instructions.  We  shall,  for
example,  be  able  to  use  a  jump  instruction  to  produce  the  following
response:

'If r2 = r6, go to the 10th instruction in the program; otherwise, go
on to the  next instruction  in the program.'

The instruction  eliciting this response  will be written J(2, 6, 10).
Generally, for each m = 1, 2, 3 , . . . ,  n = 1, 2, 3 , . . . and q = 1, 2, 3 , . . .

there  is a jump instruction  J(m, n, q).  The  response  of  the  URM to the
instruction  J(m,nyq)  is  as  follows.  Suppose  that  this  instruction  is
encountered  in a program  P. The contents  of  Rm  and Rn  are  compared,
but  all registers are left  unaltered. Then

if rm = rn, the URM proceeds to the qih instruction  of P;
if rm  T*  rn, the URM proceeds to the next instruction  in P.

If the jump is impossible because P has less than q instructions, then the
URM stops operation.

Zero, successor and transfer  instructions are called arithmetic instruc-
tions.

We summarise the response  of the URM to the four  kinds of instruc-
tion in table  1.

Computations  To perform  a computation  the URM must be provided
with  a  program  P  and  an  initial  configuration -  i.e.  a  sequence
0i»02>03»-««  of  natural  numbers  in  the  registers  Ri, R2, R3, • •  • •
Suppose that P  consists  of s instructions /1, h,...,  Is. The URM begins
the  computation  by  obeying  Iu  then  J2,13,  and  so  on  unless  a  jump



1  Computable  functions 12

Table  1

Type of  instruction  Instruction Response  of  the  URM

Zero  Z(n)  Replace  rn  by 0.  (0 -> Rn,  or  rn  := 0)
Successor  S(n)  Add  1 to  rn. (rn +1  -* Rn,  or  rn := rrt +

1)
Transfer  T(m, n)  Replace rn by rm. (r m -» Rn, or rn := rm)
Jump  J(m, n, 4)  If rm =  rn, jump to the qth instruction;

otherwise  go  on  to  the  next  instruc-
tion in the program.

instruction, say J(m, n, q),  is encountered.  In this case the URM proceeds
to the instruction prescribed by J(m, n, q)  and the current contents of the
registers Rm  and Rn.  We illustrate  this with an example.

2.1.  Example
Consider  the following  program:

h  Jd,2,6)
h  S(2)
h  S(3)
/4  J(l,2,6)
/s  J(l,  1,2)
/6  T(3,l)

Let us consider the computation  by the URM under this program with
initial  configuration

Ri

9

R2

7

R3

0

R4

0

Rs

0

(We are not concerned at the moment about what function this program
actually  computes;  we  wish  to  illustrate  the  way  in  which  the  URM
operates  programs  in  a  purely  mechanical  fashion  without  needing  to
understand the algorithm that is being carried out.)

We can represent the progress of the computation by writing down the
successive configurations that occur, together with the next instruction to
be obeyed  at the completion  of  each stage.
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Initial
initial
config-
uranon

Ri

9

R2

7

R3

0

R4

0

R5

0

  9 7 0  0 0

9 8 0  0 0

9 8 1  0 0

9 8 1  0 0

9 8 1  0 0

Next  instruction

I2  (since  rx ^ r2)

U

Is  (since  r\  ^ r2)

I2  (since  r\  =

and so on.  (We shall  continue  this computation  later.)

We  can  describe  the  operation  of the  URM  under  a program  P  =
/ i , / 2 , . . . ,  Is  in general  as follows.  The URM  starts by obeying  instruc-
tion  11. At  any future stage  in the computation, suppose that the URM is
obeying  instruction  Ik.  Then  having  done  so  it proceeds  to the  next
instruction in the computation,  defined  as follows:

if  Ik  is not  a jump instruction,  the  next instruction  is  Ik+i\
if  rm =  rm

-i  otherwise,
where  rm,  rn  are the current contents  of  Rm  and  Rn.

The  URM  proceeds  thus  as  long  as  possible;  the  computation  stops
when, and only when, there is no next instruction; i.e. if the URM has just
obeyed  instruction  Ik  and  the  'next  instruction  in the  computation'
according to the above definition  is Iv  where  v>s.  This can happen in the
following ways:

(i)  if k  = s  (the last instruction in P  has been obeyed) and Is  is an
arithmetic  instruction,
(ii)  if  Ik  = J(m,  n, q),  rm =  rn and q >  s,
(iii)  if  Ik  = J(m, n, q),rm^  rn  and  k  =  s.

We  say  then  that  the  computation  stops  after  instruction  Ik;  the  final
configuration is the sequence ru  ̂ 2, r3 , . . . ,  the contents of the registers at
this stage.

if Ik  = J(m, n, q)  the next instruction is
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Let  us now continue  the computation  begun in example 2.1.

Example  2.1  (continued)
Ri  R2  R3  R4  R5

Final
config-
uration

 9 8 1  0 0

 9 9 1  0 0

  9 9 2 0 0

 9 9 2  0 0

2    9 2 0 0

Next  instruction

h

h

U

h  (since  r\ =  r2)

I7:  STOP.

This  computation  stops  as  indicated  because  there  is  no  seventh
instruction  in the program.

2.2.  Exercise
Carry  out  the  computation  under  the  program  of  example  2.1

with initial  configuration 8,4,  2, 0, 0 , . . .

The essence of a program and the progress of computations under it is
often  conveniently  described  informally  using  a  flow diagram.  For
example, a flow diagram representing the program of example 2.1 is given
in  fig.  \b.  (We  have  indicated  alongside  the  flow  diagram  the  typical
configuration of the registers at various stages in a computation.) Note the
convention  that  tests  or questions  (corresponding  to  jump  instructions)
are placed  in diamond shaped boxes.

The translation of this flow diagram into the program of exercise 2.1 is
almost self-explanatory.  Notice that the backwards jump on answer 'No'
to  the  second  question  lri.=  r2T  is  achieved  by  the  fifth  instruction
J(l,  1, 2) which is an  unconditional  jump: we always have  r^ = ru  so this
instruction causes a jump to I2  whenever  it is encountered.

When  writing  a  program  to  perform  a  given  procedure  it  is  often
helpful  to  write  an  informal  flow  diagram  as  an  intermediate  step:  the
translation  of  a flow diagram into a program is then usually routine.
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Fig.  \b.  Flow  diagram  for  the  program  of  example  2.1.

START

Typical  configuration

Ri  R2  R3

After  /c cycles round the loop
in this program:

y+k  z+k

If  JC  =  y  +  fc:

z+fc

STOP

There  are,  of  course,  computations  that  never  stop:  for  example,  no
computation  under  the  simple  program  S(l),  J(l,  1,1)  ever  stops.
Computation  under this  program  is represented  by the flow diagram  in
fig. lc. The jump instruction invariably causes the URM to return, or loop
back,  to the instruction . S(l)

There are more sophisticated ways in which a computation may run for
ever, but always this is caused essentially  by the above kind of  repetition
or looping  back  in the execution  of  the program.
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Fig. lc.
START

1
r,:=r, + l

T

2.3  Exercise
Show that  the n computatio  under  the  program  of  example  2.1

with initial  configuration  2, 3, 0, 0, 0 , . . .  never  stops.

The question  of deciding whether  a particular  computation  eventually
stops or  not  is one to which we will return  later.

Some notation  will help us now in our discussion. Let  a\,  a2, a 3, . . .  be
an  infinite  sequence  from  N and  let  P  be  a program; we will  write

(i)  P{a\9  02, 03, •  • •)  for  the  computation  under  P  with  initial
configuration  au  02, 03, •  • • ;
(ii)  P(tf i,  02, 0 3 , . . .  U  to  mean  that  the  computation
P(o,u  02, 03, • • •) eventually  stops;
(in)  P(0i, 0 2, 0 3 , . . .  )t  to  mean  that  the  computation
P(a\,  02, 0 3 , . . . )  never  stops.

In  most  initial  configurations  that  we  shall  consider,  all  but  finitely
many  of  the  0,  will  be  0.  Thus  the  following  notation  is  useful.  Let
01, 0 2 , . . . ,  0n  be  a  finite sequence  of  natural  numbers; we write

(iv)  P(au  a2,...,an)  for  the  computation
P(au  0 2 , . . . ,  an,  0 , 0 , 0 , . . . ) ,

Hence
(v)  P(au  02, •  • •, 0n)4 means that P(au  02, •. •, am 0 , 0 , 0 , . . .  ) | ;
(vi)  P(au  0 2 , . . . ,  0n)t means that P(au  02,. • . , 0 « , 0 , 0 , 0 , . . . ) | .

Often  a computation  that stops is said to  converge,  and one that  never
stops  is said to  diverge,

3.  URM-computable  functions
Suppose  that / i s  a function  from  f̂ ln  to  N  (n >  1); what  does  it

mean  to  say that  /  is computable  by the URM?  It  is natural  to think  in
terms  of  computing  a  value / ( 0 i , . . . ,  an)  by  means  of  a program  P  on
initial  configuration  au  02, • • . ,  0n, 0, 0 , . . . .  That  is,  we  consider
computations  of  the  form  P{au  <*2,  • - •,  an).  If  any  such  computation
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stops, we need to have a single number that we can regard as the output or
result of the computation; we make the convention that this is the number
ri finally contained in Ri. The final contents of the other registers can be
regarded as rough work or jottings, that can be ignored once we have the
desired result in  Rx.

Since  a  computation  P(au  . . . ,  an)  may  not  stop,  we  can  allow  our
definition  of  computability  to  apply to functions /  from  Mn to  N whose
domain may not be f all o  Nn;  i.e. partial functions. We shall require that
the relevant computations stop (and give the correct result!) precisely  for
inputs from the domain of /.  Thus we make the following  definitions.

3.1  Definitions
Let /  be  a partial function  from  Mn to  N.

(a)  Suppose  that P  is a program,  and let  au  a2i...,  an,  b €  N.
(i)  The  computation  P(au  a2,...,  an)  converges  to  b  if
P(au  #2 , . . •,  dn)i  and in  the final  configuration  b  is  in Ri.  We
write this P(au  • • . ,  an)ib\
(ii)  P  URM-computes  f  if,  for  every  au...,an9b
P(au...,an)lb  if  and  only  if  (ai,...,an)eDom(f)  and
f(au  • • • ,an)  = b. (In particular, this m e a n s that P(au  . . . ,  a n U  if
and  only  if ( # i , . . . ,  an)  e  D o m ( / ) . )

(b)  The  function  /  is  URM-computable  if  there  is  a  program  that
URM-computes /.

The  class  of  URM-computable  functions  is denoted  by  %  and  n-ary
URM-computable  functions  by  ^  From  now  on  we  will  use  the  term
computable  to mean URM-computable,  except in chapter 3 where other
notions  of  computability  are discussed.

We now consider some easy examples  of  computable  functions.

3.2  Examples
(a)  x + y.

We  obtain  x + y  by  adding  1 to  x  (using  the  successor  instruction)  y
times.  A  program  to  compute  x + y  must  begin  on  initial  configuration
x,  y, 0, 0, 0 , . . .  ;  our  program  will  keep  adding  1  to  ru  using  R3  as  a
counter to keep a record of how many times r\ is thus increased. A typical
configuration  during the computation  is

Ri  R2  R3  R4  R5

x  + k  y  k  0  0  . . .
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The program will be designed to stop when  k?=y,  leaving x + y  in Rx  as
required.

The procedure we wish to embody in our program is represented by the
flow diagram  in  fig.  Id.  A  program  that  achieves  this  is  the  following:

h  J(3,2,5)  < - -
h  S(l)
h  S(3)
h  J(l,  1,1)  •

(The dotted arrow, which is not  part of  the program, is to indicate to the
reader that the final  instruction has the effect  of  always jumping back to
the  first  instruction.)  Note  that  the  STOP  has been  achieved  by  a  jump
instruction to *I5\ which does not exist. Thus, x + y  is computable.

Fig.  Id.  Flow diagram for  addition  (example  3.2(a)).
START

-+>

r,:=f

No

1  +  *

t

k + 1

Yes
STOP

- ' - f tx-1  i fjt>0,

(Since we are restricting ourselves to functions from  1̂1 to N, this is the best
approximation  to the function  x - 1 . )

We  will  write  a program embodying  the  following  procedure.  Given
initial  configuration  x, 0 , 0 , 0 , . . . ,  first  check whether  x = 0;  if so, stop;
otherwise,  run two counters, containing  k  and k +1 , starting with  k = 0.
A typical  configuration  during a computation  will  be

Ri  R2  R3  R4

k  Jfc + 1  0
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Check whether x = k +1 ; if so, the required result is k; otherwise increase
both counters by 1,. and check again.

A  flow  diagram  representing  this  procedure  is  given  in  fig.  le.  A
program that carries out this procedure is the following:

h  Jd,4,9)
h  S(3)
I3  J(l,3,7)  «-
h  S(2)
Is  S(3)
h  Jd, 1,3)
h  T(2,l)

Thus the function  x — 1 is computable.

Fig.  le.  Flow  diagram  for  x — 1  (example  3.2(b)).

START Typical  configuration

R,  R2  R3

• %

NO

C  +  1
• •  STOP
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(c)  f(x) = ( ^  ft*  is even,
I undefined  if x  is odd.

In  this  example,  Dom(/) = E (the  even  natural  numbers)  so  we  must
ensure  that our program does not stop on odd inputs.

A  procedure  for  computing  f(x)  is  as  follows.  Run  two  counters,
containing  k  and  2k  for  k = 0 , 1 , 2 , 3 , . . . ;  for  successive  values  of  k,
check whether x = 2k;if  so, the answer is k; otherwise increase k  by one,
and repeat.  If  x  is odd, this procedure will clearly continue for ever.

The typical  configuration  will  be

1  I\ .2  JCV3  Jtv*

2k

with k  = 0 initially. A flow diagram for the above process is given in fig. If.

Fig.  1/.  Flow  diagram  for  example  3.2(c)).

START

STOP
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A  program that executes it is
A  JU.2,6)
h  S(3)
h  S(2)
h  S(2)
h  J ( l . l . l )

Hence /  is computable.
Note.  The programs in these examples are in no sense the only programs
that will compute  the functions  in question.

Given  any program P  (i.e.  any finite list of  instructions), and n >  1, by
thinking  of  the  effect  of  P  on  initial  configurations  of  the  form
au  a2,...,  am  0, 0 , . . .  we see that there is a unique n-ary function that P
computes, denoted  by f(p\  From the definition  it is clear that

rthe unique b such that P(au...,  an)ib9

f p \ a u . .  . , a n ) = <  if P ( a l y . .  . , a n ) U
(.undefined,  if P ( a i , . . . ,  a n) | .

In a later chapter we shall consider the problem of determining / P  }  for
any given program P.

It  is  clear  that  a particular  computable  function  can be  computed  by
many  different  programs;  for  instance,  any  program  can  be  altered  by
adding  instructions  that  have  no  effect.  Less  trivially,  there  may  be
different informal methods for calculating a  particular function, and when
formalised  as programs these would give different  programs for the same
function.  In  terms  of  the  notation  we  have  introduced,  we  can  have
different  programs Pi  and P2, with fp]  = f£l  for some (or all) n. Later we
shall  consider  the  problem  of  deciding  whether  or  not  two  programs
compute  the same  functions.

3.3  Exercises
1.  Show  that  the  following  functions  are  computable  by  devising

programs that will  compute  them.
| 0  if  JC = 0,
11  if  JC ^ 0;

(b)  f(x)  = 5;
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HZ
f 3 * itx  ls  a  multiple of 3,
1undefined otherwise;

(/)  /(*) = [2JC/3]. ([2] denotes the greatest  integer < z).
2.  Let P  be the program  in example 2.1. What  is fp)f>
3.  Suppose that P is a program without any jump instructions. Show

that there  is a number  m such that  either
/£>(*) = m,  for all  JC,

or
fp)(x)  = x + m>  for all  JC.

4.  Show that  for  each transfer  instruction  T(m,  n)  there  is a pro-
gram without any transfer  instructions that has exactly the same
effect  as  T(rn,n)  on  any  configuration  of  the  URM.  (Thus
transfer  instructions  are  really redundant  in the formulation  of
our  URM;  it  is  nevertheless  natural  and  convenient  to  have
transfer  as a basic facility  of the URM.)

4.  Decidable predicates and problems
In  mathematics  a  common  task  is to r decide whethe  numbers

possess a given property. For instance, the task described in (1.1) (d) is to
decide,  given  numbers  JC, y, whether  they  have the property  that  x  is a
multiple  of  y.  An  algorithm  for  this  operation  would  be  an  effective
procedure  that  on inputs  JC, y  gives output  Yes or No.  If  we adopt  the
convention  that  1  means  Yes,  and  0  means  No,  then  the  operation
amounts to calculation  of the  function

..  .  f 1  if x  is a multiple  of  y,
fix  v)== 1

10  if  JC  is not a multiple  of y.
Thus  we can  say that  the property  or predicate  'JC is a multiple  of  y'  is
algorithmically  or effectively decidable, or just decidable  if this function  /
is computable.

Generally,  suppose  that  M(JCI,  JC2, . . . ,  JC«)  is  an  n-ary  predicate  of
natural  numbers.  The  characteristic function  cM(x)  (setting  x =
(xu  .. .,*„)) y is given b

(1  if M(x)  holds,
CM  X  ~  lO  if M(x)  doesn't hold.
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4.1  Definition
The  predicate  Af Or) is decidable  if the function  cM  is compu-

table;  Af Or) is undecidable  if Af Or) is not decidable.

4.2  Examples
The following predicates are decidable:
(a)  'x  5* y': the function /of exercise 3.3 (lc) is the characteristic
function  of this predicate.
(b)  lx = 0': the characteristic function  is given  by

f 1  if x = 0,
if x * 0.

The following  simple program computes g:
Jd,2,3)
J(l, 1,4)  .
S(2)
T(2,1)
(c)  'x is a multiple  of y': it is possible to write a program for the
characteristic function, d but this would be somewhat lengthy an
complicated.  A  simpler  demonstration  that  this  predicate  is
decidable  will emerge  from the next chapter, where  techniques
for  generating  more  complex  computable  functions  are
developed.

Note  that  when  discussing  decidability  (or undecidability)  we are
always concerned with the computability  (or non-computability)  of  total
functions.

In the context  of decidability, properties or predicates are  sometimes
described  as problems.  Thus  we might  say that  the problem  'x ^ y' is
decidable.  In chapter 6 we will study undecidable problems.

4.3  Exercise
Show that the following predicates are decidable.
(a)  ' * < y \
(b)  *x*l\
(c)  'JC is even'.

5.  Computability on other domains
Since the URM handles only natural numbers, our definition  of

computability and decidability  applies only to functions  and predicates
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of  natural numbers. These notions  are easily extended to other kinds of
object  (e.g. integers, polynomials, matrices, etc.)  by means of  coding, as
follows.

A coding  of a domain D  of objects is an explicit and effective  injection
a:  D  -» N.  We  say  that  an object  d e D  is  coded  by the  natural  number
a(d).  Suppose  now that /  is a function  from D  to D\  then /  is naturally
cotied  by  the  function /*  from  N to M  that  maps the  code  of  an object
d £ Dom(/)  to the code  of f(d).  Explicitly we have

/* =a° / °a"1 .
Now we may extend the definition of URM-computability to D  by saying
that /  is  computable  if /*  is a computable  function  of  natural  numbers.

5.1  Example
Consider  the  domain  Z.  An  explicit  coding  is  given  by  the

function  a  where
,  x  [  2 n  i f n > 0 ,

l - 2 / t - l  i f n < 0 .

Then a"1  is given by

-i/  \ _ f  2^  if mis even,
«  (m )  = l _ i ( m  +  l)  if OT fa odd.

Consider  now  the  function  x — 1  on  Z;  if  we  call  this  function  /,  then
/*:  1̂1  -> fol is given by

fl  if Jc=O(i.e. x = a(0)),
/*(*) = < * - 2  if jc>0and;c  is even (i.e. x = a(n),  /t >0),

[JC+2  if  x  is  odd.  (i.e.  JC =  a(n),  n  <0).

It is a routine exercise to write a program that computes /*; hence x -1  is
a computable function on Z.

The  definitions  of  computable  n-ary  function  on  a  domain  D  and
decidable  predicate  on D  are obtained  by the obvious extension  of  the
above idea.

5.2  Exercises
1.  Show that the function  2x  on Z is computable.
2.  Show that the predicate  'x > 0' is a decidable predicate on Z.



2
Generating  computable
functions

In this chapter  we shall  see that  various methods  of  combining compu-
table functions  give rise to other  computable functions.  This will enable
us to  show  quite  rapidly  that  many  commonly  occurring  functions  are
computable, without writing a program each time -  a task that would be
rather laborious and tedious.

1.  The basic functions
First  we  note  that  some  particularly  simple  functions  are

computable; from these basic functions (defined  in lemma  1.1 below) we
shall then build more complicated  computable  functions  using the tech-
niques developed  in subsequent sections.

1.1.  Lemma
The following basic functions are computable:
(a)  the zero function  O(O(JC) = 0 for  all JC);
(b)  the successor function x + \\
(c)  for each n > 1 and 1 < / < n, the projection function U? given
by U?(xux2,..  .,*„) = *,.

Proof.  These  functions  correspond  to  the  arithmetic  instructions  for
the URM. Specifically,  programs are  as follows:

(a)  0: program Z(l);
(b)  Jt + l:  program S(l);
(c)  U": program T(i, 1).  •

2.  Joining programs together
In  each  of  §§ 3-5  below  we  need  to  write  programs  that

incorporate other programs as subprograms or subroutines. In this section
we deal with some technical matters so as to make the program writing of
later sections as straightforward  as possible.
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A  simple  example  of  program  building  is when  we  have  programs  P
and Q,  and we wish to write a program for the composite procedure:  first
do P, and then do  Q.  Our instinct is to simply write down the instructions
in P  followed by the instructions in Q. But there are two technical points
to consider.

Suppose  that  P = Iu  7 2 , . . . , I5-  A  computation  under  P  is  completed
when  the  'next  instruction  for the computation'  is Iv  for some  v >s;  we
then  require  the computation  under our composite  program to proceed
to the first instruction of  Q. This will happen automatically  if v  = 5 4-1, but
not otherwise. Thus for building composite programs we must confine our
attention to programs that t invariably stop because the nex  instruction is
/s+i. Such programs are said to be in standard form. Clearly it is only jump
instructions  that  can  cause  a program  to  stop  in  non-standard  fashion.
Thus we  have the following  definition.

2.1.  Definition
A  program  P = 7i, 7 2 , . . . , / s  is  in  standard  form  if,  for  every

jump instruction J(m, n, q)  in P we  have  q^s  + 1.

Examples.  In  examples  1-3.2  the  programs  for  (a)  and  (c)  are  in
standard form, whereas  the program  in  (b)  is not.

Insisting on standard form if necessary is no restriction, as we now see.

2.2.  Lemma
For any  program P  there is a program P*  in standard  form  such

that  any  computation  under P*  is  identical  to the corresponding  compu-
tation under P, except possibly  in the manner of stopping. In particular, for
any  au  •  ..,an,b,

P(au  •  •  •,  an) I b if and only ifP*{au  . . . ,  aH)ib9

and  hence f?  =/£*  for every  n>0.
Proof. Suppose  that  P = / i , / 2 , . . . ,  Is.  To  obtain  P*  from  P  simply

change  the  jump  instructions  so  that  all  jump  stops  occur  because  the
jump is to J,+1.  Explicitly,  put P* = /*, / * , . . . , / ?  where

if  Ik  is not  a jump instruction,  then / *  =  Ik;

if/*-««,«,,), then/*-{{*  +1.
u(m,  AI, 5-hi)

Then clearly P*  is as required.  D
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Let  us assume  now  that  the  programs  P  and  Q  are  in standard  form.
The  second  problem when e joining  P  and  Q  concerns  th  jump instruc-
tions in Q. A jump J(m, n, q)  occurring in Q  commands a jump to the qth
instruction of  Q  (if  rm =  /•„). But the  <?th instruction of  Q  will bf come the
s + qth instruction in the composite program; thus each jump J(m, n, q)  in
Q  must be modified to become J(m, n, s + q)  in the composite  program if
the sense  is to be preserved.

Now without any further e worry we can defin  the join  or  concatenation
of  two programs  in standard  form:

2.3.  Definition
Let P  and Q  be programs of lengths s, t respectively, in standard

P
form.  The  join  or  concatenation  of  P  and  Q>  written  PQ  or  ,  is  the

program  Iu  h,  •  • •  > 1$, Is+\  •  • •, L+t  where  P = IU...,IS,  and  the
instructions  J s +i , . . . ,  Is+t  are  the  instructions  of  Q  with  each  jump
J(m, n, (?) replaced  by J(m, n, s

With this  definition  it  is clear  that  the  effect  of  PQ  is  as desired:  any
computation  under  PQ  is  identical  to  the  corresponding  computation
under P followed by the computation under Q whose initial  configuration
is the final configuration  from the computation  under  P.

There  are  two  further  considerations  before  we  can  proceed  to  the
major tasks of  this chapter. Suppose  that we wish to compose  a program
Q  having  a  given  program  P  as  a  subroutine.  To  write  Q  it  is  often
important  to  be  able  to  find  some  registers  that  are  unaffected  by
computations  under P. This can be done  as follows.

Since  P  is  finite,  there  is  a smallest  number  u  such  that  none  of  the
registers  Rt, for  v >  u is mentioned  in P;  i.e.  if Z(n),  or S(/i), or T(m, /t),
or  J(m, n, q)  is  an  instruction  in  P,  then  m,n<u.  Clearly,  during  any
computation under P, the contents of  Rv  for v >  u remain unaltered, and
have  no  effect  on  the  values  of  ru  •  • •,  ru.  Thus  when  writing  our  new
program  Q  the registers  R^ for  v >  u  can be used, for example, to store
information  without  affecting  any computation  under the  subroutine  P.
We denote  the number  u  by  p(P).

Finally, we introduce some notation that will greatly simplify  the main
proofs  of  this  chapter.  Suppose  that  P  is  a  program  in  standard  form
designed  to  compute  a function  f(xi,...,  xn).  Often  when  using  P  as a



2  Generating  computable  functions 28

subroutine  in  a  larger  program  the  inputs  Jt i , . . . ,  jcn  for  which
/(JCI, . . . , xn) is desired  may be held  in registers  Rix,...,  Rin  rather than
R i , . . . ,  Rn as the  program  P  requires; further,  the output f(x\,...,  xn)
may be required for future purposes to be in some register R/  rather than
the conventional Ri; and finally the working registers R i , . . . ,  Kp{P)  for P
may contain all kinds of unwanted information. We can modify P to take
account of all of these  points  as follows.

We write P[lu  - • •, L -»/] for the program in fig. 2a  that translates the
flow  diagram  alongside. The program  P[lu  . . . , / „  -W] has the effect of
computing/(/•/!,...,  rln) and placing the result  in R/. Moreover,  the only
registers affected  by this program are  (at most) Ri, R 2 , . . . ,  RP<p) and R,.
(We  have  assumed  in  defining  P[lu  , L -* /]  that  Rll9...,  R/n  are
distinct  from  R i , . . . ,  Rn;  this  will  be the case  in all our uses  of  this
notation. The reader should be able to modify the definition for situations
where  this is not the  case.)

Fig. 2a.  Flow  diagram  for P[lu

START

1
Transfer  x  from

k / | , . . . , R / n  to  R , , . . . J

Clear  R n + 1 , . . . , R p ( P

Z(n  +

)-*  R,  (using  P)

I
STOP
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3.  Substitution
A  common  way  of  manufacturing  new functions  from  old  is to

substitute  functions  into other  functions,  otherwise  known  as composi-
tion  of  functions.  In  the  following  theorem  we  show  that  when  this
process  is  applied  to  computable  functions,  the  resulting  functions  are
also computable. In short, we say that  <#  is closed under the operation of
substitution.

3.1.  Theorem
Suppose that f(yu  . . . ,  yk)  and g i (x) , . . . ,  gk(x)  are computable

functions,  where x  = (xu  . . . , xn).  Then the function  h(x)  given by

is computable.
(Note. h(x)  is defined if  and  only if gi(x),...,  gk(x)  are all defined and
(gi(x),.. . ,gfc(jr))eDom(/);  thus,  if  /  and  gu  . . . ,  gk  are  all  total
functions,  then h is total.)

Proof.  Suppose  that  F,GU  . . .  ,Gk  are  programs  in  standard  form
which  compute  /, gu...,  gk  respectively.  We  will  write  a  program  H
that  embodies  the  following  natural  procedure  for  computing  h.  'Given
JC,  use  the  programs  Gu...  ,Gk  to  compute  in  succession
gi(x),  gi(x),...,  gfc(x),  making  a  note  of  these  values  as  they  are
obtained. Then  use the program  F  to compute f(gi(x),...,  gfc (*)).'

We must take  a little care to avoid  losing information  needed  at  later
stages  in  the  procedure,  namely  JC and  those  values  gt(x)  already
obtained. Putting m = max(n, k, p(F), p(Gi),...,  p(Gk)),  we shall begin
by storing x  in R m +i , . . . ,  Rm+n;  the registers Rm + n + i ,  •  •  •,  Rm+*+fc  will
be used to store the values g,(jc) as they are computed  for  / =  1, 2 , . . . ,  k.
These  registers  are  completely  ignored  by  computations  under
F, Gu  • •, Gk. A typical configuration  during computation under H  will
be

Storage  registers

R l  • • • Rm  Rm + 1 • • • Rm +  + n  Rm+n + 1 Rm  n+2  • • •  Rm + n  / +

gi(x)

An  informal flow diagram  for  computing  h  is given  in fig. 2b. This is
easily translated  into the following program  H  that computes  h:
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T(l ,m

T(n,  m+n)

Gi[ra  + 1, m + 2 , . . . , m

Gk[m + l,  ra+2,  . . . , m
F[m  + n + 1 , . . . ,  rn+n

(Recall the meaning
of this notation  from
§2.)

Fig.  2b.  Substitution (theorem 3.1).

START1
Store  x  in  Rm + , , . . . ,  Rm+n

1

r

f(g\(x),.  . .gfc(x))-*R,

STOP
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Clearly  a  computation  H(x)  will  stop  if  and  only  if  each  computation
Gi(x)  stops  (1 <  i <  k)  and  the  computation  F(gi(x),...,  gk(x))  stops,
which  is exactly  as required.  •

New functions can be obtained from any given function  by rearranging
or  identifying  its  variables,  or  by  adding  new  dummy  variables;  for
instance,  from  a function  f{yu  yi)  we  can obtain

hi(xu  x 2) ^f(x2y  xi)  (rearrangement),
h2(x)  -fix,  x)  (identification),

h$(x\,  x2,  X3)=*f(x2, X3)  (adding dummy variables).

The following  application of theorem 3.1  shows that any of these opera-
tions  (or  a combination  of  them)  transforms  computable  functions  into
computable  functions.

3.2.  Theorem
Suppose  that  f{yu  - - •,  y*)  is  a  computable  function  and  that

xiiy  xi2,...,  xik  is a sequence ofk  of the  variables X\,...  ,xn  (possibly  with
repetitions).  Then the function  h given  by

h(xu..  .,xn)z*f(xil9..  ,,xik)

is  computable.
Proof. Writing  JC =  (xi9...,  xn)  we  have  that

which is computable,  by Lemma l. l(c)  and theorem 3.1.  •

Using  this  result  we  can o see  that  theorem  3.1  als  holds  when  the
functions g i , . . . ,  gk substituted into /  are not necessarily functions  of  all
of  the variables  JCI, . . . ,  xn,  as in the following  example.

3.3.  Example
The function/(JCI,  x2,  X3) =  JCI + x2 + *3 is computable; this can be

deduced  from  the  fact  that  x + y  is  computable  (example  1-3.2(<z)),  by
substituting *i  4- x2  for  JC, and x3  for  y  in x + y.
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Substitution combined with the principle described in the next section
gives a powerful  method  of generating computable  functions.

3.4.  Exercises
1.  Without  writing  any  programs,  show  that  for  every  meN  the

following functions  are computable:
(a)  m  (recall that  m(x)  = m, for  all JC),
(b)  mx.

2.  Suppose  that  f(x,  y)  is  computable,  and  m e N.  Show  that  the
function
h(x)=*f(x,m)
is computable.

3.  Suppose that  g(x)  is a total computable function.  Show that the
predicate  M(x,  y)  given by
AfU, y)s'g(jc)  = y'
is decidable.

4.  Recursion
Recursion is a method of defining a function  by specifying each of

its values in terms of previously defined  values, and possibly using other
already defined  functions.

To  be  precise,  suppose  that  f(x)  and  g(x,  y, z)  are  functions  (not
necessarily total or computable). Consider the following  'definition'  of a
new function  h{x,  y)\

(4.1)  (i)  ft(jr,O)«/(*),

(ii)  *(x,y + l)

At first sight  this  may seem  a little  dubious  as a definition,  for  in the
second line it appears that h  is being defined  in terms of itself -  a circular
definition! However, with a little thought we can convince ourselves that
this is a valid definition:  to find the value of  /Z(JC,  3) for instance, first find
/I(JC, 0) using (4.1)(i); then, knowing h(*, 0), use (4.1)(ii) to obtain h(x,  1);
similarly,  obtain  h(x> 2),  and  finally  h{x, 3)  by  further  applications  of
(4.1)(ii). Thus, circularity is avoided by thinking of the values of h(x,  y) as
being defined  one at a time, always in terms of a value already obtained.
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A  function  h  defined  thus is said to be  defined  by  recursion from  the
functions  /  and g;  the  equations  4.1  are  known  as  recursion equations.
Unless both /  and g are total, then h as defined by (4.1) may not be total;
the domain of  h  will satisfy  the conditions

 (x,0)€Dom(fc )  iff  jreDom(/),
Or,  y + l)eDom(/i)  iff  (jr,  y)eDom(h)

and (jr, y, h(x,  y))e  Dom(g).
Let us summarise the above discussion  in a theorem, whose proof  we

omit.

4.2.  Theorem
Let  x  = U i , . . . ,  xn)y  and  suppose  that  f(x)  and  g(jr, y, z)  are

functions;  then there is a  unique function  h(x> y)  satisfying  the  recursion
equations

*(*,0) « / (*) ,
h(x9 y +1) =*g(x, y, h(x, y)).

Note.  When  n = 0  (i.e.  the  parameters  x  do  not  appear)  the  recursion
equations take the  form

where  a e N.

4.3.  Examples
(a)  Addition: for  any  JC, y we have

Thus  addition  (i.e.  the  function  h(x> y) = x + y)  is  defined  by  recursion
from the functions f(x)  = x  and g(jc, y, z) = z +1 .

(£)  y!: with the convention  that 0! =  1, we have that
0! =  l,

Thus  the  function  y!  is  defined  by  recursion  from  1  and  the  function
g(y,z)  =

There  are forms of  definition  by recursion that  are more general  than
the one we have discussed; we shall encounter  an example of  this in § 5,
and a fuller discussion of  this topic is included in chapter  10. In contexts
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where  general  kinds  of  recursion  are being considered,  the  particularly
simple kind  of  definition  given  by (4.1) is called  primitive recursion.

Many commonly occurring functions  have easy definitions  by (primi-
tive)  recursion,  so  for  establishing  computability  the  next  theorem  is
extremely  useful.  Briefly,  it  shows that  <£ is closed  under  definition  by
recursion.

4.4.  Theorem
Suppose that f(x)  and g(x,  y, z)  are computable functions,  where

x =  (JCI, . . . ,  xn)\  then  the function  h(x,y)  obtained from  f  and  g  by
recursion is computable.

Proof.  Let F  and  G  be programs in standard form which compute the
functions/(*)  and g(x,  y, z).  We will devise a program H  for the  function
h(x, y)  given by the recursion equations 4.1.  Given  an initial  configura-
tion  JCI, . . . ,  xm  y, 0, 0, 0 . . .  H  will  first  compute  h(x,  0)  (using  F);
then,  if  y^O,  H  will  use  G  to  compute  successively  h(x, 1),
h(x, 2 ) , . . . ,  h(x, y), and then stop.

Let  m = max(n + 2, p(F), p{G))\  we  begin  by  storing  JC, y  in
Rm +1, . . . ,  Rm +n+1; the next two registers will be used to store the current
value  of  the  numbers  k  and  h(x, k)  for  k = 0,  1, 2 , . . . ,  y. Writing  t  for
m+n,  a typical configuration  during the procedure  will thus be

Storage registers

i . .  . Rm  Rm+i . . .  Rr  Rr+i  Rr+2  RJ+3

Hx,k)

with  k  = 0 initially.
An informal flow diagram for the procedure is given in fig. 2c. This  flow

diagram translates easily into the following program H  that computes h:
T(l,m  + 1)

Iq

/P  T(r + 3,1)
Hence  h  is computable.  •
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Fig.  2c.  Recursion  (theorem  4.4).

START

1
Store  x,  y  in R m + I , . . .  ,R ,+ = 0  initially)

/(*)( =  fc(x,0))->Rr+3

(At  this stage  the
configuration  is  (*))

STOP

We now proceed to use theorems 3.1  and 4.4 to compile a collection of
computable functions. The collection is potentially infinite, so our choice
is influenced  by  (i) the needs  of  subsequent  development  of  our theory,
and (ii) the desire to give credence to the thesis that all functions that we
would  regard  as  computable  in  the  informal  sense  are  indeed  URM-
computable.  For  reasons  which  will  become  apparent  later  we  shall
include some functions such as x + y and x — 1 for which we have already
written programs.

We shall use repeatedly the fact that,by theorem 3.2, in a definition  by
recursion  such  as  (4.1),  the  computable  functions  /  and  g  need  not
be  functions f of  all  o  the  named  variables  for  the  function  h  to  be
computable.
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4.5.  Theorem
The following functions  are computable.  (Proofs  are given as the

functions  are listed.)
{a)  jc + y  Proof. Example 4.3(a) gives a definition by recursion

from the computable  functions  JC  and z  +1.
{b)  xy  Proof.  JCO = O,

is  a  definition  by  recursion  from  the  computable
functions  O(JC)  and z +  JC.

jcy+1  =  JCVJC;  by recursion  and  {b).

(d)  J c - 1  Proof. 0 - 1  = 0,
(JC 4-1) — 1 =  JC  ; by recursion.

{e)  x-y  = \*  y  ,  *".y>  {cut-offsubtraction)
10  otherwise.

JC  — (y +1) =  (JC  — y) —  1; by recursion and {d).
(/)  sg{x)  = ( °  F*  =  °'  (Cf. exercises  l-3.3(la))

11  ifx  T* 0.
Proof. sg(0) = 0,

sg(jc +1) = 1;  by recursion.
(g)sgU) = {J  if

if
X

x^  (cf.  example  1-4.2(6))
Proof, sg(jc) = 1 -sg(jc);  by substitution,  {e) and (/).

(/i)|jc-y|  Proof. \x-y\  =  (JC  — y) + {y ~JC);  by  substitution,
{a)  and {e).

(/)  JC!  PWO/.  Example 4.3(ft)  gives a definition by recursion
from computable  functions.

(/)  min(jc, y) = minimum  of x and y.
Proof.  min(jc, y) =  JC — (JC — y);  by  substitution.

(fc)  max(x, y) = maximum  of x and y.
Proof.  max(jc, y) =  JC  4- (y  — JC);  by substitution.

(/)  rm(jc, y) = remainder  when y is divided  by x {to obtain a total
function,  we  adopt  the convention  rm(0, y) = y).

Proof. We have
f rm(:c, y) +1  if rm(x, y) 4-1 #  JC,

rm(jc,  >'"I"1) =  1Q

This gives the following definition  by recursion:
rm(jt, 0) = 0,
rmOc, y +1) = (rm(x, y) +1) sg(|x -  (rm(x, y) +1)|)



4  Recursion  37

The second  equation can be written
rm(x, y 4-1) = g(x, rm(x, y))
where  g(x,z)  = (z  +  l)sg(\x-(z  + l)\)\  and  g  is
computable  by  several  applications  of  substitution.
Hence  rm(jc, y) is computable.

(m) qt(jc, y) =  quotient  when  y is divided  by x  (to obtain  a  total
function  we define  qt(O, y) = 0).

Proof.  Since
) + l  ifrmU,  y) + l=Jt,

(n)  divU,y) =

we  have  the following  definition  by recursion  from
computable  functions:
qtOt,0) = 0,
qt(x, y + 1) = qt(jc, y) + sg(|jc -(rm(jc,  y) + 1)|).

1  //Ac|y  (x divides  y),

he convention  that  0\0  but 0^y  if y 9^0.) Hence
x | y /s decidable  (recall  definition  1-4.1).

Proof  div(*, y) = sg(rm(jc, y)), computable  by substi-
tution.  •

The following  are useful  corollaries  involving decidable  predicates.

4.6.  Corollary  (Definition  by cases)
Suppose  that f\{x)  /*(*) are total  computable  functions,  and

M\(x),...,  Mk(x)  are decidable  predicates,  such  that for every x  exactly
one ofMi(x),...,  Mk(x)  holds.  Then the function  g(x)  given by

/i(jr)  if M^x)  holds,
) holds,

fk(x)  if Mk{x)  holds,
is  computable.

Proof. g(x) = cMl(x)f\(x)  + ..  . + cMk(x)fk(x\  computable by substitu-
tion  using addition and multiplication.  •

4.7.  Corollary  (Algebra of  decidability)
Suppose  that M(x)  and Q(x)  are decidable  predicates;  then the

following  are also  decidable.
(a)  'notMixY
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(b)  'Mix) and Q(x)y

(c)  iM(x)orO(xV
Proof. The characteristic functions of these  predicates  are as follows:

(a)  'notM(jr)':  l^cM(x)9

(b)  'Mix) and <?(*)': cM(*) co (*),
(c)  'Af (x) or (?(x)': max(cM(*), CQ(*)) (where we take 'or' in the
inclusive  sense).

Each of the functions on the right is computable provided cM  and  CQ  are,
by substitution  in functions  from theorem 4.5.  D

Recursion  can be used  to establish  the computability  of  functions
obtained by other function  building techniques, which we now describe.
First, we introduce some  notation.

Suppose that/(x,  z) is any function;  the bounded sum  Zz<y/(*> z) and
the  bounded  product  Ylz<yf(x,  z)  are the functions  of  JC, y  given  by the
following  recursion  equations.

4.10.  Theorem
Suppose  that  f(x, z)  is  a  total  computable  function;  then the

functions  Zz<y/(*> z)  and Ilz<y/(^» z)  are computable.
Proof. The equations  4.8 and 4.9 are definitions  by recursion  from

computable  functions.  •

It is easily seen that if the bound on z  in a bounded  sum or product is
given  by any computable  function,  the  result  is  still  computable,  as
follows.

4.11.  Corollary
Suppose  that f(x,  z)  and k(x, w) are total  computable  functions;

then  so  are the functions  Z2<fcu,*)/(*>z)  and  Ylz<k(x,w)f(x> z)  (both
functions  of x, w).
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Proof. By substitution of k(x,w)  for y in the bounded sum Z z < y / (x , z)
and  the bounded  product rL<y/(*>  z).  •

We  now  describe  another  useful  function  building  technique  which
yields computable  functions.  We write

for  'the least z  less than y such that. . .  \  In order that this expression be
totally  defined,  we give  it the value  y when  no such  z  exists.  Then, for
example,  given a function /(*, z)  we can define  a new function  g by

the least z<y  such that f(x, z) = 0, if such a z  exists;
y  if there is no such  z.

The  operator  ixz<y  is  called  a  bounded  minimalisation  operator,  or
bounded  fi-operator.

4.12.  Theorem
Suppose  that f{x,  y)  is a  total  computable  function;  then so is the

function /j,z<y(f(x,  z) = 0).
Proof. Consider the  function

h(x,v)=  n  sg(/(*,K)),

which  is computable  by corollary  4.11. For a given  x,  y, suppose  that
z0 = fjLZ<y(f(x,z)  = 0). It is easy to see that

if  i? < z 0 , then h(x, v) = 1;
if z 0 ^  i> < y, then  h(x> v) = 0.

Thus
z0 = the number of vs less than y such that A(x, v) = 1,

= I  h(x,v).
v<y

Hence

v<y

and is computable by theorem 4.10.  •

As  with  bounded  sums  and products,  the  bound  in bounded  mini-
malisation  can be given  by any computable  function:



2  Generating computable functions  40

4.13.  Corollary
Iff(x,  z)  andk{x,  w) are total computable functions, then so is the

function

Proof  By  substitution  of  k{x,  w)  for  y  in  the  computable  function
z) = 0).  •

Theorems 4.10  and 4.12  give  us the  following  applications  involving
decidable  predicates.

4.14.  Corollary
Suppose that R{x,  y)  is a decidable  predicate: then

(a)  the function f{x,  y) = fxz<y  R{x,  z)  is computable,
{b)  the following predicates  are decidable:

(i)  MI(JT, y) = Vz<y  R{x,  z),
(ii)  M2{x,y)^3z<yR{x,z).

Proof.
{a)  /(*, y) = »z  < y{sg{cR{x,  z))  = 0).
{b)  (i)  cMl{x,  y) =  Yl2<ycR{x,z).

(ii)  M2{x, y ) s  not {Vz<y  (not R{x,  z)))
which is decidable  by {b){\)  and 4.7{a).  D
Note.  As  in 4.11  and 4.13, the bound on z  in this corollary could be any
total  computable  function.

We  now  use  the  above  techniques  to  enlarge  our collection  of  parti-
cular computable  functions  and decidable  properties.

4.15.  Theorem
The following functions are computable.
{a)  D(x)  = the number of divisors of x  {convention: D(0) = 1),

if x is prime,
10  if x is not prime

{i.e.  *JC  is prime'  is  decidable).
{c)  px  = the jcth prime number {as a convention we set p0 = 0, then

Pi = 2, p2 = 3, etc.)
the exponent of py  in the prime factorisation of x, for

{d)  {x)y  =

0

x, y > 0 ,
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Proof.
(a)  D(x)  =  Xy=sx div(y,  x)  (where  div is as in theorem 4.5(n)).

{ 1  if D(x)  = 2 (i.e. x >  1 and the only divisors of x
are  1 and  x)9

0  otherwise
= sg(|D(x)-2|).

(c)  Po = 0,

px+i  = iiz  < (px! 4- l)(z > p x  and z  is prime),
which  is a definition  by recursion; the  predicate  4z >  y  and z  is
prime' is decidable, so using corollary 4.14  (and the note follow-
ing) we  have  a computable  function.
(d)  (x)y  = fiz  <x(pz

y
+1fx),  which  is  computable  since  the  pre-

dicate  4p y+* % x'  is decidable.  •

Afote.  The  function  (jc)y  is needed  in the  following  kind  of  situation.  A
sequence  s = (fli,  a2, ^ 3 , . . . ,  an)  from  M can  be  coded  by  the  single
number b = p?1+1p22+1 . •  • pSw+1; then the length  n  of  5 and the numbers
a,  can be recovered  effectively  from  b  as follows:

Alternative  ways  of  coding  pairs  and  sequences  are  indicated  in
exercises 4.16  (2, 5) below.

4.16.  Exercises
1.  Show that the following  functions  are  computable:

(a)  Any  polynomial  function  ao + tfi* + . .  . + anjtn,  where
a 0  , a i , . . . , * „ €  N,
(b)  [V*],
(c)  LCM(*, y) = the least common multiple  of  x  and y,
(d)  HCF(JC, y) = the highest common  factor  of  x  and y,
(e)  /(*) = number of  prime divisors  of  x,
(/)  <f>(x)  = the number of positive integers less than x  which are
relatively  prime  to  x.  (Euler's  function)  (We  say  that  JC, y  are
relatively  prime  if  HCF(JC, y) =  1.)

2.  Let  TT(JC,  y) = 2x(2y +1) - 1 .  Show that  n  is a computable  bijec-
tion  from  N2  to  M,  and  that  the  functions  TTI,  TT2  such  that
7r(7ri(z),  TT2(Z)) = z  for  all  z  are computable.

3.  Suppose f(x)  is defined  by
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/ ( * +  2) = / ( * ) + / ( * +  1).
(/(*)  is the  Fibonacci  sequence.)
Show  that  /  is  computable.  (Hint:  first  show  that  the  function
g(x)  = 2 / ( x )3 / u + 1 )  is computable,  using  recursion.)

4.  Show that  the  following  problems are  decidable:
(a)  x  is odd,
(b)  x  is a power  of  a prime  number,
(c)  x  is a perfect  cube.

5.  Any  number  xeN  has  a unique  expression  as
(1)  x  = £° l 0  «i2', with a,  = 0 or  1, all  /. Hence,  if x  > 0, there  are
unique  expressions  for  x  in the  forms
(2)  x  = 2hx + 2*2 + . . .  + 2*1, with  0 <  bx  < b2 <...  <  bx and  / >  1.
and
(3)  JC = 2fll  + 2a i + a* + 1 + .  # + 2ai+a2~K"+a'c+/c~1

Putting
a(if  x)  = a,  as in the  expression  (1);

(I  as in (2),  ifjc>0,
Kx)  = <

lo  otherwise;
rft,,  as in (2),  if  JC > 0 and  1 <  / <  /,

b{Ux)=\
10  otherwise;
(ah  as in (3),  if x>  0 and  1 <  / <  /,

a(i,x) = j
10  otherwise;

show  that  each  of  the  functions  a,  /,  b9  a  is  computable.  (The
expression  (3)  is  a  way  of  regarding  x  as  coding  the  sequence
(ai,  a2,...,  fl/)  of  numbers, and  will be  used  in chapter  5.)

5.  Minimalisation
In  the  previous  section  we  have  seen  that  a  large  collection  of

functions  can be shown to be computable  using the operations  of  substi-
tution  and recursion, and operations derived from  these. There  is a third
important  operation  which  generates  further  computable  functions,
namely  unbounded  minimalisation,  or just  minimalisation,  which we now
describe.

Suppose that f{x,  y)  is a function  (not necessarily  total) and we wish to
define  a function  g(x)  by

g(x)  = the least  y  such  that /(JC, y)  = 0,
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in such a way that if /  is computable then so is g. Two problems can arise.
First,  for  some  x  there  may  not  be  any h y  suc  that /(JC,  y) = 0.  Second,
assuming that /  is computable,  consider  the following  natural  algorithm
for computing g(jc). 'Compute/(JC, 0), /(JC, 1 ) , . . .  until y is found such that
f(x> y)  = 0'. This procedure may not terminate  if /  is not total, even if such
a y exists; for instance,  if /(JC, 0)  is undefined  but f(x,  1) = 0.

Thus  we  are  led  to  the  following  definition  of  the  minimalisation
operator  /x,  which  yields  computable  functions  from  computable
functions.

5.1.  Definition
For any function  /(JC, y)

the least y such that
(i)  /(JC, Z) is defined,  allz <  y, and

(ii)  /(JC,  y) = 0,  if such a y exists,

.  undefined,  if  there  is no such  y.
/xy(...)  is  read  'the  least  y  such that.. . ' .  This  operator  is  sometimes
called  simply  the /x-operator.

The  next theorem shows that  ^  is closed  under  minimalisation.

5.2.  Theorem
Suppose that f(x,  y)  is computable;  then so is the function  g(x)  =

Proof. Suppose  that  JC =  (JCI, . . . ,  xn)  and that  F  is  a program  in stan-
dard form  that computes  the function  /(JC, y).  Let  m = max(n + 1,  p(F)).
We  write  a  program  G  that  embodies  the  natural  algorithm  for  g:  for
k  = 0,1,2 . . . ,  compute  /(JC, k)  until  a  value  of  k  is  found  such  that
/(JC, k)  = 0; this value  of  k  is the  required  output.

The  value  of  x  and  the  current  value  of  k  will  be  stored  in  registers
R m+ i , . . . ,  Rm+n+i  before  computing/(JC,  k):  thus the  typical  configura-
tion will  be

Storage registers

A  *  * *  91%  99%  "<  A  *  * *  9'9%  "»  9%  W l  **  9%  ̂ >  X  r # l "r  y j  ̂ r  ^

with  k  = 0 initially.  Note  that  rm+n+2  is always 0.
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A flow diagram that carries out the above procedure for g is given in  fig.
2d.  This translates easily  into the following  program  G  for  g:

T(l,m  + 1)

T(n,  m+n)
Ip  F[m + l , m + 2 , . .  . ,m  + n +  l - * l ]

J ( l , m + n + 2 ,  q)

(7P is the first instruction of the subroutine F[m +1 ,  m + 2 , . . .  -> 1].)  •

Fig.  2d.  Minimalisation  (theorem  5.2).

START

0 initially)

STOP
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5.3.  Corollary
Suppose that R(x,  y)  is a decidable  predicate;  then the function

_  Uhe least y such that R(x,y)  holds,  if there is such a y,
I undefined  otherwise,

is  computable
Proof  g(x)  = fiy(sg(cR(xyy))  =  O).  •

In  view  of  this  corollary,  the  /^-operator  is  often  called  a  search
operator.  Given  a decidable  predicate  R(x> y)  the  function  g(x)  searches
for  a  y  such  that  R(x,  y)  holds,  and moreover ,  finds  the least  such  y if
there is  one .

The  / i -operator  may  generate  a non-total  computable  function  from  a
total  computable  function;  for instance,  putting  f(x,y)  = \x — y2\9 and
g(x)  — /xy( /U» y) = 0), we have  that  g  is the non-total  function

( VJC  if x is a perfect  square,
g(x) = \

[undefined  otherwise.
Thus,  in  a trivial  sense,  using  the  /u-operator  together  with  substitution
and recursion, we  can generate  from  the  basic functions  more  functions
than  can  be  obtained  using  only  substitution  and recursion  (since  these
operations  always  yield  total  functions  from  total  functions).  There  are
also,  however, h total  functions  for  whic  the  use  of  the  /i-operator  is
essential. Example 5.5 below gives one such function; we present another
example in chapter 5. Thus we see that, in a strong sense, minimalisation,
unlike  bounded  minimalisation,  cannot  be  defined  in terms  of  substitu-
tion  and  recursion.  It  turns  out,  nevertheless,  that  most  commonly
occurring  computable  total  functions  can  be  built  up  from  the  basic
functions using substitution and recursion only: such functions  are called
primitive recursive, and are discussed further  in chapter 3 § 3. In practice,
of course, we might establish the computability of these functions by what
amounts to  a non-essential  use  of  minimalisation,  if  this makes the  task
easier.

5.4.  Exercises
1.  Suppose that f(x)  is a total injective computable function; prove

that f~l  is computable.
2.  Suppose that p(x)  is a polynomial with integer coefficients; show

that the  function
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f(a)  = least  non-negative  integral  root  of  p (x  (a) -  a  e  M)
is computable  (f(a)  is undefined  if  there  is no such root).

3.  Show  that the  function

[x/y  if y #0and  y \x9

I undefined  otherwise,

is computable.

We  conclude  this  chapter  with  an  example  of  a function  that  makes
essential  use  of  the  ^-operator;  it  also  shows  how  this operator  can  be
used not only to search for a single  number possessing a given property,
but  to  search  for  finite  sequences  or  sets  of  numbers,  or  other  objects
coded  by a single  number. The  function  is a modification  by Peter  of  an
example  due  to  Ackermann, r after  whom  it  is  named.  It  is  rathe  more
complicated  than any function  we  have considered so far.

5.5.  Example  (The Ackermann  function)
The  function  0(x,  y)  given  by  the  following  equations  is

computable:

0(O,y) = y + l,

0(* +1 , y +1) -  0(x,  0(JC + 1 , y)).

This definition  involves  a kind of  double  recursion  that  is stronger  than
the primitive  recursion discussed  in  § 3. To see,  nevertheless,  that  these
equations  do  unambiguously  define  a  function,  notice  that  any  value
0(*, y)  (x >0)  is defined  in terms of  'earlier' values  0(JCI, yi) with xi  < x
or x\  = x  and yx <  y. In fact,  0(JC, y) can be obtained by using only a  finite
number of such earlier values: this is easily •established by induction on x
and y. Hence 0  is computable in the informal sense. For instance, it is easy
to calculate  that 0(1,1) = 3  and 0(2,1)  = 5.

To show rigorously that 0  is computable  is quite difficult.  We sketch a
proof using the idea of a suitable  set of triples 5. The essential property of
a suitable  set  S  (defined  below)  is that  if  (xt  y, z)  e 5,  then

(5.6)  (i)  z  = 0(jc,y),
(ii)  5  contains  all the earlier  triples
(*i>  yi> 0(*i> yi))  that  are needed  to calculate 0(x, y).
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Definition
A  finite  set  of  triples  5  is  said  to  be  suitable  if  the  following

conditions  are  satisfied:
(a)  if  (0, y, z)eS  then  z  = y + l,
(ft)  if  (JC + 1 , 0 , z ) e S  then  (*,  l,z)<=5,
(c)  if  (JC +1 , y + 1 , z) e S then there is u such that  (JC + 1 ,  y,  w) €  5
and  (JC,  w, z ) eS .

These three conditions correspond to the three clauses in the definition of
if/: for  instance,  (a)  corresponds  to  the  statement:  if  z  =  (^(0, y),  then
z = y + 1 ;  (c)  corresponds  to  the  statement:  if  z  =  if/(x + 1 , y +1),  then
there  is  u  such that  u =  </r(jc +1 , y)  and z =  ̂ r(jt, «).

The  definition  of  a  suitable  set  5  ensures  that  (5.6)  is  satisfied.
Moreover, for any particular pair of numbers (m, n) there is a suitable set
5  such  that  (m, n, i//(m, n))eS;  for  example,  let  5  be  the  set  of  triples
(JC, y, tff(x9  y))  that  are used  in the calculation  of  if/(m, n).

Now  a  triple  (JC, y, z)  can  be  coded  by  the  single  positive  number
u = 2x3y 5 2;  a finite set of positive numbers  {MI, . . . ,  uk}  can be coded by
the single number pUlpu2 •  •  •  Puk- Hence a finite set of triples can be coded
by a single  number  v  say.  Let  Sv  denote  the  set  of  triples coded  by  the
number  v. Then we  have

(JC,  y, z) £ Sv  <=>  p2*3y5z divides  v,
so 'U,  y, z) e Sv'  is a decidable predicate of J:, y, z,  t?; and if it holds, then xy

y,  z  <v.  Hence, using the techniques and functions of earlier sections we
can show  that the following  predicate  is decidable:

R  (JC, y, v) =  lv  is the code number of a suitable set
of triples and 3z<v  ((JC, y,  Z)G5 1 ) ) . '

Thus the  function

is  a  computable  function  that  searches  for  the  code  of  a  suitable  set
containing  (JC, y, z)  for some  z.  Hence

<AU, y) = Atz((x, y, z) e 5/(x,y))
which shows  that  & is computable.

A  more  sophisticated  proof  that  t/f  is  computable  will  be  given  in
chapter  10 as an application  of  more  advanced theoretical  results.

We do not prove here that  t/r cannot be shown to be computable  using
substitution and recursion alone. This matter is further discussed in § 3 of
the  next  chapter.



Other  approaches to
computability:  Church's  thesis

Over  the  past  fifty  years there  have  been  many proposals  for  a  precise
mathematical  characterisation  of  the  intuitive  idea  of  effective  compu-
tability. The  URM  approach  is one  of  the more  recent  of  these.  In  this
chapter  we  pause  in  our  investigation  of  URM-computability  itself  to
consider  two related  questions.

1.  How do the many different  approaches to the characterisation of
computability  compare  with  each  other,  and  in particular  with
URM-computability?

2.  How well do these approaches (particularly the URM approach)
characterise  the  informal  idea  of  effective  computability?

The first  question  will be discussed  in  §§ 1-6;  the second will be taken
up in § 7. The reader interested only in the technical development  of the
theory  in  this book  may omit  §§ 3-6;  none  of  the  development  in  later
chapters depends on these sections.

1.  Other approaches to computability
The following  are some  of the alternative characterisations  that

have been  proposed:
(a)  Godel-Herbrand-Kleene  (1936).  General  recursive
functions  denned  by  means  of  an  equation  calculus.  (Kleene
[1952], Mendelson  [1964].)
(b)  Church  (1936).  A-definable  functions.  (Church  [1936]  or
[1941].)
(c)  Godel-Kleene  (1936).  /^-recursive  functions  and  partial
recursive functions  (§ 2 of  this chapter.).
(d)  Turing  (1936).  Functions  computable  by  finite  machines
known as Turing machines. (Turing [1936]; § 4 of this chapter.)
(e)  Post  (1943).  Functions  defined  from  canonical  deduction
systems. (Post [1943], Minsky [1967]; § 5 of  this chapter.)
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(/)  Markov (1951). Functions given by certain algorithms over a
finite  alphabet.  (Markov  [1954], Mendelson  [1964]; § 5  of  this
chapter.)
(g)  Shepherdson-Sturgis (1963).  URM-computable  functions.
(Shepherdson & Sturgis [1963].)

There  is great  diversity among these various approaches; each has its
own  rationale  for  being  considered  a  plausible  characterisation  of
computability.  The  remarkable  result  of  investigation  by many  resear-
chers is the  following:

1.1.  The Fundamental result
Each of the above proposals for a characterisation of the notion of

effective computability  rise  class gives  to the same  of functions, the class that
we have denoted c€.

Thus we have the simplest possible  answer to the first  question posed
above.  Before  discussing the  second  question,  we shall examine  briefly
the approaches  of Gddel-Kleene, Turing, Post and Markov,  mentioned
above, and we will sketch some of the proofs  of the equivalence  of these
with the URM approach. The reader interested to discover full details of
these  and  other  approaches,  and  proofs  of  all  the  equivalences  in  the
Fundamental  result,  may consult the references  indicated.

2.  Partial recursive functions  (Gddel-Kleene)

2.1.  Definition
The class  5? of partial recursive functions  is the smallest  class of

partial  functions  that  contains  the  basic  functions  0,  * + l,  U?  (lemma
2-1.1)  and  is closed  under  the operations  of substitution,  recursion  and
minimalisation. (Equivalently, 01  is the class of partial functions that can
be built  up from  the  basic functions  by a finite number  of operations of
substitution, recursion  or  minimalisation.)

Note that in the definition  of the class 31, no restriction is placed on the
use of the ^-operator,  so that 91  contains non-total functions.  Godel and
Kleene originally confined  their attention  to  total functions;  the class of
functions  first  considered  was  the  class  31Q  of  fi-recursive  functions,
defined  like  31 above,  except  that  applications  of  the  ^-operator  are
allowed  only  if  a  total  function  results.  Thus  3l0  is  a  class  of  total
functions,  and  clearly  91Q><^31.  In  fact,  3l0  contains  all  of  the  total
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functions  that  are  in  although  this  is  not  immediately  obvious;  see
corollary 2.3 below for a proof. Hence  is a natural extension of  to a
class of  partial  functions.

The  term  is used  nowadays to describe  /i-recursive
functions;  so  a recursive  function  is  always total-it  is  a totally  defined
partial  recursive  function.  The  term  function  is some-
times  used  to  describe  /^-recursive  functions,  although  historically,  this
was the  name  Kleene  gave  to  the  total  functions  given  by  his  equation
calculus approach ((a) in § 1). It was Kleene who proved the equivalence
of  general  recursive  functions  (given  by  the  equation  calculus)  and
/^-recursive  functions.

We now outline  a proof  of

2.2.

 From the  main results  of  chapter  2  (lemma  1.1,  theorems 3.1,
4.4,  5.2)  it follows  that  c  <#.

For  the  converse,  suppose  that  is  a URM-computable  function,
computed by a program  =  . . . ,  Js. By a  in a computation )  we
mean  the  implementation  of  one  instruction.  Consider  the  following
functions  connected with computations  under

contents of  after  steps in the computation
 if  has not already stopped;

the final contents of  if  has stopped
after fewer than  steps.
number of the next instruction, when  steps of
the computation  have been performed,

if  has not stopped after  steps or fewer;

0  if  has stopped after  steps or fewer.

Clearly  c  and  are total  functions.
If  is defined,  then  converges  after  exactly  steps, where

and then

If, on the other hand,  is not defined, then  diverges, and so
is never zero. Thus  = 0) is undefined.  Hence,  in either case, we
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have

So, to show that /  is partial recursive, it is sufficient  to show that c and j
are recursive functions.  It is clear that s these function  are computable in
the informal  sense -  we can simply simulate the computation P(x)  for up
to t steps. By a detailed analysis of computations P(x)  and utilising many
of  the  functions  obtained  in chapter  2, it  is not  difficult,  though  rather
tedious, to show that c  and j  are recursive; in fact, they can be obtained
from  the  basic functions  without  the  use  of  minimalisation  (so they  are
primitive recursive -  see  § 3  of  this chapter).  (A detailed  proof  of  rather
more than  this will be given  in chapter  5 -theorem  1.2  and Appendix).
Hence /  is partial recursive.  •

2.3.  Corollary
Every total function in 5? belongs to @t0.

Proof  Suppose  that  f(x)  is  a  total  function  in  31; then  /  is  URM-
computable  by a program P. Let  c  and j  be the functions  defined  in the
proof  of theorem 2.2; as noted there, these can be obtained without any
use of minimalisation,  so in particular  they are  in  5?0- Further,  since /  is
total, P(x) converges for every x, so the function  fjit(j(x, t) = 0) is total and
belongs to $ 0 .  Now

so /  also is in  £%0-  •

A predicate M(x)  whose characteristic function  cM  is recursive is called
a recursive predicate.  In view of theorem 2.2, a recursive predicate  is the
same as a decidable predicate.

3.  A digression: the primitive recursive  functions
This is a natural point to mention an important subclass of  3?, the

class of primitive recursive functions, although they do not form part of the
main line  of thought  in this chapter. These functions  were referred  to in
chapter  2 §  5.

3.1.  Definition
(a)  The class 9*91  of primitive recursive functions is the smallest
class  of  functions  that  contains the basic functions  0, x +1, U",
and is closed under the operations  of substitution and recursion.
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(b)  A  primitive  recursive  predicate  is  one  whose  characteristic
function  is primitive  recursive.

All  of  the  particular  computable  functions  obtained  in  §§ 1,  3, 4  of
chapter  2  are  primitive  recursive,  since  minimalisation  was  not  used
there. We have already noted that the functions  c and /  used in the proof
of  theorem  2.2  are  primitive  recursive.  Further,  from  theorems  2-4.10
and 2-4.12 we see that  901  is closed under bounded  sums and products,
and under bounded minimalisation. Thus the class of primitive  recursive
functions  is quite  extensive.

There  are  nevertheless  recursive  functions  (or,  equivalently,  total
computable  functions)  that  are  not  primitive  recursive.  Indeed,  the
Ackermann function  tp of example 2-5.5 was given as an instance of such
a function.  A detailed proof that the Ackermann function  is not primitive
recursive  is  rather  lengthy,  and  we  refer  the  reader  to  Peter  [1967,
chapter  9]  or  Mendelson  [1964,  p.  250,  exercise  11].  Essentially  one
shows that  ip grows faster than any given primitive recursive function.  (To
see how fast  i// grows try to calculate  a few simple  values.)

In chapter  5 we will be able to give an example  of  a total  computable
(i.e.  recursive)  function  that  we shall prove  is not primitive  recursive.

Our conclusion is that although the primitive recursive functions form a
natural  and  very  extensive  class,  they  do  not  include  all  computable
functions  and thus fall short as a possible characterisation  of the  informal
notion  of  computability.

4.  Turing-computability
The definition  of computability proposed by A. M. Turing [1936]

is  based  on  an  analysis  of  a  human  agent's  implementation  of  an
algorithm, using pen and paper. Turing viewed this as a succession  of very
simple acts  of  the following  kinds

(a)  writing or erasing a single symbol.
(b)  transferring  attention  from one part  of the paper to another.

At  each  stage  the  algorithm  specifies  the  action  to  be  performed  next.
This depends  only  on  (i) the  symbol  on  the  part  of  the  paper  currently
being scrutinised  by the agent,  and  (ii) the current  state  (of  mind)  of  the
agent. For the purposes  of implementing the algorithm this is assumed to
be determined  entirely  by the algorithm and the history  of the operation
so far.  It may incorporate  a partial record  of what has happened  to date,
but it will not reflect  the mood or intelligence , of the agent  or the state of
his indigestion.  Moreover,  there  are  only finitely  many  distinguishable



states in which the agent can be, because he is finite. The state of the agent
may,  of  course,  change  as a result  of  the  action taken  at this stage.

Turing devised finite machines  that  carry out  algorithms conceived  in
this way. There is a different machine for each algorithm. We shall briefly
describe these machines, which have become known as

4. .
A  Turing  machine  is  a finite device,  which  performs  opera-

tions on a paper tape. This tape is infinite in both directions, and is divided
into single  squares along its length.  (The tape represents  the paper used
by a human agent implementing  an algorithm; each square represents a
portion  of  the  paper  capable  of  being  viewed  in  a given  instant.  In  any
particular terminating computation under M  only a finite part of the tape
will  be  used,  although  we  may  not  know  in  advance  how  much  will  be
needed.  The  tape  is  nevertheless  infinite,  corresponding  to  the  human
situation where we envisage  an unlimited  supply  of  clean  paper.)

At any given time each square of the tape is either blank or contains a
single symbol from a fixed finite list of symbols Si, $ 2 , . . . ,  sn, the
of  We will let  denote a blank, and count it as the symbol s0 belonging
to M's  alphabet.

M  has a  which  at any given time scans or reads a single
square  of  the tape.  We  can visualise  this as shown  in fig.

 is capable  of  three  kinds of  simple  operation  on the tape,  namely:

Fig.  3<2.  A  Turing  machine.

4 -

Current state
.display window

Tape

Reading head

\ Square  being  scanned



 54

 erase the symbol  in the square g bein  scanned  and replace  it
by another symbol  from the alphabet  of ;

 move the reading head one square to the right of  that being
scanned (or, equivalently,  move the tape one square to the left);
(c)  move  the  reading head one  square to  the  left  of  that  being
scanned (or, equivalently, move the tape one square to the right).

At  any  given  time  is  in  one  of  a  fixed finite  number  of  states,
represented  by symbols  . . . ,  During operation the state of  can
change.  We  may  envisage  the  symbol  for  the  current  state  as  being
displayed in a window on the exterior of  (as in fig. 3a), and think of this
as a partial guide to what  has happened to date  and what will  happen in
the  future.

The action that  takes at any instant depends on the current state of
 and  on  the  symbol  currently  being  scanned.  This  dependence  is

described  in  's  which consists of  a finite set  of  quadru-
ples,  each of  which takes one  of  the following  forms

A quadruple  in  specifies the action to be taken by  when it
is in the state  and scanning the symbol  as follows:

1.Operate  on the  tape thus:
 if  =  erase  s,  and write  in the square being scanned;
 if  =  move  the reading head one  square to the right;

(c)  if  = L, move  the reading head one  square to the  left;
2. Change  into state

The specification  is such that for every pair  there is at most one
quadruple  of  the form ;  otherwise  there could be ambiguity  about
what  does  next.

To  begin  a computation,  must  be  provided  with  a tape  and  posi-
tioned so that a specified  square is being scanned; further,  must be set
in some prescribed initial state. Then,  if  is in the state  and scans the
symbol  s7, it acts as described above provided that there is a quadruple of
the form  in Q. This kind of action is then repeated for the new state
and symbol  scanned,  and so s on.  continues  in  thi  way  for  as long  as
possible.  The  operation  of  terminates  only  when  it  is  in  a  state
scanning a symbol  such that there is no quadruple of the form  in



 i.e.  there  is  no  quadruple  in  that  specifies  what  to do  next.  (It  is
possible  that  this never  happens.)

4.2.
Let  M  be  a  Turing  machine  whose  alphabet  consists  of  the

symbols 0,1,  (and a blank of course) and whose possible states are  and
 The  specification  of  is

Suppose  that  is provided  with the  tape

I

scanning the square marked J, and initially in state  It is easy to see that
 's action is to work from left to right along the tape, replacing alternate

Is  by  the  symbol  0;  stops  when  it  scans  the first blank  square  since
there is no quadruple  that specifies  what it should do. The resulting tape

0  1 0  1 0  1 0  1 0  1

with the square marked j  being scanned,  and  is in state
On the other hand, if  is provided with a tape such that every square

contains the symbol  0 or  1, then the operation  of  never stops.

It is clear from  this example  that  a Turing machine  is a device  for
effecting  an  algorithm  that  operates  on  tapes.  Complete  details  of  the
algorithm  are  contained  in  the  specification  of  Thus,  for  the
mathematician,  a Turing machine  is  to be  the set  of  quadruples
that specify it. It is not usual to build physical Turing machines, except for
illustrative  purposes.

4.3.
In order to regard a Turing machine  as computing a numerical

function,  we  must  use  some  convention  for  representing  numbers on a
tape. One way is as follows: suppose, for convenience  of exposition, that
the symbol  of M's  alphabet is 1. We use  1 as a 'tally symbol', and then
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represent a number x  on the tape as follows (ignore the marker j  for the
moment):

<  x +1 squares  •

We use x + 1 tallys to represent  JC, so as to distinguish 0 from a blank tape.
The partial function f(x)  computed by M  is defined  as follows. Consider

the computation by M on the above tape, starting in state qu  and initially
scanning the square marked | .  Then

[the total number  of occurrences of the symbol 1
f(x)  = \ o n t n e  final  tape,  if this computation eventually stops;

I undefined  otherwise.
Similarly,  the rc-ary partial function f(xu  . . . ,  xn)  computed by M  is

defined  by counting the number  of  Is on the final tape when M  is started
in state q\  and scanning the square marked 4 on the following tape:

1

squares squares squares

4.4.  Definition
A  partial  function  is  Turing-computable  if  there  is  a  Turing

machine that computes it. The class of all Turing-computable functions is
denoted

4.5.  Example
The  function  JC + V is Turing-computable;  the  Turing  machine

given by the following specification  Turing-computes  this  function.

qiBRq2

qilBq3

q2BRq2
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The  tape  representation  of  (JC, y)  contains  x + y+ 2  occurrences  of  the
symbol  1, so the  machine  M  is designed  to  erase  the first  two  of  these
occurrences starting from the left. The details are easy to check by trying a
few particular  values for  x,  y.

4.6.  Exercises
1.  What  unary  function  is  Turing-computed  by  the  machine  in

example  4.2?
2.  Devise Turing machines that  will Turing-compute the  functions

It is not our purpose here to develop the theory of Turing machines and
Turing-computable  functions;  the  interested  reader  should  consult  the
books by Davis [1958] or  Minsky [1967] listed  in the  bibliography.

The  fundamental  result  linking  Turing-computability  with  partial
recursive functions  and URM-computability  is the  following.

4.7.  Theorem

Proof.  There  are  various  ways  of  establishing  this  result,  which  we
indicate  in barest  outline.

A direct proof that  c  $1  is somewhat similar to the proof that « c «
(theorem  2.2). The  tape  configurations  and  states  of  a Turing  machine
during a computation  can be coded  by natural numbers, and the opera-
tion  of  the  machine  is then  represented  by recursive  functions  of  these
numbers.

For  the  converse  inclusion,  91  c  J"<g, one  can  show  directly  that  ST<€
contains the  basic functions  and  is closed under  substitution,  recursion,
and minimalisation. This is done in detail in Davis [1958]. Alternatively,
one  can  show  that  <# c  3~%  by  showing  that  URMs  are  equivalent  in
power to a succession  of simpler machines, ending with Turing machines.
This is the proof  given in their  original paper  by Shepherdson  & Sturgis
[1963].  •

5.  Symbol manipulation systems  of Post  and Markov
E.  L.  Post  and  A.  A.  Markov  formulated  their  ideas  of

effectiveness  in terms of strings of symbols. They recognised that  objects
(including  numbers)  to  which  effective  processes  apply  can  always  be
represented  as strings  of  symbols;  in  fact,  in  contexts  such  as  symbolic
logic, abstract  algebra  and the  analysis  of languages the objects  actually
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are  strings  of  symbols.  Both  Post  and  Markov,  from  different  points  of
view, considered that effective  operations on strings of symbols are those
that  are  built  up  from  very  simple  manipulations  of  the  strings  them-
selves.

Post's  central  idea  was  that  of  a  which we  describe
below.  Such  systems e do  not  compute  functions;  they  generat  sets  of
strings. This is because Post aimed to characterise ;
i.e.  systems  that  generate  from  by  the  mechanical
application of rules of logic. Thus a notion of effectiveness  emerges from
Post's work, initially in the guise of  (or

 We  shall  see  how  a  notion  of  a  Post-computable  function  can  be
derived from this.

In  paragraph  5.17  below  we  explain  the  way  in  which  Markov's
approach  is related to that of  Post.

We  must  now  define  some  notation  to  aid  our  discussion.  Let  =
{ a i , . . . ,  be a finite set of symbols, called an  from
is  any  sequence ...  of  symbols  from  Strings  are  sometimes
called  by analogy with ordinary language. For any alphabet  we
write  J£* to denote the set of all strings from  Included in J*  is the

 denoted  that has no symbols.  If  = ...  and r = ...
are strings then  denotes the string ... ...  The empty string

 has the property  that for  any string

5.1.
In  elementary  algebra  a  common  operation  is  to  replace  the

string  -  + )  whenever it occurs by the string 2).  This string
manipulation  may be denoted  by writing

where  and  52  are  arbitrary  strings.
A  more s general  manipulation  of  a string,  yet  still  regarded  by Post  a

elementary,  takes  the  form

(5.2)  g 0 S i g i 5 2  • • •  . . .

where
(i)  go, • • . ,  are  fixed  strings  (and may be  null),
(ii)  the  subscripts  I'I, . . . , / „  are  all  from  1, 2 , . . . ,  m,  and  need
not be  distinct.
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Post  called  an  operation  of  the  form  (5.2)  a  it  may  be
applied to  any string  that  can be  analysed  as

<r=  . . .  . . . ,  are strings),
to produce  the string  . . .

5.3.
Let  = {a, ft}; consider the  production
(TT)  aSiZ>S2  ->

Then the effect  of  (TT) on some  strings is given  in the  table

 Strings produced by

 and
 does not apply.

(The entries in the second line correspond to the two possible analyses of
 ,  x r'  r  and  ~  TO

5.4.
Examine  the ways in which the  production

applies to the  string

Productions form the main ingredient  of  Post's

5.5.
 consists of

 a finite alphabet
 a finite subset  of  the  of
 a finite set  of  productions  of  the  form  (5.2), whose  fixed

strings  are in
We say that  is a

We write  => r  if  the string r  can be obtained from the string  cr by a
finite succession of applications of productions in ;  then we write ^  r if
there  is  an  axiom  such  that  ̂ >r.  In  this  case  we  say  that  r  is

 by the Post-system; the set of all strings in  generated by ^ is
denoted  i.e.
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The set  is also  called  the  set  of  of  ^,  reflecting  the  original
motivation  of  Post.

5.6.
Let ^ be the Post-system with alphabet  =  axioms

and productions 5 ->  and 5  ->  Then  is the set of
the strings reading the same in either direction, such as

Sometimes,  in  order  to  generate  a particular  set  of  strings  in J*  it  is
necessary to use auxiliary symbols in the generation process. This leads to
the following  definition:

5.7.
Let  be an alphabet and let  c 2* . Then  is  if

there is an alphabet  3  and a Post-system  over  such that  is the
set  of  strings in 2 *  that  are generated  by  i.e.  =

Post proved a remarkable theorem showing that really only very simple
productions are needed to generate Post-generable sets. A set of produc-
tions  (and any system in which they occur) is said to be  if all the
productions  have the form

Post  proved

5.8.  (Post's  normal form  theorem)

For  an excellent  proof  consult  Minsky [1967].

Post-systems  having only productions  of  the  kind

 ->

give  models  of  grammars  and languages.  They  reflect  the  way  in which
complex  sentences  of  a  language  are  built  up  from  certain  basic  units
according to the rules e of  grammar. Restrictions on th  nature of  and
provide  the  and  languages  of  Chomsky,
which  provide  useful  models  of  languages  used  in  computer  program-
ming.  We  cannot  pursue  this  interesting  topic  here:  the  reader  may
consult  the  books  of  Arbib  [1969]  and  Manna  [1974]  for  further
information.
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5.9.  Post-systems and other approaches to computability
As  we  have  seen,  Post-systems  give  a  characterisation  of  the

notion  of  an  effectively  generated  set.  We  may  compare  this  with  the
corresponding notion that emerges from the other approaches to compu-
tability.  For  URM-computability  (or  Turing-computability,  etc.)
effectively  generated  sets  of  numbers  are  called  recursively  enumerable
(r.e.);  these  are  the  sets  that  are  the  range  of  some  URM-computable
function.  (We shall study r.e. sets  in chapter  7.)

To compare  sets  of  strings  with sets  of  numbers,  we choose  an (intui-
tively) effective  coding functionA:  2"* -»N under which the string a el*  is
coded  by  the  number  a.  A  convenient  method  for  an  alphabet  I  =
{au...,  ak)  is by the k-adic coding where  A: 1*  ->  Py  is defined  by A = 0;
'a^777ai^  = ro + rik + ..  . + rmkm.  It  is  easily  seen  that  A  is  actually  a
bijection,  so  if  the  inverse  of  is denoted  by  : N^>Z* we  also  have a
representation  of  each number  n  by a string h.

Suppose  now that  AT  is a set  of  strings:  let X  = {&:  a eX},  the  set  of
numbers coding X.  We have the equivalence  result:

5.10.  Theorem
X is Post-generable iff X  is r.e.

Proof.  We sketch one proof  of this result. Let X  c J*  and suppose  first
that X  is r.e. Let X  = Ran(/), where /  is URM-computable. Using earlier
equivalences we can design a Turing machine M  whose symbols include
the alphabet  2", so that when  in state q\  and  given initial tape

M  halts if and only if m e Dom(/), and does so in the following  configura-
tion

i.e. the symbols on the non-blank part of the tape indicated constitute the
string f(m)  from  I,  and  M  is  in a  special  halting state  qH  scanning the
square marked | .  Now devise a Post-system  ^  to simulate the behaviour
of  M  on its tape; the alphabet  of  ^  will include 1  and the symbols and
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states of M;  ^ will generate  strings of the  form

... ...

to represent  any situation

that occurs during the computation by  from an initial tape of the form
(*).  To get  things  going,  ^  will  generate  all  strings  of  the  form

<  m + l  —

^il  11 . . . 11, which  represent  such  initial  tapes.  If we  include  in ^  the
production  -»5, then the strings from J*  generated  by ^ will be the
s e t  , ,  -

Thus  =  so  is Post  generable.
Conversely,  if  is Post-generable  by a Post-system  show  that the

relation
 is generated by ^ using at most  productions'

is decidable; from the theory of r.e. sets (chapter 7) it follows easily that
is r.e.  •

5.11.
We  now  explain  two  ways  to derive a concept  of computable

function  from Post-systems.In  both cases the concept  is defined first for
functions  on J*, and  then  extended  to M  by  coding  or representation.

Suppose that /:  -* J*  is a partial function. Select a symbol  •  not in
and consider  the set of strings

from the alphabet  u {•}. The set  contains all information about /,
and we  define:

5.12.
/:  is  if  is  Post-generable.

5.13.
Let  = {1} and consider  the function /:  given  by
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The set  is generated  by the following  Post-system:
 {1,  •}

 • 52  -* Sil  •
The single production  of  this system applies to a string of  the  form

11 . . .  1 1 • 1 1 1 . . . I l l
« — — •  «  •

to produce the  string
11 . . .  I l l  • 111 . . . 1 1 1 1 1 . . . 1 1 1 1 . . . 1 1 1 .
<—n  4-1—>  < — — —•  «— —•

Hence /  is  Post-computable.

Suppose  that  is  generated  by  a Post-system  To  see  that /  is
computable  in the  informal  sense,  consider  the  following  algorithm  for
finding  (where

'Generate  the strings  in some systematic fashion; examine these as
they  appear,  looking  for  a  string  of  the  form  •  r  with T G I * .  Such a
string will  eventually  be  produced  if,  and only  if,  Dom(/),  and then
r=/(<r).'

The  definition  (5.12)  extends  in  an  obvious  way  to  partial  functions
 Post-computability  on M  is then  defined  using  any  effective

representation  ~:  in the  natural  way:

5.14.
Let g:  f̂ n  ->N be  a partial  function,  and let

 be the function defined by

 m 2 , . . . ,  . . .  ,m«)  . . . ,  N).
Then  is  if  is  Post-computable.

If we let  denote  the class of  Post-computable  functions  of  natural
numbers, we  have  the  equivalence:

5.15.
 =  «  =  =  (We  omit  a  proof.  When  the  reader  has

studied  chapters o 6  and 7  he  should  be  able  t  see  that  this follows  from
theorem  5.10  and  the  results  of  chapters  6  and  7  linking  r.e.  sets  with
URM-computable  functions.)
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An  alternative  way  to  derive  a  notion  of  computability  from  Post-
systems  is  to  simulate  computations  by  a machine  directly.  This  can  be
done by using sets of productions  such that  one production in
can  apply  to  any  given  string.  Such sets, h and  the  systems  in whic  they
occur,  are called  A monogenic  system operates  sequentially

like a machine.  It is convenient  for the following to write  4>| r to mean
o

that  => r  but no production  in  applies  to  r.
We  have the following  characterisation  of  Post-computability.

5.16

 3

 4>|r  iff  and  is the string

 The  symbols  and  are  needed  to  distinguish  'input'  strings
from  'output'  strings.  Otherwise  a desired  output  string  would  be
regarded as a new input string to which further productions might apply.)

 The  implication  may  be  obtained  by  first  showing
that  /  is  computable  by  a  Turing  machine  M,  and  then  devising  a
monogenic set of productions to simulate M  In fact it is possible to obtain
a  monogenic  set  of  productions  for  this  task.

For  (Z?)  =>  (a)  it  is  quite  straightforward  to  show  that  the  function
 coding/  is partial  recursive,  then  apply theorem  5.15.  •

This  equivalence  extends  to  functions  /:  by  considering
'inputs' of  the  form  •  •  • •  '

For  a  fuller  discussion  of  Post  systems  the  reader  is  referred  to  the
excellent  chapters  in Minsky  [1967].

5.17.
Markov's notion  of  computability  is very similar to that  derived

from  Post-systems  by  the  second  method  above.  Rather  than  restrict
attention  to  monogenic  systems,  however,  Markov  gave  rules  to  deter-
mine  uniquely  which  of  the  available  productions to  apply next.  Details
are, briefly,  as follows:
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A Markov normal algorithm  over an alphabet I  is essentially a list Q of
productions over I  with the following  features:

(i)  every production  in  Q  has the form  S\gS2  -*  S\hS2,
(ii)  certain productions  in  Q  are singled out  as being terminal.

Given  an  input  string  or,  a Markov  algorithm  applies  productions  in  Q
sequentially,  according to the following rules.

(a)  if more than one production in Q applies to a string or, use the
first one  in the list  Q,
(b)  if a production  S\gS2 -»SihS2  applies to a  in more than one
way, apply it to the leftmost  occurrence  of  g  in cr,
(c)  the  process  halts  having produced  a string  r  either when  a
terminal production  is used or if no production  in Q  applies to r.

With these rules, the definition  of Markov-computable function f:  I* ->
I*  is given in the obvious way. A Markov normal algorithm to compute  /
may use an alphabet extending 1.  It is quite straightforward  to establish:

5.18.  Theorem
Let  f:Z*^>Z*.  Then  f  is  is Markov-computable  iff  f  Post-

computable.

Markov-computability  on  N  is  defined  by  using  some  system  of
representing numbers in the usual way, and thus coincides with the other
approaches to  computability.

6.  Computability on domains other than N
In chapter  1 § 5 we showed how any notion  of computability on M can

be extended to other domains by the device of coding. By contrast, in the
previous  section  the  definition  of  Post-computability  on the  domain  of
strings  on  a  finite  alphabet  was  given  directly  in  terms  of  the  objects
(strings) and their intrinsic structure. A variety  of such direct  approaches
to  computability  on  other  domains  is possible:  we  give  two  examples.

6.1.  Example
D  = Z. The  URM  idea  may be  extended  to  handle  integers  by

making the following  modifications:
(a)  each register contains an  integer,
(b)  there  is  an  additional  instruction  S~(n)  for  each  n =
1, 2, 3 , . . . that has the effect  of subtracting  1 from the contents  of
register  Rn.
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6.2.
 where  The  class  of

 on  is the smallest  class of  partial functions  such that
 the basic  functions

(i)
(ii)

(iv)  the projection  functions U?(c7i,. . . ,  =
are in 3?D,
(6)  is closed  under substitution,
(c)  5? D  is  closed  under  primitive  recursive  definitions  of  the  following
form:

 ra) = gi(o-, r,  r))

where/,
 is  closed  under  if  is  in  S? D,  so  is  the

function  given by

where  means the first r  in the natural ordering  a,
. . . .

For each of these,  and other approaches to computability on a domain
 that utilise the intrinsic structure of  we find as expected that they are

equivalent  to  the  approach  that  transfers  the  notion  of  computability
from  N by using coding.  And,  vice  versa,  any  natural  notion  of  compu-
tability on a domain  induces  an alternative  (but equivalent)  notion of
computability  on M via coding,  as with Post-computability  in § 5.

6.3.
1.  Prove that URM-computability  on Z as outlined in example  6.1

is equivalent to URM-computability  via coding (example  1-5.1).
2.  Prove  that the  class  of  partial  recursive functions on J*,  as

defined  in  example  6.2,  is  identical  to  the  Post-computable
functions  o n l * .

3.  Suggest  natural definitions  of  computability  on the domains
3 x 3  matrices,  (rational  numbers).

4.  Give  a natural definition  of Turing-computability  on J*,  where
 is any finite alphabet.
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7.  Church's thesis
We now turn  our  attention  to the second question  of the intro-

duction  to  this  chapter:  how  well  is  the  informal  and  intuitive  idea  of
effectively  computable  function  captured  by the  various  formal  charac-
terisations?

In  the  light  of  their  investigations,  Church,  Turing  and  Markov  each
put forward  the claim that the class of functions  he had defined  coincides
with the  informally f defined  class  o  effectively  computable  functions.  In
view of the Fundamental  result (1.1), these claims are all  mathematically
equivalent.  The  name  Church's  thesis  (sometimes  the  Church-Turing
thesis) is now used to describe any of these other claims. Thus, in terms of
the URM approach,  we can state:

Church 's thesis
The  intuitively  and  informally  defined  class  of  effectively

computable partial functions  coincides exactly  with the class <€  of  URM-
computable functions.

Note immediately  that  this thesis is not a theorem which  is susceptible
to mathematical proof; it has the status of a claim or belief which must be
substantiated  by evidence.  The  evidence  for  Church's  thesis,  which  we
summarise  below, is impressive.

1.  The  Fundamental  result:  many  independent  proposals  for  a
precise  formulation  of  the  intuitive  idea  have  led  to  the  same
class  of  functions,  which we have called c€.

2.  A  vast  collection  of  effectively  computable  functions  has  been
shown  explicitly  to  belong  to  <#;  the  particular  functions  of
chapter 2 constitute the beginning of such a collection, which can
be enlarged  ad infinitum  by the techniques  of  that  chapter,  and
other  more sophisticated  methods.

3.  The implementation  of a program  P on the URM to compute a
function  is clearly an example of an algorithm; thus, directly  from
the  definition  of  the  class  <#, we  see  that  all  functions  in  <# are
computable  in  the  informal  sense.  Similarly  with  all  the  other
equivalent  classes,  the  very  definitions  are  such  as  to  demon-
strate that the functions  involved  are  effectively  computable.

4.  No  one  has  ever  found  a  function  that  would  be  accepted  as
computable  in the  informal  sense, that  does not  belong to  <#.

On the  basis  of  this evidence,  and that  of  their  own experience,  most
mathematicians  are  led  to  accept  Church's  thesis.  For  our  part,  we
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propose  to  accept  and  use  Church's  thesis  throughout  the  rest  of  this
book,  in a way that we  now explain.

Suppose that we have r an informally described algorithm fo  computing
the values of a function /.  Such an algorithm may be described in English,
or by means of diagrams, or in semi-formal mathematical terms, or by any
other  means  that  communicate  unambiguously  how  to  effectively  cal-
culate the values of /, where defined,  in a finite amount of time. In such a
situation  we  may wish  to  prove  that /  is URM-computable.  There  are,
broadly,  two methods open to us.

 Write  a  program  that  URM-computes  /  (and  prove  that  it
does so), or prove by indirect h means t tha  suc  a program exists. This could
be done,  for instance,  by the methods  of  chapter 2,  or by showing that  /
belongs to one of the many classes shown by the Fundamental result to be
equivalent  to  <#.

Such a full  and formal  proof  that /  is URM-computable  may be a long
and  rather  technical  process.  Essentially  it would  involve  translation  of
the informally described algorithm into a program or into the language of
one  of  the  other  formal  characterisations.  Probably  there  would  be
various flow diagrams as intermediate  translations.

 2.  Give  an  informal  (though  rigorous)  proof  that  the  given
informal  algorithm is indeed an algorithm that serves to compute /. Then
appeal  to  Church's  thesis  and  conclude  immediately  that  /  is  URM-
computable.

We propose to accept method  2 as a valid method of proof,  which we
call

7.1.
1.  Let  be  a URM  program; define  a function /  by

II  if  after  or fewer steps
of the computation

0  otherwise.
An  informal  algorithm for  computing /  is as follows.

'Given  (JC, y,  simulate  the  computation  (on  a piece  of
paper, for example,  as in example  1-2.1),  carrying out  steps of

 unless  this  computation  stops  after  fewer  than  steps.  If
 stops  after  or  fewer  steps,  with  y  finally  in  Ri,  then

 Otherwise  (i.e.  if  stops in  or fewer steps with
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some number other than y in Ri, or if  has not stopped after
steps) we have /(JC,  y, 0  = 0.'

Simulation  of  for  at most  steps  is clearly  a mechanical
procedure,  which  can  be  completed  in  a finite amount  of  time.
Thus,  effectively  computable. Hence, by Church's thesis, /  is
URM-computable.

2.  Suppose that /  and g are unary effectively  computable functions.
Define  a function  by

if  JC e Dom(/)  or  Dom(g),
I undefined  otherwise.

An algorithm for  can be described in terms of given algorithms
for the  effectively  computable  functions /  and g  as follows:

'Given  JC, start  the  algorithms  for  computing  /(JC)  and  g(jc)
simultaneously.  (Envisage  two  agents  or  machines  working
simultaneously,  or  one  agent  who  does  one  step  of  each
algorithm  alternately.)  If  and when one  of  these  computations
terminates,  then  stop  altogether,  and  set  Otherwise,
continue  indefinitely.'

This algorithm gives  =  1 for any  JC such that either/(JC) or
g(jc) is defined;  and it goes on for ever  if neither is defined.  Thus
we have an algorithm for computing  so by Church's thesis  is
URM-computable.
Let  digit  in  the  decimal  expansion  of  =
3.14159 . . .  (so we have /(0) = 3, /(I)  =  1, /(2) = 4, etc.). We can
obtain  an  informal  algorithm  for  computing  as  follows.
Consider  Hutton's series  for  TT

12  I

1 4 r  2 / l \  2 x 4 / l \ 2

( « ! 2 n ) 2  [ 1 2 / 1 y  . 1 4 / 1  V

Let  = Zn=o ;  by the elementary theory  of  infinite  series

Now  is  rational,  so  the  decimal  expansion  of  s*  can  be
effectively  calculated to any desired number of places using long
division. Thus the following is an effective method for calculating

 (given  a number
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'Find the first  such that the decimal  expansion
 .  . . . ... ...

does  nor have  all of  •  •  •,  equal to 9.  (Such an  AT exists,
for otherwise the decimal expansion of  would end in recurring
9,  making  rational.) Then put  =  a n.'

To see  that this gives the required value, suppose  that
with  Then  by the  above

Hence  . ...  . . . ...  <  . ...  . . . 1)...
so the  nth decimal  place  of  is indeed

Hence  by Church's thesis, /  is computable.

The student should  try to provide  complete  formal  proofs  (method  1)
that the functions in these examples are URM-computable  (assuming, for
example  2,  that /  and  are  URM-computable).  For  all  of  them  it  is a
lengthy  and tedious  task.

Note  that in using Church's thesis we are not proposing to abandon all
thought of proof, as if Church's thesis is a magic wand which we can wave
instead.  A  proof  by  Church's  thesis  will  always  involve  proof  that  is
careful,  and sometimes complicated,  although informal.  Moreover,  any-
one using Church's s thesi  in the way we propose should be able to provide
a  formal  proof  if  challenged.  (As  if  to  anticipate  such  a  challenge,  we
provide  in the  appendix to chapter  5  an alternative  formal  proof  of  one
fundamental theorem in that chapter (theorem 5-1.2) on which almost all
later  development  depends.  This  then  serves  to  substantiate  further
Church's  thesis;  incidentally,  it  is  a  simple  formal  corollary  that  the
functions  in  the first two  examples  above  are  URM-computable  also.)

Church's  thesis  not s only  keep  proofs  shorter,  but  also  prevents  the
main  idea  of  a proof  or construction  from  being  obscured  by a mass  of
technical  details.  It  remains,  however,  an  expression  of  faith  or
confidence.  The  validity  of  faith  depends  on  the  evidence  that  can  be
mustered.  In  the  case  of  Church's  thesis,  there  is  the  mathematical
evidence  already  outlined.  For  the  practised  student  there  is  the  addi-
tional evidence  of  his own experience  in translating informal  algorithms
into formal  counterparts.  For the beginner, our use of  Church's thesis in
subsequent chapters may call on his willingness to place confidence  in the
ability  of  others until  self  confidence  is developed.
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To conclude:

7.2.
1.  Suppose that  and  are effectively  computable  functions.

Prove,  using Church's thesis,  that the function  given  by
  i fx €Dom(/)nDom(g) ,

1 undefined  otherwise
is  URM-computable.

2.  Suppose  that  /  is  a  total  unary  computable  function.  Prove,
by  Church's  thesis,  that  the  following  function  is  URM-
computable

I undefined  otherwise.
3.  Give  a  detailed  proof  by  Church's  thesis  that  the  Ackermann

function  (example  2-5.5)  is computable.
4.  Prove  by Church's thesis  that the function  given by

 =  digit in the decimal expansion of e
is  computable  (where  the  number  e  is  the  basis  for  natural
logarithms).



Numbering  computable
functions

We return  now to the study  of URM-computable  functions.  Henceforth
the  term  computable  standing  alone  means  URM-computable,  and
program means URM program.

The key fact established  in this chapter  is that the set of all programs is
effectively denumerable:  in  other  words  there  is  an  effective  coding  of
programs by the set of all natural numbers. Among other things, it follows
that  the  class  %  is  denumerable,  which  implies  that  there  are  many
functions  that  are  not  computable.  In  § 3 we  discuss  Cantor's  diagonal
method, whereby  this is established.

The  numbering  or  coding  of  programs,  and  particularly  its  effective-
ness,  is  absolutely  fundamental  to  the  development  of  the  theory  of
computability.  We  cannot  overemphasise  its  importance.  From  it  we
obtain codes or indices for computable functions,  and this means that we
are able to pursue the idea  of  effective  operations  involving such codes.

In  § 4 we prove the first  of two important theorems involving codes of
functions:  the so-called  s-m-n  theorem  of Kleene. (The second theorem
is the main result  of chapter  5.)

1.  Numbering  programs
We first explain  the terminology  that  we shall use.

1.1.  Definitions
(a)  A  set X  is  denumerable  if there  is a bijection  f:  X-*N.
(Note.  The  term  countable  is  normally  used  to  mean  finite  or
denumerable; thus, for infinite sets, countable means the same as
denumerable.  The  term  countably  infinite  is  used  by  some
authors instead  of  denumerable.)
(b)  An  enumeration  of  a set  X  is a surjection  g: N^X\  this  is
often  represented  by writing
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where xn  =  g(n).  This is an enumeration  without repetitions  if g is
injective.
(c)  Let  AT be a set of finite objects (for example a set of integers,
or a set of instructions, or a set of programs); then X  is effectively
denumerable  if there is a bijection / :  X  -> fol such that both /  and
f~l  are effectively  computable  functions.
{Note.  We  mean  here  the  informal  notion  of  effectively
computable. This is compelled on us since, in general, there is no
available  formal  notion of  computability  of functions  from  X  to
IU1 In cases where some formal notion does apply, we take this to
be the meaning,  as for example  in theorem  1.2(a).)
Clearly, a set is denumerable  if  and only  if it can be enumerated
without repetitions.

For the main result of this section we need the following (recall that  N4"
denotes the set of  all positive  natural  numbers):

1.2.  Theorem
The following  sets are effectively  denumerable.
(a)
(b)
(c)  Ufc>o N \  the set of all finite sequences of natural  numbers.

Proof
(a)  A  bijection  n:  N x N -* N is defined  by
7r(m,n)  = 2m(2n  +  l)-l.
It  is  clear  from  the  definition  that  n  is  in  fact  a  computable
function; to see that the inverse is effectively computable observe
that  TT~X  is given by

where  TTI,  TT2 are  the  computable  functions  defined  by  TTI(JC) =
(* + l)i,  ir2(x) = i((jc + l ) /2 i r » ( x ) - l ) .  (Cf.  exercise  2-4.16(2).)
(b)  An  explicit  bijection  (:  N+ x N+ x N+ -* N is given, using the
function  TT  of  (a), by
f (m, n, q) =  7r(7r(m  -l,n-l)9q-1).
Then we  have

\  1).

To say that we should s use a notion of  computability  based on some coding beg
the whole question, since a coding is an effective  (in the informal sense) function.
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Since the functions  TT, TTI,  TT2  are effectively  computable, then so
are  £  and £~1.
(c)  A  bijection r:  Ufc>o  Nfc -* N is defined  by

Clearly r is an effectively  computable function. To see that r is a
bijection,  and  to  calculate  r~l(x),  we  use  the  fact  that  each
natural  number  has  a  unique  expression  as  a  binary  decimal.
Thus, given  JC, we  can effectively find unique numbers  k >  1 and
0 <  bi  b < 2 . . .  <  bk  such that
jt + l = 2 6 l  + 262 + . . .  + 2*k

from which we  obtain
r~\x)  =  ( f l i , .  ..,ak),

where  ai  =  fti  and  a,+i  = £ , + ! - £ , - 1  ( 1 ^ i<k).  (Cf.  exercise
2-4.16(5),  where  functions  closely  connected  with  the  cal-
culation of  T~1 are to be proved computable.)  •

Let us now denote  the set of  all URM instructions by J>,  and the set of
all programs by 9>. A program consists of a finite list of instructions, so we
next consider  the set $>.

1.3.  Theorem
$  is effectively  denumerable.

Proof. We  define  an  explicit  bijection  0:  ^-*N  that  maps  the  four
kinds of instruction onto natural numbers of the forms 4w, 4w 4-1, Au  + 2,
4M + 3 respectively; we use the functions  TT  and £ defined  in the proof  of
theorem  1.2.

0(T(m, /i) = 47r(m - 1 , n - 1 )  + 2,

This  explicit  definition  shows  that  /3  is  effectively  computable.  To find
/S~ 1(JC),  first find  w, r  such  that  * = Au + r with 0 <  r < 4 .  The  value  of  r
indicates  which  kind  of  instruction  (3~l(x)  is,  and  from  u  we  can
effectively find the particular  instruction  of  that kind.  Specifically:

if r = 0, then 0~l(x)  =  Z(w +1);
if r =  1, then p~\x)  =  S(w 4-1);
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~\if r = 2, then 0~\x)  =  T(TTI(W) + 1 ,  TT2(M) +1);
if r = 3, then)8~1(jc) = J(m, n, 4), where  (ra, n, q) =  (~1(u).

Hence  @~l is also effectively  computable.  •
Now we  can prove:

1.4.  Theorem
8P is effectively  denumerable.

Proof. Define  an  explicit  bijection  y.&^N  as  follows,  using  the
bijections  r  and @  of  theorems  1.2  and  1.3:  if P = Iu  I2,...,  Is  then

Since  r  and /3 are bijections,  so  is y;  the fact  that  r,  @  and their inverses
are  effectively  computable  ensures  that  y  and  y" 1  are  also  effectively
computable.  •

The bijection y will play e an important rol  in subsequent development.
For a program P, the number y(P)  is called the  code number  of P, or the
Godel2  number  of  P, or just the  number  of  P. We  define

Pn  -  the program with (code) number n
= 7~\n),

and say that Pn  is the nth program. By construction of y, if m ^ n, then Pm

differs  from  Pny  although  these  programs  may  compute  the  same
functions.

It is of  the utmost importance  for later results that the functions  y  and
y"1  are effectively  computable;  i.e.

(a)  Given  a  particular  program  P,  we  can  effectively  find  the
code  number y(P);
(b)  given  a  number  n,  we  can  effectively  find  the  program
Pn = y~1(n).

In order to emphasise  this we give two simple  illustrations.

1.5.  Examples
(a)  Let  P  be  the  program T(l,  3), S(4), Z(6). We will  calculate
y(P).

/3(Z(6)) =
2  The  term  Godel  number  is used  after  K.  Godel  who first exploited  the  idea  of

coding  non-numerical  objects  by numbers in his famous  paper  (Godel  [1931]).
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Hence y(P) = 218 + 232  4- 253  - 1

(/>)  Let n = 4127; we will find JP4127.
4127 = 25  -f- 212 - 1 ;  thus  P4127 is a program with two instructions
/1 , / 2 where

= 5 = 4 x 1 + 1,

Hence from the definition  of 0,7X = S(2) and I2 = T(2,1), so  Pil27

is
S(2)
T(2,1)

There are, of course, many other possible effective bijections from  0> to
M;  our choice in defining the details of y was somewhat arbitrary. What is
vital, we again emphasise,  is that  y and y~l are effectively  computable.
The particular  details  of y are not so important.  For subsequent  theory,
any other  bijection  y'  would  suffice,  provided that  y' and its inverse are
effectively  computable.  However,  we  have  to fix on  one  particular
numbering of programs, and we have chosen that given by y. For the rest
of this book, y  remains fixed, so that for each particular  number n,  the
meaning ofPn does not change. Thus, for instance, P4127 always means the
program  S(2), T(2,1).

1.6.  Exercise
Find

(a)  0(J(3,4,2)),
(b) /T1^),
(c)  the  code number  of the  following  program:
T(3,4),S(3),Z(1),

id)  P100.

2.  Numbering computable  functions
Using  our fixed numbering  of programs,  we can now number

computable functions  and their domains and ranges. We introduce some
important  notation  which  is basic to the  rest of the  book.

2.1.  Definition
For each  a e N, and n > 1:
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L n )(a)  0Ln) = the n-ary function computed by Pa

= /pj  in the notation of chapter  1 § 3,

(b)  W(
a
n)  = domain of 0(

fl
n) ={(xu  . . . ,  xn):  Pa(xu  . . . ,  xn)i}9

E^  = range of <(>(
a

n\
We shall be mainly concerned with unary computable functions in later

chapters, so for convenience  we omit the superscript  (1) when it occurs;
thus we write 0 a  for 0 (

a
n,  Wa  for  Wla\  and Ea  for  E™.

2.2.  Example
Let  a =4127;  from  the  previous  section  we  know  that  P4127 is

S(2),T(2,1).  Hence

and
<t>4n i2i(xu...,xn)  = x2 + l  if  n>l.

Thus
^4127  =  ^ ,  £4127  =  {1};

W4127  =  Nn ,  ^4"i27  =  M+  if  n  >  1.

Suppose that /  is a unary computable function. Then there is a program
P, say, that computes /, so /  =  <f>a, where a  = y(P). We say then that a  is an
mdejc for/.  Since there are many different programs that compute a given
function, we cannot say that a  is the index for/;  in fact, each computable
function  has infinitely  many indices.

We  conclude  that  every  unary  computable  function  appears  in  the
enumeration

00, 01, 02,
and that this is  an enumeration  with  repetitions.

Similar remarks apply to  n-ary functions  and their  enumeration.

2.3.  Exercise
Prove  that  every  computable  function  has  infinitely  many

indices.

Recall  that we denoted the set of  all n-ary computable function  by ^n.

2.4.  Theorem
^n is  denumerable.
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Proof. We use the enumeration  <f>on\ <f>[n). <t>{
2

n\ . . .  (which  has repeti-
tions) to construct one without  repetitions.

Then

4>fiOh  <f>f(l)>  <f>H2) » • •  •
is  an enumeration  of  <#„ without repetitions.  •
Note.  We are not claiming that /  as defined in this proof is computable; in
fact, we will be able to show later  that this  is not the case. It is possible,
nevertheless,  to give  a complicated  construction  of  a total  computable
function  h  such  that  4>lh(oh  <£MI), . . .  is  an enumeration  of  <#„  without
repetitions.  This was proved  by Friedberg  [1958].

2.5.  Corollary
<€  is  denumerable.

Proof. Since  <# = U«^i *„, this follows  from the fact  that a denumer-
able  union  of denumerable  sets is denumerable.

Explicitly, for each  n let/„  be the function used in theorem 2.4 to give
an enumeration of  <#„ without repetitions. Let n be the bijection  NxN->
N of theorem  1.2. Define  6:  <g -* N by

Clearly  6 is a bijection.  •

The next theorem shows that there are functions  that are not compu-
table. The idea of the proof  is as important  as the result itself.

2.6.  Theorem
There is a total  unary function  that is not  computable.

Proof. We  shall  construct  a  total  function  /  that  is  simultaneously
different  from  every  function  in the enumeration  4>o*4>u4>i*---  of * i .
Explicitly,  define

f>n (n) +1  if <f>n (n) is defined,
)  if (f>n (n) is undefined.

Notice that we have constructed /  so that for each n, /  differs from <f>n  at n:
if <f>n(n) is defined, then/ differs from <f>n  in that  f(n)^4>n(n);
if </>n (n) is undefined, then /  differs from  <f>n  in that f(n)  is defined.
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Since  /  differs  from  every  unary  computable  function  <f>n,  f  does  not
appear in the enumeration  of ^i  and is thus not itself computable. Clearly
/  is total.  D

3.  Discussion: the diagonal  method
The method  of  constructing  the  function  /  in theorem  2.6  is an

example  of  the  diagonal  method  of  construction,  due  to  Cantor.  Many
readers  will  be  familiar  with  this  method  as  used  in  proofs  of  the
uncountability  of  the  set  of  real  numbers. The  underlying  idea  is appli-
cable  in a wide variety  of situations, and  is central  in the proofs  of  many
results concerning computability  and  decidability.

To see why the term  diagonal  is used, consider  again the  construction
of /  in theorem  2.6. Complete details  of  the functions  <f>0, <f>u •.  •  can be
represented  by the  following  infinite  table:

<t>l

0O(D

We suppose that in this table the word 'undefined'  is written whenever
0n (m)  is not  defined.

The  function  /  was constructed  by taking the  diagonal  entries on  this
table  (circled)

and systematically  changing them,  obtaining

such  that  /(w)  differs  from  (f>n(n)>  for  each  n.  Note  that  there  was
considerable freedom  in choosing the value of f(n)\  we only had to ensure
that  it differed  from  <f>n(n).  Thus

bn(n) + 21n  if <f>n(n)  is defined,
i2  if <f>n(n)  is undefined,

is another  non-computable  total  function.
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We can summarise  the diagonal  method  as we shall be  using it,  in the
following way. Suppose that xo, #i» X2,  •  •  • is an enumeration of objects of
a  certain  kind  (functions  or sets  of  natural  numbers).  Then  we  can
construct  an object \  of the  same  kind  that is different  from  every *„,
using the following  motto:

'Make x and xn  differ at n"
The interpretation of the phrase  differ at  n depends on the kind of object
involved. Functions may differ  at n  over whether they  are defined,  or in
their values at n  if defined there; with functions, there is usually freedom
to construct x so as to meet specific extra requirements; for instance, that
X be computable, or that its domain  (or range) should differ from that of
each  Xn.

In the case of sets, the question  at n  i  is whether or not  n s a member.
We illustrate  the diagonal  construction  when sets  are involved.

3.1.  Example
Suppose  that Ao, Au  A2,...  is an enumeration  of subsets of  f̂ J.

We can define  a new set  B,  using the diagonal  motto, by
n e B  if and only if n £ An.

Clearly,  for each n,B^ An.

There  are  important  applications  of the  diagonal  method  in  the  next
two chapters.

3.2.  Exercises
1.  Suppose  that f(x,  y)  is a total  computable  function.  For each ra,

let  gm  be  the computable  function  given by
gm(y)=/(ra,  y).

Construct a total  computable  function  h  such  that  for  each m,

2.  Let /0 , /1 , . . . be an enumeration of partial functions from f
Construct a function g from  ÎJ to N such that Dom(g) ^ Dom(/,)
for each /.

3.  Let/be  a partial function from N to N, and let m e N .  Construct a
non-computable  function g such that
g(x)^f(x)  forx<m.

A.(a) (Cantor) Show that the set of  all functions  from N to  f̂ i  is not
denumerable.
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(b)  Show that the set of all non-computable total functions  from
f̂  to N is not denumerable.

4.  The s-m-n  theorem
In the final section  of this chapter  we prove a theorem that  has

many important uses, especially in conjunction  with the main theorem of
the next chapter.

Suppose  that  /(JC, y) is a computable  function  (not  necessarily  total).
Then  for each fixed value  a  of x, f  gives  rise  to a  unary  computable
function  ga, where

ga(y)-f(a,y).
Since ga  is computable, it has an index e, say, so that

The next theorem shows that such an index e can be obtained  effectively
from  a. This is a particular case of a more general theorem, known as the
s-m-n  theorem, which we prove below. (The reason for this name will be
explained  after  theorem  4.3.) For most  purposes  in  this  book,  the
following  suffices.

4.1.  Theorem (The s-m-n  theorem, simple  form)
Suppose that f(x, y)  is a computable  function.  There is a  total

computable function k{x)  such that
f(x,y)^<f>k(x)(y).

Proof  For each fixed a,k(a)  will be the code number of a program Qa
which, given initial  configuration

R i

computes/(a, y).

Let  F be a program  that  computes /. Then  for Qa we write  down F
prefaced  by instructions that  transform  the configuration  (*) to

R i
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Thus,  define  Qa  to be the following  program

[S(D
a  times <  ;

F
Now  define

k(a)  = the code number of the program <?a.
Since  F  is fixed, and from  the  fact  that our numbering  y  of  programs is
effective,  we see  that  k  is an effectively  computable  function. Hence,  by
Church's thesis,  k  is computable.  By  construction

for each a.  •
The  s-m-n  theorem  is sometimes  called  the  Parametrisation  theorem

because it shows e that an index for a computabl  function (such as ga  in the
discussion  above)  can be found  effectively  from a parameter  (such as  a)
on which it effectively  depends.

Before giving the full s-m-n  theorem we give some simple illustrations
of  the  use  of  theorem  4.1  in  effectively  indexing  certain  sequences  of
computable  functions  or their domains or ranges.

4.2.  Examples
1.  Let  /(JC, y)  = yx.  By  theorem  4.1  there  is  a  total  computable  k

such that <t>k(X)(y) = yx. Hence,  for each fixed n, k(n)  is an index
for the function  yn.

(y  if y is a multiple of x
2.  Let/(*,y) = j

Undefined  otherwise.
Then /  is computable, so let k be a computable function such that
<f>k(X)(y) —f(x, y). Then, for each fixed n
<f>k(n)(y) is defined  iff  y is a multiple of n

iff  y is in the range
i.e.
Wkin) = n N (=  the set of all multiples of  n)

=  £fc(n)-
So we have  an effective  indexing of  the sequence of sets  (n N) as
(i)  the  domains  of  computable  functions,  (ii)  the  ranges  of
computable  functions.
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One  obvious  way  to  generalise  theorem  4.1  is  to  replace  the  single
variables x, y by m-  and ^-tuples x  and y  respectively. We can also reflect
the fact that the function  k  defined in the proof  of theorem 4.1  depended
effectively  on  a  particular  program  for  the  original  function  /.  Thus,
instead  of  considering  a fixed computable  function  /(JC,  y)  we consider a
general computable function  <f>(

e
m+n)(x,  y),  and the question of  effectively

finding, for each  e  and *, a number  z  such  that

4.3.  Theorem  (The  s-m-n  theorem)
For each m,n>l  there is a total computable  (m + \)~ary function

s™(e, x)  such that

Proof. We generalise  the proof  of  theorem 4.1.
For any / >  1 let  Q(i,  x)  be  the  subroutine

- x  times

that replaces the current contents  of  R,  by x. Then  for fixed m,  n  define
5™(e, jr) to be the code  number of  the following  program:

T(n,  m + n)

T(2,m+2)
L,m + 1)

This part of  the program  transforms  any  configuration

Ri

y\  0 0

into

yi y- 0
0(2 ,  *2)

Q(m,xm)

Pe

From  this explicit  definition,  and the  effectiveness  of  y  and y ~ \  we  get
that  s™  is  effectively  computable,  hence  computable,  by  Church's
thesis.  •
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The notation s™  for the function given by theorem 4.3 has given rise to
the standard description of this result as the s-m-n  theorem. We will also
use this name to describe the simpler version given  in theorem 4.1.

It  is  not  hard to  see  that  the  function  5  IT as  defined  above  is  in  fact
primitive recursive. With a little thought it is also possible to see that for
each  m  there  is  a function  sm  (also  primitive  recursive)  that  suffices  in
theorem 4.3  for  all  n. See  the exercises 4.4(5)  below.

4.4.  Exercises
1.  Show  that  there  is  a total  computable  function  k  such  that  for

each  n, k(n)  is an index  of  the function  [\/x].
2.  Show  that  there  is  a total  computable  function  k  such  that  for

each  n,  Wk(n) = the set of  perfect  nth powers.
3.  Let  n >  1. Show that there is a total computable  function  s  such

that

4.  Show  that  the  functions  s™  defined  in  theorem  4.3  are  all
primitive  recursive.

5.  Show  that  for  each  m  there  is  a  total  (m + l)-ary  computable
function  sm  such that for  all n

where  JC, y  are  m-  and n-tuples  respectively.
(Hint.  Consider  the  definition  of  s™(e9 x)  given  in the  proof  of
theorem 4.3. The only way in which  n was used was in determi-
ning how  many  of  the  ru  r2,...  to  transfer  to  Rm+U  #m+2,
Now  recall  that  the  effect  of  Pe  depends  only  on  the  original
contents  of  R i , . . . ,  RP(pe),  where  p  is  the  function  defined  in
chapter 2 § 2; p(Pe)  is independent of  n.) Show further that there
is such a function  sm  that is primitive  recursive.



Universal programs

In this chapter  we establish the somewhat surprising result that there are
universal  programs',  i.e.  programs  that  in  a  sense  embody  all  other
programs. This result is one of the twin pillars that support  computability
theory  (the other  is the  s-m-n  theorem); both  rest on the numbering of
programs  given  in chapter  4.

Important  among  the  applications  of  universal  programs  is  the
construction  of  specific  non-computable  functions  and  undecidable
predicates,  a  topic  pursued  in  chapter  6.  We  give  a  foretaste  of  such
applications  in  § 2  of  this  chapter;  we  also  use  a  universal  program  to
construct  a total  computable  function  that  is not  primitive  recursive,  as
promised  in chapter  3.

The final section  of this chapter  is devoted  to some illustrations  of  the
use of the s-m-n  theorem in conjunction with universal programs to show
that  certain  operations  on  the  indices  of  computable  functions  are
effective  (a foretaste  of  the topic  of  chapter  10).

1.  Universal  functions  and universal  programs
Consider  the function  if/(x, y)  defined  by

There  is an obvious sense in which the single function  if/ embodies all the
unary  computable  functions  <f)0, <f>\> 4>i>  •  • •,  since  for  any particular  m,
the  function  g  given  by

is just  the computable  function  <t>m.  Thus we describe if/  as the universal
function  for  unary  computable  functions.  Generally,  we  make  the
following  definition.
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1.1.  Definition
The  universal  function  for  n-ary  computable  functions  is  the

(n + l)-ary function  tfv  defined  by
4>u)(e9xl,...9xn)~<t>i:)(xu..->xn).

We write  (/OJ for  tf/^.

The question arises, is  IKJ (or, generally,  <^u}) a computable  function?
If so, then any program P  that computes  <Au  would appear to embody all
other programs, and P would y be aptl  called a universal program. At  first,
perhaps, the existence  of  a universal program seems unlikely.  Neverthe-
less,  it is not hard to see that  t̂ u is indeed computable. The point is that a
universal  program  P  does  not  need  to  contain  all  other  programs  Pe  in
itself; P  only needs the ability to  decode  any number  e  and hence  mimic

1.2.  Theorem
For each n, the universal function  if/^  is  computable.

Proof. Fix n, and suppose that we are given an index e and an n-tuple  x.
An  informal  procedure  for computing  tAu^e, x)  is as follows:

'Decode  the  number  e  and write out  the  program  Pe.  Now  mimic the
computation  Pe(x)  step by step, at each step writing down the  configura-
tion of the registers and the next instruction to be obeyed (as was done in
example  1-2.1).  If  and when  this  computation  stops,  then  the  required
value  (Au^e, x)  is the  number currently  in Ri.'

We could conclude immediately (using Church's thesis) that  if/u]  (e,  x) is
computable.  Because  of  the  importance  of  this  theorem,  however,  we
prefer to outline the beginnings of a formal proof  and then make a rather
less sweeping appeal to Church's thesis. (For the sake of completeness of
our exposition we shall provide the rest of the formal proof  in  an appendix
to this  chapter.)

The plan for a formal proof is to show first how to use a single number or
to  code  the  current  situation  during  a computation;  then  we  show  that
there is a computable  function expressing the dependence of a  on (a)  the
program  number  e,  (b)  the  input  x,  (c)  the  number  of  steps  of  the
computation  that have  been completed. e W  will see  that this suffices  to
prove the theorem.

Let us return, then, to e th  computation Pe(x)  considered above. As we
have  seen  in  examples,  the  current  situation  during  a  computation  is
completely  specified  by  (i)  the  current  configuration  of  the  registers
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?i> ri> ^3 , . . .  and  (ii)  the  number j  of  the  next  instruction  in the  compu-
tation. Since only finitely many of the numbers rt are not zero, the current
configuration  can be specified  by the single  number

(Recall  that  p,  is  the  /th  prime  number.)  We  call  this  number  the
configuration code  or just the configuration  if there is no ambiguity. Note
that  the contents  r, of  Ri  can be easily recovered  from  c;  in fact  r, = (c),
(using the function  of  theorem  2-4.15(<i)).

The complete description of the current situation can now be d code  by
the  single  number  cr = 7r(c,/),  which  we  call  the  current  state  of  the
computation  Pe(x).  (Here  TT is the pairing function  used  in the proof  of
theorem 4-1.2.)  We will make the convention that if the computation has
stopped,  then /  = 0  and c  is the final configuration.  Note  that  c =  TTI(<X)

and  /  =  7T2(cr)  where  w\,  TT2  are  the  computable  functions  defined  in
theorem 4-1.2.

Now  c, /,  a  change  during the computation;  their dependence  on  the
program  number  e,  the  input  x  and  the  number  t  of  steps completed  is
expressed  by defining  the following  (n + 2)-ary  functions:
(1)  cn(e9 x, t) = the configuration  after  / steps of

Pe{x)  have been completed
(=  the final configuration  if Pe(x)i  in t

or fewer steps).
the number1 of the  if Pe (x)  has
next instruction for  not stopped
Pe(x)  when  t steps  after  t or
have been completed,  fewer steps,

0  if Pe(x)i  in  t  or fewer steps.

(3)  <rn(e, x, t) = the state of the computation  Pe(x)
after  t steps

=  ir(cn(e,x9t)9jn(e,x,t)).
The aim now is to show that  arn  (and hence  cn  and /„)  are  computable

functions.  To see  why this is sufficient,  suppose  that this has been done.
Clearly,  if  the  computation  Pe(x)  stops  it  does  so  in  /jLt(jn(e,x,t)  = 0)
steps; then the final configuration  is cn(e,  x, ixt(jn(e,  x, t) = 0)), and so we

We mean here the number /  such that the next instruction /  is the /th instruction
of  Pe\  we do  not  mean the code  number 0(7).
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have

(using  substitution  andThus,  if  cn  and  jn  are  computable,  so  is
minimalisation)  and our proof  is complete.

We now use Church's thesis to show that  orn  (and hence  cn  and jn)  are
computable.  We  have  the  following  informal  algorithm  for  obtaining
an (e> x,  t +  1) effectively  from  an (e, x> t)  and  e:

'Decode  crn(e, x, t)  to find the numbers  c = cn(e,  x, t)  and j  =jn(e,  x,t).
If  y  = 0,  then  crn(e9 x,  f +1)  = o-n(e, x, t).  Otherwise,  write  out  the
configuration  coded  by c,

say,  and  by  decoding  e  write  out  the  program  Pe.  Now  find  the  yth
instruction  in Pe  and operate with it on the configuration  (*), producing a
ne"w configuration  with  code  c'  say.  Find  also  the  number /'  of  the  new
next instruction (with/' = 0 if the computation has now terminated). Then
we  have

o-n(<?,x,f  + l)  = 7r(c',/').
This shows informally that crn (e, x,  t) is computable by recursion in t, since
for  t = 0 we  have

crn(e,jr,0) =  7 r ( 2X l 3 ^ . . . p ^ l )

to  start  the  recursion  off.  Hence,  by  Church's  thesis,  an  is  computable,
and our theorem  is now proved.  •

Note.  Since this e theorem  is so basic to further development,  w  provide
in  the  appendix  a  complete  formal  proof  that  an  (and  hence  4*\J*)  is
computable.  This  then  provides  further  evidence  for  Church's  thesis.
(Our formal  proof  also gives us the extra information  that <rn  is  actually
primitive  recursive.)

From the proof  of  this theorem we obtain:

1.3.  Corollary
For each n ^  1,  the following  predicates  are  decidable.
(a)  Sn(e,  x,  y, t) =  iPe(x)ty  in t or fewer  steps\
(b)  Hn(eyx,  t)^iPe(x)i  in t or fewer  steps'.

Proof, (a)  Sn(e,  x,  y, t) s'/„(*,  JC, r) = 0 and (cn(e, jr, f))i  = y'.
(*)  tfw(e,jr,0 = 7n(e,*,f)  = 0 \  •
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The  significance  of  the  next  corollary  is  discussed  in  the  first  note
below.

1.4.  Corollary  (Kleene's  normal  form  theorem)
There is a  total  computable  function  U(x)  and  for  each  n >  1 a

decidable  predicate  Tn(e, x, z)  such that
(a)  <t>{

e
n\x) is defined if and only if  3zTn(e,x,z),

(b)  <f>i
e
n)(x)^U(fjLzTn(eix,z)).

Proof. To discover whether  <f>(
e

n) (x)  is defined,  and the value  if it is, we
need to search for a pair of  numbers  y, t such that Sn(e,  x, y, /). We have
the ^-operator  that enables  us to  search effectively  for  a single  number
having a given property. To use this in searching for a pair of numbers, we
can think of a single number z  as coding the pair of numbers (z)i  and (z)2.
Then, as z  runs through  IM, the pair ((z)i, (z)2)  runs through N x N. So we
define

Tn(e,x,z)  =  Sn(e,x9(z)u(z)2)-
For  (a),  suppose  that  <£ln)(jr)  is  defined;  then  there  are  y,  t  such  that
Sn(e9 x, y, t),  so putting z  = 2 y3' we  have  Tn(e,  x, z).

Conversely, if there is z such that Tn (e, x, z),  then from the definition of
TH9 Pe(x)U  i.e.  <t>[n){x) is  defined.

For  (b),  it  is  clear  from  the  definition  of  Tn  that  if  <f>(
e
n)(x)  is  defined,

then  for  any z  such that  Tn{e,  JC, Z), we have  <£(
e
n)(x) = (z)i.  So  if we  put

l/(z)  = (2)1  then
( ) T n ( e , x , z ) ) .  •

Notes
1.  From  the  appendix  to  this  chapter  it  follows  that  the  functions  cn

and  jn  are  primitive  recursive.  Hence,  the  predicates  Sn,  Hn,  Tn  in
corollaries  1.3  and  1.4  are  also  primitive  recursive.  Thus,  in  particular,
the Kleene  normal form theorem shows that every computable  function
(or partial  recursive  function)  can be obtained  from  primitive  recursive
functions  by  using  at  most  one  application  of  the  /tx-operator.  The
theorem gives, moreover,  a standard way of  doing this.

2.  The  technique  of  searching  for  pairs  of  numbers  by  thinking  of  a
single  number  z  as  coding  the  pair  (2)1,  (z) 2  (as  used  in  the  proof  of
corollary  1.4)  is often  used in computability  theory. We give an exercise
needing  this technique  below  (exercise  1.5(1)).

The  technique  can  also  be  used  in  searching  for  sequences
(xi,x2,...  ,xn)for  any  n>\.
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1.5.  Exercises
1.  (i) Show that  there  is a decidable  predicate  Q(x,  y, z)  such  that

(a)  y E Ex  if  and  only  if 3z  Q(x,  y, z),
(£)  if  y e £x ,  and  Q(JC, y, z), then  <^(U)i)  = y.
(ii)  Deduce that there  is a computable function  g(jt, y) such that
(a)  g(x, y)  is defined  if and  only  if  y 6  Ex.
(b)  if y e £ x,  then g(*, y)e  Wx  and  < x̂(g(x, y)) = y; i.e. gU,  y)e

(iii)  Deduce  that  if  /  is  a  computable  injective  function  (not
necessarily  total or surjective)  then f~x  is computable,  (cf.  exer-
cise 2-5.4  (1)).

2.  (cf.  example  3-7.1(2))  Suppose  that /  and  g  are  unary  comput-
able functions;  assuming that  Tx  has been formally proved to be
decidable, prove  formally  that  the  function  h(x)  defined  by

f 1 if x  e Dom(/) or x  e Dom(g),
[undefined  otherwise,

is computable.

2.  Two applications  of  the universal  program
We illustrate now the use of the computability of universal functions  in

diagonal  constructions.  This  kind  of  application  will  be  explored  more
thoroughly  in the  next  chapter.

2.1.  Theorem
The problem  '<t>x  is total'  is  undecidable.

Proof. Let  g be the characteristic  function  of  this problem;  i.e.
[1  if <f>x  is total,

if <f>x  is not total.
We  must  show  that  g  is  not  computable.  To  achieve  this,  we  use  the
diagonal method to construct a total function /  that is different  from every
computable  function,  yet  such  that  if  g  is  computable,  then  so  is  /.
Explicitly,  define  /  by

1<f>x (x) + 1  if <f>x  is total,
0  if  <f>x  is not total.

Clearly, /  is total  and  differs  from  every  computable  function  4>x-  Now,
using  g  and  if/u we can write /  as  follows:
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Now  suppose  that  g  is  computable;  since  <Au is  computable,  then,  by
Church's  thesis,  so  is  /,  which  is  a  contradiction.  Hence  g  is  not
computable.  •

Our second application here fulfils  the promise made  in chapter 3 § 3.

2.2.  Theorem
There is a total computable function  that is not primitive recursive.

Proof. We give  an informal  proof.  Recall  that the primitive  recursive
functions are those functions that can be built up from the basic functions
by  a  sequence  of  applications  of  the  operations  of  substitution  and
recursion.  Thus each  primitive  recursive  function  can  be  specified  by a
plan  that  indicates  the  basic  functions  used  and  the  exact  sequence  of
operations  performed  in  its  construction.  To  describe  such  a  plan  it  is
convenient  to adopt some  notation  such as the  following:

Sub(/; gi, g2,  • • . ,  gm) denotes  the  function  obtained  by  substituting
g i , . . . ,  gm  into /  (assuming that /  is m-ary,  and gu  ...,  gm  are n-ary  for
some  n)\

Rec(/, g)  denotes  the  function  obtained  from  /  and  g  by  recursion
(assuming  that /  is  n-ary  and g  is (n +2)-ary  for some  n).

If  we  write  S  for  the  function  x + 1 ,  then  we  have,  for  example,  the
following  plan  for  the  function  f(x)  = x2.  We  use  letters g i , . . . ,  g4  to
denote  intermediate  functions.

Plan  Explanation  of  the  steps
Step  1.  gi  = Sub(S;U^).  Si(*,y,z)  = U|(xf  y,z) + l  = z + l.

Step  2.  g2 = Rec(Ui,gi).  .
Ig2(*, y +1) = giU,  y, g2(x,  y))

Sog2(x,  y) =
Step  3.  g3 = Sub(g2; U?, U|).  gsU,  y,z)  = g2(x,  z)  = x +  z.
e*  A  o  /A  \  fg4(x,0)  = 0,
Step 4.  g4 = Rec(0, g3).  \

l g U  y +1) = gaU, y, g4 U,  y))

Sog4 U,  y) = jcy.
Step  5.  /  = Sub(g4;Ul,Ul).  f(x)  =  g4(x,  x) =  x\
Thus a plan is somewhat akin to a program, in that it is a finite and explicit
specification  of  a function.

We  now  restrict  our  attention  to  plans  for  unary  primitive  recursive
functions.  As with programs, we  can number these  plans in an  effective
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way, so  that we  may then  define

0n  = the unary primitive recursive  function
defined  by plan number n.

Then  0O, #i,  &2,  •  • •  is  an  effective  enumeration  of  all  unary  primitive
recursive  functions.

From  chapter  2  we  know  that  every  primitive  recursive  function  is
computable. Hence there is a total function p  such that for each n, p(n)  is
the number of  a program that computes  8n;  i.e.

Now  the  crucial  point  is  that  we  can  find  such  a  function  p  that  is
computable.  We argue  informally  using Church's thesis.

Recall  the  proofs  of  theorems  2-3.1  and  2-4.4.  There  we  showed
explicitly  how to obtain  a program for the  function

Sub( / ;g i , . . . , gm )

given programs for /,  gu  . . . ,  gm;  and also, how to obtain a program  for
the  function

Rec(/,g)

given programs for /  and g.  (In the next section  (example  3.1(5))  we use
the s-m-n  theorem to show in detail that for each n there is a computable
function  r such that for any eu  e2  an index for Rec(<£(

e"}, <t>(
e
n

2
+2)) is given by

r(ei,  £2); we can do a similar thing for substitution (see exercise  3.2(5a)).)
We  also  have  explicit  programs  for  the  basic  functions.  Hence,  given a
plan for a primitive recursive function /  involving intermediate  functions
g i , . . . ,  gk,  say,  we  can  effectively  find  programs  for  gu  g 2 , . . . ,  gk,  and
finally /.  Thus there  is an effectively  computable  function  p  such that

0 n  =  <t>p(n)>
By Church's thesis, p  is computable.

Now for the payoff! From p  and the universal function  t/oj we can define
a total computable  function  g  that differs  from every primitive  recursive
function  0n. We use  a diagonal  construction  as follows:

From this we see immediately that g is a total function that is not primitive
recursive;  but  g  is  computable,  by  the  computability  of  fa  and  p.  •
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3.  Effective  operations  on computable  functions
In this section  we illustrate another important  application  of the

computability  of the universal functions,  this time in conjunction  with the
s-m-n  theorem.

Consider  the  following  operations  on  computable  functions  or  their
domains:

{a)  combining  <t>x  and  4>y  to form  the product  (f>x <f>y;
(b)  forming  the union  Wx  u  Wy  from  Wx and  Wy.

We  are  all  familiar  with  a wide  variety  of operations  of  a similar  kind,
usually  defined  explicitly  like  these.  Is there  any sense  in which  these
operations  can be thought  of  as effective  operations?  Inasmuch  as  these
are operations  involving infinite  objects  (functions  or sets), they seem to
lie outside the scope of even our informal  notion  of computability, which
implicitly  applies  only  to  finite  objects.  Nevertheless,  we will  see,  for
instance, that an  index  for the function  <f>x<f>y  can be obtained  effectively
from  the indices  JC, y. In the following examples and exercises we see that
many other  operations are effective  when  viewed  thus  as operations on
indices  of the objects  involved.  (We will return  to the topic  of  effective
operations on functions  in chapter  10.)

3.1.  Examples
1.  There  is a total computable  function  S(JC, y) such that for all  JC, y

<f>s(x,y)  -  <f>x<f>y
Proof. Let /(JC, y, z)  — <f>x(z)<f>y(z)

— (AuU, ^)^u(y, <z)-
Thus /  is computable, so by the s-m-n  theorem there is a total

computable function  S(JC, y) such that/(jc,  y,z)  — <£s(x,y)(z); hence
<t>s(x,y) =  <t>x<t>y

2 .  Taking  g(jc) =  5(JC,  JC),  with  s  as an  example  1, we  have  (<f>x)2 =
<f>g(x)>

3.  There  is a total computable  function  S(JC, y) such  that
Wsix,y)=WxuWy.

if   z €  Wx or
Pwo/.  Let/(jc,y,z)  = ^

[undefined  otherwise.
By Church's  thesis and the computability  of  tf/\j9 f  is  compu-

table;  so there  is a total  computable  function  s(x,y)  such  that
fix,  y, z) =*<£s(x,y)(z). Then  clearly  Ws(Xty) = Wx u  Wy.
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4.  Effectiveness  of  taking  inverses.  Let  g(x,y)  be  a  computable
function  as described  in exercise  1.5;  i.e.  such that
(tf)  gU, y)  is defined  if  and only  if  y e Ex ,
(6)  if  y e Ex, then  g(x,  y) £  Wx  and  <f>x(g{x,  y)) = y.
By  the  s-m-n  theorem  there  is  a  total  computable  function  k
such that  g(x,  y) — 4>k(x)(y)-  Then  from (a)  and  (b)  we  have
(a')  W4(x) = £ x,

(ii)  if  y €  £x,  then  0x(<£fc(*)(y)) = y.
Hence,  if  <t>x  is injective,  then 0fc(x)  = <£x * and £k(X) =  Wx.

5.  Effectiveness  of  recursion. Let  jr =  (JCI, . . . ,  xn)  and consider  the
(n + 3)-ary function /defined  by

f(eu  e2,  Jr, y +1) -  <££+2) (x, y, f(eu  e2,  x, y)).
Then using the universal functions  (Au)  and ifrv +2)  to rewrite the
expressions  on  the  right,  this  is  a  definition  by  recursion  from
computable functions, s o / is computable. Moreover, for fixed ei,
ei  the  function  g(x,  y)— f(e\,  e^ x, y)  is  the  function  obtained
from  <f>^  and  <f>(

e
n

2
+2)  by recursion.

By  the  s-m-n  theorem  there  is  a  total  computable  function
r(ei,e2)  such that

Hence  r(e\,  e2)  is  an index  for the  (n + l)-ary  function  obtained
from <f>(^  and (f>(

e
n

2
+2)  by recursion. e In th  notation of theorem 2.2

for  all  e\y  e2.

The  following  exercises  give  more  examples  of  the  use  of  the  s-m-n
theorem  in showing that operations  are effective  on indices.

3.2.  Exercises
1.  Show that there is a total computable function  k(e)  such that for

any e, if <f>e  is the characteristic function for a decidable predicate
M(x),  then  <f>k(e)  is the characteristic  function  for  'not  M(x)\

2.  Show that there is a total computable function  k(x)  such that for
every  xy Ekix)  =  Wx.

3.  Show that t there  is a total  computable  function  s(x,  y)  such tha
for  all xy y,  E5(x, y) = Ex  u £y.

4.  Suppose  that  f{x)  is  computable;  show  that  there  is  a  total
computable  function  k(x)  such  that  for  all  *,  W /P

fc(X)=/~1(Wx).
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5.  Prove  the equivalent  of  example  5 above  for  the operations of
substitution  and minimalisation,  namely:
(a)  Fix  m, n>\\  there  is  a  total  computable  function
s(e, ei,...,  em)  such that  (in the notation  of theorem  2.2)

(b)  Fix n >  1; there is a total computable function  k(e)  such that
for  all e,

(We could extend the notation of theorem 2.2 in the obvious way
and write  4>{#e)  = Min(<£(

e
n+1)).)

Appendix
Computability  of  the function crn

In  this  appendix  we  give  a  formal  proof  that  the  function  an
defined  in  the  proof  of  theorem  1.2  is  computable  (in  fact,  primitive
recursive)  thus  completing  a  formal  proof  of  the  computability  of  the
universal function  t//u\

Theorem.
The function crn is primitive recursive.
Proof.  For the definition  of crn  and the functions  cn  and /„  coded

by  <7n,  refer  to the proof  of theorem  1.2.
We define  two functions  'config'  and 'nxt' that describe the changes in

cn  and  ]n  during  computations.  Suppose  that  at  some  stage  during
computation under Pe the current state is a  -  TT(C9 /), and suppose that Pe
has s instructions. We can describe the effect  of the yth instruction of Pe on
the state or  by  defining

the new configuration
after  the yth instruction  if 1 < / < s,

config(e, or) =

nxt(e, a)  =

of Pe  has been obeyed,
c
the number  of the next
instruction for the
computation, after  the
/th instruction  of Pe has
been executed on the
configuration  c,

otherwise.
if  l < / < 5
and this next
instruction
exists in P€ ,

otherwise.
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Now  crn can be obtained  from  config  and nxt by the following  recursion
equations:

<Tn(e9x,0) =  7r(V>3x>...px
n",l),

crn(e9 x, t +  1) =  7r(config(e,  crn(ey x, t)),  nxt(e, an(ey  x,  t))).

Thus, crn  is primitive recursive if config and nxt are primitive recursive; we
proceed  to show that they are.

We must be careful  now to distinguish between the code number (3(1)
of  an instruction /  and its number in any program in which it occurs (i.e.
the  number  y such  that  /  is the  yth instruction).  We  will  always  use  the
term code  number when  0(1)  is intended.

It is sufficient  to establish that the following four functions are primitive
recursive:

(1)  ln(e) = the  number of  instructions  in program  Pe;

I the code number of the yth
instruction in Pe9  if  1 < /  <  \n(e),

0  otherwise;
(3)  ch(c, z) = the configuration  resulting when the

configuration  c  is operated on by the
instruction with code number  z;

' the number /' of the
'next instruction for the
computation' when the
configuration  c  is operated on

(4)  v(c,j,z) = by the instruction with code  if j >  0,
z, and this occurs as the
yth instruction in a program,

. 0  otherwise

(The 'next instruction for the computation' here is as defined in chapter 1
§ 2, so /' =y + 1 or,  if  I,  is  a jump  instruction  J(mi, ra2, q)  we  may  have

If these four functions  are primitive  recursive, then remembering that
a  =  TT(C, y) where  c =  ni(cr)  and y =  TT2((T) we  have

fch(7n(cr), gn(e,  7T2(o-)))  if 1 ^  7r2(cr)
configU?, a)  = <  .

li)  otherwise.
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f n(*?, 7T2(<r)))

if this number is <  \n(e),
0  otherwise.

Thus config and nxt are primitive recursive, by the methods of chapter 2.
It  remains  to  show  that  the  functions  (l)-(4)  above  are  primitive

recursive. A sequence of auxiliary functions is needed to decode the code
numbers  of  programs  and  instructions.  We  use  freely  the  standard
functions e and techniques of chapter 2 §§ 1-4,  together with th  functions
defined  in chapter 4  § 1 for coding instructions  and programs.
(5)  The functions «(/,  JC), /(*), b(i,  x)  and a(i,  x)  of exercise 2-4.16(5)  are
primitive  recursive.

Proof,  (i)  * =X*L0<*('*>*)2';  so  we  have  qt(2',x)  = a(i,x)  +
a(i  + 1 , x)2 + . . .  and hence a(/, x) = rm(2, qt(2',  x)).

(ii)  l(x)  = number of  is such that  a(i,  x) =  1; hence
i<x

(iii)  If  J C > 0 ,  JC =  2M 1 'x ) + 2 M 2 'x ) + . . .  + 2 M / ( x ) 'x ) ;  thus,  if  l < / <
then  b(U x)  is the  ith index  k  such  that  a(k,  x)  =  1.  Hence

_,.  ,  \ny<x(  I  a(k9x)  =  i)  i f l < / < / ( j c ) a n d j c > 0 ,
b(i,x)  =  <  \k^y  )

LO  otherwise.
(iv)  From the  definition:

From  the  above  explicit  formulae,  using  the  techniques  of  chapter  2,
these functions  are  all primitive  recursive.
(6)  The functions  \n(e)  and gn(e,y)  are primitive  recursive.

Proof. From the definitions  of  the coding function  y:

where  /  and  a  are the functions  in (5).
(7)  There  are primitive recursive functions  M, UU  "2, Vu V2, V3  such that:

if ± =/3(Z(m)), then  u(z)  = m9

if z  = 0(S(m)), then  M(Z) = m,
if z  = 0(T(m!, m2)), then  ux(z)  = mi  and w2(z) = m2,
if z  = /8(J(mi, m2,  <f)), then «i(z) =  mu  v2(z)  = m2 ,

and
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Proof. From the definition  of 0, and  writing (z/4) for qt(4, z), take

u(z) = (z/4) + l,

(8)  The following  functions  are primitive  recursive:

(i)  zero(c, m) = the change in the configuration c
effected  by instruction Z(m),

(ii)  suc(c, m) = the change in the configuration c
effected  by instruction S(m),

(iii)  transfer(c,  m, n) = the change in the configuration c
effected by instruction T(m, n),

(9)  The function  ch(c, z) (defined  in (3) above) is primitive  recursive.
Proof.

zero(c,  u (z))

suc(c,  u(z))

ch(c,z) =

ifrm(4, z) = O(i.e.  z
is the code of a
zero instruction),

if rm(4, z) = 1 (i.e. z
is the code  of a
successor  instruction),

transfer(c, ui(z),  M2U))  if rm(4, z) = 2 (i.e.  z
is the code of a
transfer  instruction),

otherwise.
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(10)  The function  v{c,j,  z)  (defined  in (4) above)  is primitive  recursive.
Proof. We  have

/ + 1  if  (c)Vliz)̂ (c)V2(z)

v3(z)  if

(i.e. z  is the
code of an
arithmetic
instruction),

if rm(4, z) = 3
(i.e. z  is the code of
a jump instruction).

From this definition  by cases, we see  that  v  is primitive  recursive.
We  have  now  shown  that  the  functions  (l)-(4)  above  are  primitive

recursive, so the proof  of  the theorem  is complete.  •



6
Decidability, undecidability and
partial  decidability

In previous chapters we have noted several decidable problems, but so far
we  have  encountered  only  one  explicit  example  of  undecidability:  the
problem  '<t>x  is  total'  (theorem  5-2.1).  It  is  of  considerable  interest  to
identify  decidable  and  undecidable  problems;  the  latter,  particularly,
indicate  the  limitations  of  computability,  and  hence  demonstrate  the
theoretical  limits to the power of  real world computers.

In this chapter the emphasis is largely on undecidability.  In § 1 we give
a survey of  undecidable  problems  arising in the theory of  computability
itself,  and discuss some methods for establishing undecidability.  Sections
2-5  are devoted to a sample of decidable and undecidable problems from
other  areas  of  mathematics:  these  sections  will  not  be  needed  in  later
chapters  and  may  be  omitted.  In  the  final  section  we  discuss  partial
decidability,  a notion closely related to  decidability.

Let us recall from chapter 1 that a predicate M(x)  is said to be  decidable
if its characteristic function  cM,  given by

if M{x)  holds,
if M(x)  does not hold,

is  computable.  This  is  the  same  as  saying  that  M(x)  is  recursive  (see
chapter 3 § 2). The predicate M{x)  is undecidable  if it is not decidable. In
the literature  all  of  the following  phrases  are used to mean that M(x)  is
decidable.

M(x)  is recursively  decidable,
M{x)  has  recursive decision  problem,
Mix)  is  solvable,
Mix)  is recursively  solvable,
Mix)  is  computable.

An algorithm for computing  CM is called  a decision procedure  for  Mix).
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1.  Undecidable  problems in computability
Most proofs  of undecidability rest on a diagonal construction,  as

in the  following  important  example.

1.1.  Theorem
'xeWx'  {or, equivalently,  i(f>x{x) is  defined',  or  iPx{x)i',  or

'^uU, x)  is defined')  is  undecidable.
Proof. The  characteristic  function  /  of this problem  is given  by

ifxe  Wx,
iix£Wx.

Suppose  that  /  is  computable;  we  shall  obtain  a  contradiction.
Specifically,  we make a diagonal construction of a computable  function  g
such  that  Dom(g)^  Wx{ = Dom{<f>x))  for  every  x;  this  is  obviously
contradictory.

The diagonal motto tells us to ensure that Dom(g) differs from  Wx  at x;
so we aim to  make

xeDom(g)  <=> x£ Wx.
Let  us define  g, then,  by

iix£Wx{i.e.iff{x)  =  0),
I undefined  if xe  Wx (i.e. if f{x)  = 1).

Since /  is computable,  then  so  is g (by Church's  thesis); so we have  our
contradiction.  (To see  this in detail:  since g is computable  take  m  such
that g = <f>m', then m e Wm  <^>  m e Dom(g)  <£> m£ Wm,  a contradiction).

We conclude  that /  is  not  computable,  and  so the problem  lx£  Wx is
undecidable.  •

Note  that  this  theorem  does  not say that  we cannot  tell  for  any
particular  number  a whether  <f>a{a)  is defined.  For some numbers  this is
quite simple; for instance,  if we have written a program P that computes a
total  function,  and P = Pa,  then  we know  immediately  that  <t>a{a)  is
defined. What  the theorem says is that there  is no single  general  method
for  deciding whether  </>x{x)  is defined;  i.e. there  is no method that  works
for  every x.

An  easy corollary  to the  above  result is

1.2.  Corollary
There  is a computable  function  h such  that  the  problems  'JC e

Dom(A)'  and  '* e Ran(/i)'  are both  undecidable.



6  Decidability,  undecidability  and partial  decidability  102

Proof. Let

1 undefined  if x  & Wx.
Then  h  is computable,  by Church's  thesis  and the computability  of the
universal  function  t̂ u (or, formally,  we  have  that  h(x) — x  l(i//\j(x,  x))
which  is computable  by substitution).  Clearly  we  have  xeDom(h)  <̂>
xeWx  <£>  jteRan(/i),  so  the  problems  'xeDomihY  and  'jteRan(/i)'
are undecidable.  •

Another  important  undecidable  problem  is  derived  easily  from
theorem 1.1:

1.3.  Theorem  (the Halting  problem)
The  problem  i<t>x(y)  is defined'  (or,  equivalently  lPx(y)V  or  'ye

Wx')  i5  undecidable.
Proof. Arguing  informally,  if  the problem  '</>x(y)  is defined'  is  deci-

dable then so is the problem  '<f>x(x) is defined', which is if anything easier.
But this contradicts theorem 1.1.

Giving this argument  in full  detail, let g be the characteristic  function
for  l<(>x(y)  is defined'; i.e.

1  if <f>x(y) is defined,
if <f>x(y) is not defined.

If  g  is  computable,  then  so  is  the  function  f(x)  = g(x, x);  but /  is the
characteristic function  of lx e  Wx,  and is not computable by theorem 1.1.
Hence  g  is not computable; so  '<£*(y) is defined'  is undecidable.  •

Theorem  1.3  is  often  described  as the  Unsolvability  of  the Halting
problem  (for URM programs):  there is no effective  general  method for
discovering whether a given program running on a given input eventually
halts. The implication  of this for the theory of computer programming is
obvious: there can be no perfectly general method for checking programs
to see if they  are free  from possible  infinite  loops.

The  undecidable  problem '*e  Wx'  of  theorem  1.1  is  important  for
several  reasons.  Among  these  is  the  fact  that  many  problems  can be
shown  to be undecidable  by showing that they  are at least  as difficult as
this one.  We have  already done  this in a simple way in showing  that the
Halting problem  is undecidable  (theorem  1.3): this process  is known as
reducing one problem to another.
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Speaking generally, consider a problem M(x).  Often  we can show that
a solution  to the general  problem  M{x)  would  lead  to a solution  to the
general  problem  'xe Wx\  Then  we say  that  the  problem  'xeWx'  is
reduced  to the problem  M(x).  In other  words,  we  can give  a decision
procedure for 'x e Wx  if only we could find one for M(x).  In this case, the
decidability  of M(x)  implies the decidability  of  'x e Wx\ from which we
conclude  immediately  that  M(x)  is undecidable.

The  s-m-n  theorem  is often  useful  in reducing  'xe  Wx'  to other
problems,  as illustrated in the proof  of the next result.

1.4.  Theorem
The problem  '<£x = 0' is  undecidable.

Proof. Consider the function /  defined  by
(0  iixeWx,
1 undefined  if x £ Wx.

We  have  defined /  anticipating  that we  shall use the s-m-n  theorem;
thus  we are thinking of x as a parameter,  and are concerned  about the
functions  gx  where  gx(y)—  /(x, y). We  have  actually  designed /  so that
gx=0<*  xeWx.

By Church's thesis (or by substitution using 0 and fa) f is computable;
so there is a total computable function k(x)  given by the s-m-n  theorem
such that/(x,  y) -  fawiy)',  i-e. <t>k(X) = gx> Thus from the definition  of /we
see  that
(*)  X   €  Wx  <=>  <f>k(x) — 0 .

Hence, a particular question Is x e Wxl  can be settled by answering the
question Is <t>k(X) = 0? We have thus reduced the general problem 'x e Wx'
to the general problem  '<£x = 0'; the former is undecidable, hence so is the
latter,  as was to be proved.

Let us present  the final part of this argument in more detail as it is the
first  example  of its kind. Let g be the characteristic  function  of  '<£x = 0';
i.e.

f 1  if (f>x  = 0,

Suppose that g is computable; then so is the function  h(x) = g(k(x)).  But
from  (*) above we have

if  <t>k(x)= 0; i.e. x e  Wx,
10  if d>k(x)  ̂0; i.e. x £ Wx.
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So by theorem  1.1  h  is not  computable. Hence  g  is not computable,  and
the problem  '</>* = 0'  is undecidable.  •

From theorem 1.4 we can see that there are inherent limitations when it
comes to  checking the  correctness  of  computer  programs; this  theorem
shows that there can be no perfectly  general effective  method for  check-
ing whether  a program will  compute  the zero function.  By  adapting  the
proof  of  theorem  1.4  we  can see  that the same  is true for  any particular
computable  function  (see  exercise  1.8(1/) below).

The following easy corollary to theorem  1.4 shows that the question of
whether two programs compute the same unary function  is undecidable.
Again there are obvious implications for computer programming theory.

1.5.  Corollary
The problem  '<£x = <f>y

9  is  undecidable.
Proof. We can easily see that this is a harder problem than the problem

Let  c  be  a  number  such  that  <t>c  = 0;  if  /(*, y)  is  the  characteristic
function  of  the  problem  </>x  = </>y,  then  the  function  g{x)  =f(x,  c)  is  the
characteristic function  of  '<£x = 0'.  By theorem  1.4,  g  is not  computable,
so neither  is /.  Thus '0X  = <£/  is undecidable.  D

We use the o s-m-n  theorem again t  reduce the problem 'x e  Wx  in the
following  results.

1.6.  Theorem
Let  c be any  number.  The following  problems  are  undecidable.
(a)  (the  Input  or  Acceptance  problem)  'ce  Wx  (equivalently,

(b)  (the  Output or Printing problem)  'c eEx
9  (equivalently,  'c €

Proof.  We  are  able  to  reduce  'xe  Wx'  to  these  problems  simul-
taneously.  Consider  the function f(x,  y)  given by

\y  itxeWx,
I undefined  otherwise.

(With the s-m-n  theorem in mind, we are concerned about the functions
gx  where  gx(y)  — f(x9  y):  we  have  designed  /  so  that  c eDom(gx)  <£
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xeWx  » c e R a n ( g J . )  By Church's  thesis  /  is computable,  and so
the  s-m-n  theorem  provides  a total  computable  function  k  such  that
f(x,  y) — <t>k(x)(y)>  From the definition  of / we see  that

x e Wx  => Wkix) = Ekix)  = N, so c e Wk(x)  and c e  Ekix);
and

Thus  we  have  reduced  the  problem  *JC€  Wx  to each  of the  problems

Completing  the  proof  of (a)  in detail,  we  see  that  if g is the  charac-
teristic function  of  'c e Wx\ then

itxe  Wx,

This  function  is  not  computable  (theorem  1.1),  so g cannot  be  compu-
table. Hence  'c e Wx  is undecidable.

A  detailed proof  of  (b)  is similar.  •

We conclude this section with a very general undecidability result, from
which theorems  1.4  and  1.6  follow  immediately.  It is another use  of  the
s-m-n  theorem to reduce  'JC €  Wx\

1.7.  Theorem  (Rice's  theorem)
Suppose that & c  <igu  and 3b * 0 , <#i. Then the problem  *<f>xe3b'

is  undecidable.
Proof. From the algebra of decidability  (theorem 2-4.7) we know that

'<t>xe38' is decidable  iff '<£x  €  ^ASS'  is decidable;  so we  may  assume
without any loss of generality that the function f® that is nowhere  defined
does not belong to  38  (if not, prove the result for  ^i\S8).

Choose  a function  g e 3&.  Consider the function /(*,  y)  defined  by

/(xy)-(g(y)
n ' y )  Undefined  iix&Wx.

The s-m-n  theorem provides a total computable function  k{x)  such that
/(*,  y) ^  0fc(x)(y). Thus we see  that

x 6 Wx  =>  <f>kix) = g,  i .e.  <f>k(x) £  38;
xt  Wx  =>  <hc(*) = /0,i.e.<£ fc(x)*S8.

So we have reduced the problem  'xeWx'  to the problem  l<f>x e 38' using
the computable function  it. In the standard way we conclude that '4>x e 38'
is undecidable.  •
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Theorem  1.4,  for  example,  is  obtained  immediately  from  Rice's
theorem  by  taking  3& ={0},  and  theorem  1.6(a)  by  taking  58 =
{ge^i'.ce  Dom(g)}. Rice's theorem  may be similarly applied  in several
of the exercises  below.

1.8.  Exercises
1.  Show that the following  problems are  undecidable.

(a)  'xeEx1  (Hint. Either  use a direct  diagonal  construction,  or
reduce  'xeWx'  to this problem  using the  s-m-n  theorem.),
(b)  lWx  =  Wy'  (Hint.  Reduce  '<t>x  is total' to this problem.),
(c)  i</>x(x) =  0\
(d)  '<My)  =  0\
(e)  lxeEy\
(/)  '(f>x  is total  and  constant',
(g)  'W, =  0 \
(h)  'Ex  is  infinite'.
(i)  '4>x = g\  where  g  is any fixed computable  function.

2.  Show that there  is no total computable  function  f(x,  y)  with the
following  property:  if  Px(y)  stops,  then  it  does  so  in /(*, y)  or
fewer  steps.  (Hint.  Show that  if  such  a function  exists, then  the
Halting problem  is decidable.)

Decidability  and  undecidability  in  other  areas  of  mathema-
tics  In  many  areas  of  mathematics  there  arise  general  problems  for
which  the  informal  idea  of  decidability  is  meaningful.  Generally  such
problems involve finite objects  from  a particular field  of study. The idea
of  decidability  of  some  property  involving  these  objects  can  always  be
made precise  using a suitable  coding by natural  numbers.

Much research  has been  directed  towards  identifying  both  decidable
and undecidable problems in a variety  of mathematical situations: in the
next  sections  we  give  a  small  sample  of  the  results  that  have  been
obtained.

2.  The word problem for groups1

Suppose that  G  is a group with identity element  1, and that  G  is
generated  by a set  of  elements  S  = {gi, g2, gs,...}  £  G. A  word on  S  is

1  The reader with no knowledge  of group theory should omit  this section.
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any expression  such as g^gtgigigs  involving the elements  of 5  and the
group operations. Each word represents an element  of  G, and to say that
G  is generated  by 5  means  that  every  element  of  G  is represented  by
some word on 5.

The word problem  for  G  (relative to 5)  is the problem  of deciding for
which words  w on 5  is it the case that  w = 1.

There are many groups with decidable word problem: for example any
finite group  (with  5 finite,  of  course).  For  many  years  mathematicians
searched  for  an example  of  a finitely presented2  group with  wndecidable
word problem. Eventually it was shown by Novikov in 1955 and Boone in
1957 that such groups do exist. Proofs  of the Novikov-Boone Theorem
are beyond the scope of this survey: the reader is referred  to expositions
in Rotman [1965] or Manin [1977].

Group theory,  and modern  algebra  in general, abounds with interes-
ting decidable and undecidable problems; a great many of them involve
properties  of  words  or  generators  akin  to  the  basic  word  problem  for
groups.

3.  Diophantine equations
Suppose  that  p(x\,  *2, • •  • > xn)  is a polynomial  in the  variables

JCI, . . . ,  xn, with integer  coefficients.  Then the equation

for  which  integer  solutions  are  sought  is called  a  diophantine equation.
Diophantine  equations  do  not  always  have  solutions:  for  instance  the
equation JC 2 -2  =  0.

Hilbert's  tenth  problem,  posed  in  1900,  asks  whether  there  is  an
effective  procedure  that  will determine whether  any given  diophantine
equation  has a solution.  It  was shown  in  1970 by Y. Matiyasevich  that
there is no such procedure; his proof was the culmination of earlier work
by M. Davis, J. Robinson and H. Putnam.

Actually Matiyasevich established rather  more than the  unsolvability
of Hilbert's tenth problem; the full  Matiyasevich theorem and its appli-
cation  to  Hubert's  tenth  problem  are  discussed  in  §  6.  For  complete
details  consult  Davis  [1973]  or  Manin  [1977],  or  Bell  &  Machover
[1977].

2  A group G  is finitely presented if there is a finite set of generators S and a finite set
B  of relations of the form w -  1 (where w is a word on S) such that (i) all relations
in B  are true in G, and (ii) all other relations holding in G  can be deduced from
those  in B  by using the group axioms alone.
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4.  Sturm's  algorithm
To redress  the  emphasis  on  undecidability  in the  previous  two

sections, we now mention a theorem of Sturm that gives us positive results
for  computability  and decidability  in connection  with the zeros  of  poly-
nomials.

4.1.  Sturm 's theorem
Let p(x)  be a real polynomial,  and let po, pi,...  ,pr  be the sequence

of real polynomials  given by
(a)  po = 0,
(b)  Pi = p' (the derivative  ofp),
(c)  for 0 < i <  r, there is a polynomialqt  such thatpi-i  = p,*?, -  p,+i
with pt+i ^ 0 and  degree(p,+i)<degree(p,)  (so thatqt  and  -pi+i
are the quotient and remainder respectively  when p,_i  is divided  by
Pt),
(d)  pr-i  = Prqr-

For any  real  number c denote  by S(c)  the number of sign changes  in  the
sequence po(c),...,  pr(c)  (ignoring  zeros).

Suppose that a, b are real numbers that are not zeros ofp(x),  and  a<b.
Then the number of zeros ofp(x)  in the interval  [a, b] is S (a) -8(b),  (each
zero being counted  once  only).

This  is  not  the  place  to  give  a  proof  of  Sturm's  theorem,  which  the
reader may find clearly expounded  in Cohn [1977] or Van der  Waerden
[1949]. From our point of view, Sturm's theorem is interesting because of
the algorithm  it embodies. It  gives us positive results about  the  compu-
tability  of  the  number  of  zeros  of  a polynomial,  and the  decidability of
statements about zeros of polynomials.

To frame  such results, we must restrict  attention to polynomials over
the rational  numbers, denoted  by Q, so that  the objects  we are  dealing
with are finite. Thus we are thinking  in terms  of  computability over  the
domain  Q  (which can be d define  in terms  of  computability  on M by the
usual coding device); note that a polynomial p(x)  with coefficients  in Q is
essentially a sequence  of rational  numbers.

A  sample  of  the  results  that  follow  from  Sturm's  theorem  is  the
following.

4.2.  Theorem
(a)  There is an effective procedure for calculating  the number of
real zeros of a polynomial  over Q;
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(b)  The predicate  "p  has  a  zero in  [a, b]'  is decidable, where p
denotes a polynomial over Q and a,  beQ.

Proof.  Given any polynomial p, the polynomials po, pi,  •..,  pr  defined
in Sturm's theorem may be found  effectively  by using the standard  rules
for  differentiation  and the division algorithm for  polynomials.

For (a), it is a routine matter to find for  any polynomial p(x)  a rational
number M > 0 such that  all the zeros of p  lie in the interval ]-M,  M[.  In
fact,  if p(x)  = ao + aix  + ...  + anx",  the  number

Af  l

suffices.  Then  by Sturm's theorem the number  of zeros  of p  is 8(-M)  —
8(M)  which may be calculated  effectively.

For (b), suppose that we are given a polynomial p and rationals a, b. To
decide  whether  p  has  a  zero  in  [a, b\  first  calculate  p(a)  and  p(b);  if
neither  of  these  is  zero,  calculate  8(a)-S(b)  and  apply  Sturm's
theorem.  •

Of  course,  Sturm's  theorem  can  be  used  to  show  that  many  other
questions about polynomials over Q are computable  or decidable.

4.3.  Exercise
Show that there  is an effective  procedure, given a polynomial  p

and rational numbers  a, b, for finding the number  of zeros of p  in [a, b].
(Remember  that  a  or  b  may be zeros  of p.)

5.  Mathematical  logic
Early investigations into the idea of effective  computability were

very much linked  with the development  of  mathematical  logic, because
decidability was regarded  as a basic question about  any formalisation  of
mathematics.  We  shall  describe  some  of  the  results  that  have  been
obtained  in this area,  in general  terms that  do not  assume any acquain-
tance with mathematical  logic. (The reader interested to learn the basics
of  this subject  may consult  one  of  the many introductory  texts, such  as
Margaris [1966].)

The  simplest  logical  system  reflecting  something  of  mathematical
reasoning  is the  propositional calculus. In  this calculus compound  state-
ments are  formed  from  basic propositions  using symbols for  the  logical
connectives  'not',  'and',  4or',  and  implies'.  It  is  quite  easy,  once  the
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propositional  calculus  has been  carefully  defined,  to  see  that  it  is  deci-
dable.  By this we mean that there  is  an effective  procedure  for  deciding
whether a statement a  of the calculus is (universally)  valid;  i.e.  true in all
possible situations. The method of truth tables gives an algorithm for this
that will  be familiar  to many readers.

A  logical  system  that  has  greater  expressive  power  than  the  pro-
positional  calculus  is  the  (first-order)  predicate  calculus:  using  the
language  of  this  calculus  it  is  possible  to  formalise  a  great  deal  of
mathematics.  The  basic statements  are  formed  from  symbols  represen-
ting  individual  objects  (or  elements)  and  predicates  and  functions  of
them. The compound statements are formed using the logical symbols of
the propositional  calculus together with V and 3.

There  is  a  precise  notion  of  a  proof  of  a  statement  of  the  predicate
calculus, such that a statement is provable if and only if it is valid.3 In 1936
Church  showed  that  provability  (and  hence  validity)  in  the  predicate
calculus  is  undecidable,  unlike  the  simpler  propositional  calculus.  (This
result  was  regarded  by  Hilbert  as the  most  fundamental  undecidability
result  for the whole  of  mathematics.)

We  can  use  the  URM  to  give  an  easy  proof  of  the  undecidability  of
validity,  although  this calls upon  a certain  familiarity  with the  predicate
calculus. We advise  the reader who does not have  a rudimentary  know-
ledge  of  predicate  logic to omit  the proof  that we  now sketch.

5.1.  Theorem
Validity  in the first-order predicate  calculus  is  undecidable.

Proof. (Not  advised for strangers to the predicate  calculus.)
Let P  be a program in standard form having instructions Iu  . . . ,  7S and

let  u = p(P)  (as defined in chapter 2 § 2). We use the following symbols of
the predicate  calculus.

0  a symbol  for  an individual,
'  a symbol  for  a unary function  (whose  value  at x  is  x')>
R a symbol  for  a (u + l)-ary  relation,
Xi, X2,. . . xu, y  symbols for variable  individuals.

The  interpretation we  have  in mind is that 0  represents  the  number  0 , ;

represents  the  function  jt+1,  and  R represents  the  possible  states  of  a
computation under P. Thus e if w  write 1 for 0', 2 for  0", etc. the statement

3  This  is described  by saying that  the  notion  of  provability  is  completet  and is the
content  of  Godel's  completeness  theorem.
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where  ru  • • • rUf k e N means that the state

. . .  ;  next instruction  Ik

occurs in the  computation.
Now  for  each  instruction  /,  we  can write  down  a statement  T, of  the

predicate calculus that describes the effect of /, on states, using the symbol
A for  'and' and  -* for  'implies':

(a)  if //  = Z(n)  let  r,  be the  statement

V x i . . .  Vxtt: R(x i , . . . , x n , . . . ,  xM, i)-»R(xi, . . . , 0 , . . . ,  xM, i').

(b)  If /,  = S(n)  let Tt be the statement
V x i . . .  VxM: R ( x i , . . . , x n , . . . ,  xM,  i) -> R ( x i , . . . ,  x'n,...,  xM, i').
(c)  If /, =T(m,  n)  let  r, be the statement
V x i . . .  VxM:  R ( x i , . . . , x n , . . . ,  xM,  i) -> R ( x 1 ? . . . , x m , . . . ,  xM,  i').
(d)  If /,  = J(m,  n, q)  let  r, be the statement
V x i . . .  Vxu :  R ( x i , . . . ,  xM,  i) ^  ((xm  = xn  -» R ( x i , . . . ,  xM, q))

A ( x m ^ x n ^ R ( x i ,  . . . , x M ,  i'))).
Now  for any a e M let cra be the statement

-» 3 x x . . .  3x u  R(x i , . . . ,  xM, s+1) ,

where  T0 is  the  statement  VxVy((x' = y'-^x = y )AxV0) .  (This  ensures
that in any interpretation,  if  m, n e  M and m = n then  m  = n.)

The statement  R(a, 0 , . . . ,  0,1)  corresponds to  a starting state

a  0  0  . . .  ;  next instruction  Iu

and  any  statement  R(x i , . . . ,  xM, s+1)  corresponds  to  a  halting  state
(since there  is no instruction /$+i). Thus we  shall see  that

(*)  P(a)i  »  cra is valid.

Suppose first that P(a)l>  and that we have a structure  in which T0, . . . ,  rs

and  R(a, 0 , . . . ,  0,1)  hold.  Using  the  statements  TO, . . . ,  r s  we find that
each  of  the  statements  R(r-i,...,  ru,  k)  corresponding  to  the  successive
states  in  the  computation  also  holds.  Eventually  we  find  that  a  halting
statement R(b i , . . . ,  bu, s +1)  holds, for some  bi,...,  bu e N,  and hence
3 x i . . .  3xM R(x i , . . . ,  xM, s +1)  holds. Thus aa  is valid.
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Conversely,  if cra  is valid, it holds in particular  in the structure  N with
the predicate symbol R  interpreted  by the predicate  Ra  where

Ra(ai,...,  aM, k) = At  some stage  in the computation  P(a)  the
registers contain ai,  a2> • • • >  #u> 0, 0 , . . .  and
the next instruction  is  Ik.

Then r 0 , . . . ,  rs  and  R(a, 0 , . . . ,  0,  1) all hold  in this structure, hence so
does 3 x i . . .  3xM R(xi, . . . ,  xM, s+1). Therefore  P(a)i.

If  we take P to be a program that computes the function  i//u(x,  JC), the
equivalence  (*) gives a reduction  of the problem  'JC e  Wx  to the problem
V  is valid'. Hence the latter  is undecidable.  •

The field of mathematical  logic abounds with decidability and undeci-
dability  results.  A  common  type  of  problem  that  arises  is  whether  a
statement  is true  in  all mathematical  structures  of  a certain  kind.  It  has
been shown, for example, that the problem

'a-  is a statement that is true in all groups'
is undecidable (here <r is a statement of the first-order predicate language
appropriate  to groups), whereas the problem

'<r is a statement that is true in all abelian groups'
is decidable. (We say that the first-order theory of groups is undecidable
whereas  the  first-order  theory  of  abelian  groups  is  decidable.) It  was
shown by Tarski [1951] that the problem

V  is true in the field of real numbers'
is  decidable.  On  the  other  hand,  many  problems  connected  with  the
formalisation  of  ordinary  arithmetic  on  the  natural  numbers  are
undecidable,  as we shall see in chapter  8.

For  further  examples  and  proofs  of  decidability  and  undecidability
results in logic the reader should consult books such as Tarski, Mostowski
& Robinson [1953], or Boolos & Jeffrey  [1974].

6.  Partially decidable predicates
Although  the  predicate  4JCE Wx  has  non-computable  charac-

teristic function,  the  following  function  connected  with  this problem  is
computable:

ifxeWx,
I undefined  if  JC £ Wx.

If we continue to think of 1  as a code for Yes, then any algorithm for /  is a
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procedure that gives answer Yes when x £  Wx, but goes on for ever when
x e  Wx  does  not  hold.  Such  a  procedure  is  called  a  partial  decision
procedure  for  the  problem  'jte  Wx\  and  we  say  that  this  problem  or
predicate  is partially  decidable.

Many undecidable  predicates  turn out to be partially decidable: let us
formulate  the general  definition.

6.1.  Definition
A predicate M(x)  of natural numbers is partially  decidable  if the

function /  given by

if M(x)  holds,
I undefined  if M(x)  does not hold,

is computable.  (This function  is called  the  partial  characteristic  function
for M)  If M  is partially decidable, any algorithm for computing/ is called
a partial  decision procedure  for  M.
Note.  In the literature the terms partially  solvable,  semi-computable,  and
recursively  enumerable4  are  used  with  the  same  meaning  as  partially
decidable.

6.2.  Examples
1.  The  Halting problem  (theorem  1.3)  is partially decidable,  since

its partial  characteristic  function

I undefined  otherwise,

is computable,  by Church's thesis (or by observing that /(JC, y) —

2.  Any  decidable  predicate  is  partially  decidable:  simply  arrange
for  the  decision  procedure  to  enter  a  loop  whenever  it  gives
output  0.

3.  For  any  computable  function  g(x)  the  problem  'jreDom(g)'  is
partially  decidable,  since  it  has  the  computable  partial  charac-
teristic function  l(g(x)).  (Cf.  corollary  1.2.)

4.  The  problem  '*£  Wx  is  not  partially  decidable:  for  if  /  is  its
partial  characteristic function,  then

*eDom( / )  &  x£Wx.

Thus Dom(/) differs from the domain of every unary computable
function:  hence /  is not  computable.

4  The reason  for the use of  this term will be explained  in the  next chapter.
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We  proceed  to  establish  some  of  the  important  characteristics  of
partially  decidable  predicates.  First  we  have  the  alternative  charac-
terisation  that is given essentially  in example  6.2(3)  above.

6.3.  Theorem
A  predicate  Mix)  is partially  decidable  if and only  if there is a

computable function  g(x) such that
Mix)  iff x e Dom(g).

Proof. If Mix)  is partially  decidable  with computable  partial  charac-
teristic  function  fix),  then  from  the  definition  we  have  M(x)  iff
x £ Dom(/).  The converse is given by example  6.2(3) above.  •

The following characterisation of partially decidable predicates shows
how they  are related to decidable  predicates.

6.4.  Theorem
A  predicate  M(x)  is partially  decidable  if and  only if there is a

decidable predicate R(x,y)  such that
M(x)  iff3yR(x,y).

Proof  Suppose  that R(x, y) is a decidable predicate  and that M(x)  iff
3yR(x,  y). By  corollary  2-5.3 the function  g(x) — fiyR(x,  y)  is compu-
table; clearly

Af(jr)  <=> jreDom(g),
so  M(x)  is partially decidable  by theorem 6.3.

For the converse, suppose that M(x)  is partially decidable, with partial
decision procedure  given  by a program P. Define  a predicate R(x, y) by

R(x,y)  s  P(x)i  in y steps.
By corollary 5-1.3,  R(x, y) is decidable.  Moreover,

M{x) O  Pix)i

as required.  D
Note.  From the appendix to chapter 5 it follows that the predicate R in

this  characterisation  may be  taken  to  be primitive  recursive  (see the
note  1 following  corollary  5-1.4).

The characterisation given by theorem 6.4 indicates an important way
to  think of  partially  decidable  predicates.  It shows  that  partial  decision
procedures  can always be cast in the form of an unbounded search for a



6  Partially  decidable  predicates  115

number  y having some  decidable  property  JR(JT, y).  This  search  is most
naturally  carried  out by examining  successively  y = 0,1 , 2 , . . .  to find
such a y. The search halts if and when y is found such that R(x, y) holds;
otherwise  the search goes on for ever.

We  can use  theorem  6.4  to  establish  some  further  properties  of
partially decidable  predicates, that  aid us in their recognition.

6.5.  Theorem
If  M(x, y)  is  partially  decidable,  then  so  is  the  predicate

3yM(jr, y).
Proof. Take  a  decidable  predicate  R(x, y, z)  such  that  M(x, y)  iff

3zR(x,  y, z). Then we  have
3yM(jr,  y)  <S> 3y3zR(x,  y, z).

We can use the standard technique of coding the pair of numbers y, z by
the  single  number  u = 2 y3z ;  then  the search  for a pair  y, z  such  that
R(x,  y, z)  reduces  to  the  search  for  a  single  number  u  such  that
R(x,  (w)i, (w)2), i.e.

3yM (*, y)  <S>  3uR(x,(u)u(u)2).

The predicate  S(x,u)  = R(x,  (u)u  (w)2) is decidable  (by substitution) and
so  by theorem 6.4 3yM(x,  y) is partially decidable.  •

Theorem 6.5  is described by saying that partially decidable  predicates
are  closed  under existential  quantification.  Its repeated  application  gives

6.6.  Corollary
IfM(x,  y) is partially  decidable,  where y = ( y i , . . . ,  y m), then so is

the predicate  3 y i . . .  3ym M(x,  yu . . . , ym).

Let us now consider some applications of the  above results.

6.7.  Examples
1.  The following  predicates  are partially decidable.

(a)  xeE{
y
n)  (n fixed). (The Printing problem: cf. theorem 1.6.)

(b)  Wx*0  (Cf.  exercise  1.8(lg).)
Proofs

(a)  xeE{
y
n)  <£> 3 z i . . . 3 z n 3 r ( P y ( z i ,  ...,zn)lx  in t steps). The

predicate  in the brackets  on the right is decidable;  apply  coro-
llary 6.6.
(b)  Wx  5* 0  »  3y3r(Px(y)| in t  steps);  again  the  predicate in
brackets  is decidable, so corollary 6.6 applies.
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2.  Provability in the predicate calculus is partially decidable  (this is
for those  who have read  § 5).

Proof. We  proceed  informally;  in  the  predicate  calculus  a
proof  is defined  as a finite object  (usually  a sequence  of state-
ments) in such a way that the predicate
Pr(d, a) = 'd  is a proof of the statement cr'
is decidable.  Then we have
a  is provable  «  3d  Pr(d,  a),
hence  'or  is provable' is partially  decidable.

6.8.  Diophantine  predicates  (cf.  §  3)
Suppose  that  p(*i, . . . , * „ , y i , . . . ,  ym)  is  a  polynomial  with

integer coefficients.  Then the predicate  M(x)  given by
M{x)  = 3 y i . . .  3ym(p(x, y i , . . . ,  ym) = 0)

is called  a diophantine  predicate, because  of its obvious connection  with
diophantine  equations.  (The  quantifiers  3yu..  •, 3ym  are  taken  as
ranging over  M.)

Example  The predicate  '* is a perfect  square' is diophantine,
since  it is equivalent to 3y (x -  y2 = 0).

From corollary 6.6 we have  immediately

6.9.  Theorem
Diophantine  predicates  are partially  decidable.

Proof. The predicate  p(x, y) = 0 is decidable;  apply corollary 6.6.  •

Clearly, diophantine predicates are partially decidable predicates that
can  be cast  in a relatively  simple  form,  and for a long  time  it was not
known  whether  any undecidable  diophantine  predicates  existed.  This
question  is closely  connected  with  Hilbert's  tenth  problem  (§ 3), as we
shall see. It was a most remarkable  achievement,  therefore,  when Mati-
yasevich proved  in  1970:

6.10.  Theorem
Every  partially  decidable  predicate  is  diophantine.

The proof  of this result by Matiyasevich rested heavily on earlier work
of Davis, Robinson and Putnam, and is far too long to present here. Full
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proofs  are given  in Davis [1973],  Bell  & Machover  [1977] and Manin
[1977]. The major part of the proof  consists in showing that diophantine
predicates  are  closed  under  bounded  universal  quantification;  i.e.  if
M(x,  y)  is diophantine  then  so is the predicate  Vz<yAf  (JC, Z).  (It is an
easy exercise to show that partially decidable predicates are closed under
bounded  universal  quantification; see exercise 6.14(5)  below.)

We can see how a negative solution to Hilbert's tenth problem is easily
derived  from  Matiyasevich's  theorem.  First  note  that  if  the  problem
posed  by Hilbert  is  decidable,  then so is the problem  of  deciding  for a
general polynomial  equation p(xi,...,  xn) = 0 (with integer  coefficients)
whether  it  has  a  solution  in  the  natural  numbers:  this  is  because  any
natural  number  is expressible  as the sum of  four  squares, so we  simply
look  for integer solutions to

p(s\  +1\  + u\  +  v2
u  ...,  sl+  t2

n  + ul  + vl)  =  0.

Now take a polynomial  p(x, yu  . . . ,  ym)  such that

x e  Wx  <=> 3 y x . . .  3ym(p(x,  yu  ...,  ym) = 0)
(this is possible  by Matiyasevich's  theorem). Then  a decision  procedure
for  Hilbert's  problem  would  give  the following  decision  procedure  for
'xeW^:  to  test  whether  a e  Wa  see  whether  the  polynomial
q(yu  •  • •,  ym)z=p(a> y i , . . . ,  ym) has a solution in N. So lxe  Wx' has been
reduced to Hilbert's problem; hence  the latter is undecidable.

We shall mention  another  (surprising) consequence  of Matiyasevich's
theorem  in the next  chapter.

We conclude  this chapter with two important results, linking partially
decidable  predicates  with  decidable  predicates  (theorem  6.11)  and
computable  functions  (theorem  6.13).

6.11.  Theorem
A  predicate  M(x)  is decidable  if and only  if both M{x)  and 'not

M(xY  are partially  decidable.
Proof.  If  M{x)  is  decidable,  so  is  'not  M(x)\  so  both  are  partially

decidable.
Conversely, suppose that partial decision procedures for M(x)  and 'not

M(JC)'  are given  by programs F,  G. Then

F(x)i  <S> M(x)  holds
and

G(x)i  »  'not M(xY  holds.
Moreover,  for  any  x,  either  F(x)i  or  G(x)i  but  not  both.  Thus
the  following  is  an  algorithm  for  deciding  M(x).  Given  xy  run  the
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computations F(x) and G(x) simultaneously  (or carry out alternately one
step in each computation), and go on until one of them stops.  If it is F(x)
that stops,  then conclude  that  M(x)  holds;  if it is G(x)  that stops,  then
M(x)  does not hold.  •

This theorem  gives  an alternative  proof  that the predicate  'x&WS  is
not partially decidable.  Similarly we have

6.12.  Corollary
The predicate  '^ (y) ! '  (the Divergence  problem:  equivalently,

'yg  Wx\  or '0x(y)  is undefined'1)  is not partially  decidable.
Proof. If this problem were partially decidable,  then by theorem 6.11

and example 6.2(1) the Halting problem Px(y)i  would be decidable.  •

The final result of this chapter gives a useful way to show that a function
is computable.

6.13.  Theorem
Letf(x)  be a partial function.  Then f is computable  if and only if

the predicate

is partially  decidable.
Proof. If /  is computable by a program P, then we have

/(*)=* y  »  3t(P(x)iy  in t steps).
The  predicate  on  the  right  is  partially  decidable  by  theorem  6.4 and
corollary  5-1.3.

Conversely, suppose that the predicate  'fix) — y' is partially decidable.
Let R(x,  y, i) be a decidable predicate  such that f{x) — y  O  3tR(x,  y, t).
Then  we have the following  algorithm  for computing/(jr).

Search for a pair of numbers y, t such that R (x, y, t) holds; if and when
such a pair  is found,  then f(x)  — y.

Hence / is computable.  (A formal proof of the computability of /  could
be  given  by the  standard  technique  of  coding  a  pair  y,  t  by the  single
number  z  = 2y3'. See exercise  6.14(8)  below.)  •

Further  properties  of  partially  decidable  predicates  are given  in the
exercises below  (see in particular exercises 6.14(4,  5, 9)).

In  the  next  chapter  we  will  be  studying  unary  partially  decidable
predicates in greater detail, in the guise of recursively enumerable sets.  We



6  Partially  decidable  predicates  119

shall  see  in  particular  why  partially  decidable  predicates  are  often
described  as recursively  enumerable  predicates.

6.14.  Exercises
1.  Show  that the following  predicates  are partially  decidable:

(a)  '£"i")#0'(n  fixed),
(b)  '<£x(y) is a perfect  square',
ic)  'n is a Fermat number'.  (We say that n is a Fermat number if
there  are numbers *, y, z > 0 such that xn + yn = zn.)
(d)  There  is a run of  exactly  x  consecutive  7s in the decimal
expansion  of TT'.

2.  (For those  knowing  some  group  theory)  Show  that  the word
problem  for any finitely presented  group is partially  decidable.

3.  A finite  set S of 3 x 3  matrices  is said to be mortal  if there  is  a
finite product of members of 5 that equals the zero matrix. Show
that the predicate 'S is mortal' is partially decidable.  (It has been
shown that  this problem  is not decidable; see Paterson  [1970].)

4.  Suppose  that Mix)  and N(x)  are partially decidable; prove  that
the  predicates  'Mix)  and N(x)\  'Mix)  or N(xY  are partially
decidable.  Show that the predicate  'not Mix)1 is not  necessarily
partially  decidable.

5.  Suppose  that M(x, y) is partially decidable.  Show that
(a)  l3y<zM(x9  y)' is partially  decidable,
(b)  'Vy<zM(jr,  y)' is partially  decidable.
(Hint.  If  f{x, y)  is  the  partial  characteristic  function  of  M,
consider  the function  Y\y<zfix,  y).)
ic)  'VyAf (*, y)' is not necessarily  partially  decidable.

6.  Show that the following  predicates  are  diophantine.
ia)  'x is even',
ib)  'x divides  y\

7.  (This exercise shows how the technique of reducibility  (§ 1) may
be used to show that  a predicate is not partially  decidable.)
(a)  Suppose  that Mix)  is a predicate  and k  a total  computable
function  such that x e Wx iff M(k(x))  does  not hold.  Prove  that
Mix)  is not partially  decidable.
ib)  Prove that  '<£* is not total' is not partially  decidable.
iHint.  Consider the function  k in the proof  of theorem 1.6.)
ic)  By considering the  function

( 1  if Pxix)  does not converge in y or

fewer steps,
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show that  '<£x  is total'  is not  partially  decidable.  {Hint. Use the
s-m-n  theorem  and  (a).)

8.  Give a formal  proof  of  the  second  half  of Theorem 6.13; i.e. if
'/(*) — y'  is partially decidable, then /  is computable.

9.  Suppose that M(xu  • . . ,  xn)  is partially decidable and gu  • . . , gn
are computable partial functions.  Show that the predicate  N(y)
given by

is partially decidable.  (We take  this to mean  that  N(y)  does  not
hold  if  any one  of  gt(y),...,  gn(y)  is  undefined.)



Recursive  and  recursively
enumerable  sets

The  sets  mentioned  in  the  title  to  this  chapter  are  subsets  of  M  cor-
responding  to  decidable  and  partially  decidable  predicates.  We discuss
recursive sets briefly  in § 1. The major  part  of this chapter  is devoted  to
the  study  of  recursively  enumerable  sets, beginning  in  § 2; many  of  the
basic properties  of these sets are derived directly from the results about
partially  decidable  predicates  in the  previous chapter.  The  central  new
result  in  § 2  is the  characterisation  of  recursively  enumerable  sets  that
gives  them  their  name:  they  are  sets  that  can  be  enumerated  by  a
recursive  (or computable)  function.

In  §§ 3  and  4  we  introduce  creative sets  and  simple  sets:  these  are
special kinds of recursively enumerable sets that are in marked contrast to
each other; they give a hint of the great variety existing within this class  of
sets.

1.  Recursive sets
There  is a close connection between unary predicates  of  natural

numbers and subsets of  M: corresponding to any predicate M(x)  we have
the set {x : M(x)  holds}, called the extent of M  (which could, of course, be
0 ) ;  while  to  a set A <^N  there  corresponds  the predicate  'x e A'.1  The
name recursive  is given to sets corresponding in this way to predicates that
are  decidable.

1.1.  Definition
Let  A  be  a subset  of  IU The  characteristic function  of  A  is the

function  cA  given by
l  ifxeA,

10
f

1

As mentioned in a footnote to § 3 of the Prologue, predicates  a*e often  identified
with their extent:  that view would  not be inconsistent  with our exposition.
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Then A  is  said  to  be  recursive  if  cA  is  computable,  or  equivalently,  if
'x e A'  is a decidable predicate.
Notes
1.  For obvious reasons, recursive sets are also called computable  sets.
2.  If cA  is primitive recursive, the set A  is said to be primitive recursive.
3.  The  idea  of  a  recursive  set  can  be  extended  in  the  obvious  way to
subsets of  N" (n >  1), although in the text we shall (as is common practice)
restrict the use of the term to subsets of N.  There is no loss of generality in
doing  this,  because  recursive  subsets  of  Nn  can  easily  be  coded  as
recursive subsets of  N. See exercise  1.4(2) below for details.

1.2.  Examples
1.  The following sets are recursive.

(a)  N,
(b)  E  (the even numbers),
(c)  any finite set,
{d)  the set of  prime numbers.

2.  The following sets are not recursive.
{a)  {x : <t>x  is total} (theorem 5-2.1),
(b)  {x:xeWx}  (theorem 6-1.1),
(c)  {x : <f>x  = 0} (theorem 6-1.4).

The  algebra  of  decidability  (corollary  2-4.7)  gives  us  the  following
properties  of recursive sets immediately.

1.3.  Theorem
If A,  B are recursive  sets, then so are the sets A,  AnB,  AKJB,

A\B.
Proof.  Direct translation  of  corollary 2-4.7.  •

Further facts about recursive sets will emerge in § 2.

1.4.  Exercises
1.  Let A, B  be subsets of  N. Define sets A®B  and A®B  by

A®B={2x:xeA}u{2x  +  l:xeB}
A®B  ={-rr(x, y):xeA  and y eJ3},
where  n  is  the  pairing  function  ir{x,  y) = 2x(2y + 1)-1  of
theorem 4-1.2. Prove that
(a)  A@B  is recursive  iff A  and B  are both recursive,
(b)  If A, B  T* 0 ,  then A®B  is recursive  iff  A  and B  are both
recursive.
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2.  (a)  Let B g N  and let n > 1; prove that  if B  is recursive then the
predicate  M(xi,...,  xn)  given by

is decidable.
(b)  Let  Acf^ n;  define  A  to  be  recursive  if  the  predicate
'xeA'  is  decidable.  Prove  that  A  is  recursive  iff
{2Xl3*2... px":  (JCI, . . . , xn) £ A}  is recursive.

2.  Recursively enumerable sets
We  turn  now  to  the  subsets  of  N that  correspond  to  partially

decidable predicates. These constitute an important class, if only because
of the many situations  in which they occur.

2.1.  Definition
Let A  be a subset  of  M. Then  A  is recursively enumerable  if the

function  /  given  by
if x €  A,

[undefined  ifx£A
is  computable  (or,  equivalently,  if  the  predicate  'xeA'  is  partially
decidable).  The  phrase  recursively  enumerable  is  almost  universally
abbreviated  r.e.
Notes
1.  The terms semi-recursive  sets and  semi-computable sets are also used
to describe r.e. sets; indeed, from the above definition these names would
appear more appropriate than recursively enumerable. We will, neverthe-
less, adhere  to the standard  name  recursively  enumerable,  which  stems
from  the  fact  that  these  sets  may  also  be  defined  as  sets  that  can  be
enumerated  by  a  recursive  (or  computable)  function.  This  alternative
characterisation  is given in theorem  2.7 below.
2.  As  with  recursive  sets,  the  idea  of  r.e.  sets  can  be  extended  in  the
obvious way to subsets  of Nn  (n > 1), but there  is no loss of generality in
confining attention  (as we do in the text) to r.e. subsets of  N. See exercise
2.18(9)  below.

2.2.  Examples
1.  Let  K  = {x:x£  Wx}\  then  K  is  an r.e.  set  that  is not  recursive,

(example  6-6.2(1)).  Its  complement  K  is  not  r.e.  (example
6-6.2(4)).

2.  Any recursive set  is r.e. (example  6-6.2(2)).
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3.  The set {x:Wx*  0 }  is r.e. (example 6-6.
4.  If  /  is  a  computable  function,  then  Ran(/)  is  r.e.  (example

6-6.7(la);  cf. theorem  2.7 below).

Note.  K  is the standard notation for the set {x: x £ Wx) (example
1 above), which plays a prominent  role  in the study  of r.e. sets.

Most of the results for partially decidable predicates in chapter
6  § 6  translate  immediately  into  the language  of  r.e. sets. We
begin with

2.3.  Theorem
A  set is r.e. if and only  if it is the domain  of a  unary  computable

function.
Proof. Theorem 6-6.3.  •

We conclude  from  this theorem  that  the enumeration

Wo,  Wu  W2,...
is an enumeration  (with repetitions)  of  all  r.e. sets.  If A  =  We, then  e is
called an index for  A.

From theorem  6-6.4 we obtain the next characterisation  of r.e. sets.

2.4.  Theorem
The set A  is r. e. if and only if there is a decidable  predicate  R(x,y)

such that
xeA  iff  3yR(x9y).

(From the note following the proof of theorem 6-6.4 this predicate R may
be taken to be primitive  recursive.)

We  also have the following  immediately  from theorem  6-6.5.

2.5.  Theorem
Suppose  that M(x, y i , . . . ,  yn)  is partially  decidable;  then the set

{ x : 3 y i . . .  3ynM(x,  y i , . . . ,  yn)} is r.e.

The following link between r.e. sets and recursive sets is an immediate
application  of theorem 6-6.11.

2.6.  Theorem
The set A  is recursive if and only  if A  and A  are r.e.
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Proof. This  is immediate  from  theorem 6-6.11,  but it is instructive to
give a formal proof  of the non-trivial  half of the proof. Suppose then that
R  and 5  are decidable  predicates  such that

xe  A  <^> 3yR(x,  y)
x<=A  <=>  3yS(x,y)

(we  are using theorem 2.4). Now define a function f(x)  by
f(x)  = /jLy(R(x, y) or S(x, y)).

By  the results  of chapter  2, /  is computable;  further,  since  for every x,
either x e  e A  or x  A, f(x)  is always defined,  and we have

xeA  o / ? ( * , / ( * ) ) .
Thus  4JC e A' is decidable,  so A  is recursive.  •

We  now turn to the characterisation  of r.e. sets  that  gives  them  their
name.

2.7.  Theorem
Let Acfy,  Then the following  are  equivalent:
{a)  A  is r.e.,
(b)  A  = 0  or  A is the range of a unary total computable  function,
(c)  A  is the range of a  (partial)  computable  function.

Proof. We shall  prove  the  chain  of  implications  (a)  => (b)  => (c)  =>
(a).
(a)^(b)  Suppose  that  A  ^ 0  and  that  A = Dom(/),  where  /  is
computed by a program P. Choose an element  a £ A. Then A  is the range
of  the following  total  binary  function:

f x  if P(x)i  in t steps,
\a  otherwise.

Clearly g is computable. To complete the proof we construct a unary  total
computable  function  h  having the same  range as g.  Let

h(z)  =  g((z)u(z)2).
Clearly Ran(/i) = Ran(g) =  A.
(b)  => (c) is trivial.
(c)  ^> (a)  Suppose  that  A = Ran(/i)  where  h  is  an  n-ary  computable
function.  Then

xeA  <=> 3 y i . . .  3yn(h(yu  . . . , y n ) ^ x ) .
The  predicate  in brackets  on the  right is  partially  decidable  (theorem
6-6.13)  so applying theorem 2.5 we see that  A  is r.e.  D
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(The reader  may have  noticed  that various parts of  this theorem  have
been  given,  more  or less  explicitly,  in examples  and exercises  earlier  in
this and other  chapters.)

Notice  that  it  is  from  theorem  2J(b)  particularly  that  the  name
recursively  enumerable  comes:  a non-empty  r.e.  set  is  a set  that  can  be
enumerated as A  = {/i(0), /z(l), h(2),...}  where  h is a recursive (i.e. total
computable)  function.  In  fact,  by  using  the  results  of  chapter  5  (and
appendix) it is easily seen that the enumerating function  h  in the proof of
(a)  =>  (b)  is primitive  recursive.

Note also that theorem 2.7 tells us that the enumeration £"0, Eu  E2,...
of the f ranges o  unary computable functions is another enumeration (with
repetitions)  of  all r.e. sets.  In informal  terms, theorem 2.7 shows that r.e.
sets  are  the  same  as  effectively  generated  sets.  We  would  call  a  set  A
effectively  generated  if  there  is  an  informal  effective  procedure  for
compiling a list of the members of  A.  Such a procedure would from time
to time (not necessarily at regular intervals) output a number to be added
to the list. The procedure may go on ad infinitum  (and certainly must if  A
is  infinite).  To  see  that  a set  A  generated  in  this  way  is r.e.,  simply  put

/(0) =  1st number listed by the procedure,

f(n)  = (n + l)th number listed by the procedure,

where/(n)  is defined  iff there is an (n + l)th number listed. Then clearly/
is computable,  and A  = Ran(/)  is r.e.

We can illustrate  this with  an example.

2.8.  Example
The  set  {JC: there  is  a  run  of  exactly  x  consecutive  7s  in  the

decimal expansion  of  n}  is r.e.  (cf.  exercise 6-6.14(l<i)).  The following is
an  informal  procedure  that  generates  this  set  of  numbers.  'Run  an
algorithm that computes successive  digits in the decimal expansion  of  n.
Each time a run of 7s appears, count the number of consecutive 7s in the
run and add this number to the  list.'

The characterisation of theorem 2.7 gives us a straightforward diagonal
proof  that total computable functions cannot be recursively enumerated.

2.9.  Theorem
The set  {x: <f>x  is total)  is not r.e.
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Proof.  (Cf.  the  suggested  proof  of  this  result  given  in  exercise  6-
6.14(7c).)

Suppose  to  the  contrary  that  /  is  a  total  unary  compu-
table function  that enumerates this set; i.e. 0/(O),  <£/u), <t>nih  •  • •  is a list of
all  unary  computable  functions.  Then  we  can easily  make  a  diagonal
construction  of  a total  computable  function  g  that  differs  from  every
function  in this list. The diagonal motto says 'make  g differ  from  <£/<„)  at
n\  so we put

Then  g  is  computable  and total,  but  g #  <£/(m)  for every  m.  This  is a
contradiction.  •

There is one important result about partially decidable predicates that
we  have  so far omitted  to transfer  to the setting of r.e. sets, namely the
connection  with diophantine  predicates.  First we make a definition.

2.10.  Definition
A  set  Acf^j  is  diophantine  if  there  is  a  polynomial

p(jt, y i , . . . ,  yn) with integer coefficients  such that

xeA  iff  3yj ...3yn(p(x,  y i , . . . ,  yn) = 0).

Of  course,  diophantine  sets  are  r.e.,  and  Matiyasevich's  theorem
(6-6.10)  may be expressed  (as it often  is)  as:

2.11.  Theorem  (Matiyasevich)
All  r.e. sets are  diophantine.

This  is  an  appropriate  place  to  mention  a  surprising  (but  easy)
consequence  of Matiyasevich's  theorem.

2.12.  Theorem
A  set  is  r.e.  if  and  only  if  it  is  the set of  non-negative  values

taken by some polynomial  p(xi,  . . . , * „ )  with integer coefficients (for values
ofxu.  ..,xnfrom  M).

Proof. Suppose  that  A  is  the  set  of  non-negative  values  taken  by
p(*i, . . . , * „ ) :  then  x e A  <=> 3*i . . .  3xn{p{xu  . •  •, *„) = *),  so  A  is
clearly r.e.

Conversely,  if  A  is  r.e.  then  by  Matiyasevich's  theorem  there  is a
polynomial  <J(JC, y i , . . . ,  ym) such that

xeA  »  3yi. . .3ym(<y(*,yi, . . . , y m)  = 0).
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Then  consider the polynomial  p(x,  y)  given  by

p(x,  y)  is  non-negative  if,  and  only  if,  q(x,  y)  = 0,  and  then  it  takes  the
value  x.  Thus  A  is  the  set  of  non-negative  values  taken  by  p(x,  y)  as
x,  yu  •  •  •,  ym  run through  M.  •

(The  restriction  of  x\,...,  xn  to  f̂J  in the  statement  of  this theorem  is
somewhat  arbitrary; it s i  an easy exercise to see  that the theorem is valid
when * ! , . . . , # „  are allowed  to range over  Z.)

One  application  of  this  result  that  has  aroused  considerable  interest
among mathematicians is to the set of prime numbers: this set, being r.e.,
is  the  set  of  positive  values  taken  by  a  polynomial  with  integer
coefficients,  a  result  thought  to  be  most  unlikely  before  Matiyasevich
came on the scene.

A  refinement  of  theorem  2.12  shows  that  there  is  a single  universal
polynomial,  which  generates  all  r.e.  sets;  i.e.  a  polynomial
p(z,  x, y i , . . . ,  ym)  with  the  property  that  for  any  r.e.  set  A  there  is  a
number  z  such that

xeA  <$  3yi . . .  3ym(p(z,  x9 yu  • . . , y m)  = 0).
To see this, simply note that the Halting problem  'x e  Wz'  is diophantine
and take  z  to  be  an index  for  A.

At this stage we should summarise the various characterisations of  r.e.
sets  that we  now have  available. The following  are  all equivalent  condi-
tions on a set  A  of  natural  numbers:

(1)  'x 6 A'  is partially decidable  (we have taken this as our basic
definition),
(2)  A  is the domain of a unary computable function; i.e. A=  We

for some  e  (theorem  2.3),
(3)  For some  decidable  predicate  R(x,  y),  x e A  <=> 3y  R(x,  y)
(theorem  2.4),
(4)  For some  partially decidable  predicate  M(x9  y i , . . . ,  yn),

 X € i 4 o 3 y i . . .  3 y,,M (x, ylf...,  yn)  (theorem 2.5),
(5)  If A  T* 0 ,  A  is the range of a total unary computable  function
(theorem  2.7),
(6)  A  is the  range of  a computable  function  (theorem  2.7),
(7)  A  is diophantine  (theorem  2.11),
(8)  A  is  the  set  of  non-negative  values  taken  by  a  polynomial
with integer  coefficients  (theorem  2.12).



2  Recurisvely  enumerable  sets  129

Naturally, when working with r.e. sets one chooses the characterisation
that is most convenient  for the purpose  in hand. We illustrate  this in the
proof  of the next  theorem.

2.13.  Theorem
If A  and B are r.e.,  then so are AnB  and  AuB.

Proof. For AnB  use characterisation  (2). Suppose  that  A  = Dom(/)
and B = Dom(g) with/, g computable.  Then  AnB  = Dom(/g),  and fg
is computable.

For A  u B  use characterisation (5). If A  = 0  or B = 0  there is nothing
to prove. So suppose that A  = Ran(/)  and B = Ran(g) where /, g are total
computable.  Define  h by

Then h is computable  and clearly  Ran(/t) = AuB.  •
(It is instructive to find proofs for this theorem using each  of the other

characterisations  of r.e. sets.)

Our  next  theorem  gives  another  link  between  r.e. sets and recursive
sets.

2.14.  Theorem
An  infinite set is recursive if and only  if it is the range of a  total

increasing computable  function,  i.e. if it can be recursively enumerated  in
increasing order.

Proof. Suppose  that A  is recursive  and infinite; then  A  is enumerated
by the increasing function /  given by

f(n  +1) = fiy(y  e A  and y  >f(n)).
Moreover,  /  is computable  by minimalisation,  recursion  and the recur-
siveness  of  A.

Conversely,  suppose  that  A  is  the  range  of  the  computable  total
increasing function / ; i.e. /(0) < / ( l ) </(2) < . . .  It is clear that if y  =f(n)
then  n <  y. Hence we have

yeA  O  yeRan(/)

and  the predicate  on the right  is decidable.  Hence  A  is recursive.  •
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(An alternative  proof  could be given by showing that A  is r.e.; we leave
this as an exercise  for the reader.)

The  above theorem  may be applied  to prove

2.15.  Theorem
Every  infinite r.e. set has an infinite recursive subset.

Proof. Let  A  = Ran(/)  where /  is a total computable function.  We can
effectively  enumerate a subset of A  in increasing order by a function g as
follows

g(0)=/(0),

g(n +1) =/(*), where x = fiy(f(y)  > g(n)).

Since  A  = Ran(/)  is  infinite,  g  is  totally  defined.  By  construction,
Ran(g) c  Ran(/)  and g  is increasing.  It is clear that  g  is computable, by
minimalisation  and recursion.  Hence  by  theorem  2.14,  Ran(g)  is  an
infinite  recursive  subset of A.  •

We conclude this section with a theorem of Rice and Shapiro about r.e.
sets of indices. We shall need this result in chapter 10, and there are other
applications we can  make immediately,  but it is of significance  in its own
right. The theorem  and its proof  are generalisations of  Rice's  theorem
(6-1.7).  (In the statement of this theorem, by a finite function 6 we mean a
function  whose  domain  is  finite:  note  that  all  finite  functions  are
computable.)

2.16.  Theorem  (Rice-Shapiro)
Suppose that si  is a set of unary computable functions such that the

set  {x: <t>x   €  si}  is r.e.  Then for any unary computable  function /,

fesi  iff  there is a finite function 6 ^fwith  de  si.

Before we prove this result, let us illustrate how it can be used to give
quick proofs of non-recursive enumerability.  (Further applications of this
kind are given in exercises  2.18 below.)

2.17.  Corollary
The sets  {x: <f>x is total}  and  {x: <f>x  is not total}  are not r.e.

Proof. For A  = {x: <f>x  is total} we apply the Rice-Shapiro  theorem to
the set si  = {/: /  e  <€ x and /  is total}. For no /  e si  is there a finite 6 g /  with
6 €  si. Hence  A  is not r.e.
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For B  = {x : <f>x  is not total}, consider  the set  33 = {/:  fe  <€ x  and /  is not
total}.  Then  if /  is  any total  computable  function, / £  33; but every finite
function  6^f  is  in  33.  So  B  cannot  be  r.e.,  by  the  Rice-Shapiro
theorem.  •

{Note.  This is the third proof we have of the non-recursive  enumerability
of  the  indices  of  total  functions:  others  are  exercise  6-6.14(7c)  and
theorem  2.9  above.  The  reader  will  see  that  the  proof  suggested  in  the
first  of  these  is actually  the specialisation  of  the following  proof.)

We return to the proof  of  the Rice-Shapiro  theorem.

Proof of theorem 2.16
Let  A={x:<f>xe  sd}.  We  are  given  that  A  is  r.e.  We  shall  show

that if either implication in the statement of the theorem is false, then the
problem  'x e K'  can be reduced  to  '* eA\  (Recall  from  example  2.2(1)
that  K  = {x:x  e  Wx}.)  This would  show  that  K  is r.e.,  a contradiction.

Suppose first that/e  sd but d&s£ior  all finite 6 c / .  Let P be a program
such that P(z)i  ift z  eK.  Define  a computable  function  g{z,  t)  by

//( /) r if P{z)l  in t or fewe  steps,
a(z  t)  — )

I undefined  if P(z ) |  in t or fewer steps.
The  s-m-n  theorem provides a total  computable  function  s{z)  such that
g(z,  t) — (f>s(z)(t).  Note  that  by  construction  <£s(2)e/  for  all  z.  We  claim
further  that

(zeK  4>  4>s{z) is finite (hence <f>siz) £  si\
\z£K  =>  <f>s(z)=zf (hence  <frsiz)est).

For if z  e K,  there is t such that P{z)[  in f steps. Then g(z,  t') =*  <£,<*>(*') is
undefined for tf >  t. Hence (f>siz) is finite. On the other hand, if z£  K,  then
g(z,  t)^f(t)  for  all  t9 so  <f>S(z) = f

Now  (*)  means  that  z  eK  <=>  s(z)e  A,  which  implies  that  K  is r.e.,  a
contradiction.  Hence  there  must  be a finite c/ 6  with  ^ e i .

For the  reverse  implication,  suppose  that /  is a computable  function,
 such  that  there  is  a finite function  6 €  sd  with  6 g /,  but /£ ^.  Define  a

computable  function  g(z,  f)  by
if re Dom(0)  or ze  AT,|

1 undefined  otherwise.
The  s-m-n  theorem provides a total  computable  s(z)  such that g(z,  /)
<£s(z)(0- From the definition  of  g  and the fact  that  6 c /  we see  that

z€A T  =>  <f>S(z)=f (hence



7  Recursive  and  recursively enumerable  sets  132

and
z£K  =>  <f>S(Z) = f\Dom($)  = d {hence  <f>s(z)esi).

But  this  means  that  z  eK  <$  s(z)eA,  again  showing  that  K  is  r.e.,  a
contradiction.  Thus fe  si  as required.  •

We leave  it as an exercise  for the reader to see  how the  Rice-Shapiro
theorem generalises  Rice's theorem  (exercise  2.18(12)  below).

2.18.  Exercises
1.  For any a eN,  let  aWe  = {x:4>e(x) = a}. Show that  aWe  is r.e.  (all

a).  Does  the  enumeration  aW0,  aWu
 aW2i...  include  all  r.e.

sets?
2.  Show that the set  {x: <f>x  is not injective} is r.e.
3.  Show that there are total computable functions fc, / such that for

every  x,  Wx  = Ekix)  and Ex  = Wlix).
4.   Suppose  that  A  is  an r.e.  set.  Show  that  the  sets  U*€ A  WX and

UXEA Ex  are  both  r.e.
Show that Plx€ A  Wx  is not necessarily r.e.  as follows.  For any t

let Kt  =  {JC : Px(x)i  in r steps}. Show that for any t, Kt  is recursive;
 moreover  K  = UfeN ^r  and K  =  Plr€ N  ̂ f.

5.  Let  /  be  a  unary  computable  function,  and  suppose  that  A  c
Dom(/),  and let g = / | A.  Prove that g  is computable  iff  A  is r.e.

6.  Let /  be  a unary function.  Prove  that /  is computable  iff  the set
{2x 3 / (x ):jteDom(/)}isr.e.

7.  (Cf.  theorem 2.14.) Let A  be an infinite r.e. set. Show that A  can
be  enumerated  without  repetitions  by  a  total  computable
function.

8.  Which of the following sets are recursive? Which are r.e.? Which
have r.e.  complement?
(a)  {x:xeEx},
(b)  {x: x  is a perfect square},
(c)  {x.(t>x is injective},
(d)  {JC: there  is a run of  at  least x  consecutive  7s  in the  decimal
expansion  of  TT},
(e)  {x:Pm(xm  (mis  fixed).

9.  (Cf.  Exercise  1.4(2).) (a)  Let B  c  N and let n >  1; prove that if  B
is r.e.  then  the predicate  M(x\,  . . . , * „ )  given  by
M(jc1 , . . . , jcJ^2X l3X 2 . . .p x

n-eB
is partially  decidable.
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(b)  Let  Ag^j";   define  A  to  be  r.e.  if  the  predicate  \ r €A '  is
partially decidable. Prove that A  is r.e. iff

(c)  Prove  that  A s N "  is  r.e.  iff  A  = 0  or  there  is  a  total
computable  function  f:N-*Nn  such  that  A = Ran(/).  (By  a
computable  function f  from  M  to  N"  we  mean  an  «-tuple  /  =
(fu  •.  • >/n)  where  each  ft  is  a  unary  computable  function  and

10.  Suppose that e /  is a total computabl  function,  A  a recursive set
and  B  an r.e. set.  Show that  f~l(A)  is recursive  and  that /(A),
f(B)  and/^CB) are r.e. but not necessarily recursive. What extra
information  about  these sets can be obtained  if /  is a  bijection?

11.  Use the Rice-Shapiro theorem to show that the following prob-
lems are not partially decidable: (a)'  Wx = 0\  (b) 'Wx  is finite',
(c) ' Wx is infinite',  (d)  '<t>x = 0',  (e) '</>,  * 0'.

12.  Prove  Rice's  theorem  (theorem  6-1.7)  from  the  Rice-Shapiro
theorem  (theorem  2.16).  {Hint. Suppose  that  4<£x  €55 '  is deci-
dable;  then  both  S3 and  <^i\38  satisfy  the  conditions  of  Rice-
Shapiro: consider the cases / 0 G S  and / 0 £  53.)

13.  (a) Let K0 = {x: <f>x{x) = 0} and Ki={x\  (t>x{x) =  1}. Show that  Ko
and  K\  are  r.e.,  and  that  they  are  recursively  inseparable,  i.e.
KonKi  = 0  and  there  is no  recursive  set  C  such that  Ko£  C
and i^i c  C;  in particular  neither  AT0  nor # i  is recursive. (Hint.
Suppose  that there  is such a set  C  and let  m  be an index for  its
characteristic function; consider whether or not m e C.) (b) Show
that  two  disjoint  sets  A,  B  are  recursively  inseparable  (in  the
above  sense)  iff  whenever  A  c  Wa9 B<^Wb  and  War\Wb  = 0 ,
then  there  is  a  number  x£Wa\jWb.  (Note.  Recursive
inseparability  for  a  pair  of  disjoint  sets  corresponds  to  non-
recursiveness for a single set; pairs of recursively inseparable sets
that  are  also r.e. correspond  to r.e. sets that  are not  recursive.)

3.  Productive  and creative sets
Our chief concern in this section is to discuss a special class of r.e.

sets called creative sets. These are r.e. sets whose complement  fails to be
r.e.  in  a  rather  strong  way.  Thus  we  begin  by  considering  a  class  of
non-r.e. sets, among whose  complements  creative  sets are  to be  found.

Suppose  that  A  is  any  set  that  is  not  r.e.;  then  if  Wx  is  an  r.e.  set
contained  in A,  there  must be a number  y €  A \ Wx. This number  y is a
witness to the fact that A  •£  Wx. It turns out that for some non-r.e. sets it is
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possible to find such a witness in an effective  way. Consider, for example,
the non-r.e., set K  = {x: x & Wx). If  Wx g K, we cannot  have  xe\Vx  (for
then  xeK,  so  WX<£K)\  hence  xeK\Wx.  So x  itself  is a witness  that

The  name  productive  is used  to describe  non-r.e.  sets  for which a
witness  can  always be computed in this way.

3.1.  Definition
A  set A  is productive  if  there  is a total  computable  function  g

such that whenever  Wx e  A, then  g(x)eA\Wx.  The function g is called a
productive function  for A. This is illustrated  by fig. la.

Example.  The set i^ is productive,  with productive  function  g(x) = x.

Many  examples  of  productive  sets  are obtained  from  the  following
theorem, which incorporates the idea of reducibility that was discussed in
the previous  chapter.

3.2.  Theorem
Suppose that A and B are sets such that A is productive, and there

is a  total  computable  function  f  such  that  x €  A  iff f(x)eB.  Then B is
productive.

Proof. Let g  be a productive  function  for A.  Suppose  that  WX^B.
Then f~l(Wx)Gr1{B)  = A;  moreover, f~l(Wx)  is r.e., so there is z  such
that /"*( Wx) = Wz. Now Wz c A, and so g(z)e  A \ Wz, from which we see

Fig. la.  A  productive set.
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Fig. lb.  Theorem 3.2.

that f(g(z))  e B \ Wx;  i.e. f{g(z))  is a witness to the fact that  Wx *  B  (fig.
lb).

We now need to obtain the witness f(g(z))  effectively  from x. A simple
application  of  the  s-m-n  theorem provides  a total  computable  function
k(x)  such that  Wk(x)  = /~1( Wx)  (apply the s-m-n  theorem to the function
<t>x(f(y)))- Then putting z  =  k(x)  we see from the above reasoning that if
WX  ^B  then f(g(k(x)))  €  B \ Wx. Hence B  is productive, with productive
function f(g(k(x))).  •

3.3.  Examples
The following  sets  are productive:
(a)  {JC:0X*O},
(6)  {JC:C£  W*} (c  a fixed number),
(c)  { x : c ^ £ x } ( ca  fixed  number).

(For  each  of  these  sets  apply  theorem  3.2  using  K  and  the  functions
obtained  in theorem 6-1.4  (for  (a))  and theorem 6-1.6  (for  (b)  and (c)).)

The  above  examples  of  productive  sets  and  many  more  may  be
obtained from the following general application of theorem 3.2, based on
our proof  of  Rice's  theorem.

3.4.  Theorem
Suppose that  38 is a set of unary computable functions  with  f&t®

and  SB^^i.  Then the set B  ={x:<f>xe&}  is  productive.
Proof.  Choose  a computable  function  g& 38.  Proceeding  exactly  as in

the  proof  of  Rice's  theorem  (6-1.7) obtain  a total  computable  function
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k(x)  such  that

I.e. xeK  iff  k(x)eB.  By theorem  3.2,  B  is productive.  •

3.5.  Example
The  set  {x:c(>x  is  not  total}  is  productive,  immediately  from

theorem  3.4.

Our  chief  interest  in productive sets is when they occur as the comple-
ment  of  an r.e. set:

3.6.  Definition
A set A  is creative  if it is r.e. and its complement A  is productive.

The  simplest  example  of  a creative  set  is  of  course  K.  Using  theorem
2.6 we can say that a creative set is an r.e. set that fails to be recursive in a
very  strong  way. We  will see  in chapter  9 that  there  is a sense  in  which
creative  sets are the r.e. sets  having the  most  difficult  decision  problem.

3.7.  Examples
The  following  sets are  creative
(a)  {x: c e  Wx}) (the complements  of these sets were
(b)  {x: c e Ex}j  shown to be productive  in examples 3.3).
(c)  The  set  A={x:4>x(x)  = 0}.  Clearly  A  is  r.e.;  to  obtain  a
productive function  for A, use the s-m-n  theorem to construct a
total  computable  function  g  such  that

</>gU)(v) = 0  <=>  <f>x(y) is defined.
Then  g(x)e  A  <£> g(x) e  Wx;  so  if  WX^A  we must  have  g(x) e
A\  Wx. Thus  g  is a productive  function  for  A.

Many  examples  of  creative  sets  of  indices  are  provided  from  the
following  application  of theorem  3.4.

3.8.  Theorem
Suppose  that  stf^^i  and  let A  = {x : <f>x e s4).  If  A  is  r.e.  and

A^0orN,  then A  is creative.
Proof.  Suppose  that  A  is  r.e.  and  A^0,N.  If / 0 e i  then  A  is

productive,  by theorem  3.4;  this  is a contradiction.  Thus f<z&s&, so A  is
productive  (theorem  3.4),  hence  A  is creative.  •
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The examples 3.7(a),  (b)  could be obtained by immediate  application
of  this theorem; similarly we have:

3.9.  Example
The set A  = {x :  Wx  ̂ 0 }  is creative; this set is obviously r.e.  and

corresponds to the set  d  = {/e  ^

Many of the exercises at the end of the section may be done with the aid
of  theorem  3.8.

All examples of non-recursive r.e. sets that we have encountered so far
are creative. (The reader might care to prove this for the examples that we
have not dealt h wit  explicitly.) The question then arises as to whether  all
non-recursive r.e. sets are creative. The idea that this might be the case is
reinforced by theorem 3.8, and further examples in the exercises below. It
turns out, however, that this conjecture  is false: by a special  construction
we  can obtain  r.e.  sets that  are neither  recursive  nor creative.  Section  4
will  be devoted  to that  task.

The construction to be made in the next section is inspired by theorem
3.11  below,  which  will  show  that  a  productive  set  (and  hence  the
complement  of  a creative  set),  although  not  itself  r.e.,  does  contain  an
infinite r.e. subset.  (The secret of constructing an r.e. set A  that is neither
recursive  nor  creative  will  be  to  ensure  that  A  does  not  have  this
property.)

The  proof  of  the  theorem  will  be  facilitated  by  first  isolating  the
following  technical  result.

3.10.  Lemma
Suppose that g is a  a total computable function.  Then there is  total

computable function  k such that for all x,  Wk(X) =WXKJ  {g(x)}.
Proof. Using  the  s-m-n  theorem,  take  k(x)  to be  a total  computable

function  such that
,  x  fl  ifyeWxory  =  g(x),

kix)  I undefined  otherwise.  •

3.11.  Theorem
A  productive  set contains an infinite r.e. subset.

Proof. Let A  be a productive set with productive function  g. The idea is
to enumerate without repetition an infinite set B  = {y0, y i , . . . } £  A  in the
following  way.
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(1)  Take  e0  such  that  Weo=0;  since  Weo^A,  then  g(eo)zA.  Put

yo = g ( 0 -
(2)  For  rc^O,  suppose  that  yo,...,yn  have  been  given  so  that

{yo,.  • •,  yn} g A.  Find  an  index  en+i  such  that {y 0, . . . ,  yn} =  H^n+1 c  A.
Then  g(en+i)eA\Wen+l\  thus  if  we put  yn+x  = g(en+i)  we have  y« + i eA
and  yn+l  * y 0 , . . . ,  yn  (see fig. 7 c).

To  see  that  this enumeration  of  y0, y i , . . .  is an  effective  one,  we  use
lemma 3.10. From the above discussion, when looking for the index en+i
we require  that

W€n +X = Wen u{yn}=  Wen  u{g(en)}

(where k  is the function  given by lemma 3.10). Thus we may define en+1 to
be k(en);  then the sequence  e0,  eu...  is given by the recursion  equations

e0 = some index for  0 ,

and  is hence  computable.  Now  yn  = g(en),  so the  sequence  y0, y i , . . .  is
also computable. Thus B  = {y0, y i , . . . } ,  being the range  of a computable
function,  is r.e.  By construction,  B^A  and  B  is infinite.  •

For  the record,  we state  the  obvious

3.12.  Corollary
If  A  is creative,  then A  contains  an  infinite  r.e.  subset.

3.13.  Exercises
1.  Show that  the  following  sets are  productive:

(a)  {x:Wx  is finite},

Fig. 7c.  Enumerating  an  infinite  subset  of  A  (theorem  3.11).
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(b)  {x:<f>x  is not surjective},
(c)  {x: <f>x  is injective},
(d)  {x:<f>x  is not a polynomial function}.

2.  Prove that the following sets are creative:
(a)  {x:xeEx},
(b)  {x:E[n)*0}(n  fixed),
(c)  {x:<t>x  is not injective},
(d)  {x: <f)x(x)€  A}, where A is any non-empty r.e. set.
(e)  {x: <f>x(x) = /(*)},  where /  is any total computable  function.

3.  Prove  that  if  B  is  r.e.  and A nl?  is  productive,  then  A  is
productive.

4.  Prove  that  if  C  is  creative  and  A  is  an  r.e.  set  such  that
AnC  = 0 ,  then C u A i s  creative.

5.  Prove  that  every  productive  set  contains  an infinite  recursive
subset.

6.  For any sets A, B define the sets A ®B  and A ® B  as in exercise
1.4(1).  Suppose that B is r.e. Show that  (a)  if A is creative, then
so are A®B  and A®B  (provided B * 0 ) ,
(b)  if B  is recursive, then the implications in (a) reverse.

7.  Let S3 be a set of unary computable functions,  and suppose that
g e  38  is such  that  for all finite 8 c  g, 0g ^.  Prove  that  the  set
{JC :  </>x  G S3} is productive.
(///nf.  Follow  the first part  of  the proof  of  the  Rice-Shapiro
theorem.)

8.  Use the result  of question 7 to show that the following sets are
productive:
(a)  {x:<f>x  is total},
(b)  {x:4>x  is a polynomial function}.

9.  (Cf.  exercise  2.18(13).)  Disjoint  sets  A,  B  are  said  to  be
effectively recursively inseparable  if there  is a total  computable
function /  such that whenever A^Wa,B^Wb  and WanWb  =
0 ,  then /(a, b)£  Wa u  Wb (see fig. 7</).
(a)  Prove  that  the  sets  Ko = {x:<f>x(x) = 0}  and  ATi =
{*: <£*(*) = 1} are effectively  recursively inseparable.
(Hint. Find a total computable function /  such that if WanWb  =
0,then

iixeWb,
otherwise.)
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Fig. Id.  Effectively  recursively  inseparable  sets  (exercise  3.13(9)).

(b)  Suppose  that  A,  B  are  effectively  recursively  inseparable.
Prove  that  if A,  B  are  both r.e. then they are  both creative.
(Note. Extending the idea of effectiveness  to a pair of recursively
inseparable  sets  in m this  way  parallels  the  step  fro  a  non-
recursive set  to a set  having productive  complement;  the  coun-
terpart  to  a  single  creative  set  is  then  a  pair  of  effectively
recursively inseparable sets that  are both  r.e.)

4.  Simple sets
Our task in this section is to show that there are sets satisfying the

following definition and hence (in view of theorem 4.2 below) to establish
that not  all non-recursive r.e. sets are creative.

4.1.  Definition
A set A  is simple  if
(a)  A  is r.e.,
(b)  A  is infinite,
(c)  A  contains no infinite  r.e. subset.

The idea in (b), (c) of this definition  is to pinpoint some features  of a set
that are not possessed by any recursive or creative set. Thus, although as
yet we have no examples  of  simple sets, we can easily see that

4.2.  Theorem
A  simple set is neither recursive nor creative.
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Proof. Suppose  that  A  is  a  simple  set.  From  (b)  and  (c)  of  the
definition,  A  is not r.e., so A  is not recursive.  By theorem  3.11 and f (c) o
the  definition,  A  is not creative.  •

The  following  construction  of a simple set is due to  Post.

4.3.  Theorem
There is a simple set.

Proof. We shall  define  a computable  partial  function  /  such  that the
range of /  contains at least one member from every infinite r.e. set. This is
done  by arranging that  if  <f>x  is total  and Ex  is infinite,  then f(x)e  Ex. To
make  Ran(/)  simple  we  must  at  the  same  time  ensure  that  Ran(/)  is
infinite.  We  shall  see  that  both  conditions  are  met  by the  function  /
defined  informally  as follows:

To  compute  /(*):  compute  4>x(0), <t>x(l), •  •  •  in  succession  (do  not
proceed  to the computation  of  <f>x(y + 1) unless and until  </>x(y) has been
computed); stop  if and only if a number z  is found such that 4>x \z) > 2x; in
that  case put f(x)  = <f>x(z).  (Formally  we have  f(x)  = ct>x(fiz (z)(<£*  > 2x)),
demonstrating  clearly  that  /  is computable.)

Put  A  = Ran(/); then  A  is r.e. We now verify  that  A  is simple.
Suppose that B  is any infinite  r.e. set. Then there  is a total  computable

function  <t>b  such that B  = Eb.  Since B  is infinite, the construction  ensures
that f(b)  is defined  and f(b)  e Eb  = B.  Hence  B £  A.

To  see that  A  is infinite,  note  that  if f(x)  is defined,  then  f(x)>2x.
Thus, for any rc, the members of A  that  are in the set {0, 1, 2 , . . . ,  2n} are
among  /(0), ...,f(n-1).  This  means  that  A  contains  more  than  n
elements, for any n. Hence  A  is infinite.  •

The construction  of a simple set is but the first and one of the easiest  of a
wide  variety  of constructions  that  yield r.e. sets with  all kinds  of  special
properties. These are beyond the scope of this book; the interested  reader
should  consult  a text  such  as Rogers  [1967], where  he  will  find r.e. sets
rejoicing  in names  such  a hypersimple,  hyperhypersimple,  pseudocrea-
tive, and maximal.  (See also exercise  4.4(3)  below for an example  of an
r.e. set that  is neither  recursive, creative nor simple.)

4.4.  Exercises
1.  Suppose that A  and B  are simple sets. Show that the set A ®B  is

simple. (For the definition  of © see exercise  1.4(1).)
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2.  Suppose  that /  is a total injective computable  function  such that
Ran(/)  is  not  recursive.  (Exercise  2.18(7)  showed  that  such
functions  abound.)  Show that the set

A={x:3y(y>x  and/(y)</(*))}
is simple. (Hint. To see that A  is infinite, assume the contrary and
show that there would then be a sequence  of  numbers y0 < y i <
y 2 < . . .  such  that / ( y o ) > / ( y i ) > / ( y 2 ) > . . .  To  see  that  A  does
not  contain  an  infinite  r.e.  set  B,  suppose  to  the  contrary  that
B  c  A.  Then  show  that  the  problem  z  e Ran(/)  is  decidable  as
follows.  Given  z, find neB  such that f(n)>z\  now use the  fact
that  n & A  to  devise  a finite  procedure  for  testing  whether  z  e
Ran(/).)

3.  Show that if A  is simple, then A ®N  is r.e.,  but neither recursive,
creative  nor simple  (see  exercise  3.13(6)).

4.  Let A,  B  be simple sets. Prove  that A®B  is not simple  but that
A®B  is simple.



8
Arithmetic and Godel's
incompleteness  theorem

The celebrated incompleteness theorem  of Godel [1931] is one  of many
results  about  formal  arithmetic  that  involve  an  interplay  between
computability and logic. Although full proofs in this area are beyond the
scope  of  this  book,  we  are  able  to  outline  some  of  the  arguments
discovered  by Godel  and others. We shall highlight particularly the part
played by computability theory, which in many cases can be viewed as an
application  of the phenomenon  of creative and productive sets.

In  §§ 1 and 2 we present some results about formal arithmetic that lead
up to the full Godel incompleteness theorem in § 3. In the final section the
question  of undecidability  in formal  arithmetic, already touched upon in
§ 1, is taken up again. Our presentation  in this chapter does not assume
any knowledge  of formal  logic.

1.  Formal  arithmetic
The  formalisation  of  arithmetic  begins  by  specifying  a  formal

logical  language  L  that  is adequate  for  making  statements  of  ordinary
arithmetic  of the natural numbers. The language L  has its own alphabet,
which includes the symbols 0,  1, +, x,  =  (having the obvious meanings),
and  also  symbols  for  logical  notions  as  follows:  ~i ('not'),  A ('and'),  v
('or'),  -> ('implies'), V ('for  all'), 3 ('there exists'). (In this chapter we will
reserve the symbols  V, 3  for  use  in L, and write the phrase  'for  all'  and
'there  exists'  when  needed  in  informal  contexts.)  In  addition,  L  has
symbols x, y, z , . . .  for  variables, and brackets  ( and ), and there may be
other  symbols besides.

The  statements  (or formulas)  of  L  are  defined  to  be  the  meaningful
finite sequences  of  symbols  from  the  alphabet  of  L.  For  instance,  the
statement

3y(yx(1 + i) = x)
is the formal counterpart of the informal statement  'JC is even'. It is helpful
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to abbreviate  the expression  1  + 1 by 2,  (1 +1) +1  by 3, and so on for  all
natural  numbers. Then the false  informal  statement  '5 is even' would be
expressed  formally  in L  by the  statement

3y(yx2 = 5).
We  can  similarly  express  in  L  formal  counterparts  of  many  informal
statements  of  ordinary  arithmetic:  for  'JC > y' we would  write

(The statement  —i(z = 0) is often abbreviated by z #  0.) For lx  is prime' we
would  write

(x *  0)  A (x *  1)  A Vy Vz(x = y x z -»(y =  1  v z =  1)).

Let us denote  by  5̂  the set of  all possible meaningful  statements of  the
language  L. Then  Sf divides  into two important sets,  namely

3" = the set  of  all statements  that  are  true  in the
ordinary arithmetic of  M,

3F = the set  of  all statements  that  are false  in the
ordinary arithmetic of  M.

Mathematicians  would  like to discover  as much  as possible  about  the
set  &'.  A  natural  question  from  the point  of  view  of  computability  is

(l.l)(a)  Is  J" recursive, or even recursively  enumerable?
Another  question,  important  for  the  mathematician  and  philosopher
alike  is
(l.l)(b)  Is  there  a  simple-minded  subset  of  ST  (a  set  of  axioms)  from

which  all other statements  in  ST can be  proved?
We shall  discover  that the  answer to both of  these questions  is  no.

Question  1.1 (a)  above  can  be  made  precise  by  means  of  a  standard
coding procedure.  It is quite  routine  to specify  an effective  enumeration
of the set  S? without repetitions, using a procedure similar to that used to
enumerate programs in chapter 4. Let us assume that this has been done,
and let  us denote  by  6n  the  (n + l)th statement  of  5̂  in this enumeration,
so  that

The  effectiveness  of  this  enumeration  means  that  given  n  we  can
effectively  find  and  write  down  the  statement  6n> and conversely,  given
any statement a  in Sf we can effectively  compute the code number n such
that  cr =  6n.
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This coding of statements is now used to code any set of statements
by the set of  numbers

X = {n:0ne  X).

We say that X is<

recursive
r.e.
productive
creative
etc.

>ifATis<

recursive
r.e.
productive
creative
etc.

This gives the question  1.1 (a)  above  a precise  meaning.
One of the key results  that  makes  computability  an extremely  useful

tool when investigating formal  arithmetic is the following, due to Godel;
we present  it without  any proof.

1.2.  Lemma
Suppose  that  M(JCI, . . . , xn)  is a  decidable  predicate.  Then it is

possible  to  construct  a  statement  cr(xi , . . . , xn )  of  L  that  is  a  formal
counterpart of M{xu  •  • •, xn)  in the following sense: for any a\,...,  an e N

M(au  . • . , an)  holds  iff  a(au  ...,an)e3~.
Consider now the creative set K. By theorem 7-2.4 there is a decidable.

predicate  R(x,y)  such that
x e K  <?>  there is y  such that R  (JC, y).

Applying lemma  1.2 to the predicate R(x,  y) let us fix on one particular
formal  counterpart of this predicate, which we denote  by aR(x,  y). Then
for  any  neN  the  statement  3ycrR(n,y)  is  a  formal  counterpart  for
'neK\  and  —i3ycr/?(n,y)  is  a  formal  counterpart  of  'n£K\  Let us
therefore  write

neK  for  3yo-jR(n,y)
and

n£K  for

Then  using lemma  1.2 we have  immediately

1.3.  Lemma
For any n eN
(a)  neKiffneKeST
(b)  n£Kiffn£KeF

We  are almost  ready  to  answer  the question  1.1 (a)  above;  we shall
need the following  lemma.
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1.4.  Lemma
There is a total computable function  g such that for all n,  0g(n) is

n*!K
Proof.  This  is  immediate  from  the  effectiveness  of  the  coding  of

statements,  since  given  n  we  can  effectively  write  down  the  statement
)).  •

Now we have, in answer to question  1.1 (a):

1.5.  Theorem
2T is not r.e.; in fact  3~ is productive.

Proof  Let T = {n: 6n £ ST}\  taking  g  as in lemma  1.4  we have
neK  »  n£K

<=> n &  KG  ST  (by lemma  1.3).
<=> g(n)e  T (by lemma  1.4).

So, since K  is not r.e., neither isT. In fact, by theorem 7-3.2 we see thatT
is productive.  •

1.6.  Exercise
Show that  9  is productive.

2.  Incompleteness
A  simple  version  of  Godel's  incompleteness  theorem  follows

easily from theorem  1.5. We must first describe the setting of this famous
result.

Consider  the  second  question  (1.1(6))  posed  in  § 1. This  question  is
made precise by using the idea of a formal system. A formal system (sd,  3))
(for the language L)  consists  of  a set sd g  tf  (the  axioms)  and an explicit
definition  3)  of the notion of a formal proof oi a statement in $f from these
axioms, satisfying  the conditions:

(2.1)  (a)  Proofs  are finite objects  (hence capable  of  being coded),
(b)  The explicit definition 2)  of proof is such that if si  is recursive
then the  relation
'p  is a proof  of the statement  a  from  the  axioms sd'
is decidable.

We can now interpret  the question  1.1(6)  as asking whether there  is a
formal  system for  L  such that

(2.2)  (a)  sd  is recursive  (so  we  are  taking  simple-minded  in  a  fairly
wide sense),
(6)  The provable statements  are precisely those  in  ST.
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The  condition e (b)  poses  a problem  for  th  philosopher  who  may  be
trying to  define  the very notion  of  arithmetic  truth by means of  a formal
system.  For him, this condition  is meaningless,  and must be replaced  by
conditions reflecting some of the properties to be expected of truth, such
as

(2.2)(b')Consistency:  there  is no statement  a  such  that  both  or  and  no-
are provable,

{2.2)(b")Completeness:  for any statement a,  either a  is provable or  ~icr  is
provable.

A  simplified  version  of  Godel's theorem shows that there is no  formal
system of arithmetic satisfying the conditions 2.2(a)  and (b). This is easily
derived from theorem  1.5,  and is given below. The full theorem of  Godel
[1931] together  with  its improvement  by  Rosser  shows  that  there  is  no
formal  system  of  arithmetic  (of  a  certain  minimal  strength)  satisfying
conditions  2.2(a)  and  (£')>  (b"). In  other  words,  any  consistent  formal
system  of  arithmetic having a recursive set  of  axioms is incomplete.  This
will  be proved  in § 3.

We  shall  need  the  following  lemma  to  establish  the  simplified  Godel
theorem.

2.3.  Lemma
In any  recursively axiomatised  formal  system  the set  of  provable

statements  is r.e.
Proof.  Let  tyt  be  the  set  of  statements  in  Sf that  are  provable.  Since

proofs are finite, they can be effectively numbered; then if d  is a recursive
set  of  axioms the  predicate

A/(JC, y) =  'y is the number of  a proof  of  6X  from the axioms  si'

is decidable,  by (2.1)(b).  Then
6X is provable  <=> there is y such t tha  M(x,  y)  holds.

Hence,  by theorem 7-2.4,  0>i is r.e.  •

Now we  have

2.4.  Theorem.  (The simplified  Godel  incompleteness  theorem)
Suppose that  (si,  Q))  is a recursively axiomatised  formal  system in

which all provable  statements  are true. Then there is a  statement  a  that is
true but not provable  (and  consequently  —\<r is not provable  either).
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Proof,  By lemma 2.3, the set  0>* of provable statements is r.e.,  and we
are given that 9>i c  ST. Now 3~ is not r.e. (theorem 1.5) so we immediately
have a statement a  e  ST\&*\ i.e. a  is true but not provable. Clearly icr  is
not provable  either  (otherwise  ~ia  would be true).  •

(Using the productiveness of  &~ (theorem  1.5) we could strengthen this
theorem  to  say that the  statement  cr can be obtained  effectively  from a
specification  of  the formal  system  (which would yield  an index for 0**).)

To aid an understanding of the proof of the full Godel theorem in § 3 it
is  useful  to  examine  the  inner  workings  that  were  hidden  when  we
applied theorem  1.5  in the above proof  to obtain the statement cr.

Let  us  say  that  a  statement  is  refutable  if  its  negation  is  provable.
Consider the sets of  numbers Pr* and Ref* given by

Pr* = {n:  n €  K is provable},
Ref* = {n:  n e K is refutable}

= {n:  n £ K is provable}

(where  g  is the computable  function given by lemma  1.4  and used in the
proof  of theorem  1.5). The assumption that provable statements are true
means in particular that Pr* c  K  and Ref* c  K. Now Ref* is r.e.  (from the
fact  that  n e Ref*<=>0g(n)  e  £?*,  and <3>i, is  r.e.),  so  there  is  a number  m
such that Ref* =  Wm.

By  the  productiveness  of  K  we  have  immediately  that  m Gi^\Ref*,
i.e.  m£K,  and m £  K if  not provable. Taking a  to be the statement m £ K
we  thus see  that  a  is true  but  not  provable  (and  ~KT is not provable,  as
before). The argument is illustrated  by fig. 8a.  (For comparison with the

Fig.  8a.  Simplified  Godel  incompleteness  (theorem  2.4).
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proof  of  the  full  Godel  theorem  in  the  next  section,  note  that  the
non-provability  of  ~icr  can  be  seen  as  a  consequence  of  the  fact  that
PT*QK:  for  m£K  (as  above),  so  m£Pr*,  i.e.  meK  is  not  provable.
Then,  by the  rules  of  formal  proof  —im£ K (i.e.  —ior) is not  provable.)

Notice now the intended meaning of the statement or  thus obtained:  a
is the formal counterpart of the statement m£K,i.e.m&  Wm. But we have

m£  Wm  <=> m^Ref*
<=> m £ K  is not provable

Thus or  is a formal  counterpart  of the statement  'a  is not provable'; i.e.
speaking rather loosely, a  says 'I am not provable'. This is reminiscent of
the paradox  of the liar, involving the  informal  statement

A =4I  am lying'.
Informal  reasoning about  A  results  in the paradox

A  is true  iff  A  is not true.
If the same informal reasoning is applied to the informal statement 'I am
not provable' the paradox is avoided by the conclusion that provable is not
the same as true.  This  informal  conclusion  is rigorously  justified  by the
proof  of theorem 2.4.

3.  Godel's incompleteness theorem
We proceed in this section to show how the idea behind the proof

of  theorem  2.4 can be refined s so a  to avoid  any reference  to truth.
For  the  moment  we fix on  a  particular  formal  system  of  arithmetic

known  as  Peano  arithmetic. The  axioms  for  this  system  consist  of  a
recursive subset  of Sf known as Peano"s  axioms; these reflect  the simple
properties of the successor operation on M, and the recursive definition of
addition and multiplication  in terms of it, together with an axiom scheme
reflecting the principle  of induction on  IU The notion  of a formal proof  is
taken as that defined  for the first-order predicate calculus. Full details of
Peano arithmetic (sometimes called formal number theory) may be found
in any textbook  on mathematical  logic. For our purposes, the important
fact  we need  to  know about  Peano arithmetic  is given  by the  following
lemma, to which a substantial part  of Godel's proof  is devoted.

3.1.  Lemma
LetM(x\,  •  •  •, xn) be a decidablepredicate,  and leta(xi,...,  xrt)

be the statement of L  that is the formal counterpart of M(xi,...,  xn)  as
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given  by  lemma  1.2.  Then  M  is  represented  in Peano  arithmetic  in  the
following  sense: for any  ax ,...,  an e N

(a)  if M{a\,  •  •,  cxn) holds,  then <r(3u . . . ,  an)  is  provable,
(b)  if  M(ai,...  >  an)  does  not  hold,  then  - icr(ai , . . . ,  an)  is
provable.

(For a proof  refer  to a textbook  such  as Mendelson  [1964].)  •

Consider now the statement  n e  K (i.e. 3yoj?(x, y)) that we took  in § 1
as a formal counterpart of the statement  neK.  Then from lemma 3.1 we
can obtain

3.2.  Corollary
For any natural number n,ifneK  then neK/5 provable  in Peano

arithmetic.
Proof. Suppose that n e K.  Then there is a natural number  m  such that

R(n,  m)  holds, so  by lemma 3.1  we  have that  aR(n,  m)  is provable.  The
rules  of  the  predicate  calculus  are  such  that  we  can  immediately find a
proof  of  3yo7*(n, y); i.e.  n e  K is provable.

For part of his proof, Godel needed an extra technical condition called
co-consistency:  a  formal  system  is  said  to  be  co-consistent  if  there  is  no
statement  r(y) such that  all  of  the following  are provable:

3yr(y),  -ir(0),  - IT(1) ,  ~ I T ( 2 ) , . . .

(co-consistency  is a stronger condition  than consistency  (2.2)(b')).
We can easily derive the converse of corollary 3.2 from lemma 3.1,  with

the  assumption  of  co-consistency.

3.3.  Lemma
Suppose that Peano arithmetic  is co-consistent; then for any natural

number n,ifneK  is provable  then  neK.
Proof. Suppose  that  n£K\  then for every  meNv/e  have that  R(n,m)

does not hold, so by lemma 3.1,  icrR(n,  m) is provable. Thus,  if  n e  K is
provable  but  n & K,  all  of  the following  are provable

(n,  y),  -icrR(n,  0),  - i o^ (n ,  1 ) , . . .

in contradiction  of  co-consistency  for  the  statement  r(y)  =  crR(n,  y).  •
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We can now present  a proof  of

3.4.  Theorem  (Godel's  incompleteness  theorem  [1931])
There is a statement  or of L  such that
(a)  if Peano  arithmetic  is consistent,  not then a  is  provable,
{b)  if Peano  arithmetic  is co-consistent,  then  ~i cr  is not  provable.

Proof.
(a)  Recall the sets Pr* = {n:  n e K is provable},

Ref * = {n:neK  is refutable},
that  we  defined  in  the  discussion  at  the  end  of  the  previous
section.  By  corollary  3.2  we  have ATcpr*;  consistency  implies
that  Pr*nRef*  = 0 ,  and  so  Ref* c  if.  We  can  now  argue  as
before: Ref* is r.e., so take m such that Ref* =  Wm. The situation
is  illustrated  by fig.  Sb, which  should  be  compared  with  that  in
fig.  8a.

By  the  productiveness  of  K,  we  have  that  meXARef*;  in
particular,  m£  Ref* means that m £ K is not provable. Hence  (a)
is established,  by taking  a  to be the statement  m £ K.
(b)  The condition  of  co-consistency  implies  (by lemma 3.3)  that
Pr* c  K,  and hence  Pr* = K.  Thus, with ^-consistency, fig.  Sb  is
modified  to become fig. 8c. Thus  m£  K  means that m£Pr*;  i.e.
m G K is not provable.  The rules of  the predicate  calculus tell  us
immediately  that  ~ia  (i.e.  - im  £  K) is not provable.  •

Notes
1.  The  statement  a  produced  by Godel's  theorem  is  called  an  undeci-
dable  or an undecided  statement of Peano arithmetic. As discussed at the

Fig.  8£.  Godel  incompleteness  (theorem 3.4(a)).
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Fig.  8c.  Godel  incompleteness  (theorem  3.4 (b)).

end of  § 2,  or  has the informal meaning  4I am not provable',  and is, on an
intuitive level,  true.
2.  Clearly  Godel's  theorem  applies  to  any  recursively  axiomatised
formal  system  in which all decidable relations can be represented  (in the
sense  of  lemma 3.1).  In particular,  this is true for any such system that is
stronger than Peano arithmetic.  In consequence, there is no way to avoid
the  incompleteness  phenomenon  by adding  new axioms:  for example  or
or  -io\  The  resulting  formal  system  would  have  a  new  undecided
statement.
3.  Note  that  the  undecided  statement  or can  be  constructed  explicitly
from a specification  of  Peano arithmetic, since from such a specification,
we could effectively  find an index  m  for Ref*. This constructive aspect of
Godel's  theorem  is  a  consequence  of  the  fact  that  K  is  creative.  An
analysis  of  the  proof  would  show  that  we  can  demonstrate  the  mere
existence  of  an undecided statement using any non-recursive r.e. set A  in
place  of  K.
4.  Although  not  entirely  clear  from  our presentation,  the  proof  of  part
(a)  of  Godel's theorem is  a finitist proof: that is, it shows explicitly how,
given a formal proof  of  the statement  <x, to construct a proof  of  ~ia  (thus
demonstrating  inconsistency).  We  cannot  make  the  same  remark  about
(b),  because  ^-consistency  is not  a finitist  notion.

In  1936  J.  B.  Rosser  saw  how  to  eliminate  the  assumption  of co-
consistency in part (b) of Godel's theorem. We shall now see that Rosser's
refinement  of  Godel's  method  can  be  viewed  as  an  application  of  the
effective  recursive  inseparability  of  the r.e.  sets
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(that  we  discussed  in  exercise  7-3.13(9)),  in  place  of  the  use  of  the
creative set K.  (Our treatment below does not assume familiarity with this
exercise.)

We begin by describing some statements of  9> that are formal counter-
parts of the statements n e Ko  and n £ Kx;  these are slightly more complex
than the formal version of  n e K  used earlier. Select decidable predicates
Ro(x,  y)  and Ri(x,  y)  such that

n e Ko  »  there is y  such that Ro(n,  y)
and

n 6 Ki  <=> there is y  such that R\{n,  y).
Now  clearly Ko  n K\  = 0 ,  so we  also have
(*)  n e Ko  <=>  there  is  y  such that  (i) R0(n,  y)  and

(ii) for  all  z  <  y,  R\{n,  z)  does  not hold,
and there  is a similar equivalence  for  n e K\.  Now take statements  <rRo,
aRl  representing  Ro,  R\  in  Peano  arithmetic  as  given  by  lemma  3.1.
Rosser's  trick was (essentially) to use the following  statement  (based on
(*)  above)
(**)  3y(^0(n, y) A VZ < y(-. ^ ( n , z)))
as  the  formal  counterpart  of  n e Ko,  rather  than  the  simpler  statement
3yoK0(n, y). Let us write n e  Ko for the statement  (**) above. Similarly we

 write  n €  Ki for the  statement
3y(orRl(n,  y) A V Z < y(-icr/?0(n, z))).

Now  it  is quite  straightforward  to  establish  the  following  key  lemma
(which should be compared with corollary 3.2):

3.5.  Lemma
In Peano  arithmetic, for any  natural  number n
(a)  ifne  Ko,  then  n e  Ko is  provable,

 (b)  ifneKi,  then  n€K i  is  provable,
(c)  if  n €  Ki  is provable,  then  n £  Ko is also  provable.

The  proof  of  this  lemma  uses  some  technical  properties  of  Peano
arithmetic, ) and we therefore omit it. It is to obtain 3.5(c  particularly that
the  more  complex  formal  representations  of  neK0  and  neKi  are
needed.  (For those  familiar  with mathematical  logic we  should  mention
that lemma  3.5  is easily  established  once  the following  statements  have
been shown to be provable  in Peano  arithmetic:
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(3.6)  (a)  ForanymeN:
Vz <  m(z = 0 v z = 1 v . . .  v z = m),
(b)  VyVz(y<zvz<y).)

We can now complete  the proof  of

3.7.  Theorem  (The Godel-Rosser  incompleteness  theorem)
There is a statement  r such that if Peano  arithmetic  is consistent,

neither r nor  —i r is  provable.
Proof. Define  the  sets

Pr** = {n:  n e  Ko  is provable}
Ref** = {n:n€K 0  is refutable}

= {n:  n &  Ko  is provable}.
Consistency  means that Pr** n Ref** =  0 .

From lemma 3.5(#)  we  have
ATo^Pr**.

Also,  for  any  n, combining  lemma  3.5(&)  and (c) we  have
n €  JRTI  =>  n ^  Ko  is provable;

i.e.

Now Pr** and Ref** are both r.e.  (this uses the fact that  0>* is r.e.) so the
recursive  inseparability  of  Ko  and Kx  (exercise  7-2.18(13/?))  means  that
there is a number p£  Pr** u  Ref**. The state of  affairs is illustrated in  fig.
8d.  Now pt  Pr** means that p 6  Ko is not provable,  and pt  Ref** means

Fig. Sd. Godel-Rosser incompleteness  (theorem 3.7).
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that p £ Ko is not provable, so the theorem is established, by taking r to be
the statement  p e Ko.

Although the proof  of the theorem as stated is complete, let us now see
how the numper p  (hence the statement  T) can be explicitly  constructed.
From an explicit specification  of Peano arithmetic, we can effectively find
an index p  such that

l  ifrcePr**,
if/teRef**,

I undefined  otherwise.
We can now see that p£  Pr** u  Ref**, as follows:

(i)  if  pePr**,  then  <f>p(p) = l,  so  peKu  hence   p€Ref** ,
contradicting consistency. Hence p<£ Pr**.
(ii)  if p e Ref**, then  <t>p(p) = 0, so p e KOf  hence p e Pr**, ano-
ther contradiction. Hence p£  Ref**.

(The  fact  that  p  can  thus  be  obtained  explicitly  uses  essentially  the
effective  recursive  inseparability  of  Ko  and  K\  (see  exercise  7-
3.13(9).)  •

Notes
1.  The statement  - I T  constructed  in this theorem  corresponds to the

undecided statement  a  of theorem 3.4; it is easily seen that  IT  also has
the  informal  interpretation  'I  am  not  provable',  and  is intuitively  true.

2.  The Godel-Rosser  theorem applies to any recursively  axiomatised
formal  system  of  arithmetic  in  which  all  decidable  relations  can  be
represented  and  for  which  lemma  3.5  can  be  established.  (Lemma  3.5
always holds for  systems in which statements  3.6  (a),  (b) can be proved:
such systems are called Rosser systems.) Again, there is thus no possibility
of  avoiding incompleteness by adding new axioms.

3.  The  Godel-Rosser  theorem  is  a  completely  finitist  theorem:  the
proof  (when given in full detail) shows how to demonstrate  inconsistency
explicitly  if  we were given a proof  of either  r  or  -IT.

4.  Undecidability
We  have  already  seen  that  the  set  3T of  true  statements  of

arithmetic is not recursive (theorem  1.5): this is often described by saying
that  3~ is undecidable. In general, when considering sets of statements the
terms  decidable  and  undecidable  are  often  used  to mean  recursive  and
non-recursive.

We can ask particularly of any formal system of arithmetic, is the set 0^
of provable statements decidable? The answer is invariably no, and there
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are  various  ways  to  see  this.  We  confine  ourselves  to  one  of  the  many
results  in this area,  using the  ideas  of  the previous section.

4.1.  Theorem
Suppose that  (si,  3)) is an co-consistent formal system of arithmetic

in which all  decidable  predicates  are representable  (in the sense of  lemma
3.1).  Then the set of provable  statements  is  creative.

Proof  The assumption of the theorem means that Godel's theorem 3.4
applies, so  in particular we have from  the proof  of  theorem  3.4:

K  =  Pr* = {n:  n e  K  is provable}.
Now let Pr = {n: 6n is provable}; we can find a computable function  h such
that  n €  K  is 0hin)9 and then

n e K  <=> n e Pr*
<$ h(n)  e?r.

So  by theorem 7-3.2,  Pr is  creative.  •

4.2.  Corollary
If  Peano  arithmetic  is (o-consistent then  the provable  statements

form a creative set. (This is the case in particular if all provable  statements
are true.)

The counterpart to 1 theorem 4.  and corollary 4.2 using Rosser's ideas
is given  in the following  exercise.

4.3.  Exercise
Suppose  that  (si,  2))  is  a  consistent  recursively  axiomatised

formal system for which lemmas 3.1  and 3.5 hold. Let Pr** and Ref** be
the sets defined  in the  proof  of  theorem  3.6.

(a)  Show  that  Pr**  and  Ref**  are  effectively  recursively
inseparable.
(b)  Let  Pr = {n: 6n  is provable} and  Ref  = {n:  -i0n  is provable}.
Prove  that  Pr  and  Ref  are  effectively  recursively  inseparable.
(Hint.  Extend  the  idea  of  theorem/7-3.2  to  pairs  of  effectively
recursively  inseparable  sets.)

The presentation  of  the  results  in this chapter  is derived  largely  from
the books of Kleene [1967] and Smullyan [1961].  For further  discussion
of incompleteness  and undecidability  in arithmetic and related areas, the
reader is referred to Bell & Machover [1977], Boolos & Jeffrey [1974], or
Rogers  [1971].



9
Reducibility  and  degrees

In m earlier chapters we have used the technique of reducing one proble  to
another, often  as means of demonstrating undecidability. We did this, for
instance,  in the  proof  of  theorem  6-1.4  by showing  that  there  is  a total
computable  function  k  such  that  x e  Wx  <=>  <£k(X) = 0,  i.e.  we  used  the
function  k  to  transform  or reduce  each  instance  of  the  general  problem
4JC e  Wx' to an instance of the general problem '<f>x  = 0'.  In this chapter we
consider two ways of making the idea of reducibility precise, and for each
we discuss the associated  notion  of  degree  (of  difficulty)  that arises.

It is more convenient to deal with reducibility between  sets rather than
between problems, remembering that any problem is represented by a set
of numbers. The informal idea of a set A  being reducible  to a set B  can be
expressed  in various ways: for  instance

(a)  'Given a decision procedure  for the problem  'x e B\  we can
construct one  for  'JC   €  A'.'
(b)  Tor someone who knows all about  B,  there  is a mechanical
procedure  (that uses his knowledge  of  B)  for deciding questions
about A.'
(c)  'Questions  about A  are no harder than questions  about  B."
(d)  The  degree  of  difficulty  of the problem  'x e A' is no greater
than that  of  the problem  4JC  sB\'

It turns out  that there  are several  non-equivalent  ways  of  making this
idea  precise.  The  differences  between  these  consist  in  the  manner  and
extent  to  which  information  about  B  is  allowed  to  be  used  to  settle
questions  about  A.  In  §§ 1-3  we  shall  investigate  one  of  the  simplest
notions of reducibility, called many-one  reducibility, which includes all of
our earlier uses of the informal idea. In the final sections we shall discuss a
more general  notion  known  as  Turing reducibility.



9  Reducibility  and degrees  158

1.  Many-one  reducibility

1.1.  Definition
The  set A  is  many-one  reducible  (abbreviated  m-reducible)  to

the set B  if there  is a total computable function  /  such that  for  all x

xeA  iff  f(x)eB.
We shall write this A <mJ5; and we shall write/: A < m £  to indicate that/
is a total computable function  demonstrating that A  < m  B.
Note.  The phrase many-one is used to distinguish this kind of reducibility
from a related notion called one-one reducibility,  for which the function  /
is required to be  injective.

We  have  used  m-reducibility  implicitly  on  many  occasions  in  earlier
chapters.  The  s-m-n  theorem  is  often  needed  to  establish  many-one
reducibility,  as we see in the following examples.

1.2.  Examples
1.  In  chapter  VI we showed that  K  is m-reducible  to  each  of  the

following sets:
(a)  {x:<t>x = 0} (theorem  6-1.4, quoted  above),
(b)  {x:ce\Vx}  (theorem  6-1.6).

2.  If we examine the function  k  given in the proof of theorem 6-1.6
we see that  x e K  <=>  <f>kix)  is total.  Hence
k\K<m{x\<t>x  is total}.

3.  Rice's  theorem  (theorem  6-1.7)  is  proved  by  showing  that
K ^m{x:<t>x e S8}, where  59 is y an  non-empty  subset  of  %\ such
that / 0 g  53.

4.  {x :<t>x  is total} <m{jc:0x  = O}.
Proof. Using  the  s-m-n  theorem  obtain  a  total  computable
function  k  such that  <t>k(x) = O°0X, for  all x. Then
k:  {x: <f>xis total} <m {*: <f>x  =  0}.

The following theorem  gives some  of the elementary  proper-
ties  of  m-reducibility.

1.3.  Theorem
LetA,B,  C be sets.
(a)  <m is reflexive (i.e. A <m A)  and transitive (i.e. if A  ^mB  and
B<
(b)
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(c)  if A  is recursive and B <m A,  then B  is recursive,
(d)  if A  is recursive and B  # 0 ,  M, fftett A ^mJ5,
(e)  / /A  is re.  and B ^ m A,  then B  is r.e.,
(/)  (i)  A < m

(ii)  A < m 0
(g)  (i)  N< m

(ii)  0 < m

(a)  Reflexive, i: A  < m A, where  i  is the identity function.  Tran-
sitive.  If /: A <m  B  and g:B  <mC,  then clearly  g°f:A<mC.
(b)  If g:A<mB,  then  JC e A  <=>  g(ar)GB; hence  xe  A  <̂> gU)e
E;  hence  g:A<mJ5.
(c)  Suppose  that  g:B<mA\  then  CB(JC) =  cA(gU)),  so  cB  is
computable.
(rf)  Choose  b e B  and c^ B,  and define /  by

if x e  A,

Then /  is computable  (since A  is recursive),  and x £ A  <=> /(*) €
B\  hence / :A< m R
(e)  Suppose  that  g:B^mA  and  A = Dom(/i),  with  h  compu-
table; then B  = Dom(/i °g),  and /i °g  is computable,  so  J5 is r.e.
(/)  (i)  By  (a),  N<mN.  Conversely,  suppose  that /: A <mN;  i.e.

 / U ) € N .  Then clearly A = N.

(ii)  is dual to (i): A <m  0  »  A  <mf̂ i » A  = N<=>A =  0 .
(g)  (i)  Suppose  that  / : N <m A ;  then  A = Ran(/),  so  A # 0
(since /  is  total).  Conversely,  suppose  that  A # 0 ,  and  choose
ceA.  Then  if we define  g(x)  = c  (all x),  we have  g:N<m A.

(ii)  is dual to  (i):  0  <m A  <=> N< mA « A # 0 O A # M .  D

From  (e)  of  this  theorem  we  obtain  the  following  example  of  non-
reducibility:

1.4.  Corollary
Neither of the sets {x: <f>x  is total}, {x: <f>x is not total] is m-reducible

toK.
Proof.  From  corollary  7-2.17  neither  of  these  sets  is  r.e.;  apply

theorem  1.3(^).  •
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The exceptional behaviour of the sets 0 , fol as given in theorem
(/),  (g)  is  part  of  the  price  that d has  to  be  pai  for  the  simplicity  of  the
notion of m-reducibility.  Another rather unsatisfactory feature is that the
sets A  and A  are not necessarily inter-reducible  (contrary to the intuition
that  the  problems  'jceA'  and 'x£A'  should  be  equally  difficult),  as we
now see:

1.5.  Corollary
If A  is an r.e. set that is not recursive, then A^mA  and A  ^ m A .

Proof. By theorem 1.3(e)if  A < m A,  then A  is r.e., a contradiction. For
A £ m A ,  use theorem  13(b).  •

The  next  result shows  again the  key role played  by the  r.e.  set  K.

1.6.  Theorem
A  set A  is r.e. if and  only  if A  ^mK.

Proof  If A <mK,  then theorem 1.3(e) tells us that A  is r.e.  Conversely
let A  be  any r.e.  set.  Define  a computable  function  f(x,  y)  by

if x  E A,
[undefined  if

The  s-m-n  theorem  gives  a  total  computable  function  s(x)  such  that
f(x,  y) — 4>s(X)(y)>  It is clear from the definition  of /  that

xeA  <=>  4>S(x)(s(x)) is  defined

<S>  s(x)eK.

l.e.A<mK.  a

This theorem  may be interpreted  as saying that the problem  "x  e K" is
the most  difficult  partially decidable  problem.

1.7.  Exercises
1.  Show that  K  is m-reducible  to each  of  the following  sets:

(a){x:<f>x(x)  = 0}9

(b)  {x:xeEx}.
2.  Show that for any sets A,  B,  if B  #  0  then A <m A  ® B.  (Recall

that A ®B  = {<rr(a,  b):  aeA,be  B}.)
3.  Show  that

(a)  {x:<(>x  =0}^m{x:<f>x  is total  and constant},
(b)  {x\<f>x  is total}<m{jc:  Wx  is infinite}.
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4.  Show that none  of the sets in exercise  3 above is m-reducible  to
an r.e. set.

5.  Suppose that A, B  are r.e. sets such that A u B  = N and AnB  *
0 .  Prove that  A <m A  n  B.

2.  Degrees
For  any  notion  of  reducibility  there  is  an  associated  notion  of

equivalence  between  sets: this  corresponds  to the  informal  idea  of  two
sets  or  problems  having  the  same  degree  of  difficulty.  Thus,  for  m-
reducibility  we have:

2.1.  Definition
The  sets  A  and  B  are  many-one  equivalent  (abbreviated  m-

equivalent)  if A  <mB  and  B ^mA.  We write this A  =mB.

The use  of the word equivalent  in this definition  is justified  by

2.2.  Theorem
The relation =m  is an equivalence relation.  (See Prologue  § 3 for

definition.)
Proof.  Reflexivity  and  transitivity  follow  immediately  from  theorem

1.3(#); symmetry  is obvious from  the definition.  •

2.3.  Examples
1.  Let c beany number; then{*:ce  Wx}=mK,  by example  1.2(16)

and theorem  1.6.
2.  For every recursive set A  other than 0 ,  N, we have A = m A  by

theorem  1.3(d).
3.  If  A  is r.e. but  not recursive, then  A  &mA,  by corollary  1.5.
4.  {x: <f>x  = 0} =m{jc: <f>x is total}. One half  of this is given by example

1.2(4); to see the  reverse  reduction,  use the  s-m-n  theorem  to
obtain  a total computable  function  k  such that

I undefined  otherwise.
Then  clearly <f>x = 0  <=>  <̂ fc(x)  is total.

For any set A,  the equivalence  class of A  under the relation =m  is the
class  of  sets dm(A)  given  by

This can be thought of as the class of all those sets having the same degree
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of  difficulty  (with respect to <m)  as the set A;  hence dm(A)  is called  the
m-degree  of  A.

2.4.  Definition
An  m-degree  is  an  equivalence  class  of  sets  under  the  relation

= m;  i.e.  it is any class of  sets  of  the  form  dm(A)  for some set A.

It is conventional  to use lower case bold face  letters such  as a, ft, c  to
denote  degrees.1  It is worth making  a strong mental  note  that  although
lower case letters f are used, these are sets o  sets. Thus it is meaningful  to
write A 6 a, where  a  is a degree  and A  is a set, although at first this may
appear a little odd.

The relation < m on sets induces a partial ordering (see Prologue § 3 for
definition)  on m-degrees,  also denoted < m ,  as follows:

2.5.  Definition
Let  a, ft be  m-degrees.
(a)  a ^mb  if  there  are Aea  and B eb  such that A  ^mB,
(b)  a <mb  if  a <mft  but a * ft.

Note.  It is immediate from the definition of = m  that a ^ m  b i ffA<m5  for
every Aea,  B  eb.

2.6.  Theorem
The relation  <m  is a partial  ordering of  m-degrees.

Proof.  From  theorem  1.3(a)  we  have  immediately  that  a  <ma
(reflexivity) and that a ^ m ft, ft ^mc  implies a  ^mc  (transitivity). Suppose
now that  a < m b  and  b ^ma.  We have  to show that  a  = b. Let  Aea  and
B eb;  then from the definition  we have A  ^mB  and B ^ m A , so A =mZ?.
Hence  a  = b.  •

The name  recursive m-degree  is given to any m-degree  that contains a
recursive  set; similarly,  an  r.e. m-degree  is one  that contains . an r.e  set.
We can translate parts of theorem  1.3  and theorem  1.6 into the language
of  degrees  as follows.

2.7.  Theorem
(a)  { 0 }  and  {N}  are  m-degrees,  which  we  denote  by  o  and  n
respectively;  o  and  n are recursive  m-degrees.

1  Although we have also used a on occasions to denote an n-tuple ( f t i , . . . ,  a n), the
context  will  resolve  any possible  ambiguity.
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(b)  There  is  one  other  recursive  m-degree,  denoted  Om,  that
consists of all recursive sets except  0  and  M, moreover, Om ^ m a for
any  m-degree  a other than o, n.
(c)  For  any  m-degree  a,  we  have  o < m  a  provided  a^n,  and
n < m  a provided  a  ^ o.
(d)  Any  r.e. m-degree  consists only of r.e. sets.
(e)  If  a <mb  and  b  is  an  r.e.  m-degree,  then  a  is  also  an  r.e.
m-degree.
(/)  There is a  maximum  r.e. m-degree,  namely  dm(K),  which is
denoted  Q'm.

Proof
(a)  Follows  from  theorem  1.3(/);
(b)  from theorem  1.3(c),  (d);
(c)  from  theorem  1.3(g);
(d)  from theorem  1.3(e);
(e)  from theorem  1.3(e)\
(/)  from  theorem  1.6.  •

Theorem 2.7 gives us a picture of the m-degrees  as shown in fig. 9a.  (In
this  diagram,  we  position  a degree  a  below  a degree  b  to  indicate  that
a  <mb.)  We  shall  see  later  (as  this  picture  suggests)  that  there  are  r.e.
m-degrees  other than  8m and  Om-

The structure  of  the collection  of m-degrees  under their partial order-
ing has been studied extensively.  The following theorem means that this
structure  is what is known  as an  upper  semi-lattice.

Fig. 9a.  The m-degrees.

non  r.e.
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2.8.  Theorem
Any  pair of m-degrees a, b have a least upper bound;  i.e. there is an

m-degree  c such that
(i)  a<mc  and  b<mc  (c is an  upper  bound),
(ii)  c <many  other upper bound of a,  b.

Proof.  Pick A  £ a,  B £ b  and let  C = A  © B,  i.e.

Then  x £ A  »  2x £ C,  so  A < m  C,  and  x £ B  <=>  2x +1  £ C,  so  B < m C.
Thus, putting c = dm(C)  we have  that  c  is  an upper bound  of  a,  b.

Suppose  now  that  d  is  an  m-degree  such  that  a < m  d  and  A < m  rf.
Choose a set D  £ rf, and suppose that/: A < m  £> and g: B ^m  £>. Then we
have

x £ C  »  (JC is even &  £JC   €  A)  or  (JC is odd & \(x  - l ) e f l )
»  (JC is even &   /(§*)€  D)  or  (JC is odd & g{\{x  -1))  e  D)

Thus we  have /i: C <m£>  if we  define  h  by
[/(§*)  if  JC  is even,

h(x)=\  i
Hence  c<md.  D

It is clear that the least s upper bound  c  of  any pair of m-degree  a,  b  is
uniquely determined; moreover,  it is easy to see that if a, b  are r.e. so is c
(see exercise  2.9(5)  below).

When  considering  the  structure  of  the  m-degrees,  it  is  natural  to
examine  in particular the structure of the r.e. m-degrees.  (These include,
of  course,  the s recursive  m-degree  0m, o, n.)  We  have  already  seen  in
theorem 2.7  (and indicated  in fig. 9a)  the following  basic facts about r.e.
m-degrees:

(a)  if  we  ignore  the  exceptional  m-degrees  o,  n  there  is  a
minimum  r.e.  m-degree  0m  (in  fact  0m  is  minimum  among  all
m-degrees);
(b)  the r.e. m-degrees  form an initial segment  of the m-degrees;
i.e.  anything below  an r.e.  m-degree  is also  r.e.
(c)  there  is a maximum r.e.  m-degree  -  namely  Om-

Moreover,  it  is  easy  to  see  that  while  there  are  uncountably  many
m-degrees, only countably many of these are r.e.  (exercise 2.9(6) below).

It has emerged from much research over the  past twenty-five years that
the  structure  of  the  r.e.  m-degrees  is  exceedingly  complex.  Within  the
scope  of  this  book  it  is  only  possible  to  show  that  it  is  not  completely
simple; this we shall see  in the next section.
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2.9.  Exercises
1.  Show that  each  of the following  sets is m-equivalent  to  K:

(a)  {x:xeEx},
(b)  {x:4>x(x) = 0}.

2.  (a)  Show that A  =mA®Nfor  any set A,
(b)  Let 5 b e a  non-empty recursive set. Show that A  =mA®B
for  any A  provided that A  ^ N.

3.  (Cf.  examples  2.3(2,3).)  Is  it  true  that  if  A=mA  then  A  is
recursive?  (See exercise  5d  below.)

4.  Show that the following sets all belong to the same m-degree:
(a)  {x:<t>x=0}9
(b)  {x\(t>x  is total  and constant},
(c)  {JC: Wx  is  infinite}.

5.  Let  a, b  be m-degrees.
(a)  Show that  the  least  upper  bound  of  a,  b  is uniquely  deter-
mined; denote  this by a u b;
(b)  Show that  if a <mb  then  a ub  = b;
(c)  Show that  if a, b  are r.e., then  so is a u  A;
(d)  Let  Aea  and  let  a*  denote  dm(A).  (Check  that  a*  is
independent  of  the  choice  of  Aea.)  Show  that  (aufl*)* =
a uc* .

6.  (a)  Show  that  any  m-degree  a  is  denumerable  (i.e.  there  are
denumerably  many sets  Aea).
(b)  Show that there  are uncountably  many m-degrees.
(c)  Show that there  are countably  many r.e. m-degrees.

3.  m-complete  r.e. sets
We have seen that  Om, the m-degree  of K  is maximum among all

r.e.  m-degrees.  This  is  also  described  by  saying  that  the  set  K  is  an
m-complete r.e.  set, or just an m-complete set.2  (There is a corresponding
notion  for  any other  kind  of  reducibility.)

3.1.  Definition
A set is m-complete  if it is r.e. and any r.e. set is m-reducible to it.

From theorem  1.6  we have  immediately:

3.2.  Theorem
(a)  K is m-complete,

2  It is possible to have a notion of m-complete  sets for classes other than the class of
r.e.  sets; it is then  necessary  to keep the  reference  to r.e.  here.
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(b)  A  is m-complete  iff A = m K  iff A  is r.e. and K < m A,
(c)  Om  consists exactly  of all  m-complete  sets.

Applying  this we have the following:

3.3.  Examples
The following  sets are m-complete.
(a)  {x:ceWx}  (example 1.2(1*)),
(b)  any non-trivial r.e. set of the form {x: <f>x e 38} where  38  c <gx

(the proofs of theorems 7-3.4  and 3.8 show that K <msuch a set),
(c)  {x:cf>x(x
,  ,v  r  i - i  > Exercise  1.7(1).
(rf)  {JC:JCG£}  J

The reader may have realised that m-reducibility appeared implicitly in
the statement  of theorem 7-3.2,  which implies immediately  that

3.4.  Theorem
Any  m-complete  set is creative.

Proof.  If A  is m-complete,  then K < m A, so K  <m A,  and by Theorem
7-3.2  A is productive.  •

It is  very pleasing to find that the converse  of this theorem is also true,
giving us a precise  characterisation  of m-complete  sets:

3.5.  Theorem  (Myhill)
Creative  sets are  m-complete.

We  must wait  until  chapter  11 for a new tool -  the  Second  Recursion
theorem -  with which to prove  this result.  Note,  however,  that we have
already established  it for creative sets  of indices in example  3.3(6).

As  an immediate  corollary  to theorem  3.4 we can use simple  sets to
show that 0m and  Om are not the only r.e. degrees:

3.6.  Corollary  (to theorem 3.4)
Simple sets are not m-complete;  hence if a is the m-degree  of any

simple set,  then 0m < m a  <m 0m .
Proof. Simple  sets  are  designed  to  be  neither  recursive  nor

creative.  •
This corollary justifies the inclusion of something  between 0m and 0m in

fig.  9a;  it does  not, however,  justify  the suggestion  in  that  picture  that
there is more than one non-recursive r.e. m-degree other than 0^. In fact
there are infinitely many such m-degrees, although we shall not prove this
here.



4  Relative computability  167

It is beyond the scope of this book to investigate further the structure of
the  m-degrees  under  their  partial  ordering  <m ,  which,  as  already
mentioned,  is  very  complex.  Much  of  this  complexity  can  be  deduced
from  results about  the  complex nature  of  the Turing degrees, which we
discuss in the next sections.

4.  Relative computability
We saw in  § 1 that  m-reducibility  has two rather  unsatisfactory

features:  the exceptional behaviour  of  0  and  M, and the fact  that we do
not always have A =m A.  These features stem from the restricted nature
of m-reducibility:  we have A  ^mB  only  if each question  4JC G A ? '  can be
settled by answering a single prescribed question about B  in a prescribed
way. The idea  of  Turing reducibility,  which we shall define  in § 5, is that
'JC e A?'  can be settled  in a mechanical  way by answering several ques-
tions about B, the nature and (finite) number of which are not necessarily
known in advance. This idea is made precise in terms of  relative compu-
tability,  which we describe  in this section.

Suppose  that  x  is  any total  unary  function.  Informally  we say that  a
function  /  is computable relative to x>  or  just  \-computable,  if /  can  be
computed by an algorithm that is effective  in the usual sense, except that
from time to time during computations we are allowed access to values of
the function  \-  Such an algorithm is called a x-algorithm. We can think of
a ^-algorithm  as being linked to some external  agent  or  oracle that  can
supply  values  of  x  on  demand.  The  ^-algorithm  operates  in  a  purely
mechanical fashion, and a value x(n)  is requested from the oracle only as
dictated  by the algorithm.

We can formulate  a precise definition  of relative computability using a
modification  of  our  URM,  called e an  Unlimited  Register  Machin  with
Oracle,  or URMO for  short.

4.1.  Definition
The  URMO  is like  the  URM  in  all  respects  except  that  it  can

recognize a fifth  kind  of instruction O(n) for every n > 1. The instruction
O(n) is called an  oracle instruction.

To be able to obey oracle instructions the URMO must be linked to an
oracle, which supplies values of some given function x  on demand. We say
then that the URMO has the function  x  in its oracle. The function  x  is not
thought  of  as part  of the  URMO itself.

The e response of th  URMO to an oracle instruction O(n)  is as follows:
if x  is in the oracle, then replace rn (the contents of register Rn) by *(rn).
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This d is denote  in flow diagrams  by

rn'=x(fn)  or  *(rn)-»Rn.

The URMO, with x  m  its oracle  and obeying the instruction  O(n)  may
be envisaged  as shown  in fig.  9b.

A  program is, as before,  a finite sequence  of instructions. The  URMO
operates under a URMO  program  P  in the same way as the URM,  with
the following additional stipulation: after obeying an oracle instruction Ik
in P  the  next  instruction  is /fc+i.

We emphasise  that in a URMO  program P  no particular function  x  is
mentioned.  Thus  the  meaning  of  P  varies  according  to  the  function
supplied  in the  oracle.  However,  a computation  under  P  can be  carried
out only when a particular function x  is supplied, so we write Px  to denote
the program P when used with the function x  in the oracle. Thus we write

Px(au...,an)

for the computation  by P, with x  in the oracle, and with initial  configura-
tion  d\> a2,...,  am  0, 0 , . . .  ; and we  write

P*{a)lb
to mean  that the computation  P*(a)  stops with the number  b  in register
Ri.

We  can  now  make  the  following  definitions  (parallel  with  definition
1-3.1).

Fig. 9b.
Oracle

R,  R2  R3

With resulting  configuration
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4.2.  Definition
Let  x  be  a unary  total  function,  and suppose  that /  is  a partial

function  from  Nn  to  N.
(a)  Let  P  be  a  URMO  program.  Then  P  URMO-computes  f
relative  to x  (or /  is  x-computed  by  P)  if,  for  every  a £ Nn  and
beN,
Px{a)ib  iff  f(a)~b.

(b)  The  function  /  is  URMO-computable  relative  to x  (or  just
X-computable)  if  there  is  a  URMO  program  that  URMO-
computes  it relative to x-

We write  (€ x  to denote  the class of  all ^-computable  functions.
We  are  now  in a position  where  we  could  define  Turing-reducibility.

However, to aid a better understanding of this concept when we come to
it, we shall first outline a little of the development of the theory of relative
computability.

Most  methods  and  results  from  unrelativised  computability  have
counterparts in relative computability. Thus in many of the theorems that
follow we  supply only  a sketch proof  or a reference  to the  unrelativised
version  of  the  same  result.  Throughout  this section  x  stands  for  a total
unary function.

4.3.  Theorem

(c)  ifx  is computable,  then  % =  <#*,
(d)  r4x  is closed under substitution,  recursion and  minimalisation,
(e)  if  iff is  a  total  unary  function  that  is  x-computable>  then
<€*  c <e*.

(a)  Use  the URMO  program O(l).
(b)  Any URM  program is a URMO  program.
(c)  In view of (b), we need only show that <€*  c  <g.  Suppose that/
is  ^-computable  and  that  x  is  computable.  Proceeding
informally,  we  can  compute  any  value  of  /  as  follows:  use  the
^-algorithm for /,  and whenever a value of x  is requested simply
compute  it  using  the  algorithm  for  x-  This  is  an  effective  pro-
cedure,  so  by  Church's  thesis  /  is  computable.  (We  leave  the
reader  to  provide  a  formal  proof  of  this  result;  see  exercise
4.10(3).)
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(d)  The  proofs  are  identical  to  those  of  theorems  2-3.1,  2-4.4
and 2-5.2.
(e)  The  proof  is similar  to  that  for  (c)  (which is really  a special
case  of  (e)).  •

Other  approaches  to  relativised  computability  Any  alternative
approach  to  computability  can  be  modified  to  provide  a  corresponding
notion of relative computability.  A relativised version of the Fundamen-
tal  result  (theorem  3-1.1)  can  then  be  proved,  and  this  leads  to  the
formulation  of  Church's thesis for relativised  computability.

We  mention  here  only  the  relativised  notion  of  partial  recursive
function:

4.4.  Definition
The class  2frx  of  \-partial  recursive functions  is the smallest  class

of  functions  such that
(a)  the basic functions  are  in  3lx,

(c)  £%* is  closed  under substitution,  recursion  and  minimalisa-
tion.

The  phrases  partial  recursive in x  o r  partial  recursive relative  to x  are
also used with the same meaning  as ^-partial  recursive.

The notions x-recursive  (or recursive in, or relative to, x)  and x-P^ifnitiue
recursive  (or  primitive  recursive  in,  or  relative  to,  x)  are  defined  in  the
obvious way.

Corresponding to theorem 3-2.2 (and proved in the same way) we have

4.5.  Theorem

Numbering  programs  and  functions  URMO  programs  can  be
effectively  numbered or coded by an easy adaptation of the method used
in chapter 4 for URM programs. Let us assume that this has been done, so
that we have  a fixed effective  enumeration  (without  repetitions)

Qo, Oi,  O 2 , . . .
of  all URMO  programs.3 Then we  write

<f>%n  for the n-ary function ^-computed by  Qm,

Each URM  program  P  appears  in this list  ; in most  cases,  however,  its  number
here will be different  from that  assigned to  it in chapter 4.
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EiforRan^*,) .
The s-m-n  theorem (4-4.3) has a relativised counterpart with identical

proof:

4.6.  Theorem  (The  relativised s-m-n  theorem)
For each m, n >  1 there is a total computable (m + \)-ary  function

s™(e, x)  such that for any  x

Note.  The function s™ here differs,  of course, from the function  given the
same  name  in  theorem  4-4.3.  Note,  however,  that  s™ here  is  still
computable  (not merely ^-computable)  and does not depend  on x-

Universal  programs for  relative  computability  Relativisation  of  the
proof  of  theorem  5-1.2  gives immediately:

4.7.  Theorem
For each  n,  the  universal function  t^u"  for  n-ary  x-computable

functions  given by

is X'Computable.

Remark.  A careful examination of the full formal proof  of theorem  5-1.2
would show that there  is a URMO program  Qu*, independent  of #, that
^-computes  i/f{j"  for  any x-

X-recursive and x-r.e.  sets  The relativised notions of recursive and r.e.
sets are  given by:

4.8.  Definition
Let A  be a set
(a)  A  is x-recursive (or  recursive in x)  if  cA  is ^-computable,
(b)  A  is X"r-e> (o r  r-e>  m  x)  if the partial characteristic  function

if x £  A,
I undefined  iix£A,

is ^-computable.
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The following selection of basic results about ^-recursive and *-r.e. sets
is proved by the addition of the prefix  x~ a t  the appropriate places in the
proofs  of  the  corresponding unrelativised  results  in chapter  7:

4.9.  Theorem
(a)  For any  set A,  A  is x-recursive  iff A  and  are A  x-r.e.
(b)  For any  set A,  the following  are  equivalent

(i)  A  is x-r-e->
(ii)  A  =  W*m for  some  m,
(iii)  A  = Ex

m for  some  m,
(iv)  A  =  0  or A  is the range of  a  total x-computable  function,
(v)  for  some  x-decidable  predicate  R (x,  y),

xeA  <=> 3yJR(jc,y)
(R  is x-decidable  if  its characteristic function  is ^-computable).

(c)  Let  K*  = {x: x  e  W*}\  then Kx  is X'r^-  but  not x-recursive.

Computability relative  to a set  For  any  set  A,  we  define computability
relative to A  (or just A-computability)  to mean computability  relative to
cA,  the characteristic  function  of  A.  Thus we write

PA  for P c*  (if P  is a URMO program),
<£A for <TA,

for

KAforKc*,
A-recursive  for  cA-recursive,
A-r.e. for CA-r.e.,
etc.

In  the  next  section  we  shall  define  Turing  reducibility  in  terms  of
computability  relative  to  a set.  For a set A,  we  can summarise  the  basic
idea  that  we  have  presented  in  this  section,  in  a  nutshell,  as  follows:
A-computability  is computability for anyone who knows all about A. To
be  a little  more precise,  we  should  expand  this to:  for  anyone  who  can
answer  any  question  of  the  form  'x e A?'.  This  excludes  knowledge  of
'infinite'  facts  about  A,  such  as  whether  A  has  infinitely  many  even
members.
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4.10.  Exercises
1.  Let x,  <A be total unary functions,  and suppose that <f>x  is total. Is

<f>t  necessarily  total?
2.  Suppose  that  Xi^X2, •..»#*  are  total  unary  functions.  Define

<3lXx '*2  *k  to  be  the  smallest  class  of  functions  containing  the
basic  functions  and  xu  •  • • , Xk, and  closed  under  substitutions,
recursion  and  minimalisation.  Formulate  a definition  of  the  set
(g*i--*k  of functions  computable relative to xu  •  •  •»  *fc such that
<g*,.-.*k=a[^1.....^  ^ - ^  £-/ r ^ r  define  a  machine  having  jfc
oracles,  or  find a  single  unary  function  x  such  that  3?*1  Xk =
®\)

3.  Provide  a  full  formal  proof  of  theorem  4.3(c):  if  x  is  compu-
table,  then  «  = « \

4.  Show that there is a total computable function  k  (independent of
X) such that  Wx

k(a,b)  = Wx
a u  Ŵ J for  all indices a, b.

5.  Verify  theorem 4.9.
6.  Let A  be any set.

(a)  Show  that  for  any  r.e.  set  B,  there  is  an  index  e  such  that
B =  Wf,
(ft)  Show that  if A  is recursive  , then  Wf  is r.e. for  all e,
(c)  Show  that  if  A  is  recursive,  then  A^  is  r.e.  but  not
recursive.

7.  Let  A,  B,  C, be sets. Prove that
{a)  if  A  is  5-recursive  and  B  is  C-recursive,  then  A  is  C-
recursive,
(ft)  if A  is B-r.e.  and £  is C-recursive,  then  A  is  C-r.e.,
(c)  if A  is B-recursive and B  is C-r.e., then A  is not  necessarily
C-r.e.

8.  (Relativisation  of theorem  1.6.)  Let A  be any set. Show that  for
any set  B,

BisA-r.e.  <=>  B<mKA.

9.  Show that there  is a single number  d  such that

10.  (a)  We  say  that  a  set  A  is  #-s/mpfe  if  (i)  A  is  *-r-e->  (ii)  A  is
infinite,  (iii) A  contains no infinite  *-r.e. subset. Show that there
is a #-simple  set.
(ft)  Formulate  the  definition  of  a  ^-creative  set.  Show  that  a
^-simple set  is not ^-creative.
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5.  Turing reducibility  and Turing degrees
Using relative computability we make the following  definitions:

5.1.  Definitions
(a)  The set A  is Turing reducible  (or just T-reducible)  to the set
B  if A  is B-recursive (equivalently, if cA is ^-computable). This is
written A <TB.
(b)  The sets  A,  B  are  Turing  equivalent (or  T-equivalent)  if
A <TB  and B < T A.  (The use of the word equivalent  is justified
in theorem  5.2(6) below.) We write this A = TS.

Let us consider informally the meaning of Turing reducibility. Suppose
that A <TB  and that P  is a URMO program that computes cA relative to
B.  Then for any x, PB(x)  converges and

PB(x)il  itxeA,
PB(x)i0  if** A.

During any completed  computation  PB(x)  there  will have been a  finite
number  of requests to the oracle for a value cB(n) of CB,  as dictated by P
and the progress of the computation. These requests amount  to a  finite
number of questions of the form  7i e B ?'. So for any x, 'x e A V is settled
in  a mechanical  way by answering  a finite number  of  questions  about
B.  Thus we see that Turing reducibility accords with the informal  notion
of reducibility discussed  at the beginning of § 4.

Some of the basic properties of the relations ^ T  and =T are given in the
next theorem.

5.2.  Theorem
(a)  <T  is reflexive and transitive,
(b)  =T is an equivalence relation,
(c)  if A<mB  then  A<TB,
{d)  A=TAforallA,
(e)  if A  is recursive,  then A < T5 for all B,
(/)  if A  is recursive and B <TA  then B is recursive,
(g)  if A  is r.e.  then A  <TK.

Proof.
(a)  and (b) follow immediately  from  the observation  that
A <T £  <=>  <#A S <€ B  (by theorem 4.3(a), (e))
and hence
A =TB  O  <€ A = <€ B.
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(c)  Suppose  that  f:A<mB,  and  let  P  be  a URM  program  in
standard  form  that  computes  /.  Then  the  URMO  program
P, O(l)  is easily seen to ^-compute  cA>
(d)  Since  CA = sg © cA,  A  is A-recursive  (by substitution); hence
A < T A ;  and A <T A  similarly.
(e)  By theorem 4.3(6).
(/)  By theorem  4.3(c).
(g)  By  (c)  above  and theorem  1.6.  •

Remarks
1.  From  (d),  (e),  (/)  of  this theorem we see  that T-reducibility  does  not
have  the  defects  of  m-reducibility;  this  also  shows  us  that  these  two
notions  are distinct.
2.  Part  (g)  of  the above theorem shows that  A" is a  T-complete  (r.e.) set,
according to the following  definition:

5.3.  Definition
A set A  is  T-complete  if A  is r.e. and B < T A  for every r.e. set  B.

The name  Turing degree  is given to any equivalence class of sets under
the  relation  =T-  again,  we  think  of  a  degree  as  a  collection  of  sets  all
having the same degree  of  difficulty.

5.4.  Definitions
(a)  Let A  be  a set; the equivalence  class

is called  the  Turing degree  of A,  abbreviated the  T-degree  of A.
(b)  Any T-degree  containing a recursive set is called a recursive
T-degree.
(c)  Any T-degree containing an r.e. set is called an r.e.  T-degree.

The  notions  of  Turing  reducibility  and  Turing  degree  are  widely
accepted  as  the  most  basic  among  all  other  similar  notions.  Hence  the
term  reducible  without  qualification  is  often  used  to  mean  Turing
reducible;  similarly,  Turing  degrees  are  often  referred  to  merely  as
degrees,  or  degrees  unsolvability. of  We  shall  adopt  this practice  in  the
remainder  of  our chapter. As before,  the letters a,  b,  c, etc.  are used  for
degrees.

The  relation  ^ T  on  sets  induces  a  partial  ordering  on  degrees,  as
with  <m :
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5.5.  Definition
Let a, b be degrees.
(a)  a^b  if  for  some  (equivalently,  for  all)  Aea  and  Beb,
A^TB;
(b)  a <b  if a<b  and a  *b.

(We leave  it as an easy exercise for the reader to verify  that <  is a partial
ordering on degrees  (cf. theorem  2.6).)

We  can  reformulate  much  of  theorem  5.2  in  terms  of  degrees  as
follows:

5.6.  Theorem
(a)  There  is  a  single  recursive  degree,  which  is  denoted  0;  0
consists of all the recursive sets, and is the unique minimum  degree.
(b)  Let  0'  denote  the  degree  of  K\  then  0 < 0 '  and  0'  is  a
maximum  among all r.e. degrees.
(c)  For any sets A,  B

(i)  dm(A)cdT(A),
(ii)  / /dm(A)< m dm (£) ,  then dT(A)<dT(B).

Proof.
(a)  This is immediate  from theorem 5.2(e)  and (/).
(b)  From  (a) 0^0';  and 05*0'  since  K  is  not  recursive.  By
theorem 5.2(g),  if a  is any r.e. degree, a < 0 \
(c)  Immediate  from theorem 5.2(c).  •

There are two fundamental  features  of the structure of Turing degrees
under their partial  ordering that we should  now mention.

The jump  operation  We have seen  that the step from  recursive  sets to
T-complete  sets  such  as K  is a definite  increase  in degree  of  difficulty,
expressed  in the language  of T-degrees  by writing 0<0 r .  We now show
that  for any  degree  a  there  is a corresponding  step or jump to a higher
degree  a',  known  as  the  jump  of  a.  This  is  defined  using  the  set
KA  = {x:xe  W?}  (for any set  Aea):  but first we  need  the  following
theorem.

5.7.  Theorem
Let  A, B be any sets,
(a)  (i)  KAisA-r.e.y

(ii)  ifB  isA-r.e.,  then B  <TKA.
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(b)  If A  is recursive then  KA=TK.
(c)  A<TKA.
(d)  (i)  IfA<TBthenKA<TKB,

(ii)  ifA=TBthenKA=TKB.
Proof.

(a)  (i)  is  given  by  theorem  4.9(c);  for  (ii), a  straightforward
relativisation  of  theorem  1.6  (using  the  relativised  s-m-n
theorem) shows that  if B  is A-r.e.  then B  ^mKA.
{b)  Clearly K <TKA,  since K  is A-r.e.  for any A\  on the other
hand,  if A  is recursive  then  the A-computable  partial  charac-
teristic function  of KA  is actually computable  (theorem 4.3(c));
hence  KA  is r.e. Thus KA  <TK.
(c)  A <TKA  is given  by  (a)(ii);  A  &TKA  is given  by theorem
4.9(c).
(d)  (i)  If A <TB,  then  since  KA  is A-r.e.  it is also  B-r.e, (see
exercise 4.10(7*)).  Hence  KA<TKB  by (a)(ii).
(ii)  follows immediately  from (i).  •

Part  (a)  of  this  theorem  tells  us  that  KA  is  what  we  would  call  a
T-complete  A-r.e.  set; it is sometimes  called the  completion  of A, but
usually  it is called the jump  of A  and denoted A'.

Notice  that for any A e 0, the degree of KA  is 0' (by (b) of the above
theorem). This leads to the following  definition  of  the jump operator on
degrees.

5.8.

for  any  Aea

Definition
For any degree a, the jump  of a, denoted a', is the degree of KJ

Aea.

Remarks
1.  Theorem  5.1 {d)  tells  us that  this  is  a  valid  definition  because the
degree  of KA  is the same for every  Aea.
2.  By  theorem  5.1 (b)  the new definition  of  0'  here  as the jump  of 0
accords with our earlier definition of 0' as the degree of K  (theorem 5.6).

We  can  immediately  write  down  the  basic  properties  of  the  jump
operator:

5.9.  Theorem
For any degrees a, b
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(a)  a<a\
(ft)  if a <A  then  a'<6',
(c)  0'<a',
(d)  if Be  b,Aea  and B  is A-r.e.,  then b < a'.

P/w/.
(a)  By theorem 5.7(c).
(ft)  By theorem  5.7(d).
(c)  From (ft), since 0 < a.
(d)  By theorem 5.7(a).  D

The second fundamental feature of the structure of the Turing degrees
is  one we have  seen  already  for the m-degrees:  they  form  an upper
semi-lattice:

5.10.  Theorem
Any  degrees a, b have a unique least upper bound.

Proof.  We merely mention that the least upper bound of a, b is (as with
m-degrees)  the degree of A ®B  for  any sets A e a, B e  A, and leave the
rest of the proof  as an exercise, which is similar to the proof  of theorem
2.8.  •

The least  upper bound of degrees  a, b is denoted  by a u *:  it is clear
from the construction  that if a, b  are r.e.  then so is 0 u  ft.

The structure of the Turing degrees  under their partial ordering,  and
equipped with the operations' and u, has been studied extensively, and is
still by no means fully understood. Particular attention has been given to
the structure of the r.e. degrees (these do not  form  an initial segment of
the Turing degrees, as was the case with the r.e. m-degrees: see theorem
5.18 below). It is now known that the structure of the T-degrees  and the
r.e. T-degrees  is extremely  rich and complex.  For a long time, however,
even the following d simply pose  question was unsettled:

5.11.  Post's problem
Is there  an r.e. degree a  such that 0 < a <0'?

This problem was posed by Post in 1944. The simple sets, invented by
Post, did not , provide an answer  as they did with corresponding question
for m-degrees  (corollary 3.6). One reason for this is seen in the following
result of Dekker, which shows in particular that 0; contains a simple set.
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5.12.  Theorem
Any  non-recursive r.e. degree contains a simple  set.

Proof  (sketch).  Let B  be an r.e. set that  is not recursive,  and let
B = Ran(/)  where /  is a total  injective  computable  function  (exercise
7-2.18(7)).  Let A  be the set given by

A={x:3y(y>x  andf(y)<f(x))}.
In exercise  7-4.4(2)  we  gave  the  hint  for  showing  that  A  is simple.  We
leave the proof  that A = T B  as an exercise  (exercise  5.21(6)  below).  •

This  theorem  underlines  the difference  between  m-degrees  and T-
degrees, since it shows that 0', unlike 0m, contains many r.e. sets that are
not  m-complete.

The  breakthrough on Post's  problem  came  in 1956  when  Friedberg
and Muchnik  independently  proved:

5.13.  Theorem
There are r.e. sets A, B such that A&TB  and B £ T  A.  Hence, if

a, b are dT(A), dT(B)  respectively, aSb  andb^a,  and thus 0 < a <0' and
0<*<0'.

(Degrees  a,  b  such  that  a£b  and b&a  are called  incomparable
degrees; this is written a\b.)

For a proof  of the Friedberg-Muchnik  theorem, which is well  beyond
the scope of this book, we refer the reader to books such as Rogers [1967]
or  Shoenfield  [1971].  Friedberg  and  Muchnik  used  a  new  technique
known  as the  priority method,  which opened  the way to the discovery of
the complex  nature  of the structure of the Turing-degrees.

There  are many results s about degree  that, like the  Friedberg-Much-
nik theorem, are easy to formulate  but difficult to prove. We give below a
sample of these, to illustrate  the complexity  of the  T-degrees.

5.14.  Theorem
For any r.e. degree a > 0, there is an r.e. degree b such that b | a.

5.15.  Sacks'  Density  theorem
For any r.e. degrees a < b there is an r.e. degree c with a < c < b.

5.16.  Sacks'  Splitting theorem
For  any  r.e.  degree  a > 0 there  are  r.e.  degrees  A, c  such  that

b<a,  c<a  and  a = buc  (hence  b c).|
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5.17.  Theorem (Lachlan, Yates)
{a)  There are r.e.  degrees a, b > 0 such that 0 is the greatest lower
bound of a and b.
(b)  There  are r.e, degrees  a,  b  having no greatest  lower bound
(either among all degrees or among r.e.  degrees).

Turning to non r.e. degrees, a surprising result is

5.18  Theorem (Shoenfield)
There is a non-r.e.  degree a < 0'.

A minimal degree  is a degree m > 0 such that there is no degree a with
0<a<m.  By  Sacks'  Density  theorem  there  can  be  no  minimal  r.e.
degree. However, Spector  proved:

5.19.  Theorem
There is a minimal degree.

For proofs e of thes  and other results about degrees we refer the reader
again  to  the  books  of  Rogers  and  Shoenfield.  The  article  by  Simpson
[1977] gives a very readable  survey  of  more recent  results  that  are  not
included  in these books.

T'degrees and m-degrees  Often  results about T-degrees  give  informa-
tion  about  the  structure  of  the  m-degrees  almost  immediately,  via
theorem  5.6(c). We illustrate with

5.20.  Corollary  (to theorem  5.14)
For any r.e. m-degree a  >m 0m, there is an r.e. m-degree b such that

b\a.
Proof.  Let A  e a;  A  is r.e. so by theorem  5.14 take an r.e. T-degree c

such that  <1T(A)\C.  Let  B  be  an r.e. set d in  c, an  let  b = dm(B).  Then  if
«<mA  or  b<ma,  by  theorem  5.6(c)  we  have d T(A)<c  or  c<dT (A),
contradicting dT(A) | c. Hence a \ b.  •

Other reducibilities  There  are  other  notions  of  reducibility  that e li
between  the  restricted  notion  of  m-reducibility  and  the  broader  T-
reducibility.  The  book  of  Rogers  [1967]  provides  a  full  and  detailed
discussion  of these.
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5.21.  Exercises
1.  Show that each of the following sets  is T-complete:

(a)  {x:xeEx},
(b)  {x:Wx  =  0}.

2.  Improve  theorem  5.7(d)  by  showing  that  A < T #  iff
KA  <m KB,  and A ^ T B  iff KA  =m  KB.

3.  Show  that  the previous  question  can be  made  effective  in the
following sense: there  is a total computable  function /  such that
for  any A, J5, if cA =  <£f,  then  <t>ne)\KA  <mKB.
{Hint.  Find  total  computable  functions  g,  h  such  that  (i)  if
cA  = <{>f  then KA  = WB

(eh  (ii) <f>hie): WB  <mKB,  for all e.)
4.  For any set A  define  a sequence  of sets A(n)  by

A(0)  = A ;  A ( - D  =  A : A<-

and let AM  = {7r(m, n):me  A(n)}.
(a)  Show that  Ain)<TA(to)  for all  n.
(fc)  Show  that  there  is a total  computable  function  h such  that
cAo> =<f>Aln)  for all  n.
(c)  Suppose  that 5  is a set such  that A ( n ) < T #  for all n  in the
following strong way: there is a total computable function /  such
that  cA^  = <f>nnh  all n. Show that  AM<TB.
{d)  Show that if A < T B then A (n ) < T £ ( n )  all n, and A(a)) <T^(a>) .
(Hint  Use question 3 above, together  with (b) and (c).)

5.  Prove theorem 5.10.
6.  Complete  the proof  of theorem 5.12.
7.  Prove  as  a  corollary  to  theorem  5.17(a)  that  there  are r.e.

m-degrees  such that 0 m is the greatest  lower bound  of a  and  b.



10
Effective  operations  on  partial
functions

Once we have studied effectively  computable operations on numbers  it is
natural  to  ask whether  there  is a comparable  notion  for  operations  on
functions.  The  essential  difference  between  functions  and  numbers  as
basic objects  is that functions  are usually infinite rather than finite. With
this  in  mind,  in  § 1  of  this  chapter  we  discuss  the  features  we  might
reasonably expect of an effective  operator on partial functions:  this leads
to  the  formulation  of  the  definition  of  recursive  operators  on  partial
functions.

In § 2 we shall see that  there  is a close connection  between  recursive
operators and those effective operations on computable functions that we
discussed  in  Chapter  5  § 3.  In  § 3  we prove  the  important fixed point
theorem  for  recursive operators  known  as the first Recursion  theorem.
The  final  part  of  this  chapter  provides  a  discussion  of  some  of  the
applications  of  this  theorem  in  computability  and  the  theory  of  pro-
gramming.

1.  Recursive operators
Let us denote by 9*n  (n >  1) the class of all partial functions  from

Nn to N. We use the word operator to describe a function  <P:tFm^>!Fn; the
letters  <£, % . . . l will invariably denote operators in this chapter. We shal
confine  our  attention  to totally  defined  operators  <P:&*m-»3>n\  i.e. such
that the domain  of  <P  is the whole  of ^m .

The chief  problem when trying to formulate  the idea  of a computable
(or effective)  operator  <P: 2F\ -* &u  say, is that both  an 'input'  function  /
and the 'output' function  <P(f) are likely to be infinite objects, and hence
incapable of being given in a finite time. Yet our intuition about  effective
processes  is that  in some sense they should be completed  within a  finite
time.

To  see  how  this  problem  can  be  overcome,  consider  the  following
operators from  3F\ to  3F\:



1  Recursive  operators  183

(a)  0 i ( / )  = 2/.
(*)  # 2 ( / )  =  S, where g(*) = Iy s s x / (y) .

These  operators  are  certainly  down  to  earth  and explicit.  Intuitively  we
might  regard  them  as  effective  operators:  but  why?  Let  fe&i  and  let
gi-^iif)',  notice  that  any  particular  value  gi(x)  (if  defined)  can  be
calculated  in  finite  time  from  the  single  value  f(x)  of  / ;  if  we  set
g2  = 0 2 ( / ) ,  then to calculate  gi{x)  (if defined)  we need to know the finite
number  of  values  /(0), / ( I ) , . . .  , / (*) .  Thus  in  both  cases  any  defined
value of the output function  (<P\(f) or (Piif))  can be effectively  calculated
in  a  finite  time  using  only  a finite  part  of  the  input  function  /.  This  is
essentially  the  definition  of  a recursive  operator given  below.

One consequence  of  the definition  will  be the following:  suppose  that
#(/)(*)  = y  is calculated  using  only  a finite part  6  of /;  then  if  g  is  any
other  function  having  6  as a finite part we  must expect  that  <P(g)(x) = y
also.

To frame  our definition  precisely  there  are some  technical  considera-
tions.  First,  let  us agree  that  by a  'finite  part'  of  a function  /  we  mean a
finite function  6  extended  by /.  (We  say  that  6  is  a finite function  if  its
domain  is a finite set.)  For convenience  we  adopt the  convention

6 always  denotes a finite function  in this chapter.

The  above  discussion  shows  that  the  definition  of  recursive  operator
will  involve  effective  calculations  with  finite  functions.  We  make  this
precise by coding each finite function  6 by a number  § and using ordinary
computability.  A  suitable  coding  for  our purposes  is defined  as follows:
suppose that 6 e  9*n .  The n-tuple x  =  (JCI,  . . . ,  xn)  is coded by the number
(x)  = p? 1 + 1 p£2 + 1 . . .  p*»+1;  then define  the code  6  for  6  by

0 =  H  Poo )+1  provided that Dom(<9)#0,
jt€Dom(0 )

0 = 0  i f D o m ( 0 ) = 0
(in which case  6 =/0).

There is a simple effective  procedure to decide for any number z  whether
z  =  6  for  some finite  function  6;  and  if  so,  to  decide  whether  a given  jr
belongs to Dom(0),  and calculate  6{x)  if  it does.

Now we have  our  definition:

1.1.  Definition
Let  <P:&m^>&n.  Then  <P  is  a  recursive  operator  if  there  is  a

c o m p u t a b l e  f u n c t i o n  <fr(z,x)  s u c h  t h a t  f o r  a l l  f e & m  a n d  x e N n ,  y e N
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<p(f)(x) ~ y  iff  there  is finite 0 c /  such that  4>{6, x)  =* y.
(Note  that  0  is not required to be  total.)

1.2.  Example
The operator  <P(f) = 2 / is a recursive operator: to see this define

(20(JC)  if z  =  0and*eDom(0),
1 undefined  otherwise.

By  Church's thesis, <f>  is computable:  now for  any /,  x,  y  we  have
<p(f)(x)  =* y  »  A:   €  Dom(/)  and y =  2/(x)

»  there is 0 c /  with  JC   €  Dom(0)  and y =  20(JC)

<=> there is 0 c /  such that 0(0, * H  y.
Hence  <£>  is a recursive  operator.

Further examples  will  be given  in  1.6  below.
An important feature  of recursive operators is that they are continuous

and  monotone  in the following  sense.

1.3.  Definition
Let  <P: 3*m  -» &n  be  an operator.
(a)  0  is continuous  if  for  any fe  tFm , and all x,  y:
<p(f)(x)  =* y  iff  there  is finite 0 c /  with  #(0)(JC)  =- y;
(b)  <P  is  monotone  if whenever /,  g e ^ m  with / ^  g,  then

These properties  are easily established for recursive operators,  and as
we  shall see  they  aid the recognition  of  such operators.

1.4.  Theorem
A  recursive operator is continuous and  monotone.

Proof. Let  (p:^m-^^n  be  a  recursive  operator,  with  computable
function <f>  as required by the definition. Suppose that <P(f)(x)  =« y, and let
0 ^ /  such  that  <t>(0, x)-y.  Since  0 c 0 ,  it  follows  immediately  that
<P(0)(x)  =*  y. Conversely,  if 0 c  /  and 0(0)(jr)»  y, there is 0i c  0 such that
0(0i,  x) — y;  but  then  0 i ^ / ,  so  we  have  that  <P(f)(x)~y.  Hence  4>  is
continuous.

Monotonicity  follows  directly  from continuity: suppose t h a t / c  g  and
<P(f)(x)^y.  Take  0 c /  such  that  <P{6){x)^y\  then  0 c g ,  so  by
continuity,  <P{g)(x) — y.  •
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The  use  of  the  term  continuous  to  describe  the  property  1.3(a)  is
justified  informally  as follows.  Suppose  that  0:^^^  satisfies  1.3(a)
and fe  &x.  Then  given  any xu  • . . ,  xk  for  which  <P(f)(xt) (1 <  / <  k)  are
defined,  using  1.3(a)  we  can  obtain  a  finite 0 c /  such  that  <£(0)(JC,)  =

*,)  ( l ^ i ^ f c ) .  Thus,  whenever  g ^ 0 ,  by  1.3(a)  again,  we  have
*/) = #(/)(*»)  (1 ^  / ^ fc). i.e.  if g is 'near' t o /  (in the sense that they

agree  on the finite set Dom(0))  then  <P(g)  is  'near' to  <P(f) (in the sense
that  they  agree  on  the  finite  set  JCI, . . . , * * ) .  Thus,  informally,  <P  is
continuous.

The continuity  property  1.3(a) specifies  that a value  <P{f)(x) is deter-
mined  (if  at  all)  by a finite amount  of  positive  information  about /.  This
means information  asserting  that /  is defined  at certain points  and takes
certain  values  there,  as  opposed  to  negative  information  that  would
indicate points where /  is not defined. Using this idea the term continuous
can be rigorously  justified  as follows.

The positive information topology1  on $Fm  is defined by taking as base of
open  neighbourhoods  sets  of  the  form

Ue={f:6c:f)  (0 e 9my  finite).
Thus /belongs to  Ue  iff  6 is correct positive information about/.  It is then
an easy exercise  to see  that an operator is continuous with respect to the
positive  information  topology  precisely  when  it  possesses  property

The following  characterisation  of  recursive operators using continuity
will  make  it easy to establish  recursiveness  of  various operators.

1.5.  Theorem
Let  <P\ $Fm  -» 3Fn  be an operator.  Then 0  is a  recursive operator iff
(a)  <P is continuous,
(b)  the function  <f>(z, x)  given  by
(4>(§9x)~<P(e)(x)  forde9m,
\<f>(z, x)  is undefined  for all  other z,
is  computable.

Proof. Suppose  that  <P  is recursive  with computable  function  <f>\  such
that

1  The reader unfamiliar with topology will lose nothing in further development  by
omitting  this paragraph.
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Then taking  <f>  as given  in the theorem, we  have

<f>(0,  x) -  y  O  30i(0i  c  <9  and <£i(0i, *) ~  y);
the  relation  on  the  right  is  partially  decidable,  so  <j)  is  computable  by
theorem  6-6.13.

Conversely,  suppose  that conditions  (a)  and  (b)  of  the  theorem  hold:
then

<P(f)(x) ~ y  <* 30(0 Gf and <P(6)(x)~y) (by (a))

whence  0  is a recursive operator.  •

This  theorem  enables  us  to  show  quite  easily  that  the  following
operators  are  all  recursive:

1.6.  Examples
(a)  (The  diagonalisation  operator)  <P(f)(x)=*f(x,x)  (fe&2)>
0  is obviously continuous,  and  <f>(0, x)  — 0(x, x)  is computable.
(b)  <P(f)(x)^l^xf(y)(fe^1)

This  is the  second  example  discussed  at the  beginning  of  this
section. We saw there that  <P is continuous; and clearly <f>(6, x) —
Zy<x 0(y) is  computable.
(c)  Let computable.Definege&ibe <P:&n  ->3Fn  by <P{f) =  g0/.
Obviously  <P  is continuous, and <f>(0,  x) — g(0(x))  is computable.
(d)  (The Ackermann operator).  Let  <P\ 3F2-* &2  be  given  by

#(/)((>, y) = y + l,

To see  that  <P  is continuous,  note  that  &(f)(x,  y)  depends on  at
most two particular values off.  For recursiveness, it is immediate
by Church's thesis that the function  cf>  given  by

is computable.
{e)  (The  /Lt-operator.)  Consider  <P\  &n+\-*&n,  given  by
<P(f)(x) — /Jiy(f(x, y) = 0).  It  is  immediate  that  this  operator  is
continuous,  and that the function  <$>  given by

is computable.
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When the definition  1.1 of a recursive operator <P: &m -* &n is extended
to  the  case  n = 0,  we  have  what  is  called a recursive functional  The
members  of  3*0  are  0-ary  functions;  i.e.  constants.  Just  as  9*n  (n^l)
includes the function that is defined nowhere, ^ 0 includes the 'undefined'
constant,  which  is  denoted  by  <o.  Thus  &0 = Nu{<o},  and  an  operator
<P: 9>m  -* &o is a recursive functional if there is a computable function <j> (x)

 such that for  any / €  ^m,  and  yeN:

<P(f)~y  iff 30(0c/and<£(0Hy).
We  write  <P{f) = a) if # ( / )  is  undefined;  this  emphasises  that  <P  is  still
thought of  as being a total operator.

We  should  point  out  that  in  some  texts  the  term  partial recursive
functional 2Fm -> 3*n  is used to describe recursive operators, including the
case n = 0.  In such contexts the word partial describes the kind of object
being operated on rather than the domain of definition  of the operation.

We shall  not discuss here the extension  of  the ideas of  this section to
partially defined operators and the corresponding partial recursive opera -
tors  <P\&„->&„  The  reader  is  referred  to  Rogers  [1967]  for  a full
discussion of these  and related matters.

1.7.  Exercises
1.  Show that the following operators are recursive.

(a)  *(/)=/2(/e^),
(b)  <P(f) = g (fe  &n),  where g  is a fixed computable function in
&u
(c)  (P{f)-f°g  (fe&i)  where g is a fixed computable function in

(d)  Let  he&n+i  be a  fixed  computable  function;  define

fO  (y  f
#(/)(*,  y) ~ | / ( * +1, y) +1  if h(xt y)  is defined and *0,

[undefined  otherwise
(The significance  of  this operator will be seen later.)

2.  Prove that if 0 is a recursive operator and / is computable then so
is * ( / ) .

3.  Decide  whether  the  following  operators  <P\&\^>&\  are (i)
monotonic,  (ii) continuous,  (iii) recursive.

tfM  if Dom(/) is  finite,
(a)  0(/)(jt)— V

(undefined  if Dom(/) is infinite.
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J°  if/U)  is defined,

{u n d e f i n e d  otherwise.

undefined  otherwise.
undefined  if Dom(/)  is finite,

. { D o m ( ^  i s  i n f i n i t e

4.  Suppose  that  <P:&m  -»̂ Vt  and  #":  $%,  -» ^ p  are  recursive  opera-
tors. Prove  that ^ ° $ : f m  ->^p  is recursive.

5.  Show  how  to  extend  the  definition  of  recursive  operator  to
include  operators  <P: ^m i  x ^m2 x . . .  x &mk  -» ^n ,  and  prove
appropriate versions of theorems  1.4  and 1.5  for your definition.
Prove  that the following  operators  are recursive:
(a)  &:&!
above);
(b)  4>:3>n

<P(f,h)(x,

+  l X j

y) —

0

given  by &(f>g)=f°g  (cf.

* &n+i  given  by

/ (x  + l , y )  +  l
undefined

if h(x, y)  = 0,
if h(x,  y)  is defined
otherwise

question

and is not

lc

0,

(cf.  Id  above).
6.  (For those who know some  topology.)

(a)  Prove  that  an  operator  is  continuous  in  the  sense  of
definition  1.3(a)  iff  it  is  continuous  in  the  positive  information
topology.
(b)  Prove  that the following  are equivalent  for  V c f n :
(i)  V  is open  in the positive  information  topology,
(ii)  fe  V  iff  36(6g;/  and  6e  V).

7.  Let <P: 3*m  -»3*n and W: 3*n  -* 3^p  be continuous operators; prove
that ^o<f:^ m->fp  is continuous.
Let  ̂ (f^l)  denote  the  class  of  all  subsets  of  N;  formulate  a
definition  of  a recursive  operator  <P: 0>(N)->9*{N) that  parallels
the  notion  of  a  recursive  operator  from  3^\-^^\.  Frame  and
prove theorems corresponding to theorems  1.4  and  1.5.
(Hint.  The  question  of  membership  x e <P(A)  should  depend
effectively  on  a  finite  amount  of  positive  information  about
membership  of  the set  A.)

(Effective  operators  3P(N)^>8P(N)  are  called  enumeration
operators  and are discussed  in full  in Rogers  [1967].)
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2.  Effective  operations on computable  functions
In  chapter  5  § 3  we  considered  that  certain  operations  on

computable functions should be called effective  because they can be given
by total computable functions  acting on indices. For instance, in example
5-3.1(2)  we saw that there is a total computable  function  g such that for

 a l l * € l \ l ,  (<j>e)2 = <t>g(e).
We  shall  see in  this  section  that  any recursive  operator  <£, when

restricted to computable  functions,  yields  an effective  operation  of this
kind  on  indices.  This  is  the  first  part  of  a  theorem  of  Myhill  and
Shepherdson. They proved, moreover, that all such operations on indices
of  computable  functions  arise in this way.

We  shall  prove  the  two  parts  of  the  Myhill-Shepherdson  result
separately,  taking the easier  part  first.

2.1.  Theorem  (Myhill-Shepherdson,  part I)
Suppose that  #": $Fm  -* 3^n is a recursive operator. Then  there is a

total computable function  h such that

Proof. Let ^  be a computable  function  showing that  ^  is a recursive
operator  according to definition  1.1. Then for any e we have

V(<t>(
e
m))(x) -  y  <S>  36(6  c  <£<m) and  <A(<9,  JC) -  y).

We shall  show that the function  g defined by

is computable, by showing that  the relation  g(e, x)-y  is partially  deci-
dable. To this end, consider  the relation R(z, e,  JC, y) given by

R(z,e,x,y)  = 36(z  = 6 and 6^^e
m)  and tA(0, Jc)-y).

Then R  is partially decidable, with the following informal partial decision
procedure.

(1)  Decide  whether  z = 6 for some  6; if so obtain  Xi,...,  xk e
Nm and y i , . . . ,  yfc such that Dom(0) = {*i,...,  xk} and 0(jt/) = y,
( l< /< fc ) ;  then
(2)  for i = 1 , . . . ,  k  compute <t>{

e
m){Xi)\ if, for  1 < i < k, <t>{

e
m\xi)  is

defined  and equals yh  then
(3)  compute  e/r(z, JC) and  if defined  check whether  it equals y.

If R (z, etx,y)  holds, this is a mechanical procedure that will tell us so in
finite time,  as required.
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Since  R(z,  e, x, y)  is  partially  decidable,  so  is  the  relation
3z  R(z,  e, x, y)  (by theorem 6-6.5):  but

3zR(z,  e, x, y)  <̂> V((f>{
e
m))(x) -  y  (from the definition  of  R)

<=>  g(e,  x)  — y  (from the definition  of  g).
Thus g(e, x) — y  is partially decidable, so by theorem 6-6.13  g  is comput-
able.

Now the  s-m-n  theorem provides  a total  computable  function  h  such
that  * i r i ( ) t e )

from  which  we  have  4>(tfe)  =  V{<f>(
e
m)).  D

Notice  that  the  function  h  given  by  this  theorem  for  a  recursive
operator  V\8Fi-* 2F\  is extensional  in the following  sense.

2.2.  Definition
A  total  function  h: ftsl -> N  is  extensional  if  for  all  a,  Z>, if  <£a =  <f>b

then  (f>h{a) =  <t>Hb)-

Now we  can state  the other  half  of  Myhill  and Shepherdson's  result.

2.3.  Theorem  (Myhill-Shepherdson,  part II)
Suppose that  h is an extensional  total computable  function.  Then

there is a  unique recursive operator W such that ty(<t>e) = <t>we) for all  e.
Proof. At the heart of our proof lies an application of the Rice-Shapiro

theorem  (theorem  7-2.16).
Let  h  be  an extensional  total computable  function.  Then  h  defines  an

operator  Vo:   <€i  -*  <#i by

^o is well defined since  h  is extensional.  We have to show that there is a
unique  recursive  operator  #": 9*\  -» 5F\  that extends ^o-

First note that  Vo(0)  is defined for all finite 6, since finite functions  are
computable.  Thus  any  recursive  operator  #"  extending  ^o,  being
continuous,  must  be defined  by

(2.4)  ¥(f)(x)**y  »  3 0 ( 0 c / a n d  ¥b(0)(*)~y).
So  such  a  ŷ , if  it exists,  is unique.  To  prove  the  theorem  we  must  now
show that

(i)  (2.4)  does  define  an operator  %
(ii)  V  extends  ^0 ,
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(iii)  ^  is recursive.
We first use the Rice-Shapiro  theorem to show that  ty0  is continuous in
the following  sense:  for  computable  functions  /

(2.5)  * 0 ( / ) ( x ) ~ y  »  30(0 <=/and ^ o(0 ) (* ) -y ) .
To  see  this,  fix  x,  y  and  let  si  = {fe  « i :  ¥o(f)(x)**y}.  Then  the  set
A  = {e: <£c e si}  = {e: <£h(e)0c) — y} is e r.e.; so by th  Rice-Shapiro theorem,
if /  is computable  then

fed  <£>  30(0  cf  and  (9 e  si),
which is precisely  (2.5).

Now we establish  (i), (ii),  (iii) above.
(i)  Let /  be  any  partial  function;  we  must  show  that  for  any  JC, (2.4)

defines  #"(/)(*)  uniquely  (if  at  all).  Suppose  then  that  0i, 0 2 ^ /  and
Vo(0i)(x)«  yi  and  xPo(62)(x)«  y2.  Take  a finite function  0 2  02, #2  (say,
0 = / |Dom(0i) uDom(02));  by  (2.5)

Thus (2.4) defines  an operator  W unambiguously.
(ii)  This is immediate  from ) (2.5  and the definition  (2.4).
(iii)  We show that  #" satisfies the conditions of theorem  1.5.  Clearly  V

is continuous, from the definition.  For the other condition we must show
that the function  i/r given by

i)/(z,x)  is undefined  if z  #  0,
is computable. Now it is easily seen by using Church's thesis that there is a
computable function  c  such that for any finite function  0, c(0) is an index
for  0; i.e.  0 =  <frci$).  Thus

—  <f>h{c{0))(x),

so  if/  is  computable,  since  h  and  c  are.  Hence  V  is  a  recursive
operator.  •

Remarks
1.  The  proof  of  theorem  2.3  actually  shows  that  for  any  extensional
computable  h there is a unique continuous operator W: 3*\ ~* $F\ such that
Witfre) =  <£ft(e), aH  £>  anc* that this operator  is recursive.
2.  Theorem  2.3  extends  in  a  natural  way  to  cover  operators  from
3*m  -* ^n- The proof  is almost identical, using the natural extension of the
Rice-Shapiro  theorem to subsets  of  <#m; see  exercise  2.6(2)  below.
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2.6.  Exercises
1.  Suppose  that  <P,  &  are  recursive  operators  $F\ -» SF\;  knowing

that  0  o \{r is continuous (exercise  1.7(7)) use the two parts  of the
Myhill-Shepherdson  theorem  together  with  the  first  remark
above  to show that  <P° V  is recursive.

2.  State  and  prove  a general  version  of  theorem  2.3  for  operators
from  <#m  -• <€ H.

3.  Formulate  and  prove  versions  of  the  Myhill-Shepherdson
theorem  (both  parts)  appropriate  for  the  operators  you  have
defined  (a)  in exercise  1.7(5), (b) in exercise  1.7(8).

3.  The first  Recursion  theorem
The first Recursion  theorem  of  Kleene  is a fixed point  theorem

for  recursive  operators,  and  is  often  referred  to  as  the  Fixed  point
theorem  (of  recursion  theory).  We  shall  see  later  that  it  is a very  useful
result.

3.1.  The first Recursion  theorem  (Kleene)
Suppose that <P: 3*m  -» 3<m  is a  recursive operator. Then  there is a

computable function  f& that is the least fixed point of  <P\  i.e.
(a)  * ( / * )= /* ,
(b)  if<P(g) = g, thenU  eg.

Hence,  if ftp is total, it is the only fixed point of <P.
Proof. We use the  continuity  and  monotonicity  of  <P  to construct  the

least fixed point f& as follows. Define  a sequence  of functions  {/„} (n e N)
by

/o -f<z> (the function  with empty domain),

/«+i  =  #(/„).

Then  fo = fz>^f\\  and  if fn  e / n + 1,  by monotonicity  we  have  that / n + 1 =
# ( / „ )£  *(/« +i)  =/n+2. Hence fn c / n + 1  for  all  n. Now let

by which we mean

/ • U ) ~ y  iff  3/i  such that/n(or) = y.

We shall  show that  f& is a fixed point  for  <P.
For  all. n,

.  /*£/•
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hence

/n  +  l  =  *(/n)S *(/*);

thus

/•<=*(/*).

Conversely,  suppose  that  <P(/<j>)(jr)-y;  then  there  is  finite  O^fa  such
that #(0)(JT) -  y; take n such that 6 c /n ; then by continuity  <P(fn)(x) ~  y.
That is, /n+i(*) -  y. Hence /*(*) -  y. Thus <£(/*) c /* ,  and so * ( / • ) = / *
as required.

To see that/*  is the /easf  fixed point of # ,  suppose that #(g)  = g; then
clearly /o = / 0 ^ g ,  and  by  induction  we  see  that /„ e g  for  all  n.  Hence
f<t> c  g,  as required. Moreover,  if f<p  is total,  then  /$> = g, so  /<*> is the only
fixed point of  <t>.

Finally  we  show  that f<p  is  computable.  Use  theorem  2.1  to  obtain  a
total  computable  function  h  such that for  all e

Let  e0  be  an index for /0 ;  define  a computable  function  k  by

Then /„ =<t>k{n)  for each  w; thus

The relation on the right hand side is partially decidable,  and hence f<p  is
computable.  •

Remark.  The recursiveness of the operator  0  was used in this proof only
in showing  that  fa  is computable.  The first part of  the  proof  shows that
any  continuous  operator  has a least fixed point.

We shall  see  in the following  examples  that  a recursive  operator  may
have many fixed points,  and that the least fixed point is not necessarily a
total  function.

3.2.  Examples
1.  Let  0  be the recursive operator given by

* ( / ) ( * + l ) ~ / ( *  +2).

Then the least fixed point is I v ;  ~~  '  „  ,
if<p(x +1) =  undefined.

Other fixed points of  *  take the form K  '  '
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2.  Recall  the  definition  of  the  Ackermann  function  & in  example
2-5.5:

The first Recursion theorem gives a neat proof  that these equa-
tions  do  define  a  unique  function  <A and  that  <A is  total  and
computable. Let <P be the Ackermann operator given in example
1.6(d).  The  fixed  points  of  0  are  the  functions  that  satisfy  the
above  equations.  Let  if/ = f&;  then  & is  a  computable  function
satisfying these equations, so we have only to show that i//  is total.
Clearly,  if/(0,  y)  is defined  for  all  y;  if  i//(x,  y)  is defined  for  all  y,
then by induction on y we see that  ê (jc +1 , y) is defined for all y.
Hence  if/(x, y)  is defined  for  all  JC, y; i.e.  0  is total.
Let  h(x,y)  be  a  fixed  computable  function  and  let  <P  be  the
recursive  operator  given  in  exercises  1.7(ld).  Then  the  least
fixed point /#  is a computable  function  satisfying

TO  i f*(* , j )  = O,
U(x,  y)^\  U(x  +1 ,  y) +1  if  /I(JC, y)  is  defined and  not  0,

[undefined  otherwise.
But  what  is  this  rather  strange  looking  function?  We  can  quite
easily check  that

as  follows.  First  suppose  that  ^Z(/I(JC +  Z, y) = 0) = m;  then
h(x + z, y) is defined  and not Ofor all z <m,  and  /I(JC + m, y) = 0.
Hence

U(x,  y) = U(x  + 1,  y)+  I = ...  = f<p(x + z,  z y) +  (z<m)

Suppose  on  the  other  hand  that  f<p(x,y) = m;  then  from  the
equations  this must be  because
m =U(x,  y)=U(x  +1 ,  y) +1  = . . . =/*(*  4- m, y) + m
and /I(JC + z, y) is defined and not 0 for z  <  m; then/^U  + m,y)  =
0, so  h(x  4-m, j )  = 0.  Thus  m  = /nz(ft(jt  + z, y) = 0).

We  can  infer  from  this  example  that  the  function  /#(0, y) —
/j,z(h(z,  y)  = 0) is computable; of  course,  there  is no use pretending  that
we have a new and clever proof of the closure of  ^  under the /i-operator,
since we  have used  this property  of  ^  implicitly  in our proof  of  the first
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Recursion theorem. (In Kleene's equation calculus approach (see chapter
3 § 1), however, the first Recursion theorem is proved without the use of
the  /x-operator,  so  closure  under  the  ^-operator  is  established  by  this
example.)

We can see from the above examples why the first Recursion theorem is
so called. The  general  idea  of  recursion  is that of  defining  a function  'in
terms of itself.  A simple instance of this is primitive recursion, discussed
in  chapter  2.  We  have  seen  more  general  forms  of  recursion  in  the
definitions of Ackerman's function, and the function f<p  in example 3.2(3)
above.

We were  able  to see  quite  easily  in chapter  2 that  primitive  recursive
definitions  are meaningful,  but with more  complex  recursive  definitions
this  is not  so  obvious;  conceivably  there  are  no functions  satisfying  the
proposed definition.  This is where the first Recursion theorem comes in.
Very  general  kinds  of  definition  by  recursion  are  represented  by  an
equation  of  the  form

where <P  is a recursive operator. The first Recursion theorem shows that
such  a  definition  is  meaningful;  there  is  even  a  computable  function
satisfying  it.  Since  in  mathematics  we  require  that  definitions  define
things uniquely, we can say that the recursive definition  (3.3) defines  the
least fixed point of the operator <P.  Thus, according to the first Recursion
theorem, the class of computable functions is closed under a very general
form  of  definition  by recursion.

3.4.  Exercises
1.  Find the least fixed point  of  the following  operators:

(a)  <*>(/)=/

l / U l / ( t ,  y))  if*>0.
2.  (McCarthy)  Show t tha  the function  m(x)  given by

if;c<100,
10  otherwise,

is the only fixed point  of  the recursive  operator  <P given  by

(91
I * -

- 1 0  otherwise.
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3.  Suppose that  <P  and  #" are recursive operators f i X ^ ^ 9 \  (in
the sense you have defined  in exercise  1.7(5)). Show that there is
a least pair  of functions /,  g such that
/=<*>(/, g)

and /, g are computable.
4.  Suppose  that  <P\2Fn x&m-+&n  is  a  recursive  operator  (in  the

sense  you  have  defined  in exercise  1.7(5)). For  each  ge&m  let
&g:&n-+ SFn  be the operator  given by <Pg(f) = <P(f,  g).
Show  that  the  operator  #"(g) = least  fixed  point  of  <Pg  is  a
recursive operator  3*m -* &n.

4.  An application to the semantics of  programming languages
We shall see in this section how the first Recursion theorem helps

to  resolve  a  problem  in  the  semantics  of  computer  programming
languages -  the  area  that  deals  with  the  question  of  giving  meaning  to
programs. Our  discussion  is necessarily  given  in terms  of  a general  and
unspecified  programming  language, but  this  is adequate  to  explain  the
basic idea.

Suppose, then, that  L  is a general  programming  language. The  basic
symbols of L  will have been chosen with a particular meaning in mind, so
that the meaning of compound expressions built from them is also clear.
We  may  then  envisage  a  simple  program  for  a  function  as  follows.
Suppose that r(x) is an expression of L such that whenever the variables x
are given particular e values a, then r(a)  can b  unambiguously evaluated
according to the semantics of L.  If we now take a function  symbol f  of L
that does not occur in  T, then
(4.1)  / ( * )  =  T(JC)

is a simple program for a function /„ that has the obvious meaning: for any
numbers a, fT(a)  is obtained by evaluating the expression r(a)  according
to the semantics  of L.

Suppose now that r  is an expression  in which the symbol f  does occur.
We indicate this by writing r(/, x).  Then the program  (4.1) becomes

This is now what is called a recursive program. Situations occur where this
is the most natural and economical way to describe a function that we may
desire the computer to compute. Yet the meaning of the 'program' (4.2) is
not entirely clear. The fundamental  problem with any recursive program
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is: how do we give it a precise meaning? It can hardly be called a program
until this question  is settled.

There  are  basically  two  approaches  that  provide  an  answer  to  this
question:

(a)  The computational approach.  Here the function  taken to be
defined  by a recursive program  is given in terms  of a method of
computing it. This approach  reflects  the fact  that  the  computer
scientist needs to know not only what a program means, but also
how to implement  it.
(b)  The  fixed point  approach  gives  a  meaning  to  a  recursive
program  by an e application  of  the first Recursion  theorem.  Th
fixed point  theory  also  resolves  some  problems  raised  by  the
computational  approach,  and  actually  shows  that  the  two
approaches  may  be  viewed  as  complementary  rather  than
competing.

Let  us  now  briefly  explain  these  two  approaches  and  see  how first
Recursion  theorem  enters the picture.

The computational approach  This  is  best  described  by  giving  some
examples. Consider  the recursive program

if  JC>0.

(We are assuming that in L we can formulate conditional expressions such
as e this.) Using the equation (4.3) we can formally evaluate the valu  /(3),
for  instance, as follows:

/ ( 3 ) - 2 x / ( 2 ) - 2 x 2 x / ( l ) - 2 x 2 x 2 x / ( 0 ) - 8 ;
here we have made successive substitutions and simplifications  using the
formal  equation  (4.3). Hence  if fT  is the function  deemed to be given by
the program  (4.3) we would have /T(3) = 8.

With  more  complicated  recursive  programs there  may be more  than
one  way to  use the  formal  equation  f(x)  -  r(/,  JC) in such  an  evaluation
procedure. Consider,  for  instance, the recursive program

if  JC  = 0,
(4.4)  JWJi  ]r/  ,  , ^ y ) )  {tx>0

Suppose that  we try formally  to evaluate /(I,  0). We have
(4.5)  / ( l ,0)- /(0, /( l ,0)) .
But  now  there  is  a  choice  of  occurrences  of  /  for  which  to  substitute
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r(/,  JT). Choosing the leftmost  one and simplifying  we have
/(I,  0) ~/(0, /(I,  0)) = 1 (since x = 0).

If, on the other hand, we substitute for the rightmost occurrence of /  each
time, we obtain  from  (4.5)

and  in this case  no 'value' for /(I,0)  emerges.
A  computation rule is a rule R  that  specifies  how to proceed  when

confronted  with such a choice of possible substitutions during any formal
evaluation  procedure.  The computational  rules  we  considered  for  the
recursive  program  (4.4)  were  'leftmost'  (LM) and 'rightmost'  (RM).
There  are many other  possible  rules. For any computation  rule R,  and
recursive program f(x) = r(/, x) we define the function  fTtR  by: /T,/?(fl) is
the value obtained when f(a)  is formally evaluated using the rule R. If no
value  is thus  obtained,  /T,J?(<I)  *s undefined.  (Thus  for the recursive
program  (4.4)  we have /T,LM(1, 0) = 1, and /T,RM(1, 0) is  undefined.)

So we see that each computation rule gives a meaning to any recursive
program  (and, at the same time, a method  of implementing it).

The above example demonstrates that different  computation rules may
give different  meanings to any particular recursive program. The problem
now for the computer scientist who chooses this computational approach
is to decide which computation rule to choose. Moreover,  for any rule R9
there is the question of determining in what sense, if any, the function fTfR
satisfies  the equation

The fixed point  approach,  using the first Recursion  theorem,  avoids
these problems, and in fact  sheds light on both  of them,  as we shall see.

The fixed point approach  An expression  r(/, x)  of L  gives  rise  to  an
operator  <t>\ 3Fn -* &n by setting

&(g)(x)-r(g,x)
for  any g e 3<n. Moreover,  in most programming languages the finite and
explicit  nature  of the expression  r(f,x)  ensures  that  <P  is a  recursive
operator.  The first Recursion theorem now tells us that  4>  has a compu-
table  least fixed point,  which  we may denote  by fT. Thus  we may define
the  function  given  by the program  (4.2) as /T. This is quite  reasonable,
because  fT is computable,  and moreover  we know  that  /,-(*) —r(/T, x),
which is surely what the programmer  intended.
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There  remains  the  matter  of  finding  good  practical  procedures  for
implementing  the  program  (4.2)  with  its meaning  defined  in this way.  It
can be shown that for any computation rule R, fTtR c /T;  further, there are
computation rules R  for which fTtR = fr  for all  r. Any one of these may be
chosen  as a practical  way of  implementing recursive programs. Then we
can say that the  computational  and fixed point  approaches  are  comple-
mentary rather than opposed to each other: the fixed point approach, via
the first Recursion  theorem,  gives theoretical  justification  for  the  parti-
cular computation  rule chosen.

There are further advantages in adopting the fixed point approach (or a
computation  rule equivalent  to it): there  is a variety  of  useful  induction
techniques for proving correctness, equivalence,  and other properties of
recursive  programs  with  fixed  point  semantics,  and  these  can  all  be
rigorously  justified.

For  a full  discussion  of  this  whole  topic  the  reader  is  referred  to  the
books of Bird [1976] and Manna [1974]. Here we have slightly  simplified
the  framework  within  which  the  computer  scientist  works;  in  fact  the
fixed point fT he chooses is least in a slightly different sense (but still given
by a version  of  the first Recursion theorem).
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The second Recursion  theorem

The  first  Recursion  theorem,  together  with  the  Myhill-Shepherdson
theorem  in  the  previous  chapter,  shows  that  for  any  extensional  total
computable  function  /  there  is a number  n  such that

<f>f(n)  =  <f>n-
The second Recursion theorem says that there is such an n even when /  is
not extensional:  we shall prove this  in § 1 of  this chapter.

This theorem  (and  its proof)  may seem a little strange at first. Never-
theless it plays an important role in more advanced parts of the theory of
computability.  We shall use it in the promised proof  of Myhill's theorem
(theorem  9-3.5)  and  in  the  proof  of  the  Speed-up  theorem  in  the  next
chapter.

In  § 1,  after  proving  the  simplest  version  of  the  second  Recursion
theorem,  we describe  some  applications  and interpretations  of  it;  § 2 is
devoted  to a discussion  of  the idea underlying the proof  of the  theorem,
and other matters, including the relationship between the two Recursion
theorems.  A more  general  version  of  the  second  Recursion  theorem  is
proved  in § 3, and  is used  to give the proof  of  Myhill's  theorem.

1.  The second Recursion  theorem
First let  us prove the theorem, and then  see how we can  under-

stand  it.

1.1.  Theorem (The second  Recursion  theorem)
Let f be a total unary computable  function;  then there is a number  n

such  that

Proof.  By the s-m-n  theorem there is a total computable function  s{x)
such that  for  all x
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(If  <t>x(x)  is  undefined,  we  mean  the  expression  on  the  left  of  (*)  to  be
undefined;  alternatively,  we  can  take  the  left  of  (*)  to  denote

Now take  any  m  such that  s =  <bm;  rewriting  (*) we  have

Then, putting x =  m  and taking n =  <f>m(m)  (which is defined, since  <f>m  is
total) we  have

<f>f(niy)-4>n(y)
as required.  •

In spite of  its appearance, for non-extensional  functions /  this is not a
genuine  fixed-point  theorem:  there  is no  induced  mapping  <f>x  -* </>f(x)  of
computable  functions  for  which  <t>n  could  be  called  a  fixed  point.
However, we  do  have  an induced mapping /*  of  programs  given  by

To expect a fixed point for /*  in general would be too much: this would be
a program Pn such that /*(Pn)  and Pn  are the same;  i.e. /(n) =  n. But what
theorem 1.1 says is that there is a program Pn such that/*(P n) and Pn  have
the same effect (when computing unary functions); i.e. <f>f(n) =  <j>n. Thus the
second Recursion theorem is loosely called a pseudo-fixed  point theorem;
and for convenience,  any number  n  such that  <f>fin) =  <f>n  is called  a fixed
point  or /Jjted pomf  value  for /.

The second Recursion theorem is a result about indices for computable
functions; it may be thought therefore that the proof rests on some special
feature  of  the  particular  numbering  of  programs  that  has been  chosen.
Inspection  of  the  proof  shows,  however,  that  we  used  only  the  s-m-n
theorem and the computability of the universal function; neither of these
results  depends  in  any  essential  way  on  the  details  of  our  numbering.
Moreover,  theorem  1.1  can  be  used  to  establish  the  second  Recursion
theorem  corresponding  to  any  suitable  numbering  of  programs;  see
exercise  1.10(9)  below.

There  are  various  ways  in  which  theorem  1.1  can  be  generalised,
although  the  idea  underlying  the  proof  remains  the  same.  In  exercise
1.10(7)  we  have  the  generalisation  to  fc-ary  functions  for  k>l;  in
theorem  3.1  it  is  shown  that  a fixed point  can be  calculated  effectively
from various parameters that may be connected with /.

We continue this section with some corollaries  and applications of  the
second Recursion theorem.
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1.2.  Corollary

If f  is  a  total  number computable  function,  there  is  a  n  such  that

W/(n) =  Wn  and  Ef{n)  =  En.

Proof.  If  </>/(n) =  <t>n,  then  Wf{n)  =  Wn  and  Ef{n)  =  En.  D

1.3.  Corollary
If  f  is  a  total  computable  function  there  are  arbitrarily  large

numbers  n such  that  <£/•<„)=  <t>n-
Proof  Pick  any number  k;  take a number  c  such that

Define  a function  g  by

{ c  if x  ^  k

Then  g  is  computable;  let  «  be  a  fixed  point  for  g.  If  n<k,  then
<£g(n) = <t>c  ^ <f>n,  a  contradiction.  Hence  n >  k,  so  /(rc) = g(«)  and  n  is a
fixed point  for /.  •

(In exercise 1.10(8) we shall indicate how the proof  of theorem  1.1 can
be modified to obtain an increasing effective  enumeration of fixed points
for/.)

The following corollary summarises the way that the second Recursion
theorem  is often  applied,  in conjunction with the  s-m-n  theorem.

1.4.  Corollary
Let  f(xy  y)  be  any  computable  function;  then there is an  index e

such that

<t>e(y)=f(e,y).
Proof  Use the s-m-n  theorem to obtain a total computable function  s

such  that  <f>s(X)(y)—f(x, y);  now  apply  theorem  1.1,  taking  e  as  a fixed
point  for  s.  D

As simple  applications of  this corollary, we  have

1.5.  Examples
(a)  There  is  a  number  n  such  that  <f>n(x) = xn,  all  x:  apply
corollary  1.4 with /(m, x) =  xm;
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(b)  there is a number  n  such that  Wn ={n}: apply corollary  1.4
with

x  ) J
lundefined  otherwise,

obtaining  an index  n  such that <j>n{y)  is defined  iff  y =  n.

The d secon  Recursion theorem received its name because, like the  first
Recursion theorem, it justifies certain very general definitions  'by recur-
sion'. Consider, for example, the following 'definition' of a function  </>e, in
terms of  a given total  computable  function /:

<f>e =  <t>f(e)>
The  function  <f>€  is  'defined'  effectively  in  terms  of  an  algorithm  for
computing itself  (coded by the number  e).  In spite  of  its appearance  as a
circular  definition,  we  are  told  by  the  second  Recursion  theorem  that
there  are  computable  functions  <f>e  satisfying  such a definition.

It is often  useful  in advanced computability  theory to be able to make
an even more general definition of a function  <f>e  'by recursion' of the kind

<f>e(x) ~  g(e,  x),

where  g  is  a  given  total  computable  function.  Again,  think  of  <f>e  as
'defined'  effectively  in  terms  of  a code  for  its own  algorithm.  Then  the
second Recursion theorem, in the guise of  corollary  1.4, makes.this kind
of  definition  meaningful  also.  We  shall  use  this  fact  in  the  Speed-up
theorem  in the  next  chapter.

We continue this section with some further straightforward, but some-
times surprising, consequences of theorem  1.1. First, we show how it can
be used to give  a simple proof  of  Rice's theorem  (6-1.7).

1.6.  Theorem  (Rice).
Suppose that  0  c  si  ci <£u  and  let A  = {x: <f>x e si}.  Then A  is not

recursive.
Proof.  Let  aeA  and  b£  A.  If  A  is recursive,  then the function  /  given

by
fa  ifx£A,
\b  i f x e A ,

is computable. Further, /  has the property that x e A  <=>  f(x)  & A, for all x.
On  the  other  hand,  by  theorem  1.1,  there  is  a  number  n  such  that

4>nn)  = 4>n,   so f(n)  €  A  <=> n e A,  a contradiction.  •
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Another application of the second Recursion theorem shows, as prom-
ised  in  chapter  4  § 2,  that  the  'natural'  enumeration  of  computable
functions without repetitions  is not  computable.

1.7.  Theorem
Suppose that f  is a  total increasing function  such that
(a)  ifm^n,  then <f>f(m) * <t>nnh
(b)  f(n)  is the least index of  the function  <£/(„>.

Then f is not  computable.
Proof. Suppose  that /  satisfies the conditions of  the theorem. By (a),  /

cannot  be  the  identity function,  so there  must be  a number  k  such that
f(n)>n  (n>k\

whence,  by  (b)
<f>nn)^4>n  (n>fc) .

On  the  other  hand,  if /  is  computable,  then  by  corollary  1.3  there  is a
number  n >  k  such that  <f>fin) =  <£„, a contradiction.  D

Applications  of  the  second  Recursion  theorem  such  as  the  following
can be interpreted  in anthropomorphic  terms.

Let  P  be  a  program.  We  can  regard  the  code  number  y(P)  as  a
description  of  P.  We  could  regard  the  program  P  as  capable  of  self-
reproduction  if  for  all  inputs  x  the  computation  P(x)  gave  as output  its
own description,  y(P).  At first glance, it would seem difficult  to construct
a  self-reproducing  program  P,  since  to  construct  P  we  would  need  to
know  y(P),  and  hence  P  itself,  in  advance.  Nevertheless,  the  second
Recursion  theorem shows that there  are such programs.

1.8.  Theorem
There  is  a  program  P  such  that  for  all  x,  P(x)iy(P)\  i.e.  P  is

self-reproducing.
Proof. If we write n for y(P),  the theorem says that there is a number n

such that
<f>n{x) = n  (for all JC).

To establish  this, simply  apply corollary  1.4  to the function /(m,  JC) =
m.  •

We  turn  now  to  psychology!  Recall  the  notation  and terminology  of
chapter  5.  There  we  defined  a total  computable  function  a(e,  x, t)  that
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codes the state  of the computation  Pe(x)  after  t steps; a{e, x, t) contains
information  about  the  contents  of  the  registers  and  the  number  of  the
next  instruction  to be obeyed  at  stage  t. It  is clear,  then,  that  complete
details  of  the first t  steps  of  the  computation  Pe(x)  are  encoded  by the
number

Let  us call  the  number  cr*(e, x, t) the  code of the computation Pe(x)  to  t
steps.  Clearly  <r* is computable.

Suppose  now that  we are  given  a total  computable  function  i//  and a
program  P. By the ^-analysis of the computation P(x)  we mean the code
of  the  computation  P(x)  to  </>(*) steps.  We  call  a  program  P  ^-intro-
spective  at x  if  P(x)  converges  and  gives  as output  its  own  (^-analysis;
we call P totally (//-introspective  if  it  is (^-introspective  at  all x.

1.9.  Theorem
There is a program P that is totally \\t-introspective.

Proof.  Simply apply corollary  1.4 to the computable function  f{e, x) =
cr*(e, x,  <AU)), obtaining a number  n  such that

<t>n (x)  = /(n, x) = the  (/^analysis  of Pn {x).  •

We close this section with a tale in which the second Recursion theorem
appears in military dress.

'We  are  at  war.  An  operation  is  mounted  to  sabotage  the  enemy's
central computer facility. Our special agents have penetrated the enemy
defences  and  found  a means  of  entry  to  the  high  security  building that
houses all the programs

Po, P\,  P2» •  •  •
for the central computer. The mission will be accomplished  if our agents
can  systematically  sabotage  all  of  these  programs,  ensuring  that
subsequently no program will operate  as the enemy thinks it will. Simply
to destroy the programs is not sufficient:  the enemy would soon discover
this d an  set about rewriting them. What is needed is a subtle alteration to
each program,  so that,  unknown  to  the  enemy,  the  computer  will  give
wrong results. Swiftly  and silently our  men move into action . ..

Alas, defeat  at the hands of the second Recursion theorem! Whatever
systematic  plan  is  devised  to  modify  the  programs,  it  will  define  an
effectively  computable  function  /  by

f(x)  = the code of the modification  of Px.
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The second Recursion theorem springs into action, producing a number n
such that Pn  and its transform P/(n) have the same effect  (on unary inputs,
at least). The operation was bound to fail.

(Sometime later, back at HQ, our master strategists consider recruiting
a  chimpanzee  whose  mission  is  to  alter  the  programs  in  random
fashion . . . ) '

1.10.  Exercises
1.  Show that there  is a number  n  such that  <f>n(x) =  [$x].
2.  Show that there  is a number  n  such that  Wn = En  =  nN.
3.  Show that there  is a number  e  such that  4>e(x) = e2  for  all  x.
4.  Is there  a number  n  such that  Wn = {x:<f>n(x)\}?
5.  Suppose that si  c  <gu and let A  = {x: <f>x  e si}.  Show that A ^ m A.

Deduce  theorem  1.6.
6.  Give  an example  of  a total computable  function /  such that  (i) if

<f>x  is total, then so is 4>nxh 00  there is no fixed point  n  for /  with
<f>n  total.

7.  Prove  the  second  Recursion  theorem  for  fc-ary  computable
functions:  if /  is a total computable function  there is a number n
such that

<P/(n)  — <Pn  •
8.  Show  that  theorem  1.1  may  be  improved  to:  For  any  total

computable  function /,  there  is  an increasing recursive  function
n(t)  such  that  for  every  f,  <£n(r) = 4>nmt))'  (Hint.  Examine  the
proof  of theorem 1.1; note first that from our proof  of the  s-m-n
theorem we  have  s(x)  >  x  for  all  x  (or else  show that by adding
some  redundant  instructions  to  the  end  of  P5{x)  an  equally
suitable computable function  s'(x)  can be found, with s'(x)  >  x).
Now observe that given any number  k  we can effectively find an
index  m  for  s(x)  with  m>k.  Then,  following  the  proof  of
theorem 1.1,  we  have  that  n =s(m)  is  a  fixed  point  for  /,  and
n=s{m)>m>k.  It  is  now  a  simple  matter  to  construct  a
function  n(t)  as required.)

9.  Prove  that  the  second  Recursion  theorem  does  not  depend  on
the  particular  effective  numbering  of  programs  that  is  chosen.
(Hint.  Let  8  be  another  effective  numbering  of  programs;  let
Qm  = program  given  code  number  m  by  8;  let tf/m  = the  unary
function  computed  by  Qm.  We  have to prove  that for  any  total
computable  function  /  there  is a number  n  such  that i//f(n) = &n.
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For  this,  show that  there  is a computable  bijection  r such  that
Px = Qnxh then show that it is sufficient to establish that there is a
number  m  such that <f>r-lfr{m)  = <t>m-)

10.  Suppose that  in the tale just before  these exercises, our special
agents find that  the  enemy's  computer  operators  have  become
extremely  sophisticated -  they  have  only  one  program,  a  uni-
versal  program. Can our men  now completely  accomplish  their
task?

11.  Could a chimpanzee succeed where the special agents failed? (A
philosophical  problem.)

2.  Discussion
The second  Recursion  theorem  and  its proof  may seem a little

mysterious at first. We shall see, however,  that  it  is essentially  a simple
diagonal  argument  applied  to  effective  enumerations  of  computable
functions.

Suppose  that  h  is  a  computable  function.  If  h  is  total,  then  the
enumeration  E  given by

E'-<t>WQh  <f>h(lh  <f>h(2h •  • -

is an effective  enumeration  of computable functions.  If  h  is not total, we
can still regard  h  as enumerating a sequence  of computable functions  E
by adopting the convention that for any x the expression  <f>h(X) denotes the
function  given by

_  (<t>h(X)(y)  ifh(x)  is  defined,
{undefined  if h (x) is undefined.

Thus,  if  h(x)  is undefined,  4>hix)  is the function  that  is nowhere  defined.
The following lemma shows that the sequence E  thus enumerated by h

is an effective enumeration  even when  h  is not total.

2.1.  Lemma
Suppose  that h is a computable function. There  is a total compu-

table function  h'  such  that  h  and  h'  enumerate the same  sequence  of
computable functions.

Proof.  The s-m-n  theorem  gives a  total h' such that
<^' (x)(y)-<MM*),y).  •

We can  now explain  the  idea  underlying the  proof  of  the  Recursion
theorem.  For  any  k,  let  us  denote  by  Ek  the  sequence  of  computable
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functions  effectively  enumerated  by  <t>k\  then  the  list  E0,Ei,E2i...
includes all  possible effective  enumerations of computable functions. We
can  display  the  details  of  these  enumerations  as  follows  (ignore  the
circles):

E 0 \  Qfr<t>o(o7)  <t>4>0(\)  <t><t>o(2)  • • •  <t><t>o(k)

^2(1)  C^to^W  * * *  ^*2(k)

Then the  diagonal  enumeration,  D,  circled on  this array, is given  by

D :  <t><t>0(0),  < £ < M I ) »  <f><t>2(2h  • •  •
Thus  D  is  an  effective  enumeration,  given  by  the  computable  function
h(x)  — <f>x(x).  Moreover,  D  has  an entry  in common with each  effective
enumeration  E\  in fact,  for  each fc, D  and Ek  have  their  (k  4- l)th  entry
<f><t>k(k) in  c o m m o n .

Suppose  now  that  /  is  a  total  computable  function.  Then  we  can
'operate' on D  to give  an enumeration  D*  given by

^ * :  <f>f(4>o(0)h  <f>f(<t>i(l)h  <f>f(<t>2(2))>  •  • •

Now  Z>* is  an effective  enumeration  of  computable  functions  (given  by
f(h  (*))) so there is a number m  such that D*  = Em.  By lemma 2.1 we may
assume that <f>m  is total. As noted above, D  and Em  have their  (m + l)th
entry  in common,  i.e.

Since  <f>m  is total,  the  number  <f>m(m) =  n,  say,  is defined,  and

<t>n =  <f>f{n)-

The  argument  is simply illustrated  as follows:
D:

Eo:
E,:

<t>f«t>2(2))  •  •  • <f>fi<f>m(m))  -<f><t>m(m)

So  n =  <f>m(m)  is a fixed point.
Note.  This proof  can be rephrased to appear similar to standard diagonal
arguments as follows. Suppose that /  is a total function such that <t>fin) ^  <f>n
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for  all  n:  then using /  on the diagonal  enumeration  D,  the  enumeration
D*  is constructed so as to differ from  Ek  at k  (fulfilling  the requirements
of  the  diagonal  motto). Hence  Z>* is  not  an effective  enumeration,  so /
cannot  be  computable.

The second Recursion theorem can thus be viewed as a generalisation
of many earlier diagonal arguments. To illustrate this, we show how to use
the second Recursion theorem to prove that K  is not recursive, one of the
fundamental  diagonal  arguments.

2.2.  Theorem
K  is not recursive.

Proof. Let  a, b be  indices  such  that  Wa = 0  and  Wb  =  M. If K is
recursive,  then the  function g defined  by

\a  iixeK,
\b  iix£K,

is computable.  Notice  that  g  has the property  that for  all x

(since  x e  Wg(x)  <=> Wg{x)  = N  <=>  g(x)  = b  <2> x£  Wx).  This  is in  contra-
diction to the second Recursion theorem.  •

Remark.  We have,  of  course, used a sledge  hammer to crack a nut. The
point  about  this  proof  is that  all  diagonalisation  is hidden  inside  the
application of the Second Recursion theorem. We are not suggesting that
the  earlier proof  should be replaced  by this one.

The  relationship  between  the  two  Recursion  theorems  Suppose  that
0:3Fi^>3Fi is a recursive  operator,  and  that  h is a total  computable
function  such  that  <P{<t>x) = <f>h(X)  for  all x  (as  given  by the  Myhill-
Shepherdson  theorem).  If n  is  a fixed point  for  h,  then  <t>h(n) = <t>n,  i.e.
<P(<t>n) =  <t>n> Thus the second Recursion theorem tells us (as does the  first
theorem) that <£has a computable fixed point; it does not tell us, however,
that 0  has a computable  least fixed point. So, for recursive operators the
first Recursion  theorem gives  us more  information.

On  the  other  hand,  the  second  Recursion  theorem  applies  to  non-
extensional  computable  functions  as well; i.e.  functions  that do not arise
from recursive operators. Thus the second theorem has a wider range of
application  than  the  first  theorem,  although  in  the  area  of overlap it
generally  gives  less  information.  Thus,  these  two  theorems  are  best
regarded  as complementary,  although  a case  is made  by Rogers  [1967]
for the l view that the second  theorem  is the more genera  of  the two.
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3.  Myhill's theorem
Let  us now formulate  and prove the generalisation  of  theorem

1.1  needed  for  Myhill's  theorem.  Suppose  we have a total  computable
function /(*, z); theorem  1.1  shows that  for  any particular  value  of  the
parameters z  there  is a number  n  such that  <£/(«,*> = <f>n- We now show that
n  can be obtained  effectively  from  z.

3.1.  Theorem  (The second Recursion  theorem)
Suppose that fix,  z)  is a  total computable function. There is a  total

computable function n(z)  such that for all z
<f>f(n(z),z)  =  <t>n(z)-

Proof  We simply introduce the parameter at appropriate points in the
proof  of theorem  1.1.

By the s-m-n  theorem there  is a total computable function  s(x, z)  such
that

Then,  again  by  using  the  s-m-n  theorem,  there  is a  total  computable
function  m(z)  such that  s(x, z) = <£m(r)0c). Rewriting  (*) we have

<t> f(4x(x),z)  =4>4mia)(x)-
Then, putting x  = m(z)  and setting  n(z)  = <£m(z)(m(z)) we have

<t>f(n(z),z)  =<f>n(z)-
as required.  •

We proceed immediately with the proof  of Myhill's theorem (theorem
9-3.5).

3.2.  MyhilVs theorem
Any  creative set is m-complete.

Proof  Suppose  that  A  is creative  and  B  is r.e.;  we must  prove  that

Let p  be a productive function  for A.  Define  a function  /(JC, y, z)  by
if z  = p(*)andy  eB,

I undefined  otherwise.
Then /  is computable, so by the s-m-n  theorem there is a total compu-
table function  s(x, y)  such that
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Then,  in particular

10  otherwise.
By the second Recursion theorem  (theorem 3.1) there is a total compu-
table function  n(y)  such that

for  all y. Thus,  for all  y

w  [{p(n[y))}  ityeB,
M(y)  1 0  otherwise.

We claim now that

(**)  y e £  iff  p(n(y))eA.
(a)  Suppose  that  yeB;  then  Wn(y) = {p(n(y))}.  If  p(n(y))4A,
then  ^ ( y ) C A ,  so  by  the  productive  property  of  p,
p(n(y))£  Wn(y).  This is a contradiction.  Hence  p(n(y))e  A.
(b)  Suppose  that ygB; then  Wniy) = 0 c A . B y  the productive
property of p, p(w (y)) e  A.

The  claim  (**) is thus established, so B < m A since p(rc(y))  is compu-
table.  D

3.3.  Corollary
The m-degree  Om consists of all  creative  sets.

3.4.  Exercises
1.  Prove  the  following  generalisation  of  theorem  3.1:  For any

number  k  there  is a total  computable  function  n(e, z)  (where
z  = ( z i , . . . ,  Zfc))  with  the following  property:  if  z  is  such  that
4>l

e
k+1)(x9 z)  is defined  for all  JC, then

(Hint. This can  in fact be derived as a corollary  to theorem 3.1.)
2.  Formulate and prove the result that improves theorem 3.1 in the

same way that exercise  1.10(8) improves  theorem 1.1.
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Complexity  of  computation

In the real world of  computing, the critical question about a function /  is
not  Is /  computable?,  but  rather  Is /  computable  in practical  terms?  In
other words,  Is there  a program for /  that will compute /  in the time  (or
space)  we  have  available?  The  answer  depends  partly  on  our  skill  in
writing programs and the sophistication of our computers; but intuitively
we  feel  that  there  is  an  additional  factor  which  can  be  described  as  the
'intrinsic complexity' of the function /  itself. The theory of  computational
complexity,  which  we  introduce  in  this  chapter,  has  been  developed  in
order to be able to discuss such questions and to aid the study of the more
practical  aspects  of  computability.

Using the URM approach, we can measure the time taken to compute
each value of a function /  by a particular program, on the assumption that
each step of  a URM  computation  is performed  in unit time. The  time of
computation  thus  defined  is  an  example  of  a  computational  complexity
measure  that  reflects  the  complexity  or  efficiency  of  the  program  being
used.  (Later we shall  mention other complexity  measures.)

With a notion of complexity of computation made precise, it is possible
to  pursue  questions  such  as  How  intrinsically  complex  is  a  computable
function /?  and  Is  it  possible  to find a  'best'  program  for  computing /?

The  theory  of  computational  complexity  is  a  relatively  new  field  of
research; we shall present a small sample of results that have a bearing on
the  questions  raised  above.  At  the  end  of  the  chapter  we  shall  provide
suggestions  for  the  reader wishing to pursue c this topi  further.

We  begin  in  § 1 by defining  some  notation;  after  some  discussion  we
proceed to show that there are arbitrarily complex computable functions.
Section  2  is devoted  to the  surprising  and curious  Speed-up theorem  of
M. Blum, which shows  in particular that there  are computable  functions
having  no  'best'  program.  In  § 3  we  introduce  the  idea  of  complexity
classes  and prove  Borodin's  Gap  theorem;  in  the final section  we  show
how we can use complexity  classes to give  a pleasant  characterisation  of
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the  elementary functions -  an important  subclass  of the primitive  recur-
sive  functions.

1.  Complexity and complexity  measures
We begin by establishing some  notation.

1.1.  Notation
(a)  For any program  P, we write  t{p) fof the function  given by

f  the number of steps taken
t(p\x)=<  by P to compute fp\x),  YLf$\x)  is defined,

I  undefined  otherwise,
= fit(P(x)i  in t steps).

(b)  For any index e we write t(
e
n\x)  for  t{£{x).  We shall write tP

for  tpl) and te for t(
e
l) as is customary.

The  collection  of  time  functions  t(
e
n)  constitutes  an  example  of  a

computational complexity measure. Some simple but important properties
of  these functions  are given in the following  lemma.

1.2.  Lemma
(a)  Dom(rln)) = Dom(<^n)), all n, e.
(b)  For  each n the predicate M(e, x, y)  defined by M(ef  xt  y) =
t{

e
n) (x) = y is decidable.

Proof, (a) is obvious;  (b) follows  from  corollary  5-1.3(ft).  •

Remark.  The property  (b)  is used  frequently  in complexity  theory;  it
stands in marked  contrast  to the fact  that  <t>{

e
n)(x)~y  is an undecidable

predicate.
Often  in complexity  theory  a property  holds for  all sufficiently  large

numbers n, though not necessarily for all n. Thus we make the following
definition.

1.3.  Definition
A  predicate  M(n)  holds for  almost all n, or almost everywhere

(a.e.)  if  M(n)  holds  for  all  but  finitely  many  natural  numbers  n  (or,
equivalently,  if  there  is a  number  n0  such  that  M(n)  holds  whenever
n >n0) .

We  can  now  state  our  first  theorem,  which  shows  that  there  are
arbitrarily  complex computable  functions.
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1.4.  Theorem
Let  b be a  total  total computable function.  There is a  computable

function /,  taking only the values 0 ,1 , such that if e is any index for /, then

te(n)>b(n)a.e.

Proof  The reader should not be surprised to find that /  is obtained by a
diagonal construction. The essence of the construction is to ensure that if
ti(m)<b(m)  for infinitely many values  m, then /  differs from  <f>(  at one of
those values. We define /  by recursion  as follows.

At each stage  n  in the construction of /  we shall either define  an index
/„, or decide  in a finite amount of time that in is to be undefined. We then
ensure that f(n)  differs from 4>in (n) if  /„ is defined. In detail, assuming that
/ ( 0 ) , . . . ,  f(n - 1 )  have been  thus defined,  we put

(/xi[i ^  n  and / differs from all previously
in  = <  defined  ik  and u{n) <  b(n)]  if such an / exists,

[undefined  otherwise.

1  if  in is defined  and  <f>in (n) = 0,
0  otherwise.

There  is  a  finite  procedure  that  tells  us  for  a  given  i  whether  ft(/t)<
b(n),  since

and the right hand side  is decidable  by lemma  1.2(6).  Hence  there  is an
effective  procedure  to decide  whether  /„  is defined,  and  if  so, to find its
value.  Moreover,  if  in  is  defined,  then  so  is  (f>tn(n).  Hence  /  is  a  well-
defined  total computable  function.

Suppose now that /  -  <t>e; by construction  e #  /„ whenever  in is defined.
We  shall  show  that  if  /  is  any index  such  that  ti{m)<b(m)  for  infinitely
many  m, then / =  /„ for some  n, and hence  / -^ e. This is sufficient  to show
that  te(m)>b(m)  for  almost  all  m.

Suppose  then  that  U{m)<b{m)  for  infinitely  many  m.  Let  p =
1 4- max{fc: ik  is defined and ik  <  i) (put p = 0 if there are no defined  ik <  i).
Choose  n such that n>i,p  and tt(n)  <  b(n).  If / =  ik  for some  k <  n9 there
is  nothing  further  to  prove.  Assuming  then  that  /  5* ik  for  all  k <  n,  we
have  at stage  n :

/ <  n  and /  differs  from all previously defined  ik  and ti(n)<  b(n).
Thus, from the definition  of  /„, /„ is defined  and  /„ ^  /. But since  n^p,  we
must have  in > i. Hence  /„ = /,  as required.  D
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We cannot  in general  improve  this theorem  to obtain  the  conclusion
te(n)>b(n)  for  all  n\  this  is  because  for  any /  we  can  always  write  a
program that  computes /  quickly for  some particular  value a, simply by
specifying  the  value  of f(a)  in a preface  to the  program.  For  example,
suppose  that /(a) = 1;  let  F  be  a  program  that  computes /.  Then  the
program F' based on the flow diagram in fig. 12a also computes/. Clearly
we  have  tp-{a) = a +3.  Thus,  if  b  is  a  computable  function  such  that
b{x) > x + 3 for some  JC, then we cannot obtain the conclusion  of theorem
1.4  with  te(n)>b(n)  for  alln.

Using a similar idea we can write a program that computes /  quickly for
any given finite number  of values: see  exercise  1.8(1) below. This shows
that  te(n)>b(n)  a.e.  is the best possible conclusion  in theorem  1.4.

Other  computational  complexity  measures  There  are  many  other
natural  ways to measure  the complexity  of a computation,  of  which the
following are a few examples. For simplicity we restrict our discussion to
unary computations.

Fig.  12fl.

START

STOP
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1.5.  Examples
1.  (number of jumps made1 in executing  Pe(x),

<Pe(x)=\  ifftUU,
I undefined  otherwise.

This  measure  is  closely  associated  with  the  number  of  loops
performed when executing  Pe(x),  which is in turn related  to the
time  of  computation  te(x).

the maximum number held in any of the registers
at any time during the computation  Pe(x)

undefined  otherwise.
This  measure  obviously  relates  to  the  amount  of  storage  space
needed  to  carry out  the computation  Pe(x)  on  a real  computer.

3.  With  the  Turing  machine  approach,  two  natural  complexity
measures are (i) the number of steps needed to perform a Turing
computation  and  (ii)  the  amount  of  tape  used  to  perform  a
computation.

In general,  an  abstract  computational  complexity  measure  (for  unary
computations)  is defined  to be  any collection  of  functions  <Pe  having the
abstract  properties  that were  given  by lemma  1.2  for  te.

1.6.  Definition
A  computational  complexity  measure  is a collection  of  functions

<Pe  with the following  properties:
(a)  Dom($ e)  = Dom((/>e), for  all  e\
(b)  The predicate  l<Pe(x) =-y'  is decidable.

1.7.  Lemma
The  functions  given  in  examples  1.5  above  are  computational

complexity  measures.
Proof. We  give  sketch  proofs  for  the  examples  1.5(1)  and  1.5(2),

leaving 1.5(3) as an exercise (1.8(3) below). In each case it is only part  (b)
of  definition  1.6  that requires  any thought.

(1)  To decide  4#e(jc)  == y \  where <Pe(x) = number of jumps made
during Pe(x).  Suppose  that  Pe  has s  instructions; then  at most  s

1  We mean here that if a jump instruction J(m, n, p)  is encountered, then a jump (to
Ip)  is  made  if  rm  = rn;  but not otherwise.
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consecutive  steps  of  Pe(x)  can  be  performed  without  making a
jump.  So  run Pe(x)  for  up to 1  + (y + l)s  steps.  If  Pe(x)  stops in
fewer than this number of steps, then count the number of jumps
made to see  if it is y. Otherwise (i.e.  if Pe(x)  has not stopped  after
1 + (y +1)$  steps) Pe(x)  will have performed  at least y +1 jumps,
so we  conclude  that  (pe(x)^  y.
(2)  To decide  '<Pe{x) — y', where <Pe(x) = maximum number held
in  any  register  during  Pe(x).  Let  u=p(Pe),  and  consider  all
possible  non-halting  states  under  the  program  Pe  with
r i , . . . ,  ru <  y.  There  are  s(y  + l)w  such  states  that  are  distinct.
Run  jPe(jc)  for  up to  1 + s(y  +  1)M steps.  If  /*.(*)  stops  after  this
number  of  steps  or fewer,  then find the  maximum  number  that
has occurred in any of the registers and see  if it is y. Otherwise (if
Pe(x)  has not stopped) one of two possibilities will have occurred:
(i)  the  computation  has been  in the same state  on  two  separate
occasions, so Pe(x)  is in a loop  and <Pe(x)  is undefined;  (ii) there
has been  no repetition  of  states, in which case some register has
contained  a  number  greater  than  y.  In both  cases  we  conclude

e(jc)5*y.  •

Note that in proving theorem 1.4 we used only the properties of te given
by lemma 1.2. Thus theorem  1.4 holds for any  computational  complexity
measure. There are many other results in complexity theory which do not
depend on any particular measure  of complexity.  Such results are said to
be  machine  independent.  The  Speed-up theorem  of  the  next section  and
the  Gap theorem  of  § 3  are further  examples  of  such results.

1.8.  Exercises
1.  Let /  be  a total  computable  function  that takes only the  values

0,  1.  Show  that  for  any  m  there  is  a program  F  for /  such  that
tF(x)<2x  + 3  for  all  x<m.  Deduce  that  if  b  is  a  computable
function such that b(x)  > 2x + 3, then the restriction to almost all
n  in theorem  1.4  cannot be  improved.

2.  Let <Pe  be the complexity measure given in example  1.5(2).  Show
that whenever  <f>e(x)  is defined,  then 4>e(x)^max0t, <f>e(x)).

Let /  be  any total  computable  function,  and let X  be  a finite
subset  of Dom(/).  Prove  that there  is a program  Pe  for /  that is
the  best  possible  on  X  (for  this  measure);  i.e.  <Pe(x) =
max(x,  <f>e(x))  for  xeX.
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3.  For  the  complexity  measures  given  in  example  1.5(3),  verify
lemma  1.6,  expressed  in  the  following  terms.  For  any  Turing
machine M, let fM  be the unary function  computed  by M. Then
show that
(a)  Dom(<PM) =  Dom(fM),
(b)  4 # M U ) — y'  is decidable
(i)  when

[the number of steps taken in computing/MU)
(PM(X) = <  using M,  itfM(x)  is defined,

[ undefined  otherwise,
(ii)  when

f the length  of tape actually used2 in the
&M(X)  = J computation  of fM(x)  by M,  iifM(x)  is defined,

(undefined  otherv/ise.
4.  Suppose  that  <Pe(x)  and  ¥e(x)  are  two abstract  computational

complexity measures. Show that <Pe  and tye are recursively related
in the following sense: there is a recursive function  r such that for
any e

for  almost  all  n  for  which  &e(n)  and  tye(n)  are  defined.  (Hint.
Consider the function  r defined  by r(n, m) = max{<Pe(n),  Ve(n)\
e<n  and  <Pe{n) = m  or  Ve{n) = m}.)

Show further  that  if <Pe(n),  Ve(n)>n  whenever defined, there
is a recursive function  r such that ^(n)^r (0 e(«) )  and * e(/i)<
r{Ve{n))  whenever <Pe(n)  and  }P€ (n)  are  defined.

2.  The Speed-up theorem
Suppose  that  P  and  Q  are  programs  for  computing  a  total

function /,  such that  for  any x
2tQ(x)<tP(x).

We  would  naturally  say  that  Q  is  more  than  twice  as  fast  as  P.  One
instance  of the Speed-up theorem tells us that there  is a total function  /
with  the  following  property:  if  P  is  any  program  for  /,  then  there  is
another program for /  that is more than twice as fast on almost all inputs.
Thus,  in particular, there  can be no best program for computing /.

2  We say that a square on the tape is used  if it is scanned during the computation or
lies between the outermost non-blank squares on the initial  tape (including these
outermost squares).
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The  Speed-up  theorem  will  give  speed-up  by  any  preassigned
(computable)  factor: the example above represents speed-up  by a factor
of  2,  given  by  the  computable  function  r(jc) =  2jc.  The  proof  of  this
theorem  is  probably  the  most e difficult  in  this  book.  First  we  prov  a
pseudo-speed-up theorem, which contains most of the work. The Speed-
up theorem  then follows  quite  easily.

2.1,  The pseudo-Speed-up  theorem  (Blum)
Let  r be a  total  computable  function.  There is a  total  computable

function f  such  that given  any  program Pi for f,  we can find  a P}  with the
properties

(a)  <f>j  is total and  (f>j(x)=f(x)  a.e.,
(b)  r(ti(x))<ti(x)a.e.

(Note.  This  is  pseudo-speed-up  in  that  we  do  not  necessarily  have
<f>j(x)=f(x)  for  all x,  as will  be the  case  in the Speed-up  theorem.)

Proof. First we must fix a particular total computable function  s  given
by the  s-m-n  theorem,  such that  <£(

e
2)(w, x)~<t>S(e>u)(x).

We  shall  find a particular  index  e  such  that  4>™  is  total  and  has  the
following properties, where we write gu  for the function given by gu(x)  =

(#)  go = /, the function required in the statement of the theorem,
(b)  for  any  u, gu(x)  = go(x)  a.e.,
(c)  if / =  <f>i  then  there  is  an index /  for  gi+i  such that  r(tj(x))<
ti(x)  a.e.;  in fact  we  can take/  = s(e,  z + 1).

Clearly  this is sufficient  to prove  the  theorem.
For  the  moment  think  of  e  as  arbitrary  but fixed.  Thinking  of  u  as a

parameter, we shall define  a computable function  g(w, *), which will also
depend implicitly on e in an effective way. For a particular e which will be
chosen  later,  g  will  be  the function  <£(*2) above. The definition  of  g  is by
recursion on  x, with  u  fixed,  as follows.

For any x, g(w, x) is defined only if g(w, 0 ) , . . . ,  g(w, x - 1 )  have all been
defined,  and  in  the  process  some  finite  sets  of  cancelled  indices
C*,o> Cu , i , . . . ,  CUtX-i  have  been  defined.  Suppose  that  this  is  the  case.
Now  set

: M  <  / <Jt, /£  U  C",y a n d  *i(*) — r(ts(e.i +  l)(x))}

if  f*<e.i+nU) is defined for  u <  i <  x,
. undefined  otherwise.

(Of  course,  if  x <  u  then  CUtX  =  0  and is defined).  Note  that for  any /, if
fs<e.i+i)U)  is  defined,  we  can  decide  whether  rl U)<r(r5(e, I+i)U))  (using
lemma  1.2(6)),  whether or not  tt(x)  is  defined.
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Then  g(w, x)  is given  by

f 1 +max{<£,(jc): / e CUtX}  if CUtX  is defined,
Undefined  otherwise.

(If  CUtX  is  defined,  then  for  any  / €  Cu,x  we  must  have  <£,(•*) defined,  so
g{u,  x)  is certainly  defined  in this case.)

By Church's thesis, g, as thus defined,  is a computable  partial  function
which  depends  implicitly e and  effectively  on  the  valu  of  e.  Hence,  by
corollary  11-1.4  to the second  Recursion  theorem  (slightly  generalised)
there  is an index  e  such that

From now on let e  be a fixed index such that (*) holds; then e  is the index
mentioned  at  the  beginning  of  the  proof. We  must  verify  that  it has  the
required properties.

First we show that (*) implies that g is total. Fix x; for u >  JC, CUtX  =  0  so
g(w,JC) =  1  immediately  from  the  definition.  For  u<x  we  show  that
g(«,  JC) is  defined  by  reverse  induction  on  u. Suppose  then  that  g(jc, JC),
g(x - 1 , J C ) , . . . ,  g(u  + 2,  JC), g(u + 1 , x)  are all defined. Then from  (*) and
the  definition  of  s  we  have  4>S(e,X)(x), <f>S(e,x-i)(x),...,  4>s(e.u+i)(x)  are  all
defined; hence so are /,<e.i+i)(*) for  u <  / < x. This in turn means that CUtX

is defined,  hence  g(w, x)  is defined  also. Thus g(«, x)  is a total  function.
Now, writing  gu  for.the  function  given  by gu(x)  = g(w,  JC) we  have

gu(x)  = g(u,  x)

=  4>s{e,u)W  (by definition  of  s).

We must  verify  the properties  (a)-(c)  above.
(a)  If we  put /  = go, then /  is certainly  total,  as required  by the
theorem.
(b)  Fix a number  u; we must show that g(0, x)  and g(w,  JC) differ
for  only finitely  many  JC. It is clear from  the  construction  of  the
sets  CMfJC that for  any  JC

Cu%x  = COtX n{w,  u + 1 , . . . ,  JC - 1 } .

Since  the sets  COtX  are  all disjoint  (by construction)  we  can find
the  number  v =  max{jc: Co.*  contains  an  index / <  u}.  Jhen  for
JC> v  we have C 0,x ^  {w,  w + 1 , . . . ,  JC - 1 } , and hence  COtX = CUfX.
This  means  that  g(0,jc) = g(«,JC)  for  x>v.  Thus  goU) = g«(jc)
a.e.
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(c)  Suppose that / is an index for / ;  taking /  = s(e, / +1) we have
that <t>j = <t>S(e,i+\)  = gi+i  (from above), soy is an index for g/+1.  We
can prove  that

r(t,ix)) = r(tsieJ+l)(x))<ti(x)  for all x >  j.

If this were not the case, then / would have been cancelled in the
definition  of  g(0, x)  for  some  x >  i\  i.e.  there  would  have  been
x >  i with / e  Co.*. But then, by construction  of  g, we would have
g(0,  x)^(f>i{x),  a  contradiction.  This  completes  the  proof.  •

Note that the pseudo-Speed-up theorem is effective: given a program P
for  /  we  can  effectively  find  another  program  that  computes  /  almost
everywhere,  and is almost  everywhere  faster  than  P.

We  now show  how to modify  the above  proof  to  obtain

2.2.  The Speed-up  theorem  (Blum)
Let r be any total computable function.  There is a total  computable

function f such that, given any program Pi for f,  there is another program Pk

for f  such that  r(tk(x))<ti(x)  a.e.
Proof  We  may  assume  without  any  loss  of  generality  that  r  is  an

increasing  function  (or else  replace  r  by a larger increasing  computable
function).  First,  by a slight  modification  of  the  proof  of  theorem  2.1  we
obtain a total computable function /  such that given any program P, for /,
there  is a program P ; such  that

(a)  <f>j  is total  and  <£/(*) = /(*)  a.e.,
(b)  r(ti(x)  +  x)<ti(x)2i.c.

To  do  this,  simply  rewrite  the  definition  of  CUtX  replacing  ' . . .  and
ti(x)^r(tsM+i)(x)y  by ' . . .  and f,U)<r('s(e..+i)(*)  + *))'• We shall show
that the function /  so obtained  is the function  required  by the  theorem.

Suppose  then  that / =  <£,  and /  is  chosen  with  the  properties  (a),  (b)
above.  Our  aim  now  is  to  modify  P,  to  produce  a  program  P,-*  that
computes/for  allx.  Suppose that <f>,(x)=f(x) for all x >  v. Let/(m) =  bm

for  m^v.  We  modify  P,  by  writing  some  extra  instructions  at  the
beginning designed to give these values for  m^v.  Specifically,  let Pj*  be
the program that embodies the flow diagram given in fig. 126. Clearly P;*
computes/; moreover, there is a number c such that the extra instructions
add  at most  c  steps to  any computation; i.e. for all x
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Fig.  126.  Speed-up  from  pseudo-Speed-up.

START

T i * =  On

T i *^  t? 1

STOP

Thus we  have
r(tp(x))  ^  r(tj(x)  + c)  (since r is increasing)

</•(/,•(*) + *) for * > c
<f,(x)a.e.

Hence,  taking  k  = /*  the theorem  is proved.  •

Remarks
1.  The above proofs of the pseudo-Speed-up and Speed-up theorems are
adapted  from Young  [1973]. Both  results  hold  for  arbitrary  complexity
measures; in the case of theorem 2.1 it is clear that our proof uses only the
abstract properties of the time measure /,(*); in the proof  of theorem 2.2,
however, we have used some special details of the URM time measure, in
estimating the relationship between  f7* and th In Young's paper the above
proof  is generalised so  as to work for  any complexity  measure.
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2.  It can be shown that the Speed-up theorem is not in general  effective.

The Speed-up theorem pinpoints a problem when we try to define the
complexity of a computable function /  (rather than the complexity of any
particular algorithm for /). We cannot define this as the complexity of the
best,  or  fastest,  algorithm  for  /  simply  because /  may  not  have  a  best
program.

We conclude this section with an amusing consequence  of the Speed-
up  theorem.  Suppose  that  we  have  a  URM  that  performs  1 step  per
second, and  we replace this with a new super-improved  machine that is
100 times  as  fast.  Then  a computation  Pt(x)  that  took  u{x) seconds  to
perform on the old machine will be performed  in rl(jc)/100 seconds on the
new model. Consider now the function /  given by the Speed-up theorem
with speed-up factor  of  100. Suppose that /  is being computed  by P( on
the new fast machine. By the Speed-up theorem there is a program P, for/
such that  lOOtj(x) < tt(x) a.e.; i.e. t f(x) < f,(jt)/100.  Thus for almost all  JC,
the old machine using P t computes /  faster than the new machine using Pt.
We  conclude  that  for  some  functions  at  least  the  new  machine  is  no
superior to the old one  (on most inputs)!

2.3.  Exercises
1.  Show that  in  general  the  limitation e of  th  inequality  r(tk(x))<

tt(x)  in  the  Speed-up  theorem  to  almost  all  x  cannot  be
improved.

2.  Why should  we  regard" the  conclusion  of  the  discussion  in  the
preceding paragraph (about new and old URMs) as  of theoretical
rather than practical  significance?

3.  Complexity classes
Suppose that e b is any total computable function.  From th  point

of  view  of  complexity,  a  natural  class  of  functions  comprises  those
functions having a program whose running time is bounded by b. Thus we
define

3.1.  Definition
Let b be a total computable function.  The  complexity class  of b,

(£*>  is defined  by
£*> ={<(>e-<f>e  is total and fc(jt)<6(jt)  a.e.}

= {/*:/  is total, computable and has a program Pe with  te(x)<
b(x)  a.e.}.
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Remark.  The class £&, as thus defined, is the complexity class of b relative
to  the  time  measure  te{x)\  for  any  measure  <&(*),  we  could  define  the
complexity  class S f  in the obvious way.

If b' is another total computable function, with b'(x) ^  b(x)  for all  JC, of
course £*• 2 £*; if &'(*) >  &(*) for all x, we would naturally expect that ©*.
contains some  new functions  not  in  (£*,, especially  if  b'(x)  is much larger
than b(x).  The next theorem shows that this intuition is false: we can find
b, b'  with  b'  greater  than  b  by  any preassigned  computable  factor,  such
that  &£' =  £*>;  in fact,  the theorem shows that  b, b' can be chosen so that
there  is no running time  te(x)  that lies between  b(x)  and  b'(x)  for  more
than finitely many x. Thus the theorem  is called  the  Gap theorem.

3.1.  The Gap  theorem  (Borodin)
Let  rbe  a total computable function such that r(x) ^  x.  Then there

is a  total computable function  b such that
(a)  for  any  e and  x > e,  if te(x)  is defined  and  te(x)>b(x),  then
te(x)>r(b(x))\  hence
(b)  <E6 = <£,.*.

Proof. We  define  b(x)  informally  as  follows.  Define  a  sequence  of
numbers  k0 <  k\  <...  <  kx  by

Consider  the  disjoint  intervals3  [kh  r(/c,)] for  0 < / < J C .  There  are  * +  l
such  intervals,  so  there  is  at  least  one  that  does  not  contain  any  of  the
numbers  te(x)  for  e <  JC, since there  are  at most  x  such numbers that  are
defined.  Choose  ix  = the least  /  such that

te{x)£[ki,r{ki)]ior2\\e<x,
and set b(x) = kix.

Now, given that ix  as defined above exists on theoretical grounds, there
is an effective  procedure which will find it; we simply make repeated use
of lemma 12{b)  to check te(x)e  [kh  r(kt)]  for various e and 1. We conclude
that  b  is a computable  function,  by Church's thesis.

For the conclusion  of  the theorem, (a), suppose  that x > e  and  te{x)>
b(x);  by  construction  of  b(x),  we  have  te(x)&[b(x),  r(b{x))].  Hence
te(x)>r(b(x)).

By the  interval  [c, d]  we mean the set  of  natural  numbers {x
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For  part  (b),  we  obviously  have  S 6 cg r o 6 ;  now  note  that  if  fe
r»d\@fc, then /  has a program Pe with

but
te(x) >   b(x) infinitely often  (otherwise / €  Sfc).

This clearly contradicts  (a). Hence £* -  SrO6.  D

Note.  This proof  is based on that given by Young [1973]. It is easy to see
that  the  function  b  in  the  theorem  can  be  made  larger  than  any pre-
assigned  computable  function  c,  simply  by  setting  ko = c{x)  instead  of
k0 = 0 in the proof. It is also clear from the proof that the Gap theorem is
machine  independent.

4.  The elementary functions
In this final section we introduce the class of elementary functions as an

example of a class of computable functions that can be characterised very
neatly  in  terms  of  the  complexity  classes  corresponding  to  time  of
computation.  The  elementary  functions  form  a  natural  and  extensive
subclass  of the primitive recursive functions,  as we shall see. They have
been studied  in some depth, and are  of interest  in their  own right, quite
apart  from  complexity theory.

4.1.  Definition
(a)  The class  <£  of  elementary functions is the smallest class such

that
(i)  the functions  x + 1, UT(1 ^  / ^  n), x — y, x + y, xy  are all in #,
(ii)  ?  is closed under  substitution,
(iii)  <£  is closed under the operations  of forming bounded  sums
and  bounded  products  (i.e.  if  f(x,  z)  is  in  % then  so  are  the
functions  Zz<y/(*> z)  and n2<y/(*>  z)9  as  defined  in chapter  2
§4).

(b)  A  predicate  M(x)  is  elementary  if  its  characteristic  function  cM  is
elementary.

Roughly speaking,  %  is the  class  of  functions  that  can be obtained  by
iteration  of the operations of ordinary arithmetic. It is clear that elemen-
tary functions  are computable; in fact they are all primitive recursive, by
the  results  of  chapter  2  § 4.  The  next  lemma  helps  to  compile  some
examples  of elementary  functions  and predicates.
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4.2.  Lemma
(a)  % is closed  under bounded  minimalisation.
(b)  Elementary  predicates are closed under 'not\  kand\  'or\  and
the bounded  quantifiers  4Vz<y'  and  ' 3 z < y \

(a)  Suppose  that /(*, z)  is elementary;  recall  from the proof  of
theorem 2-4.12  that

Mz<y(/(*,z) = 0)=  I  n  sg(/0rf«)).
u<y  u^v

To see  that this  is elementary,  just  notice  that sg is  elementary,
since sg(*) = x —  (x — 1), and  1 =  (x +1) — x.
(b)  We leave  the proof  as an easy exercise.  •

The  next  theorem  gives  an  indication  of  the  fact  that  %  is  quite
extensive.

4.3.  Theorem
The functions  m  listed {for  m e N),  and  all  of  the functions  in

theorems  2-4.5  and  4.15  are  elementary.
Proof. We  shall  sketch  proofs  for  a few  functions  where  the  proof  is

non-trivial  or  differs  significantly  from  that  given  in  chapter  2.  The
terminology  of  chapter  2 is used  throughout.

(0  X\  * y=ni<y*=IL<yU?(X,l) .

(iii)  rm.  rm(x, y) = y -  x  qt(x, y).
(iv)  px.  Assuming  that  the  function  Pr(jc)  (the  characteristic
function  of  lx  is prime')  has been  proved  elementary,  we  have
px  = fxy  <  22* (x = 0 or y is the  jcth prime)

*(*=  I  Pr(z))

*(L-  I  Pr(z)|=o).

(The bound px  < 2  is easily proved by induction, using the fact
thatpx +i<p>p 2. .  .p* + l.)

We leave  the proofs  for the other functions  as an exercise  for
the reader.  •
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We  now  show  that  % is  even  closed  under  definitions  by  primitive
recursion, provided that we know in advance some elementary bound on
the function  being defined  by the recursion equations.

4.4.  Theorem
Let  f(x)  and  g(x,  y, z)  be  elementary  and  let  h  be  the  function

defined from /,  g by

h(x9y  + l)  =  g(x9y9h(x9y)).
Suppose  that  there is  an  elementary  function  b(x,y)  such  that  h(xt  y )<
b(x,  y)  for all x, y.  Then h is  elementary.

Proof  Fix  JT, y; then the calculation of  h (x,  y) in the usual way requires
the  calculation  of  the  sequence  of  numbers  h(x, 0), h{x, 1 ) , . . . ,  h(x,  y).
These  can be coded by the single  number  s  where:

5 = 2  3  . . . p y + l

-  n pft*'

s  Tl  p"*i1) = c(*,y),say,

where  c(x,  y)  is  an  elementary  function.  The  key  facts  about  s  are
(i)  (5)i =  A(jr,O) =/(*) ,  (ii)  for  z<y9  (s)z+2  = h(x,  z + l) =  g(jc, z9  (s)z+ i)
and (iii)  h(x,y)  = (s)y+i.  Thus we  have

*, y) = \jis  ^c(x9  y)((5)! =/(*)  and
Vz<y((5)x+2  =  g(x,z,(5)2+i)))] y+i.

This expression  for  /i  shows  that  h  is elementary,  by the  results  proved
above.  •

The  principle  of  definition  described  in this theorem  is called  limited
(primitive)  recursion. We shall see later that this is a weaker principle than
primitive recursion. The above result is concisely expressed by saying that
% is closed  under limited recursion.

4.5.  Corollary
The state function anj  hence the functions cn and /„,  defined in the

proof  of  theorem  5-1.2  (computability  of  the  universal  functions)  are
elementary.  Hence also the predicate  Tn ofKleene's  normal form  {theorem
5-1.4)  is  elementary.
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Proof  We  refer  to  the  formal  proof  of  theorem  5-1.2  as  given  in
chapter  5  and  completed  in  the  appendix  to  that  chapter.  It  is  mostly
routine to establish, by using the above results, that the functions used to
build  <rn  are  all elementary.  For the  actual  definition  of  <rn  by primitive
recursion, note that we can obtain an elementary  bound on an  as follows.

It is easy to see  that for  any t

and

These two bounds are elementary functions of e, x, t once we have shown
that  p(Pe)  and  \n(e)  are  elementary  functions.  Putting  these  bounds
together we then have an elementary bound for crn,  and theorem 4.4 may
be applied. The remainder  of the proof  that  crn  is elementary  consists of
showing  that  p{Pe),  \n(e)  and  all  the  other  functions  defined  in  the
appendix  to  chapter  5  are elementary.  This  is left  as an exercise  for  the
reader.  (The only general  principle  needed but not explicitly  mentioned
already is that elementary functions  are closed under definition  by cases;
see  exercise 4.12(4a)  below).

The elementary nature of cn , jn  and  Tn follows immediately since these
are  all  defined  explicitly  by  substitution  from  an  and other  elementary
functions.  D

The  following  corollary  is  often  expressed  by  saying  that  functions
computable  in elementary  time  are  elementary.

4.6.  Corollary
(a)  Suppose  that  b(x)  is elementary  and  <f>(

e
n)  is  a  total  function

such that  t{
e
n)(x)<b(x)  a.e.4  Then <f>(

e
n)  is  elementary.

(b)  Ifb(x)  is elementary,  then Sb  c fg.
Proof,  (b)  is  obviously  a  restatement  of  (a)  for  unary  functions.  To

prove  (a),  suppose  that  t(e
tl)(x)^b(x)  a.e.  Then the  function

is elementary,  and we  have

4  Here  we  are  extending  the  use  of  a.e.  to  n-ary  predicates  M(x)  in the  obvious
way: M(x)  holds a.e.  if  it holds for  all but finitely many ^-tuples  JC.



4  The elementary functions  229

By  the  results  we  have  proved,  the  right  hand  side  is  an  elementary
function. To conclude that <f>(

e
n)  is elementary, we observe that a function

that is almost everywhere  the same as an elementary function  is elemen-
tary (see exercise  4.12(4fe)  below).  •

At this e stage the reader might well b  wondering whether the elemen-
tary functions  coincide  with the primitive  recursive  functions.  All  parti-
cular examples of primitive recursive functions from earlier chapters have
been  shown  to  be  elementary.  The  only  detectable  difference  between
these classes is that for  % we have only been able to prove closure under
limited  recursion.  Could  it be  that  this  is only  an  apparent  distinction?
The answer, as we shall see below, is no. Limited recursion is a definition
principle  that  is  really  weaker  than  primitive  recursion.  We  will  find a
function  that is primitive  recursive  but not elementary  as a consequence
of  the next theorem to be proved  below.

Nevertheless,  % is an extremely  large class  of  functions,  and contains
most  of  the  functions  used  in  practical  mathematics.  The  class  % is  a
natural  first  suggestion  for  the  class  of  total  effectively  computable
functions,  based as it is on the ordinary operations of arithmetic. Indeed,
it has been argued (for example, by Brainerd & Landweber [1974]) that  £
contains  all practically  computable  functions.  They  argue  that  if f(x)  is
practically computable, then there must be some number k  such that/(jc)
can be computed  in at most

steps  for  almost  all  x.  After  all,  for  practical  purposes,  this  number  of
steps  quickly  becomes  very  large  in  comparison  with  x,  even  for  small
values of  k. Now,  since the  function

is elementary  (for fixed fc), this means that /  is elementary,  by corollary
4.6.

Our goal in the remainder of this section is to show that the elementary
functions  can  be  characterised  as  precisely  those  functions  that  are
computable  in time
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for some  k. As a first step towards that goal, we have the following, which
incidentally  will  give  a non-elementary  primitive  recursive  function.

4.7.  Theorem
Iff(x)  is elementary,  a there is  number k such that for all jr,

2max(x)

/(*)^2 2/"  .
Proof.  Let us write bk(z)  for

then,  explicitly,  we  have  bo(z)  = z,  bi(z)  = 2z
9  and  bk+i(z)  = 2bk(z)  in

general.  (Thus, by  2T~ is meant  2i2*\  not (22 )\  etc.). Note  that 6k+/(z)  =
bk(bi(z)).  We shall use implicitly below the fact  that  bk  is increasing and
thatz2<2 2*  for  all  z.

To establish  the  theorem,  we  consider  each  of  the  clauses whereby  a
function /  can get into  <£. Referring  to definition 4.1:

(i)  x +  l < 2 * ;

x — y <max(;t, y);
jt + y<2maxU,y)<2m a x ( x ' y ) ;

(ii)  Suppose  that  h(x) = / ( g i ( x ) , . . . ,  gm(x))9  and  fci,..., fcm, /
are  such  that  g/(ji;)<6k.(max(jt))  ( 1 < / < W ) ,  and
b[(meix(y)). Let  /c = max(fci,...,  km).  Then we  have

) , . . . ,  gm(jc)))

(iii)  Suppose  that  g(x,  y) = I 2 < y / ( x ,  z),  and  that  /(*,  z ) <
c, z)). Then we  have

The case when g is a bounded product is similar, and is left  as an exercise
(4.12(6) below).  •
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4.8.  Corollary
The function

is primitive  recursive but not  elementary.
Proof. To see that  /  is primitive  recursive,  notice  that  f(x) = g(x, x),

where g is defined by

(so g is primitive  recursive).
To see that /  is not elementary,  notice  that  for every k

so there is no k such that f(x)<bk(x)  for all x. (Note that /  is obtained by
'diagonalising out of g \ )  •

The  penultimate  step  towards  our  goal  is  to  show  that  elementary
functions  can be computed  in elementary  time.

4.9.  Theorem
If fix)  is elementary,  there is a program P for f such thatt{p\x)  is

elementary.
Proof. We must examine the ways in which a function  gets into  %. It is

helpful to prove first the following  general  lemma.

4.10.  Lemma
Letx  = U i , . . . ,  xn). Suppose thath(x,  y) is elementary, and has a

definition  by  recursion from  functions  f(x)  and g(x, y, z)  which  can be
computed  in elementary  time.  Then h can be computed  in elementary  time.

Proof. Take programsF,  G  for/, gt in standard form, such that tF and
tG  are elementary.  (For notational  convenience we omit  here and else-
where  the  superscripts  from  fp°  for  any  program  P  whenever  the
meaning  is  clear.)  We shall  take  the program H  for h  as given  in the
proof  of  theorem  2-4.4,  and show  that  tH  is  elementary.  We  simply
calculate  tHix,y)  by reference  to the flow  diagram  in fig. 2c  and the
explicit program H  that is its translation. We reproduce this flow diagram
in fig. 12c, indicating alongside  each component  the number  of steps it
contributes when executed by the program H.  It is now a simple  matter



12  Complexity  of  computation

to calculate  that

which  is  clearly  an  elementary  function,  since  tF,  tG  and  h  are  all
elementary.  •

Proof of theorem  4.9
Let us consider  each  of  the clauses  in the definition  of %\
(i)  The functions x +1  and U?(x) can each be computed by single
step programs. For x — y, x + y, xy  we use lemma 4.10.  Consider
JC + y, for example: this is defined by recursion from the functions
f(x)  = x  and  g(jc, y, z) = z + 1 ,  both  of  which  are computable  in

Fig.  12c.  The  number of  steps  in a computation  by recursion.

START

Store  xy y  in

rt +1  steps

p(F) + tF(x)+\  steps

1 step for each
k < y  for this loop back

>
1 step for  ^

each /c < y

No
y

/

\  /

V  p(G) +  tc(x,k,h(x,k))+\
steps for each  /c <  y

Yes

1 step for each  k ^  y,
= y + 1 steps

• 1 step

STOP
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elementary time. Now apply lemma 4.10. Similarly for x — y  and
xy  (for  x -  y  we  must  first  prove  the  result  for  x —  1,  again  by
using lemma 4.10).
(ii)  Substitution.  Suppose  that  h(x)=f(gl(x),...,  gm(x)),  and
each  of  /,  gu...,  gm  is  computable  in  elementary  time  by
programs  F,  Gu  .  . ,  Gm  in  standard  form.  Let  H  be  the  pro-
gram  for  h  given  in  the  proof  of  theorem  2-3.1.  Calculating
directly  from  that program we  have

which is an elementary function,  by substitution,
(iii)  Bounded  sums  and  products.  The  result  is  established  by
using  lemma  4.10.  Suppose  that  g(jc, y) = ]Tz<y/(jr, z),  and /  is
computable  in elementary time. Then g  is obtained by recursion
from the functions 0 and z +/(*,  y) both of which are computable
in  elementary  time  (from  (i)  and  (ii)  above).  Hence,  by  lemma
4.10,  g  is computable  in elementary  time.

The  proof  for  bounded  products  is  similar,  and  is  left  as  an
exercise  (4.12(8)  below).  •

We  have  now  done  all  of  the  hard  work!  To  express  the  charac-
terisation  of  8f  towards  which  we  have  been  working,  it  is  helpful  to
extend  complexity  classes to  include  n-ary  functions  for  all  n. Suppose,
then, that  b{x)  is a total function; let  us write

S* = {/:  /  is total and /  = <f>(
e

n)  for some  e with

Clearly £* = E* n Unary  functions.
Now our final theorem  is

4.11.  Theorem
A  total  function  f(x)  is  elementary  iff it  is  computable  in  time

=£ Mmax(jr)), for some  k.  I.e.

Proof  Since for each it, 6k(max(jr)) is an elementary function, we have
*k £  %  by corollary 4.6;  hence
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For  the  converse  inclusion,  let  f(x)  be  an  elementary  function.  By
theorem 4.9 there is a program F  for /  such that tF  is elementary; now by
theorem 4.7 find a number  k  such that fF  (x)<Mmax(jr)).  Then/€  £*k,
so our proof  is complete.  •

4.12.  Exercises
1.  Show that  it  was not  strictly  necessary  to  include  the  functions

x + y  and  xy  in  the  definition  of  %.  (Hint.  First  obtain  xy  as
a  bounded  sum;  then  obtain  x + y  from  suitable  products,
using  —).

2.  Prove lemma 4.2(6).
3.  Complete the proof  of theorem 4.3.
4.  (a)  Show that  %  is closed  under  definition  by cases, when  the

functions  and predicates  in the definition  are all elementary.
(b)  Show that  if f(x)  is elementary and g(x) =f(x)  a.e., then  g(x)
is elementary.

5.  Check all the details  in the proof  of corollary 4.5.
6.  Complete the proof m of theore  4.7  by showing that  if  g(x, y) =

X\z<yf(x,z)  and  /(*, z)<*k(max(x, *)),  then  g(x, y)<
6k+3(max(x, y)).

7.  Give an example  of  a unary primitive recursive function  that  is
not elementary,  different  from  that  of  corollary 4.8.

8.  Prove that  if /  is computable  in elementary  time  and  g(x9 y) =
Y\2<yf(x,  z),  then g is computable  in elementary time.

9.  Suppose that <Pe  is a complexity measure for unary functions that
is related  to  te  by an  elementary  function  r. I.e.  for  any  e, and
almost all x  for  which  te(x)  is defined,
<pe(x) < r(x, te(x)) and te(x) < r(x, #*(*)).
For  any total  function  b(x),  let Sf  be the  complexity  class  of b
relative to <P,  i.e.
Sf  = {<f>e: <f>e  is total and  <Pe(x) < b(x)  a.e.}.
Prove that Uk^o Sf k=  £i, the unary elementary  functions.

Further  reading  For  a  fuller  treatment  of  the  machine  independent
theory  of complexity, the reader should consult the basic paper  of Blum
[1967], or e the readabl  overview of the theory by Hartmanis & Hopcroft
[1971].  The  paper  of  Young  [1973],  which  we  have  already  cited  in
earlier sections, simplifies some of the proofs of basic theorems. The book
of Brainerd & Landweber [1974] has a good chapter on complexity, and
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also gives the characterisation of various subrecursive classes of  functions
(including  <£) in terms  of  time  of  computation.  Similar  characterisations
are also discussed in the early (in the history of complexity theory) papers
of  Ritchie  [1963]  and  Cobham  [1965],  using  the  Turing  machine  tape
measure  of  complexity.
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Further study

Our basic study of computability has been designed so that it could serve
as a stepping stone to more  advanced  or  more detailed  study  in  any of
several  directions.  In  this  brief  postlude,  we shall  mention  some  of  the
areas  in  which  further  study  could  be  pursued,  and  we  offer  some
suggestions for further reading. The divisions below are not hard and fast,
and there are many interrelations between the various areas we mention.

Computability  Further study of the theoretical notion of computability
(the starting point  of  this book) could be pursued  in two directions:  (a)
more  detailed  examination  of  other  equivalent  approaches  to  compu-
tability  (which  we  surveyed  in  chapter  3);  (b)  examination  of  more
restricted notions of effective computability, involving, for instance, finite
automata  and similar devices.

Some references (several historical) for (a) were given in chapter 3. For
both (a) and (b) we suggest the books of Minsky [1967] (a very compre-
hensive treatment), Arbib [1969], or Engeler [1973].

Recursion theory  We use this traditional  title under which to mention
more advanced ideas arising out of the notion of computability on  W, such
as we began to pursue in chapters 7, and 9 to  11.  Specific areas include:

Hierarchies: there  are  various  ways  to  extend  the  sequence
beginning 'recursive, r .e . , . . . '  to obtain a hierarchy  of kinds of set, each
kind of set having more difficult  decision problem than the preceding one.
Among the important  hierarchies that  have been studied  are the arith-
metic  hierarchy,  the  hyperarithmetic hierarchy,  and  the  analytical
hierarchy.

Reducibilities and degrees:  between <m  and < T there  is a spec-
trum of reducibilities that could be investigated. For the student wishing
to delve further  into Turing reducibility, the next step would be to master
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a  proof  of  the  Friedberg-Muchnik  solution  to  Post's  problem,  before
proceeding to further  results  and proofs  in this area,  some  of  which we
mentioned  in chapter  9.

Recursion in higher types:  we considered  briefly  in chapter  10
the  question  of  computable  functions  of  functions.  This  study  can  be
extended  to  computability  of  functions  o  of  functions f  functions,  etc.
Hierarchies occur naturally here also.

The book of Rogers [1967] is the best single reference for each of these
areas,  in that  it  is a more advanced  and comprehensive  textbook  which
continues these topics where we have concluded our introduction. More
specific  sources  of  information  about  degrees  are  Sacks  [1963],
Shoenfield  [1971] and Simpson [1977].

Under this heading we should also mention

Generalised  recursion  theory.  This  is  a  relatively  new field  of
study,  in  which  ideas  arising  in  computability  on  M  are  transferred  to
other  structures  that  are  not  merely  coded-up  disguises  of  N.  This
development  has  been  particularly  successful  on  certain  sets  called
admissible ordinals. An  introductory  article  having  a  large  annotated
bibliography  is provided  by  Shore  [1977]  in  the  Handbook  of  Mathe-
matical Logic  (Barwise [1977]).

Decidability  and  undecidability  A  good  survey  of  unsolvable  prob-
lems in general  is provided in the article by Davis [1977] in the Handbook
of Mathematical Logic.

For  an  introduction  to  mathematical  logic,  and  decidability  and
undecidability  in  this  area,  there  are  numerous  basic  tests,  such  as
Mendelson  [1964] or Robbin  [1969]. These books also give a complete
treatment  of  Godel's  theorem  and  related  results. For  more  advanced
study  in this area  & there  are  texts such  as Bell  Machover  [1977], and
Boolos & Jeffrey [1974]. The article by Rabin [1977] surveys methods and
results on the decidability  of mathematical theories.

Computer science  The  study  of  topics  included  under  the  heading
Computability  above, especially finite automata,  is of course relevant to
computer  science -  which could be called the realm  of  practical compu-
tability. Within this realm there are two areas we have touched on, albeit
briefly:
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Programs  and  programming',  further  study  here  could  include
topics such as the generation of programming languages and the structure
of  programs;  and  the  semantics  of  programming  languages  (which  we
touched  upon  in  chapter  10).  Texts  which  cover  these  matters  include
Arbib  [1969],  Bird  [1976],  Brainerd  &  Landweber  [1974],  Engeler
[1973] and Manna  [1974].

Complexity  theory,  at  the  end  of  chapter  12  we  offered  some
suggestions for further reading in this area. There is considerable  interest
in identifying  functions  f{x)  that can be computed  in an amount  of  time
bounded by some polynomial  in x. A major unsolved problem here is the
so-called  P  = NP  problem:  machines  are considered  in which there  is a
certain  amount  of  freedom  in  choosing  the  next  step  in  a  computation
(such machines are called non-deterministic).  By making good guesses (or
choices)  one  can often  obtain  a quicker computation  than  by systemati-
cally  working  through  all  possible  cases  in  a  deterministic  way.  The
P =  NP  problem  asks  whether  every  function  computable  on  a  non-
deterministic  machine  in  polynomial  time  is  computable  in  polynomial
time on ordinary (deterministic) machines. This problem is mentioned in
Rabin [1977] and discussed  fully  by Karp [1972].
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Chapter 1
Rn  nth register  9
rn  contents of Rn  9
Z(n)  zero instruction  10
S(n)  successor  instruction  10
T(m, n) transfer  instruction  10
J(m, n, q)

jump  instruction  11
rn

 : = x  rn becomes x  10
P(aua2,...)

computation  under  program  P  16
P(aua2,...)l

the computation stops  16
P(fli,a2 ,...)t

the computation never stops  16

the  final  value  in Ri is b  17
<€,  ^n  computable  functions  17
fp]  n-ary  function  computed by P  21
CM  characteristic function  of M  22

Chapter 2
U,n  projection  functions  25

PQorP
Q

concatenation  of programs  27
p(P)  denotes  registers  affected  by P  27
/ > [ / „ . . . , / „ - > / ]  28
x — y  cut-off  subtraction  36
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sgU),sgU)
signum functions  36

rm(x, y), qt(x, y)
remainder  and quotient  functions  36, 37

nz<y(...)
least  z  less than  y  39

px  jcth prime number  40
(jc)y  power  of py  occurring in x  40
ff(x,y)  a pairing function  41
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minimalisation operator  43

Chapter 3
(partial) recursive functions  49
primitive recursive functions  51
Turing-computable  functions  56

=>  obtained  by productions in Q  59
\^  Post-system  ^  generates  59
Ty  strings generated  by ^  59
&  coding of a word a  61
n  word representing  n  61
G(f)  graph of/  62
0 ^  Post-computable  functions  63

Chapter 4
J*  URM instructions  74
^  URM programs  74
y  program coding function  75
Pn  /ith program = y~\n)  75
<£an),  <£a functions  computed  by Pa  76-77
W a y  "a

domain  of  <f>{a\  <t>a  77
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n\<(>a  77
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universal functions  86
cn(e,xy  t)

configuration  code  87
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next instruction  87
<rn(e,x, t)

state  function  87
Tn(e9x,t)

Kleene  T-predicate  89
Rec(/f  g)

function  obtained  by recursion  from /, g  91
Sub(/, g i , . .  . ,gm)

function  obtained  by substitution  from /, g i , . . . ,  gm  91

Chapter 6
Q  rational  numbers  108
A,  ->  logical symbols for  'and',  implies'  111

R  I symbols  in a logical language  110I
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Chapter 7

A®B  {2x:xeA}v{2x  + l:xeB}  122
A®B  {7r(x,y):xeAandyeB}  122
K  {x:xeWx}  123

Chapter 8
—i, v  logical symbols  for 'not' ,  'or'  143
y  statements  of language L  144
3~, &  true,  false  statements  of L  144
0n  (n + l)th  statement  of  <f  144
n e  K  formal  counterpart  of n e K  145
(Pt  provable statements  147
Pr*  {n.neK  is provable}  148
Ref*  {n : n £ K is provable}  148

Chapter 9
A<mB  A  is many-one  reducible to B  158
=m  many-one  equivalent  161
dmtA)  the m-degree  of A  161
a <m i  partial order  on m-degrees  162
0m  m-degree  of recursive sets  163
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aub  least upper bound  of degrees a, b  165
O(n)  oracle instruction  167
P*  URMO program P with x i n  the oracle  168
<€*  ^-computable functions  169
<3lx  ^-partial recursive functions  170

functions  computed by Qm  170-171
rY  m»  •*-•  m

domain and range  of  4>x
m  171

\jj\j1  universal function  for ^-computability  171
K*  ={x:xeW*}  111
PA,<%A,<f>tWtEtKA

relativised notions for A-computability  172
A <TB  A  is Turing reducible to B  174
=T  Turing equivalent  174
dT(A)  Turing degree  of A  175
a < b  partial order on T-degrees  176
0  T-degree  of recursive sets  176
0'  T-degree  of K  176
A'  jump of A  177
a1  jump of a  111
a\b  a,b  are incomparable degrees  179

Chapter 10
&n  n-ary partial functions  182
6  a finite function  183
6  code for a finite function  6  183
f<p  least fixed point for  <P  192
fr  function  defined  by program r  196

Chapter 11
Ek  sequence of computable functions  enumerated  by <f>k  208
D  diagonal enumeration  208

Chapter 12
t{p\x)  number of steps taken  by P to compute fP{x)  213
tK:\x)  t%\x)  213

complexity classes of b  223, 233
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divergent  16
Turing  machine  53-4
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substitution  of  29-32
successor  25
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Turing-computable  55-7
universal  85-90,  171
URM-computable  16-22
URM-computed  by a program  21
zero  3,  25

Fundamental  result  of  computability  49

y,  an effective  numbering  of  URM
programs  75

gap theorem  224
generalised  recursion  theory  237
general  recursive  function  48
Godel,  K.  48,  75n,  143

incompleteness  theorem  149-55;
simplified  version  147

Godel  number  75
Gddel-Rosser  theorem  154
groups

abelian  112
finitely  presented  107
theory of  112
word problem  106-7

halting problem  102,  113
Herbrand,  J.  48
hierarchies  236
Hilbert,  D.  107,  110

tenth  problem  107,  116-17

iff  4
incompleteness  theorem  146-55
index

of  a computable  function  77
of  an  r.e.  set  124

injective  function  2
input  problem  104
instruction

effective  denumerability  of  74
next  13
oracle  167
URM,  see  URM  instructions

integers,  computability  on  24,  65-6
introspective  program  205
inverse  of  a function  90,  94
inverse  image  of  a set  2

Jeffrey,  R.  112,  156,237
joining  programs  25-28
jump instruction  11
jump

of  a degree  176-77
of  a set  177

jump,  unconditional  14

K,  the  set  {x:xeWx}  123,  134,  152,
160,  165,  209

^-algorithm  167
^-computable  167,  169
^-creative  set  173
^-partial  recursive  function  170
^-primitive  recursive  function  170
^-recursive  function  170
^-recursive  set  171
X-r.e. set  171
^-simple  set  173
Kleene,  S.  C.  48,  156

normal  form  theorem  89

Lachlan, A.  H.  180
Landweber,  L.  H.  229,  234,  238
languages

context  free  60
context  sensitive  60

least  number  operator  42-7
limited  recursion  227,  229
logic,  see  mathematical  logic
logical  notation  4-5
logical  system  58
loops  15

checking  for  102

machine  independent  217
Machover,  M.  107,  117,  156,  237
Manna,  Z.  60,  199,  238
many-one  degree  (m-degree)  162

recursive  162
r.e.  162

many-one  equivalent  (m-equivalent)  161
many-one  reducible  (m-reducible)

158-61
Margaris, A.  109
Markov, A.  A.  49,  57,  64,  67
Markov-computable  function  64-5
Markov  normal  algorithm  65
mathematical  logic

predicate  calculus  110;  validity  in
110-12

propositional  calculus  109
undecidable  problems  in  109-12

Matiyasevich,  Y.  107
theorem  107,  116,  127

m-complete  r.e.  set  165-6,  210
Mendelson,  E.  49,  52,  150,  237
minimal  degree  180
minimalisation  42-7

bounded  39,  226
computability  of  43
operator,  see  /^-operator

Minsky,  M.  L.  ix, 48,  236
monotone  operator  184
Muchnik,  A.  179
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/x-operator  43, 49,  194-5
bounded  39

/Lt-recursive  function  48,  49-51
Myhill,  J.  166

theorem  166,  210
Myhill-Shepherdson  theorem  189,  192,

209

natural  numbers  1
functions  of  3
theory  of  112,  143-56

non-deterministic  machine  238
normal  algorithm  (Markov)  65
normal  form  theorem

Kleene's  89,  227
Post's  60

normal  Post-system  60
normal  production  60
Novikov,  P.  107
numbering

computable  functions  72-84
domains  of  computable  functions  76
programs  75
ranges  of  computable  functions  76

operator  182
continuous  184
enumeration  188
monotone  184
on  partial  functions  182
partial  recursive  187
recursive  182-8

oracle  167
oracle  instruction  167
order,  partial  4
output  problem  104

IT (the  number),  computation  of  decimal
expansion  69,  126

P = NP  problem  238
palindromes  60
parametrisation  theorem  82
partial  characteristic  function  113
partial  decidability  112-20,  121
partial  decision  procedure  113
partial  function  1,  3
partial  order  4
partial  recursive  function  48,  49-51

over  an  alphabet  66
partial  recursive  functional  187
partially  decidable  predicate  112-20,  121
Peano  arithmetic  149

undecidability  of  155-6
Peano's  axioms  149
Peter,  R.  46,  52
polynomials

computing  zeros  of  108

universal  128
positive  information  topology  185
Post,  E.  48,  57,  141,  178
Post's  problem  178
Post-computable  function  62-4
Post-generable  set  60,  61
Post's  normal  form  theorem  60
Post-system  57-64

alphabet  58
axioms  58,  59
normal  60
production  59; monogenic  64;

normal  60
set  generated  by  59
strings  58
theorems  of  58,  60

predicate  4
computable  100
decidable  22-3,  100-12,  121
diophantine  116-17
elementary  225
partially  decibable  112-20,121
primitive  recursive  52
recursive  51
semi-computable  113
undecidable  23,  100-12;  see  also

undecidable  problems
predicate  calculus  110

proof  in  116
undecidability  of  validity  110-12

prime  numbers  40
primitive  recursion  34
primitive  recursive

function  45,  51-2, 91, 229,  231
predicate  52
set  122

printing problem  104
priority  method  179
problem

decidable  22-3,  100-12,  121
solvable  100
undecidable,  see  undecidable  problems

product,  bounded  38,  225
productive  set  134-7,  143,  146
program

introspective  205
recursive  196
self-reproducing  204
URM,  see  URM  program

programming  languages  60,  104,  196-9
projection  function  25
proof

by Church's thesis  68
in mathematical  logic  116,  146

propositional  calculus  109
provable  statements  144,  147-9
Putnam, H.  107,  116
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r.e.  sets  61,  118,  123-42
index  of  124
m-complete  165-6,  210
T-complete  175

range  of  a function  2
real  numbers,  theory  of  112
recursion  32-42

closure  of  <# under  34
definition  by  32-4,  195,  203
limited  227,  229
primitive  34
equations  33

Recursion  theorems
first  192-6
second  200-9

recursive  decision  problem  100
recursive  function  50

general  48
/t-recursive  48,  49-51
partial  48,  49-51

recursive  functional  187
recursive  operator  182-8
recursive  predicate  (or  relation)  51
recursive  program  196
recursive  set  121-3
recursively  decidable  100
recursively  enumerable,  see  r.e.
recursively  inseparable  sets  133

effectively  139,  152
recursively  related  measures  218
recursively  solvable  100
reducibility  102,  157-81,  236

many-one  158-61
one-one  158
Turing  157,  174-81

reducing problems  102,  157
references  5
registers  of  URM  9
relation  {see also  predicate)  4

equivalence  4
relative  computability  167-73

to  a function  x  167-9
to  a set  A  111
see  also  ^-computable,  etc.  and  A-

computable,  etc.
representation  of  numbers  by  strings  61
Rice's  theorem  105,  130,  133,  135,  203
Rice-Shapiro  theorem  130,  133,  191
Robinson,  J.  107,  116
Rogers,  H.  ix,  141,  179,  180,  209,  237
root  of  a polynomial  46,  108-9
Rosser,  J.  B.  147,  152,  156

Godel-Rosser  theorem  154
Rosser  systems  155

Sacks,  G.  179
density  theorem  179

splitting  theorem  179
search  operator,  see  pt-operator
search,  unbounded  114
searching  for  pairs  89
self-reproducing  program  204
semi-computable  113,  123
sets

computable  122
creative  121,  133,  136-40,  143,  152,

166,  210
diophantine  127
effectively  generated  58, 61,  126;  by

Post-system  60
effectively  recursively  inseparable  139
notation  for  1-2
primitive  recursive  122
productive  134-7,  143
recursive  121-3
recursively  enumerable,  see  r.e.  sets
recursively  inseparable  133
semi-computable  123
semi-recursive  123
simple  121,  140-2,  166,  179

Shapiro,  N.  130
Shepherdson,  J.  C.  9, 49,  57
Shepherdson-Myhill  theorem  189,  192,

209
Shoenfield,  J.  179,  180
simple  sets  121,  140-2,  166,  179
s-m-n  theorem  81-4,  85,  103

relativised  171
Smullyan,  R.  156
solvable,  recursively  100
Speed-up  theorem  212,  218-23
standard  form  program  26
state

of  a computation  87
of  a Turing  machine  54

step  in  a computation  50,  212-13
statements  of  arithmetic  143

true  144
false  144
provable  144,  147-9
refutable  148
undecidable  151
undecided  151

string  of  symbols  58
empty  58

Sturgis,  H.  E.  9,  49,  57
Sturm's  algorithm  108-9
Sturm's  theorem  108
subprogram  25
subroutine  25
substitution  29-32
subtraction,  program  for  18
sum, bounded  38,  225
surjection  2
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surjective  2
symbol  manipulation  57

Tarski, A.  112
theorems,  of  a Post  system  58,  60
total  function  3
T-reducibility  167,  174-81

T-complete  set  175
T-degree  175-81
T-equivalent  174

Turing,  A.  M.  48,  52,  67
Turing-computability  48,  52-7
Turing-computable  function  55-7
Turing-reducibility,  see  T-reducibility
Turing degree  175-81
Turing  machine  48,  53-5,  216

alphabet  53
computation  53-4
specification  54
state  54

Turing's  thesis  67

undecidable  predicate  (or  relation)  23,
100-12

undecidable  problems  23,  100-12
acceptance  problem  104
in  computability  101-6
in  formal  arithmetic  112,  155-6
halting  problem  102
input  problem  104
in  mathematics  106
in mathematical  logic  109-12
output  problem  104
printing  problem  104
validity  in predicate  calculus  110
word  problem  for  groups  106-7
xe  Wx  101,  102
<f>x  is  total  90
<t>x=0  103

undecidable  statement  151
undecided  statement  151
unlimited  register  machine,  see  URM

with oracle,  see  URMO
universal  function  85-90,  171
universal  polynomial  128
universal  program  85-99

for  relative  computability  171
URM

definition  of  9-16
instructions,  see  URM  instructions
operation  of  13
program,  see  URM  program

see  also  URM  computation
URM-computable  function  16-22

domain  of  17
URM  computation  11-16

convergent  16
divergent  16
final configuration  13
initial  configuration  11
next  instruction  13
state  of  87
step  in  50,  212-13
stopping  13
that  never  stops  15

URM  instructions  9-11
arithmetic  11
jump  11
successor  10
transfer  10
zero  10
summary  table  12

URM  program  9
for  addition  17
coding  of  75
concatenation  27
effective  denumerability  of  75,  206
function  computed  by  21
Godel  number  of  75
joining  programs  25-9
numbering  75
standard  form  26
subprogram  25
for  subtraction  18
universal  85-99,  171,  207

URMO  167-9
computability  169

validity,  see  predicate  calculus,
propositional  calculus

variables
dummy  31
identification  31
rearrangement  of  31

word  (in  Post  system)  58
word  problem  106

Yates,  C.  E.  M.  180
Young,  P.  222,  225,  234

zero  function  3,  25,  104
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