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11

Today’s Internet is arguably the largest engineered system ever created by  mankind, 
with hundreds of millions of connected computers, communication links, and  
switches; with billions of users who connect via laptops, tablets, and smartphones; 
and with an array of new Internet-connected “things” including game consoles, sur-
veillance systems, watches, eye glasses, thermostats, and cars. Given that the Inter-
net is so large and has so many diverse components and uses, is there any hope of 
understanding how it works? Are there guiding principles and structure that can 
provide a foundation for understanding such an amazingly large and complex sys-
tem? And if so, is it possible that it actually could be both interesting and fun to 
learn about computer networks? Fortunately, the answer to all of these questions is 
a resounding YES! Indeed, it’s our aim in this book to provide you with a modern 
introduction to the dynamic field of computer networking, giving you the princi-
ples and practical insights you’ll need to understand not only today’s networks, but 
tomorrow’s as well.

This first chapter presents a broad overview of computer networking and the 
Internet. Our goal here is to paint a broad picture and set the context for the rest 
of this book, to see the forest through the trees. We’ll cover a lot of ground in this 
introductory chapter and discuss a lot of the pieces of a computer network, without 
losing sight of the big picture.

We’ll structure our overview of computer networks in this chapter as follows. 
After introducing some basic terminology and concepts, we’ll first examine the basic 
hardware and software components that make up a network. We’ll begin at the net-
work’s edge and look at the end systems and network applications running in the 
network. We’ll then explore the core of a computer network, examining the links 

1CHAPTER

Computer 
Networks and 
the Internet

1
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2     CHAPTER 1  •  COMPUTER NETWORKS AND THE INTERNET

and the switches that transport data, as well as the access networks and physical 
media that connect end systems to the network core. We’ll learn that the Internet is 
a network of networks, and we’ll learn how these networks connect with each other.

After having completed this overview of the edge and core of a computer net-
work, we’ll take the broader and more abstract view in the second half of this chap-
ter. We’ll examine delay, loss, and throughput of data in a computer network and 
provide simple quantitative models for end-to-end throughput and delay: models 
that take into account transmission, propagation, and queuing delays. We’ll then 
introduce some of the key architectural principles in computer networking, namely, 
protocol layering and service models. We’ll also learn that computer networks are 
vulnerable to many different types of attacks; we’ll survey some of these attacks and 
consider how computer networks can be made more secure. Finally, we’ll close this 
chapter with a brief history of computer networking.

1.1 What Is the Internet?

In this book, we’ll use the public Internet, a specific computer network, as our prin-
cipal vehicle for discussing computer networks and their protocols. But what is the 
Internet? There are a couple of ways to answer this question. First, we can describe 
the nuts and bolts of the Internet, that is, the basic hardware and software components 
that make up the Internet. Second, we can describe the Internet in terms of a network-
ing infrastructure that provides services to distributed applications. Let’s begin with 
the nuts-and-bolts description, using Figure 1.1 to illustrate our discussion.

1.1.1 A Nuts-and-Bolts Description
The Internet is a computer network that interconnects billions of computing devices 
throughout the world. Not too long ago, these computing devices were primarily 
traditional desktop computers, Linux workstations, and so-called servers that store 
and transmit information such as Web pages and e-mail messages. Increasingly, 
however, users  connect to the Internet with smartphones and tablets—today, close 
to half of the world’s population are active mobile Internet users with the percentage 
expected to increase to 75% by 2025 [Statista 2019]. Furthermore, nontraditional 
Internet “things” such as TVs, gaming consoles, thermostats, home security systems, 
home appliances, watches, eye glasses, cars, traffic control systems, and more are 
being connected to the Internet. Indeed, the term computer network is beginning to 
sound a bit dated, given the many nontraditional devices that are being hooked up to 
the Internet. In Internet jargon, all of these devices are called hosts or end systems. 
By some estimates, there were about 18 billion devices connected to the Internet in 
2017, and the number will reach 28.5 billion by 2022 [Cisco VNI 2020].

M01_KURO1557_08_SE_C01.indd   2 11/02/20   10:54 AM



1.1  •  WHAT IS THE INTERNET?     3

Figure 1.1 ♦ Some pieces of the Internet

Key:

Traffic light Thermostat FridgeDatacenter Workstation

Host
(= end system)

Mobile
Computer

Base
station

Router Cell phone
tower

Smartphone
or tablet

Link-layer
switch

Server

Content Provider Network

National or
Global ISP

Datacenter Network

Datacenter Network

Mobile Network

Enterprise Network

Home Network
Local or
Regional ISP

M01_KURO1557_08_SE_C01.indd   3 11/02/20   10:54 AM



4     CHAPTER 1  •  COMPUTER NETWORKS AND THE INTERNET

End systems are connected together by a network of communication links and 
packet switches. We’ll see in Section 1.2 that there are many types of communica-
tion links, which are made up of different types of physical media, including coaxial 
cable, copper wire, optical fiber, and radio spectrum. Different links can transmit 
data at different rates, with the transmission rate of a link measured in bits/second. 
When one end system has data to send to another end system, the sending end system 
segments the data and adds header bytes to each segment. The resulting packages 
of information, known as packets in the jargon of computer networks, are then sent 
through the network to the destination end system, where they are reassembled into 
the original data.

A packet switch takes a packet arriving on one of its incoming communication 
links and forwards that packet on one of its outgoing communication links. Packet 
switches come in many shapes and flavors, but the two most prominent types in 
today’s Internet are routers and link-layer switches. Both types of switches forward 
packets toward their ultimate destinations. Link-layer switches are typically used in 
access networks, while routers are typically used in the network core. The sequence 
of communication links and packet switches traversed by a packet from the send-
ing end system to the receiving end system is known as a route or path through 
the network. Cisco predicts annual global IP traffic will reach nearly five zettabytes  
(1021 bytes) by 2022 [Cisco VNI 2020].

Packet-switched networks (which transport packets) are in many ways 
similar to transportation networks of highways, roads, and intersections (which 
transport vehicles). Consider, for example, a factory that needs to move a large 
amount of cargo to some destination warehouse located thousands of kilometers 
away. At the factory, the cargo is segmented and loaded into a fleet of trucks. 
Each of the trucks then independently travels through the network of highways, 
roads, and intersections to the destination warehouse. At the destination ware-
house, the cargo is unloaded and grouped with the rest of the cargo arriving 
from the same shipment. Thus, in many ways, packets are analogous to trucks, 
communication links are analogous to highways and roads, packet switches are 
analogous to intersections, and end systems are analogous to buildings. Just as 
a truck takes a path through the transportation network, a packet takes a path 
through a computer network.

End systems access the Internet through Internet Service Providers (ISPs), 
including residential ISPs such as local cable or telephone companies; corpo-
rate ISPs; university ISPs; ISPs that provide WiFi access in airports, hotels, cof-
fee shops, and other public places; and cellular data ISPs, providing mobile access 
to our  smartphones and other devices. Each ISP is in itself a network of packet 
switches and communication links. ISPs provide a variety of types of network access 
to the end systems, including residential broadband access such as cable modem 
or DSL, high-speed local area network access, and mobile wireless access. ISPs 
also  provide  Internet access to content providers, connecting servers directly to 
the  Internet. The Internet is all about connecting end systems to each other, so the 
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1.1  •  WHAT IS THE INTERNET?     5

ISPs that  provide access to end systems must also be interconnected. These lower-
tier ISPs are thus interconnected through national and international upper-tier ISPs 
and these upper-tier ISPs are connected  directly to each other. An upper-tier ISP 
consists of high-speed routers interconnected with high-speed fiber-optic links. Each 
ISP network, whether upper-tier or lower-tier, is managed independently, runs the 
IP protocol (see below), and conforms to certain naming and address conventions. 
We’ll examine ISPs and their interconnection more closely in Section 1.3.

End systems, packet switches, and other pieces of the Internet run protocols that 
control the sending and receiving of information within the Internet. The Transmission  
Control Protocol (TCP) and the Internet Protocol (IP) are two of the most impor-
tant protocols in the Internet. The IP protocol specifies the format of the packets 
that are sent and received among routers and end systems. The Internet’s principal 
protocols are collectively known as TCP/IP. We’ll begin looking into protocols in 
this introductory chapter. But that’s just a start—much of this book is concerned with 
networking protocols!

Given the importance of protocols to the Internet, it’s important that everyone 
agree on what each and every protocol does, so that people can create systems and 
products that interoperate. This is where standards come into play. Internet  standards 
are developed by the Internet Engineering Task Force (IETF) [IETF 2020]. The IETF 
standards documents are called requests for comments (RFCs). RFCs started out 
as general requests for comments (hence the name) to resolve network and protocol 
design problems that faced the precursor to the Internet [Allman 2011]. RFCs tend 
to be quite technical and detailed. They define protocols such as TCP, IP, HTTP (for 
the Web), and SMTP (for e-mail). There are currently nearly 9000 RFCs. Other bod-
ies also specify standards for network components, most notably for network links. 
The IEEE 802 LAN Standards Committee [IEEE 802 2020], for example, specifies 
the Ethernet and wireless WiFi standards.

1.1.2 A Services Description
Our discussion above has identified many of the pieces that make up the Internet. 
But we can also describe the Internet from an entirely different angle—namely, as 
an  infrastructure that provides services to applications. In addition to traditional 
applications such as e-mail and Web surfing, Internet applications include mobile 
smartphone and tablet applications, including Internet messaging, mapping with 
real-time road-traffic information, music streaming movie and television streaming, 
online social media, video conferencing, multi-person games, and location-based 
recommendation systems. The applications are said to be distributed applications, 
since they involve multiple end systems that exchange data with each other. Impor-
tantly, Internet applications run on end systems—they do not run in the packet 
switches in the network core. Although packet switches facilitate the exchange of 
data among end systems, they are not concerned with the application that is the 
source or sink of data.
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6     CHAPTER 1  •  COMPUTER NETWORKS AND THE INTERNET

Let’s explore a little more what we mean by an infrastructure that provides 
 services to applications. To this end, suppose you have an exciting new idea for a dis-
tributed Internet application, one that may greatly benefit humanity or one that may 
simply make you rich and famous. How might you go about transforming this idea 
into an actual Internet application? Because applications run on end systems, you are 
going to need to write programs that run on the end systems. You might, for example, 
write your programs in Java, C, or Python. Now, because you are developing a dis-
tributed Internet application, the programs running on the different end systems will 
need to send data to each other. And here we get to a central issue—one that leads 
to the alternative way of describing the Internet as a platform for applications. How 
does one program running on one end system instruct the Internet to deliver data to 
another program running on another end system?

End systems attached to the Internet provide a socket interface that speci-
fies how a program running on one end system asks the Internet infrastructure to 
deliver data to a specific destination program running on another end system. This 
Internet socket interface is a set of rules that the sending program must follow so 
that the Internet can deliver the data to the destination program. We’ll discuss the 
Internet socket interface in detail in Chapter 2. For now, let’s draw upon a simple 
analogy, one that we will frequently use in this book. Suppose Alice wants to send 
a letter to Bob using the postal service. Alice, of course, can’t just write the letter 
(the data) and drop the letter out her window. Instead, the postal service requires 
that Alice put the letter in an envelope; write Bob’s full name, address, and zip 
code in the center of the envelope; seal the envelope; put a stamp in the upper-
right-hand corner of the envelope; and finally, drop the envelope into an official 
postal service mailbox. Thus, the postal service has its own “postal service inter-
face,” or set of rules, that Alice must follow to have the postal service deliver her 
letter to Bob. In a similar manner, the Internet has a socket interface that the pro-
gram sending data must follow to have the Internet deliver the data to the program 
that will receive the data.

The postal service, of course, provides more than one service to its custom-
ers. It provides express delivery, reception confirmation, ordinary use, and many 
more services. In a similar manner, the Internet provides multiple services to its 
applications. When you develop an Internet application, you too must choose one 
of the Internet’s services for your application. We’ll describe the Internet’s ser-
vices in Chapter 2.

We have just given two descriptions of the Internet; one in terms of its hardware 
and software components, the other in terms of an infrastructure for providing ser-
vices to distributed applications. But perhaps you are still confused as to what the 
Internet is. What are packet switching and TCP/IP? What are routers? What kinds of 
communication links are present in the Internet? What is a distributed application? 
How can a thermostat or body scale be attached to the Internet? If you feel a bit over-
whelmed by all of this now, don’t worry—the purpose of this book is to introduce 
you to both the nuts and bolts of the Internet and the principles that govern how and 
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1.1  •  WHAT IS THE INTERNET?     7

why it works. We’ll explain these important terms and questions in the following 
sections and chapters.

1.1.3 What Is a Protocol?
Now that we’ve got a bit of a feel for what the Internet is, let’s consider another 
important buzzword in computer networking: protocol. What is a protocol? What 
does a protocol do?

A Human Analogy

It is probably easiest to understand the notion of a computer network protocol by 
first considering some human analogies, since we humans execute protocols all of 
the time. Consider what you do when you want to ask someone for the time of day. 
A typical exchange is shown in Figure 1.2. Human protocol (or good manners, at 

Figure 1.2 ♦ A human protocol and a computer network protocol
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8     CHAPTER 1  •  COMPUTER NETWORKS AND THE INTERNET

least) dictates that one first offer a greeting (the first “Hi” in Figure 1.2) to initiate 
communication with someone else. The typical response to a “Hi” is a returned 
“Hi” message. Implicitly, one then takes a cordial “Hi” response as an indication 
that one can proceed and ask for the time of day. A different response to the initial 
“Hi” (such as “Don’t bother me!” or “I don’t speak English,” or some unprintable 
reply) might indicate an unwillingness or inability to communicate. In this case, 
the human protocol would be not to ask for the time of day. Sometimes one gets no 
response at all to a question, in which case one typically gives up asking that person 
for the time. Note that in our human protocol, there are specific messages we send, 
and specific actions we take in response to the received reply messages or other 
events (such as no reply within some given amount of time). Clearly, transmitted 
and received messages, and actions taken when these messages are sent or received 
or other events occur, play a central role in a human protocol. If people run differ-
ent protocols (for example, if one person has manners but the other does not, or if 
one understands the concept of time and the other does not) the protocols do not 
interoperate and no useful work can be accomplished. The same is true in network-
ing—it takes two (or more) communicating entities running the same protocol in 
order to accomplish a task.

Let’s consider a second human analogy. Suppose you’re in a college class (a 
computer networking class, for example!). The teacher is droning on about protocols 
and you’re confused. The teacher stops to ask, “Are there any questions?” (a message 
that is transmitted to, and received by, all students who are not sleeping). You raise 
your hand (transmitting an implicit message to the teacher). Your teacher acknowl-
edges you with a smile, saying “Yes . . .” (a transmitted message encouraging you 
to ask your question—teachers love to be asked questions), and you then ask your 
question (that is, transmit your message to your teacher). Your teacher hears your 
question (receives your question message) and answers (transmits a reply to you). 
Once again, we see that the transmission and receipt of messages, and a set of con-
ventional actions taken when these messages are sent and received, are at the heart 
of this question-and-answer protocol.

Network Protocols

A network protocol is similar to a human protocol, except that the entities exchang-
ing messages and taking actions are hardware or software components of some 
device (for example, computer, smartphone, tablet, router, or other network-capable 
device). All activity in the Internet that involves two or more communicating remote 
entities is governed by a protocol. For example, hardware-implemented protocols in 
two physically connected computers control the flow of bits on the “wire” between 
the two network interface cards; congestion-control protocols in end systems control 
the rate at which packets are transmitted between sender and receiver; protocols in 
routers determine a packet’s path from source to destination. Protocols are running 
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1.2  •  THE NETWORK EDGE     9

everywhere in the Internet, and consequently much of this book is about computer 
network protocols.

As an example of a computer network protocol with which you are probably 
familiar, consider what happens when you make a request to a Web server, that 
is, when you type the URL of a Web page into your Web browser. The scenario is 
illustrated in the right half of Figure 1.2. First, your computer will send a connec-
tion request message to the Web server and wait for a reply. The Web server will 
eventually receive your connection request message and return a connection reply 
message. Knowing that it is now OK to request the Web document, your computer 
then sends the name of the Web page it wants to fetch from that Web server in a 
GET message. Finally, the Web server returns the Web page (file) to your computer.

Given the human and networking examples above, the exchange of messages 
and the actions taken when these messages are sent and received are the key defining 
elements of a protocol:

A protocol defines the format and the order of messages exchanged between two 
or more communicating entities, as well as the actions taken on the transmission 
and/or receipt of a message or other event.

The Internet, and computer networks in general, make extensive use of pro-
tocols. Different protocols are used to accomplish different communication tasks. 
As you read through this book, you will learn that some protocols are simple and 
straightforward, while others are complex and intellectually deep. Mastering the 
field of computer networking is equivalent to understanding the what, why, and how 
of networking protocols.

1.2 The Network Edge

In the previous section, we presented a high-level overview of the Internet and 
 networking protocols. We are now going to delve a bit more deeply into the com-
ponents of the Internet. We begin in this section at the edge of the network and 
look at the components with which we are most  familiar—namely, the computers, 
smartphones and other devices that we use on a daily basis. In the next section, we’ll 
move from the network edge to the network core and examine switching and routing 
in computer networks.

Recall from the previous section that in computer networking jargon, the com-
puters and other devices connected to the Internet are often referred to as end sys-
tems. They are referred to as end systems because they sit at the edge of the Internet,  
as shown in Figure 1.3. The Internet’s end systems include desktop computers  

M01_KURO1557_08_SE_C01.indd   9 11/02/20   10:54 AM



10     CHAPTER 1  •  COMPUTER NETWORKS AND THE INTERNET

Figure 1.3 ♦ End-system interaction
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(e.g., desktop PCs, Macs, and Linux boxes), servers (e.g., Web and e-mail servers),  
and mobile devices (e.g., laptops, smartphones, and tablets). Furthermore, an 
increasing number of non-traditional “things” are being attached to the Internet as 
end  systems (see the Case History feature).

End systems are also referred to as hosts because they host (that is, run) appli-
cation programs such as a Web browser program, a Web server program, an e-mail 
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client program, or an e-mail server program. Throughout this book we will use the 
terms hosts and end systems interchangeably; that is, host = end system. Hosts 
are sometimes further divided into two categories: clients and servers. Infor-
mally, clients tend to be desktops, laptops, smartphones, and so on, whereas 
servers tend to be more powerful machines that store and distribute Web pages, 
stream video, relay e-mail, and so on. Today, most of the servers from which we 
receive search results, e-mail, Web pages, videos and mobile app content reside 
in large data centers. For example, as of 2020, Google has 19 data centers on four 
continents, collectively containing several million servers. Figure 1.3 includes 
two such data centers, and the Case History sidebar describes data centers in 
more detail.

DATA CENTERS AND CLOUD COMPUTING

Internet companies such as Google, Microsoft, Amazon, and Alibaba have built 
massive data centers, each housing tens to hundreds of thousands of hosts. These 
data centers are not only connected to the Internet, as shown in Figure 1.1, but also 
internally include complex computer networks that interconnect the datacenter’s hosts. 
The data centers are the engines behind the Internet applications that we use on a 
daily basis.

Broadly speaking, data centers serve three purposes, which we describe here in 
the context of Amazon for concreteness. First, they serve Amazon e-commerce pages 
to users, for example, pages describing products and purchase information. Second, 
they serve as massively parallel computing infrastructures for Amazon-specific data 
processing tasks. Third, they provide cloud computing to other companies. Indeed, 
today a major trend in computing is for companies to use a cloud provider such as 
Amazon to handle essentially all of their IT needs. For example, Airbnb and many 
other Internet-based companies do not own and manage their own data centers but 
instead run their entire Web-based services in the Amazon cloud, called Amazon 
Web Services (AWS).

The worker bees in a data center are the hosts. They serve content (e.g., Web 
pages and videos), store e-mails and documents, and collectively perform massively 
distributed computations. The hosts in data centers, called blades and resembling 
pizza boxes, are generally commodity hosts that include CPU, memory, and disk 
storage. The hosts are stacked in racks, with each rack typically having 20 to 
40 blades. The racks are then interconnected using sophisticated and evolving data 
center network designs. Data center networks are discussed in greater detail in 
Chapter 6.

CASE HISTORY
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12     CHAPTER 1  •  COMPUTER NETWORKS AND THE INTERNET

1.2.1 Access Networks
Having considered the applications and end systems at the “edge of the network,” 
let’s next consider the access network—the network that physically connects an end 
system to the first router (also known as the “edge router”) on a path from the end 
system to any other distant end system. Figure 1.4 shows several types of access 

Figure 1.4 ♦ Access networks
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networks with thick, shaded lines and the settings (home, enterprise, and wide-area 
mobile wireless) in which they are used.

Home Access: DSL, Cable, FTTH, and 5G Fixed Wireless

As of 2020, more than 80% of the households in Europe and the USA have Internet 
access [Statista 2019]. Given this widespread use of home access networks let’s begin 
our overview of access networks by considering how homes connect to the Internet.

Today, the two most prevalent types of broadband residential access are 
digital subscriber line (DSL) and cable. A residence typically obtains DSL 
Internet access from the same local telephone company (telco) that provides its 
wired local phone access. Thus, when DSL is used, a customer’s telco is also 
its ISP. As shown in Figure 1.5, each customer’s DSL modem uses the existing 
telephone line exchange data with a digital subscriber line access multiplexer 
(DSLAM) located in the telco’s local central office (CO). The home’s DSL 
modem takes digital data and translates it to high- frequency tones for transmis-
sion over telephone wires to the CO; the analog signals from many such houses 
are translated back into digital format at the DSLAM.

The residential telephone line carries both data and traditional telephone signals 
simultaneously, which are encoded at different frequencies:

• A high-speed downstream channel, in the 50 kHz to 1 MHz band

• A medium-speed upstream channel, in the 4 kHz to 50 kHz band

• An ordinary two-way telephone channel, in the 0 to 4 kHz band

This approach makes the single DSL link appear as if there were three separate 
links, so that a telephone call and an Internet connection can share the DSL link at 

Figure 1.5 ♦ DSL Internet access
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the same time. (We’ll describe this technique of frequency-division multiplexing 
in Section 1.3.1.) On the customer side, a splitter separates the data and telephone 
signals arriving to the home and forwards the data signal to the DSL modem. On the 
telco side, in the CO, the DSLAM separates the data and phone signals and sends 
the data into the Internet. Hundreds or even thousands of households connect to a 
single DSLAM.

The DSL standards define multiple transmission rates, including downstream 
transmission rates of 24 Mbs and 52 Mbs, and upstream rates of 3.5 Mbps and 
16 Mbps; the newest standard provides for aggregate upstream plus downstream 
rates of 1 Gbps [ITU 2014]. Because the downstream and upstream rates are dif-
ferent, the access is said to be asymmetric. The actual downstream and upstream 
transmission rates achieved may be less than the rates noted above, as the DSL 
provider may purposefully limit a residential rate when tiered service (different 
rates, available at different prices) are offered. The maximum rate is also limited 
by the distance between the home and the CO, the gauge of the twisted-pair line 
and the degree of electrical interference. Engineers have expressly designed DSL 
for short distances between the home and the CO; generally, if the residence is not 
located within 5 to 10 miles of the CO, the residence must resort to an alternative 
form of Internet access.

While DSL makes use of the telco’s existing local telephone infrastructure, 
cable Internet access makes use of the cable television company’s existing cable 
television infrastructure. A residence obtains cable Internet access from the same 
company that provides its cable television. As illustrated in Figure 1.6, fiber optics 

Figure 1.6 ♦ A hybrid fiber-coaxial access network
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connect the cable head end to neighborhood-level junctions, from which tradi-
tional coaxial cable is then used to reach individual houses and apartments. Each 
neighborhood junction typically supports 500 to 5,000 homes. Because both fiber 
and coaxial cable are employed in this system, it is often referred to as hybrid fiber 
coax (HFC).

Cable internet access requires special modems, called cable modems. As 
with a DSL modem, the cable modem is typically an external device and con-
nects to the home PC through an Ethernet port. (We will discuss Ethernet in 
great detail in Chapter 6.) At the cable head end, the cable modem termination 
system (CMTS) serves a similar function as the DSL network’s DSLAM—
turning the analog signal sent from the cable modems in many downstream 
homes back into digital format. Cable modems divide the HFC network into two 
channels, a downstream and an upstream channel. As with DSL, access is typi-
cally asymmetric, with the downstream channel typically allocated a higher 
transmission rate than the upstream channel. The DOCSIS 2.0 and 3.0 standards 
define downstream bitrates of 40 Mbps and 1.2 Gbps, and upstream rates 
of 30 Mbps and 100 Mbps, respectively. As in the case of DSL networks, the 
 maximum achievable rate may not be realized due to lower contracted data rates 
or media impairments.

One important characteristic of cable Internet access is that it is a shared broad-
cast medium. In particular, every packet sent by the head end travels downstream on 
every link to every home and every packet sent by a home travels on the upstream 
channel to the head end. For this reason, if several users are simultaneously down-
loading a video file on the downstream channel, the actual rate at which each user 
receives its video file will be significantly lower than the aggregate cable down-
stream rate. On the other hand, if there are only a few active users and they are all 
Web surfing, then each of the users may actually receive Web pages at the full cable 
downstream rate, because the users will rarely request a Web page at exactly the 
same time. Because the upstream channel is also shared, a distributed multiple access 
protocol is needed to coordinate transmissions and avoid collisions. (We’ll discuss 
this collision issue in some detail in Chapter 6.)

Although DSL and cable networks currently represent the majority of residential 
broadband access in the United States, an up-and-coming technology that provides 
even higher speeds is fiber to the home (FTTH) [Fiber Broadband 2020]. As the 
name suggests, the FTTH concept is simple—provide an optical fiber path from 
the CO directly to the home. FTTH can potentially provide Internet access rates in 
the gigabits per second range.

There are several competing technologies for optical distribution from the CO 
to the homes. The simplest optical distribution network is called direct fiber, with 
one fiber leaving the CO for each home. More commonly, each fiber leaving the 
central office is actually shared by many homes; it is not until the fiber gets rela-
tively close to the homes that it is split into individual customer-specific fibers. 
There are two competing optical-distribution network architectures that perform 

M01_KURO1557_08_SE_C01.indd   15 11/02/20   10:54 AM
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this splitting: active optical networks (AONs) and passive optical networks (PONs). 
AON is essentially switched Ethernet, which is discussed in Chapter 6.

Here, we briefly discuss PON, which is used in Verizon’s FiOS service. 
Figure 1.7 shows FTTH using the PON distribution architecture. Each home has 
an optical network terminator (ONT), which is connected by dedicated optical 
fiber to a neighborhood splitter. The splitter combines a number of homes (typi-
cally less than 100) onto a single, shared optical fiber, which connects to an optical 
line  terminator (OLT) in the telco’s CO. The OLT, providing conversion between 
optical and electrical signals, connects to the Internet via a telco router. At home, 
users connect a home router (typically a wireless router) to the ONT and access the 
 Internet via this home router. In the PON architecture, all packets sent from OLT to 
the splitter are replicated at the splitter (similar to a cable head end).

In addition to DSL, Cable, and FTTH, 5G fixed wireless is beginning to be 
deployed. 5G fixed wireless not only promises high-speed residential access, but 
will do so without installing costly and failure-prone cabling from the telco’s 
CO to the home. With 5G fixed wireless, using beam-forming technology, data 
is sent wirelessly from a provider’s base station to the a modem in the home. 
A WiFi wireless router is connected to the modem (possibly bundled together), 
similar to how a WiFi wireless router is connected to a cable or DSL modem. 
5G cellular networks are covered in Chapter 7.

Access in the Enterprise (and the Home): Ethernet and WiFi

On corporate and university campuses, and increasingly in home settings, a local 
area network (LAN) is used to connect an end system to the edge router. Although 
there are many types of LAN technologies, Ethernet is by far the most preva-
lent access technology in corporate, university, and home networks. As shown in 

Figure 1.7 ♦ FTTH Internet access
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Figure 1.8, Ethernet users use twisted-pair copper wire to connect to an Ethernet 
switch, a  technology discussed in detail in Chapter 6. The Ethernet switch, or a 
network of such interconnected switches, is then in turn connected into the larger 
Internet. With Ethernet access, users typically have 100 Mbps to tens of Gbps 
access to the Ethernet switch, whereas servers may have 1 Gbps 10 Gbps access.

Increasingly, however, people are accessing the Internet wirelessly from lap-
tops, smartphones, tablets, and other “things”. In a wireless LAN setting, wireless 
users transmit/receive packets to/from an access point that is connected into the 
enterprise’s network (most likely using wired Ethernet), which in turn is connected 
to the wired Internet. A wireless LAN user must typically be within a few tens of 
meters of the access point. Wireless LAN access based on IEEE 802.11 technol-
ogy, more colloquially known as WiFi, is now just about everywhere—universities, 
business offices, cafes, airports, homes, and even in airplanes. As discussed in detail 
in Chapter 7, 802.11 today provides a shared transmission rate of up to more than 
100 Mbps.

Even though Ethernet and WiFi access networks were initially deployed in 
enterprise (corporate, university) settings, they are also common components of 
home networks. Many homes combine broadband residential access (that is, cable 
modems or DSL) with these inexpensive wireless LAN technologies to create pow-
erful home networks Figure 1.9 shows a typical home network. This home network 
consists of a roaming laptop, multiple Internet-connected home appliances, as well 
as a wired PC; a base station (the wireless access point), which communicates with 
the wireless PC and other wireless devices in the home; and a home router that con-
nects the wireless access point, and any other wired home devices, to the Internet. 
This network allows household members to have broadband access to the Internet 
with one member roaming from the kitchen to the backyard to the bedrooms.

Figure 1.8 ♦ Ethernet Internet access
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Wide-Area Wireless Access: 3G and LTE 4G and 5G

Mobile devices such as iPhones and Android devices are being used to message, share 
photos in social networks, make mobile payments, watch movies, stream music, and 
much more while on the run. These devices employ the same wireless infrastructure 
used for cellular telephony to send/receive packets through a base station that is oper-
ated by the cellular network provider. Unlike WiFi, a user need only be within a few 
tens of kilometers (as opposed to a few tens of meters) of the base station.

Telecommunications companies have made enormous investments in so-called 
fourth-generation (4G) wireless, which provides real-world download speeds of up to 
60 Mbps. But even higher-speed wide-area access technologies—a fifth-generation 
(5G) of wide-area wireless networks—are already being deployed. We’ll cover the 
basic principles of wireless networks and mobility, as well as WiFi, 4G and 5G tech-
nologies (and more!) in Chapter 7.

1.2.2 Physical Media
In the previous subsection, we gave an overview of some of the most important 
network access technologies in the Internet. As we described these technologies, 
we also indicated the physical media used. For example, we said that HFC uses a 
combination of fiber cable and coaxial cable. We said that DSL and Ethernet use 
copper wire. And we said that mobile access networks use the radio spectrum. In this 
subsection, we provide a brief overview of these and other transmission media that 
are commonly used in the Internet.

In order to define what is meant by a physical medium, let us reflect on the 
brief life of a bit. Consider a bit traveling from one end system, through a series 
of links and routers, to another end system. This poor bit gets kicked around 
and transmitted many, many times! The source end system first transmits the 

Figure 1.9 ♦ A typical home network
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bit, and shortly thereafter the first router in the series receives the bit; the first 
router then transmits the bit, and shortly thereafter the second router receives the 
bit; and so on. Thus our bit, when traveling from source to destination, passes 
through a series of transmitter-receiver pairs. For each transmitter-receiver pair, 
the bit is sent by propagating electromagnetic waves or optical pulses across a 
physical medium. The physical medium can take many shapes and forms and 
does not have to be of the same type for each transmitter-receiver pair along 
the path. Examples of physical media include twisted-pair copper wire, coaxial 
cable, multimode fiber-optic cable, terrestrial radio spectrum, and satellite radio 
spectrum. Physical media fall into two categories: guided media and unguided 
media. With guided media, the waves are guided along a solid medium, such as 
a fiber-optic cable, a twisted-pair copper wire, or a coaxial cable. With unguided 
media, the waves propagate in the atmosphere and in outer space, such as in a 
wireless LAN or a digital satellite channel.

But before we get into the characteristics of the various media types, let us say a 
few words about their costs. The actual cost of the physical link (copper wire, fiber-
optic cable, and so on) is often relatively minor compared with other networking 
costs. In particular, the labor cost associated with the installation of the physical link 
can be orders of magnitude higher than the cost of the material. For this reason, many 
builders install twisted pair, optical fiber, and coaxial cable in every room in a build-
ing. Even if only one medium is initially used, there is a good chance that another 
medium could be used in the near future, and so money is saved by not having to lay 
additional wires in the future.

Twisted-Pair Copper Wire

The least expensive and most commonly used guided transmission medium is 
twisted-pair copper wire. For over a hundred years it has been used by telephone 
networks. In fact, more than 99 percent of the wired connections from the telephone 
handset to the local telephone switch use twisted-pair copper wire. Most of us have 
seen twisted pair in our homes (or those of our parents or grandparents!) and work 
environments. Twisted pair consists of two insulated copper wires, each about 1 mm 
thick, arranged in a regular spiral pattern. The wires are twisted together to reduce the 
electrical interference from similar pairs close by. Typically, a number of pairs are 
bundled together in a cable by wrapping the pairs in a protective shield. A wire pair 
constitutes a single communication link. Unshielded twisted pair (UTP) is com-
monly used for computer networks within a building, that is, for LANs. Data rates 
for LANs using twisted pair today range from 10 Mbps to 10 Gbps. The data rates 
that can be achieved depend on the thickness of the wire and the distance between 
transmitter and receiver.

When fiber-optic technology emerged in the 1980s, many people dispar-
aged twisted pair because of its relatively low bit rates. Some people even felt 
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that fiber-optic technology would completely replace twisted pair. But twisted 
pair did not give up so easily. Modern twisted-pair technology, such as category 
6a cable, can achieve data rates of 10 Gbps for distances up to a hundred meters. 
In the end, twisted pair has emerged as the dominant solution for high-speed 
LAN networking.

As discussed earlier, twisted pair is also commonly used for residential Inter-
net access. We saw that dial-up modem technology enables access at rates of up to 
56 kbps over twisted pair. We also saw that DSL (digital subscriber line) technology 
has enabled residential users to access the Internet at tens of Mbps over twisted pair 
(when users live close to the ISP’s central office).

Coaxial Cable

Like twisted pair, coaxial cable consists of two copper conductors, but the two con-
ductors are concentric rather than parallel. With this construction and special insula-
tion and shielding, coaxial cable can achieve high data transmission rates. Coaxial 
cable is quite common in cable television systems. As we saw earlier, cable televi-
sion systems have recently been coupled with cable modems to provide residential 
users with Internet access at rates of hundreds of Mbps. In cable television and cable 
Internet access, the transmitter shifts the digital signal to a specific frequency band, 
and the resulting analog signal is sent from the transmitter to one or more receivers. 
Coaxial cable can be used as a guided shared medium. Specifically, a number of 
end systems can be connected directly to the cable, with each of the end systems 
receiving whatever is sent by the other end systems.

Fiber Optics

An optical fiber is a thin, flexible medium that conducts pulses of light, with each 
pulse representing a bit. A single optical fiber can support tremendous bit rates, up 
to tens or even hundreds of gigabits per second. They are immune to electromagnetic 
interference, have very low signal attenuation up to 100 kilometers, and are very hard 
to tap. These characteristics have made fiber optics the preferred long-haul guided 
transmission media, particularly for overseas links. Many of the long-distance tele-
phone networks in the United States and elsewhere now use fiber optics exclusively. 
Fiber optics is also prevalent in the backbone of the Internet. However, the high cost 
of optical devices—such as transmitters, receivers, and switches—has hindered their 
deployment for short-haul transport, such as in a LAN or into the home in a resi-
dential access network. The Optical Carrier (OC) standard link speeds range from 
51.8 Mbps to 39.8 Gbps; these specifications are often referred to as OC-n, where 
the link speed equals n × 51.8 Mbps. Standards in use today include OC-1, OC-3, 
OC-12, OC-24, OC-48, OC-96, OC-192, OC-768.
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Terrestrial Radio Channels

Radio channels carry signals in the electromagnetic spectrum. They are an attrac-
tive medium because they require no physical wire to be installed, can penetrate 
walls, provide connectivity to a mobile user, and can potentially carry a signal 
for long distances. The characteristics of a radio channel depend significantly 
on the propagation environment and the distance over which a signal is to be 
carried. Environmental considerations determine path loss and shadow fad-
ing (which decrease the signal strength as the signal travels over a distance and 
around/through obstructing objects), multipath fading (due to signal reflection off 
of interfering objects), and interference (due to other transmissions and electro-
magnetic signals).

Terrestrial radio channels can be broadly classified into three groups: those that 
operate over very short distance (e.g., with one or two meters); those that operate in 
local areas, typically spanning from ten to a few hundred meters; and those that oper-
ate in the wide area, spanning tens of kilometers. Personal devices such as wireless 
headsets, keyboards, and medical devices operate over short distances; the wireless 
LAN technologies described in Section 1.2.1 use local-area radio channels; the cel-
lular access technologies use wide-area radio channels. We’ll discuss radio channels 
in detail in Chapter 7.

Satellite Radio Channels

A communication satellite links two or more Earth-based microwave transmitter/ 
receivers, known as ground stations. The satellite receives transmissions on 
one frequency band, regenerates the signal using a repeater (discussed below), 
and transmits the signal on another frequency. Two types of satellites are used 
in  communications: geostationary satellites and low-earth orbiting (LEO) 
satellites.

Geostationary satellites permanently remain above the same spot on Earth. 
This stationary presence is achieved by placing the satellite in orbit at 36,000 kilo-
meters above Earth’s surface. This huge distance from ground station through 
satellite back to ground station introduces a substantial signal propagation delay 
of 280 milliseconds. Nevertheless, satellite links, which can operate at speeds of 
hundreds of Mbps, are often used in areas without access to DSL or cable-based 
Internet access.

LEO satellites are placed much closer to Earth and do not remain permanently 
above one spot on Earth. They rotate around Earth (just as the Moon does) and may 
communicate with each other, as well as with ground stations. To provide continuous 
coverage to an area, many satellites need to be placed in orbit. There are currently  
many low-altitude communication systems in development. LEO satellite  technology 
may be used for Internet access sometime in the future.
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Figure 1.10 ♦ The network core
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1.3 The Network Core

Having examined the Internet’s edge, let us now delve more deeply inside the 
network core—the mesh of packet switches and links that interconnects the 
Internet’s end systems. Figure 1.10 highlights the network core with thick, 
shaded lines.
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1.3.1 Packet Switching
In a network application, end systems exchange messages with each other. Mes-
sages can contain anything the application designer wants. Messages may perform 
a control function (for example, the “Hi” messages in our handshaking example in 
Figure 1.2) or can contain data, such as an e-mail message, a JPEG image, or an 
MP3 audio file. To send a message from a source end system to a destination end 
system, the source breaks long messages into smaller chunks of data known as pack-
ets. Between source and destination, each packet travels through communication 
links and packet switches (for which there are two predominant types, routers and 
link-layer switches). Packets are transmitted over each communication link at a rate 
equal to the full transmission rate of the link. So, if a source end system or a packet 
switch is sending a packet of L bits over a link with transmission rate R bits/sec, then 
the time to transmit the packet is L / R seconds.

Store-and-Forward Transmission

Most packet switches use store-and-forward transmission at the inputs to the 
links. Store-and-forward transmission means that the packet switch must receive 
the entire packet before it can begin to transmit the first bit of the packet onto the 
outbound link. To explore store-and-forward transmission in more detail, consider 
a simple network consisting of two end systems connected by a single router, as 
shown in Figure 1.11. A router will typically have many incident links, since its 
job is to switch an incoming packet onto an outgoing link; in this simple example, 
the router has the rather simple task of transferring a packet from one (input) link 
to the only other attached link. In this example, the source has three packets, each 
consisting of L bits, to send to the destination. At the snapshot of time shown in 
Figure 1.11, the source has transmitted some of packet 1, and the front of packet 1 
has already arrived at the router. Because the router employs store-and-forwarding, 
at this instant of time, the router cannot transmit the bits it has received; instead it 
must first buffer (i.e., “store”) the packet’s bits. Only after the router has received 
all of the packet’s bits can it begin to transmit (i.e., “forward”) the packet onto the 
outbound link. To gain some insight into store-and-forward transmission, let’s now 
calculate the amount of time that elapses from when the source begins to send the 
packet until the destination has received the entire packet. (Here we will ignore 
propagation delay—the time it takes for the bits to travel across the wire at near 
the speed of light—which will be discussed in Section 1.4.) The source begins to 
transmit at time 0; at time L/R seconds, the source has transmitted the entire packet, 
and the entire packet has been received and stored at the router (since there is no 
propagation delay). At time L/R seconds, since the router has just received the entire 
packet, it can begin to transmit the packet onto the outbound link towards the des-
tination; at time 2L/R, the router has transmitted the entire packet, and the entire 
packet has been received by the destination. Thus, the total delay is 2L/R. If the 
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switch instead forwarded bits as soon as they arrive (without first receiving the entire 
packet), then the total delay would be L/R since bits are not held up at the router. 
But, as we will discuss in Section 1.4, routers need to receive, store, and process the 
entire packet before forwarding.

Now let’s calculate the amount of time that elapses from when the source begins 
to send the first packet until the destination has received all three packets. As before, 
at time L/R, the router begins to forward the first packet. But also at time L/R the 
source will begin to send the second packet, since it has just finished sending the 
entire first packet. Thus, at time 2L/R, the destination has received the first packet 
and the router has received the second packet. Similarly, at time 3L/R, the destina-
tion has received the first two packets and the router has received the third packet. 
Finally, at time 4L/R the destination has received all three packets!

Let’s now consider the general case of sending one packet from source to des-
tination over a path consisting of N links each of rate R (thus, there are N-1 routers 
between source and destination). Applying the same logic as above, we see that the 
end-to-end delay is:

 dend@to@end = N 
L
R

 (1.1)

You may now want to try to determine what the delay would be for P packets sent 
over a series of N links.

Queuing Delays and Packet Loss

Each packet switch has multiple links attached to it. For each attached link, the 
packet switch has an output buffer (also called an output queue), which stores 
packets that the router is about to send into that link. The output buffers play a key 
role in packet switching. If an arriving packet needs to be transmitted onto a link but 
finds the link busy with the transmission of another packet, the arriving packet must 
wait in the output buffer. Thus, in addition to the store-and-forward delays, packets 
suffer output buffer queuing delays. These delays are variable and depend on the 

Figure 1.11 ♦ Store-and-forward packet switching
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level of congestion in the network. Since the amount of buffer space is finite, an 
arriving packet may find that the buffer is completely full with other packets waiting 
for transmission. In this case, packet loss will occur—either the arriving packet or 
one of the already-queued packets will be dropped.

Figure 1.12 illustrates a simple packet-switched network. As in Figure 1.11, 
packets are represented by three-dimensional slabs. The width of a slab represents 
the number of bits in the packet. In this figure, all packets have the same width and 
hence the same length. Suppose Hosts A and B are sending packets to Host E. Hosts 
A and B first send their packets along 100 Mbps Ethernet links to the first router. 
The router then directs these packets to the 15 Mbps link. If, during a short interval 
of time, the arrival rate of packets to the router (when converted to bits per second) 
exceeds 15 Mbps, congestion will occur at the router as packets queue in the link’s 
output buffer before being transmitted onto the link. For example, if Host A and B 
each send a burst of five packets back-to-back at the same time, then most of these 
packets will spend some time waiting in the queue. The situation is, in fact, entirely 
analogous to many common-day situations—for example, when we wait in line for a 
bank teller or wait in front of a tollbooth. We’ll examine this queuing delay in more 
detail in Section 1.4.

Forwarding Tables and Routing Protocols

Earlier, we said that a router takes a packet arriving on one of its attached com-
munication links and forwards that packet onto another one of its attached 
communication links. But how does the router determine which link it should 

Figure 1.12 ♦ Packet switching
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forward the packet onto? Packet forwarding is actually done in different ways in 
different types of computer networks. Here, we briefly describe how it is done 
in the Internet.

In the Internet, every end system has an address called an IP address. When 
a source end system wants to send a packet to a destination end system, the 
source includes the destination’s IP address in the packet’s header. As with postal 
addresses, this address has a hierarchical structure. When a packet arrives at a router 
in the network, the router examines a portion of the packet’s destination address 
and forwards the packet to an adjacent router. More specifically, each router has 
a forwarding table that maps destination addresses (or portions of the destination 
addresses) to that router’s outbound links. When a packet arrives at a router, the 
router examines the address and searches its forwarding table, using this destination 
address, to find the appropriate outbound link. The router then directs the packet to 
this outbound link.

The end-to-end routing process is analogous to a car driver who does not 
use maps but instead prefers to ask for directions. For example, suppose Joe is 
driving from Philadelphia to 156 Lakeside Drive in Orlando, Florida. Joe first 
drives to his neighborhood gas station and asks how to get to 156 Lakeside Drive 
in Orlando, Florida. The gas station attendant extracts the Florida portion of the 
address and tells Joe that he needs to get onto the interstate highway I-95 South, 
which has an entrance just next to the gas station. He also tells Joe that once he 
enters Florida, he should ask someone else there. Joe then takes I-95 South until he 
gets to Jacksonville, Florida, at which point he asks another gas station attendant 
for directions. The attendant extracts the Orlando portion of the address and tells 
Joe that he should continue on I-95 to Daytona Beach and then ask someone else. 
In Daytona Beach, another gas station attendant also extracts the Orlando portion 
of the address and tells Joe that he should take I-4 directly to Orlando. Joe takes 
I-4 and gets off at the Orlando exit. Joe goes to another gas station attendant, and 
this time the attendant extracts the Lakeside Drive portion of the address and tells 
Joe the road he must follow to get to Lakeside Drive. Once Joe reaches Lakeside 
Drive, he asks a kid on a bicycle how to get to his destination. The kid extracts the 
156 portion of the address and points to the house. Joe finally reaches his ultimate 
destination. In the above analogy, the gas station attendants and kids on bicycles 
are analogous to routers.

We just learned that a router uses a packet’s destination address to index a for-
warding table and determine the appropriate outbound link. But this statement begs 
yet another question: How do forwarding tables get set? Are they configured by hand 
in each and every router, or does the Internet use a more automated procedure? This 
issue will be studied in depth in Chapter 5. But to whet your appetite here, we’ll note 
now that the Internet has a number of special routing protocols that are used to auto-
matically set the forwarding tables. A routing protocol may, for example, determine 
the shortest path from each router to each destination and use the shortest path results 
to configure the forwarding tables in the routers.
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1.3.2 Circuit Switching
There are two fundamental approaches to moving data through a network of links 
and switches: circuit switching and packet switching. Having covered packet-
switched networks in the previous subsection, we now turn our attention to circuit-
switched networks.

In circuit-switched networks, the resources needed along a path (buffers, link 
transmission rate) to provide for communication between the end systems are 
reserved for the duration of the communication session between the end systems.  
In packet-switched networks, these resources are not reserved; a session’s messages 
use the resources on demand and, as a consequence, may have to wait (that is, queue) 
for access to a communication link. As a simple analogy, consider two restaurants, 
one that requires reservations and another that neither requires reservations nor 
accepts them. For the restaurant that requires reservations, we have to go through 
the hassle of calling before we leave home. But when we arrive at the restaurant we 
can, in principle, immediately be seated and order our meal. For the restaurant that 
does not require reservations, we don’t need to bother to reserve a table. But when 
we arrive at the restaurant, we may have to wait for a table before we can be seated.

Traditional telephone networks are examples of circuit-switched networks. 
 Consider what happens when one person wants to send information (voice or facsimile)  
to another over a telephone network. Before the sender can send the information, 
the network must establish a connection between the sender and the receiver. This 
is a bona fide connection for which the switches on the path between the sender and 
receiver maintain connection state for that connection. In the jargon of telephony, 
this connection is called a circuit. When the network establishes the circuit, it also 
reserves a constant transmission rate in the network’s links (representing a fraction 
of each link’s transmission capacity) for the duration of the connection. Since a given 
transmission rate has been reserved for this sender-to-receiver connection, the sender 
can transfer the data to the receiver at the guaranteed constant rate.

Figure 1.13 illustrates a circuit-switched network. In this network, the four 
circuit switches are interconnected by four links. Each of these links has four cir-
cuits, so that each link can support four simultaneous connections. The hosts (for 
example, PCs and workstations) are each directly connected to one of the switches. 
When two hosts want to communicate, the network establishes a dedicated end-
to-end connection between the two hosts. Thus, in order for Host A to communi-
cate with Host B, the network must first reserve one circuit on each of two links. 
In this example, the dedicated end-to-end connection uses the second circuit in 
the first link and the fourth circuit in the second link. Because each link has four 
circuits, for each link used by the end-to-end connection, the connection gets one 
fourth of the link’s total transmission capacity for the duration of the connection. 
Thus, for example, if each link between adjacent switches has a transmission rate of  
1 Mbps, then each end-to-end circuit-switch connection gets 250 kbps of dedicated 
transmission rate.
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Figure 1.13 ♦  A simple circuit-switched network consisting of four switches 
and four links

In contrast, consider what happens when one host wants to send a packet to 
another host over a packet-switched network, such as the Internet. As with circuit 
switching, the packet is transmitted over a series of communication links. But dif-
ferent from circuit switching, the packet is sent into the network without reserving 
any link resources whatsoever. If one of the links is congested because other packets 
need to be transmitted over the link at the same time, then the packet will have to 
wait in a buffer at the sending side of the transmission link and suffer a delay. The 
Internet makes its best effort to deliver packets in a timely manner, but it does not 
make any guarantees.

Multiplexing in Circuit-Switched Networks

A circuit in a link is implemented with either frequency-division multiplexing 
(FDM) or time-division multiplexing (TDM). With FDM, the frequency spectrum 
of a link is divided up among the connections established across the link. Specifi-
cally, the link dedicates a frequency band to each connection for the  duration of the 
connection. In telephone networks, this frequency band typically has a width of 
4 kHz (that is, 4,000 hertz or 4,000 cycles per second). The width of the band is 
called, not surprisingly, the bandwidth. FM radio stations also use FDM to share 
the frequency spectrum between 88 MHz and 108 MHz, with each station being 
allocated a specific frequency band.

For a TDM link, time is divided into frames of fixed duration, and each frame is 
divided into a fixed number of time slots. When the network establishes a connection 
across a link, the network dedicates one time slot in every frame to this connection. 
These slots are dedicated for the sole use of that connection, with one time slot avail-
able for use (in every frame) to transmit the connection’s data.
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Figure 1.14 illustrates FDM and TDM for a specific network link supporting 
up to four circuits. For FDM, the frequency domain is segmented into four bands, 
each of bandwidth 4 kHz. For TDM, the time domain is segmented into frames, with 
four time slots in each frame; each circuit is assigned the same dedicated slot in the 
revolving TDM frames. For TDM, the transmission rate of a circuit is equal to the 
frame rate multiplied by the number of bits in a slot. For example, if the link trans-
mits 8,000 frames per second and each slot consists of 8 bits, then the transmission 
rate of each circuit is 64 kbps.

Proponents of packet switching have always argued that circuit switching is waste-
ful because the dedicated circuits are idle during silent periods. For example, when one 
person in a telephone call stops talking, the idle network resources (frequency bands or 
time slots in the links along the connection’s route) cannot be used by other ongoing 
connections. As another example of how these resources can be underutilized, consider 
a radiologist who uses a circuit-switched network to remotely access a series of x-rays. 
The radiologist sets up a connection, requests an image, contemplates the image, and 
then requests a new image. Network resources are allocated to the connection but are 
not used (i.e., are wasted) during the radiologist’s contemplation periods. Proponents 
of packet switching also enjoy pointing out that establishing end-to-end circuits and 
reserving end-to-end transmission capacity is complicated and requires complex sign-
aling software to coordinate the operation of the switches along the end-to-end path.

Figure 1.14 ♦  With FDM, each circuit continuously gets a fraction of the 
bandwidth. With TDM, each circuit gets all of the bandwidth 
periodically during brief intervals of time (that is, during slots)
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Before we finish our discussion of circuit switching, let’s work through a numer-
ical example that should shed further insight on the topic. Let us consider how long 
it takes to send a file of 640,000 bits from Host A to Host B over a circuit-switched 
network. Suppose that all links in the network use TDM with 24 slots and have a bit 
rate of 1.536 Mbps. Also suppose that it takes 500 msec to establish an end-to-end 
circuit before Host A can begin to transmit the file. How long does it take to send 
the file? Each circuit has a transmission rate of (1.536 Mbps)/24 =  64 kbps, so it 
takes (640,000 bits)/(64 kbps) =  10 seconds to transmit the file. To this 10 seconds 
we add the circuit establishment time, giving 10.5 seconds to send the file. Note 
that the transmission time is independent of the number of links: The transmission 
time would be 10 seconds if the end-to-end circuit passed through one link or a 
hundred links. (The actual end-to-end delay also includes a propagation delay; see 
Section 1.4.)

Packet Switching Versus Circuit Switching

Having described circuit switching and packet switching, let us compare the two. 
Critics of packet switching have often argued that packet switching is not suita-
ble for real-time services (for example, telephone calls and video conference calls) 
because of its variable and unpredictable end-to-end delays (due primarily to vari-
able and unpredictable queuing delays). Proponents of packet switching argue that 
(1) it offers better sharing of transmission capacity than circuit switching and (2) it 
is simpler, more efficient, and less costly to implement than circuit switching. An  
interesting discussion of packet switching versus circuit switching is [Molinero- 
Fernandez 2002]. Generally speaking, people who do not like to hassle with  restaurant 
reservations prefer packet switching to circuit switching.

Why is packet switching more efficient? Let’s look at a simple example. Sup-
pose users share a 1 Mbps link. Also suppose that each user alternates between peri-
ods of activity, when a user generates data at a constant rate of 100 kbps, and periods 
of inactivity, when a user generates no data. Suppose further that a user is active only 
10 percent of the time (and is idly drinking coffee during the remaining 90 percent 
of the time). With circuit switching, 100 kbps must be reserved for each user at all 
times. For example, with circuit-switched TDM, if a one-second frame is divided 
into 10 time slots of 100 ms each, then each user would be allocated one time slot 
per frame.

Thus, the circuit-switched link can support only 10 (=  1 Mbps/100 kbps) simul-
taneous users. With packet switching, the probability that a specific user is active 
is 0.1 (that is, 10 percent). If there are 35 users, the probability that there are 11 or 
more simultaneously active users is approximately 0.0004. (Homework Problem P8 
outlines how this probability is obtained.) When there are 10 or fewer simultane-
ously active users (which happens with probability 0.9996), the aggregate arrival 
rate of data is less than or equal to 1 Mbps, the output rate of the link. Thus, when 
there are 10 or fewer active users, users’ packets flow through the link essentially 
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without delay, as is the case with circuit switching. When there are more than 10 
simultaneously active users, then the aggregate arrival rate of packets exceeds the 
output capacity of the link, and the output queue will begin to grow. (It continues to 
grow until the aggregate input rate falls back below 1 Mbps, at which point the queue 
will begin to diminish in length.) Because the probability of having more than 10 
simultaneously active users is minuscule in this example, packet switching provides 
essentially the same performance as circuit switching, but does so while allowing for 
more than three times the number of users.

Let’s now consider a second simple example. Suppose there are 10 users and 
that one user suddenly generates one thousand 1,000-bit packets, while other users 
remain quiescent and do not generate packets. Under TDM circuit switching with 10 
slots per frame and each slot consisting of 1,000 bits, the active user can only use its 
one time slot per frame to transmit data, while the remaining nine time slots in each 
frame remain idle. It will be 10 seconds before all of the active user’s one million 
bits of data has been transmitted. In the case of packet switching, the active user can 
continuously send its packets at the full link rate of 1 Mbps, since there are no other 
users generating packets that need to be multiplexed with the active user’s packets. 
In this case, all of the active user’s data will be transmitted within 1 second.

The above examples illustrate two ways in which the performance of packet 
switching can be superior to that of circuit switching. They also highlight the cru-
cial difference between the two forms of sharing a link’s transmission rate among 
multiple data streams. Circuit switching pre-allocates use of the transmission link 
regardless of demand, with allocated but unneeded link time going unused. Packet 
switching on the other hand allocates link use on demand. Link transmission capacity 
will be shared on a packet-by-packet basis only among those users who have packets 
that need to be transmitted over the link.

Although packet switching and circuit switching are both prevalent in today’s 
telecommunication networks, the trend has certainly been in the direction of packet 
switching. Even many of today’s circuit-switched telephone networks are slowly 
migrating toward packet switching. In particular, telephone networks often use 
packet switching for the expensive overseas portion of a telephone call.

1.3.3 A Network of Networks
We saw earlier that end systems (PCs, smartphones, Web servers, mail servers, and 
so on) connect into the Internet via an access ISP. The access ISP can provide either 
wired or wireless connectivity, using an array of access technologies including DSL, 
cable, FTTH, Wi-Fi, and cellular. Note that the access ISP does not have to be a 
telco or a cable company; instead it can be, for example, a university (providing 
Internet access to students, staff, and faculty), or a company (providing access for 
its employees). But connecting end users and content providers into an access ISP is 
only a small piece of solving the puzzle of connecting the billions of end systems that 
make up the Internet. To complete this puzzle, the access ISPs themselves must be 
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interconnected. This is done by creating a network of networks—understanding this 
phrase is the key to understanding the Internet.

Over the years, the network of networks that forms the Internet has evolved into 
a very complex structure. Much of this evolution is driven by economics and national 
policy, rather than by performance considerations. In order to understand today’s 
Internet network structure, let’s incrementally build a series of network structures, 
with each new structure being a better approximation of the complex Internet that we 
have today. Recall that the overarching goal is to interconnect the access ISPs so that 
all end systems can send packets to each other. One naive approach would be to have 
each access ISP directly connect with every other access ISP. Such a mesh design is, 
of course, much too costly for the access ISPs, as it would require each access ISP 
to have a separate communication link to each of the hundreds of thousands of other 
access ISPs all over the world.

Our first network structure, Network Structure 1, interconnects all of the access 
ISPs with a single global transit ISP. Our (imaginary) global transit ISP is a network 
of routers and communication links that not only spans the globe, but also has at least 
one router near each of the hundreds of thousands of access ISPs. Of course, it would 
be very costly for the global ISP to build such an extensive network. To be profitable, 
it would naturally charge each of the access ISPs for connectivity, with the pricing 
reflecting (but not necessarily directly proportional to) the amount of traffic an access 
ISP exchanges with the global ISP. Since the access ISP pays the global transit ISP, the 
access ISP is said to be a customer and the global transit ISP is said to be a provider.

Now if some company builds and operates a global transit ISP that is profit-
able, then it is natural for other companies to build their own global transit ISPs 
and compete with the original global transit ISP. This leads to Network Structure 2,  
which consists of the hundreds of thousands of access ISPs and multiple global 
 transit ISPs. The access ISPs certainly prefer Network Structure 2 over Network 
Structure 1 since they can now choose among the competing global transit providers 
as a function of their pricing and services. Note, however, that the global transit ISPs 
themselves must interconnect: Otherwise access ISPs connected to one of the global 
transit providers would not be able to communicate with access ISPs connected to the  
other global transit providers.

Network Structure 2, just described, is a two-tier hierarchy with global transit 
providers residing at the top tier and access ISPs at the bottom tier. This assumes 
that global transit ISPs are not only capable of getting close to each and every access 
ISP, but also find it economically desirable to do so. In reality, although some ISPs 
do have impressive global coverage and do directly connect with many access ISPs, 
no ISP has presence in each and every city in the world. Instead, in any given region, 
there may be a regional ISP to which the access ISPs in the region connect. Each 
regional ISP then connects to tier-1 ISPs. Tier-1 ISPs are similar to our (imaginary) 
global transit ISP; but tier-1 ISPs, which actually do exist, do not have a presence 
in every city in the world. There are approximately a dozen tier-1 ISPs, including 
Level 3 Communications, AT&T, Sprint, and NTT. Interestingly, no group officially 
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sanctions tier-1 status; as the saying goes—if you have to ask if you’re a member of 
a group, you’re probably not.

Returning to this network of networks, not only are there multiple competing 
tier-1 ISPs, there may be multiple competing regional ISPs in a region. In such a 
hierarchy, each access ISP pays the regional ISP to which it connects, and each 
regional ISP pays the tier-1 ISP to which it connects. (An access ISP can also connect 
directly to a tier-1 ISP, in which case it pays the tier-1 ISP). Thus, there is customer-
provider relationship at each level of the hierarchy. Note that the tier-1 ISPs do not 
pay anyone as they are at the top of the hierarchy. To further complicate matters, in 
some regions, there may be a larger regional ISP (possibly spanning an entire coun-
try) to which the smaller regional ISPs in that region connect; the larger regional 
ISP then connects to a tier-1 ISP. For example, in China, there are access ISPs in  
each city, which connect to provincial ISPs, which in turn connect to national ISPs, 
which finally connect to tier-1 ISPs [Tian 2012]. We refer to this multi-tier hierarchy, 
which is still only a crude approximation of today’s Internet, as Network Structure 3.

To build a network that more closely resembles today’s Internet, we must add 
points of presence (PoPs), multi-homing, peering, and Internet exchange points 
(IXPs) to the hierarchical Network Structure 3. PoPs exist in all levels of the hier-
archy, except for the bottom (access ISP) level. A PoP is simply a group of one or 
more routers (at the same location) in the provider’s network where customer ISPs 
can connect into the provider ISP. For a customer network to connect to a provider’s 
PoP, it can lease a high-speed link from a third-party telecommunications provider 
to directly connect one of its routers to a router at the PoP. Any ISP (except for tier-1 
ISPs) may choose to multi-home, that is, to connect to two or more provider ISPs. So, 
for example, an access ISP may multi-home with two regional ISPs, or it may multi-
home with two regional ISPs and also with a tier-1 ISP. Similarly, a regional ISP may 
multi-home with multiple tier-1 ISPs. When an ISP multi-homes, it can continue to 
send and receive packets into the Internet even if one of its providers has a failure.

As we just learned, customer ISPs pay their provider ISPs to obtain global Inter-
net interconnectivity. The amount that a customer ISP pays a provider ISP reflects 
the amount of traffic it exchanges with the provider. To reduce these costs, a pair 
of nearby ISPs at the same level of the hierarchy can peer, that is, they can directly 
connect their networks together so that all the traffic between them passes over the 
direct connection rather than through upstream intermediaries. When two ISPs peer, 
it is typically settlement-free, that is, neither ISP pays the other. As noted earlier, 
tier-1 ISPs also peer with one another, settlement-free. For a readable discussion of 
peering and customer-provider relationships, see [Van der Berg 2008]. Along these 
same lines, a third-party company can create an Internet Exchange Point (IXP), 
which is a meeting point where multiple ISPs can peer together. An IXP is typically 
in a stand-alone building with its own switches [Ager 2012]. There are over 600 IXPs 
in the Internet today [PeeringDB 2020]. We refer to this ecosystem—consisting of 
access ISPs, regional ISPs, tier-1 ISPs, PoPs, multi-homing, peering, and IXPs—as 
Network Structure 4.
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We now finally arrive at Network Structure 5, which describes today’s Internet. 
Network Structure 5, illustrated in Figure 1.15, builds on top of Network Structure 4 
by adding content-provider networks. Google is currently one of the leading exam-
ples of such a content-provider network. As of this writing, it Google has 19 major data 
centers distributed across North America, Europe, Asia, South America, and Australia 
with each data center having tens or hundreds of thousands of servers. Additionally, 
Google has smaller data centers, each with a few hundred servers; these smaller data 
centers are often located within IXPs. The Google data centers are all interconnected 
via Google’s private TCP/IP network, which spans the entire globe but is neverthe-
less separate from the public Internet. Importantly, the Google private network only 
carries traffic to/from Google servers. As shown in Figure 1.15, the Google private 
network attempts to “bypass” the upper tiers of the Internet by peering (settlement 
free) with lower-tier ISPs, either by directly connecting with them or by connecting 
with them at IXPs [Labovitz 2010]. However, because many access ISPs can still only 
be reached by transiting through tier-1 networks, the Google network also connects 
to tier-1 ISPs, and pays those ISPs for the traffic it exchanges with them. By creating 
its own network, a content provider not only reduces its payments to upper-tier ISPs, 
but also has greater control of how its services are ultimately delivered to end users. 
Google’s network infrastructure is described in greater detail in Section 2.6.

In summary, today’s Internet—a network of networks—is complex, consisting 
of a dozen or so tier-1 ISPs and hundreds of thousands of lower-tier ISPs. The ISPs 
are diverse in their coverage, with some spanning multiple continents and oceans, 
and others limited to narrow geographic regions. The lower-tier ISPs connect to the 
higher-tier ISPs, and the higher-tier ISPs interconnect with one another. Users and 
content providers are customers of lower-tier ISPs, and lower-tier ISPs are customers 
of higher-tier ISPs. In recent years, major content providers have also created their 
own networks and connect directly into lower-tier ISPs where possible.

Figure 1.15 ♦ Interconnection of ISPs
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1.4 Delay, Loss, and Throughput  
in Packet-Switched Networks

Back in Section 1.1 we said that the Internet can be viewed as an infrastructure that 
provides services to distributed applications running on end systems. Ideally, we 
would like Internet services to be able to move as much data as we want between any 
two end systems, instantaneously, without any loss of data. Alas, this is a lofty goal, 
one that is unachievable in reality. Instead, computer networks necessarily constrain 
throughput (the amount of data per second that can be transferred) between end sys-
tems, introduce delays between end systems, and can actually lose packets. On one 
hand, it is unfortunate that the physical laws of reality introduce delay and loss as 
well as constrain throughput. On the other hand, because computer networks have 
these problems, there are many fascinating issues surrounding how to deal with the 
problems—more than enough issues to fill a course on computer networking and to 
motivate thousands of PhD theses! In this section, we’ll begin to examine and quan-
tify delay, loss, and throughput in computer networks.

1.4.1 Overview of Delay in Packet-Switched Networks
Recall that a packet starts in a host (the source), passes through a series of routers, 
and ends its journey in another host (the destination). As a packet travels from one 
node (host or router) to the subsequent node (host or router) along this path, the 
packet suffers from several types of delays at each node along the path. The most 
important of these delays are the nodal processing delay, queuing delay, transmis-
sion delay, and propagation delay; together, these delays accumulate to give a total 
nodal delay. The performance of many Internet applications—such as search, Web 
browsing, e-mail, maps, instant messaging, and voice-over-IP—are greatly affected 
by network delays. In order to acquire a deep understanding of packet switching and 
computer networks, we must understand the nature and importance of these delays.

Types of Delay

Let’s explore these delays in the context of Figure 1.16. As part of its end-to-end 
route between source and destination, a packet is sent from the upstream node 
through router A to router B. Our goal is to characterize the nodal delay at router A. 
Note that router A has an outbound link leading to router B. This link is preceded 
by a queue (also known as a buffer). When the packet arrives at router A from the 
upstream node, router A examines the packet’s header to determine the appropriate 
outbound link for the packet and then directs the packet to this link. In this exam-
ple, the outbound link for the packet is the one that leads to router B. A packet can 
be transmitted on a link only if there is no other packet currently being transmitted 
on the link and if there are no other packets preceding it in the queue; if the link is 
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 currently busy or if there are other packets already queued for the link, the newly 
arriving packet will then join the queue.

Processing Delay

The time required to examine the packet’s header and determine where to direct 
the packet is part of the processing delay. The processing delay can also include 
other factors, such as the time needed to check for bit-level errors in the packet 
that occurred in transmitting the packet’s bits from the upstream node to router A. 
Processing delays in high-speed routers are typically on the order of microseconds 
or less. After this nodal processing, the router directs the packet to the queue that 
precedes the link to router B. (In Chapter 4 we’ll study the details of how a router 
operates.)

Queuing Delay

At the queue, the packet experiences a queuing delay as it waits to be transmitted 
onto the link. The length of the queuing delay of a specific packet will depend on the 
number of earlier-arriving packets that are queued and waiting for transmission onto 
the link. If the queue is empty and no other packet is currently being transmitted, then 
our packet’s queuing delay will be zero. On the other hand, if the traffic is heavy and 
many other packets are also waiting to be transmitted, the queuing delay will be long. 
We will see shortly that the number of packets that an arriving packet might expect 
to find is a function of the intensity and nature of the traffic arriving at the queue. 
 Queuing delays can be on the order of microseconds to milliseconds in practice.

Transmission Delay

Assuming that packets are transmitted in a first-come-first-served manner, as is com-
mon in packet-switched networks, our packet can be transmitted only after all the 
packets that have arrived before it have been transmitted. Denote the length of the 

Figure 1.16 ♦ The nodal delay at router A
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packet by L bits, and denote the transmission rate of the link from router A to router 
B by R bits/sec. For example, for a 10 Mbps Ethernet link, the rate is R =  10 Mbps; 
for a 100 Mbps Ethernet link, the rate is R =  100 Mbps. The transmission delay is 
L/R. This is the amount of time required to push (that is, transmit) all of the packet’s 
bits into the link. Transmission delays are typically on the order of microseconds to 
milliseconds in practice.

Propagation Delay

Once a bit is pushed into the link, it needs to propagate to router B. The time required 
to propagate from the beginning of the link to router B is the propagation delay. The 
bit propagates at the propagation speed of the link. The propagation speed depends 
on the physical medium of the link (that is, fiber optics, twisted-pair copper wire, and 
so on) and is in the range of

2 # 108 meters/sec to 3 # 108 meters/sec

which is equal to, or a little less than, the speed of light. The propagation delay is the 
distance between two routers divided by the propagation speed. That is, the propaga-
tion delay is d/s, where d is the distance between router A and router B and s is the 
propagation speed of the link. Once the last bit of the packet propagates to node B, 
it and all the preceding bits of the packet are stored in router B. The whole process 
then continues with router B now performing the forwarding. In wide-area networks, 
propagation delays are on the order of milliseconds.

Comparing Transmission and Propagation Delay

Newcomers to the field of computer networking sometimes have difficulty under-
standing the difference between transmission delay and propagation delay. The dif-
ference is subtle but important. The transmission delay is the amount of time required 
for the router to push out the packet; it is a function of the packet’s length and the 
transmission rate of the link, but has nothing to do with the distance between the two 
routers. The propagation delay, on the other hand, is the time it takes a bit to propa-
gate from one router to the next; it is a function of the distance between the two rout-
ers, but has nothing to do with the packet’s length or the transmission rate of the link.

An analogy might clarify the notions of transmission and propagation delay. 
Consider a highway that has a tollbooth every 100 kilometers, as shown in Fig-
ure 1.17. You can think of the highway segments between tollbooths as links and 
the tollbooths as routers. Suppose that cars travel (that is, propagate) on the highway 
at a rate of 100 km/hour (that is, when a car leaves a tollbooth, it instantaneously 
accelerates to 100 km/hour and maintains that speed between tollbooths). Suppose 
next that 10 cars, traveling together as a caravan, follow each other in a fixed order. 
You can think of each car as a bit and the caravan as a packet. Also suppose that each 
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tollbooth services (that is, transmits) a car at a rate of one car per 12 seconds, and that 
it is late at night so that the caravan’s cars are the only cars on the highway. Finally, 
suppose that whenever the first car of the caravan arrives at a tollbooth, it waits at 
the entrance until the other nine cars have arrived and lined up behind it. (Thus, the 
entire caravan must be stored at the tollbooth before it can begin to be forwarded.) 
The time required for the tollbooth to push the entire caravan onto the highway is  
(10 cars)/(5 cars/minute) = 2 minutes. This time is analogous to the transmission 
delay in a router. The time required for a car to travel from the exit of one tollbooth 
to the next tollbooth is 100 km/(100 km/hour) = 1 hour. This time is analogous to 
propagation delay. Therefore, the time from when the caravan is stored in front of a 
tollbooth until the caravan is stored in front of the next tollbooth is the sum of trans-
mission delay and propagation delay—in this example, 62 minutes.

Let’s explore this analogy a bit more. What would happen if the tollbooth ser-
vice time for a caravan were greater than the time for a car to travel between toll-
booths? For example, suppose now that the cars travel at the rate of 1,000 km/hour 
and the tollbooth services cars at the rate of one car per minute. Then the traveling 
delay between two tollbooths is 6 minutes and the time to serve a caravan is 10 min-
utes. In this case, the first few cars in the caravan will arrive at the second tollbooth 
before the last cars in the caravan leave the first tollbooth. This situation also arises 
in packet-switched networks—the first bits in a packet can arrive at a router while 
many of the remaining bits in the packet are still waiting to be transmitted by the 
preceding router.

If a picture speaks a thousand words, then an animation must speak a million 
words. The Web site for this textbook provides an interactive animation that nicely 
illustrates and contrasts transmission delay and propagation delay. The reader is 
highly encouraged to visit that animation. [Smith 2009] also provides a very read-
able discussion of propagation, queueing, and transmission delays.

If we let dproc, dqueue, dtrans, and dprop denote the processing, queuing, transmis-
sion, and propagation delays, then the total nodal delay is given by

dnodal = dproc + dqueue + dtrans + dprop

The contribution of these delay components can vary significantly. For example, 
dprop can be negligible (for example, a couple of microseconds) for a link connecting 
two routers on the same university campus; however, dprop is hundreds of millisec-
onds for two routers interconnected by a geostationary satellite link, and can be the 

Figure 1.17 ♦ Caravan analogy
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dominant term in dnodal. Similarly, dtrans can range from negligible to significant. Its 
contribution is typically negligible for transmission rates of 10 Mbps and higher (for 
example, for LANs); however, it can be hundreds of milliseconds for large Internet 
packets sent over low-speed dial-up modem links. The processing delay, dproc, is 
often negligible; however, it strongly influences a router’s maximum throughput, 
which is the maximum rate at which a router can forward packets.

1.4.2 Queuing Delay and Packet Loss
The most complicated and interesting component of nodal delay is the queuing delay, 
 dqueue. In fact, queuing delay is so important and interesting in computer networking 
that thousands of papers and numerous books have been written about it [Bertsekas 
1991; Kleinrock 1975, Kleinrock 1976]. We give only a high-level, intuitive discus-
sion of queuing delay here; the more curious reader may want to browse through 
some of the books (or even eventually write a PhD thesis on the subject!). Unlike the 
other three delays (namely, dproc, dtrans, and dprop), the queuing delay can vary from 
packet to packet. For example, if 10 packets arrive at an empty queue at the same 
time, the first packet transmitted will suffer no queuing delay, while the last packet 
transmitted will suffer a relatively large queuing delay (while it waits for the other 
nine packets to be transmitted). Therefore, when characterizing queuing delay, one 
typically uses statistical measures, such as average queuing delay, variance of queu-
ing delay, and the probability that the queuing delay exceeds some specified value.

When is the queuing delay large and when is it insignificant? The answer to this 
question depends on the rate at which traffic arrives at the queue, the transmission 
rate of the link, and the nature of the arriving traffic, that is, whether the traffic arrives 
periodically or arrives in bursts. To gain some insight here, let a denote the average 
rate at which packets arrive at the queue (a is in units of packets/sec). Recall that R 
is the transmission rate; that is, it is the rate (in bits/sec) at which bits are pushed out 
of the queue. Also suppose, for simplicity, that all packets consist of L bits. Then the 
average rate at which bits arrive at the queue is La bits/sec. Finally, assume that the 
queue is very big, so that it can hold essentially an infinite number of bits. The ratio 
La/R, called the traffic intensity, often plays an important role in estimating the 
extent of the queuing delay. If La/R > 1, then the average rate at which bits arrive at 
the queue exceeds the rate at which the bits can be transmitted from the queue. In this 
unfortunate situation, the queue will tend to increase without bound and the queuing 
delay will approach infinity! Therefore, one of the golden rules in traffic engineering 
is: Design your system so that the traffic intensity is no greater than 1.

Now consider the case La/R ≤ 1. Here, the nature of the arriving traffic impacts 
the queuing delay. For example, if packets arrive periodically—that is, one packet 
arrives every L/R seconds—then every packet will arrive at an empty queue and 
there will be no queuing delay. On the other hand, if packets arrive in bursts but 
periodically, there can be a significant average queuing delay. For example, sup-
pose N packets arrive simultaneously every (L/R)N seconds. Then the first packet 
transmitted has no queuing delay; the second packet transmitted has a queuing delay 
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of L/R seconds; and more generally, the nth packet transmitted has a queuing delay 
of (n - 1)L/R seconds. We leave it as an exercise for you to calculate the average 
queuing delay in this example.

The two examples of periodic arrivals described above are a bit academic.  Typically, 
the arrival process to a queue is random; that is, the arrivals do not follow any pattern 
and the packets are spaced apart by random amounts of time. In this more realistic case, 
the quantity La/R is not usually sufficient to fully characterize the queuing delay statis-
tics. Nonetheless, it is useful in gaining an intuitive understanding of the extent of the 
queuing delay. In particular, if the traffic intensity is close to zero, then packet arrivals 
are few and far between and it is unlikely that an arriving packet will find another packet 
in the queue. Hence, the average queuing delay will be close to zero. On the other hand, 
when the traffic intensity is close to 1, there will be intervals of time when the arrival 
rate exceeds the transmission capacity (due to variations in packet arrival rate), and 
a queue will form during these periods of time; when the arrival rate is less than the 
transmission capacity, the length of the queue will shrink. Nonetheless, as the traffic 
intensity approaches 1, the average queue length gets larger and larger. The qualitative 
dependence of average queuing delay on the traffic intensity is shown in Figure 1.18.

One important aspect of Figure 1.18 is the fact that as the traffic intensity 
approaches 1, the average queuing delay increases rapidly. A small percentage 
increase in the intensity will result in a much larger percentage-wise increase in 
delay. Perhaps you have experienced this phenomenon on the highway. If you regu-
larly drive on a road that is typically congested, the fact that the road is typically 
congested means that its traffic intensity is close to 1. If some event causes an even 
slightly larger-than-usual amount of traffic, the delays you experience can be huge.

To really get a good feel for what queuing delays are about, you are encouraged 
once again to visit the textbook Web site, which provides an interactive animation 
for a queue. If you set the packet arrival rate high enough so that the traffic intensity 
exceeds 1, you will see the queue slowly build up over time.

Figure 1.18 ♦ Dependence of average queuing delay on traffic intensity

A
ve

ra
ge

 q
ue

ui
ng

 d
el

ay

La/R
1

M01_KURO1557_08_SE_C01.indd   40 11/02/20   10:54 AM



1.4  •  DELAY, LOSS, AND THROUGHPUT IN PACKET-SWITCHED NETWORKS      41

Packet Loss

In our discussions above, we have assumed that the queue is capable of holding an 
infinite number of packets. In reality a queue preceding a link has finite capacity, 
although the queuing capacity greatly depends on the router design and cost. Because 
the queue capacity is finite, packet delays do not really approach infinity as the traf-
fic intensity approaches 1. Instead, a packet can arrive to find a full queue. With no 
place to store such a packet, a router will drop that packet; that is, the packet will be 
lost. This overflow at a queue can again be seen in the interactive animation when 
the traffic intensity is greater than 1.

From an end-system viewpoint, a packet loss will look like a packet having 
been transmitted into the network core but never emerging from the network at the 
destination. The fraction of lost packets increases as the traffic intensity increases. 
Therefore, performance at a node is often measured not only in terms of delay, but 
also in terms of the probability of packet loss. As we’ll discuss in the subsequent 
chapters, a lost packet may be retransmitted on an end-to-end basis in order to ensure 
that all data are eventually transferred from source to destination.

1.4.3 End-to-End Delay
Our discussion up to this point has focused on the nodal delay, that is, the delay at a 
single router. Let’s now consider the total delay from source to destination. To get a 
handle on this concept, suppose there are N - 1 routers between the source host and 
the destination host. Let’s also suppose for the moment that the network is uncon-
gested (so that queuing delays are negligible), the processing delay at each router 
and at the source host is dproc, the transmission rate out of each router and out of the 
source host is R bits/sec, and the propagation on each link is dprop. The nodal delays 
accumulate and give an end-to-end delay,

 dend-end = N (dproc + dtrans + dprop) (1.2)

where, once again, dtrans = L/R, where L is the packet size. Note that Equation 1.2 is a 
generalization of Equation 1.1, which did not take into account processing and propaga-
tion delays. We leave it to you to generalize Equation 1.2 to the case of  heterogeneous 
delays at the nodes and to the presence of an average queuing delay at each node.

Traceroute

To get a hands-on feel for end-to-end delay in a computer network, we can make use 
of the Traceroute program. Traceroute is a simple program that can run in any Inter-
net host. When the user specifies a destination hostname, the program in the source 
host sends multiple, special packets toward that destination. As these packets work 
their way toward the destination, they pass through a series of routers. When a router 
receives one of these special packets, it sends back to the source a short message that 
contains the name and address of the router.

VideoNote
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More specifically, suppose there are N - 1 routers between the source and the 
destination. Then the source will send N special packets into the network, with each 
packet addressed to the ultimate destination. These N special packets are marked 1 
through N, with the first packet marked 1 and the last packet marked N. When the 
nth router receives the nth packet marked n, the router does not forward the packet 
toward its destination, but instead sends a message back to the source. When the 
destination host receives the Nth packet, it too returns a message back to the source. 
The source records the time that elapses between when it sends a packet and when it 
receives the corresponding return message; it also records the name and address of 
the router (or the destination host) that returns the message. In this manner, the source 
can reconstruct the route taken by packets flowing from source to destination, and the 
source can determine the round-trip delays to all the intervening routers. Traceroute 
actually repeats the experiment just described three times, so the source actually 
sends 3 • N packets to the destination. RFC 1393 describes Traceroute in detail.

Here is an example of the output of the Traceroute program, where the route was 
being traced from the source host gaia.cs.umass.edu (at the University of  Massachusetts) 
to a host in the computer science department at the University of Sorbonne in Paris 
(formerly the university was known as UPMC). The output has six columns: the first 
column is the n value described above, that is, the number of the router along the route; 
the second column is the name of the router; the third column is the address of the router 
(of the form xxx.xxx.xxx.xxx); the last three columns are the round-trip delays for three 
experiments. If the source receives fewer than three messages from any given router 
(due to packet loss in the network), Traceroute places an asterisk just after the router 
number and reports fewer than three round-trip times for that router.

1  gw-vlan-2451.cs.umass.edu (128.119.245.1)  1.899 ms 3.266 ms  3.280 ms
2   j-cs-gw-int-10-240.cs.umass.edu (10.119.240.254) 1.296 ms 1.276 ms 

1.245 ms
3   n5-rt-1-1-xe-2-1-0.gw.umass.edu (128.119.3.33) 2.237 ms  2.217 ms  

2.187 ms
4  core1-rt-et-5-2-0.gw.umass.edu (128.119.0.9) 0.351 ms 0.392 ms 0.380 ms
5   border1-rt-et-5-0-0.gw.umass.edu (192.80.83.102) 0.345 ms 0.345 ms  

0.344 ms
6  nox300gw1-umass-re.nox.org (192.5.89.101) 3.260 ms  0.416 ms 3.127 ms
7  nox300gw1-umass-re.nox.org (192.5.89.101) 3.165 ms 7.326 ms  7.311 ms
8  198.71.45.237 (198.71.45.237) 77.826 ms 77.246 ms 77.744 ms
9   renater-lb1-gw.mx1.par.fr.geant.net (62.40.124.70) 79.357 ms 77.729 

79.152 ms
10 193.51.180.109 (193.51.180.109) 78.379 ms  79.936 80.042 ms
11 * 193.51.180.109 (193.51.180.109) 80.640 ms *
12 * 195.221.127.182 (195.221.127.182) 78.408 ms *
13 195.221.127.182 (195.221.127.182) 80.686 ms 80.796 ms 78.434 ms
14 r-upmc1.reseau.jussieu.fr (134.157.254.10) 78.399 ms * 81.353 ms
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In the trace above, there are 14 routers between the source and the destination. Most 
of these routers have a name, and all of them have addresses. For example, the  
name of Router 4 is core1-rt-et-5-2-0.gw.umass.edu and its address is 
128.119.0.9. Looking at the data provided for this same router, we see that in 
the first of the three trials the round-trip delay between the source and the router 
was 0.351 msec. The round-trip delays for the subsequent two trials were 0.392 
and 0.380 msec. These round-trip delays include all of the delays just discussed, 
including transmission delays, propagation delays, router processing delays, and 
queuing delay. 

Because the queuing delay is varying with time, the round-trip delay of 
packet n sent to a router n can sometimes be longer than the round-trip delay of 
packet n+1 sent to router n+1. Indeed, we observe this phenomenon in the above 
example: the delay to Router 12 is smaller than the delay to Router 11! Also note 
the big increase in the round-trip delay when going from router 7 to router 8. This 
is due to a transatlantic fiber-optic link between routers 7 and 8, giving rise to a 
relatively large propagation delay. There are a number of free software programs 
that provide a graphical interface to Traceroute; one of our favorites is PingPlotter 
[PingPlotter 2020].

End System, Application, and Other Delays

In addition to processing, transmission, and propagation delays, there can be addi-
tional significant delays in the end systems. For example, an end system wanting 
to transmit a packet into a shared medium (e.g., as in a WiFi or cable modem sce-
nario) may purposefully delay its transmission as part of its protocol for sharing the 
medium with other end systems; we’ll consider such protocols in detail in Chapter 6.  
Another important delay is media packetization delay, which is present in Voice-
over-IP (VoIP) applications. In VoIP, the sending side must first fill a packet with 
encoded digitized speech before passing the packet to the Internet. This time to fill a 
packet—called the packetization delay—can be significant and can impact the user-
perceived quality of a VoIP call. This issue will be further explored in a homework 
problem at the end of this chapter.

1.4.4 Throughput in Computer Networks
In addition to delay and packet loss, another critical performance measure in com-
puter networks is end-to-end throughput. To define throughput, consider transferring 
a large file from Host A to Host B across a computer network. This transfer might 
be, for example, a large video clip from one computer to another. The instantaneous 
throughput at any instant of time is the rate (in bits/sec) at which Host B is receiving 
the file. (Many applications display the instantaneous throughput during downloads 
in the user interface—perhaps you have observed this before! You might like to try 
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measuring the end-to-end delay and download throughput between your and servers 
around the Internet using the speedtest application [Speedtest 2020].) If the file con-
sists of F bits and the transfer takes T seconds for Host B to receive all F bits, then 
the average throughput of the file transfer is F/T bits/sec. For some applications, 
such as Internet telephony, it is desirable to have a low delay and an instantaneous 
throughput consistently above some threshold (for example, over 24 kbps for some 
Internet telephony applications and over 256 kbps for some real-time video applica-
tions). For other applications, including those involving file transfers, delay is not 
critical, but it is desirable to have the highest possible throughput.

To gain further insight into the important concept of throughput, let’s consider 
a few examples. Figure 1.19(a) shows two end systems, a server and a client, con-
nected by two communication links and a router. Consider the throughput for a file 
transfer from the server to the client. Let Rs denote the rate of the link between the  
server and the router; and Rc denote the rate of the link between the router and  
the client. Suppose that the only bits being sent in the entire network are those 
from the server to the client. We now ask, in this ideal scenario, what is the server- 
to-client throughput? To answer this question, we may think of bits as fluid and com-
munication links as pipes. Clearly, the server cannot pump bits through its link at a 
rate faster than Rs bps; and the router cannot forward bits at a rate faster than Rc bps. 
If Rs 6 Rc, then the bits pumped by the server will “flow” right through the router 
and arrive at the client at a rate of Rs bps, giving a throughput of Rs bps. If, on the 
other hand, Rc 6 Rs, then the router will not be able to forward bits as quickly as it 
receives them. In this case, bits will only leave the router at rate Rc, giving an end-
to-end throughput of Rc. (Note also that if bits continue to arrive at the router at rate 
Rs, and continue to leave the router at Rc, the backlog of bits at the router waiting 
for transmission to the client will grow and grow—a most undesirable situation!) 

Figure 1.19 ♦ Throughput for a file transfer from server to client
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Thus, for this simple two-link network, the throughput is min{Rc, Rs}, that is, it is the 
transmission rate of the bottleneck link. Having determined the throughput, we can 
now approximate the time it takes to transfer a large file of F bits from server to cli-
ent as F/min{Rs, Rc}. For a specific example, suppose that you are downloading an 
MP3 file of F =  32 million bits, the server has a transmission rate of Rs = 2 Mbps, 
and you have an access link of Rc = 1 Mbps. The time needed to transfer the file is 
then 32 seconds. Of course, these expressions for throughput and transfer time are 
only approximations, as they do not account for store-and-forward and processing 
delays as well as protocol issues.

Figure 1.19(b) now shows a network with N links between the server and the 
client, with the transmission rates of the N links being R1, R2, c, RN. Applying 
the same analysis as for the two-link network, we find that the throughput for a file 
transfer from server to client is min{R1, R2, c, RN}, which is once again the trans-
mission rate of the bottleneck link along the path between server and client.

Now consider another example motivated by today’s Internet. Figure 1.20(a) 
shows two end systems, a server and a client, connected to a computer network. 
Consider the throughput for a file transfer from the server to the client. The server is 
connected to the network with an access link of rate Rs and the client is connected to 
the network with an access link of rate Rc. Now suppose that all the links in the core 
of the communication network have very high transmission rates, much higher than 
Rs and Rc. Indeed, today, the core of the Internet is over-provisioned with high speed 
links that experience little congestion. Also suppose that the only bits being sent in 
the entire network are those from the server to the client. Because the core of the 
computer network is like a wide pipe in this example, the rate at which bits can flow 
from source to destination is again the minimum of Rs and Rc, that is, throughput =  
min{Rs, Rc}. Therefore, the constraining factor for throughput in today’s Internet is 
typically the access network.

For a final example, consider Figure 1.20(b) in which there are 10 servers and 
10 clients connected to the core of the computer network. In this example, there are 
10 simultaneous downloads taking place, involving 10 client-server pairs. Suppose 
that these 10 downloads are the only traffic in the network at the current time. As 
shown in the figure, there is a link in the core that is traversed by all 10 downloads. 
Denote R for the transmission rate of this link R. Let’s suppose that all server access 
links have the same rate Rs, all client access links have the same rate Rc, and the 
transmission rates of all the links in the core—except the one common link of rate 
R—are much larger than Rs, Rc, and R. Now we ask, what are the throughputs of 
the downloads? Clearly, if the rate of the common link, R, is large—say a hundred 
times larger than both Rs and Rc—then the throughput for each download will once 
again be min{Rs, Rc}. But what if the rate of the common link is of the same order 
as Rs and Rc? What will the throughput be in this case? Let’s take a look at a spe-
cific example. Suppose Rs = 2 Mbps, Rc = 1 Mbps, R = 5 Mbps, and the com-
mon link divides its transmission rate equally among the 10 downloads. Then the 
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bottleneck for each download is no longer in the access network, but is now instead 
the shared link in the core, which only provides each download with 500 kbps of 
throughput. Thus, the end-to-end throughput for each download is now reduced to 
500 kbps.

The examples in Figure 1.19 and Figure 1.20(a) show that throughput depends 
on the transmission rates of the links over which the data flows. We saw that when 
there is no other intervening traffic, the throughput can simply be approximated as 
the minimum transmission rate along the path between source and destination. The 
example in Figure 1.20(b) shows that more generally the throughput depends not 
only on the transmission rates of the links along the path, but also on the interven-
ing traffic. In particular, a link with a high transmission rate may nonetheless be the 
bottleneck link for a file transfer if many other data flows are also passing through 
that link. We will examine throughput in computer networks more closely in the 
homework problems and in the subsequent chapters.

Figure 1.20 ♦  End-to-end throughput: (a) Client downloads a file from 
 server; (b) 10 clients  downloading with 10 servers
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1.5 Protocol Layers and Their Service Models

From our discussion thus far, it is apparent that the Internet is an extremely com-
plicated system. We have seen that there are many pieces to the Internet: numerous 
applications and protocols, various types of end systems, packet switches, and vari-
ous types of link-level media. Given this enormous complexity, is there any hope of 
organizing a network architecture, or at least our discussion of network architecture? 
Fortunately, the answer to both questions is yes.

1.5.1 Layered Architecture
Before attempting to organize our thoughts on Internet architecture, let’s look 
for a human analogy. Actually, we deal with complex systems all the time in our 
everyday life. Imagine if someone asked you to describe, for example, the air-
line system. How would you find the structure to describe this complex system 
that has ticketing agents, baggage checkers, gate personnel, pilots, airplanes, 
air traffic control, and a worldwide system for routing airplanes? One way to 
describe this system might be to describe the series of actions you take (or oth-
ers take for you) when you fly on an airline. You purchase your ticket, check 
your bags, go to the gate, and eventually get loaded onto the plane. The plane 
takes off and is routed to its destination. After your plane lands, you deplane at 
the gate and claim your bags. If the trip was bad, you complain about the flight 
to the ticket agent (getting nothing for your effort). This scenario is shown in 
Figure 1.21.

Figure 1.21 ♦ Taking an airplane trip: actions
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Already, we can see some analogies here with computer networking: You are 
being shipped from source to destination by the airline; a packet is shipped from 
source host to destination host in the Internet. But this is not quite the analogy we 
are after. We are looking for some structure in Figure 1.21. Looking at Figure 1.21, 
we note that there is a ticketing function at each end; there is also a baggage func-
tion for already-ticketed passengers, and a gate function for already-ticketed and 
already-baggage-checked passengers. For passengers who have made it through the 
gate (that is, passengers who are already ticketed, baggage-checked, and through the 
gate), there is a takeoff and landing function, and while in flight, there is an airplane-
routing function. This suggests that we can look at the functionality in Figure 1.21 in 
a horizontal manner, as shown in Figure 1.22.

Figure 1.22 has divided the airline functionality into layers, providing a frame-
work in which we can discuss airline travel. Note that each layer, combined with the 
layers below it, implements some functionality, some service. At the ticketing layer 
and below, airline-counter-to-airline-counter transfer of a person is accomplished. At 
the baggage layer and below, baggage-check-to-baggage-claim transfer of a person 
and bags is accomplished. Note that the baggage layer provides this service only to an 
already-ticketed person. At the gate layer, departure-gate-to-arrival-gate transfer of 
a person and bags is accomplished. At the takeoff/landing layer, runway-to-runway  
transfer of people and their bags is accomplished. Each layer provides its service 
by (1) performing certain actions within that layer (for example, at the gate layer, 
loading and unloading people from an airplane) and by (2) using the services of the 
layer directly below it (for example, in the gate layer, using the runway-to-runway 
passenger transfer service of the takeoff/landing layer).

A layered architecture allows us to discuss a well-defined, specific part of a 
large and complex system. This simplification itself is of considerable value by 
providing modularity, making it much easier to change the implementation of the 
service provided by the layer. As long as the layer provides the same service to the 
layer above it, and uses the same services from the layer below it, the remainder of 
the system remains unchanged when a layer’s implementation is changed. (Note 

Figure 1.22 ♦ Horizontal layering of airline functionality
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that changing the implementation of a service is very different from changing the 
service itself!) For example, if the gate functions were changed (for instance, to have 
people board and disembark by height), the remainder of the airline system would 
remain unchanged since the gate layer still provides the same function (loading and 
unloading people); it simply implements that function in a different manner after the 
change. For large and complex systems that are constantly being updated, the ability 
to change the implementation of a service without affecting other components of the 
system is another important advantage of layering.

Protocol Layering

But enough about airlines. Let’s now turn our attention to network protocols. To 
provide structure to the design of network protocols, network designers organize 
protocols—and the network hardware and software that implement the protocols—
in layers. Each protocol belongs to one of the layers, just as each function in the 
airline architecture in Figure 1.22 belonged to a layer. We are again interested in 
the services that a layer offers to the layer above—the so-called service model of 
a layer. Just as in the case of our airline example, each layer provides its service by 
(1) performing certain actions within that layer and by (2) using the services of the 
layer directly below it. For example, the services provided by layer n may include 
reliable delivery of messages from one edge of the network to the other. This might 
be implemented by using an unreliable edge-to-edge message delivery service of 
layer n - 1, and adding layer n functionality to detect and retransmit lost messages.

A protocol layer can be implemented in software, in hardware, or in a combina-
tion of the two. Application-layer protocols—such as HTTP and SMTP—are almost 
always implemented in software in the end systems; so are transport-layer protocols. 
Because the physical layer and data link layers are responsible for handling commu-
nication over a specific link, they are typically implemented in a network interface 
card (for example, Ethernet or WiFi interface cards) associated with a given link. The 
network layer is often a mixed implementation of hardware and software. Also note 
that just as the functions in the layered airline architecture were distributed among 
the various airports and flight control centers that make up the system, so too is a 
layer n protocol distributed among the end systems, packet switches, and other com-
ponents that make up the network. That is, there’s often a piece of a layer n protocol 
in each of these network components.

Protocol layering has conceptual and structural advantages [RFC 3439]. As 
we have seen, layering provides a structured way to discuss system components. 
Modularity makes it easier to update system components. We mention, however, 
that some researchers and networking engineers are vehemently opposed to layering 
[Wakeman 1992]. One potential drawback of layering is that one layer may duplicate 
lower-layer functionality. For example, many protocol stacks provide error recovery 
on both a per-link basis and an end-to-end basis. A second potential drawback is that 
functionality at one layer may need information (for example, a timestamp value) 
that is present only in another layer; this violates the goal of separation of layers.
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When taken together, the protocols of the various layers are called the protocol 
stack. The Internet protocol stack consists of five layers: the physical, link, network, 
transport, and application layers, as shown in Figure 1.23. If you examine the Table 
of Contents, you will see that we have roughly organized this book using the lay-
ers of the Internet protocol stack. We take a top-down approach, first covering the 
application layer and then proceeding downward.

Application Layer

The application layer is where network applications and their application-layer pro-
tocols reside. The Internet’s application layer includes many protocols, such as the 
HTTP protocol (which provides for Web document request and transfer), SMTP 
(which provides for the transfer of e-mail messages), and FTP (which provides for 
the transfer of files between two end systems). We’ll see that certain network func-
tions, such as the translation of human-friendly names for Internet end systems like 
www.ietf.org to a 32-bit network address, are also done with the help of a specific appli-
cation-layer protocol, namely, the domain name system (DNS). We’ll see in Chap-
ter 2 that it is very easy to create and deploy our own new application-layer protocols.

An application-layer protocol is distributed over multiple end systems, with the 
application in one end system using the protocol to exchange packets of information 
with the application in another end system. We’ll refer to this packet of information 
at the application layer as a message.

Transport Layer

The Internet’s transport layer transports application-layer messages between application  
endpoints. In the Internet, there are two transport protocols, TCP and UDP, either of 
which can transport application-layer messages. TCP provides a  connection-oriented 
service to its applications. This service includes guaranteed delivery of application-layer 

Figure 1.23 ♦ The Internet protocol stack
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messages to the destination and flow control (that is, sender/receiver speed matching). 
TCP also breaks long messages into shorter  segments and provides a congestion-control 
mechanism, so that a source throttles its transmission rate when the network is con-
gested. The UDP protocol provides a connectionless service to its applications. This is a 
no-frills service that provides no reliability, no flow control, and no congestion control. 
In this book, we’ll refer to a transport-layer packet as a segment.

Network Layer

The Internet’s network layer is responsible for moving network-layer packets known 
as datagrams from one host to another. The Internet transport-layer protocol (TCP 
or UDP) in a source host passes a transport-layer segment and a destination address 
to the network layer, just as you would give the postal service a letter with a destina-
tion address. The network layer then provides the service of delivering the segment 
to the transport layer in the destination host.

The Internet’s network layer includes the celebrated IP protocol, which defines 
the fields in the datagram as well as how the end systems and routers act on these 
fields. There is only one IP protocol, and all Internet components that have a network 
layer must run the IP protocol. The Internet’s network layer also contains routing 
protocols that determine the routes that datagrams take between sources and destina-
tions. The Internet has many routing protocols. As we saw in Section 1.3, the Internet 
is a network of networks, and within a network, the network administrator can run 
any routing protocol desired. Although the network layer contains both the IP pro-
tocol and numerous routing protocols, it is often simply referred to as the IP layer, 
reflecting the fact that IP is the glue that binds the Internet together.

Link Layer

The Internet’s network layer routes a datagram through a series of routers between 
the source and destination. To move a packet from one node (host or router) to the 
next node in the route, the network layer relies on the services of the link layer. In 
particular, at each node, the network layer passes the datagram down to the link 
layer, which delivers the datagram to the next node along the route. At this next node, 
the link layer passes the datagram up to the network layer.

The services provided by the link layer depend on the specific link-layer protocol 
that is employed over the link. For example, some link-layer protocols provide reli-
able delivery, from transmitting node, over one link, to receiving node. Note that this 
reliable delivery service is different from the reliable delivery service of TCP, which 
provides reliable delivery from one end system to another. Examples of link-layer pro-
tocols include Ethernet, WiFi, and the cable access network’s DOCSIS protocol. As 
datagrams typically need to traverse several links to travel from source to destination, 
a datagram may be handled by different link-layer protocols at different links along its 
route. For example, a datagram may be handled by Ethernet on one link and by PPP on 
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the next link. The network layer will receive a different service from each of the dif-
ferent link-layer protocols. In this book, we’ll refer to the link-layer packets as frames.

Physical Layer

While the job of the link layer is to move entire frames from one network element to 
an adjacent network element, the job of the physical layer is to move the individual 
bits within the frame from one node to the next. The protocols in this layer are again 
link dependent and further depend on the actual transmission medium of the link (for 
example, twisted-pair copper wire, single-mode fiber optics). For example, Ether-
net has many physical-layer protocols: one for twisted-pair copper wire, another for 
coaxial cable, another for fiber, and so on. In each case, a bit is moved across the link 
in a different way.

1.5.2 Encapsulation
Figure 1.24 shows the physical path that data takes down a sending end system’s 
protocol stack, up and down the protocol stacks of an intervening link-layer switch 

Figure 1.24 ♦  Hosts, routers, and link-layer switches; each contains a 
 different set of layers, reflecting their differences in functionality
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and router, and then up the protocol stack at the receiving end system. As we dis-
cuss later in this book, routers and link-layer switches are both packet switches. 
Similar to end systems, routers and link-layer switches organize their network-
ing hardware and software into layers. But routers and link-layer switches do not 
implement all of the layers in the protocol stack; they typically implement only 
the bottom layers. As shown in Figure 1.24, link-layer switches implement lay-
ers 1 and 2; routers implement layers 1 through 3. This means, for example, that 
Internet routers are capable of implementing the IP protocol (a layer 3 protocol), 
while link-layer switches are not. We’ll see later that while link-layer switches do 
not recognize IP addresses, they are capable of recognizing layer 2 addresses, such 
as Ethernet addresses. Note that hosts implement all five layers; this is consistent 
with the view that the Internet architecture puts much of its complexity at the edges 
of the network.

Figure 1.24 also illustrates the important concept of encapsulation. At the 
sending host, an application-layer message (M in Figure 1.24) is passed to the 
transport layer. In the simplest case, the transport layer takes the message and 
appends additional information (so-called transport-layer header information, Ht 
in Figure 1.24) that will be used by the receiver-side transport layer. The appli-
cation-layer message and the transport-layer header information together consti-
tute the transport-layer segment. The transport-layer segment thus encapsulates 
the application-layer message. The added information might include information 
allowing the receiver-side transport layer to deliver the message up to the appro-
priate application, and error-detection bits that allow the receiver to determine 
whether bits in the message have been changed in route. The transport layer then 
passes the segment to the network layer, which adds network-layer header infor-
mation (Hn in Figure 1.24) such as source and destination end system addresses, 
creating a network-layer datagram. The datagram is then passed to the link 
layer, which (of course!) will add its own link-layer header information and cre-
ate a link-layer frame. Thus, we see that at each layer, a packet has two types of 
fields: header fields and a payload field. The payload is typically a packet from 
the layer above.

A useful analogy here is the sending of an interoffice memo from one corpo-
rate branch office to another via the public postal service. Suppose Alice, who is in 
one branch office, wants to send a memo to Bob, who is in another branch office. 
The memo is analogous to the application-layer message. Alice puts the memo 
in an interoffice envelope with Bob’s name and department written on the front 
of the envelope. The interoffice envelope is analogous to a transport-layer seg-
ment—it contains header information (Bob’s name and department number) and it 
encapsulates the application-layer message (the memo). When the sending branch-
office mailroom receives the interoffice envelope, it puts the interoffice enve-
lope inside yet another envelope, which is suitable for sending through the public 
postal service. The sending mailroom also writes the postal address of the sending 
and receiving branch offices on the postal envelope. Here, the postal envelope 
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is analogous to the datagram—it encapsulates the transport-layer segment (the 
interoffice envelope), which encapsulates the original message (the memo). The 
postal service delivers the postal envelope to the receiving branch-office mail-
room. There, the process of de-encapsulation is begun. The mailroom extracts the 
interoffice memo and forwards it to Bob. Finally, Bob opens the envelope and 
removes the memo.

The process of encapsulation can be more complex than that described above. 
For example, a large message may be divided into multiple transport-layer segments 
(which might themselves each be divided into multiple network-layer datagrams). 
At the receiving end, such a segment must then be reconstructed from its constituent 
datagrams.

1.6 Networks Under Attack

The Internet has become mission critical for many institutions today, including large 
and small companies, universities, and government agencies. Many individuals also 
rely on the Internet for many of their professional, social, and personal activities. 
Billions of “things,” including wearables and home devices, are currently being con-
nected to the Internet. But behind all this utility and excitement, there is a dark side, 
a side where “bad guys” attempt to wreak havoc in our daily lives by damaging our 
Internet-connected computers, violating our privacy, and rendering inoperable the 
Internet services on which we depend.

The field of network security is about how the bad guys can attack computer 
networks and about how we, soon-to-be experts in computer networking, can 
defend networks against those attacks, or better yet, design new architectures 
that are immune to such attacks in the first place. Given the frequency and vari-
ety of existing attacks as well as the threat of new and more destructive future 
attacks, network security has become a central topic in the field of computer 
networking. One of the features of this textbook is that it brings network security 
issues to the forefront.

Since we don’t yet have expertise in computer networking and Internet pro-
tocols, we’ll begin here by surveying some of today’s more prevalent security-
related problems. This will whet our appetite for more substantial discussions in the 
upcoming chapters. So we begin here by simply asking, what can go wrong? How 
are computer networks vulnerable? What are some of the more prevalent types of 
attacks today?

The Bad Guys Can Put Malware into Your Host Via the Internet

We attach devices to the Internet because we want to receive/send data from/to the 
Internet. This includes all kinds of good stuff, including Instagram posts, Internet 
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search results, streaming music, video conference calls, streaming movies, and 
so on. But, unfortunately, along with all that good stuff comes malicious stuff— 
collectively known as malware—that can also enter and infect our devices. Once 
malware infects our device it can do all kinds of devious things, including delet-
ing our files and installing spyware that collects our private information, such 
as social  security numbers, passwords, and keystrokes, and then sends this (over 
the Internet, of course!) back to the bad guys. Our compromised host may also 
be  enrolled in a network of thousands of similarly compromised devices, col-
lectively known as a botnet, which the bad guys control and leverage for spam 
e-mail distribution or distributed denial-of-service attacks (soon to be discussed) 
against targeted hosts.

Much of the malware out there today is self-replicating: once it infects one host, 
from that host it seeks entry into other hosts over the Internet, and from  the newly 
infected hosts, it seeks entry into yet more hosts. In this manner, self- replicating mal-
ware can spread exponentially fast.

The Bad Guys Can Attack Servers and Network Infrastructure

Another broad class of security threats are known as denial-of-service (DoS) 
attacks. As the name suggests, a DoS attack renders a network, host, or other piece 
of infrastructure unusable by legitimate users. Web servers, e-mail servers, DNS 
servers (discussed in Chapter 2), and institutional networks can all be subject to DoS 
attacks. The site Digital Attack Map allows use to visualize the top daily DoS attacks 
worldwide [DAM 2020]. Most Internet DoS attacks fall into one of three categories:

• Vulnerability attack.  This involves sending a few well-crafted messages to a 
vulnerable application or operating system running on a targeted host. If the right 
sequence of packets is sent to a vulnerable application or operating system, the 
service can stop or, worse, the host can crash.

• Bandwidth flooding.  The attacker sends a deluge of packets to the targeted 
host—so many packets that the target’s access link becomes clogged, preventing 
legitimate packets from reaching the server.

• Connection flooding. The attacker establishes a large number of half-open or 
fully open TCP connections (TCP connections are discussed in Chapter 3) at the 
target host. The host can become so bogged down with these bogus connections 
that it stops accepting legitimate connections.

Let’s now explore the bandwidth-flooding attack in more detail. Recalling our 
delay and loss analysis discussion in Section 1.4.2, it’s evident that if the server 
has an access rate of R bps, then the attacker will need to send traffic at a rate of 
approximately R bps to cause damage. If R is very large, a single attack source 
may not be able to generate enough traffic to harm the server. Furthermore, if all 
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the traffic emanates from a single source, an upstream router may be able to detect 
the attack and block all traffic from that source before the traffic gets near the 
server. In a distributed DoS (DDoS) attack, illustrated in Figure 1.25, the attacker 
controls multiple sources and has each source blast traffic at the target. With this 
approach, the aggregate traffic rate across all the controlled sources needs to be 
approximately R to cripple the  service. DDoS attacks leveraging botnets with thou-
sands of comprised hosts are a common occurrence today [DAM 2020]. DDos 
attacks are much harder to detect and defend against than a DoS attack from a 
single host.

We encourage you to consider the following question as you work your way 
through this book: What can computer network designers do to defend against 
DoS attacks? We will see that different defenses are needed for the three types of 
DoS attacks.

The Bad Guys Can Sniff Packets

Many users today access the Internet via wireless devices, such as WiFi-connected 
laptops or handheld devices with cellular Internet connections (covered in Chapter 7).  
While ubiquitous Internet access is extremely convenient and enables marvelous 
new applications for mobile users, it also creates a major security vulnerability—by 
placing a passive receiver in the vicinity of the wireless transmitter, that receiver 

Figure 1.25 ♦ A distributed denial-of-service attack
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can obtain a copy of every packet that is transmitted! These packets can contain all 
kinds of sensitive information, including passwords, social security numbers, trade 
secrets, and private personal messages. A passive receiver that records a copy of 
every packet that flies by is called a packet sniffer.

Sniffers can be deployed in wired environments as well. In wired broadcast 
environments, as in many Ethernet LANs, a packet sniffer can obtain copies of 
broadcast packets sent over the LAN. As described in Section 1.2, cable access 
technologies also broadcast packets and are thus vulnerable to sniffing. Further-
more, a bad guy who gains access to an institution’s access router or access link 
to the Internet may be able to plant a sniffer that makes a copy of every packet 
going to/from the organization. Sniffed packets can then be analyzed offline for 
sensitive information.

Packet-sniffing software is freely available at various Web sites and as commer-
cial products. Professors teaching a networking course have been known to assign 
lab exercises that involve writing a packet-sniffing and application-layer data recon-
struction program. Indeed, the Wireshark [Wireshark 2020] labs associated with this 
text (see the introductory Wireshark lab at the end of this chapter) use exactly such 
a packet sniffer!

Because packet sniffers are passive—that is, they do not inject packets into the 
channel—they are difficult to detect. So, when we send packets into a wireless chan-
nel, we must accept the possibility that some bad guy may be recording copies of our 
packets. As you may have guessed, some of the best defenses against packet sniffing 
involve cryptography. We will examine cryptography as it applies to network secu-
rity in Chapter 8.

The Bad Guys Can Masquerade as Someone You Trust

It is surprisingly easy (you will have the knowledge to do so shortly as you proceed 
through this text!) to create a packet with an arbitrary source address, packet content, 
and destination address and then transmit this hand-crafted packet into the Internet, 
which will dutifully forward the packet to its destination. Imagine the unsuspecting 
receiver (say an Internet router) who receives such a packet, takes the (false) source 
address as being truthful, and then performs some command embedded in the pack-
et’s contents (say modifies its forwarding table). The ability to inject packets into the 
Internet with a false source address is known as IP spoofing, and is but one of many 
ways in which one user can masquerade as another user.

To solve this problem, we will need end-point authentication, that is, a mech-
anism that will allow us to determine with certainty if a message originates from 
where we think it does. Once again, we encourage you to think about how this 
can be done for network applications and protocols as you progress through the 
chapters of this book. We will explore mechanisms for end-point authentication 
in Chapter 8.

M01_KURO1557_08_SE_C01.indd   57 11/02/20   10:54 AM



58     CHAPTER 1  •  COMPUTER NETWORKS AND THE INTERNET

In closing this section, it’s worth considering how the Internet got to be such 
an insecure place in the first place. The answer, in essence, is that the Internet was 
originally designed to be that way, based on the model of “a group of mutually trust-
ing users attached to a transparent network” [Blumenthal 2001]—a model in which 
(by definition) there is no need for security. Many aspects of the original Internet 
architecture deeply reflect this notion of mutual trust. For example, the ability for 
one user to send a packet to any other user is the default rather than a requested/
granted capability, and user identity is taken at declared face value, rather than being 
authenticated by default.

But today’s Internet certainly does not involve “mutually trusting users.” None-
theless, today’s users still need to communicate when they don’t necessarily trust 
each other, may wish to communicate anonymously, may communicate indirectly 
through third parties (e.g., Web caches, which we’ll study in Chapter 2, or mobility-
assisting agents, which we’ll study in Chapter 7), and may distrust the hardware, 
software, and even the air through which they communicate. We now have many 
security-related challenges before us as we progress through this book: We should 
seek defenses against sniffing, end-point masquerading, man-in-the-middle attacks, 
DDoS attacks, malware, and more. We should keep in mind that communication 
among mutually trusted users is the exception rather than the rule. Welcome to the 
world of modern computer networking!

1.7 History of Computer Networking and  
the Internet

Sections 1.1 through 1.6 presented an overview of the technology of computer net-
working and the Internet. You should know enough now to impress your family and 
friends! However, if you really want to be a big hit at the next cocktail party, you 
should sprinkle your discourse with tidbits about the fascinating history of the Inter-
net [Segaller 1998].

1.7.1 The Development of Packet Switching: 1961–1972
The field of computer networking and today’s Internet trace their beginnings 
back to the early 1960s, when the telephone network was the world’s dominant 
communication network. Recall from Section 1.3 that the telephone network uses 
circuit switching to transmit information from a sender to a receiver—an appro-
priate choice given that voice is transmitted at a constant rate between sender 
and receiver. Given the increasing importance of computers in the early 1960s 
and the advent of timeshared computers, it was perhaps natural to consider how 
to hook computers together so that they could be shared among geographically 
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distributed users. The traffic generated by such users was likely to be bursty—
intervals of activity, such as the sending of a command to a remote computer, 
followed by periods of inactivity while waiting for a reply or while contemplat-
ing the received response.

Three research groups around the world, each unaware of the others’ work 
[Leiner 1998], began inventing packet switching as an efficient and robust alterna-
tive to circuit switching. The first published work on packet-switching techniques 
was that of Leonard Kleinrock [Kleinrock 1961; Kleinrock 1964], then a graduate 
student at MIT. Using queuing theory, Kleinrock’s work elegantly demonstrated the 
effectiveness of the packet-switching approach for bursty traffic sources. In 1964, 
Paul Baran [Baran 1964] at the Rand Institute had begun investigating the use of 
packet switching for secure voice over military networks, and at the National Physi-
cal Laboratory in England, Donald Davies and Roger Scantlebury were also devel-
oping their ideas on packet switching.

The work at MIT, Rand, and the NPL laid the foundations for today’s Inter-
net. But the Internet also has a long history of a let’s-build-it-and-demonstrate-it 
attitude that also dates back to the 1960s. J. C. R. Licklider [DEC 1990] and 
Lawrence Roberts, both colleagues of Kleinrock’s at MIT, went on to lead the 
computer science program at the Advanced Research Projects Agency (ARPA) 
in the United States. Roberts published an overall plan for the ARPAnet [Roberts 
1967], the first packet-switched computer network and a direct ancestor of today’s 
public Internet. On Labor Day in 1969, the first packet switch was installed at 
UCLA under Kleinrock’s supervision, and three additional packet switches were 
installed shortly thereafter at the Stanford Research Institute (SRI), UC Santa 
Barbara, and the University of Utah (Figure 1.26). The fledgling precursor to the 
Internet was four nodes large by the end of 1969. Kleinrock recalls the very first 
use of the network to perform a remote login from UCLA to SRI, crashing the 
system [Kleinrock 2004].

By 1972, ARPAnet had grown to approximately 15 nodes and was given its 
first public demonstration by Robert Kahn. The first host-to-host protocol between 
ARPAnet end systems, known as the network-control protocol (NCP), was com-
pleted [RFC 001]. With an end-to-end protocol available, applications could now be 
written. Ray Tomlinson wrote the first e-mail program in 1972.

1.7.2  Proprietary Networks and Internetworking:  
1972–1980

The initial ARPAnet was a single, closed network. In order to communicate with an 
ARPAnet host, one had to be actually attached to another ARPAnet IMP. In the early 
to mid-1970s, additional stand-alone packet-switching networks besides ARPAnet 
came into being: ALOHANet, a microwave network linking universities on the 
Hawaiian islands [Abramson 1970], as well as DARPA’s packet-satellite [RFC 829]  
and packet-radio networks [Kahn 1978]; Telenet, a BBN commercial packet- switching 
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network based on ARPAnet technology; Cyclades, a French packet-switching net-
work pioneered by Louis Pouzin [Think 2012]; Time-sharing networks such as 
Tymnet and the GE Information Services network, among others, in the late 1960s 
and early 1970s [Schwartz 1977]; IBM’s SNA (1969–1974), which paralleled the 
ARPAnet work [Schwartz 1977].

The number of networks was growing. With perfect hindsight we can see that the 
time was ripe for developing an encompassing architecture for connecting networks 
together. Pioneering work on interconnecting networks (under the sponsorship of 
the Defense Advanced Research Projects Agency (DARPA)), in essence creating 

Figure 1.26 ♦ An early packet switch
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a network of networks, was done by Vinton Cerf and Robert Kahn [Cerf 1974]; the 
term internetting was coined to describe this work.

These architectural principles were embodied in TCP. The early versions of 
TCP, however, were quite different from today’s TCP. The early versions of TCP 
combined a reliable in-sequence delivery of data via end-system retransmission (still 
part of today’s TCP) with forwarding functions (which today are performed by IP). 
Early experimentation with TCP, combined with the recognition of the importance 
of an unreliable, non-flow-controlled, end-to-end transport service for applications 
such as packetized voice, led to the separation of IP out of TCP and the development 
of the UDP protocol. The three key Internet protocols that we see today—TCP, UDP, 
and IP—were conceptually in place by the end of the 1970s.

In addition to the DARPA Internet-related research, many other important net-
working activities were underway. In Hawaii, Norman Abramson was developing  
ALOHAnet, a packet-based radio network that allowed multiple remote sites 
on the Hawaiian Islands to communicate with each other. The ALOHA protocol  
[Abramson 1970] was the first multiple-access protocol, allowing geographically  
distributed users to share a single broadcast communication medium (a radio 
 frequency). Metcalfe and Boggs built on Abramson’s multiple-access protocol work 
when they developed the Ethernet protocol [Metcalfe 1976] for wire-based shared 
broadcast networks. Interestingly, Metcalfe and Boggs’ Ethernet protocol was moti-
vated by the need to connect multiple PCs, printers, and shared disks [Perkins 1994]. 
Twenty-five years ago, well before the PC revolution and the explosion of networks, 
Metcalfe and Boggs were laying the foundation for today’s PC LANs.

1.7.3 A Proliferation of Networks: 1980–1990
By the end of the 1970s, approximately two hundred hosts were connected to the 
ARPAnet. By the end of the 1980s the number of hosts connected to the public 
 Internet, a confederation of networks looking much like today’s Internet, would 
reach a hundred thousand. The 1980s would be a time of tremendous growth.

Much of that growth resulted from several distinct efforts to create computer 
networks linking universities together. BITNET provided e-mail and file transfers 
among several universities in the Northeast. CSNET (computer science network) 
was formed to link university researchers who did not have access to ARPAnet. In 
1986, NSFNET was created to provide access to NSF-sponsored supercomputing 
centers. Starting with an initial backbone speed of 56 kbps, NSFNET’s backbone 
would be running at 1.5 Mbps by the end of the decade and would serve as a primary 
backbone linking regional networks.

In the ARPAnet community, many of the final pieces of today’s Internet archi-
tecture were falling into place. January 1, 1983 saw the official deployment of  
TCP/IP as the new standard host protocol for ARPAnet (replacing the NCP pro-
tocol). The transition [RFC 801] from NCP to TCP/IP was a flag day event—all 
hosts were required to transfer over to TCP/IP as of that day. In the late 1980s, 
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important extensions were made to TCP to implement host-based congestion con-
trol [Jacobson 1988]. The DNS, used to map between a human-readable Internet 
name (for example, gaia.cs.umass.edu) and its 32-bit IP address, was also developed 
[RFC 1034].

Paralleling this development of the ARPAnet (which was for the most part a 
US effort), in the early 1980s the French launched the Minitel project, an ambitious 
plan to bring data networking into everyone’s home. Sponsored by the French gov-
ernment, the Minitel system consisted of a public packet-switched network (based 
on the X.25 protocol suite), Minitel servers, and inexpensive terminals with built-in 
low-speed modems. The Minitel became a huge success in 1984 when the French 
government gave away a free Minitel terminal to each French household that wanted 
one. Minitel sites included free sites—such as a telephone directory site—as well as 
private sites, which collected a usage-based fee from each user. At its peak in the 
mid 1990s, it offered more than 20,000 services, ranging from home banking to spe-
cialized research databases. The Minitel was in a large proportion of French homes 
10 years before most Americans had ever heard of the Internet.

1.7.4 The Internet Explosion: The 1990s
The 1990s were ushered in with a number of events that symbolized the continued 
evolution and the soon-to-arrive commercialization of the Internet. ARPAnet, the 
progenitor of the Internet, ceased to exist. In 1991, NSFNET lifted its restrictions on 
the use of NSFNET for commercial purposes. NSFNET itself would be decommis-
sioned in 1995, with Internet backbone traffic being carried by commercial Internet 
Service Providers.

The main event of the 1990s was to be the emergence of the World Wide Web 
application, which brought the Internet into the homes and businesses of millions 
of people worldwide. The Web served as a platform for enabling and deploying 
hundreds of new applications that we take for granted today, including search (e.g., 
Google and Bing) Internet commerce (e.g., Amazon and eBay) and social networks 
(e.g., Facebook).

The Web was invented at CERN by Tim Berners-Lee between 1989 and 1991 
[Berners-Lee 1989], based on ideas originating in earlier work on hypertext from the 
1940s by Vannevar Bush [Bush 1945] and since the 1960s by Ted Nelson [Xanadu 
2012]. Berners-Lee and his associates developed initial versions of HTML, HTTP, 
a Web server, and a browser—the four key components of the Web. Around the end 
of 1993 there were about two hundred Web servers in operation, this collection of 
servers being just a harbinger of what was about to come. At about this time sev-
eral researchers were developing Web browsers with GUI interfaces, including Marc 
Andreessen, who along with Jim Clark, formed Mosaic Communications, which 
later became Netscape Communications Corporation [Cusumano 1998; Quittner 
1998]. By 1995, university students were using Netscape browsers to surf the Web 
on a daily basis. At about this time companies—big and small—began to operate 
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Web servers and transact commerce over the Web. In 1996, Microsoft started to 
make browsers, which started the browser war between Netscape and Microsoft, 
which Microsoft won a few years later [Cusumano 1998].

The second half of the 1990s was a period of tremendous growth and innovation 
for the Internet, with major corporations and thousands of startups creating Internet 
products and services. By the end of the millennium the Internet was supporting 
hundreds of popular applications, including four killer applications:

• E-mail, including attachments and Web-accessible e-mail

• The Web, including Web browsing and Internet commerce

• Instant messaging, with contact lists
• Peer-to-peer file sharing of MP3s, pioneered by Napster

Interestingly, the first two killer applications came from the research community, 
whereas the last two were created by a few young entrepreneurs.

The period from 1995 to 2001 was a roller-coaster ride for the Internet in the 
financial markets. Before they were even profitable, hundreds of Internet startups 
made initial public offerings and started to be traded in a stock market. Many com-
panies were valued in the billions of dollars without having any significant revenue 
streams. The Internet stocks collapsed in 2000–2001, and many startups shut down. 
Nevertheless, a number of companies emerged as big winners in the Internet space, 
including Microsoft, Cisco, Yahoo, eBay, Google, and Amazon.

1.7.5 The New Millennium
In the first two decades of the 21st century, perhaps no other technology has trans-
formed society more than the Internet along with Internet-connected smartphones. 
And innovation in computer networking continues at a rapid pace. Advances are 
being made on all fronts, including deployments of faster routers and higher trans-
mission speeds in both access networks and in network backbones. But the following 
developments merit special attention:

• Since the beginning of the millennium, we have been seeing aggressive deploy-
ment of broadband Internet access to homes—not only cable modems and DSL 
but also fiber to the home, and now 5G fixed wireless as discussed in Section 1.2. 
This high-speed Internet access has set the stage for a wealth of video applica-
tions, including the distribution of user-generated video (for example, YouTube), 
on-demand streaming of movies and television shows (e.g., Netflix), and multi-
person video conference (e.g., Skype, Facetime, and Google Hangouts).

• The increasing ubiquity of high-speed wireless Internet access is not only making 
it possible to remain constantly connected while on the move, but also enabling 
new location-specific applications such as Yelp, Tinder, and Waz. The number of 
wireless devices connecting to the Internet surpassed the number of wired devices 
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in 2011. This high-speed wireless access has set the stage for the rapid emergence 
of hand-held computers (iPhones, Androids, iPads, and so on), which enjoy con-
stant and untethered access to the Internet.

• Online social networks—such as Facebook, Instagram, Twitter, and WeChat 
(hugely popular in China)—have created massive people networks on top of the 
Internet. Many of these social networks are extensively used for messaging as 
well as photo sharing. Many Internet users today “live” primarily within one or 
more social networks. Through their APIs, the online social networks create plat-
forms for new networked applications, including mobile payments and distrib-
uted games.

• As discussed in Section 1.3.3, online service providers, such as Google and 
Microsoft, have deployed their own extensive private networks, which not only 
connect together their globally distributed data centers, but are used to bypass the 
Internet as much as possible by peering directly with lower-tier ISPs. As a result, 
Google provides search results and e-mail access almost instantaneously, as if 
their data centers were running within one’s own computer.

• Many Internet commerce companies are now running their applications in the 
“cloud”—such as in Amazon’s EC2, in Microsoft’s Azure, or in the Alibaba 
Cloud. Many companies and universities have also migrated their Internet 
applications (e.g., e-mail and Web hosting) to the cloud. Cloud companies not 
only provide applications scalable computing and storage environments, but 
also provide the applications implicit access to their high-performance private 
networks.

1.8 Summary

In this chapter, we’ve covered a tremendous amount of material! We’ve looked at 
the various pieces of hardware and software that make up the Internet in particular 
and computer networks in general. We started at the edge of the network, look-
ing at end systems and applications, and at the transport service provided to the 
applications running on the end systems. We also looked at the link-layer tech-
nologies and physical media typically found in the access network. We then dove 
deeper inside the network, into the network core, identifying packet switching and 
circuit switching as the two basic approaches for transporting data through a tel-
ecommunication network, and we examined the strengths and weaknesses of each 
approach. We also examined the structure of the global Internet, learning that the 
Internet is a network of networks. We saw that the Internet’s hierarchical structure, 
consisting of higher- and lower-tier ISPs, has allowed it to scale to include thou-
sands of networks.
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In the second part of this introductory chapter, we examined several topics cen-
tral to the field of computer networking. We first examined the causes of delay, 
throughput and packet loss in a packet-switched network. We developed simple 
quantitative models for transmission, propagation, and queuing delays as well as 
for throughput; we’ll make extensive use of these delay models in the homework 
problems throughout this book. Next we examined protocol layering and service 
models, key architectural principles in networking that we will also refer back to 
throughout this book. We also surveyed some of the more prevalent security attacks 
in the Internet day. We finished our introduction to networking with a brief history 
of computer networking. The first chapter in itself constitutes a mini-course in com-
puter networking.

So, we have indeed covered a tremendous amount of ground in this first chapter! 
If you’re a bit overwhelmed, don’t worry. In the following chapters, we’ll revisit all 
of these ideas, covering them in much more detail (that’s a promise, not a threat!). 
At this point, we hope you leave this chapter with a still-developing intuition for the 
pieces that make up a network, a still-developing command of the vocabulary of 
networking (don’t be shy about referring back to this chapter), and an ever-growing 
desire to learn more about networking. That’s the task ahead of us for the rest of this 
book.

Road-Mapping This Book
Before starting any trip, you should always glance at a road map in order to 
become familiar with the major roads and junctures that lie ahead. For the trip 
we are about to embark on, the ultimate destination is a deep understanding of 
the how, what, and why of computer networks. Our road map is the sequence of 
chapters of this book:

 1. Computer Networks and the Internet
 2. Application Layer
 3. Transport Layer
 4. Network Layer: Data Plane
 5. Network Layer: Control Plane
 6. The Link Layer and LANs
 7. Wireless and Mobile Networks
 8. Security in Computer Networks

Chapters 2 through 6 are the five core chapters of this book. You should notice 
that these chapters are organized around the top four layers of the five-layer Internet 
protocol. Further note that our journey will begin at the top of the Internet protocol 
stack, namely, the application layer, and will work its way downward. The rationale 
behind this top-down journey is that once we understand the applications, we can 
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understand the network services needed to support these applications. We can then, 
in turn, examine the various ways in which such services might be implemented by 
a network architecture. Covering applications early thus provides motivation for the 
remainder of the text.

The second half of the book—Chapters 7 and 8—zooms in on two enor-
mously important (and somewhat independent) topics in modern computer net-
working. In Chapter 7, we examine wireless and mobile networks, including 
wireless LANs (including WiFi and Bluetooth), Cellular networks (including 
4G and 5G), and mobility. Chapter 8, which addresses security in computer net-
works, first looks at the underpinnings of encryption and network security, and 
then we examine how the basic theory is being applied in a broad range of Inter-
net contexts.

Homework Problems and Questions

Chapter 1 Review Questions
SECTION 1.1
   R1. What is the difference between a host and an end system? List several differ-

ent types of end systems. Is a Web server an end system?

   R2. The word protocol is often used to describe diplomatic relations. How does 
Wikipedia describe diplomatic protocol?

   R3. Why are standards important for protocols?

SECTION 1.2
   R4. List four access technologies. Classify each one as home access, enterprise 

access, or wide-area wireless access.

   R5. Is HFC transmission rate dedicated or shared among users? Are collisions 
possible in a downstream HFC channel? Why or why not?

   R6. List the available residential access technologies in your city. For each 
type of access, provide the advertised downstream rate, upstream rate, and 
monthly price.

   R7. What is the transmission rate of Ethernet LANs?

   R8. What are some of the physical media that Ethernet can run over?

   R9. HFC, DSL, and FTTH are all used for residential access. For each of  
these access technologies, provide a range of  transmission rates and  
comment on whether the transmission rate is shared or dedicated.

 R10. Describe the most popular wireless Internet access technologies today. 
 Compare and contrast them.
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SECTION 1.3
 R11. Suppose there is exactly one packet switch between a sending host and a 

receiving host. The transmission rates between the sending host and the 
switch and between the switch and the receiving host are R1 and R2, respec-
tively. Assuming that the switch uses store-and-forward packet switching, 
what is the total end-to-end delay to send a packet of length L? (Ignore queu-
ing, propagation delay, and processing delay.)

 R12. What advantage does a circuit-switched network have over a packet-switched net-
work? What advantages does TDM have over FDM in a circuit-switched network?

 R13. Suppose users share a 2 Mbps link. Also suppose each user transmits contin-
uously at 1 Mbps when transmitting, but each user transmits only 20 percent 
of the time. (See the discussion of statistical multiplexing in Section 1.3.)

a. When circuit switching is used, how many users can be supported?

b. For the remainder of this problem, suppose packet switching is used. Why 
will there be essentially no queuing delay before the link if two or fewer 
users transmit at the same time? Why will there be a queuing delay if 
three users transmit at the same time?

c. Find the probability that a given user is transmitting.

d. Suppose now there are three users. Find the probability that at any given 
time, all three users are transmitting simultaneously. Find the fraction of 
time during which the queue grows.

 R14. Why will two ISPs at the same level of the hierarchy often peer with each 
other? How does an IXP earn money?

 R15. Some content providers have created their own networks. Describe Google’s 
network. What motivates content providers to create these networks?

SECTION 1.4
 R16. Consider sending a packet from a source host to a destination host over a 

fixed route. List the delay components in the end-to-end delay. Which of 
these delays are constant and which are variable?

 R17. Visit the Transmission Versus Propagation Delay interactive animation at 
the companion Web site. Among the rates, propagation delay, and packet 
sizes available, find a combination for which the sender finishes transmitting 
before the first bit of the packet reaches the receiver. Find another combina-
tion for which the first bit of the packet reaches the receiver before the sender 
finishes transmitting.

 R18. How long does it take a packet of length 1,000 bytes to propagate over a 
link of distance 2,500 km, propagation speed 2.5 # 108 m/s, and transmission 
rate 2 Mbps? More generally, how long does it take a packet of length L to 
propagate over a link of distance d, propagation speed s, and transmission 
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rate R bps? Does this delay depend on packet length? Does this delay depend 
on transmission rate?

 R19. Suppose Host A wants to send a large file to Host B. The path from Host A to Host 
B has three links, of rates R1 = 500 kbps, R2 = 2 Mbps, and R3 = 1 Mbps.

a. Assuming no other traffic in the network, what is the throughput for the 
file transfer?

b. Suppose the file is 4 million bytes. Dividing the file size by the through-
put, roughly how long will it take to transfer the file to Host B?

c. Repeat (a) and (b), but now with R2 reduced to 100 kbps.

 R20. Suppose end system A wants to send a large file to end system B. At a very 
high level, describe how end system A creates packets from the file. When 
one of these packets arrives to a router, what information in the packet does 
the router use to determine the link onto which the packet is forwarded? 
Why is packet switching in the Internet analogous to driving from one city to 
another and asking directions along the way?

 R21. Visit the Queuing and Loss interactive animation  at the companion Web site. 
What is the maximum emission rate and the minimum transmission rate? 
With those rates, what is the traffic intensity? Run the interactive animation 
with these rates and determine how long it takes for packet loss to occur. 
Then repeat the experiment a second time and determine again how long it 
takes for packet loss to occur. Are the values different? Why or why not?

SECTION 1.5
 R22. List five tasks that a layer can perform. Is it possible that one (or more) of 

these tasks could be performed by two (or more) layers?

 R23. What are the five layers in the Internet protocol stack? What are the principal 
responsibilities of each of these layers?

 R24. What is an application-layer message? A transport-layer segment? A net-
work-layer datagram? A link-layer frame?

 R25. Which layers in the Internet protocol stack does a router process? Which lay-
ers does a link-layer switch process? Which layers does a host process?

SECTION 1.6
 R26. What is self-replicating malware?

 R27. Describe how a botnet can be created and how it can be used for a DDoS attack.

 R28. Suppose Alice and Bob are sending packets to each other over a computer 
network. Suppose Trudy positions herself in the network so that she can 
capture all the packets sent by Alice and send whatever she wants to Bob; she 
can also capture all the packets sent by Bob and send whatever she wants to 
Alice. List some of the malicious things Trudy can do from this position.
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Problems

 P1. Design and describe an application-level protocol to be used between an 
automatic teller machine and a bank’s centralized computer. Your protocol 
should allow a user’s card and password to be verified, the account bal-
ance (which is maintained at the centralized computer) to be queried, and an 
account withdrawal to be made (that is, money disbursed to the user). Your 
protocol entities should be able to handle the all-too-common case in which 
there is not enough money in the account to cover the withdrawal. Specify 
your protocol by listing the messages exchanged and the action taken by the 
automatic teller machine or the bank’s centralized computer on transmission 
and receipt of messages. Sketch the operation of your protocol for the case of 
a simple withdrawal with no errors, using a diagram similar to that in Figure 1.2.  
Explicitly state the assumptions made by your protocol about the underlying 
end-to-end transport service.

 P2. Equation 1.1 gives a formula for the end-to-end delay of sending one packet 
of length L over N links of transmission rate R. Generalize this formula for 
sending P such packets back-to-back over the N links.

 P3. Consider an application that transmits data at a steady rate (for example, the 
sender generates an N-bit unit of data every k time units, where k is small 
and fixed). Also, when such an application starts, it will continue running 
for a relatively long period of time. Answer the following questions, briefly 
justifying your answer:

a. Would a packet-switched network or a circuit-switched network be more 
appropriate for this application? Why?

b. Suppose that a packet-switched network is used and the only traffic in 
this network comes from such applications as described above. Further-
more, assume that the sum of the application data rates is less than the 
capacities of each and every link. Is some form of congestion control 
needed? Why?

 P4. Consider the circuit-switched network in Figure 1.13. Recall that there are 
four circuits on each link. Label the four switches A, B, C, and D, going in 
the clockwise direction.

a. What is the maximum number of simultaneous connections that can be in 
progress at any one time in this network?

b. Suppose that all connections are between switches A and C. What is the 
maximum number of simultaneous connections that can be in progress?

c. Suppose we want to make four connections between switches A and C, 
and another four connections between switches B and D. Can we  
route these calls through the four links to accommodate all eight 
 connections?
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 P5. Review the car-caravan analogy in Section 1.4. Assume a propagation speed 
of 100 km/hour.

a. Suppose the caravan travels 175 km, beginning in front of one tollbooth, 
passing through a second tollbooth, and finishing just after a third toll-
booth. What is the end-to-end delay?

b. Repeat (a), now assuming that there are eight cars in the caravan instead 
of ten.

 P6. This elementary problem begins to explore propagation delay and transmis-
sion delay, two central concepts in data networking. Consider two hosts, A 
and B, connected by a single link of rate R bps. Suppose that the two hosts 
are separated by m meters, and suppose the propagation speed along the link 
is s meters/sec. Host A is to send a packet of size L bits to Host B.

a. Express the propagation delay, dprop, in terms of m and s.

b. Determine the transmission time of the packet, dtrans, in terms of L and R.

c. Ignoring processing and queuing delays, obtain an expression for the end-
to-end delay.

d. Suppose Host A begins to transmit the packet at time t =  0. At time t =  
dtrans, where is the last bit of the packet?

e. Suppose dprop is greater than dtrans. At time t = dtrans, where is the first  
bit of the packet?

f. Suppose dprop is less than dtrans. At time t = dtrans, where is the first bit of 
the packet?

g. Suppose s = 2.5 # 108, L = 1500 bytes, and R = 10 Mbps. Find the 
distance m so that dprop equals dtrans.

 P7. In this problem, we consider sending real-time voice from Host A to Host B 
over a packet-switched network (VoIP). Host A converts analog voice to a 
digital 64 kbps bit stream on the fly. Host A then groups the bits into 56-byte 
packets. There is one link between Hosts A and B; its transmission rate is 
10 Mbps and its propagation delay is 10 msec. As soon as Host A gathers a 
packet, it sends it to Host B. As soon as Host B receives an entire packet, it 
converts the packet’s bits to an analog signal. How much time elapses from 
the time a bit is created (from the original analog signal at Host A) until the 
bit is decoded (as part of the analog signal at Host B)?

 P8. Suppose users share a 10 Mbps link. Also suppose each user requires 200 kbps 
when transmitting, but each user transmits only 10 percent of the time. (See 
the discussion of packet switching versus circuit switching in Section 1.3.)

a. When circuit switching is used, how many users can be supported?

b. For the remainder of this problem, suppose packet switching is used. Find 
the probability that a given user is transmitting.

Exploring propagation 
delay and transmission 
delay

VideoNote
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c. Suppose there are 120 users. Find the probability that at any given time, 
exactly n users are transmitting simultaneously. (Hint: Use the binomial 
distribution.)

d. Find the probability that there are 51 or more users transmitting 
 simultaneously.

 P9. Consider the discussion in Section 1.3 of packet switching versus circuit switch-
ing in which an example is provided with a 1 Mbps link. Users are generating 
data at a rate of 100 kbps when busy, but are busy generating data only with 
probability p = 0.1. Suppose that the 1 Mbps link is replaced by a 1 Gbps link.

a. What is N, the maximum number of users that can be supported simulta-
neously under circuit switching?

b. Now consider packet switching and a user population of M users. Give a 
formula (in terms of p, M, N) for the probability that more than N users 
are sending data.

 P10. Consider a packet of length L that begins at end system A and travels over 
three links to a destination end system. These three links are connected by 
two packet switches. Let di, si, and Ri denote the length, propagation speed, 
and the transmission rate of link i, for i = 1, 2, 3. The packet switch delays 
each packet by dproc. Assuming no queuing delays, in terms of di, si, Ri, 
(i = 1, 2, 3), and L, what is the total end-to-end delay for the packet? Sup-
pose now the packet is 1,500 bytes, the propagation speed on all three links is 
2.5 # 108m/s, the transmission rates of all three links are 2.5 Mbps, the packet 
switch processing delay is 3 msec, the length of the first link is 5,000 km, the 
length of the second link is 4,000 km, and the length of the last link is 1,000 
km. For these values, what is the end-to-end delay?

 P11. In the above problem, suppose R1 =  R2 =  R3 =  R and dproc =  0. Further 
suppose that the packet switch does not store-and-forward packets but instead 
immediately transmits each bit it receives before waiting for the entire packet 
to arrive. What is the end-to-end delay?

 P12. A packet switch receives a packet and determines the outbound link to which 
the packet should be forwarded. When the packet arrives, one other packet is 
halfway done being transmitted on this outbound link and four other packets are 
waiting to be transmitted. Packets are transmitted in order of arrival. Suppose 
all packets are 1,500 bytes and the link rate is 2.5 Mbps. What is the queuing 
delay for the packet? More generally, what is the queuing delay when all packets 
have length L, the transmission rate is R, x bits of the currently-being-transmitted 
packet have been transmitted, and n packets are already in the queue?

 P13. (a)  Suppose N packets arrive simultaneously to a link at which no packets 
are currently being transmitted or queued. Each packet is of length L and 
the link has transmission rate R. What is the average queuing delay for 
the N packets?

M01_KURO1557_08_SE_C01.indd   71 11/02/20   10:54 AM



72     CHAPTER 1  •  COMPUTER NETWORKS AND THE INTERNET

(b) Now suppose that N such packets arrive to the link every LN/R seconds. 
What is the average queuing delay of a packet?

 P14. Consider the queuing delay in a router buffer. Let I denote traffic intensity; 
that is, I = La/R. Suppose that the queuing delay takes the form IL/R (1 - I) 
for I 6 1.

a. Provide a formula for the total delay, that is, the queuing delay plus the 
transmission delay.

b. Plot the total delay as a function of L /R.

 P15. Let a denote the rate of packets arriving at a link in packets/sec, and let µ 
denote the link’s transmission rate in packets/sec. Based on the formula for 
the total delay (i.e., the queuing delay plus the transmission delay) derived 
in the previous problem, derive a formula for the total delay in terms of a 
and µ.

 P16. Consider a router buffer preceding an outbound link. In this problem, you 
will use Little’s formula, a famous formula from queuing theory. Let N 
denote the average number of packets in the buffer plus the packet being 
transmitted. Let a denote the rate of packets arriving at the link. Let d denote 
the average total delay (i.e., the queuing delay plus the transmission delay) 
experienced by a packet. Little’s formula is N =  a # d. Suppose that on  
average, the buffer contains 100 packets, and the average packet queuing 
delay is 20 msec. The link’s transmission rate is 100 packets/sec. Using  
Little’s formula, what is the average packet arrival rate, assuming there is  
no packet loss?

 P17. a.  Generalize Equation 1.2 in Section 1.4.3 for heterogeneous processing 
rates, transmission rates, and propagation delays.

b. Repeat (a), but now also suppose that there is an average queuing delay of 
dqueue at each node.

 P18. Perform a Traceroute between source and destination on the same continent 
at three different hours of the day.

a. Find the average and standard deviation of the round-trip delays at each of 
the three hours.

b. Find the number of routers in the path at each of the three hours. Did the 
paths change during any of the hours?

c. Try to identify the number of ISP networks that the Traceroute packets 
pass through from source to destination. Routers with similar names and/
or similar IP addresses should be considered as part of the same ISP. In 
your experiments, do the largest delays occur at the peering interfaces 
between adjacent ISPs?

d. Repeat the above for a source and destination on different continents. 
Compare the intra-continent and inter-continent results.

Using Traceroute to 
discover network  
paths and measure 
network delay

VideoNote
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 P19. Metcalfe’s law states the value of a computer network is proportional to 
the square of the number of connected users of the system. Let n denote the 
number of users in a computer network. Assuming each user sends one mes-
sage to each of the other users, how many messages will be sent? Does your 
answer support Metcalfe’s law?

 P20. Consider the throughput example corresponding to Figure 1.20(b). Now 
suppose that there are M client-server pairs rather than 10. Denote Rs, Rc, 
and R for the rates of the server links, client links, and network link. Assume 
all other links have abundant capacity and that there is no other traffic in the 
network besides the traffic generated by the M client-server pairs. Derive a 
general expression for throughput in terms of Rs, Rc, R, and M.

 P21. Consider Figure 1.19(b). Now suppose that there are M paths between the 
server and the client. No two paths share any link. Path k (k = 1, c, M) 
consists of N links with transmission rates Rk

1, R
k
2, c, Rk

N. If the server can 
only use one path to send data to the client, what is the maximum throughput 
that the server can achieve? If the server can use all M paths to send data, 
what is the maximum throughput that the server can achieve?

 P22. Consider Figure 1.19(b). Suppose that each link between the server and the 
client has a packet loss probability p, and the packet loss probabilities for 
these links are independent. What is the probability that a packet (sent by the 
server) is successfully received by the receiver? If a packet is lost in the path 
from the server to the client, then the server will re-transmit the packet. On 
average, how many times will the server re-transmit the packet in order for 
the client to successfully receive the packet?

 P23. Consider Figure 1.19(a). Assume that we know the bottleneck link along the 
path from the server to the client is the first link with rate Rs bits/sec. Suppose 
we send a pair of packets back to back from the server to the client, and there 
is no other traffic on this path. Assume each packet of size L bits, and both 
links have the same propagation delay  dprop.

a. What is the packet inter-arrival time at the destination? That is, how much 
time elapses from when the last bit of the first packet arrives until the last 
bit of the second packet arrives?

b. Now assume that the second link is the bottleneck link (i.e., Rc 6 Rs). Is 
it possible that the second packet queues at the input queue of the second 
link? Explain. Now suppose that the server sends the second packet T 
seconds after sending the first packet. How large must T be to ensure no 
queuing before the second link? Explain.

 P24. Suppose you would like to urgently deliver 50 terabytes data from Boston to 
Los Angeles. You have available a 100 Mbps dedicated link for data transfer. 
Would you prefer to transmit the data via this link or instead use FedEx over-
night delivery? Explain.
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 P25. Suppose two hosts, A and B, are separated by 20,000 kilometers and are con-
nected by a direct link of R =  5 Mbps. Suppose the propagation speed over 
the link is 2.5 # 108 meters/sec.

a. Calculate the bandwidth-delay product, R #  dprop.

b. Consider sending a file of 800,000 bits from Host A to Host B. Suppose 
the file is sent continuously as one large message. What is the maximum 
number of bits that will be in the link at any given time?

c. Provide an interpretation of the bandwidth-delay product.

d. What is the width (in meters) of a bit in the link? Is it longer than a 
 football field?

e. Derive a general expression for the width of a bit in terms of the 
propagation speed s, the transmission rate R, and the length of the  
link m.

 P26. Referring to problem P24, suppose we can modify R. For what value of R is 
the width of a bit as long as the length of the link?

 P27. Consider problem P24 but now with a link of R =  500 Mbps.

a. Calculate the bandwidth-delay product, R #  dprop.

b. Consider sending a file of 800,000 bits from Host A to Host B. Suppose 
the file is sent continuously as one big message. What is the maximum 
number of bits that will be in the link at any given time?

c. What is the width (in meters) of a bit in the link?

 P28. Refer again to problem P24.

a. How long does it take to send the file, assuming it is sent continuously?

b. Suppose now the file is broken up into 20 packets with each packet 
containing 40,000 bits. Suppose that each packet is acknowledged by 
the receiver and the transmission time of an acknowledgment packet is 
negligible. Finally, assume that the sender cannot send a packet until the 
preceding one is acknowledged. How long does it take to send the file?

c. Compare the results from (a) and (b).

 P29. Suppose there is a 10 Mbps microwave link between a geostationary  
satellite and its base station on Earth. Every minute the satellite takes a digi-
tal photo and sends it to the base station. Assume a propagation speed  
of 2.4 # 108 meters/sec.

a. What is the propagation delay of the link?

b. What is the bandwidth-delay product, R #  dprop?

c. Let x denote the size of the photo. What is the minimum value of x for the 
microwave link to be continuously transmitting?
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 P30. Consider the airline travel analogy in our discussion of layering in Section 1.5, 
and the addition of headers to protocol data units as they flow down the proto-
col stack. Is there an equivalent notion of header information that is added to 
passengers and baggage as they move down the airline protocol stack?

 P31. In modern packet-switched networks, including the Internet, the source host seg-
ments long, application-layer messages (for example, an image or a music file) 
into smaller packets and sends the packets into the network. The receiver then 
reassembles the packets back into the original message. We refer to this process as  
message segmentation. Figure 1.27 illustrates the end-to-end transport of a message 
with and without message segmentation. Consider a message that is 106 bits 
long that is to be sent from source to destination in Figure 1.27. Suppose each 
link in the figure is 5 Mbps. Ignore propagation, queuing, and processing delays.

a. Consider sending the message from source to destination without message 
segmentation. How long does it take to move the message from the source 
host to the first packet switch? Keeping in mind that each switch uses 
store-and-forward packet switching, what is the total time to move the 
message from source host to destination host?

b. Now suppose that the message is segmented into 100 packets, with each 
packet being 10,000 bits long. How long does it take to move the first 
packet from source host to the first switch? When the first packet is being 
sent from the first switch to the second switch, the second packet is being 
sent from the source host to the first switch. At what time will the second 
packet be fully received at the first switch?

c. How long does it take to move the file from source host to destination 
host when message segmentation is used? Compare this result with your 
answer in part (a) and comment.

Figure 1.27 ♦  End-to-end message transport: (a) without message 
 segmentation; (b) with message segmentation

Sourcea. Packet switch Packet switch Destination

Message

Sourceb. Packet switch

Packet

Packet switch Destination
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d. In addition to reducing delay, what are reasons to use message 
 segmentation?

e. Discuss the drawbacks of message segmentation.

 P32. Experiment with the Message Segmentation interactive animation at the book’s 
Web site. Do the delays in the interactive animation correspond to the delays 
in the previous problem? How do link propagation delays affect the overall 
end-to-end delay for packet switching (with message segmentation) and for 
message switching?

 P33. Consider sending a large file of F bits from Host A to Host B. There are three 
links (and two switches) between A and B, and the links are uncongested 
(that is, no queuing delays). Host A segments the file into segments of S bits 
each and adds 80 bits of header to each segment, forming packets of L =  80 +   
S bits. Each link has a transmission rate of R bps. Find the value of S that 
minimizes the delay of moving the file from Host A to Host B. Disregard 
propagation delay.

 P34. Skype offers a service that allows you to make a phone call from a PC to an 
ordinary phone. This means that the voice call must pass through both the 
Internet and through a telephone network. Discuss how this might be done.

Wireshark Lab

“Tell me and I forget. Show me and I remember. Involve me and I understand.”
Chinese proverb

One’s understanding of network protocols can often be greatly deepened by seeing 
them in action and by playing around with them—observing the sequence of mes-
sages exchanged between two protocol entities, delving into the details of protocol 
operation, causing protocols to perform certain actions, and observing these actions 
and their consequences. This can be done in simulated scenarios or in a real network 
environment such as the Internet. The interactive animations at the textbook Web site 
take the first approach. In the Wireshark labs, we’ll take the latter approach. You’ll 
run network applications in various scenarios using a computer on your desk, at 
home, or in a lab. You’ll observe the network protocols in your computer, interacting 
and exchanging messages with protocol entities executing elsewhere in the Inter-
net. Thus, you and your computer will be an integral part of these live labs. You’ll 
observe—and you’ll learn—by doing.

The basic tool for observing the messages exchanged between executing pro-
tocol entities is called a packet sniffer. As the name suggests, a packet sniffer pas-
sively copies (sniffs) messages being sent from and received by your computer; it 
also displays the contents of the various protocol fields of these captured messages. 
A screenshot of the Wireshark packet sniffer is shown in Figure 1.28. Wireshark is a 
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free packet sniffer that runs on Windows, Linux/Unix, and Mac computers. Through-
out the textbook, you will find Wireshark labs that allow you to explore a number 
of the protocols studied in the chapter. In this first Wireshark lab, you’ll obtain and 
install a copy of Wireshark, access a Web site, and capture and examine the protocol 
messages being exchanged between your Web browser and the Web server.

You can find full details about this first Wireshark lab (including instructions 
about how to obtain and install Wireshark) at the Web site www.pearson.com/
cs-resources.

Figure 1.28 ♦  A Wireshark screenshot (Wireshark screenshot reprinted  
by permission of the Wireshark Foundation.)

Command
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What made you decide to specialize in networking/Internet technology?
As a PhD student at MIT in 1959, I looked around and found that most of my classmates 
were doing research in the area of information theory and coding theory that had been 
established by the great researcher, Claude Shannon.  I judged that he had solved most   of 
the important problems already. The research problems that were left were hard and seemed 
to me to be of lesser consequence. So I decided to launch out in a new area that no one 
else had yet conceived of.  Happily, at MIT I was surrounded by many computers, and it 
was clear to me that, sooner or later, these machines would need to communicate with each 
other. At the time, there was no effective way for them to do so and that the solution to this 
important problem would have impact.  I had an approach to this problem and so, for my 
PhD research, I decided to create a mathematical theory to model, evaluate, design and  
optimize efficient and reliable data networks.

What was your first job in the computer industry? What did it entail?
I went to the evening session at CCNY from 1951 to 1957 for my bachelor’s degree 
in electrical engineering. During the day, I worked first as a technician and then as an 
electrical engineer at a small, industrial electronics firm called Photobell. While there, I 
introduced digital technology to their product line. Essentially, we were using photoelec-
tric devices to detect the presence of certain items (boxes, people, etc.) and the use of a 
circuit known then as a bistable multivibrator was just what we needed to bring digital 
processing into this field of detection. These circuits happen to be the building blocks for 
computers, and have come to be known as flip-flops or switches in today’s vernacular.

What was going through your mind when you sent the first host-to-host message (from 
UCLA to the Stanford Research Institute)?
Frankly, we had no idea of the importance of that event. We had not prepared a special 
message of historic significance, as did so many inventors of the past (Samuel Morse with 
“What hath God wrought.” or Alexander Graham Bell with “Watson, come here! I want you.”  
or Neal Armstrong with “That’s one small step for a man, one giant leap for mankind.”)  
Those guys were smart! They understood media and public relations. All we wanted to do 
was to demonstrate our ability to remotely login to the SRI computer. So we typed the “L”, 

AN INTERVIEW WITH…

Leonard Kleinrock
Leonard Kleinrock is a professor of computer science at the University 
of California, Los Angeles. In 1969, his computer at UCLA became 
the first node of the Internet. His creation of the  mathematical  theory 
of packet-switching principles in 1961 became the technology behind 
the Internet. He received his B.E.E. from the City College of New York 
(CCNY) and his masters and PhD in electrical engineering from MIT. C
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which was correctly received, we typed the “o” which was correctly received, and then we 
typed the “g” which caused the SRI host computer to crash! So, it turned out that our mes-
sage was the shortest and perhaps the most prophetic message ever, namely “Lo!” as in  
“Lo and behold!”

Earlier that year, I was quoted in a UCLA press release saying that once the network 
was up and running, it would be possible to gain access to computer utilities from our 
homes and offices as easily as we gain access to electricity and telephone connectivity. So 
my vision at that time was that the Internet would be ubiquitous, always on, always avail-
able, anyone with any device could connect from any location, and it would be invisible. 
However, I never anticipated that my 99-year-old mother would use the Internet at the same 
time that my 5 year-old granddaughter was—and indeed she did!

What is your vision for the future of networking?
The easy part of the vision is to predict the infrastructure itself. I anticipate that we will see  
considerable deployment of wireless and mobile devices in smart spaces to produce what 
I like to refer to as the Invisible Internet. This step will enable us to move out from the 
netherworld of cyberspace to the physical world of smart spaces. Our environments (desks, 
walls, vehicles, watches, belts, fingernails, bodies and so on) will come alive with technol-
ogy, through actuators, sensors, logic, processing, storage, cameras, microphones, speak-
ers, displays, and communication. This embedded technology will allow our environment 
to provide the IP services wherever and whenever we want. When I walk into a room, the 
room will know I entered. I will be able to communicate with my environment naturally, 
as in spoken English, haptics, gestures, and eventually through brain-Internet interfaces; 
my requests will generate replies that present Web pages to me from wall displays, through 
my eyeglasses, as speech, holograms, and so forth. Looking a bit further out, I see a net-
working future that includes the following additional key components. I see customized 
intelligent software agents deployed across the network whose function it is to mine data, 
act on that data, observe trends, and carry out tasks dynamically and adaptively. I see the 
deployment of blockchain technology that provides irrefutable, immutable distributed 
ledgers coupled with reputation systems that provide credibility to the contents and func-
tionality. I see considerably more network traffic generated not so much by humans, but 
by the embedded devices, the intelligent software agents and the distributed ledgers. I see 
large collections of self-organizing systems controlling this vast, fast network. I see huge 
amounts of information flashing across this network instantaneously with this information 
undergoing enormous processing and filtering. The Invisible Internet will essentially be 
a pervasive global nervous system . I see all these things and more as we move headlong 
through the twenty-first century.

The harder part of the vision is to predict the applications and services, which have 
consistently surprised us in dramatic ways (e-mail, search technologies, the World Wide 
Web, blogs, peer-to-peer networks, social networks, user generated content, sharing of 
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music, photos, and videos, etc.). These applications have “come of the blue”, sudden,  
unanticipated and explosive. What a wonderful world for the next generation to explore!

What people have inspired you professionally?
By far, it was Claude Shannon from MIT, a brilliant researcher who had the ability to relate 
his mathematical ideas to the physical world in highly intuitive ways. He was a superb 
member of my PhD thesis committee.

Do you have any advice for students entering the networking/Internet field?
The Internet and all that it enables is a vast new frontier, continuously full of amazing  
challenges. There is room for great innovation. Don’t be constrained by today’s technology. 
Reach out and imagine what could be and then make it happen.
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Network applications are the raisons d’être of a computer network—if we couldn’t  
conceive of any useful applications, there wouldn’t be any need for networking infra-
structure and protocols to support them. Since the Internet’s inception, numerous useful 
and entertaining applications have indeed been created. These applications have been the 
driving force behind the Internet’s success, motivating people in homes, schools, govern-
ments, and businesses to make the Internet an integral part of their daily activities.

Internet applications include the classic text-based applications that became pop-
ular in the 1970s and 1980s: text e-mail, remote access to computers, file transfers, and  
newsgroups. They include the killer application of the mid-1990s, the World Wide 
Web, encompassing Web surfing, search, and electronic commerce. Since the begin-
ning of new millennium, new and highly compelling applications continue to emerge, 
including voice over IP and video conferencing such as Skype, Facetime, and Google 
Hangouts; user generated video such as YouTube and movies on demand such as 
Netflix; and multiplayer online games such as Second Life and World of Warcraft. 
During this same period, we have seen the emergence of a new generation of social 
networking applications—such as Facebook, Instagram, and Twitter—which have 
created human networks on top of the Internet’s network or routers and communi-
cation links. And most recently, along with the arrival of the smartphone and the 
ubiquity of 4G/5G wireless Internet access, there has been a profusion of location 
based mobile apps, including popular check-in, dating, and road-traffic forecasting 
apps (such as Yelp, Tinder, and Waz), mobile payment apps (such as WeChat and 
Apple Pay) and messaging apps (such as WeChat and WhatsApp). Clearly, there has 
been no slowing down of new and exciting Internet applications. Perhaps some of 
the readers of this text will create the next generation of killer Internet applications!

Application 
Layer

2CHAPTER

81

M02_KURO1557_08_SE_C02.indd   81 13/02/20   1:54 PM



82     CHAPTER 2  •  APPLICATION LAYER

In this chapter, we study the conceptual and implementation aspects of network 
applications. We begin by defining key application-layer concepts, including net-
work services required by applications, clients and servers, processes, and trans-
port-layer interfaces. We examine several network applications in detail, including the 
Web, e-mail, DNS, peer-to-peer (P2P) file distribution, and video streaming. We then 
cover network application development, over both TCP and UDP. In particular, we 
study the socket interface and walk through some simple client-server applications 
in Python. We also provide several fun and interesting socket programming assign-
ments at the end of the chapter.

The application layer is a particularly good place to start our study of protocols. 
It’s familiar ground. We’re acquainted with many of the applications that rely on 
the protocols we’ll study. It will give us a good feel for what protocols are all about 
and will introduce us to many of the same issues that we’ll see again when we study 
transport, network, and link layer protocols.

2.1 Principles of Network Applications

Suppose you have an idea for a new network application. Perhaps this application 
will be a great service to humanity, or will please your professor, or will bring you 
great wealth, or will simply be fun to develop. Whatever the motivation may be, let’s 
now examine how you transform the idea into a real-world network application.

At the core of network application development is writing programs that run on 
different end systems and communicate with each other over the network. For exam-
ple, in the Web application there are two distinct programs that communicate with 
each other: the browser program running in the user’s host (desktop, laptop, tablet, 
smartphone, and so on); and the Web server program running in the Web server host. 
As another example, in a Video on Demand application such as Netflix (see Sec-
tion 2.6), there is a Netflix-provided program running on the user’s smartphone, tablet, 
or computer; and a Netflix server program running on the Netflix server host. Servers 
often (but certainly not always) are housed in a data center, as shown in Figure 2.1.

Thus, when developing your new application, you need to write software that 
will run on multiple end systems. This software could be written, for example, in 
C, Java, or Python. Importantly, you do not need to write software that runs on net-
work-core devices, such as routers or link-layer switches. Even if you wanted to 
write application software for these network-core devices, you wouldn’t be able to 
do so. As we learned in Chapter 1, and as shown earlier in Figure 1.24, network-core 
devices do not function at the application layer but instead function at lower layers—
specifically at the network layer and below. This basic design—namely, confining 
application software to the end systems—as shown in Figure 2.1, has facilitated the 
rapid development and deployment of a vast array of network applications.
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Figure 2.1 ♦  Communication for a network application takes place  
between end systems at the application layer
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2.1.1 Network Application Architectures
Before diving into software coding, you should have a broad architectural plan for 
your application. Keep in mind that an application’s architecture is distinctly differ-
ent from the network architecture (e.g., the five-layer Internet architecture discussed 
in Chapter 1). From the application developer’s perspective, the network architec-
ture is fixed and provides a specific set of services to applications. The application  
architecture, on the other hand, is designed by the application developer and dic-
tates how the application is structured over the various end systems. In choosing 
the application architecture, an application developer will likely draw on one of the 
two predominant architectural paradigms used in modern network applications: the 
client-server architecture or the peer-to-peer (P2P) architecture.

In a client-server architecture, there is an always-on host, called the server, 
which services requests from many other hosts, called clients. A classic example 
is the Web application for which an always-on Web server services requests from 
browsers running on client hosts. When a Web server receives a request for an object 
from a client host, it responds by sending the requested object to the client host. Note 
that with the client-server architecture, clients do not directly communicate with each 
other; for example, in the Web application, two browsers do not directly communi-
cate. Another characteristic of the client-server architecture is that the server has a 
fixed, well-known address, called an IP address (which we’ll discuss soon). Because 
the server has a fixed, well-known address, and because the server is always on, a cli-
ent can always contact the server by sending a packet to the server’s IP address. Some 
of the better-known applications with a client-server architecture include the Web, 
FTP, Telnet, and e-mail. The client-server architecture is shown in Figure 2.2(a).

Often in a client-server application, a single-server host is incapable of keep-
ing up with all the requests from clients. For example, a popular social-networking 
site can quickly become overwhelmed if it has only one server handling all of its 
requests. For this reason, a data center, housing a large number of hosts, is often 
used to create a powerful virtual server. The most popular Internet services—such 
as search engines (e.g., Google, Bing, Baidu), Internet commerce (e.g., Amazon, 
eBay, Alibaba), Web-based e-mail (e.g., Gmail and Yahoo Mail), social media (e.g., 
Facebook, Instagram, Twitter, and WeChat)—run in one or more data centers. As 
discussed in Section 1.3.3, Google has 19 data centers distributed around the world, 
which collectively handle search, YouTube, Gmail, and other services. A data center 
can have hundreds of thousands of servers, which must be powered and maintained. 
Additionally, the service providers must pay recurring interconnection and band-
width costs for sending data from their data centers.

In a P2P architecture, there is minimal (or no) reliance on dedicated servers in 
data centers. Instead the application exploits direct communication between pairs of 
intermittently connected hosts, called peers. The peers are not owned by the service 
provider, but are instead desktops and laptops controlled by users, with most of the 
peers residing in homes, universities, and offices. Because the peers communicate 
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without passing through a dedicated server, the architecture is called peer-to-peer. 
An example of a popular P2P application is the file-sharing application BitTorrent.

One of the most compelling features of P2P architectures is their self- 
scalability. For example, in a P2P file-sharing application, although each peer 
 generates workload by requesting files, each peer also adds service capacity to the 
system by distributing files to other peers. P2P architectures are also cost effective, 
since they normally don’t require significant server infrastructure and server band-
width (in contrast with clients-server designs with datacenters). However, P2P appli-
cations face challenges of security, performance, and reliability due to their highly 
 decentralized structure.

2.1.2 Processes Communicating
Before building your network application, you also need a basic understanding of 
how the programs, running in multiple end systems, communicate with each other. 
In the jargon of operating systems, it is not actually programs but processes that 

a. Client-server architecture b. Peer-to-peer architecture

Figure 2.2 ♦ (a) Client-server architecture; (b) P2P architecture
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communicate. A process can be thought of as a program that is running within an end 
system. When processes are running on the same end system, they can communicate 
with each other with interprocess communication, using rules that are governed by 
the end system’s operating system. But in this book, we are not particularly interested 
in how processes in the same host communicate, but instead in how processes run-
ning on different hosts (with potentially different operating systems) communicate.

Processes on two different end systems communicate with each other by 
exchanging messages across the computer network. A sending process creates and 
sends messages into the network; a receiving process receives these messages and 
possibly responds by sending messages back. Figure 2.1 illustrates that processes 
communicating with each other reside in the application layer of the five-layer pro-
tocol stack.

Client and Server Processes

A network application consists of pairs of processes that send messages to each 
other over a network. For example, in the Web application a client browser process 
exchanges messages with a Web server process. In a P2P file-sharing system, a file 
is transferred from a process in one peer to a process in another peer. For each pair of 
communicating processes, we typically label one of the two processes as the client 
and the other process as the server. With the Web, a browser is a client process and 
a Web server is a server process. With P2P file sharing, the peer that is downloading 
the file is labeled as the client, and the peer that is uploading the file is labeled as 
the server.

You may have observed that in some applications, such as in P2P file sharing, 
a process can be both a client and a server. Indeed, a process in a P2P file-sharing 
system can both upload and download files. Nevertheless, in the context of any given 
communication session between a pair of processes, we can still label one process 
as the client and the other process as the server. We define the client and server pro-
cesses as follows:

In the context of a communication session between a pair of processes, the pro-
cess that initiates the communication (that is, initially contacts the other process 
at the beginning of the session) is labeled as the client. The process that waits to 
be contacted to begin the session is the server.

In the Web, a browser process initializes contact with a Web server process; 
hence the browser process is the client and the Web server process is the server. In 
P2P file sharing, when Peer A asks Peer B to send a specific file, Peer A is the cli-
ent and Peer B is the server in the context of this specific communication session. 
When there’s no confusion, we’ll sometimes also use the terminology “client side 
and server side of an application.” At the end of this chapter, we’ll step through sim-
ple code for both the client and server sides of network applications.
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The Interface Between the Process and the Computer Network

As noted above, most applications consist of pairs of communicating processes, with 
the two processes in each pair sending messages to each other. Any message sent 
from one process to another must go through the underlying network. A process 
sends messages into, and receives messages from, the network through a software 
interface called a socket. Let’s consider an analogy to help us understand processes 
and sockets. A process is analogous to a house and its socket is analogous to its door. 
When a process wants to send a message to another process on another host, it shoves 
the message out its door (socket). This sending process assumes that there is a trans-
portation infrastructure on the other side of its door that will transport the message to 
the door of the destination process. Once the message arrives at the destination host, 
the message passes through the receiving process’s door (socket), and the receiving 
process then acts on the message.

Figure 2.3 illustrates socket communication between two processes that com-
municate over the Internet. (Figure 2.3 assumes that the underlying transport protocol 
used by the processes is the Internet’s TCP protocol.) As shown in this figure, a socket 
is the interface between the application layer and the transport layer within a host. It 
is also referred to as the Application Programming Interface (API) between the 
application and the network, since the socket is the programming interface with which 
network applications are built. The application developer has control of everything on 
the application-layer side of the socket but has little control of the transport-layer side 
of the socket. The only control that the application developer has on the transport-
layer side is (1) the choice of transport protocol and (2) perhaps the ability to fix a few 

Process

Host or
server

Host or
server

Controlled
by application
developer

Controlled
by application
developer

Process

TCP with
buffers,
variables Internet

Controlled
by operating
system

Controlled
by operating
system

TCP with
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Socket Socket

Figure 2.3 ♦  Application processes, sockets, and underlying transport protocol
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transport-layer parameters such as maximum buffer and maximum segment sizes (to 
be covered in Chapter 3). Once the application developer chooses a transport protocol 
(if a choice is available), the application is built using the transport-layer services 
provided by that protocol. We’ll explore sockets in some detail in Section 2.7.

Addressing Processes

In order to send postal mail to a particular destination, the destination needs to have 
an address. Similarly, in order for a process running on one host to send packets to 
a process running on another host, the receiving process needs to have an address. 
To identify the receiving process, two pieces of information need to be specified: 
(1) the address of the host and (2) an identifier that specifies the receiving process in 
the destination host.

In the Internet, the host is identified by its IP address. We’ll discuss IP addresses 
in great detail in Chapter 4. For now, all we need to know is that an IP address is a 32-bit 
quantity that we can think of as uniquely identifying the host. In addition to know-
ing the address of the host to which a message is destined, the sending process must 
also identify the receiving process (more specifically, the receiving socket) running in 
the host. This information is needed because in general a host could be running many 
network applications. A destination port number serves this purpose. Popular applica-
tions have been assigned specific port numbers. For example, a Web server is identified 
by port number 80. A mail server process (using the SMTP protocol) is identified by 
port number 25. A list of well-known port numbers for all Internet standard protocols 
can be found at www.iana.org. We’ll examine port numbers in detail in Chapter 3.

2.1.3 Transport Services Available to Applications
Recall that a socket is the interface between the application process and the trans-
port-layer protocol. The application at the sending side pushes messages through the 
socket. At the other side of the socket, the transport-layer protocol has the responsi-
bility of getting the messages to the socket of the receiving process.

Many networks, including the Internet, provide more than one transport-layer 
protocol. When you develop an application, you must choose one of the available 
transport-layer protocols. How do you make this choice? Most likely, you would 
study the services provided by the available transport-layer protocols, and then pick 
the protocol with the services that best match your application’s needs. The situation 
is similar to choosing either train or airplane transport for travel between two cities. 
You have to choose one or the other, and each transportation mode offers different 
services. (For example, the train offers downtown pickup and drop-off, whereas the 
plane offers shorter travel time.)

What are the services that a transport-layer protocol can offer to applications 
invoking it? We can broadly classify the possible services along four dimensions: 
reliable data transfer, throughput, timing, and security.
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Reliable Data Transfer

As discussed in Chapter 1, packets can get lost within a computer network. For exam-
ple, a packet can overflow a buffer in a router, or can be discarded by a host or router 
after having some of its bits corrupted. For many applications—such as electronic 
mail, file transfer, remote host access, Web document transfers, and financial appli-
cations—data loss can have devastating consequences (in the latter case, for either 
the bank or the customer!). Thus, to support these applications, something has to be 
done to guarantee that the data sent by one end of the application is delivered cor-
rectly and completely to the other end of the application. If a protocol provides such 
a guaranteed data delivery service, it is said to provide reliable data transfer. One 
important service that a transport-layer protocol can potentially provide to an applica-
tion is process-to-process reliable data transfer. When a transport protocol provides 
this service, the sending process can just pass its data into the socket and know with 
complete confidence that the data will arrive without errors at the receiving process.

When a transport-layer protocol doesn’t provide reliable data transfer, some of 
the data sent by the sending process may never arrive at the receiving process. This 
may be acceptable for loss-tolerant applications, most notably multimedia applica-
tions such as conversational audio/video that can tolerate some amount of data loss. 
In these multimedia applications, lost data might result in a small glitch in the audio/
video—not a crucial impairment.

Throughput

In Chapter 1, we introduced the concept of available throughput, which, in the 
context of a communication session between two processes along a network path, 
is the rate at which the sending process can deliver bits to the receiving process. 
Because other sessions will be sharing the bandwidth along the network path, and 
because these other sessions will be coming and going, the available throughput 
can fluctuate with time. These observations lead to another natural service that a 
transport-layer protocol could provide, namely, guaranteed available throughput at 
some specified rate. With such a service, the application could request a guaranteed 
throughput of r bits/sec, and the transport protocol would then ensure that the avail-
able throughput is always at least r bits/sec. Such a guaranteed throughput service 
would appeal to many applications. For example, if an Internet telephony applica-
tion encodes voice at 32 kbps, it needs to send data into the network and have data 
delivered to the receiving application at this rate. If the transport protocol cannot 
provide this throughput, the application would need to encode at a lower rate (and 
receive enough throughput to sustain this lower coding rate) or may have to give 
up, since receiving, say, half of the needed throughput is of little or no use to this 
Internet telephony application. Applications that have throughput requirements are 
said to be bandwidth-sensitive applications. Many current multimedia applications 
are bandwidth sensitive, although some multimedia applications may use adaptive 
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 coding techniques to encode digitized voice or video at a rate that matches the cur-
rently available throughput.

While bandwidth-sensitive applications have specific throughput requirements, 
elastic applications can make use of as much, or as little, throughput as happens to 
be available. Electronic mail, file transfer, and Web transfers are all elastic applica-
tions. Of course, the more throughput, the better. There’s an adage that says that one 
cannot be too rich, too thin, or have too much throughput!

Timing

A transport-layer protocol can also provide timing guarantees. As with throughput 
guarantees, timing guarantees can come in many shapes and forms. An example 
guarantee might be that every bit that the sender pumps into the socket arrives 
at the receiver’s socket no more than 100 msec later. Such a service would be 
appealing to interactive real-time applications, such as Internet telephony, virtual 
environments, teleconferencing, and multiplayer games, all of which require tight 
timing constraints on data delivery in order to be effective, see [Gauthier 1999; 
Ramjee 1994]. Long delays in Internet telephony, for example, tend to result in 
unnatural pauses in the conversation; in a multiplayer game or virtual interactive 
environment, a long delay between taking an action and seeing the response from 
the environment (for example, from another player at the end of an end-to-end con-
nection) makes the application feel less realistic. For non-real-time applications, 
lower delay is always preferable to higher delay, but no tight constraint is placed 
on the end-to-end delays.

Security

Finally, a transport protocol can provide an application with one or more security 
services. For example, in the sending host, a transport protocol can encrypt all data 
transmitted by the sending process, and in the receiving host, the transport-layer pro-
tocol can decrypt the data before delivering the data to the receiving process. Such a 
service would provide confidentiality between the two processes, even if the data is 
somehow observed between sending and receiving processes. A transport protocol 
can also provide other security services in addition to confidentiality, including data 
integrity and end-point authentication, topics that we’ll cover in detail in Chapter 8.

2.1.4 Transport Services Provided by the Internet
Up until this point, we have been considering transport services that a computer net-
work could provide in general. Let’s now get more specific and examine the type of 
transport services provided by the Internet. The Internet (and, more generally, TCP/
IP networks) makes two transport protocols available to applications, UDP and TCP. 
When you (as an application developer) create a new network application for the 
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Internet, one of the first decisions you have to make is whether to use UDP or TCP. 
Each of these protocols offers a different set of services to the invoking applications. 
Figure 2.4 shows the service requirements for some selected applications.

TCP Services

The TCP service model includes a connection-oriented service and a reliable data 
transfer service. When an application invokes TCP as its transport protocol, the 
application receives both of these services from TCP.

• Connection-oriented service. TCP has the client and server exchange transport-
layer control information with each other before the application-level mes-
sages begin to flow. This so-called handshaking procedure alerts the client 
and server, allowing them to prepare for an onslaught of packets. After the 
handshaking phase, a TCP connection is said to exist between the sockets 
of the two processes. The connection is a full-duplex connection in that the two 
processes can send messages to each other over the connection at the same time. 
When the application finishes sending messages, it must tear down the connec-
tion. In Chapter 3, we’ll discuss connection-oriented service in detail and examine 
how it is implemented.

• Reliable data transfer service. The communicating processes can rely on TCP to 
deliver all data sent without error and in the proper order. When one side of the 
application passes a stream of bytes into a socket, it can count on TCP to deliver the 
same stream of bytes to the receiving socket, with no missing or duplicate bytes.

Application Data Loss Throughput Time-Sensitive

File transfer/download No loss Elastic No

E-mail No loss Elastic No

Web documents No loss Elastic (few kbps) No

Internet telephony/
Video conferencing

Loss-tolerant Audio: few kbps–1 Mbps
Video: 10 kbps–5 Mbps

Yes: 100s of msec

Streaming stored Loss-tolerant Same as above Yes: few seconds
audio/video

Interactive games Loss-tolerant Few kbps–10 kbps Yes: 100s of msec

Smartphone messaging No loss Elastic Yes and no

Figure 2.4 ♦ Requirements of selected network applications
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TCP also includes a congestion-control mechanism, a service for the  general 
welfare of the Internet rather than for the direct benefit of the communicating pro-
cesses. The TCP congestion-control mechanism throttles a sending process (client or 
server) when the network is congested between sender and receiver. As we will see 
in Chapter 3, TCP congestion control also attempts to limit each TCP connection to 
its fair share of network bandwidth.

UDP Services

UDP is a no-frills, lightweight transport protocol, providing minimal services. UDP 
is connectionless, so there is no handshaking before the two processes start to com-
municate. UDP provides an unreliable data transfer service—that is, when a process 
sends a message into a UDP socket, UDP provides no guarantee that the message 
will ever reach the receiving process. Furthermore, messages that do arrive at the 
receiving process may arrive out of order.

SECURING TCP

Neither TCP nor UDP provides any encryption—the data that the sending process 
passes into its socket is the same data that travels over the network to the destina-
tion process. So, for example, if the sending process sends a password in cleartext 
(i.e., unencrypted) into its socket, the cleartext password will travel over all the links 
between sender and receiver, potentially getting sniffed and discovered at any of the 
intervening links. Because privacy and other security issues have become critical for 
many applications, the Internet community has developed an enhancement for TCP, 
called Transport Layer Security (TLS) [RFC 5246]. TCP-enhanced-with-TLS not 
only does everything that traditional TCP does but also provides critical process-to-
process security services, including encryption, data integrity, and end-point authenti-
cation. We emphasize that TLS is not a third Internet transport protocol, on the same 
level as TCP and UDP, but instead is an enhancement of TCP, with the enhancements 
being implemented in the application layer. In particular, if an application wants to 
use the services of TLS, it needs to include TLS code (existing, highly optimized librar-
ies and classes) in both the client and server sides of the application. TLS has its own 
socket API that is similar to the traditional TCP socket API. When an application uses 
TLS, the sending process passes cleartext data to the TLS socket; TLS in the sending 
host then encrypts the data and passes the encrypted data to the TCP socket. The 
encrypted data travels over the Internet to the TCP socket in the receiving process. 
The receiving socket passes the encrypted data to TLS, which decrypts the data. 
Finally, TLS passes the cleartext data through its TLS socket to the receiving process. 
We’ll cover TLS in some detail in Chapter 8.

FOCUS ON SECURITY

M02_KURO1557_08_SE_C02.indd   92 11/02/20   11:41 AM



2.1  •  PRINCIPLES OF NETWORK APPLICATIONS     93

UDP does not include a congestion-control mechanism, so the sending side of 
UDP can pump data into the layer below (the network layer) at any rate it pleases. 
(Note, however, that the actual end-to-end throughput may be less than this rate due 
to the limited transmission capacity of intervening links or due to congestion).

Services Not Provided by Internet Transport Protocols

We have organized transport protocol services along four dimensions: reliable data 
transfer, throughput, timing, and security. Which of these services are provided by 
TCP and UDP? We have already noted that TCP provides reliable end-to-end data 
transfer. And we also know that TCP can be easily enhanced at the application 
layer with TLS to provide security services. But in our brief description of TCP and 
UDP, conspicuously missing was any mention of throughput or timing guarantees— 
services not provided by today’s Internet transport protocols. Does this mean that time-
sensitive applications such as Internet telephony cannot run in today’s Internet? The 
answer is clearly no—the Internet has been hosting time-sensitive applications for 
many years. These applications often work fairly well because they have been designed 
to cope, to the greatest extent possible, with this lack of guarantee. Nevertheless, clever 
design has its limitations when delay is excessive, or the end-to-end throughput is 
limited. In summary, today’s Internet can often provide satisfactory service to time-
sensitive applications, but it cannot provide any timing or throughput guarantees.

Figure 2.5 indicates the transport protocols used by some popular Internet appli-
cations. We see that e-mail, remote terminal access, the Web, and file transfer all use 
TCP. These applications have chosen TCP primarily because TCP provides reliable 
data transfer, guaranteeing that all data will eventually get to its destination. Because 
Internet telephony applications (such as Skype) can often tolerate some loss but 
require a minimal rate to be effective, developers of Internet telephony applications 

Application Application-Layer Protocol Underlying Transport Protocol

Electronic mail

Remote terminal access

Web

File transfer

Streaming multimedia

Internet telephony

SMTP [RFC 5321]

Telnet [RFC 854]

HTTP 1.1 [RFC 7230]

FTP [RFC 959]

HTTP (e.g., YouTube), DASH

SIP [RFC 3261], RTP [RFC 3550], or proprietary
(e.g., Skype)

TCP

TCP

TCP

TCP

TCP

UDP or TCP

Figure 2.5 ♦  Popular Internet applications, their application-layer  
protocols, and their underlying transport protocols
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usually prefer to run their applications over UDP, thereby circumventing TCP’s 
congestion control mechanism and packet overheads. But because many firewalls 
are configured to block (most types of) UDP traffic, Internet telephony applications 
often are designed to use TCP as a backup if UDP communication fails.

2.1.5 Application-Layer Protocols
We have just learned that network processes communicate with each other by sending 
messages into sockets. But how are these messages structured? What are the meanings 
of the various fields in the messages? When do the processes send the messages? These 
questions bring us into the realm of application-layer protocols. An application-layer 
protocol defines how an application’s processes, running on different end systems, 
pass messages to each other. In particular, an application-layer protocol defines:

• The types of messages exchanged, for example, request messages and response 
messages

• The syntax of the various message types, such as the fields in the message and 
how the fields are delineated

• The semantics of the fields, that is, the meaning of the information in the fields

• Rules for determining when and how a process sends messages and responds to 
messages

Some application-layer protocols are specified in RFCs and are therefore in the 
public domain. For example, the Web’s application-layer protocol, HTTP (the 
HyperText Transfer Protocol [RFC 7230]), is available as an RFC. If a browser 
developer follows the rules of the HTTP RFC, the browser will be able to retrieve 
Web pages from any Web server that has also followed the rules of the HTTP RFC. 
Many other application-layer protocols are proprietary and intentionally not avail-
able in the public domain. For example, Skype uses proprietary application-layer 
protocols.

It is important to distinguish between network applications and application-layer 
protocols. An application-layer protocol is only one piece of a network application 
(albeit, a very important piece of the application from our point of view!). Let’s look 
at a couple of examples. The Web is a client-server application that allows users to 
obtain documents from Web servers on demand. The Web application consists of 
many components, including a standard for document formats (that is, HTML), Web 
browsers (for example, Chrome and Microsoft Internet Explorer), Web servers 
(for example, Apache and Microsoft servers), and an application-layer protocol. 
The Web’s application-layer protocol, HTTP, defines the format and sequence 
of messages exchanged between browser and Web server. Thus, HTTP is only 
one piece (albeit, an important piece) of the Web application. As another example, 
we’ll see in Section 2.6 that Netflix’s video service also has many components, 
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 including servers that store and transmit videos, other servers that manage billing 
and other  client functions, clients (e.g., the Netflix app on your smartphone, tablet, or 
 computer), and an application-level DASH protocol defines the format and sequence 
of messages exchanged between a Netflix server and client. Thus, DASH is only one 
piece (albeit, an important piece) of the Netflix application.

2.1.6 Network Applications Covered in This Book
New applications are being developed every day. Rather than covering a large 
number of Internet applications in an encyclopedic manner, we have chosen to 
focus on a small number of applications that are both pervasive and important. 
In this chapter, we discuss five important applications: the Web, electronic mail, 
directory service, video streaming, and P2P applications. We first discuss the 
Web, not only because it is an enormously popular application, but also because 
its application-layer protocol, HTTP, is straightforward and easy to understand. 
We then discuss electronic mail, the Internet’s first killer application. E-mail is 
more complex than the Web in the sense that it makes use of not one but sev-
eral application-layer protocols. After e-mail, we cover DNS, which provides a 
directory service for the Internet. Most users do not interact with DNS directly; 
instead, users invoke DNS indirectly through other applications (including the 
Web, file transfer, and electronic mail). DNS illustrates nicely how a piece of 
core network functionality (network-name to network-address translation) can 
be implemented at the application layer in the Internet. We then discuss P2P file 
sharing applications, and complete our application study by discussing video 
streaming on demand, including distributing stored video over content distribu-
tion networks. 

2.2 The Web and HTTP

Until the early 1990s, the Internet was used primarily by researchers, academics, 
and university students to log in to remote hosts, to transfer files from local hosts to 
remote hosts and vice versa, to receive and send news, and to receive and send elec-
tronic mail. Although these applications were (and continue to be) extremely useful, 
the Internet was essentially unknown outside of the academic and research commu-
nities. Then, in the early 1990s, a major new application arrived on the scene—the 
World Wide Web [Berners-Lee 1994]. The Web was the first Internet application 
that caught the general public’s eye. It dramatically changed how people interact 
inside and outside their work environments. It elevated the Internet from just one of 
many data networks to essentially the one and only data network.

Perhaps what appeals the most to users is that the Web operates on demand. 
Users receive what they want, when they want it. This is unlike traditional broadcast 
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radio and television, which force users to tune in when the content provider makes 
the content available. In addition to being available on demand, the Web has many 
other wonderful features that people love and cherish. It is enormously easy for any 
individual to make information available over the Web—everyone can become a 
publisher at extremely low cost. Hyperlinks and search engines help us navigate 
through an ocean of information. Photos and videos stimulate our senses. Forms, 
JavaScript, video, and many other devices enable us to interact with pages and sites. 
And the Web and its protocols serve as a platform for YouTube, Web-based e-mail 
(such as Gmail), and most mobile Internet applications, including Instagram and 
Google Maps.

2.2.1 Overview of HTTP
The HyperText Transfer Protocol (HTTP), the Web’s application-layer protocol, 
is at the heart of the Web. It is defined in [RFC 1945], [RFC 7230] and [RFC 7540]. 
HTTP is implemented in two programs: a client program and a server program. The 
client program and server program, executing on different end systems, talk to each 
other by exchanging HTTP messages. HTTP defines the structure of these messages 
and how the client and server exchange the messages. Before explaining HTTP in 
detail, we should review some Web terminology.

A Web page (also called a document) consists of objects. An object is 
 simply a file—such as an HTML file, a JPEG image, a Javascrpt file, a CCS 
style sheet file, or a video clip—that is addressable by a single URL. Most Web 
pages consist of a base HTML file and several referenced objects. For example, 
if a Web page contains HTML text and five JPEG images, then the Web page has 
six objects: the base HTML file plus the five images. The base HTML file refer-
ences the other objects in the page with the objects’ URLs. Each URL has two 
components: the hostname of the server that houses the object and the object’s 
path name. For example, the URL

http://www.someSchool.edu/someDepartment/picture.gif

has www.someSchool.edu for a hostname and /someDepartment/picture.
gif for a path name. Because Web browsers (such as Internet Explorer and Chrome) 
implement the client side of HTTP, in the context of the Web, we will use the words 
browser and client interchangeably. Web servers, which implement the server side 
of HTTP, house Web objects, each addressable by a URL. Popular Web servers 
include Apache and Microsoft Internet Information Server.

HTTP defines how Web clients request Web pages from Web servers and how 
servers transfer Web pages to clients. We discuss the interaction between client 
and server in detail later, but the general idea is illustrated in Figure 2.6. When a  
user requests a Web page (for example, clicks on a hyperlink), the browser sends 
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HTTP request messages for the objects in the page to the server. The server receives 
the requests and responds with HTTP response messages that contain the objects.

HTTP uses TCP as its underlying transport protocol (rather than running on top 
of UDP). The HTTP client first initiates a TCP connection with the server. Once the 
connection is established, the browser and the server processes access TCP through 
their socket interfaces. As described in Section 2.1, on the client side the socket inter-
face is the door between the client process and the TCP connection; on the server side 
it is the door between the server process and the TCP connection. The client sends 
HTTP request messages into its socket interface and receives HTTP response mes-
sages from its socket interface. Similarly, the HTTP server receives request messages 
from its socket interface and sends response messages into its socket interface. Once 
the client sends a message into its socket interface, the message is out of the client’s 
hands and is “in the hands” of TCP. Recall from Section 2.1 that TCP provides a 
reliable data transfer service to HTTP. This implies that each HTTP request message 
sent by a client process eventually arrives intact at the server; similarly, each HTTP 
response message sent by the server process eventually arrives intact at the client. 
Here we see one of the great advantages of a layered architecture—HTTP need not 
worry about lost data or the details of how TCP recovers from loss or reordering of 
data within the network. That is the job of TCP and the protocols in the lower layers 
of the protocol stack.

It is important to note that the server sends requested files to clients without 
storing any state information about the client. If a particular client asks for the same 
object twice in a period of a few seconds, the server does not respond by saying 
that it just served the object to the client; instead, the server resends the object, as 
it has completely forgotten what it did earlier. Because an HTTP server maintains 
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Figure 2.6 ♦ HTTP request-response behavior
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no information about the clients, HTTP is said to be a stateless protocol. We also 
remark that the Web uses the client-server application architecture, as described in 
Section 2.1. A Web server is always on, with a fixed IP address, and it services 
requests from potentially millions of different browsers.

The original version of HTTP is called HTTP/1.0 and dates back to the early 
1990’s [RFC 1945]. As of 2020, the majority of HTTP transactions take place over 
HTTP/1.1 [RFC 7230]. However, increasingly browsers and Web servers also sup-
port a new version of HTTP called HTTP/2 [RFC 7540]. At the end of this section, 
we’ll provide an introduction to HTTP/2.

2.2.2 Non-Persistent and Persistent Connections
In many Internet applications, the client and server communicate for an extended 
period of time, with the client making a series of requests and the server respond-
ing to each of the requests. Depending on the application and on how the 
application is being used, the series of requests may be made back-to-back, peri-
odically at regular intervals, or intermittently. When this client-server interaction 
is taking place over TCP, the application developer needs to make an important  
decision—should each request/response pair be sent over a separate TCP connec-
tion, or should all of the requests and their corresponding responses be sent over 
the same TCP connection? In the former approach, the application is said to use  
non-persistent connections; and in the latter approach, persistent connections. To 
gain a deep understanding of this design issue, let’s examine the advantages and dis-
advantages of persistent connections in the context of a specific application, namely, 
HTTP, which can use both non-persistent connections and persistent connections. 
Although HTTP uses persistent connections in its default mode, HTTP clients and 
servers can be configured to use non-persistent connections instead.

HTTP with Non-Persistent Connections

Let’s walk through the steps of transferring a Web page from server to client for the 
case of non-persistent connections. Let’s suppose the page consists of a base HTML 
file and 10 JPEG images, and that all 11 of these objects reside on the same server. 
Further suppose the URL for the base HTML file is

http://www.someSchool.edu/someDepartment/home.index

Here is what happens:

 1. The HTTP client process initiates a TCP connection to the server  
www.someSchool.edu on port number 80, which is the default port number 
for HTTP. Associated with the TCP connection, there will be a socket at the  
client and a socket at the server.
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 2. The HTTP client sends an HTTP request message to the server via its socket. 
The request message includes the path name /someDepartment/home 
.index. (We will discuss HTTP messages in some detail below.)

 3. The HTTP server process receives the request message via its socket, retrieves 
the object /someDepartment/home.index from its storage (RAM or 
disk), encapsulates the object in an HTTP response message, and sends the 
response message to the client via its socket.

 4. The HTTP server process tells TCP to close the TCP connection. (But TCP 
doesn’t actually terminate the connection until it knows for sure that the client 
has received the response message intact.)

 5. The HTTP client receives the response message. The TCP connection termi-
nates. The message indicates that the encapsulated object is an HTML file. The 
client extracts the file from the response message, examines the HTML file, and 
finds references to the 10 JPEG objects.

 6. The first four steps are then repeated for each of the referenced JPEG objects.

As the browser receives the Web page, it displays the page to the user. Two 
different browsers may interpret (that is, display to the user) a Web page in some-
what different ways. HTTP has nothing to do with how a Web page is interpreted 
by a client. The HTTP specifications ([RFC 1945] and [RFC 7540]) define only the 
communication protocol between the client HTTP program and the server HTTP 
program.

The steps above illustrate the use of non-persistent connections, where each 
TCP connection is closed after the server sends the object—the connection does not 
persist for other objects. HTTP/1.0 employes non-persistent TCP connections. Note 
that each non-persistent TCP connection transports exactly one request message and 
one response message. Thus, in this example, when a user requests the Web page, 11 
TCP connections are generated.

In the steps described above, we were intentionally vague about whether the  
client obtains the 10 JPEGs over 10 serial TCP connections, or whether some of the 
JPEGs are obtained over parallel TCP connections. Indeed, users can configure some 
browsers to control the degree of parallelism. Browsers may open multiple TCP con-
nections and request different parts of the Web page over the multiple connections. As 
we’ll see in the next chapter, the use of parallel connections shortens the response time.

Before continuing, let’s do a back-of-the-envelope calculation to estimate the 
amount of time that elapses from when a client requests the base HTML file until 
the entire file is received by the client. To this end, we define the round-trip time 
(RTT), which is the time it takes for a small packet to travel from client to server 
and then back to the client. The RTT includes packet-propagation delays, packet-
queuing delays in intermediate routers and switches, and packet-processing delays. 
(These delays were discussed in Section 1.4.) Now consider what happens when 
a user clicks on a hyperlink. As shown in Figure 2.7, this causes the browser to 
initiate a TCP connection between the browser and the Web server; this involves 
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a “three-way handshake”—the client sends a small TCP segment to the server, the 
server acknowledges and responds with a small TCP segment, and, finally, the cli-
ent acknowledges back to the server. The first two parts of the three-way handshake 
take one RTT. After completing the first two parts of the handshake, the client sends 
the HTTP request message combined with the third part of the three-way handshake 
(the acknowledgment) into the TCP connection. Once the request message arrives at  
the server, the server sends the HTML file into the TCP connection. This HTTP 
request/response eats up another RTT. Thus, roughly, the total response time is two 
RTTs plus the transmission time at the server of the HTML file.

HTTP with Persistent Connections

Non-persistent connections have some shortcomings. First, a brand-new connection 
must be established and maintained for each requested object. For each of these 
connections, TCP buffers must be allocated and TCP variables must be kept in both 
the client and server. This can place a significant burden on the Web server, which 
may be serving requests from hundreds of different clients simultaneously. Second, 
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Figure 2.7 ♦  Back-of-the-envelope calculation for the time needed  
to request and receive an HTML file
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as we just described, each object suffers a delivery delay of two RTTs—one RTT to 
establish the TCP connection and one RTT to request and receive an object.

With HTTP/1.1 persistent connections, the server leaves the TCP connection 
open after sending a response. Subsequent requests and responses between the same 
client and server can be sent over the same connection. In particular, an entire Web 
page (in the example above, the base HTML file and the 10 images) can be sent over 
a single persistent TCP connection. Moreover, multiple Web pages residing on the 
same server can be sent from the server to the same client over a single persistent 
TCP connection. These requests for objects can be made back-to-back, without wait-
ing for replies to pending requests (pipelining). Typically, the HTTP server closes 
a connection when it isn’t used for a certain time (a configurable timeout interval). 
When the server receives the back-to-back requests, it sends the objects back-to-
back. The default mode of HTTP uses persistent connections with pipelining. We’ll 
quantitatively compare the performance of non-persistent and persistent connections 
in the homework problems of Chapters 2 and 3. You are also encouraged to see  
[Heidemann 1997; Nielsen 1997; RFC 7540].

2.2.3 HTTP Message Format
The HTTP specifications [RFC 1945; RFC 7230; RFC 7540] include the definitions 
of the HTTP message formats. There are two types of HTTP messages, request mes-
sages and response messages, both of which are discussed below.

HTTP Request Message

Below we provide a typical HTTP request message:

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
Connection: close
User-agent: Mozilla/5.0
Accept-language: fr

We can learn a lot by taking a close look at this simple request message. First of 
all, we see that the message is written in ordinary ASCII text, so that your ordinary 
computer-literate human being can read it. Second, we see that the message consists 
of five lines, each followed by a carriage return and a line feed. The last line is fol-
lowed by an additional carriage return and line feed. Although this particular request 
message has five lines, a request message can have many more lines or as few as 
one line. The first line of an HTTP request message is called the request line; the 
subsequent lines are called the header lines. The request line has three fields: the 
method field, the URL field, and the HTTP version field. The method field can take 
on several different values, including GET, POST, HEAD, PUT, and DELETE. 
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The great majority of HTTP request messages use the GET method. The GET method 
is used when the browser requests an object, with the requested object identified in 
the URL field. In this example, the browser is requesting the object /somedir/
page.html. The version is self-explanatory; in this example, the browser imple-
ments version HTTP/1.1.

Now let’s look at the header lines in the example. The header line Host:  
www.someschool.edu specifies the host on which the object resides. You might 
think that this header line is unnecessary, as there is already a TCP connection in 
place to the host. But, as we’ll see in Section 2.2.5, the information provided by the 
host header line is required by Web proxy caches. By including the Connection: 
close header line, the browser is telling the server that it doesn’t want to bother 
with persistent connections; it wants the server to close the connection after sending 
the requested object. The User-agent: header line specifies the user agent, that 
is, the browser type that is making the request to the server. Here the user agent is 
Mozilla/5.0, a Firefox browser. This header line is useful because the server can actu-
ally send different versions of the same object to different types of user agents. (Each 
of the versions is addressed by the same URL.) Finally, the Accept-language: 
header indicates that the user prefers to receive a French version of the object, if such 
an object exists on the server; otherwise, the server should send its default version. 
The Accept-language: header is just one of many content negotiation headers 
available in HTTP.

Having looked at an example, let’s now look at the general format of a request 
message, as shown in Figure 2.8. We see that the general format closely follows our 
earlier example. You may have noticed, however, that after the header lines (and the 
additional carriage return and line feed) there is an “entity body.” The entity body 

method sp sp cr lf

cr lfheader field name:

Header lines

Blank line

Entity body

Request line

valuesp

cr lf

cr lf

header field name: valuesp

URL Version

Figure 2.8 ♦ General format of an HTTP request message
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is empty with the GET method, but is used with the POST method. An HTTP client 
often uses the POST method when the user fills out a form—for example, when a 
user provides search words to a search engine. With a POST message, the user is still 
requesting a Web page from the server, but the specific contents of the Web page 
depend on what the user entered into the form fields. If the value of the method field 
is POST, then the entity body contains what the user entered into the form fields.

We would be remiss if we didn’t mention that a request generated with a form 
does not necessarily have to use the POST method. Instead, HTML forms often use 
the GET method and include the inputted data (in the form fields) in the requested 
URL. For example, if a form uses the GET method, has two fields, and the inputs to 
the two fields are monkeys and bananas, then the URL will have the structure 
www.somesite.com/animalsearch?monkeys&bananas. In your day-to-
day Web surfing, you have probably noticed extended URLs of this sort.

The HEAD method is similar to the GET method. When a server receives a 
request with the HEAD method, it responds with an HTTP message but it leaves out 
the requested object. Application developers often use the HEAD method for debug-
ging. The PUT method is often used in conjunction with Web publishing tools. It 
allows a user to upload an object to a specific path (directory) on a specific Web 
server. The PUT method is also used by applications that need to upload objects 
to Web servers. The DELETE method allows a user, or an application, to delete an 
object on a Web server.

HTTP Response Message

Below we provide a typical HTTP response message. This response message could 
be the response to the example request message just discussed.

HTTP/1.1 200 OK
Connection: close
Date: Tue, 18 Aug 2015 15:44:04 GMT
Server: Apache/2.2.3 (CentOS)
Last-Modified: Tue, 18 Aug 2015 15:11:03 GMT
Content-Length: 6821
Content-Type: text/html 

(data data data data data ...)

Let’s take a careful look at this response message. It has three sections: an initial 
status line, six header lines, and then the entity body. The entity body is the meat 
of the message—it contains the requested object itself (represented by data data 
data data data ...). The status line has three fields: the protocol version 
field, a status code, and a corresponding status message. In this example, the status 
line indicates that the server is using HTTP/1.1 and that everything is OK (that is, the 
server has found, and is sending, the requested object).
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Now let’s look at the header lines. The server uses the Connection: close 
header line to tell the client that it is going to close the TCP connection after sending 
the message. The Date: header line indicates the time and date when the HTTP 
response was created and sent by the server. Note that this is not the time when 
the object was created or last modified; it is the time when the server retrieves the 
object from its file system, inserts the object into the response message, and sends the 
response message. The Server: header line indicates that the message was gener-
ated by an Apache Web server; it is analogous to the User-agent: header line in 
the HTTP request message. The Last-Modified: header line indicates the time 
and date when the object was created or last modified. The Last-Modified: 
header, which we will soon cover in more detail, is critical for object caching, both 
in the local client and in network cache servers (also known as proxy servers). The 
Content-Length: header line indicates the number of bytes in the object being 
sent. The Content-Type: header line indicates that the object in the entity body 
is HTML text. (The object type is officially indicated by the Content-Type: 
header and not by the file extension.)

Having looked at an example, let’s now examine the general format of a response 
message, which is shown in Figure 2.9. This general format of the response message 
matches the previous example of a response message. Let’s say a few additional words 
about status codes and their phrases. The status code and associated phrase indicate 
the result of the request. Some common status codes and associated phrases include:

• 200 OK: Request succeeded and the information is returned in the response.

• 301 Moved Permanently: Requested object has been permanently moved; 
the new URL is specified in Location: header of the response message. The 
client software will automatically retrieve the new URL.

version sp sp cr lf

cr lfheader field name:

Header lines

Blank line

Entity body

Status line

value

cr

sp

sp lf

cr lf

header field name: value

status code phrase

Figure 2.9 ♦ General format of an HTTP response message
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• 400 Bad Request: This is a generic error code indicating that the request 
could not be understood by the server.

• 404 Not Found: The requested document does not exist on this server.

• 505 HTTP Version Not Supported: The requested HTTP protocol ver-
sion is not supported by the server.

How would you like to see a real HTTP response message? This is highly rec-
ommended and very easy to do! First Telnet into your favorite Web server. Then 
type in a one-line request message for some object that is housed on the server. For 
example, if you have access to a command prompt, type:

telnet gaia.cs.umass.edu 80 

GET /kurose_ross/interactive/index.php HTTP/1.1
Host: gaia.cs.umass.edu

(Press the carriage return twice after typing the last line.) This opens a TCP con-
nection to port 80 of the host gaia.cs.umass.edu and then sends the HTTP 
request message. You should see a response message that includes the base HTML 
file for the interactive homework problems for this textbook. If you’d rather just see 
the HTTP message lines and not receive the object itself, replace GET with HEAD.

In this section, we discussed a number of header lines that can be used within 
HTTP request and response messages. The HTTP specification defines many, 
many more header lines that can be inserted by browsers, Web servers, and net-
work cache servers. We have covered only a small number of the totality of header 
lines. We’ll cover a few more below and another small number when we discuss 
network Web caching in Section 2.2.5. A highly readable and comprehensive dis-
cussion of the HTTP protocol, including its headers and status codes, is given in 
[Krishnamurthy 2001].

How does a browser decide which header lines to include in a request message? 
How does a Web server decide which header lines to include in a response mes-
sage? A browser will generate header lines as a function of the browser type and 
version, the user configuration of the browser and whether the browser currently 
has a cached, but possibly out-of-date, version of the object. Web servers behave 
similarly: There are different products, versions, and configurations, all of which 
influence which header lines are included in response messages.

2.2.4 User-Server Interaction: Cookies
We mentioned above that an HTTP server is stateless. This simplifies server design 
and has permitted engineers to develop high-performance Web servers that can han-
dle thousands of simultaneous TCP connections. However, it is often desirable for 
a Web site to identify users, either because the server wishes to restrict user access 
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or because it wants to serve content as a function of the user identity. For these pur-
poses, HTTP uses cookies. Cookies, defined in [RFC 6265], allow sites to keep track 
of users. Most major commercial Web sites use cookies today.

As shown in Figure 2.10, cookie technology has four components: (1) a cookie 
header line in the HTTP response message; (2) a cookie header line in the HTTP 
request message; (3) a cookie file kept on the user’s end system and managed by 
the user’s browser; and (4) a back-end database at the Web site. Using Figure 2.10, 
let’s walk through an example of how cookies work. Suppose Susan, who always 
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Figure 2.10 ♦ Keeping user state with cookies
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accesses the Web using Internet Explorer from her home PC, contacts Amazon.com 
for the first time. Let us suppose that in the past she has already visited the eBay site. 
When the request comes into the Amazon Web server, the server creates a unique 
identification number and creates an entry in its back-end database that is indexed 
by the identification number. The Amazon Web server then responds to Susan’s 
browser, including in the HTTP response a Set-cookie: header, which contains 
the identification number. For example, the header line might be:

Set-cookie: 1678

When Susan’s browser receives the HTTP response message, it sees the  
Set-cookie: header. The browser then appends a line to the special cookie file 
that it manages. This line includes the hostname of the server and the identification 
number in the Set-cookie: header. Note that the cookie file already has an entry 
for eBay, since Susan has visited that site in the past. As Susan continues to browse 
the Amazon site, each time she requests a Web page, her browser consults her cookie 
file, extracts her identification number for this site, and puts a cookie header line that 
includes the identification number in the HTTP request. Specifically, each of her 
HTTP requests to the Amazon server includes the header line:

Cookie: 1678

In this manner, the Amazon server is able to track Susan’s activity at the Amazon 
site. Although the Amazon Web site does not necessarily know Susan’s name, it 
knows exactly which pages user 1678 visited, in which order, and at what times! 
Amazon uses cookies to provide its shopping cart service—Amazon can maintain a 
list of all of Susan’s intended purchases, so that she can pay for them collectively at 
the end of the session.

If Susan returns to Amazon’s site, say, one week later, her browser will con-
tinue to put the header line Cookie: 1678 in the request messages. Amazon also 
recommends products to Susan based on Web pages she has visited at Amazon in 
the past. If Susan also registers herself with Amazon—providing full name, e-mail 
address, postal address, and credit card information—Amazon can then include this 
information in its database, thereby associating Susan’s name with her identifica-
tion number (and all of the pages she has visited at the site in the past!). This is how  
Amazon and other e-commerce sites provide “one-click shopping”—when Susan 
chooses to purchase an item during a subsequent visit, she doesn’t need to re-enter 
her name, credit card number, or address.

From this discussion, we see that cookies can be used to identify a user. The first 
time a user visits a site, the user can provide a user identification (possibly his or her 
name). During the subsequent sessions, the browser passes a cookie header to the 
server, thereby identifying the user to the server. Cookies can thus be used to create 
a user session layer on top of stateless HTTP. For example, when a user logs in to 
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a Web-based e-mail application (such as Hotmail), the browser sends cookie infor-
mation to the server, permitting the server to identify the user throughout the user’s 
session with the application.

Although cookies often simplify the Internet shopping experience for the user, 
they are controversial because they can also be considered as an invasion of privacy. 
As we just saw, using a combination of cookies and user-supplied account informa-
tion, a Web site can learn a lot about a user and potentially sell this information to a 
third party.

2.2.5 Web Caching
A Web cache—also called a proxy server—is a network entity that satisfies HTTP 
requests on the behalf of an origin Web server. The Web cache has its own disk 
storage and keeps copies of recently requested objects in this storage. As shown in  
Figure 2.11, a user’s browser can be configured so that all of the user’s HTTP requests 
are first directed to the Web cache [RFC 7234]. Once a browser is configured, each 
browser request for an object is first directed to the Web cache. As an example, 
suppose a browser is requesting the object http://www.someschool.edu/
campus.gif. Here is what happens:

 1. The browser establishes a TCP connection to the Web cache and sends an HTTP 
request for the object to the Web cache.

 2. The Web cache checks to see if it has a copy of the object stored locally. If it 
does, the Web cache returns the object within an HTTP response message to the 
client browser.

 3. If the Web cache does not have the object, the Web cache opens a TCP connec-
tion to the origin server, that is, to www.someschool.edu. The Web cache 
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HTTP response

HTTP request

HTTP response

HTTP requestHTTP response

HTTP requestHTTP response

Client
Origin
server

Origin
server

Client

Proxy
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Figure 2.11 ♦ Clients requesting objects through a Web cache

M02_KURO1557_08_SE_C02.indd   108 11/02/20   11:41 AM



2.2  •  THE WEB AND HTTP     109

then sends an HTTP request for the object into the cache-to-server TCP connec-
tion. After receiving this request, the origin server sends the object within an 
HTTP response to the Web cache.

 4. When the Web cache receives the object, it stores a copy in its local storage and 
sends a copy, within an HTTP response message, to the client browser (over the 
existing TCP connection between the client browser and the Web cache).

Note that a cache is both a server and a client at the same time. When it receives 
requests from and sends responses to a browser, it is a server. When it sends requests 
to and receives responses from an origin server, it is a client.

Typically a Web cache is purchased and installed by an ISP. For example, a uni-
versity might install a cache on its campus network and configure all of the campus 
browsers to point to the cache. Or a major residential ISP (such as Comcast) might 
install one or more caches in its network and preconfigure its shipped browsers to 
point to the installed caches.

Web caching has seen deployment in the Internet for two reasons. First, a Web 
cache can substantially reduce the response time for a client request, particularly if 
the bottleneck bandwidth between the client and the origin server is much less than 
the bottleneck bandwidth between the client and the cache. If there is a high-speed 
connection between the client and the cache, as there often is, and if the cache has 
the requested object, then the cache will be able to deliver the object rapidly to the 
client. Second, as we will soon illustrate with an example, Web caches can sub-
stantially reduce traffic on an institution’s access link to the Internet. By reducing 
traffic, the institution (for example, a company or a university) does not have to 
upgrade bandwidth as quickly, thereby reducing costs. Furthermore, Web caches 
can substantially reduce Web traffic in the Internet as a whole, thereby improving 
performance for all applications.

To gain a deeper understanding of the benefits of caches, let’s consider an exam-
ple in the context of Figure 2.12. This figure shows two networks—the institutional 
network and the rest of the public Internet. The institutional network is a high-speed 
LAN. A router in the institutional network and a router in the Internet are connected 
by a 15 Mbps link. The origin servers are attached to the Internet but are located all 
over the globe. Suppose that the average object size is 1 Mbits and that the average 
request rate from the institution’s browsers to the origin servers is 15 requests per 
second. Suppose that the HTTP request messages are negligibly small and thus cre-
ate no traffic in the networks or in the access link (from institutional router to Internet 
router). Also suppose that the amount of time it takes from when the router on the 
Internet side of the access link in Figure 2.12 forwards an HTTP request (within an 
IP datagram) until it receives the response (typically within many IP datagrams) is 
two seconds on average. Informally, we refer to this last delay as the “Internet delay.”

The total response time—that is, the time from the browser’s request of an 
object until its receipt of the object—is the sum of the LAN delay, the access delay 
(that is, the delay between the two routers), and the Internet delay. Let’s now do 
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Public Internet

Institutional network

15 Mbps access link

100 Mbps LAN

Origin servers

Figure 2.12 ♦ Bottleneck between an institutional network and the Internet

a very crude calculation to estimate this delay. The traffic intensity on the LAN  
(see Section 1.4.2) is

(15 requests/sec) # (1 Mbits/request)/(100 Mbps) = 0.15

whereas the traffic intensity on the access link (from the Internet router to institution 
router) is

(15 requests/sec) # (1 Mbits/request)/(15 Mbps) = 1

A traffic intensity of 0.15 on a LAN typically results in, at most, tens of millisec-
onds of delay; hence, we can neglect the LAN delay. However, as discussed in 
Section 1.4.2, as the traffic intensity approaches 1 (as is the case of the access link 
in Figure 2.12), the delay on a link becomes very large and grows without bound. 
Thus, the average response time to satisfy requests is going to be on the order of 
minutes, if not more, which is unacceptable for the institution’s users. Clearly 
something must be done.
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One possible solution is to increase the access rate from 15 Mbps to, say, 100 Mbps. 
This will lower the traffic intensity on the access link to 0.15, which translates to neg-
ligible delays between the two routers. In this case, the total response time will roughly 
be two seconds, that is, the Internet delay. But this solution also means that the institu-
tion must upgrade its access link from 15 Mbps to 100 Mbps, a costly proposition.

Now consider the alternative solution of not upgrading the access link but 
instead installing a Web cache in the institutional network. This solution is illustrated 
in Figure 2.13. Hit rates—the fraction of requests that are satisfied by a cache— 
typically range from 0.2 to 0.7 in practice. For illustrative purposes, let’s suppose 
that the cache provides a hit rate of 0.4 for this institution. Because the clients and 
the cache are connected to the same high-speed LAN, 40 percent of the requests will 
be satisfied almost immediately, say, within 10 milliseconds, by the cache. Neverthe-
less, the remaining 60 percent of the requests still need to be satisfied by the origin 
servers. But with only 60 percent of the requested objects passing through the access 
link, the traffic intensity on the access link is reduced from 1.0 to 0.6. Typically, a 

Public Internet

Institutional network

15 Mbps access link

Institutional
cache

100 Mbps LAN

Origin servers

Figure 2.13 ♦ Adding a cache to the institutional network
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traffic intensity less than 0.8 corresponds to a small delay, say, tens of milliseconds, 
on a 15 Mbps link. This delay is negligible compared with the two-second Internet 
delay. Given these considerations, average delay therefore is

0.4 # (0.01 seconds) + 0.6 # (2.01 seconds)

which is just slightly greater than 1.2 seconds. Thus, this second solution provides an 
even lower response time than the first solution, and it doesn’t require the institution 
to upgrade its link to the Internet. The institution does, of course, have to purchase 
and install a Web cache. But this cost is low—many caches use public-domain soft-
ware that runs on inexpensive PCs.

Through the use of Content Distribution Networks (CDNs), Web caches are 
increasingly playing an important role in the Internet. A CDN company installs many 
geographically distributed caches throughout the Internet, thereby localizing much of 
the traffic. There are shared CDNs (such as Akamai and Limelight) and dedicated CDNs 
(such as Google and Netflix). We will discuss CDNs in more detail in Section 2.6.

The Conditional GET

Although caching can reduce user-perceived response times, it introduces a new 
problem—the copy of an object residing in the cache may be stale. In other words, 
the object housed in the Web server may have been modified since the copy was 
cached at the client. Fortunately, HTTP has a mechanism that allows a cache to 
verify that its objects are up to date. This mechanism is called the conditional GET 
[RFC 7232]. An HTTP request message is a so-called conditional GET message if 
(1) the request message uses the GET method and (2) the request message includes an  
If-Modified-Since: header line.

To illustrate how the conditional GET operates, let’s walk through an example. 
First, on the behalf of a requesting browser, a proxy cache sends a request message 
to a Web server:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com

Second, the Web server sends a response message with the requested object to the 
cache:

HTTP/1.1 200 OK
Date: Sat, 3 Oct 2015 15:39:29
Server: Apache/1.3.0 (Unix)
Last-Modified: Wed, 9 Sep 2015 09:23:24
Content-Type: image/gif 

(data data data data data ...)
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The cache forwards the object to the requesting browser but also caches the object 
locally. Importantly, the cache also stores the last-modified date along with the 
object. Third, one week later, another browser requests the same object via the cache, 
and the object is still in the cache. Since this object may have been modified at the 
Web server in the past week, the cache performs an up-to-date check by issuing a 
conditional GET. Specifically, the cache sends:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com
If-modified-since: Wed, 9 Sep 2015 09:23:24

Note that the value of the If-modified-since: header line is exactly equal 
to the value of the Last-Modified: header line that was sent by the server one 
week ago. This conditional GET is telling the server to send the object only if the 
object has been modified since the specified date. Suppose the object has not been 
modified since 9 Sep 2015 09:23:24. Then, fourth, the Web server sends a response 
message to the cache:

HTTP/1.1 304 Not Modified
Date: Sat, 10 Oct 2015 15:39:29
Server: Apache/1.3.0 (Unix) 

(empty entity body)

We see that in response to the conditional GET, the Web server still sends a 
response message but does not include the requested object in the response message.  
Including the requested object would only waste bandwidth and increase user- 
perceived response time, particularly if the object is large. Note that this last response 
message has 304 Not Modified in the status line, which tells the cache that it 
can go ahead and forward its (the proxy cache’s) cached copy of the object to the 
requesting browser.

2.2.6 HTTP/2
HTTP/2 [RFC 7540], standardized in 2015, was the first new version of HTTP since 
HTTP/1.1, which was standardized in 1997. Since standardization, HTTP/2 has 
taken off, with over 40% of the top 10 million websites supporting HTTP/2 in 2020 
[W3Techs]. Most browsers—including Google Chrome, Internet Explorer, Safari, 
Opera, and Firefox—also support HTTP/2.

The primary goals for HTTP/2 are to reduce perceived latency by enabling request 
and response multiplexing over a single TCP connection, provide request prioritization 
and server push, and provide efficient compression of HTTP header fields. HTTP/2 
does not change HTTP methods, status codes, URLs, or header fields. Instead, HTTP/2 
changes how the data is formatted and transported between the client and server.
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To motivate the need for HTTP/2, recall that HTTP/1.1 uses persistent TCP 
connections, allowing a Web page to be sent from server to client over a single TCP 
connection. By having only one TCP connection per Web page, the number of sock-
ets at the server is reduced and each transported Web page gets a fair share of the 
network bandwidth (as discussed below). But developers of Web browsers quickly 
discovered that sending all the objects in a Web page over a single TCP connec-
tion has a Head of Line (HOL) blocking problem. To understand HOL blocking, 
consider a Web page that includes an HTML base page, a large video clip near the 
top of Web page, and many small objects below the video. Further suppose there is 
a low-to-medium speed bottleneck link (for example, a low-speed wireless link) on 
the path between server and client. Using a single TCP connection, the video clip 
will take a long time to pass through the bottleneck link, while the small objects are 
delayed as they wait behind the video clip; that is, the video clip at the head of the 
line blocks the small objects behind it. HTTP/1.1 browsers typically work around this 
problem by opening multiple parallel TCP connections, thereby having objects in the 
same web page sent in parallel to the browser. This way, the small objects can arrive 
at and be rendered in the browser much faster, thereby reducing user-perceived delay.

TCP congestion control, discussed in detail in Chapter 3, also provides brows-
ers an unintended incentive to use multiple parallel TCP connections rather than a 
single persistent connection. Very roughly speaking, TCP congestion control aims to 
give each TCP connection sharing a bottleneck link an equal share of the available 
bandwidth of that link; so if there are n TCP connections operating over a bottleneck 
link, then each connection approximately gets 1/nth of the bandwidth. By opening 
multiple parallel TCP connections to transport a single Web page, the browser can 
“cheat” and grab a larger portion of the link bandwidth. Many HTTP/1.1 browsers 
open up to six parallel TCP connections not only to circumvent HOL blocking but 
also to obtain more bandwidth.

One of the primary goals of HTTP/2 is to get rid of (or at least reduce the num-
ber of) parallel TCP connections for transporting a single Web page. This not only 
reduces the number of sockets that need to be open and maintained at servers, but 
also allows TCP congestion control to operate as intended. But with only one TCP 
connection to transport a Web page, HTTP/2 requires carefully designed mecha-
nisms to avoid HOL blocking.

HTTP/2 Framing

The HTTP/2 solution for HOL blocking is to break each message into small frames, and 
interleave the request and response messages on the same TCP connection. To under-
stand this, consider again the example of a Web page consisting of one large video clip 
and, say, 8 smaller objects. Thus the server will receive 9 concurrent requests from any 
browser wanting to see this Web page. For each of these requests, the server needs to 
send 9 competing HTTP response messages to the browser.  Suppose all frames are of 
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fixed length, the video clip consists of 1000 frames, and each of the smaller objects 
consists of two frames. With frame interleaving, after sending one frame from the 
video clip, the first frames of each of the small objects are sent. Then after sending the 
second frame of the video clip, the last frames of each of the small objects are sent. 
Thus, all of the smaller objects are sent after sending a total of 18 frames. If interleav-
ing were not used, the smaller objects would be sent only after sending 1016 frames. 
Thus the HTTP/2 framing mechanism can significantly decrease user-perceived delay.

The ability to break down an HTTP message into independent frames, inter-
leave them, and then reassemble them on the other end is the single most important 
enhancement of HTTP/2. The framing is done by the framing sub-layer of the 
HTTP/2 protocol. When a server wants to send an HTTP response, the response 
is processed by the framing sub-layer, where it is broken down into frames. The 
header field of the response becomes one frame, and the body of the message is 
broken down into one for more additional frames. The frames of the response are 
then interleaved by the framing sub-layer in the server with the frames of other 
responses and sent over the single persistent TCP connection. As the frames arrive 
at the client, they are first reassembled into the original response messages at the 
framing sub-layer and then processed by the browser as usual. Similarly, a client’s 
HTTP requests are broken into frames and interleaved.

In addition to breaking down each HTTP message into independent frames, the 
framing sublayer also binary encodes the frames. Binary protocols are more efficient 
to parse, lead to slightly smaller frames, and are less error-prone.

Response Message Prioritization and Server Pushing

Message prioritization allows developers to customize the relative priority of 
requests to better optimize application performance. As we just learned, the fram-
ing sub-layer organizes messages into parallel streams of data destined to the same 
requestor. When a client sends concurrent requests to a server, it can prioritize the 
responses it is requesting by assigning a weight between 1 and 256 to each message. 
The higher number indicates higher priority. Using these weights, the server can 
send first the frames for the responses with the highest priority. In addition to this, 
the client also states each message’s dependency on other messages by specifying 
the ID of the message on which it depends.

Another feature of HTTP/2 is the ability for a server to send multiple responses 
for a single client request. That is, in addition to the response to the original request, 
the server can push additional objects to the client, without the client having to 
request each one. This is possible since the HTML base page indicates the objects 
that will be needed to fully render the Web page. So instead of waiting for the 
HTTP requests for these objects, the server can analyze the HTML page, identify 
the objects that are needed, and send them to the client before receiving explicit 
requests for these objects. Server push eliminates the extra latency due to waiting 
for the requests.
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HTTP/3

QUIC, discussed in Chapter 3, is a new “transport” protocol that is implemented in 
the application layer over the bare-bones UDP protocol. QUIC has several features 
that are desirable for HTTP, such as message multiplexing (interleaving), per-stream 
flow control, and low-latency connection establishment. HTTP/3 is yet a new HTTP 
protocol that is designed to operate over QUIC. As of 2020, HTTP/3 is described 
in Internet drafts and has not yet been fully standardized. Many of the HTTP/2 fea-
tures (such as message interleaving) are subsumed by QUIC, allowing for a simpler, 
streamlined design for HTTP/3.

2.3 Electronic Mail in the Internet

Electronic mail has been around since the beginning of the Internet. It was the most 
popular application when the Internet was in its infancy [Segaller 1998], and has 
become more elaborate and powerful over the years. It remains one of the Internet’s 
most important and utilized applications.

As with ordinary postal mail, e-mail is an asynchronous communication 
medium—people send and read messages when it is convenient for them, without 
having to coordinate with other people’s schedules. In contrast with postal mail, 
electronic mail is fast, easy to distribute, and inexpensive. Modern e-mail has 
many powerful features, including messages with attachments, hyperlinks, HTML- 
formatted text, and embedded photos.

In this section, we examine the application-layer protocols that are at the heart 
of Internet e-mail. But before we jump into an in-depth discussion of these protocols, 
let’s take a high-level view of the Internet mail system and its key components.

Figure 2.14 presents a high-level view of the Internet mail system. We see from 
this diagram that it has three major components: user agents, mail servers, and the 
Simple Mail Transfer Protocol (SMTP). We now describe each of these compo-
nents in the context of a sender, Alice, sending an e-mail message to a recipient, 
Bob. User agents allow users to read, reply to, forward, save, and compose  messages. 
Examples of user agents for e-mail include Microsoft Outlook, Apple Mail, Web-
based Gmail, the Gmail App running in a smartphone, and so on. When Alice is 
finished composing her message, her user agent sends the message to her mail server, 
where the message is placed in the mail server’s outgoing message queue. When Bob 
wants to read a message, his user agent retrieves the message from his mailbox in his 
mail server.

Mail servers form the core of the e-mail infrastructure. Each recipient, such 
as Bob, has a mailbox located in one of the mail servers. Bob’s mailbox manages 
and maintains the messages that have been sent to him. A typical message starts its 
journey in the sender’s user agent, then travels to the sender’s mail server, and then 
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travels to the recipient’s mail server, where it is deposited in the recipient’s mailbox. 
When Bob wants to access the messages in his mailbox, the mail server containing 
his mailbox authenticates Bob (with his username and password). Alice’s mail server 
must also deal with failures in Bob’s mail server. If Alice’s server cannot deliver 
mail to Bob’s server, Alice’s server holds the message in a message queue and 
attempts to transfer the message later. Reattempts are often done every 30 minutes 
or so; if there is no success after several days, the server removes the message and 
notifies the sender (Alice) with an e-mail message.

SMTP is the principal application-layer protocol for Internet electronic mail. It 
uses the reliable data transfer service of TCP to transfer mail from the sender’s mail 
server to the recipient’s mail server. As with most application-layer protocols, SMTP 
has two sides: a client side, which executes on the sender’s mail server, and a server 
side, which executes on the recipient’s mail server. Both the client and server sides of 
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Figure 2.14 ♦ A high-level view of the Internet e-mail system
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SMTP run on every mail server. When a mail server sends mail to other mail servers, 
it acts as an SMTP client. When a mail server receives mail from other mail servers, 
it acts as an SMTP server.

2.3.1 SMTP
SMTP, defined in RFC 5321, is at the heart of Internet electronic mail. As men-
tioned above, SMTP transfers messages from senders’ mail servers to the recipients’ 
mail servers. SMTP is much older than HTTP. (The original SMTP RFC dates back 
to 1982, and SMTP was around long before that.) Although SMTP has numerous 
wonderful qualities, as evidenced by its ubiquity in the Internet, it is nevertheless 
a legacy technology that possesses certain archaic characteristics. For example, it 
restricts the body (not just the headers) of all mail messages to simple 7-bit ASCII. 
This restriction made sense in the early 1980s when transmission capacity was scarce 
and no one was e-mailing large attachments or large image, audio, or video files. But 
today, in the multimedia era, the 7-bit ASCII restriction is a bit of a pain—it requires 
binary multimedia data to be encoded to ASCII before being sent over SMTP; and it 
requires the corresponding ASCII message to be decoded back to binary after SMTP 
transport. Recall from Section 2.2 that HTTP does not require multimedia data to be 
ASCII encoded before transfer.

To illustrate the basic operation of SMTP, let’s walk through a common sce-
nario. Suppose Alice wants to send Bob a simple ASCII message.

 1. Alice invokes her user agent for e-mail, provides Bob’s e-mail address (for 
example, bob@someschool.edu), composes a message, and instructs the 
user agent to send the message.

 2. Alice’s user agent sends the message to her mail server, where it is placed in a 
message queue.

 3. The client side of SMTP, running on Alice’s mail server, sees the message in the 
message queue. It opens a TCP connection to an SMTP server, running on Bob’s 
mail server.

 4. After some initial SMTP handshaking, the SMTP client sends Alice’s message 
into the TCP connection.

 5. At Bob’s mail server, the server side of SMTP receives the message. Bob’s mail 
server then places the message in Bob’s mailbox.

 6. Bob invokes his user agent to read the message at his convenience.

The scenario is summarized in Figure 2.15.
It is important to observe that SMTP does not normally use intermediate mail serv-

ers for sending mail, even when the two mail servers are located at opposite ends of 
the world. If Alice’s server is in Hong Kong and Bob’s server is in St. Louis, the TCP 
connection is a direct connection between the Hong Kong and St. Louis servers. In 
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particular, if Bob’s mail server is down, the message remains in Alice’s mail server and 
waits for a new attempt—the message does not get placed in some intermediate mail 
server.

Let’s now take a closer look at how SMTP transfers a message from a send-
ing mail server to a receiving mail server. We will see that the SMTP proto-
col has many similarities with protocols that are used for face-to-face human 
interaction. First, the client SMTP (running on the sending mail server host) has 
TCP establish a connection to port 25 at the server SMTP (running on the receiv-
ing mail server host). If the server is down, the client tries again later. Once 
this connection is established, the server and client perform some application-
layer handshaking—just as humans often introduce themselves before trans-
ferring information from one to another, SMTP clients and servers introduce 
themselves before transferring information. During this SMTP handshaking phase,  
the SMTP client indicates the e-mail address of the sender (the person who gener-
ated the message) and the e-mail address of the recipient. Once the SMTP client and 
server have introduced themselves to each other, the client sends the message. SMTP 
can count on the reliable data transfer service of TCP to get the message to the server 
without errors. The client then repeats this process over the same TCP connection if 
it has other messages to send to the server; otherwise, it instructs TCP to close the 
connection.

Let’s next take a look at an example transcript of messages exchanged between an 
SMTP client (C) and an SMTP server (S). The hostname of the client is crepes.fr  
and the hostname of the server is hamburger.edu. The ASCII text lines prefaced 
with C: are exactly the lines the client sends into its TCP socket, and the ASCII text 
lines prefaced with S: are exactly the lines the server sends into its TCP socket. The 
following transcript begins as soon as the TCP connection is established.

S:  220 hamburger.edu
C:  HELO crepes.fr

SMTP

Alice’s
mail server

Bob’s
mail server

Alice’s
agent

Bob’s
agent

1

2 4 6

5

Message queue 

Key:

User mailbox

3

Figure 2.15 ♦ Alice sends a message to Bob
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S:  250 Hello crepes.fr, pleased to meet you
C:  MAIL FROM: <alice@crepes.fr>
S:  250 alice@crepes.fr ... Sender ok
C:  RCPT TO: <bob@hamburger.edu>
S:  250 bob@hamburger.edu ... Recipient ok
C:  DATA
S:  354 Enter mail, end with ”.” on a line by itself
C:  Do you like ketchup?
C:  How about pickles?
C:  .
S:  250 Message accepted for delivery
C:  QUIT
S:  221 hamburger.edu closing connection

In the example above, the client sends a message (“Do you like ketchup? 
How about pickles?”) from mail server crepes.fr to mail server  
hamburger.edu. As part of the dialogue, the client issued five commands: 
HELO (an abbreviation for HELLO), MAIL FROM, RCPT TO, DATA, and QUIT. 
These commands are self-explanatory. The client also sends a line consisting of a 
single period, which indicates the end of the message to the server. (In ASCII jar-
gon, each message ends with CRLF.CRLF, where CR and LF stand for carriage 
return and line feed, respectively.) The server issues replies to each command, 
with each reply having a reply code and some (optional) English-language expla-
nation. We mention here that SMTP uses persistent connections: If the sending 
mail server has several messages to send to the same receiving mail server, it can 
send all of the messages over the same TCP connection. For each message, the 
client begins the process with a new MAIL FROM: crepes.fr, designates the 
end of message with an isolated period, and issues QUIT only after all messages 
have been sent.

It is highly recommended that you use Telnet to carry out a direct dialogue with 
an SMTP server. To do this, issue

telnet serverName 25

where serverName is the name of a local mail server. When you do this, you are 
simply establishing a TCP connection between your local host and the mail server. 
After typing this line, you should immediately receive the 220 reply from the 
server. Then issue the SMTP commands HELO, MAIL FROM, RCPT TO, DATA, 
CRLF.CRLF, and QUIT at the appropriate times. It is also highly recommended 
that you do Programming Assignment 3 at the end of this chapter. In that assign-
ment, you’ll build a simple user agent that implements the client side of SMTP. It 
will allow you to send an e-mail message to an arbitrary recipient via a local mail 
server.
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2.3.2 Mail Message Formats
When Alice writes an ordinary snail-mail letter to Bob, she may include all kinds 
of peripheral header information at the top of the letter, such as Bob’s address, her 
own return address, and the date. Similarly, when an e-mail message is sent from 
one person to another, a header containing peripheral information precedes the 
body of the message itself. This peripheral information is contained in a series of 
header lines, which are defined in RFC 5322. The header lines and the body of the 
message are separated by a blank line (that is, by CRLF). RFC 5322 specifies the 
exact format for mail header lines as well as their semantic interpretations. As with 
HTTP, each header line contains readable text, consisting of a keyword followed 
by a colon followed by a value. Some of the keywords are required and others are 
optional. Every header must have a From: header line and a To: header line; 
a header may include a Subject: header line as well as other optional header 
lines. It is important to note that these header lines are different from the SMTP 
commands we studied in Section 2.3.1 (even though they contain some common 
words such as “from” and “to”). The commands in that section were part of the 
SMTP handshaking protocol; the header lines examined in this section are part of 
the mail message itself.

A typical message header looks like this:

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Searching for the meaning of life.

After the message header, a blank line follows; then the message body (in ASCII) 
follows. You should use Telnet to send a message to a mail server that contains 
some header lines, including the Subject: header line. To do this, issue telnet 
serverName 25, as discussed in Section 2.3.1.

2.3.3 Mail Access Protocols
Once SMTP delivers the message from Alice’s mail server to Bob’s mail server, the 
message is placed in Bob’s mailbox. Given that Bob (the recipient) executes his user 
agent on his local host (e.g., smartphone or PC), it is natural to consider placing a mail 
server on his local host as well. With this approach, Alice’s mail server would dia-
logue directly with Bob’s PC. There is a problem with this approach, however. Recall 
that a mail server manages mailboxes and runs the client and server sides of SMTP. 
If Bob’s mail server were to reside on his local host, then Bob’s host would have to 
remain always on, and connected to the Internet, in order to receive new mail, which 
can arrive at any time. This is impractical for many Internet users. Instead, a typical 
user runs a user agent on the local host but accesses its mailbox stored on an always-
on shared mail server. This mail server is shared with other users.
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Now let’s consider the path an e-mail message takes when it is sent from Alice 
to Bob. We just learned that at some point along the path the e-mail message needs to 
be deposited in Bob’s mail server. This could be done simply by having Alice’s user 
agent send the message directly to Bob’s mail server. However, typically the send-
er’s user agent does not dialogue directly with the recipient’s mail server. Instead, as 
shown in Figure 2.16, Alice’s user agent uses SMTP or HTTP to deliver the e-mail 
message into her mail server, then Alice’s mail server uses SMTP (as an SMTP cli-
ent) to relay the e-mail message to Bob’s mail server. Why the two-step procedure? 
Primarily because without relaying through Alice’s mail server, Alice’s user agent 
doesn’t have any recourse to an unreachable destination mail server. By having Alice 
first deposit the e-mail in her own mail server, Alice’s mail server can repeatedly try 
to send the message to Bob’s mail server, say every 30 minutes, until Bob’s mail 
server becomes operational. (And if Alice’s mail server is down, then she has the 
recourse of complaining to her system administrator!) 

But there is still one missing piece to the puzzle! How does a recipient like Bob, 
running a user agent on his local host , obtain his messages, which are sitting in a mail 
server? Note that Bob’s user agent can’t use SMTP to obtain the messages because 
obtaining the messages is a pull operation, whereas SMTP is a push protocol. 

Today, there are two common ways for Bob to retrieve his e-mail from a mail 
server. If Bob is using Web-based e-mail or a smartphone app (such as Gmail), then 
the user agent will use HTTP to retrieve Bob’s e-mail. This case requires Bob’s mail 
server to have an HTTP interface as well as an SMTP interface (to communicate with 
Alice’s mail server). The alternative method, typically used with mail clients such 
as Microsoft Outlook, is to use the Internet Mail Access Protocol (IMAP) defined 
in RFC 3501. Both the HTTP and IMAP approaches allow Bob to manage folders, 
maintained in Bob’s mail server. Bob can move messages into the folders he creates, 
delete messages, mark messages as important, and so on.

2.4 DNS—The Internet’s Directory Service

We human beings can be identified in many ways. For example, we can be iden-
tified by the names that appear on our birth certificates. We can be identified by 
our social security numbers. We can be identified by our driver’s license numbers. 

SMTP

Alice’s
mail server

Bob’s
mail server

Alice’s
agent

Bob’s
agentSMTP

or
HTTP

HTTP
or

IMAP

Figure 2.16 ♦ E-mail protocols and their communicating entities
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Although each can be used to identify people, within a given context one identifier 
may be more appropriate than another. For example, the computers at the IRS (the 
infamous tax-collecting agency in the United States) prefer to use fixed-length social 
security numbers rather than birth certificate names. On the other hand, ordinary 
people  prefer the more mnemonic birth certificate names rather than social security 
numbers. (Indeed, can you imagine saying, “Hi. My name is 132-67-9875. Please 
meet my husband, 178-87-1146.”)

Just as humans can be identified in many ways, so too can Internet hosts. One 
identifier for a host is its hostname. Hostnames—such as www.facebook.com, 
www.google.com, gaia.cs.umass.edu—are mnemonic and are therefore 
appreciated by humans. However, hostnames provide little, if any, information about 
the location within the Internet of the host. (A hostname such as www.eurecom.
fr, which ends with the country code .fr, tells us that the host is probably in 
France, but doesn’t say much more.) Furthermore, because hostnames can consist of 
variable-length alphanumeric characters, they would be difficult to process by rout-
ers. For these reasons, hosts are also identified by so-called IP addresses.

We discuss IP addresses in some detail in Chapter 4, but it is useful to say a 
few brief words about them now. An IP address consists of four bytes and has a 
rigid hierarchical structure. An IP address looks like 121.7.106.83, where each 
period separates one of the bytes expressed in decimal notation from 0 to 255. An IP 
address is hierarchical because as we scan the address from left to right, we obtain 
more and more specific information about where the host is located in the Internet 
(that is, within which network, in the network of networks). Similarly, when we scan 
a postal address from bottom to top, we obtain more and more specific information 
about where the addressee is located.

2.4.1 Services Provided by DNS
We have just seen that there are two ways to identify a host—by a hostname and 
by an IP address. People prefer the more mnemonic hostname identifier, while 
routers prefer fixed-length, hierarchically structured IP addresses. In order to rec-
oncile these preferences, we need a directory service that translates hostnames to 
IP addresses. This is the main task of the Internet’s domain name system (DNS). 
The DNS is (1) a distributed database implemented in a hierarchy of DNS servers,  
and (2) an application-layer protocol that allows hosts to query the distributed 
database. The DNS servers are often UNIX machines running the Berkeley Inter-
net Name Domain (BIND) software [BIND 2020]. The DNS protocol runs over 
UDP and uses port 53.

DNS is commonly employed by other application-layer protocols, including 
HTTP and SMTP, to translate user-supplied hostnames to IP addresses. As an exam-
ple, consider what happens when a browser (that is, an HTTP client), running on 
some user’s host, requests the URL www.someschool.edu/index.html. In 
order for the user’s host to be able to send an HTTP request message to the Web 
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server www.someschool.edu, the user’s host must first obtain the IP address of 
www.someschool.edu. This is done as follows.

 1. The same user machine runs the client side of the DNS application.
 2. The browser extracts the hostname, www.someschool.edu, from the URL 

and passes the hostname to the client side of the DNS application.
 3. The DNS client sends a query containing the hostname to a DNS server.
 4. The DNS client eventually receives a reply, which includes the IP address for 

the hostname.
 5. Once the browser receives the IP address from DNS, it can initiate a TCP con-

nection to the HTTP server process located at port 80 at that IP address.

We see from this example that DNS adds an additional delay—sometimes  
substantial—to the Internet applications that use it. Fortunately, as we discuss below, 
the desired IP address is often cached in a “nearby” DNS server, which helps to 
reduce DNS network traffic as well as the average DNS delay.

DNS provides a few other important services in addition to translating host-
names to IP addresses:

• Host aliasing. A host with a complicated hostname can have one or more  
alias names. For example, a hostname such as relay1.west-coast 
.enterprise.com could have, say, two aliases such as enterprise.com  
and www.enterprise.com. In this case, the hostname relay1 
.west-coast.enterprise.com is said to be a canonical hostname. Alias 
hostnames, when present, are typically more mnemonic than canonical host-
names. DNS can be invoked by an application to obtain the canonical hostname 
for a supplied alias hostname as well as the IP address of the host.

• Mail server aliasing. For obvious reasons, it is highly desirable that e-mail 
addresses be mnemonic. For example, if Bob has an account with Yahoo Mail, 
Bob’s e-mail address might be as simple as bob@yahoo.com. However, the 
hostname of the Yahoo mail server is more complicated and much less mnemonic 
than simply yahoo.com (for example, the canonical hostname might be some-
thing like relay1.west-coast.yahoo.com). DNS can be invoked by a 
mail application to obtain the canonical hostname for a supplied alias hostname 
as well as the IP address of the host. In fact, the MX record (see below) permits a 
company’s mail server and Web server to have identical (aliased) hostnames; for 
example, a company’s Web server and mail server can both be called enter-
prise.com.

• Load distribution. DNS is also used to perform load distribution among repli-
cated servers, such as replicated Web servers. Busy sites, such as cnn.com, are 
replicated over multiple servers, with each server running on a different end sys-
tem and each having a different IP address. For replicated Web servers, a set of IP 
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addresses is thus associated with one alias hostname. The DNS database contains 
this set of IP addresses. When clients make a DNS query for a name mapped to a 
set of addresses, the server responds with the entire set of IP addresses, but rotates 
the ordering of the addresses within each reply. Because a client typically sends 
its HTTP request message to the IP address that is listed first in the set, DNS rota-
tion distributes the traffic among the replicated servers. DNS rotation is also used 
for e-mail so that multiple mail servers can have the same alias name. Also, con-
tent distribution companies such as Akamai have used DNS in more sophisticated 
ways [Dilley 2002] to provide Web content distribution (see Section 2.6.3).

The DNS is specified in RFC 1034 and RFC 1035, and updated in several addi-
tional RFCs. It is a complex system, and we only touch upon key aspects of its 
operation here. The interested reader is referred to these RFCs and the book by Albitz 
and Liu [Albitz 1993]; see also the retrospective paper [Mockapetris 1988], which 
provides a nice description of the what and why of DNS, and [Mockapetris 2005].

2.4.2 Overview of How DNS Works
We now present a high-level overview of how DNS works. Our discussion will focus 
on the hostname-to-IP-address translation service.

Suppose that some application (such as a Web browser or a mail client) running 
in a user’s host needs to translate a hostname to an IP address. The application will 
invoke the client side of DNS, specifying the hostname that needs to be translated. 
(On many UNIX-based machines, gethostbyname() is the function call that 
an application calls in order to perform the translation.) DNS in the user’s host then 

DNS: CRITICAL NETWORK FUNCTIONS VIA THE CLIENT-SERVER PARADIGM

Like HTTP, FTP, and SMTP, the DNS protocol is an application-layer protocol since it 
(1) runs between communicating end systems using the client-server paradigm and 
(2) relies on an underlying end-to-end transport protocol to transfer DNS messages between 
communicating end systems. In another sense, however, the role of the DNS is quite differ-
ent from Web, file transfer, and e-mail applications. Unlike these applications, the DNS is 
not an application with which a user directly interacts. Instead, the DNS provides a core 
Internet function—namely, translating hostnames to their underlying IP addresses, for user 
applications and other software in the Internet. We noted in Section 1.2 that much of the 
complexity in the Internet architecture is located at the “edges” of the network. The DNS, 
which implements the critical name-to-address translation process using clients and servers 
located at the edge of the network, is yet another example of that design philosophy.

PRINCIPLES IN PRACTICE
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takes over, sending a query message into the network. All DNS query and reply mes-
sages are sent within UDP datagrams to port 53. After a delay, ranging from millisec-
onds to seconds, DNS in the user’s host receives a DNS reply message that provides 
the desired mapping. This mapping is then passed to the invoking application. Thus, 
from the perspective of the invoking application in the user’s host, DNS is a black 
box providing a simple, straightforward translation service. But in fact, the black box 
that implements the service is complex, consisting of a large number of DNS servers 
distributed around the globe, as well as an application-layer protocol that specifies 
how the DNS servers and querying hosts communicate.

A simple design for DNS would have one DNS server that contains all the map-
pings. In this centralized design, clients simply direct all queries to the single DNS 
server, and the DNS server responds directly to the querying clients. Although the 
simplicity of this design is attractive, it is inappropriate for today’s Internet, with its 
vast (and growing) number of hosts. The problems with a centralized design include:

• A single point of failure. If the DNS server crashes, so does the entire Internet!

• Traffic volume. A single DNS server would have to handle all DNS queries (for 
all the HTTP requests and e-mail messages generated from hundreds of millions 
of hosts).

• Distant centralized database. A single DNS server cannot be “close to” all the 
querying clients. If we put the single DNS server in New York City, then all que-
ries from Australia must travel to the other side of the globe, perhaps over slow 
and congested links. This can lead to significant delays.

• Maintenance. The single DNS server would have to keep records for all Internet 
hosts. Not only would this centralized database be huge, but it would have to be 
updated frequently to account for every new host.

In summary, a centralized database in a single DNS server simply doesn’t scale. 
Consequently, the DNS is distributed by design. In fact, the DNS is a wonderful 
example of how a distributed database can be implemented in the Internet.

A Distributed, Hierarchical Database

In order to deal with the issue of scale, the DNS uses a large number of servers, 
organized in a hierarchical fashion and distributed around the world. No single DNS 
server has all of the mappings for all of the hosts in the Internet. Instead, the map-
pings are distributed across the DNS servers. To a first approximation, there are three 
classes of DNS servers—root DNS servers, top-level domain (TLD) DNS servers, 
and authoritative DNS servers—organized in a hierarchy as shown in Figure 2.17. 
To understand how these three classes of servers interact, suppose a DNS client 
wants to determine the IP address for the hostname www.amazon.com. To a first 
approximation, the following events will take place. The client first contacts one of 
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the root servers, which returns IP addresses for TLD servers for the top-level domain 
com. The client then contacts one of these TLD servers, which returns the IP address 
of an authoritative server for amazon.com. Finally, the client contacts one of the 
authoritative servers for amazon.com, which returns the IP address for the host-
name www.amazon.com. We’ll soon examine this DNS lookup process in more 
detail. But let’s first take a closer look at these three classes of DNS servers:

• Root DNS servers. There are more than 1000 root servers instances scattered all 
over the world, as shown in Figure 2.18. These root servers are copies of 13 dif-
ferent root servers, managed by 12 different organizations, and coordinated 
through the Internet Assigned Numbers Authority [IANA 2020]. The full list 
of root name servers, along with the organizations that manage them and their 
IP addresses can be found at [Root Servers 2020]. Root name servers provide 
the IP addresses of the TLD servers.

• Top-level domain (TLD) servers. For each of the top-level domains—top-level 
domains such as com, org, net, edu, and gov, and all of the country top-level 
domains such as uk, fr, ca, and jp—there is TLD server (or server cluster). The 
company Verisign Global Registry Services maintains the TLD servers for the 
com top-level domain, and the company Educause maintains the TLD servers for 
the edu top-level domain. The network infrastructure supporting a TLD can be 
large and complex; see [Osterweil 2012] for a nice overview of the Verisign net-
work. See [TLD list 2020] for a list of all top-level domains. TLD servers provide 
the IP addresses for authoritative DNS servers.

• Authoritative DNS servers. Every organization with publicly accessible hosts 
(such as Web servers and mail servers) on the Internet must provide publicly 
accessible DNS records that map the names of those hosts to IP addresses. An 
organization’s authoritative DNS server houses these DNS records. An organi-
zation can choose to implement its own authoritative DNS server to hold these 
records; alternatively, the organization can pay to have these records stored in an 

edu DNS serversorg DNS serverscom DNS servers

nyu.edu
DNS servers

facebook.com
DNS servers

amazon.com
DNS servers

pbs.org
DNS servers

umass.edu
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Figure 2.17 ♦ Portion of the hierarchy of DNS servers
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authoritative DNS server of some service provider. Most universities and large 
companies implement and maintain their own primary and secondary (backup) 
authoritative DNS server.

The root, TLD, and authoritative DNS servers all belong to the hierarchy of 
DNS servers, as shown in Figure 2.17. There is another important type of DNS 
server called the local DNS server. A local DNS server does not strictly belong to 
the hierarchy of servers but is nevertheless central to the DNS architecture. Each 
ISP—such as a residential ISP or an institutional ISP—has a local DNS server (also 
called a default name server). When a host connects to an ISP, the ISP provides 
the host with the IP addresses of one or more of its local DNS servers (typically 
through DHCP, which is discussed in Chapter 4). You can easily determine the IP 
address of your local DNS server by accessing network status windows in Win-
dows or UNIX. A host’s local DNS server is typically “close to” the host. For an 
institutional ISP, the local DNS server may be on the same LAN as the host; for a 
residential ISP, it is typically separated from the host by no more than a few rout-
ers. When a host makes a DNS query, the query is sent to the local DNS server, 
which acts a proxy,  forwarding the query into the DNS server hierarchy, as we’ll 
discuss in more detail below.

Let’s take a look at a simple example. Suppose the host cse.nyu.edu desires 
the IP address of gaia.cs.umass.edu. Also suppose that NYU’s local DNS 
server for cse.nyu.edu is called dns.nyu.edu and that an authoritative DNS 
server for gaia.cs.umass.edu is called dns.umass.edu. As shown in 

0 Servers
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11–20 Servers
21+ Servers

Key:

Figure 2.18 ♦ DNS root servers in 2020
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 Figure 2.19, the host cse.nyu.edu first sends a DNS query message to its local 
DNS server, dns.nyu.edu. The query message contains the hostname to be trans-
lated, namely, gaia.cs.umass.edu. The local DNS server forwards the query 
message to a root DNS server. The root DNS server takes note of the edu suffix and 
returns to the local DNS server a list of IP addresses for TLD servers responsible 
for edu. The local DNS server then resends the query message to one of these TLD 
servers. The TLD server takes note of the umass.edu suffix and responds with 
the IP address of the authoritative DNS server for the University of Massachusetts, 
namely, dns.umass.edu. Finally, the local DNS server resends the query mes-
sage directly to dns.umass.edu, which responds with the IP address of gaia 
.cs.umass.edu. Note that in this example, in order to obtain the mapping for one 
hostname, eight DNS messages were sent: four query messages and four reply mes-
sages! We’ll soon see how DNS caching reduces this query traffic.

Our previous example assumed that the TLD server knows the authoritative DNS 
server for the hostname. In general, this is not always true. Instead, the TLD server 
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Figure 2.19 ♦ Interaction of the various DNS servers
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may know only of an intermediate DNS server, which in turn knows the authorita-
tive DNS server for the hostname. For example, suppose again that the University of 
Massachusetts has a DNS server for the university, called dns.umass.edu. Also 
suppose that each of the departments at the University of Massachusetts has its own 
DNS server, and that each departmental DNS server is authoritative for all hosts in 
the department. In this case, when the intermediate DNS server, dns.umass.edu, 
receives a query for a host with a hostname ending with cs.umass.edu, it returns 
to dns.nyu.edu the IP address of dns.cs.umass.edu, which is authoritative 
for all hostnames ending with cs.umass.edu. The local DNS server dns.nyu 
.edu then sends the query to the authoritative DNS server, which returns the desired 
mapping to the local DNS server, which in turn returns the mapping to the requesting 
host. In this case, a total of 10 DNS messages are sent!

The example shown in Figure 2.19 makes use of both recursive queries and 
iterative queries. The query sent from cse.nyu.edu to dns.nyu.edu is a 
recursive query, since the query asks dns.nyu.edu to obtain the mapping on its 
behalf. However, the subsequent three queries are iterative since all of the replies 
are directly returned to dns.nyu.edu. In theory, any DNS query can be itera-
tive or recursive. For example, Figure 2.20 shows a DNS query chain for which all  
of the queries are recursive. In practice, the queries typically follow the pattern in 
Figure 2.19: The query from the requesting host to the local DNS server is recursive, 
and the remaining queries are iterative.

DNS Caching

Our discussion thus far has ignored DNS caching, a critically important feature 
of the DNS system. In truth, DNS extensively exploits DNS caching in order to 
improve the delay performance and to reduce the number of DNS messages  
ricocheting around the Internet. The idea behind DNS caching is very simple. In a 
query chain, when a DNS server receives a DNS reply (containing, for example, a 
mapping from a hostname to an IP address), it can cache the mapping in its local 
memory. For example, in Figure 2.19, each time the local DNS server dns.nyu.edu 
receives a reply from some DNS server, it can cache any of the information contained 
in the reply. If a hostname/IP address pair is cached in a DNS server and another 
query arrives to the DNS server for the same hostname, the DNS server can provide 
the desired IP address, even if it is not authoritative for the hostname. Because hosts 
and mappings between hostnames and IP addresses are by no means permanent, 
DNS servers discard cached information after a period of time (often set to two days).

As an example, suppose that a host apricot.nyu.edu queries dns.nyu.edu  
for the IP address for the hostname cnn.com. Furthermore,  suppose that a few hours 
later, another NYU host, say, kiwi.nyu.edu, also queries dns.nyu.edu  
with the same hostname. Because of caching, the local DNS server will be able 
to immediately return the IP address of cnn.com to this second requesting 
host without having to query any other DNS servers. A local DNS server can 
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Figure 2.20 ♦ Recursive queries in DNS

also cache the IP addresses of TLD servers, thereby allowing the local DNS server 
to bypass the root DNS servers in a query chain. In fact, because of caching, root 
servers are bypassed for all but a very small fraction of DNS queries.

2.4.3 DNS Records and Messages
The DNS servers that together implement the DNS distributed database store 
resource records (RRs), including RRs that provide hostname-to-IP address map-
pings. Each DNS reply message carries one or more resource records. In this and 
the following subsection, we provide a brief overview of DNS resource records and 
messages; more details can be found in [Albitz 1993] or in the DNS RFCs [RFC 
1034; RFC 1035].
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A resource record is a four-tuple that contains the following fields:

(Name, Value, Type, TTL)

TTL is the time to live of the resource record; it determines when a resource should 
be removed from a cache. In the example records given below, we ignore the TTL 
field. The meaning of Name and Value depend on Type:

• If Type=A, then Name is a hostname and Value is the IP address for the host-
name. Thus, a Type A record provides the standard hostname-to-IP address map-
ping. As an example, (relay1.bar.foo.com, 145.37.93.126, A) is 
a Type A record.

• If Type=NS, then Name is a domain (such as foo.com) and Value is the host-
name of an authoritative DNS server that knows how to obtain the IP addresses 
for hosts in the domain. This record is used to route DNS queries further along in 
the query chain. As an example, (foo.com, dns.foo.com, NS) is a Type 
NS record.

• If Type=CNAME, then Value is a canonical hostname for the alias hostname 
Name. This record can provide querying hosts the canonical name for a host-
name. As an example, (foo.com, relay1.bar.foo.com, CNAME) is a 
CNAME record.

• If Type=MX, then Value is the canonical name of a mail server that has an alias 
hostname Name. As an example, (foo.com, mail.bar.foo.com, MX) 
is an MX record. MX records allow the hostnames of mail servers to have simple 
aliases. Note that by using the MX record, a company can have the same aliased 
name for its mail server and for one of its other servers (such as its Web server). 
To obtain the canonical name for the mail server, a DNS client would query for 
an MX record; to obtain the canonical name for the other server, the DNS client 
would query for the CNAME record.

If a DNS server is authoritative for a particular hostname, then the DNS server 
will contain a Type A record for the hostname. (Even if the DNS server is not author-
itative, it may contain a Type A record in its cache.) If a server is not authoritative 
for a hostname, then the server will contain a Type NS record for the domain that 
includes the hostname; it will also contain a Type A record that provides the IP address 
of the DNS server in the Value field of the NS record. As an example, suppose an 
edu TLD server is not authoritative for the host gaia.cs.umass.edu. Then this 
server will contain a record for a domain that includes the host gaia.cs.umass 
.edu, for example, (umass.edu, dns.umass.edu, NS). The edu 
TLD server would also contain a Type A record, which maps the DNS server 
dns.umass.edu to an IP address, for example, (dns.umass.edu, 
128.119.40.111, A).
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DNS Messages

Earlier in this section, we referred to DNS query and reply messages. These are the 
only two kinds of DNS messages. Furthermore, both query and reply messages have 
the same format, as shown in Figure 2.21.The semantics of the various fields in a 
DNS message are as follows:

• The first 12 bytes is the header section, which has a number of fields. The first 
field is a 16-bit number that identifies the query. This identifier is copied into the 
reply message to a query, allowing the client to match received replies with sent 
queries. There are a number of flags in the flag field. A 1-bit query/reply flag indi-
cates whether the message is a query (0) or a reply (1). A 1-bit authoritative flag is 
set in a reply message when a DNS server is an authoritative server for a queried 
name. A 1-bit recursion-desired flag is set when a client (host or DNS server) 
desires that the DNS server perform recursion when it doesn’t have the record. A 
1-bit recursion-available field is set in a reply if the DNS server supports recur-
sion. In the header, there are also four number-of fields. These fields indicate the 
number of occurrences of the four types of data sections that follow the header.

• The question section contains information about the query that is being made. 
This section includes (1) a name field that contains the name that is being que-
ried, and (2) a type field that indicates the type of question being asked about the 
name—for example, a host address associated with a name (Type A) or the mail 
server for a name (Type MX).

Identification

Number of questions

Number of authority RRs

Name, type fields for
a query

12 bytes

RRs in response to query

Records for
authoritative servers

Additional “helpful”
info that may be used

Flags

Number of answer RRs

Number of additional RRs

Authority
(variable number of resource records)

Additional information
(variable number of resource records)

Answers
(variable number of resource records)

Questions
(variable number of questions)

Figure 2.21 ♦ DNS message format
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• In a reply from a DNS server, the answer section contains the resource records for 
the name that was originally queried. Recall that in each resource record there is the 
Type (for example, A, NS, CNAME, and MX), the Value, and the TTL. A reply can 
return multiple RRs in the answer, since a hostname can have multiple IP addresses 
(for example, for replicated Web servers, as discussed earlier in this section).

• The authority section contains records of other authoritative servers.

• The additional section contains other helpful records. For example, the answer 
field in a reply to an MX query contains a resource record providing the canoni-
cal hostname of a mail server. The additional section contains a Type A record 
providing the IP address for the canonical hostname of the mail server.

How would you like to send a DNS query message directly from the host you’re 
working on to some DNS server? This can easily be done with the nslookup program, 
which is available from most Windows and UNIX platforms. For example, from a Win-
dows host, open the Command Prompt and invoke the nslookup program by simply typ-
ing “nslookup.” After invoking nslookup, you can send a DNS query to any DNS server 
(root, TLD, or authoritative). After receiving the reply message from the DNS server, 
nslookup will display the records included in the reply (in a human-readable format). As 
an alternative to running nslookup from your own host, you can visit one of many Web 
sites that allow you to remotely employ nslookup. (Just type “nslookup” into a search 
engine and you’ll be brought to one of these sites.) The DNS Wireshark lab at the end of 
this chapter will allow you to explore the DNS in much more detail.

Inserting Records into the DNS Database

The discussion above focused on how records are retrieved from the DNS database. 
You might be wondering how records get into the database in the first place. Let’s look 
at how this is done in the context of a specific example. Suppose you have just created 
an exciting new startup company called Network Utopia. The first thing you’ll surely 
want to do is register the domain name networkutopia.com at a registrar. A reg-
istrar is a commercial entity that verifies the uniqueness of the domain name, enters 
the domain name into the DNS database (as discussed below), and collects a small fee 
from you for its services. Prior to 1999, a single registrar, Network Solutions, had a 
monopoly on domain name registration for com, net, and org domains. But now 
there are many registrars competing for customers, and the Internet Corporation for 
Assigned Names and Numbers (ICANN) accredits the various registrars. A complete 
list of accredited registrars is available at http://www.internic.net.

When you register the domain name networkutopia.com with some reg-
istrar, you also need to provide the registrar with the names and IP addresses of 
your primary and secondary authoritative DNS servers. Suppose the names and IP 
addresses are dns1.networkutopia.com, dns2.networkutopia.com, 
212.2.212.1, and 212.212.212.2. For each of these two authoritative DNS 
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DNS VULNERABIL IT IES

We have seen that DNS is a critical component of the Internet infrastructure, with 
many important services—including the Web and e-mail—simply incapable of func-
tioning without it. We therefore naturally ask, how can DNS be attacked? Is DNS a 
sitting duck, waiting to be knocked out of service, while taking most Internet applica-
tions down with it?

The first type of attack that comes to mind is a DDoS bandwidth-flooding attack 
(see Section 1.6) against DNS servers. For example, an attacker could attempt to 
send to each DNS root server a deluge of packets, so many that the majority of 
legitimate DNS queries never get answered. Such a large-scale DDoS attack against 
DNS root servers actually took place on October 21, 2002. In this attack, the attack-
ers leveraged a botnet to send truck loads of ICMP ping messages to each of the 
13 DNS root IP addresses. (ICMP messages are discussed in Section 5.6. For now, 
it suffices to know that ICMP packets are special types of IP datagrams.) Fortunately, 
this large-scale attack caused minimal damage, having little or no impact on users’ 
Internet experience. The attackers did succeed at directing a deluge of packets at the 
root servers. But many of the DNS root servers were protected by packet filters, con-
figured to always block all ICMP ping messages directed at the root servers. These 
protected servers were thus spared and functioned as normal. Furthermore, most local 
DNS servers cache the IP addresses of top-level-domain servers, allowing the query 
process to often bypass the DNS root servers.

A potentially more effective DDoS attack against DNS is send a deluge of DNS 
queries to top-level-domain servers, for example, to top-level-domain servers that 
handle the .com domain. It is harder to filter DNS queries directed to DNS servers; 
and top-level-domain servers are not as easily bypassed as are root servers. Such an 
attack took place against the top-level-domain service provider Dyn on October 21, 
2016. This DDoS attack was accomplished through a large number of DNS lookup 
requests from a botnet consisting of about one hundred thousand IoT devices such as 
printers, IP cameras, residential gateways and baby monitors that had been infected 
with Mirai malware. For almost a full day, Amazon, Twitter, Netflix, Github and 
Spotify were disturbed.

DNS could potentially be attacked in other ways. In a man-in-the-middle attack, 
the attacker intercepts queries from hosts and returns bogus replies. In the DNS poi-
soning attack, the attacker sends bogus replies to a DNS server, tricking the server 
into accepting bogus records into its cache. Either of these attacks could be used, 
for example, to redirect an unsuspecting Web user to the attacker’s Web site. The 
DNS Security Extensions (DNSSEC [Gieben 2004; RFC 4033] have been designed 
and deployed to protect against such exploits. DNSSEC, a secured version of DNS, 
addresses many of these possible attacks and is gaining popularity in the Internet.

FOCUS ON SECURITY
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servers, the registrar would then make sure that a Type NS and a Type A record are 
entered into the TLD com servers. Specifically, for the primary authoritative server 
for networkutopia.com, the registrar would insert the following two resource 
records into the DNS system:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

You’ll also have to make sure that the Type A resource record for your Web server 
www.networkutopia.com and the Type MX resource record for your mail 
server mail.networkutopia.com are entered into your authoritative DNS 
servers. (Until recently, the contents of each DNS server were configured statically, 
for example, from a configuration file created by a system manager. More recently, 
an UPDATE option has been added to the DNS protocol to allow data to be dynami-
cally added or deleted from the database via DNS messages. [RFC 2136] and [RFC 
3007] specify DNS dynamic updates.)

Once all of these steps are completed, people will be able to visit your Web site 
and send e-mail to the employees at your company. Let’s conclude our discussion of 
DNS by verifying that this statement is true. This verification also helps to solidify 
what we have learned about DNS. Suppose Alice in Australia wants to view the Web 
page www.networkutopia.com. As discussed earlier, her host will first send a 
DNS query to her local DNS server. The local DNS server will then contact a TLD 
com server. (The local DNS server will also have to contact a root DNS server if the 
address of a TLD com server is not cached.) This TLD server contains the Type NS 
and Type A resource records listed above, because the registrar had these resource 
records inserted into all of the TLD com servers. The TLD com server sends a reply 
to Alice’s local DNS server, with the reply containing the two resource records. The 
local DNS server then sends a DNS query to 212.212.212.1, asking for the Type 
A record corresponding to www.networkutopia.com. This record provides the 
IP address of the desired Web server, say, 212.212.71.4, which the local DNS 
server passes back to Alice’s host. Alice’s browser can now initiate a TCP connec-
tion to the host 212.212.71.4 and send an HTTP request over the connection. 
Whew! There’s a lot more going on than what meets the eye when one surfs the Web!

2.5 Peer-to-Peer File Distribution

The applications described in this chapter thus far—including the Web, e-mail, and 
DNS—all employ client-server architectures with significant reliance on always-on 
infrastructure servers. Recall from Section 2.1.1 that with a P2P architecture, there 
is minimal (or no) reliance on always-on infrastructure servers. Instead, pairs of 
intermittently connected hosts, called peers, communicate directly with each other. 
The peers are not owned by a service provider, but are instead PCs, laptops, and 
smartpones controlled by users.
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In this section, we consider a very natural P2P application, namely, distributing a 
large file from a single server to a large number of hosts (called peers). The file might 
be a new version of the Linux operating system, a software patch for an existing 
operating system or an MPEG video file. In client-server file distribution, the server 
must send a copy of the file to each of the peers—placing an enormous burden on the 
server and consuming a large amount of server bandwidth. In P2P file distribution, 
each peer can redistribute any portion of the file it has received to any other peers, 
thereby assisting the server in the distribution process. As of 2020, the most popular 
P2P file distribution protocol is BitTorrent. Originally developed by Bram Cohen, 
there are now many different independent BitTorrent clients conforming to the Bit-
Torrent protocol, just as there are a number of Web browser clients that conform to 
the HTTP protocol. In this subsection, we first examine the self-scalability of P2P 
architectures in the context of file distribution. We then describe BitTorrent in some 
detail, highlighting its most important characteristics and features.

Scalability of P2P Architectures

To compare client-server architectures with peer-to-peer architectures, and illustrate 
the inherent self-scalability of P2P, we now consider a simple quantitative model 
for distributing a file to a fixed set of peers for both architecture types. As shown 
in Figure 2.22, the server and the peers are connected to the Internet with access 
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Figure 2.22 ♦ An illustrative file distribution problem
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links. Denote the upload rate of the server’s access link by us, the upload rate of the 
ith peer’s access link by ui, and the download rate of the ith peer’s access link by 
di. Also denote the size of the file to be distributed (in bits) by F and the number of 
peers that want to obtain a copy of the file by N. The distribution time is the time it 
takes to get a copy of the file to all N peers. In our analysis of the distribution time 
below, for both client-server and P2P architectures, we make the simplifying (and 
generally accurate [Akella 2003]) assumption that the Internet core has abundant 
bandwidth, implying that all of the bottlenecks are in access networks. We also sup-
pose that the server and clients are not participating in any other network applica-
tions, so that all of their upload and download access bandwidth can be fully devoted 
to distributing this file.

Let’s first determine the distribution time for the client-server architecture, 
which we denote by Dcs. In the client-server architecture, none of the peers aids in 
distributing the file. We make the following observations:

• The server must transmit one copy of the file to each of the N peers. Thus, the 
server must transmit NF bits. Since the server’s upload rate is us, the time to dis-
tribute the file must be at least NF/us.

• Let dmin denote the download rate of the peer with the lowest download rate, that 
is, dmin = min5d1, dp, . . . , dN6 . The peer with the lowest download rate cannot 
obtain all F bits of the file in less than F/dmin seconds. Thus, the minimum distri-
bution time is at least F/dmin.

Putting these two observations together, we obtain

Dcs Ú maxb NF
us

 , 
F

dmin
r .

This provides a lower bound on the minimum distribution time for the client-server 
architecture. In the homework problems, you will be asked to show that the server 
can schedule its transmissions so that the lower bound is actually achieved. So let’s 
take this lower bound provided above as the actual distribution time, that is,

 Dcs = maxb NF
us

, 
F

dmin
r  (2.1)

We see from Equation 2.1 that for N large enough, the client-server distribution time 
is given by NF/us. Thus, the distribution time increases linearly with the number of 
peers N. So, for example, if the number of peers from one week to the next increases 
a thousand-fold from a thousand to a million, the time required to distribute the file 
to all peers increases by 1,000.
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Let’s now go through a similar analysis for the P2P architecture, where each peer 
can assist the server in distributing the file. In particular, when a peer receives some 
file data, it can use its own upload capacity to redistribute the data to other peers. Cal-
culating the distribution time for the P2P architecture is somewhat more complicated 
than for the client-server architecture, since the distribution time depends on how 
each peer distributes portions of the file to the other peers. Nevertheless, a simple 
expression for the minimal distribution time can be obtained [Kumar 2006]. To this 
end, we first make the following observations:

• At the beginning of the distribution, only the server has the file. To get this file 
into the community of peers, the server must send each bit of the file at least once 
into its access link. Thus, the minimum distribution time is at least F/us. (Unlike 
the client-server scheme, a bit sent once by the server may not have to be sent by 
the server again, as the peers may redistribute the bit among themselves.)

• As with the client-server architecture, the peer with the lowest download rate 
cannot obtain all F bits of the file in less than F/dmin seconds. Thus, the minimum 
distribution time is at least F/dmin.

• Finally, observe that the total upload capacity of the system as a whole is equal 
to the upload rate of the server plus the upload rates of each of the individual 
peers, that is, utotal = us + u1 + g+  uN. The system must deliver (upload) F 
bits to each of the N peers, thus delivering a total of NF bits. This cannot be done 
at a rate faster than utotal. Thus, the minimum distribution time is also at least 
NF/(us + u1 + g+  uN).

Putting these three observations together, we obtain the minimum distribution 
time for P2P, denoted by DP2P.

 
DP2P Ú max c F

us
, 

F
dmin

, 
NF

us + a
N

i=1
ui
s  (2.2)

Equation 2.2 provides a lower bound for the minimum distribution time for the P2P 
architecture. It turns out that if we imagine that each peer can redistribute a bit as 
soon as it receives the bit, then there is a redistribution scheme that actually achieves 
this lower bound [Kumar 2006]. (We will prove a special case of this result in the 
homework.) In reality, where chunks of the file are redistributed rather than indi-
vidual bits, Equation 2.2 serves as a good approximation of the actual minimum 
distribution time. Thus, let’s take the lower bound provided by Equation 2.2 as the 
actual minimum distribution time, that is,

 
DP2P = max c F

us
, 

F
dmin

, 
NF

us + a
N

i=1
ui
s  (2.3)
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Figure 2.23 compares the minimum distribution time for the client-server and 
P2P architectures assuming that all peers have the same upload rate u. In Figure 2.23, 
we have set F/u = 1 hour, us = 10u, and dmin Ú us. Thus, a peer can transmit the 
entire file in one hour, the server transmission rate is 10 times the peer upload rate, 
and (for simplicity) the peer download rates are set large enough so as not to have 
an effect. We see from Figure 2.23 that for the client-server architecture, the distri-
bution time increases linearly and without bound as the number of peers increases. 
However, for the P2P architecture, the minimal distribution time is not only always 
less than the distribution time of the client-server architecture; it is also less than one 
hour for any number of peers N. Thus, applications with the P2P architecture can be 
self-scaling. This scalability is a direct consequence of peers being redistributors as 
well as consumers of bits.

BitTorrent

BitTorrent is a popular P2P protocol for file distribution [Chao 2011]. In BitTorrent 
lingo, the collection of all peers participating in the distribution of a particular file is 
called a torrent. Peers in a torrent download equal-size chunks of the file from one 
another, with a typical chunk size of 256 KBytes. When a peer first joins a torrent, it 
has no chunks. Over time it accumulates more and more chunks. While it downloads 
chunks it also uploads chunks to other peers. Once a peer has acquired the entire 
file, it may (selfishly) leave the torrent, or (altruistically) remain in the torrent and 
continue to upload chunks to other peers. Also, any peer may leave the torrent at any 
time with only a subset of chunks, and later rejoin the torrent.
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Figure 2.23 ♦ Distribution time for P2P and client-server architectures
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Let’s now take a closer look at how BitTorrent operates. Since BitTorrent is 
a rather complicated protocol and system, we’ll only describe its most important 
mechanisms, sweeping some of the details under the rug; this will allow us to see 
the forest through the trees. Each torrent has an infrastructure node called a tracker. 
When a peer joins a torrent, it registers itself with the tracker and periodically informs 
the tracker that it is still in the torrent. In this manner, the tracker keeps track of the 
peers that are participating in the torrent. A given torrent may have fewer than ten or 
more than a thousand peers participating at any instant of time.

As shown in Figure 2.24, when a new peer, Alice, joins the torrent, the tracker 
randomly selects a subset of peers (for concreteness, say 50) from the set of partici-
pating peers, and sends the IP addresses of these 50 peers to Alice. Possessing this 
list of peers, Alice attempts to establish concurrent TCP connections with all the 
peers on this list. Let’s call all the peers with which Alice succeeds in establishing a 
TCP connection “neighboring peers.” (In Figure 2.24, Alice is shown to have only 
three neighboring peers. Normally, she would have many more.) As time evolves, 
some of these peers may leave and other peers (outside the initial 50) may attempt to 
establish TCP connections with Alice. So a peer’s neighboring peers will fluctuate 
over time.

Tracker

Trading chunks

Peer

Obtain
list of
peers

Alice

Figure 2.24 ♦ File distribution with BitTorrent
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At any given time, each peer will have a subset of chunks from the file, with dif-
ferent peers having different subsets. Periodically, Alice will ask each of her neigh-
boring peers (over the TCP connections) for the list of the chunks they have. If Alice 
has L different neighbors, she will obtain L lists of chunks. With this knowledge, 
Alice will issue requests (again over the TCP connections) for chunks she currently 
does not have.

So at any given instant of time, Alice will have a subset of chunks and will know 
which chunks her neighbors have. With this information, Alice will have two impor-
tant decisions to make. First, which chunks should she request first from her neigh-
bors? And second, to which of her neighbors should she send requested chunks? In 
deciding which chunks to request, Alice uses a technique called rarest first. The 
idea is to determine, from among the chunks she does not have, the chunks that are 
the rarest among her neighbors (that is, the chunks that have the fewest repeated cop-
ies among her neighbors) and then request those rarest chunks first. In this manner, 
the rarest chunks get more quickly redistributed, aiming to (roughly) equalize the 
numbers of copies of each chunk in the torrent.

To determine which requests she responds to, BitTorrent uses a clever trading 
algorithm. The basic idea is that Alice gives priority to the neighbors that are cur-
rently supplying her data at the highest rate. Specifically, for each of her neighbors, 
Alice continually measures the rate at which she receives bits and determines the four 
peers that are feeding her bits at the highest rate. She then reciprocates by sending 
chunks to these same four peers. Every 10 seconds, she recalculates the rates and pos-
sibly modifies the set of four peers. In BitTorrent lingo, these four peers are said to be 
unchoked. Importantly, every 30 seconds, she also picks one additional neighbor at 
random and sends it chunks. Let’s call the randomly chosen peer Bob. In BitTorrent 
lingo, Bob is said to be optimistically unchoked. Because Alice is sending data to 
Bob, she may become one of Bob’s top four uploaders, in which case Bob would start 
to send data to Alice. If the rate at which Bob sends data to Alice is high enough, Bob 
could then, in turn, become one of Alice’s top four uploaders. In other words, every 
30 seconds, Alice will randomly choose a new trading partner and initiate trading 
with that partner. If the two peers are satisfied with the trading, they will put each 
other in their top four lists and continue trading with each other until one of the peers 
finds a better partner. The effect is that peers capable of uploading at compatible 
rates tend to find each other. The random neighbor selection also allows new peers 
to get chunks, so that they can have something to trade. All other neighboring peers 
besides these five peers (four “top” peers and one probing peer) are “choked,” that 
is, they do not receive any chunks from Alice. BitTorrent has a number of interesting 
mechanisms that are not discussed here, including pieces (mini-chunks), pipelining, 
random first selection, endgame mode, and anti-snubbing [Cohen 2003].

The incentive mechanism for trading just described is often referred to as tit-for-
tat [Cohen 2003]. It has been shown that this incentive scheme can be circumvented 
[Liogkas 2006; Locher 2006; Piatek 2008]. Nevertheless, the BitTorrent ecosystem 
is wildly successful, with millions of simultaneous peers actively sharing files in 
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hundreds of thousands of torrents. If BitTorrent had been designed without tit-for-tat 
(or a variant), but otherwise exactly the same, BitTorrent would likely not even exist 
now, as the majority of the users would have been freeriders [Saroiu 2002].

We close our discussion on P2P by briefly mentioning another application of P2P, 
namely, Distributed Hast Table (DHT). A distributed hash table is a simple database, 
with the database records being distributed over the peers in a P2P system. DHTs have 
been widely implemented (e.g., in BitTorrent) and have been the subject of extensive 
research. An overview is provided in a Video Note in the companion website. 

2.6 Video Streaming and Content Distribution 
Networks

By many estimates, streaming video—including Netflix, YouTube and Amazon 
Prime—account for about 80% of Internet traffic in 2020 [Cisco 2020]. This section 
we will provide an overview of how popular video streaming services are imple-
mented in today’s Internet. We will see they are implemented using application-level 
protocols and servers that function in some ways like a cache.

2.6.1 Internet Video
In streaming stored video applications, the underlying medium is prerecorded video, 
such as a movie, a television show, a prerecorded sporting event, or a prerecorded 
user-generated video (such as those commonly seen on YouTube). These prere-
corded videos are placed on servers, and users send requests to the servers to view 
the videos on demand. Many Internet companies today provide streaming video, 
including, Netflix, YouTube (Google), Amazon, and TikTok.

But before launching into a discussion of video streaming, we should first get 
a quick feel for the video medium itself. A video is a sequence of images, typi-
cally being displayed at a constant rate, for example, at 24 or 30 images per second. 
An uncompressed, digitally encoded image consists of an array of pixels, with each 
pixel encoded into a number of bits to represent luminance and color. An important 
characteristic of video is that it can be compressed, thereby trading off video quality 
with bit rate. Today’s off-the-shelf compression algorithms can compress a video to 
essentially any bit rate desired. Of course, the higher the bit rate, the better the image 
quality and the better the overall user viewing experience.

From a networking perspective, perhaps the most salient characteristic of video 
is its high bit rate. Compressed Internet video typically ranges from 100 kbps for 
low-quality video to over 4 Mbps for streaming high-definition movies; 4K stream-
ing envisions a bitrate of more than 10 Mbps. This can translate to huge amount of 
traffic and storage, particularly for high-end video. For example, a single 2 Mbps 

Walking though 
distributed hash tables

VideoNote
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video with a duration of 67 minutes will consume 1 gigabyte of storage and traffic. 
By far, the most important performance measure for streaming video is average end-
to-end throughput. In order to provide continuous playout, the network must provide 
an average throughput to the streaming application that is at least as large as the bit 
rate of the compressed video.

We can also use compression to create multiple versions of the same video, each 
at a different quality level. For example, we can use compression to create, say, three 
versions of the same video, at rates of 300 kbps, 1 Mbps, and 3 Mbps. Users can then 
decide which version they want to watch as a function of their current available band-
width. Users with high-speed Internet connections might choose the 3 Mbps version; 
users watching the video over 3G with a smartphone might choose the 300 kbps version.

2.6.2 HTTP Streaming and DASH
In HTTP streaming, the video is simply stored at an HTTP server as an ordinary 
file with a specific URL. When a user wants to see the video, the client establishes 
a TCP connection with the server and issues an HTTP GET request for that URL. 
The server then sends the video file, within an HTTP response message, as quickly 
as the underlying network protocols and traffic conditions will allow. On the client 
side, the bytes are collected in a client application buffer. Once the number of bytes 
in this buffer exceeds a predetermined threshold, the client application begins play-
back—specifically, the streaming video application periodically grabs video frames 
from the client application buffer, decompresses the frames, and displays them on 
the user’s screen. Thus, the video streaming application is displaying video as it is 
receiving and buffering frames corresponding to latter parts of the video.

Although HTTP streaming, as described in the previous paragraph, has been 
extensively deployed in practice (for example, by YouTube since its inception), it has 
a major shortcoming: All clients receive the same encoding of the video, despite the 
large variations in the amount of bandwidth available to a client, both across different 
clients and also over time for the same client. This has led to the development of a new 
type of HTTP-based streaming, often referred to as Dynamic Adaptive Streaming 
over HTTP (DASH). In DASH, the video is encoded into several different versions, 
with each version having a different bit rate and, correspondingly, a different quality 
level. The client dynamically requests chunks of video segments of a few seconds in 
length. When the amount of available bandwidth is high, the client naturally selects 
chunks from a high-rate version; and when the available bandwidth is low, it naturally 
selects from a low-rate version. The client selects different chunks one at a time with 
HTTP GET request messages [Akhshabi 2011].

DASH allows clients with different Internet access rates to stream in video at 
different encoding rates. Clients with low-speed 3G connections can receive a low 
bit-rate (and low-quality) version, and clients with fiber connections can receive a 
high-quality version. DASH also allows a client to adapt to the available bandwidth 
if the available end-to-end bandwidth changes during the session. This feature is 
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particularly important for mobile users, who typically see their bandwidth availabil-
ity fluctuate as they move with respect to the base stations.

With DASH, each video version is stored in the HTTP server, each with a differ-
ent URL. The HTTP server also has a manifest file, which provides a URL for each 
version along with its bit rate. The client first requests the manifest file and learns 
about the various versions. The client then selects one chunk at a time by specifying a 
URL and a byte range in an HTTP GET request message for each chunk. While down-
loading chunks, the client also measures the received bandwidth and runs a rate deter-
mination algorithm to select the chunk to request next. Naturally, if the client has a lot 
of video buffered and if the measured receive bandwidth is high, it will choose a chunk 
from a high-bitrate version. And naturally if the client has little video buffered and the 
measured received bandwidth is low, it will choose a chunk from a low-bitrate version. 
DASH therefore allows the client to freely switch among different quality levels.

2.6.3 Content Distribution Networks
Today, many Internet video companies are distributing on-demand multi-Mbps 
streams to millions of users on a daily basis. YouTube, for example, with a library 
of hundreds of millions of videos, distributes hundreds of millions of video streams 
to users around the world every day. Streaming all this traffic to locations all over 
the world while providing continuous playout and high interactivity is clearly a chal-
lenging task.

For an Internet video company, perhaps the most straightforward approach to 
providing streaming video service is to build a single massive data center, store all 
of its videos in the data center, and stream the videos directly from the data center 
to clients worldwide. But there are three major problems with this approach. First, if 
the client is far from the data center, server-to-client packets will cross many com-
munication links and likely pass through many ISPs, with some of the ISPs possibly 
located on different continents. If one of these links provides a throughput that is less 
than the video consumption rate, the end-to-end throughput will also be below the 
consumption rate, resulting in annoying freezing delays for the user. (Recall from 
Chapter 1 that the end-to-end throughput of a stream is governed by the throughput 
at the bottleneck link.) The likelihood of this happening increases as the number of 
links in the end-to-end path increases. A second drawback is that a popular video will 
likely be sent many times over the same communication links. Not only does this 
waste network bandwidth, but the Internet video company itself will be paying its 
provider ISP (connected to the data center) for sending the same bytes into the Inter-
net over and over again. A third problem with this solution is that a single data center 
represents a single point of failure—if the data center or its links to the Internet goes 
down, it would not be able to distribute any video streams.

In order to meet the challenge of distributing massive amounts of video data 
to users distributed around the world, almost all major video-streaming companies 
make use of Content Distribution Networks (CDNs). A CDN manages servers in 
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multiple geographically distributed locations, stores copies of the videos (and other 
types of Web content, including documents, images, and audio) in its servers, and 
attempts to direct each user request to a CDN location that will provide the best user 
experience. The CDN may be a private CDN, that is, owned by the content provider 
itself; for example, Google’s CDN distributes YouTube videos and other types of 
content. The CDN may alternatively be a third-party CDN that distributes content 
on behalf of multiple content providers; Akamai, Limelight and Level-3 all operate 
third-party CDNs. A very readable overview of modern CDNs is [Leighton 2009; 
Nygren 2010].

CDNs typically adopt one of two different server placement philosophies 
[Huang 2008]:

• Enter Deep. One philosophy, pioneered by Akamai, is to enter deep into the 
access networks of Internet Service Providers, by deploying server clusters in 
access ISPs all over the world. (Access networks are described in Section 1.3.) 
Akamai takes this approach with clusters in thousands of locations. The goal is 
to get close to end users, thereby improving user-perceived delay and throughput 
by decreasing the number of links and routers between the end user and the CDN 
server from which it receives content. Because of this highly distributed design, 
the task of maintaining and managing the clusters becomes challenging.

• Bring Home. A second design philosophy, taken by Limelight and many 
other CDN companies, is to bring the ISPs home by building large clusters 
at a smaller number (for example, tens) of sites. Instead of getting inside the 
access ISPs, these CDNs typically place their clusters in Internet Exchange 
Points (IXPs) (see Section 1.3). Compared with the enter-deep design phi-
losophy, the bring-home design typically results in lower maintenance and 
management overhead, possibly at the expense of higher delay and lower 
throughput to end users.

Once its clusters are in place, the CDN replicates content across its clusters. The 
CDN may not want to place a copy of every video in each cluster, since some videos 
are rarely viewed or are only popular in some countries. In fact, many CDNs do not 
push videos to their clusters but instead use a simple pull strategy: If a client requests 
a video from a cluster that is not storing the video, then the cluster retrieves the 
video (from a central repository or from another cluster) and stores a copy locally 
while streaming the video to the client at the same time. Similar Web caching (see 
Section 2.2.5), when a cluster’s storage becomes full, it removes videos that are not 
frequently requested.

CDN Operation

Having identified the two major approaches toward deploying a CDN, let’s now dive 
down into the nuts and bolts of how a CDN operates. When a browser in a user’s 
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host is instructed to retrieve a specific video (identified by a URL), the CDN must 
intercept the request so that it can (1) determine a suitable CDN server cluster for that 
client at that time, and (2) redirect the client’s request to a server in that cluster. We’ll 
shortly discuss how a CDN can determine a suitable cluster. But first let’s examine 
the mechanics behind intercepting and redirecting a request.

Most CDNs take advantage of DNS to intercept and redirect requests; an inter-
esting discussion of such a use of the DNS is [Vixie 2009]. Let’s consider a simple 

GOOGLE’S NETWORK INFRASTRUCTURE

To support its vast array of services—including search, Gmail, calendar, YouTube 
video, maps, documents, and social networks—Google has deployed an extensive 
private network and CDN infrastructure. Google’s CDN infrastructure has three tiers 
of server clusters:

•  Nineteen “mega data centers” in North America, Europe, and Asia [Google 
Locations 2020], with each data center having on the order of 100,000 servers. 
These mega data centers are responsible for serving dynamic (and often personal-
ized) content, including search results and Gmail messages.

•  With about 90 clusters in IXPs scattered throughout the world, with each cluster 
consisting of hundreds of servers servers [Adhikari 2011a] [Google CDN 2020]. 
These clusters are responsible for serving static content, including YouTube videos.

•  Many hundreds of “enter-deep” clusters located within an access ISP. Here a cluster 
typically consists of tens of servers within a single rack. These enter-deep  servers 
perform TCP splitting (see Section 3.7) and serve static content [Chen 2011], 
including the static portions of Web pages that embody search results.

All of these data centers and cluster locations are networked together with 
Google’s own private network. When a user makes a search query, often the query 
is first sent over the local ISP to a nearby enter-deep cache, from where the static 
content is retrieved; while providing the static content to the client, the nearby cache 
also forwards the query over Google’s private network to one of the mega data cent-
ers, from where the personalized search results are retrieved. For a YouTube video, 
the video itself may come from one of the bring-home caches, whereas portions of 
the Web page surrounding the video may come from the nearby enter-deep cache, 
and the advertisements surrounding the video come from the data centers. In sum-
mary, except for the local ISPs, the Google cloud services are largely provided by a 
network infrastructure that is independent of the public Internet.

CASE STUDY
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example to illustrate how the DNS is typically involved. Suppose a content provider, 
NetCinema, employs the third-party CDN company, KingCDN, to distribute its vid-
eos to its customers. On the NetCinema Web pages, each of its videos is assigned a 
URL that includes the string “video” and a unique identifier for the video itself; for 
example, Transformers 7 might be assigned http://video.netcinema.com/6Y7B23V. 
Six steps then occur, as shown in Figure 2.25:

 1. The user visits the Web page at NetCinema.
 2. When the user clicks on the link http://video.netcinema.com/6Y7B23V, the 

user’s host sends a DNS query for video.netcinema.com.
 3. The user’s Local DNS Server (LDNS) relays the DNS query to an authoritative 

DNS server for NetCinema, which observes the string “video” in the host-
name video.netcinema.com. To “hand over” the DNS query to KingCDN, 
instead of returning an IP address, the NetCinema authoritative DNS server 
returns to the LDNS a hostname in the KingCDN’s domain, for example, 
a1105.kingcdn.com.

 4. From this point on, the DNS query enters into KingCDN’s private DNS infra-
structure. The user’s LDNS then sends a second query, now for a1105.kingcdn.
com, and KingCDN’s DNS system eventually returns the IP addresses of a 
KingCDN content server to the LDNS. It is thus here, within the KingCDN’s 
DNS system, that the CDN server from which the client will receive its content 
is specified.

Local
DNS server

NetCinema authoritative
 DNS server

www.NetCinema.com

KingCDN authoritative
server

KingCDN content
distribution server

2
5
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3

1

4

Figure 2.25 ♦ DNS redirects a user’s request to a CDN server
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 5. The LDNS forwards the IP address of the content-serving CDN node to the 
user’s host.

 6. Once the client receives the IP address for a KingCDN content server, it estab-
lishes a direct TCP connection with the server at that IP address and issues an 
HTTP GET request for the video. If DASH is used, the server will first send to 
the client a manifest file with a list of URLs, one for each version of the video, 
and the client will dynamically select chunks from the different versions.

Cluster Selection Strategies

At the core of any CDN deployment is a cluster selection strategy, that is, a mecha-
nism for dynamically directing clients to a server cluster or a data center within the 
CDN. As we just saw, the CDN learns the IP address of the client’s LDNS server 
via the client’s DNS lookup. After learning this IP address, the CDN needs to select 
an appropriate cluster based on this IP address. CDNs generally employ proprietary 
cluster selection strategies. We now briefly survey a few approaches, each of which 
has its own advantages and disadvantages.

One simple strategy is to assign the client to the cluster that is geographically clos-
est. Using commercial geo-location databases (such as Quova [Quova 2020] and Max-
Mind [MaxMind 2020]), each LDNS IP address is mapped to a geographic location. 
When a DNS request is received from a particular LDNS, the CDN chooses the geo-
graphically closest cluster, that is, the cluster that is the fewest kilometers from the LDNS 
“as the bird flies.” Such a solution can work reasonably well for a large fraction of the cli-
ents [Agarwal 2009]. However, for some clients, the solution may perform poorly, since 
the geographically closest cluster may not be the closest cluster in terms of the length 
or number of hops of the network path. Furthermore, a problem inherent with all DNS-
based approaches is that some end-users are configured to use remotely located LDNSs 
[Shaikh 2001; Mao 2002], in which case the LDNS location may be far from the client’s 
location. Moreover, this simple strategy ignores the variation in delay and available band-
width over time of Internet paths, always assigning the same cluster to a particular client.

In order to determine the best cluster for a client based on the current traffic 
conditions, CDNs can instead perform periodic real-time measurements of delay 
and loss performance between their clusters and clients. For instance, a CDN can 
have each of its clusters periodically send probes (for example, ping messages or 
DNS queries) to all of the LDNSs around the world. One drawback of this approach 
is that many LDNSs are configured to not respond to such probes.

2.6.4 Case Studies: Netflix and YouTube
We conclude our discussion of streaming stored video by taking a look at two highly 
successful large-scale deployments: Netflix and YouTube. We’ll see that each of 
these systems take a very different approach, yet employ many of the underlying 
principles discussed in this section.
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Netflix

As of 2020, Netflix is the leading service provider for online movies and TV series in 
North America. As we discuss below, Netflix video distribution has two major compo-
nents: the Amazon cloud and its own private CDN infrastructure.

Netflix has a Web site that handles numerous functions, including user registra-
tion and login, billing, movie catalogue for browsing and searching, and a movie 
recommendation system. As shown in Figure 2.26, this Web site (and its associated 
backend databases) run entirely on Amazon servers in the Amazon cloud. Addition-
ally, the Amazon cloud handles the following critical functions:

• Content ingestion. Before Netflix can distribute a movie to its customers, it must 
first ingest and process the movie. Netflix receives studio master versions of 
movies and uploads them to hosts in the Amazon cloud.

• Content processing. The machines in the Amazon cloud create many different 
formats for each movie, suitable for a diverse array of client video players run-
ning on desktop computers, smartphones, and game consoles connected to televi-
sions. A different version is created for each of these formats and at multiple bit 
rates, allowing for adaptive streaming over HTTP using DASH.

• Uploading versions to its CDN. Once all of the versions of a movie have been 
created, the hosts in the Amazon cloud upload the versions to its CDN.

Amazon Cloud

CDN server

CDN server

Upload
versions
to CDNs

CDN server

Client

Manifest 
file

Video
chunks
(DASH)

Figure 2.26 ♦ Netflix video streaming platform
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When Netflix first rolled out its video streaming service in 2007, it employed 
three third-party CDN companies to distribute its video content. Netflix has since 
created its own private CDN, from which it now streams all of its videos. To create 
its own CDN, Netflix has installed server racks both in IXPs and within residen-
tial ISPs themselves. Netflix currently has server racks in over 200 IXP locations; 
see [Bottger 2018] [Netflix Open Connect 2020] for a current list of IXPs housing 
Netflix racks. There are also hundreds of ISP locations housing Netflix racks; also 
see [Netflix Open Connect 2020], where Netflix provides to potential ISP partners 
instructions about installing a (free) Netflix rack for their networks. Each server in 
the rack has several 10 Gbps Ethernet ports and over 100 terabytes of storage. The 
number of servers in a rack varies: IXP installations often have tens of servers and 
contain the entire Netflix streaming video library, including multiple versions of the 
videos to support DASH. Netflix does not use pull-caching (Section 2.2.5) to popu-
late its CDN servers in the IXPs and ISPs. Instead, Netflix distributes by pushing the 
videos to its CDN servers during off-peak hours. For those locations that cannot hold 
the entire library, Netflix pushes only the most popular videos, which are determined 
on a day-to-day basis. The Netflix CDN design is described in some detail in the 
YouTube videos [Netflix Video 1] and [Netflix Video 2]; see also [Bottger 2018]. 

Having described the components of the Netflix architecture, let’s take a closer 
look at the interaction between the client and the various servers that are involved in 
movie delivery. As indicated earlier, the Web pages for browsing the Netflix video 
library are served from servers in the Amazon cloud. When a user selects a movie to 
play, the Netflix software, running in the Amazon cloud, first determines which of 
its CDN servers have copies of the movie. Among the servers that have the movie, 
the software then determines the “best” server for that client request. If the client is 
using a residential ISP that has a Netflix CDN server rack installed in that ISP, and 
this rack has a copy of the requested movie, then a server in this rack is typically 
selected. If not, a server at a nearby IXP is typically selected.

Once Netflix determines the CDN server that is to deliver the content, it sends 
the client the IP address of the specific server as well as a manifest file, which has 
the URLs for the different versions of the requested movie. The client and that CDN 
server then directly interact using a proprietary version of DASH. Specifically, 
as described in Section 2.6.2, the client uses the byte-range header in HTTP GET 
request messages, to request chunks from the different versions of the movie. Netflix 
uses chunks that are approximately four-seconds long [Adhikari 2012]. While the 
chunks are being downloaded, the client measures the received throughput and runs 
a rate-determination algorithm to determine the quality of the next chunk to request.

Netflix embodies many of the key principles discussed earlier in this section, 
including adaptive streaming and CDN distribution. However, because Netflix uses 
its own private CDN, which distributes only video (and not Web pages), Netflix has 
been able to simplify and tailor its CDN design. In particular, Netflix does not need to 
employ DNS redirect, as discussed in Section 2.6.3, to connect a particular client to a 
CDN server; instead, the Netflix software (running in the Amazon cloud) directly tells 
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the client to use a particular CDN server. Furthermore, the Netflix CDN uses push 
caching rather than pull caching (Section 2.2.5): content is pushed into the servers at 
scheduled times at off-peak hours, rather than dynamically during cache misses.

YouTube

With hundreds of hours of video uploaded to YouTube every minute and several 
billion video views per day, YouTube is indisputably the world’s largest video-
sharing site. YouTube began its service in April 2005 and was acquired by Google 
in November 2006. Although the Google/YouTube design and protocols are pro-
prietary, through several independent measurement efforts we can gain a basic 
understanding about how YouTube operates [Zink 2009; Torres 2011; Adhikari 
2011a]. As with Netflix, YouTube makes extensive use of CDN technology to dis-
tribute its videos [Torres 2011]. Similar to Netflix, Google uses its own private CDN 
to distribute YouTube videos, and has installed server clusters in many hundreds 
of different IXP and ISP locations. From these locations and directly from its huge 
data centers, Google distributes YouTube videos [Adhikari 2011a]. Unlike Netflix, 
however, Google uses pull caching, as described in Section 2.2.5, and DNS redirect, 
as described in Section 2.6.3. Most of the time, Google’s cluster-selection strategy 
directs the client to the cluster for which the RTT between client and cluster is the 
lowest; however, in order to balance the load across clusters, sometimes the client is 
directed (via DNS) to a more distant cluster [Torres 2011].

YouTube employs HTTP streaming, often making a small number of differ-
ent versions available for a video, each with a different bit rate and corresponding 
quality level. YouTube does not employ adaptive streaming (such as DASH), but 
instead requires the user to manually select a version. In order to save bandwidth 
and server resources that would be wasted by repositioning or early termination, 
YouTube uses the HTTP byte range request to limit the flow of transmitted data after 
a target amount of video is prefetched.

Several million videos are uploaded to YouTube every day. Not only are You-
Tube videos streamed from server to client over HTTP, but YouTube uploaders also 
upload their videos from client to server over HTTP. YouTube processes each video 
it receives, converting it to a YouTube video format and creating multiple versions 
at different bit rates. This processing takes place entirely within Google data centers. 
(See the case study on Google’s network infrastructure in Section 2.6.3.)

2.7 Socket Programming: Creating Network 
Applications

Now that we’ve looked at a number of important network applications, let’s explore 
how network application programs are actually created. Recall from Section 2.1 that 
a typical network application consists of a pair of programs—a client program and 
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a server program—residing in two different end systems. When these two programs 
are executed, a client process and a server process are created, and these processes 
communicate with each other by reading from, and writing to, sockets. When creat-
ing a network application, the developer’s main task is therefore to write the code for 
both the client and server programs.

There are two types of network applications. One type is an implementation 
whose operation is specified in a protocol standard, such as an RFC or some other 
standards document; such an application is sometimes referred to as “open,” since 
the rules specifying its operation are known to all. For such an implementation, the 
client and server programs must conform to the rules dictated by the RFC. For exam-
ple, the client program could be an implementation of the client side of the HTTP 
protocol, described in Section 2.2 and precisely defined in RFC 2616; similarly, 
the server program could be an implementation of the HTTP server protocol, also 
precisely defined in RFC 2616. If one developer writes code for the client program 
and another developer writes code for the server program, and both developers care-
fully follow the rules of the RFC, then the two programs will be able to interoper-
ate. Indeed, many of today’s network applications involve communication between 
client and server programs that have been created by independent developers—for 
example, a Google Chrome browser communicating with an Apache Web server, or 
a BitTorrent client communicating with BitTorrent tracker.

The other type of network application is a proprietary network application. In 
this case, the client and server programs employ an application-layer protocol that has 
not been openly published in an RFC or elsewhere. A single developer (or develop-
ment team) creates both the client and server programs, and the developer has com-
plete control over what goes in the code. But because the code does not implement 
an open protocol, other independent developers will not be able to develop code that 
interoperates with the application.

In this section, we’ll examine the key issues in developing a client-server appli-
cation, and we’ll “get our hands dirty” by looking at code that implements a very sim-
ple client-server application. During the development phase, one of the first decisions 
the developer must make is whether the application is to run over TCP or over UDP. 
Recall that TCP is connection oriented and provides a reliable byte-stream channel 
through which data flows between two end systems. UDP is connectionless and sends 
independent packets of data from one end system to the other, without any guarantees 
about delivery. Recall also that when a client or server program implements a proto-
col defined by an RFC, it should use the well-known port number associated with the 
protocol; conversely, when developing a proprietary application, the developer must 
be careful to avoid using such well-known port numbers. (Port numbers were briefly 
discussed in Section 2.1. They are covered in more detail in Chapter 3.)

We introduce UDP and TCP socket programming by way of a simple UDP 
application and a simple TCP application. We present the simple UDP and TCP 
applications in Python 3. We could have written the code in Java, C, or C++, but we 
chose Python mostly because Python clearly exposes the key socket concepts. With 
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Python there are fewer lines of code, and each line can be explained to the novice 
programmer without difficulty. But there’s no need to be frightened if you are not 
familiar with Python. You should be able to easily follow the code if you have expe-
rience programming in Java, C, or C++.

If you are interested in client-server programming with Java, you are encour-
aged to see the Companion Website for this textbook; in fact, you can find there 
all the examples in this section (and associated labs) in Java. For readers who are 
interested in client-server programming in C, there are several good references avail-
able [Donahoo 2001; Stevens 1997; Frost 1994]; our Python examples below have a 
similar look and feel to C.

2.7.1 Socket Programming with UDP
In this subsection, we’ll write simple client-server programs that use UDP; in the 
following section, we’ll write similar programs that use TCP.

Recall from Section 2.1 that processes running on different machines communi-
cate with each other by sending messages into sockets. We said that each process is 
analogous to a house and the process’s socket is analogous to a door. The application 
resides on one side of the door in the house; the transport-layer protocol resides on 
the other side of the door in the outside world. The application developer has control 
of everything on the application-layer side of the socket; however, it has little control 
of the transport-layer side.

Now let’s take a closer look at the interaction between two communicating pro-
cesses that use UDP sockets. Before the sending process can push a packet of data 
out the socket door, when using UDP, it must first attach a destination address to 
the packet. After the packet passes through the sender’s socket, the Internet will use 
this destination address to route the packet through the Internet to the socket in the 
receiving process. When the packet arrives at the receiving socket, the receiving 
process will retrieve the packet through the socket, and then inspect the packet’s 
contents and take appropriate action.

So you may be now wondering, what goes into the destination address that 
is attached to the packet? As you might expect, the destination host’s IP address 
is part of the destination address. By including the destination IP address in the 
packet, the routers in the Internet will be able to route the packet through the 
Internet to the destination host. But because a host may be running many net-
work application processes, each with one or more sockets, it is also necessary 
to identify the particular socket in the destination host. When a socket is created, 
an identifier, called a port number, is assigned to it. So, as you might expect, 
the packet’s destination address also includes the socket’s port number. In sum-
mary, the sending process attaches to the packet a destination address, which con-
sists of the destination host’s IP address and the destination socket’s port number.  
Moreover, as we shall soon see, the sender’s source address—consisting of the 
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IP address of the source host and the port number of the source socket—are also 
attached to the packet. However, attaching the source address to the packet is typi-
cally not done by the UDP application code; instead it is automatically done by the 
underlying operating system.

We’ll use the following simple client-server application to demonstrate socket 
programming for both UDP and TCP:

 1. The client reads a line of characters (data) from its keyboard and sends the data 
to the server.

 2. The server receives the data and converts the characters to uppercase.
 3. The server sends the modified data to the client.
 4. The client receives the modified data and displays the line on its screen.

Figure 2.27 highlights the main socket-related activity of the client and server that 
communicate over the UDP transport service.

Create  socket, port=x:

Server

serverSocket =
socket(AF_INET,SOCK_DGRAM)

(Running on serverIP)
Client

Read UDP segment from
serverSocket

Write reply to

specifying client address,
port number

serverSocket

Create datagram with serverIP
and port=x ;

send datagram via
clientSocket

Create socket:
clientSocket =

socket(AF_INET,SOCK_DGRAM)

Read datagram from
clientSocket

Close
clientSocket

Figure 2.27 ♦ The client-server application using UDP
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Now let’s get our hands dirty and take a look at the client-server program pair 
for a UDP implementation of this simple application. We also provide a detailed, 
line-by-line analysis after each program. We’ll begin with the UDP client, which will 
send a simple application-level message to the server. In order for the server to be 
able to receive and reply to the client’s message, it must be ready and running—that 
is, it must be running as a process before the client sends its message.

The client program is called UDPClient.py, and the server program is called 
UDPServer.py. In order to emphasize the key issues, we intentionally provide code 
that is minimal. “Good code” would certainly have a few more auxiliary lines, in 
particular for handling error cases. For this application, we have arbitrarily chosen 
12000 for the server port number.

UDPClient.py

Here is the code for the client side of the application:

from socket import *
serverName = ’hostname’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_DGRAM)
message = input(’Input lowercase sentence:’)
clientSocket.sendto(message.encode(),(serverName, serverPort))
modifiedMessage, serverAddress = clientSocket.recvfrom(2048)
print(modifiedMessage.decode())
clientSocket.close()

Now let’s take a look at the various lines of code in UDPClient.py.

from socket import *

The socket module forms the basis of all network communications in Python. By 
including this line, we will be able to create sockets within our program.

serverName = ’hostname’
serverPort = 12000

The first line sets the variable serverName to the string ‘hostname’. Here, we pro-
vide a string containing either the IP address of the server (e.g., “128.138.32.126”) 
or the hostname of the server (e.g., “cis.poly.edu”). If we use the hostname, then a 
DNS lookup will automatically be performed to get the IP address.) The second line 
sets the integer variable serverPort to 12000.

clientSocket = socket(AF_INET, SOCK_DGRAM)
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This line creates the client’s socket, called clientSocket. The first param-
eter indicates the address family; in particular, AF_INET indicates that the 
underlying network is using IPv4. (Do not worry about this now—we will dis-
cuss IPv4 in Chapter 4.) The second parameter indicates that the socket is of 
type SOCK_DGRAM, which means it is a UDP socket (rather than a TCP socket). 
Note that we are not specifying the port number of the client socket when we 
create it; we are instead letting the operating system do this for us. Now that the 
client process’s door has been created, we will want to create a message to send 
through the door.

message = input(’Input lowercase sentence:’)

input() is a built-in function in Python. When this command is executed, the user 
at the client is prompted with the words “Input lowercase sentence:” The user then 
uses her keyboard to input a line, which is put into the variable message. Now that 
we have a socket and a message, we will want to send the message through the socket 
to the destination host.

clientSocket.sendto(message.encode(), (serverName, serverPort))

In the above line, we first convert the message from string type to byte type, as we 
need to send bytes into a socket; this is done with the encode() method. The  
method sendto() attaches the destination address (serverName, serverPort)  
to the message and sends the resulting packet into the process’s socket,  
clientSocket. (As mentioned earlier, the source address is also attached to 
the packet, although this is done automatically rather than explicitly by the code.)  
Sending a client-to-server message via a UDP socket is that simple! After sending 
the packet, the client waits to receive data from the server.

modifiedMessage, serverAddress = clientSocket.recvfrom(2048)

With the above line, when a packet arrives from the Internet at the client’s socket, the 
packet’s data is put into the variable modifiedMessage and the packet’s source 
address is put into the variable serverAddress. The variable serverAddress 
contains both the server’s IP address and the server’s port number. The program 
UDPClient doesn’t actually need this server address information, since it already 
knows the server address from the outset; but this line of Python provides the server 
address nevertheless. The method recvfrom also takes the buffer size 2048 as 
input. (This buffer size works for most purposes.)

print(modifiedMessage.decode())
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This line prints out modifiedMessage on the user’s display, after converting the mes-
sage from bytes to string. It should be the original line that the user typed, but now 
capitalized.

clientSocket.close()

This line closes the socket. The process then terminates.

UDPServer.py

Let’s now take a look at the server side of the application:

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind((’’, serverPort))
print(”The server is ready to receive”)
while True:
    message, clientAddress = serverSocket.recvfrom(2048)
    modifiedMessage = message.decode().upper()
    serverSocket.sendto(modifiedMessage.encode(), 
clientAddress)

Note that the beginning of UDPServer is similar to UDPClient. It also imports the 
socket module, also sets the integer variable serverPort to 12000, and also  
creates a socket of type SOCK_DGRAM (a UDP socket). The first line of code that is 
significantly different from UDPClient is:

serverSocket.bind((’’, serverPort))

The above line binds (that is, assigns) the port number 12000 to the server’s socket. 
Thus, in UDPServer, the code (written by the application developer) is explicitly 
assigning a port number to the socket. In this manner, when anyone sends a packet to 
port 12000 at the IP address of the server, that packet will be directed to this socket. 
UDPServer then enters a while loop; the while loop will allow UDPServer to receive 
and process packets from clients indefinitely. In the while loop, UDPServer waits for 
a packet to arrive.

message, clientAddress = serverSocket.recvfrom(2048)

This line of code is similar to what we saw in UDPClient. When a packet arrives 
at the server’s socket, the packet’s data is put into the variable message and the 
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packet’s source address is put into the variable clientAddress. The variable 
 clientAddress contains both the client’s IP address and the client’s port number. 
Here, UDPServer will make use of this address information, as it provides a return 
address, similar to the return address with ordinary postal mail. With this source 
address information, the server now knows to where it should direct its reply.

modifiedMessage = message.decode().upper()

This line is the heart of our simple application. It takes the line sent by the client and, 
after converting the message to a string, uses the method upper() to capitalize it.

serverSocket.sendto(modifiedMessage.encode(), clientAddress)

This last line attaches the client’s address (IP address and port number) to the capital-
ized message (after converting the string to bytes), and sends the resulting packet into 
the server’s socket. (As mentioned earlier, the server address is also attached to the  
packet, although this is done automatically rather than explicitly by the code.) The 
Internet will then deliver the packet to this client address. After the server sends  
the packet, it remains in the while loop, waiting for another UDP packet to arrive 
(from any client running on any host).

To test the pair of programs, you run UDPClient.py on one host and UDPS-
erver.py on another host. Be sure to include the proper hostname or IP address of 
the server in UDPClient.py. Next, you execute UDPServer.py, the compiled server 
program, in the server host. This creates a process in the server that idles until it 
is contacted by some client. Then you execute UDPClient.py, the compiled client 
program, in the client. This creates a process in the client. Finally, to use the appli-
cation at the client, you type a sentence followed by a carriage return.

To develop your own UDP client-server application, you can begin by 
slightly modifying the client or server programs. For example, instead of convert-
ing all the letters to uppercase, the server could count the number of times the 
letter s appears and return this number. Or you can modify the client so that after 
receiving a capitalized sentence, the user can continue to send more sentences to 
the server.

2.7.2 Socket Programming with TCP
Unlike UDP, TCP is a connection-oriented protocol. This means that before the cli-
ent and server can start to send data to each other, they first need to handshake and 
establish a TCP connection. One end of the TCP connection is attached to the client 
socket and the other end is attached to a server socket. When creating the TCP con-
nection, we associate with it the client socket address (IP address and port number) 
and the server socket address (IP address and port number). With the TCP connec-
tion established, when one side wants to send data to the other side, it just drops the 
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data into the TCP connection via its socket. This is different from UDP, for which 
the server must attach a destination address to the packet before dropping it into the 
socket.

Now let’s take a closer look at the interaction of client and server programs 
in TCP. The client has the job of initiating contact with the server. In order for the 
server to be able to react to the client’s initial contact, the server has to be ready. This 
implies two things. First, as in the case of UDP, the TCP server must be running as 
a process before the client attempts to initiate contact. Second, the server program 
must have a special door—more precisely, a special socket—that welcomes some 
initial contact from a client process running on an arbitrary host. Using our house/
door analogy for a process/socket, we will sometimes refer to the client’s initial con-
tact as “knocking on the welcoming door.”

With the server process running, the client process can initiate a TCP connection 
to the server. This is done in the client program by creating a TCP socket. When the 
client creates its TCP socket, it specifies the address of the welcoming socket in the 
server, namely, the IP address of the server host and the port number of the socket. 
After creating its socket, the client initiates a three-way handshake and establishes a 
TCP connection with the server. The three-way handshake, which takes place within 
the transport layer, is completely invisible to the client and server programs.

During the three-way handshake, the client process knocks on the welcom-
ing door of the server process. When the server “hears” the knocking, it creates a 
new door—more precisely, a new socket that is dedicated to that particular  client. 
In our example below, the welcoming door is a TCP socket object that we call 
 serverSocket; the newly created socket dedicated to the client making the con-
nection is called connectionSocket. Students who are encountering TCP sock-
ets for the first time sometimes confuse the welcoming socket (which is the initial 
point of contact for all clients wanting to communicate with the server), and each 
newly created server-side connection socket that is subsequently created for com-
municating with each client.

From the application’s perspective, the client’s socket and the server’s con-
nection socket are directly connected by a pipe. As shown in Figure 2.28, the cli-
ent process can send arbitrary bytes into its socket, and TCP guarantees that the 
server process will receive (through the connection socket) each byte in the order 
sent. TCP thus provides a reliable service between the client and server processes. 
Furthermore, just as people can go in and out the same door, the client process 
not only sends bytes into but also receives bytes from its socket; similarly, the 
server process not only receives bytes from but also sends bytes into its connec-
tion socket.

We use the same simple client-server application to demonstrate socket pro-
gramming with TCP: The client sends one line of data to the server, the server 
capitalizes the line and sends it back to the client. Figure 2.29 highlights the main 
socket-related activity of the client and server that communicate over the TCP trans-
port service.

M02_KURO1557_08_SE_C02.indd   160 11/02/20   11:41 AM



2.7  •  SOCKET PROGRAMMING: CREATING NETWORK APPLICATIONS     161

TCPClient.py

Here is the code for the client side of the application:

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = input(’Input lowercase sentence:’)
clientSocket.send(sentence.encode())
modifiedSentence = clientSocket.recv(1024)
print(’From Server: ’, modifiedSentence.decode()) 
clientSocket.close()

Let’s now take a look at the various lines in the code that differ significantly from the 
UDP implementation. The first such line is the creation of the client socket.

clientSocket = socket(AF_INET, SOCK_STREAM)

This line creates the client’s socket, called clientSocket. The first parameter 
again indicates that the underlying network is using IPv4. The second parameter 

Client process Server process

Client
socket

Welcoming
socket

Three-way handshake

Connection
socket

bytes
bytes

Figure 2.28 ♦ The TCPServer process has two sockets
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indicates that the socket is of type SOCK_STREAM, which means it is a TCP socket 
(rather than a UDP socket). Note that we are again not specifying the port number of 
the client socket when we create it; we are instead letting the operating system do this 
for us. Now the next line of code is very different from what we saw in UDPClient:

clientSocket.connect((serverName,serverPort))

Recall that before the client can send data to the server (or vice versa) using a TCP 
socket, a TCP connection must first be established between the client and server. The 

Close
connectionSocket

Write reply to
connectionSocket

Read request from
connectionSocket

Create  socket, port=x,
for incoming request:

Server

serverSocket =
socket()

Wait for incoming
connection request:

connectionSocket =
serverSocket.accept()

(Running on serverIP)
Client

TCP
connection setup Create socket, connect

to serverIP, port=x:
clientSocket =

socket()

Read reply from
clientSocket

Send request using
clientSocket

Close
clientSocket

Figure 2.29 ♦ The client-server application using TCP
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above line initiates the TCP connection between the client and server. The parameter 
of the connect() method is the address of the server side of the connection. After 
this line of code is executed, the three-way handshake is performed and a TCP con-
nection is established between the client and server.

sentence = input(’Input lowercase sentence:’)

As with UDPClient, the above obtains a sentence from the user. The string  
sentence continues to gather characters until the user ends the line by typing a 
carriage return. The next line of code is also very different from UDPClient:

clientSocket.send(sentence.encode())

The above line sends the sentence through the client’s socket and into the TCP 
connection. Note that the program does not explicitly create a packet and attach the 
destination address to the packet, as was the case with UDP sockets. Instead the cli-
ent program simply drops the bytes in the string sentence into the TCP connec-
tion. The client then waits to receive bytes from the server.

modifiedSentence = clientSocket.recv(2048)

When characters arrive from the server, they get placed into the string  
modifiedSentence. Characters continue to accumulate in modifiedSen-
tence until the line ends with a carriage return character. After printing the capital-
ized sentence, we close the client’s socket:

clientSocket.close()

This last line closes the socket and, hence, closes the TCP connection between the 
client and the server. It causes TCP in the client to send a TCP message to TCP in 
the server (see Section 3.5).

TCPServer.py

Now let’s take a look at the server program.

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((’’,serverPort))
serverSocket.listen(1)
print(’The server is ready to receive’)
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while True:
    connectionSocket, addr = serverSocket.accept()
    sentence = connectionSocket.recv(1024).decode()
    capitalizedSentence = sentence.upper()
    connectionSocket.send(capitalizedSentence.encode()) 
    connectionSocket.close()

Let’s now take a look at the lines that differ significantly from UDPServer and TCP-
Client. As with TCPClient, the server creates a TCP socket with:

serverSocket=socket(AF_INET,SOCK_STREAM)

Similar to UDPServer, we associate the server port number, serverPort, with 
this socket:

serverSocket.bind((’’,serverPort))

But with TCP, serverSocket will be our welcoming socket. After establish-
ing this welcoming door, we will wait and listen for some client to knock on the 
door:

serverSocket.listen(1)

This line has the server listen for TCP connection requests from the client. The 
parameter specifies the maximum number of queued connections (at least 1).

connectionSocket, addr = serverSocket.accept()

When a client knocks on this door, the program invokes the accept() method for 
serverSocket, which creates a new socket in the server, called  connectionSocket, 
dedicated to this particular client. The client and server then complete the hand-
shaking, creating a TCP connection between the client’s clientSocket and the 
server’s connectionSocket. With the TCP connection established, the client 
and server can now send bytes to each other over the connection. With TCP, all bytes 
sent from one side are only guaranteed to arrive at the other side but also guaranteed 
to arrive in order. 

connectionSocket.close()

In this program, after sending the modified sentence to the client, we close the con-
nection socket. But since serverSocket remains open, another client can now 
knock on the door and send the server a sentence to modify.
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This completes our discussion of socket programming in TCP. You are encour-
aged to run the two programs in two separate hosts, and also to modify them to 
achieve slightly different goals. You should compare the UDP program pair with the 
TCP program pair and see how they differ. You should also do many of the socket 
programming assignments described at the ends of Chapter 2, 4, and 9. Finally, we 
hope someday, after mastering these and more advanced socket programs, you will 
write your own popular network application, become very rich and famous, and 
remember the authors of this textbook!

2.8 Summary

In this chapter, we’ve studied the conceptual and the implementation aspects of 
network applications. We’ve learned about the ubiquitous client-server architec-
ture adopted by many Internet applications and seen its use in the HTTP, SMTP, 
and DNS protocols. We’ve studied these important application-level protocols, 
and their corresponding associated applications (the Web, file transfer, e-mail, and 
DNS) in some detail. We’ve learned about the P2P architecture and contrasted it 
with the client-server architecture. We’ve also learned about streaming video, and 
how modern video distribution systems leverage CDNs. We’ve examined how the 
socket API can be used to build network applications. We’ve walked through the 
use of sockets for connection-oriented (TCP) and connectionless (UDP) end-to-end 
transport services. The first step in our journey down the layered network architec-
ture is now complete!

At the very beginning of this book, in Section 1.1, we gave a rather vague, bare-
bones definition of a protocol: “the format and the order of messages exchanged 
between two or more communicating entities, as well as the actions taken on the 
transmission and/or receipt of a message or other event.” The material in this chapter, 
and in particular our detailed study of the HTTP, SMTP, and DNS protocols, has 
now added considerable substance to this definition. Protocols are a key concept in 
networking; our study of application protocols has now given us the opportunity to 
develop a more intuitive feel for what protocols are all about.

In Section 2.1, we described the service models that TCP and UDP offer to 
applications that invoke them. We took an even closer look at these service models 
when we developed simple applications that run over TCP and UDP in Section 2.7. 
However, we have said little about how TCP and UDP provide these service models. 
For example, we know that TCP provides a reliable data service, but we haven’t said 
yet how it does so. In the next chapter, we’ll take a careful look at not only the what, 
but also the how and why of transport protocols.

Equipped with knowledge about Internet application structure and application-
level protocols, we’re now ready to head further down the protocol stack and exam-
ine the transport layer in Chapter 3.
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Homework Problems and Questions

Chapter 2 Review Questions
SECTION 2.1
 R1. List five nonproprietary Internet applications and the application-layer proto-

cols that they use.

 R2. What is the difference between network architecture and application architecture?

 R3. For a communication session between a pair of processes, which process is 
the client and which is the server?

 R4. For a P2P file-sharing application, do you agree with the statement, “There is no 
notion of client and server sides of a communication session”? Why or why not?

 R5. What information is used by a process running on one host to identify a pro-
cess running on another host?

 R6. Suppose you wanted to do a transaction from a remote client to a server as 
fast as possible. Would you use UDP or TCP? Why?

 R7. Referring to Figure 2.4, we see that none of the applications listed in Figure 
2.4 requires both no data loss and timing. Can you conceive of an application 
that requires no data loss and that is also highly time-sensitive?

 R8. List the four broad classes of services that a transport protocol can provide. 
For each of the service classes, indicate if either UDP or TCP (or both) pro-
vides such a service.

 R9. Recall that TCP can be enhanced with TLS to provide process-to-process 
security services, including encryption. Does TLS operate at the transport 
layer or the application layer? If the application developer wants TCP to be 
enhanced with TLS, what does the developer have to do?

SECTIONS 2.2–2.5
 R10. What is meant by a handshaking protocol?

 R11. Why do HTTP, SMTP, and IMAP run on top of TCP rather than on UDP?

 R12. Consider an e-commerce site that wants to keep a purchase record for each of 
its customers. Describe how this can be done with cookies.

 R13. Describe how Web caching can reduce the delay in receiving a requested 
object. Will Web caching reduce the delay for all objects requested by a user 
or for only some of the objects? Why?

 R14. Telnet into a Web server and send a multiline request message. Include in 
the request message the If-modified-since: header line to force a 
response message with the 304 Not Modified status code.

 R15. List several popular messaging apps. Do they use the same protocols as SMS?
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 R16. Suppose Alice, with a Web-based e-mail account (such as Hotmail or Gmail), 
sends a message to Bob, who accesses his mail from his mail server using 
IMAP. Discuss how the message gets from Alice’s host to Bob’s host. Be 
sure to list the series of application-layer protocols that are used to move the 
message between the two hosts.

 R17. Print out the header of an e-mail message you have recently received. How 
many Received: header lines are there? Analyze each of the header lines 
in the message.

 R18. What is the HOL blocking issue in HTTP/1.1? How does HTTP/2 attempt to 
solve it? 

 R19. Is it possible for an organization’s Web server and mail server to have 
exactly the same alias for a hostname (for example, foo.com)? What would 
be the type for the RR that contains the hostname of the mail server?

 R20. Look over your received e-mails, and examine the header of a message sent 
from a user with a .edu e-mail address. Is it possible to determine from the 
header the IP address of the host from which the message was sent? Do the 
same for a message sent from a Gmail account.

SECTION 2.5
 R21. In BitTorrent, suppose Alice provides chunks to Bob throughout a 30-second 

interval. Will Bob necessarily return the favor and provide chunks to Alice in 
this same interval? Why or why not?

 R22. Consider a new peer Alice that joins BitTorrent without possessing any chunks. 
Without any chunks, she cannot become a top-four uploader for any of the other 
peers, since she has nothing to upload. How then will Alice get her first chunk?

 R23. What is an overlay network? Does it include routers? What are the edges in 
the overlay network?

SECTION 2.6
 R24. CDNs typically adopt one of two different server placement philosophies. 

Name and briefly describe them.

 R25. Besides network-related considerations such as delay, loss, and bandwidth 
performance, there are other important factors that go into designing a CDN 
server selection strategy. What are they?

SECTION 2.7
 R26. In Section 2.7, the UDP server described needed only one socket, whereas 

the TCP server needed two sockets. Why? If the TCP server were to support 
n simultaneous connections, each from a different client host, how many 
sockets would the TCP server need?
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 R27. For the client-server application over TCP described in Section 2.7, why 
must the server program be executed before the client program? For the 
client-server application over UDP, why may the client program be executed 
before the server program?

Problems

 P1. True or false?

a. A user requests a Web page that consists of some text and three images. 
For this page, the client will send one request message and receive four 
response messages.

b. Two distinct Web pages (for example, www.mit.edu/research 
.html and www.mit.edu/students.html) can be sent over the 
same persistent connection.

c. With nonpersistent connections between browser and origin server, it is 
possible for a single TCP segment to carry two distinct HTTP request 
messages.

d. The Date: header in the HTTP response message indicates when the 
object in the response was last modified.

e. HTTP response messages never have an empty message body.

 P2. SMS, iMessage, Wechat, and WhatsApp are all smartphone real-time mes-
saging systems. After doing some research on the Internet, for each of these 
systems write one paragraph about the protocols they use. Then write a para-
graph explaining how they differ.

 P3. Consider an HTTP client that wants to retrieve a Web document at a given 
URL. The IP address of the HTTP server is initially unknown. What transport 
and application-layer protocols besides HTTP are needed in this scenario?

 P4. Consider the following string of ASCII characters that were captured by 
Wireshark when the browser sent an HTTP GET message (i.e., this is the 
actual content of an HTTP GET message). The characters <cr><lf> are 
carriage return and line-feed characters (that is, the italized character string 
<cr> in the text below represents the single carriage-return character that was 
contained at that point in the HTTP header). Answer the following questions, 
indicating where in the HTTP GET message below you find the answer.

GET /cs453/index.html HTTP/1.1<cr><lf>Host: gai
a.cs.umass.edu<cr><lf>User-Agent: Mozilla/5.0 (
Windows;U; Windows NT 5.1; en-US; rv:1.7.2) Gec
ko/20040804 Netscape/7.2 (ax) <cr><lf>Accept:ex
t/xml, application/xml, application/xhtml+xml, text
/html;q=0.9, text/plain;q=0.8,image/png,*/*;q=0.5
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<cr><lf>Accept-Language: en-us,en;q=0.5<cr><lf>Accept-
Encoding: zip,deflate<cr><lf>Accept-Charset: ISO
-8859-1,utf-8;q=0.7,*;q=0.7<cr><lf>Keep-Alive: 300<cr>
<lf>Connection:keep-alive<cr><lf><cr><lf>

a. What is the URL of the document requested by the browser?

b. What version of HTTP is the browser running?

c. Does the browser request a non-persistent or a persistent connection?

d. What is the IP address of the host on which the browser is running?

e. What type of browser initiates this message? Why is the browser type 
needed in an HTTP request message?

 P5. The text below shows the reply sent from the server in response to the HTTP 
GET message in the question above. Answer the following questions, indicat-
ing where in the message below you find the answer.

HTTP/1.1 200 OK<cr><lf>Date: Tue, 07 Mar 2008
12:39:45GMT<cr><lf>Server: Apache/2.0.52 (Fedora)
<cr><lf>Last-Modified: Sat, 10 Dec2005 18:27:46 
GMT<cr><lf>ETag: ”526c3-f22-a88a4c80”<cr><lf>Accept- 
Ranges: bytes<cr><lf>Content-Length: 3874<cr><lf> 
Keep-Alive: timeout=max=100<cr><lf>Connection:
Keep-Alive<cr><lf>Content-Type: text/html; charset= 
ISO-8859-1<cr><lf><cr><lf><!doctype html public ”- 
//w3c//dtd html 4.0transitional//en”><lf><html><lf> 
<head><lf> <meta http-equiv=”Content-Type”  
content=”text/html; charset=iso-8859-1”><lf> <meta
name=”GENERATOR” content=”Mozilla/4.79 [en] (Windows NT
5.0; U) Netscape]”><lf> <title>CMPSCI 453 / 591 /  
NTU-ST550ASpring 2005 homepage</title><lf></head><lf> 
<much more document text following here (not shown)>

a. Was the server able to successfully find the document or not? What time 
was the document reply provided?

b. When was the document last modified?

c. How many bytes are there in the document being returned?

d. What are the first 5 bytes of the document being returned? Did the server 
agree to a persistent connection?

 P6. Obtain the HTTP/1.1 specification (RFC 2616). Answer the following  
questions:

a. Explain the mechanism used for signaling between the client and server 
to indicate that a persistent connection is being closed. Can the client, the 
server, or both signal the close of a connection?
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b. What encryption services are provided by HTTP?

c. Can a client open three or more simultaneous connections with a given 
server?

d. Either a server or a client may close a transport connection between them 
if either one detects the connection has been idle for some time. Is it 
possible that one side starts closing a connection while the other side is 
transmitting data via this connection? Explain.

 P7. Suppose within your Web browser you click on a link to obtain a Web page. 
The IP address for the associated URL is not cached in your local host, so 
a DNS lookup is necessary to obtain the IP address. Suppose that n DNS 
servers are visited before your host receives the IP address from DNS; the 
successive visits incur an RTT of RTT1, . . . , RTTn. Further suppose that the 
Web page associated with the link contains exactly one object, consisting of 
a small amount of HTML text. Let RTT0 denote the RTT between the local 
host and the server containing the object. Assuming zero transmission time 
of the object, how much time elapses from when the client clicks on the link 
until the client receives the object?

 P8. Referring to Problem P7, suppose the HTML file references eight very small 
objects on the same server. Neglecting transmission times, how much time 
elapses with

a. Non-persistent HTTP with no parallel TCP connections?

b. Non-persistent HTTP with the browser configured for 6 parallel  
connections?

c. Persistent HTTP?

 P9. Consider Figure 2.12, for which there is an institutional network connected to 
the Internet. Suppose that the average object size is 1,000,000 bits and that the 
average request rate from the institution’s browsers to the origin servers is 16 
requests per second. Also suppose that the amount of time it takes from when 
the router on the Internet side of the access link forwards an HTTP request until 
it receives the response is three seconds on average (see Section 2.2.5). Model 
the total average response time as the sum of the average access delay (that 
is, the delay from Internet router to institution router) and the average Internet 
delay. For the average access delay, use ∆/(1 - ∆b), where ∆ is the average 
time required to send an object over the access link and b is the arrival rate of 
objects to the access link.

a. Find the total average response time.

b. Now suppose a cache is installed in the institutional LAN. Suppose the 
miss rate is 0.4. Find the total response time.

 P10. Consider a short, 10-meter link, over which a sender can transmit at a rate 
of 150 bits/sec in both directions. Suppose that packets containing data 
are 100,000 bits long, and packets containing only control (e.g., ACK or 
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handshaking) are 200 bits long. Assume that N parallel connections each 
get 1/N of the link bandwidth. Now consider the HTTP protocol, and suppose 
that each downloaded object is 100 Kbits long, and that the initial downloaded 
object contains 10 referenced objects from the same sender. Would parallel 
downloads via parallel instances of non-persistent HTTP make sense in this 
case? Now consider persistent HTTP. Do you expect significant gains over 
the non-persistent case? Justify and explain your answer.

 P11. Consider the scenario introduced in the previous problem. Now suppose that 
the link is shared by Bob with four other users. Bob uses parallel instances 
of non-persistent HTTP, and the other four users use non-persistent HTTP 
without parallel downloads.

a. Do Bob’s parallel connections help him get Web pages more quickly? 
Why or why not?

b. If all five users open five parallel instances of non-persistent HTTP, then 
would Bob’s parallel connections still be beneficial? Why or why not?

 P12. Write a simple TCP program for a server that accepts lines of input from a cli-
ent and prints the lines onto the server’s standard output. (You can do this by 
modifying the TCPServer.py program in the text.) Compile and execute your 
program. On any other machine that contains a Web browser, set the proxy 
server in the browser to the host that is running your server program; also con-
figure the port number appropriately. Your browser should now send its GET 
request messages to your server, and your server should display the messages 
on its standard output. Use this platform to determine whether your browser 
generates conditional GET messages for objects that are locally cached.

 P13. Consider sending over HTTP/2 a Web page that consists of  one video clip, 
and five images. Suppose that the video clip is transported as 2000 frames, 
and each image has three frames. 

a. If all the video frames are sent first without interleaving, how many 
“frame times” are needed until all five images are sent?

b. If frames are interleaved, how many frame times are needed until all five 
images are sent.

 P14. Consider the Web page in problem 13. Now HTTP/2 prioritization is 
employed. Suppose all the images are given priority over the video clip, and 
that the first image is given priority over the second image, the second image 
over the third image, and so on. How many frame times will be needed until 
the second image is sent?

 P15. What is the difference between MAIL FROM: in SMTP and From: in the 
mail message itself?

 P16. How does SMTP mark the end of a message body? How about HTTP? Can 
HTTP use the same method as SMTP to mark the end of a message body? 
Explain.
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 P17. Read RFC 5321 for SMTP. What does MTA stand for? Consider the follow-
ing received spam e-mail (modified from a real spam e-mail). Assuming only 
the originator of this spam e-mail is malicious and all other hosts are honest, 
identify the malacious host that has generated this spam e-mail.

From - Fri Nov 07 13:41:30 2008
Return-Path: <tennis5@pp33head.com>
Received: from barmail.cs.umass.edu (barmail.cs.umass.
edu
[128.119.240.3]) by cs.umass.edu (8.13.1/8.12.6) for
<hg@cs.umass.edu>; Fri, 7 Nov 2008 13:27:10 -0500
Received: from asusus-4b96 (localhost [127.0.0.1]) by
barmail.cs.umass.edu (Spam Firewall) for <hg@cs.umass.
edu>; Fri, 7
Nov 2008 13:27:07 -0500 (EST)
Received: from asusus-4b96 ([58.88.21.177]) by barmail.
cs.umass.edu
for <hg@cs.umass.edu>; Fri, 07 Nov 2008 13:27:07 -0500 
(EST)
Received: from [58.88.21.177] by inbnd55.exchangeddd.
com; Sat, 8
Nov 2008 01:27:07 +0700
From: ”Jonny” <tennis5@pp33head.com>
To: <hg@cs.umass.edu>
 
Subject: How to secure your savings

 P18. a. What is a whois database?

b. Use various whois databases on the Internet to obtain the names of two 
DNS servers. Indicate which whois databases you used.

c. Use nslookup on your local host to send DNS queries to three DNS 
servers: your local DNS server and the two DNS servers you found in 
part (b). Try querying for Type A, NS, and MX reports. Summarize your 
findings.

d. Use nslookup to find a Web server that has multiple IP addresses. Does 
the Web server of your institution (school or company) have multiple IP 
addresses?

e. Use the ARIN whois database to determine the IP address range used by 
your university.

f. Describe how an attacker can use whois databases and the nslookup tool 
to perform reconnaissance on an institution before launching an attack.

g. Discuss why whois databases should be publicly available.
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 P19. In this problem, we use the useful dig tool available on Unix and Linux hosts to 
explore the hierarchy of DNS servers. Recall that in Figure 2.19, a DNS server 
in the DNS hierarchy delegates a DNS query to a DNS server lower in the 
hierarchy, by sending back to the DNS client the name of that lower-level DNS 
server. First read the man page for dig, and then answer the following questions.

a. Starting with a root DNS server (from one of the root servers [a-m].
root-servers.net), initiate a sequence of queries for the IP address for your 
department’s Web server by using dig. Show the list of the names of DNS 
servers in the delegation chain in answering your query.

b. Repeat part (a) for several popular Web sites, such as google.com, yahoo 
.com, or amazon.com.

 P20. Suppose you can access the caches in the local DNS servers of your depart-
ment. Can you propose a way to roughly determine the Web servers (outside 
your department) that are most popular among the users in your department? 
Explain.

 P21. Suppose that your department has a local DNS server for all computers in the 
department. You are an ordinary user (i.e., not a network/system administra-
tor). Can you determine if an external Web site was likely accessed from a 
computer in your department a couple of seconds ago? Explain.

 P22. Consider distributing a file of F = 20 Gbits to N peers. The server has 
an upload rate of us = 30 Mbps, and each peer has a download rate of 
di = 2 Mbps and an upload rate of u. For N = 10, 100, and 1,000 and 
u = 300 Kbps, 700 Kbps, and 2 Mbps, prepare a chart giving the minimum 
distribution time for each of the combinations of N and u for both client-
server distribution and P2P distribution.

 P23. Consider distributing a file of F bits to N peers using a client-server archi-
tecture. Assume a fluid model where the server can simultaneously transmit 
to multiple peers, transmitting to each peer at different rates, as long as the 
combined rate does not exceed us.

a. Suppose that us/N … dmin. Specify a distribution scheme that has a distri-
bution time of NF/us.

b. Suppose that us/N Ú dmin. Specify a distribution scheme that has a distri-
bution time of F/dmin.

c. Conclude that the minimum distribution time is in general given by 
max5NF/us, F/dmin6 .

 P24. Consider distributing a file of F bits to N peers using a P2P architecture. 
Assume a fluid model. For simplicity assume that dmin is very large, so that 
peer download bandwidth is never a bottleneck.

a. Suppose that us … (us + u1 + . . . + uN)/N. Specify a distribution 
scheme that has a distribution time of F/us.
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b. Suppose that us Ú (us + u1 + . . . + uN)/N. Specify a distribution 
scheme that has a distribution time of NF/(us + u1 + . . . +  uN).

c. Conclude that the minimum distribution time is in general given by 
max5F/us, NF/(us + u1 + . . . + uN)6 .

 P25. Consider an overlay network with N active peers, with each pair of peers hav-
ing an active TCP connection. Additionally, suppose that the TCP connec-
tions pass through a total of M routers. How many nodes and edges are there 
in the corresponding overlay network?

 P26. Suppose Bob joins a BitTorrent torrent, but he does not want to upload any 
data to any other peers (so called free-riding).

a. Bob claims that he can receive a complete copy of the file that is shared 
by the swarm. Is Bob’s claim possible? Why or why not?

b. Bob further claims that he can further make his “free-riding” more 
efficient by using a collection of multiple computers (with distinct IP 
addresses) in the computer lab in his department. How can he do that?

 P27. Consider a DASH system for which there are N video versions (at N different 
rates and qualities) and N audio versions (at N different rates and qualities). 
Suppose we want to allow the player to choose at any time any of the N video 
versions and any of the N audio versions.

a. If we create files so that the audio is mixed in with the video, so server 
sends only one media stream at given time, how many files will the server 
need to store (each a different URL)?

b. If the server instead sends the audio and video streams separately and has 
the client synchronize the streams, how many files will the server need to 
store?

 P28. Install and compile the Python programs TCPClient and UDPClient on one 
host and TCPServer and UDPServer on another host.

a. Suppose you run TCPClient before you run TCPServer. What happens? 
Why?

b. Suppose you run UDPClient before you run UDPServer. What happens? 
Why?

c. What happens if you use different port numbers for the client and server 
sides?

 P29. Suppose that in UDPClient.py, after we create the socket, we add the line:

clientSocket.bind((’’, 5432))

Will it become necessary to change UDPServer.py? What are the port num-
bers for the sockets in UDPClient and UDPServer? What were they before 
making this change?
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 P30. Can you configure your browser to open multiple simultaneous connections 
to a Web site? What are the advantages and disadvantages of having a large 
number of simultaneous TCP connections?

 P31. We have seen that Internet TCP sockets treat the data being sent as a byte 
stream but UDP sockets recognize message boundaries. What are one 
advantage and one disadvantage of byte-oriented API versus having the API 
explicitly recognize and preserve application-defined message boundaries?

 P32. What is the Apache Web server? How much does it cost? What functional-
ity does it currently have? You may want to look at Wikipedia to answer this 
question.

Socket Programming Assignments

The Companion Website includes six socket programming assignments. The first 
four assignments are summarized below. The fifth assignment makes use of the 
ICMP protocol and is summarized at the end of Chapter 5. It is highly recommended 
that students complete several, if not all, of these assignments. Students can find full 
details of these assignments, as well as important snippets of the Python code, at the 
Web site www.pearsonhighered.com/cs-resources.

Assignment 1: Web Server
In this assignment, you will develop a simple Web server in Python that is capable of 
processing only one request. Specifically, your Web server will (i) create a connection 
socket when contacted by a client (browser); (ii) receive the HTTP request from this 
connection; (iii) parse the request to determine the specific file being requested; (iv) get 
the requested file from the server’s file system; (v) create an HTTP response message 
consisting of the requested file preceded by header lines; and (vi) send the response 
over the TCP connection to the requesting browser. If a browser requests a file that is 
not present in your server, your server should return a “404 Not Found” error message.

In the Companion Website, we provide the skeleton code for your server. Your 
job is to complete the code, run your server, and then test your server by sending 
requests from browsers running on different hosts. If you run your server on a host 
that already has a Web server running on it, then you should use a different port than 
port 80 for your Web server.

Assignment 2: UDP Pinger
In this programming assignment, you will write a client ping program in Python. 
Your client will send a simple ping message to a server, receive a corresponding 
pong message back from the server, and determine the delay between when the client 
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sent the ping message and received the pong message. This delay is called the Round 
Trip Time (RTT). The functionality provided by the client and server is similar to the 
functionality provided by standard ping program available in modern operating sys-
tems. However, standard ping programs use the Internet Control Message Protocol 
(ICMP) (which we will study in Chapter 5). Here we will create a nonstandard (but 
simple!) UDP-based ping program.

Your ping program is to send 10 ping messages to the target server over UDP. 
For each message, your client is to determine and print the RTT when the corre-
sponding pong message is returned. Because UDP is an unreliable protocol, a packet 
sent by the client or server may be lost. For this reason, the client cannot wait indefi-
nitely for a reply to a ping message. You should have the client wait up to one second 
for a reply from the server; if no reply is received, the client should assume that the 
packet was lost and print a message accordingly.

In this assignment, you will be given the complete code for the server (available 
in the Companion Website). Your job is to write the client code, which will be very 
similar to the server code. It is recommended that you first study carefully the server 
code. You can then write your client code, liberally cutting and pasting lines from 
the server code.

Assignment 3: Mail Client
The goal of this programming assignment is to create a simple mail client that sends 
e-mail to any recipient. Your client will need to establish a TCP connection with 
a mail server (e.g., a Google mail server), dialogue with the mail server using the 
SMTP protocol, send an e-mail message to a recipient (e.g., your friend) via the mail 
server, and finally close the TCP connection with the mail server.

For this assignment, the Companion Website provides the skeleton code for 
your client. Your job is to complete the code and test your client by sending e-mail 
to different user accounts. You may also try sending through different servers (for 
example, through a Google mail server and through your university mail server).

Assignment 4: Web Proxy
In this assignment, you will develop a Web proxy. When your proxy receives an 
HTTP request for an object from a browser, it generates a new HTTP request for 
the same object and sends it to the origin server. When the proxy receives the cor-
responding HTTP response with the object from the origin server, it creates a new 
HTTP response, including the object, and sends it to the client. 

For this assignment, the Companion Website provides the skeleton code for the 
proxy server. Your job is to complete the code, and then test it by having different 
browsers request Web objects via your proxy.
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Wireshark Lab: HTTP

Having gotten our feet wet with the Wireshark packet sniffer in Lab 1, we’re now 
ready to use Wireshark to investigate protocols in operation. In this lab, we’ll explore 
several aspects of the HTTP protocol: the basic GET/reply interaction, HTTP message 
formats, retrieving large HTML files, retrieving HTML files with embedded URLs, 
persistent and non-persistent connections, and HTTP authentication and security.

As is the case with all Wireshark labs, the full description of this lab is available 
at this book’s Web site, www.pearsonhighered.com/cs-resources.

Wireshark Lab: DNS

In this lab, we take a closer look at the client side of the DNS, the protocol that 
translates Internet hostnames to IP addresses. Recall from Section 2.5 that the cli-
ent’s role in the DNS is relatively simple—a client sends a query to its local DNS 
server and receives a response back. Much can go on under the covers, invisible to 
the DNS clients, as the hierarchical DNS servers communicate with each other to 
either recursively or iteratively resolve the client’s DNS query. From the DNS cli-
ent’s standpoint, however, the protocol is quite simple—a query is formulated to the 
local DNS server and a response is received from that server. We observe DNS in 
action in this lab.

As is the case with all Wireshark labs, the full description of this lab is available 
at this book’s Web site, www.pearsonhighered.com/cs-resources.
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AN INTERVIEW WITH...

Tim Berners-Lee
Sir Tim Berners-Lee is known as the inventor of the World Wide 
Web. In 1989, while working as a fellow at CERN, he proposed 
an Internet-based distributed information management system includ-
ing the original version of the HTTP protocol. In the same year he 
successfully implemented his design on a client and server. He 
received the 2016 Turing award for “inventing the World Wide 
Web, the first Web browser, and the fundamental protocols and 
algorithms allowing the Web to scale.” He is the Co-Founder of the 
World Wide Web Foundation, and currently is a Professorial Fellow 
of Computer Science at the University of Oxford and a professor at 
CSAIL at MIT.

You originally studied physics. How is networking similar to physics?
When you study physics, you imagine what rules of behavior on the very small scale could 
possibly give rise to the large-scale world as we see it. When you design a global system 
like the Web, you try to invent rules of behavior of Web pages and links and things that 
could in the large create a large-scale world as we would like it. One is analysis and the 
other synthesis, but they are very similar.

What influenced you to specialize in networking?
After my physics degree, the telecommunications research companies seemed to be the 
most interesting places. The microprocessor had just come out, and telecommunications  
was switching very fast from hardwired logic to microprocessor-based systems. It was  
very exciting.

What is the most challenging part of your job?
When two groups disagree strongly about something, but want in the end to achieve a com-
mon goal, finding exactly what they each mean and where the misunderstandings are can be 
very demanding. The chair of any working group knows that. However, this is what it takes 
to make progress toward consensus on a large scale.
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What people have inspired you professionally?
My parents, who were involved in the early days of computing, gave me a fascination with 
the whole subject. Mike Sendall and Peggie Rimmer, for whom I worked at various times 
at CERN are among the people who taught me and encouraged me. I later learned to admire 
the people, including Vanevar Bush, Doug Englebart, and Ted Nelson, who had had similar 
dreams in their time but had not had the benefit of the existence for PCs and the Internet to 
be able to realize it.
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Residing between the application and network layers, the transport layer is a central 
piece of the layered network architecture. It has the critical role of providing com-
munication services directly to the application processes running on different hosts. 
The pedagogic approach we take in this chapter is to alternate between discussions of 
transport-layer principles and discussions of how these principles are implemented 
in existing protocols; as usual, particular emphasis will be given to Internet proto-
cols, in particular the TCP and UDP transport-layer protocols.

We’ll begin by discussing the relationship between the transport and network 
layers. This sets the stage for examining the first critical function of the transport 
layer—extending the network layer’s delivery service between two end systems to 
a delivery service between two application-layer processes running on the end sys-
tems. We’ll illustrate this function in our coverage of the Internet’s connectionless 
transport protocol, UDP.

We’ll then return to principles and confront one of the most fundamental prob-
lems in computer networking—how two entities can communicate reliably over a 
medium that may lose and corrupt data. Through a series of increasingly complicated 
(and realistic!) scenarios, we’ll build up an array of techniques that transport proto-
cols use to solve this problem. We’ll then show how these principles are embodied 
in TCP, the Internet’s connection-oriented transport protocol.

We’ll next move on to a second fundamentally important problem in  
networking—controlling the transmission rate of transport-layer entities in order to 
avoid, or recover from, congestion within the network. We’ll consider the causes 
and consequences of congestion, as well as commonly used congestion-control 

Transport 
Layer

3CHAPTER
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techniques. After obtaining a solid understanding of the issues behind congestion 
control, we’ll study TCP’s approach to congestion control.

3.1 Introduction and Transport-Layer Services

In the previous two chapters, we touched on the role of the transport layer and the 
services that it provides. Let’s quickly review what we have already learned about 
the transport layer.

A transport-layer protocol provides for logical communication between 
application processes running on different hosts. By logical communication, we 
mean that from an application’s perspective, it is as if the hosts running the pro-
cesses were directly connected; in reality, the hosts may be on opposite sides of the 
planet, connected via numerous routers and a wide range of link types. Application 
processes use the logical communication provided by the transport layer to send 
messages to each other, free from the worry of the details of the physical infra-
structure used to carry these messages. Figure 3.1 illustrates the notion of logical 
communication.

As shown in Figure 3.1, transport-layer protocols are implemented in the end 
systems but not in network routers. On the sending side, the transport layer converts 
the application-layer messages it receives from a sending application process into 
transport-layer packets, known as transport-layer segments in Internet terminology. 
This is done by (possibly) breaking the application messages into smaller chunks 
and adding a transport-layer header to each chunk to create the transport-layer seg-
ment. The transport layer then passes the segment to the network layer at the send-
ing end system, where the segment is encapsulated within a network-layer packet (a 
datagram) and sent to the destination. It’s important to note that network routers act 
only on the network-layer fields of the datagram; that is, they do not examine the 
fields of the transport-layer segment encapsulated with the datagram. On the receiv-
ing side, the network layer extracts the transport-layer segment from the datagram 
and passes the segment up to the transport layer. The transport layer then processes 
the received segment, making the data in the segment available to the receiving 
application.

More than one transport-layer protocol may be available to network applications. 
For example, the Internet has two protocols—TCP and UDP. Each of these protocols 
provides a different set of transport-layer services to the invoking application.

3.1.1 Relationship Between Transport and Network Layers
Recall that the transport layer lies just above the network layer in the protocol 
stack. Whereas a transport-layer protocol provides logical communication between 
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Figure 3.1 ♦  The transport layer provides logical rather than physical  
communication between application processes
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processes running on different hosts, a network-layer protocol provides logical- 
communication between hosts. This distinction is subtle but important. Let’s exam-
ine this distinction with the aid of a household analogy.

Consider two houses, one on the East Coast and the other on the West Coast, 
with each house being home to a dozen kids. The kids in the East Coast household 
are cousins of the kids in the West Coast household. The kids in the two households 
love to write to each other—each kid writes each cousin every week, with each letter 
delivered by the traditional postal service in a separate envelope. Thus, each house-
hold sends 144 letters to the other household every week. (These kids would save a lot 
of money if they had e-mail!) In each of the households, there is one kid—Ann in the 
West Coast house and Bill in the East Coast house—responsible for mail collection  
and mail distribution. Each week Ann visits all her brothers and sisters, collects the 
mail, and gives the mail to a postal-service mail carrier, who makes daily visits to 
the house. When letters arrive at the West Coast house, Ann also has the job of dis-
tributing the mail to her brothers and sisters. Bill has a similar job on the East Coast.

In this example, the postal service provides logical communication between the 
two houses—the postal service moves mail from house to house, not from person to 
person. On the other hand, Ann and Bill provide logical communication among the 
cousins—Ann and Bill pick up mail from, and deliver mail to, their brothers and sis-
ters. Note that from the cousins’ perspective, Ann and Bill are the mail service, even 
though Ann and Bill are only a part (the end-system part) of the end-to-end delivery 
process. This household example serves as a nice analogy for explaining how the 
transport layer relates to the network layer:

application messages = letters in envelopes
processes = cousins
hosts (also called end systems) = houses
transport-layer protocol = Ann and Bill
network-layer protocol = postal service (including mail carriers)

Continuing with this analogy, note that Ann and Bill do all their work within 
their respective homes; they are not involved, for example, in sorting mail in 
any intermediate mail center or in moving mail from one mail center to another.  
Similarly, transport-layer protocols live in the end systems. Within an end system, a 
transport protocol moves messages from application processes to the network edge 
(that is, the network layer) and vice versa, but it doesn’t have any say about how the 
messages are moved within the network core. In fact, as illustrated in Figure 3.1, 
intermediate routers neither act on, nor recognize, any information that the transport 
layer may have added to the application messages.

Continuing with our family saga, suppose now that when Ann and Bill go on 
vacation, another cousin pair—say, Susan and Harvey—substitute for them and pro-
vide the household-internal collection and delivery of mail. Unfortunately for the 
two families, Susan and Harvey do not do the collection and delivery in exactly 
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the same way as Ann and Bill. Being younger kids, Susan and Harvey pick up and 
drop off the mail less frequently and occasionally lose letters (which are sometimes 
chewed up by the family dog). Thus, the cousin-pair Susan and Harvey do not pro-
vide the same set of services (that is, the same service model) as Ann and Bill. In 
an analogous manner, a computer network may make available multiple transport 
protocols, with each protocol offering a different service model to applications.

The possible services that Ann and Bill can provide are clearly constrained by 
the possible services that the postal service provides. For example, if the postal ser-
vice doesn’t provide a maximum bound on how long it can take to deliver mail 
between the two houses (for example, three days), then there is no way that Ann and 
Bill can guarantee a maximum delay for mail delivery between any of the cousin 
pairs. In a similar manner, the services that a transport protocol can provide are often 
constrained by the service model of the underlying network-layer protocol. If the 
network-layer protocol cannot provide delay or bandwidth guarantees for transport-
layer segments sent between hosts, then the transport-layer protocol cannot provide 
delay or bandwidth guarantees for application messages sent between processes.

Nevertheless, certain services can be offered by a transport protocol even when 
the underlying network protocol doesn’t offer the corresponding service at the net-
work layer. For example, as we’ll see in this chapter, a transport protocol can offer 
reliable data transfer service to an application even when the underlying network 
protocol is unreliable, that is, even when the network protocol loses, garbles, or 
duplicates packets. As another example (which we’ll explore in Chapter 8 when we 
discuss network security), a transport protocol can use encryption to guarantee that 
application messages are not read by intruders, even when the network layer cannot 
guarantee the confidentiality of transport-layer segments.

3.1.2 Overview of the Transport Layer in the Internet
Recall that the Internet makes two distinct transport-layer protocols available to the 
application layer. One of these protocols is UDP (User Datagram Protocol), which 
provides an unreliable, connectionless service to the invoking application. The sec-
ond of these protocols is TCP (Transmission Control Protocol), which provides a 
reliable, connection-oriented service to the invoking application. When designing a 
network application, the application developer must specify one of these two trans-
port protocols. As we saw in Section 2.7, the application developer selects between 
UDP and TCP when creating sockets.

To simplify terminology, we refer to the transport-layer packet as a segment. We 
mention, however, that the Internet literature (for example, the RFCs) also refers to the 
transport-layer packet for TCP as a segment but often refers to the packet for UDP as 
a datagram. However, this same Internet literature also uses the term datagram for the 
network-layer packet! For an introductory book on computer networking such as this, 
we believe that it is less confusing to refer to both TCP and UDP packets as segments, 
and reserve the term datagram for the network-layer packet.

M03_KURO1557_08_SE_C03.indd   185 11/02/20   12:15 PM



186     CHAPTER 3  •  TRANSPORT LAYER

Before proceeding with our brief introduction of UDP and TCP, it will be useful 
to say a few words about the Internet’s network layer. (We’ll learn about the network 
layer in detail in Chapters 4 and 5.) The Internet’s network-layer protocol has a 
name—IP, for Internet Protocol. IP provides logical communication between hosts. 
The IP service model is a best-effort delivery service. This means that IP makes 
its “best effort” to deliver segments between communicating hosts, but it makes no 
guarantees. In particular, it does not guarantee segment delivery, it does not guaran-
tee orderly delivery of segments, and it does not guarantee the integrity of the data 
in the segments. For these reasons, IP is said to be an unreliable service. We also 
mention here that every host has at least one network-layer address, a so-called IP 
address. We’ll examine IP addressing in detail in Chapter 4; for this chapter we need 
only keep in mind that each host has an IP address.

Having taken a glimpse at the IP service model, let’s now summarize the service 
models provided by UDP and TCP. The most fundamental responsibility of UDP 
and TCP is to extend IP’s delivery service between two end systems to a delivery 
service between two processes running on the end systems. Extending host-to-host 
delivery to process-to-process delivery is called transport-layer multiplexing and  
demultiplexing. We’ll discuss transport-layer multiplexing and demultiplexing in 
the next section. UDP and TCP also provide integrity checking by including error-
detection fields in their segments’ headers. These two minimal transport-layer 
services—process-to-process data delivery and error checking—are the only two 
services that UDP provides! In particular, like IP, UDP is an unreliable service—it 
does not guarantee that data sent by one process will arrive intact (or at all!) to the 
destination process. UDP is discussed in detail in Section 3.3.

TCP, on the other hand, offers several additional services to applications. First 
and foremost, it provides reliable data transfer. Using flow control, sequence 
numbers, acknowledgments, and timers (techniques we’ll explore in detail in this 
chapter), TCP ensures that data is delivered from sending process to receiving pro-
cess, correctly and in order. TCP thus converts IP’s unreliable service between end 
systems into a reliable data transport service between processes. TCP also provides 
congestion control. Congestion control is not so much a service provided to the 
invoking application as it is a service for the Internet as a whole, a service for the 
general good. Loosely speaking, TCP congestion control prevents any one TCP con-
nection from swamping the links and routers between communicating hosts with 
an excessive amount of traffic. TCP strives to give each connection traversing a 
congested link an equal share of the link bandwidth. This is done by regulating the 
rate at which the sending sides of TCP connections can send traffic into the network. 
UDP traffic, on the other hand, is unregulated. An application using UDP transport 
can send at any rate it pleases, for as long as it pleases.

A protocol that provides reliable data transfer and congestion control is neces-
sarily complex. We’ll need several sections to cover the principles of reliable data 
transfer and congestion control, and additional sections to cover the TCP protocol 
itself. These topics are investigated in Sections 3.4 through 3.7. The approach taken 
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in this chapter is to alternate between basic principles and the TCP protocol. For 
example, we’ll first discuss reliable data transfer in a general setting and then discuss 
how TCP specifically provides reliable data transfer. Similarly, we’ll first discuss 
congestion control in a general setting and then discuss how TCP performs conges-
tion control. But before getting into all this good stuff, let’s first look at transport-
layer multiplexing and demultiplexing.

3.2 Multiplexing and Demultiplexing

In this section, we discuss transport-layer multiplexing and demultiplexing, that 
is, extending the host-to-host delivery service provided by the network layer to a  
process-to-process delivery service for applications running on the hosts. In order to 
keep the discussion concrete, we’ll discuss this basic transport-layer service in the 
context of the Internet. We emphasize, however, that a multiplexing/demultiplexing 
service is needed for all computer networks.

At the destination host, the transport layer receives segments from the network 
layer just below. The transport layer has the responsibility of delivering the data in 
these segments to the appropriate application process running in the host. Let’s take 
a look at an example. Suppose you are sitting in front of your computer, and you are 
downloading Web pages while running one FTP session and two Telnet sessions. 
You therefore have four network application processes running—two Telnet pro-
cesses, one FTP process, and one HTTP process. When the transport layer in your 
computer receives data from the network layer below, it needs to direct the received 
data to one of these four processes. Let’s now examine how this is done.

First recall from Section 2.7 that a process (as part of a network application) 
can have one or more sockets, doors through which data passes from the network to 
the process and through which data passes from the process to the network. Thus, 
as shown in Figure 3.2, the transport layer in the receiving host does not actually 
deliver data directly to a process, but instead to an intermediary socket. Because at 
any given time there can be more than one socket in the receiving host, each socket 
has a unique identifier. The format of the identifier depends on whether the socket is 
a UDP or a TCP socket, as we’ll discuss shortly.

Now let’s consider how a receiving host directs an incoming transport-layer 
segment to the appropriate socket. Each transport-layer segment has a set of fields in 
the segment for this purpose. At the receiving end, the transport layer examines these 
fields to identify the receiving socket and then directs the segment to that socket. 
This job of delivering the data in a transport-layer segment to the correct socket is 
called demultiplexing. The job of gathering data chunks at the source host from 
different sockets, encapsulating each data chunk with header information (that will 
later be used in demultiplexing) to create segments, and passing the segments to the 
network layer is called multiplexing. Note that the transport layer in the middle host 
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in Figure 3.2 must demultiplex segments arriving from the network layer below to 
either process P1 or P2 above; this is done by directing the arriving segment’s data 
to the corresponding process’s socket. The transport layer in the middle host must 
also gather outgoing data from these sockets, form transport-layer segments, and 
pass these segments down to the network layer. Although we have introduced mul-
tiplexing and demultiplexing in the context of the Internet transport protocols, it’s 
important to realize that they are concerns whenever a single protocol at one layer (at 
the transport layer or elsewhere) is used by multiple protocols at the next higher layer.

To illustrate the demultiplexing job, recall the household analogy in the previous 
section. Each of the kids is identified by his or her name. When Bill receives a batch 
of mail from the mail carrier, he performs a demultiplexing operation by observing 
to whom the letters are addressed and then hand delivering the mail to his brothers 
and sisters. Ann performs a multiplexing operation when she collects letters from her 
brothers and sisters and gives the collected mail to the mail person.

Now that we understand the roles of transport-layer multiplexing and demulti-
plexing, let us examine how it is actually done in a host. From the discussion above, 
we know that transport-layer multiplexing requires (1) that sockets have unique 
identifiers, and (2) that each segment have special fields that indicate the socket to 
which the segment is to be delivered. These special fields, illustrated in Figure 3.3, 
are the source port number field and the destination port number field. (The UDP 
and TCP segments have other fields as well, as discussed in the subsequent sections 
of this chapter.) Each port number is a 16-bit number, ranging from 0 to 65535. 
The port numbers ranging from 0 to 1023 are called well-known port numbers  
and are restricted, which means that they are reserved for use by well-known 
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Figure 3.2 ♦ Transport-layer multiplexing and demultiplexing
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application protocols such as HTTP (which uses port number 80) and FTP (which 
uses port number 21). The list of well-known port numbers is given in RFC 1700 
and is updated at http://www.iana.org [RFC 3232]. When we develop a new appli-
cation (such as the simple application developed in Section 2.7), we must assign the 
application a port number.

It should now be clear how the transport layer could implement the demultiplex-
ing service: Each socket in the host could be assigned a port number, and when 
a segment arrives at the host, the transport layer examines the destination port 
number in the segment and directs the segment to the corresponding socket. The 
segment’s data then passes through the socket into the attached process. As we’ll 
see, this is basically how UDP does it. However, we’ll also see that multiplexing/
demultiplexing in TCP is yet more subtle.

Connectionless Multiplexing and Demultiplexing

Recall from Section 2.7.1 that the Python program running in a host can create a 
UDP socket with the line

clientSocket = socket(AF_INET, SOCK_DGRAM)

When a UDP socket is created in this manner, the transport layer automatically 
assigns a port number to the socket. In particular, the transport layer assigns a port 
number in the range 1024 to 65535 that is currently not being used by any other UDP 
port in the host. Alternatively, we can add a line into our Python program after we 
create the socket to associate a specific port number (say, 19157) to this UDP socket 
via the socket bind() method:

clientSocket.bind((’’, 19157))

Source port #

32 bits

Dest. port #

Other header fields

Application
data

(message)

Figure 3.3 ♦  Source and destination port-number fields in a transport-layer 
segment
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If the application developer writing the code were implementing the server side of 
a “well-known protocol,” then the developer would have to assign the correspond-
ing well-known port number. Typically, the client side of the application lets the 
transport layer automatically (and transparently) assign the port number, whereas the 
server side of the application assigns a specific port number.

With port numbers assigned to UDP sockets, we can now precisely describe 
UDP multiplexing/demultiplexing. Suppose a process in Host A, with UDP port 
19157, wants to send a chunk of application data to a process with UDP port 46428 in 
Host B. The transport layer in Host A creates a transport-layer segment that includes 
the application data, the source port number (19157), the destination port number 
(46428), and two other values (which will be discussed later, but are unimportant for 
the current discussion). The transport layer then passes the resulting segment to the 
network layer. The network layer encapsulates the segment in an IP datagram and 
makes a best-effort attempt to deliver the segment to the receiving host. If the seg-
ment arrives at the receiving Host B, the transport layer at the receiving host exam-
ines the destination port number in the segment (46428) and delivers the segment 
to its socket identified by port 46428. Note that Host B could be running multiple 
processes, each with its own UDP socket and associated port number. As UDP seg-
ments arrive from the network, Host B directs (demultiplexes) each segment to the 
appropriate socket by examining the segment’s destination port number.

It is important to note that a UDP socket is fully identified by a two-tuple consist-
ing of a destination IP address and a destination port number. As a consequence, if 
two UDP segments have different source IP addresses and/or source port numbers, but 
have the same destination IP address and destination port number, then the two seg-
ments will be directed to the same destination process via the same destination socket.

You may be wondering now, what is the purpose of the source port number? 
As shown in Figure 3.4, in the A-to-B segment the source port number serves as 
part of a “return address”—when B wants to send a segment back to A, the destina-
tion port in the B-to-A segment will take its value from the source port value of the 
A-to-B segment. (The complete return address is A’s IP address and the source port 
number.) As an example, recall the UDP server program studied in Section 2.7. In 
UDPServer.py, the server uses the recvfrom() method to extract the client-
side (source) port number from the segment it receives from the client; it then sends 
a new segment to the client, with the extracted source port number serving as the 
destination port number in this new segment.

Connection-Oriented Multiplexing and Demultiplexing

In order to understand TCP demultiplexing, we have to take a close look at TCP 
sockets and TCP connection establishment. One subtle difference between a 
TCP socket and a UDP socket is that a TCP socket is identified by a four-tuple: 
(source IP address, source port number, destination IP address, destination port 
number). Thus, when a TCP segment arrives from the network to a host, the host 
uses all four values to direct (demultiplex) the segment to the appropriate socket.  
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In particular, and in contrast with UDP, two arriving TCP segments with differ-
ent source IP addresses or source port numbers will (with the exception of a TCP 
segment carrying the original connection-establishment request) be directed to two 
different sockets. To gain further insight, let’s reconsider the TCP client-server pro-
gramming example in Section 2.7.2:

• The TCP server application has a “welcoming socket,” that waits for connection-
establishment requests from TCP clients (see Figure 2.29) on port number 12000.

• The TCP client creates a socket and sends a connection establishment request 
segment with the lines:

 clientSocket = socket(AF_INET, SOCK_STREAM)
 clientSocket.connect((serverName,12000))

• A connection-establishment request is nothing more than a TCP segment with 
destination port number 12000 and a special connection-establishment bit set in 
the TCP header (discussed in Section 3.5). The segment also includes a source 
port number that was chosen by the client.

• When the host operating system of the computer running the server process 
receives the incoming connection-request segment with destination port 12000, 
it locates the server process that is waiting to accept a connection on port number 
12000. The server process then creates a new socket:

 connectionSocket, addr = serverSocket.accept()

Host A

Client process

Socket
Server B

source port:
19157

dest. port:
46428

source port:
46428

dest. port:
19157

Figure 3.4 ♦ The inversion of source and destination port numbers
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• Also, the transport layer at the server notes the following four values in the con-
nection-request segment: (1) the source port number in the segment, (2) the IP 
address of the source host, (3) the destination port number in the segment, and 
(4) its own IP address. The newly created connection socket is identified by these 
four values; all subsequently arriving segments whose source port, source IP 
address, destination port, and destination IP address match these four values will 
be demultiplexed to this socket. With the TCP connection now in place, the client 
and server can now send data to each other.

The server host may support many simultaneous TCP connection sockets, with 
each socket attached to a process, and with each socket identified by its own four-
tuple. When a TCP segment arrives at the host, all four fields (source IP address, 
source port, destination IP address, destination port) are used to direct (demultiplex) 
the segment to the appropriate socket.

PORT SCANNING

We’ve seen that a server process waits patiently on an open port for contact by a 
remote client. Some ports are reserved for well-known applications (e.g., Web, FTP, 
DNS, and SMTP servers); other ports are used by convention by popular applications 
(e.g., the Microsoft Windows SQL server listens for requests on UDP port 1434). Thus, 
if we determine that a port is open on a host, we may be able to map that port to a 
specific application running on the host. This is very useful for system administrators, 
who are often interested in knowing which network applications are running on the 
hosts in their networks. But attackers, in order to “case the joint,” also want to know 
which ports are open on target hosts. If a host is found to be running an application 
with a known security flaw (e.g., a SQL server listening on port 1434 was subject to 
a buffer overflow, allowing a remote user to execute arbitrary code on the vulnerable 
host, a flaw exploited by the Slammer worm [CERT 2003–04]), then that host is ripe 
for attack.

Determining which applications are listening on which ports is a relatively easy 
task. Indeed there are a number of public domain programs, called port scanners, 
that do just that. Perhaps the most widely used of these is nmap, freely available at 
http://nmap.org and included in most Linux distributions. For TCP, nmap sequentially 
scans ports, looking for ports that are accepting TCP connections. For UDP, nmap 
again sequentially scans ports, looking for UDP ports that respond to transmitted UDP 
segments. In both cases, nmap returns a list of open, closed, or unreachable ports. 
A host running nmap can attempt to scan any target host anywhere in the Internet. 
We’ll revisit nmap in Section 3.5.6, when we discuss TCP connection management.

FOCUS ON SECURITY
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The situation is illustrated in Figure 3.5, in which Host C initiates two HTTP 
sessions to server B, and Host A initiates one HTTP session to B. Hosts A and C 
and server B each have their own unique IP address—A, C, and B, respectively. 
Host C assigns two different source port numbers (26145 and 7532) to its two HTTP 
connections. Because Host A is choosing source port numbers independently of C, 
it might also assign a source port of 26145 to its HTTP connection. But this is not 
a problem—server B will still be able to correctly demultiplex the two connections 
having the same source port number, since the two connections have different source 
IP addresses.

Web Servers and TCP

Before closing this discussion, it’s instructive to say a few additional words about 
Web servers and how they use port numbers. Consider a host running a Web server, 
such as an Apache Web server, on port 80. When clients (for example, browsers) 
send segments to the server, all segments will have destination port 80. In particular, 
both the initial connection-establishment segments and the segments carrying HTTP 
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26145
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Figure 3.5 ♦  Two clients, using the same destination port number (80) to 
communicate with the same Web server application
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request messages will have destination port 80. As we have just described, the server 
distinguishes the segments from the different clients using source IP addresses and 
source port numbers.

Figure 3.5 shows a Web server that spawns a new process for each connec-
tion. As shown in Figure 3.5, each of these processes has its own connection socket 
through which HTTP requests arrive and HTTP responses are sent. We mention, 
however, that there is not always a one-to-one correspondence between connection 
sockets and processes. In fact, today’s high-performing Web servers often use only 
one process, and create a new thread with a new connection socket for each new 
client connection. (A thread can be viewed as a lightweight subprocess.) If you did 
the first programming assignment in Chapter 2, you built a Web server that does just 
this. For such a server, at any given time there may be many connection sockets (with 
different identifiers) attached to the same process.

If the client and server are using persistent HTTP, then throughout the duration 
of the persistent connection the client and server exchange HTTP messages via the 
same server socket. However, if the client and server use non-persistent HTTP, then 
a new TCP connection is created and closed for every request/response, and hence 
a new socket is created and later closed for every request/response. This frequent 
creating and closing of sockets can severely impact the performance of a busy Web 
server (although a number of operating system tricks can be used to mitigate the 
problem). Readers interested in the operating system issues surrounding persistent 
and non-persistent HTTP are encouraged to see [Nielsen 1997; Nahum 2002].

Now that we’ve discussed transport-layer multiplexing and demultiplexing, let’s 
move on and discuss one of the Internet’s transport protocols, UDP. In the next sec-
tion, we’ll see that UDP adds little more to the network-layer protocol than a multi-
plexing/demultiplexing service.

3.3 Connectionless Transport: UDP

In this section, we’ll take a close look at UDP, how it works, and what it does. 
We encourage you to refer back to Section 2.1, which includes an overview of the 
UDP service model, and to Section 2.7.1, which discusses socket programming using 
UDP.

To motivate our discussion about UDP, suppose you were interested in design-
ing a no-frills, bare-bones transport protocol. How might you go about doing this? 
You might first consider using a vacuous transport protocol. In particular, on the 
sending side, you might consider taking the messages from the application process 
and passing them directly to the network layer; and on the receiving side, you might 
consider taking the messages arriving from the network layer and passing them 
directly to the application process. But as we learned in the previous section, we have 
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to do a little more than nothing! At the very least, the transport layer has to provide a 
multiplexing/demultiplexing service in order to pass data between the network layer 
and the correct application-level process.

UDP, defined in [RFC 768], does just about as little as a transport protocol can do. 
Aside from the multiplexing/demultiplexing function and some light error checking, it 
adds nothing to IP. In fact, if the application developer chooses UDP instead of TCP, 
then the application is almost directly talking with IP. UDP takes messages from the 
application process, attaches source and destination port number fields for the multi-
plexing/demultiplexing service, adds two other small fields, and passes the resulting 
segment to the network layer. The network layer encapsulates the transport-layer seg-
ment into an IP datagram and then makes a best-effort attempt to deliver the segment 
to the receiving host. If the segment arrives at the receiving host, UDP uses the destina-
tion port number to deliver the segment’s data to the correct application process. Note 
that with UDP there is no handshaking between sending and receiving transport-layer 
entities before sending a segment. For this reason, UDP is said to be connectionless.

DNS is an example of an application-layer protocol that typically uses UDP. 
When the DNS application in a host wants to make a query, it constructs a DNS query 
message and passes the message to UDP. Without performing any handshaking with 
the UDP entity running on the destination end system, the host-side UDP adds header 
fields to the message and passes the resulting segment to the network layer. The net-
work layer encapsulates the UDP segment into a datagram and sends the datagram to 
a name server. The DNS application at the querying host then waits for a reply to its 
query. If it doesn’t receive a reply (possibly because the underlying network lost the 
query or the reply), it might try resending the query, try sending the query to another 
name server, or inform the invoking application that it can’t get a reply.

Now you might be wondering why an application developer would ever choose 
to build an application over UDP rather than over TCP. Isn’t TCP always preferable, 
since TCP provides a reliable data transfer service, while UDP does not? The answer 
is no, as some applications are better suited for UDP for the following reasons:

• Finer application-level control over what data is sent, and when. Under UDP, as 
soon as an application process passes data to UDP, UDP will package the data 
inside a UDP segment and immediately pass the segment to the network layer. 
TCP, on the other hand, has a congestion-control mechanism that throttles the 
transport-layer TCP sender when one or more links between the source and des-
tination hosts become excessively congested. TCP will also continue to resend a 
segment until the receipt of the segment has been acknowledged by the destina-
tion, regardless of how long reliable delivery takes. Since real-time applications 
often require a minimum sending rate, do not want to overly delay segment trans-
mission, and can tolerate some data loss, TCP’s service model is not particularly 
well matched to these applications’ needs. As discussed below, these applications 
can use UDP and implement, as part of the application, any additional functional-
ity that is needed beyond UDP’s no-frills segment-delivery service.
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• No connection establishment. As we’ll discuss later, TCP uses a three-way hand-
shake before it starts to transfer data. UDP just blasts away without any formal 
preliminaries. Thus UDP does not introduce any delay to establish a connection. 
This is probably the principal reason why DNS runs over UDP rather than TCP—
DNS would be much slower if it ran over TCP. HTTP uses TCP rather than UDP, 
since reliability is critical for Web pages with text. But, as we briefly discussed 
in Section 2.2, the TCP connection-establishment delay in HTTP is an important 
contributor to the delays associated with downloading Web documents. Indeed, 
the QUIC protocol (Quick UDP Internet Connection, [IETF QUIC 2020]), used 
in Google’s Chrome browser, uses UDP as its underlying transport protocol and 
implements reliability in an application-layer protocol on top of UDP. We’ll take 
a closer look at QUIC in Section 3.8.

• No connection state. TCP maintains connection state in the end systems. This 
connection state includes receive and send buffers, congestion-control param-
eters, and sequence and acknowledgment number parameters. We will see in  
Section 3.5 that this state information is needed to implement TCP’s reliable data 
transfer service and to provide congestion control. UDP, on the other hand, does 
not maintain connection state and does not track any of these parameters. For this 
reason, a server devoted to a particular application can typically support many 
more active clients when the application runs over UDP rather than TCP.

• Small packet header overhead. The TCP segment has 20 bytes of header over-
head in every segment, whereas UDP has only 8 bytes of overhead.

Figure 3.6 lists popular Internet applications and the transport protocols that 
they use. As we expect, e-mail, remote terminal access, and file transfer run over 
TCP—all these applications need the reliable data transfer service of TCP. We 
learned in Chapter 2 that early versions of HTTP ran over TCP but that more recent 
versions of HTTP run over UDP, providing their own error control and congestion 
control (among other services) at the application layer. Nevertheless, many important 
applications run over UDP rather than TCP. For example, UDP is used to carry network 
management (SNMP; see Section 5.7) data. UDP is preferred to TCP in this case, 
since network management applications must often run when the network is in a 
stressed state—precisely when reliable, congestion-controlled data transfer is diffi-
cult to achieve. Also, as we mentioned earlier, DNS runs over UDP, thereby avoiding 
TCP’s connection-establishment delays.

As shown in Figure 3.6, both UDP and TCP are sometimes used today with 
multimedia applications, such as Internet phone, real-time video conferencing, and 
streaming of stored audio and video. We just mention now that all of these applica-
tions can tolerate a small amount of packet loss, so that reliable data transfer is not 
absolutely critical for the application’s success. Furthermore, real-time applications, 
like Internet phone and video conferencing, react very poorly to TCP’s congestion 
control. For these reasons, developers of multimedia applications may choose to run 
their applications over UDP instead of TCP. When packet loss rates are low, and 
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with some organizations blocking UDP traffic for security reasons (see Chapter 8), 
TCP becomes an increasingly attractive protocol for streaming media transport.

Although commonly done today, running multimedia applications over UDP 
needs to be done with care. As we mentioned above, UDP has no congestion control. 
But congestion control is needed to prevent the network from entering a congested 
state in which very little useful work is done. If everyone were to start streaming 
high-bit-rate video without using any congestion control, there would be so much 
packet overflow at routers that very few UDP packets would successfully traverse the 
source-to-destination path. Moreover, the high loss rates induced by the uncontrolled 
UDP senders would cause the TCP senders (which, as we’ll see, do decrease their 
sending rates in the face of congestion) to dramatically decrease their rates. Thus, the 
lack of congestion control in UDP can result in high loss rates between a UDP sender 
and receiver, and the crowding out of TCP sessions. Many researchers have proposed 
new mechanisms to force all sources, including UDP sources, to perform adaptive 
congestion control [Mahdavi 1997; Floyd 2000; Kohler 2006: RFC 4340].

Before discussing the UDP segment structure, we mention that it is  possible 
for an application to have reliable data transfer when using UDP. This can be done 
if reliability is built into the application itself (for example, by adding acknowl-
edgment and retransmission mechanisms, such as those we’ll study in the next 
section). We mentioned earlier that the QUIC protocol implements reliability 
in an application-layer protocol on top of UDP. But this is a nontrivial task that 
would keep an application developer busy debugging for a long time. Neverthe-
less,  building reliability directly into the application allows the application to “have 
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its cake and eat it too.” That is, application processes can communicate reliably 
without being subjected to the transmission-rate constraints imposed by TCP’s 
congestion-control mechanism.

3.3.1 UDP Segment Structure
The UDP segment structure, shown in Figure 3.7, is defined in RFC 768. The applica-
tion data occupies the data field of the UDP segment. For example, for DNS, the data 
field contains either a query message or a response message. For a streaming audio 
application, audio samples fill the data field. The UDP header has only four fields, 
each consisting of two bytes. As discussed in the previous section, the port numbers 
allow the destination host to pass the application data to the correct process run-
ning on the destination end system (that is, to perform the demultiplexing function).  
The length field specifies the number of bytes in the UDP segment (header plus 
data). An explicit length value is needed since the size of the data field may differ 
from one UDP segment to the next. The checksum is used by the receiving host to 
check whether errors have been introduced into the segment. In truth, the check-
sum is also calculated over a few of the fields in the IP header in addition to the 
UDP segment. But we ignore this detail in order to see the forest through the trees. 
We’ll discuss the checksum calculation below. Basic principles of error detection are 
described in Section 6.2. The length field specifies the length of the UDP segment, 
including the header, in bytes.

3.3.2 UDP Checksum
The UDP checksum provides for error detection. That is, the checksum is used to 
determine whether bits within the UDP segment have been altered (for example, by 
noise in the links or while stored in a router) as it moved from source to destination. 

Source port #

32 bits

Dest. port #

Length Checksum

Application
data

(message)

Figure 3.7 ♦ UDP segment structure
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UDP at the sender side performs the 1s complement of the sum of all the 16-bit 
words in the segment, with any overflow encountered during the sum being wrapped 
around. This result is put in the checksum field of the UDP segment. Here we give 
a simple example of the checksum calculation. You can find details about efficient 
implementation of the calculation in RFC 1071 and performance over real data in 
[Stone 1998; Stone 2000]. As an example, suppose that we have the following three 
16-bit words:

0110011001100000
0101010101010101
1000111100001100

The sum of first two of these 16-bit words is

0110011001100000
0101010101010101
1011101110110101

Adding the third word to the above sum gives

1011101110110101
1000111100001100
0100101011000010

Note that this last addition had overflow, which was wrapped around. The 1s 
complement is obtained by converting all the 0s to 1s and converting all the 1s to 
0s. Thus, the 1s complement of the sum 0100101011000010 is 1011010100111101, 
which becomes the checksum. At the receiver, all four 16-bit words are added, 
including the checksum. If no errors are introduced into the packet, then clearly the 
sum at the receiver will be 1111111111111111. If one of the bits is a 0, then we know 
that errors have been introduced into the packet.

You may wonder why UDP provides a checksum in the first place, as many 
link-layer protocols (including the popular Ethernet protocol) also provide error 
checking. The reason is that there is no guarantee that all the links between source 
and destination provide error checking; that is, one of the links may use a link-layer 
protocol that does not provide error checking. Furthermore, even if segments are 
correctly transferred across a link, it’s possible that bit errors could be introduced 
when a segment is stored in a router’s memory. Given that neither link-by-link reli-
ability nor in-memory error detection is guaranteed, UDP must provide error detec-
tion at the transport layer, on an end-end basis, if the end-end data transfer service 
is to provide error detection. This is an example of the celebrated end-end principle 
in system design [Saltzer 1984], which states that since certain functionality (error 
detection, in this case) must be implemented on an end-end basis: “functions placed 
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at the lower levels may be redundant or of little value when compared to the cost of 
providing them at the higher level.”

Because IP is supposed to run over just about any layer-2 protocol, it is useful 
for the transport layer to provide error checking as a safety measure. Although UDP 
provides error checking, it does not do anything to recover from an error. Some 
implementations of UDP simply discard the damaged segment; others pass the dam-
aged segment to the application with a warning.

That wraps up our discussion of UDP. We will soon see that TCP offers reli-
able data transfer to its applications as well as other services that UDP doesn’t offer. 
Naturally, TCP is also more complex than UDP. Before discussing TCP, however, 
it will be useful to step back and first discuss the underlying principles of reliable 
data transfer.

3.4 Principles of Reliable Data Transfer

In this section, we consider the problem of reliable data transfer in a general context. 
This is appropriate since the problem of implementing reliable data transfer occurs 
not only at the transport layer, but also at the link layer and the application layer 
as well. The general problem is thus of central importance to networking. Indeed, 
if one had to identify a “top-ten” list of fundamentally important problems in all 
of networking, this would be a candidate to lead the list. In the next section, we’ll 
examine TCP and show, in particular, that TCP exploits many of the principles that 
we are about to describe.

Figure 3.8 illustrates the framework for our study of reliable data transfer. The 
service abstraction provided to the upper-layer entities is that of a reliable channel 
through which data can be transferred. With a reliable channel, no transferred data 
bits are corrupted (flipped from 0 to 1, or vice versa) or lost, and all are delivered in 
the order in which they were sent. This is precisely the service model offered by TCP 
to the Internet applications that invoke it.

It is the responsibility of a reliable data transfer protocol to implement this 
service abstraction. This task is made difficult by the fact that the layer below the 
reliable data transfer protocol may be unreliable. For example, TCP is a reliable data 
transfer protocol that is implemented on top of an unreliable (IP) end-to-end network 
layer. More generally, the layer beneath the two reliably communicating end points 
might consist of a single physical link (as in the case of a link-level data transfer 
protocol) or a global internetwork (as in the case of a transport-level protocol). For 
our purposes, however, we can view this lower layer simply as an unreliable point-
to-point channel.

In this section, we will incrementally develop the sender and receiver sides of 
a reliable data transfer protocol, considering increasingly complex models of the 
underlying channel. For example, we’ll consider what protocol mechanisms are 
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needed when the underlying channel can corrupt bits or lose entire packets. One 
assumption we’ll adopt throughout our discussion here is that packets will be deliv-
ered in the order in which they were sent, with some packets possibly being lost; 
that is, the underlying channel will not reorder packets. Figure 3.8(b) illustrates the 
interfaces for our data transfer protocol. The sending side of the data transfer proto-
col will be invoked from above by a call to rdt_send(). It will pass the data to be 
delivered to the upper layer at the receiving side. (Here rdt stands for reliable data 
transfer protocol and _send indicates that the sending side of rdt is being called. 
The first step in developing any protocol is to choose a good name!) On the receiving 
side, rdt_rcv() will be called when a packet arrives from the receiving side of the 
channel. When the rdt protocol wants to deliver data to the upper layer, it will do so 
by calling deliver_data(). In the following, we use the terminology “packet” 
rather than transport-layer “segment.” Because the theory developed in this section 
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Figure 3.8 ♦  Reliable data transfer: Service model and service  
implementation
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applies to computer networks in general and not just to the Internet transport layer, 
the generic term “packet” is perhaps more appropriate here.

In this section, we consider only the case of unidirectional data transfer, that is, 
data transfer from the sending to the receiving side. The case of reliable bidirectional 
(that is, full-duplex) data transfer is conceptually no more difficult but considerably 
more tedious to explain. Although we consider only unidirectional data transfer, it is 
important to note that the sending and receiving sides of our protocol will nonetheless 
need to transmit packets in both directions, as indicated in Figure 3.8. We will see 
shortly that, in addition to exchanging packets containing the data to be transferred, 
the sending and receiving sides of rdt will also need to exchange control packets 
back and forth. Both the send and receive sides of rdt send packets to the other side 
by a call to udt_send() (where udt stands for unreliable data transfer).

3.4.1 Building a Reliable Data Transfer Protocol
We now step through a series of protocols, each one becoming more complex, arriv-
ing at a flawless, reliable data transfer protocol.

Reliable Data Transfer over a Perfectly Reliable Channel: rdt1.0

We first consider the simplest case, in which the underlying channel is completely 
reliable. The protocol itself, which we’ll call rdt1.0, is trivial. The finite-state 
machine (FSM) definitions for the rdt1.0 sender and receiver are shown in 
Figure 3.9. The FSM in Figure 3.9(a) defines the operation of the sender, while 
the FSM in Figure 3.9(b) defines the operation of the receiver. It is important to 
note that there are separate FSMs for the sender and for the receiver. The sender 
and receiver FSMs in Figure 3.9 each have just one state. The arrows in the FSM 
description indicate the transition of the protocol from one state to another. (Since 
each FSM in Figure 3.9 has just one state, a transition is necessarily from the one 
state back to itself; we’ll see more complicated state diagrams shortly.) The event 
causing the transition is shown above the horizontal line labeling the transition, and 
the actions taken when the event occurs are shown below the horizontal line. When 
no action is taken on an event, or no event occurs and an action is taken, we’ll use 
the symbol Λ below or above the horizontal, respectively, to explicitly denote the 
lack of an action or event. The initial state of the FSM is indicated by the dashed 
arrow. Although the FSMs in Figure 3.9 have but one state, the FSMs we will see 
shortly have multiple states, so it will be important to identify the initial state of 
each FSM.

The sending side of rdt simply accepts data from the upper layer via the 
rdt_send(data) event, creates a packet containing the data (via the action 
make_pkt(data)) and sends the packet into the channel. In practice, the  
rdt_send(data) event would result from a procedure call (for example, to 
rdt_send()) by the upper-layer application.
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On the receiving side, rdt receives a packet from the underlying channel via 
the rdt_rcv(packet) event, removes the data from the packet (via the action 
extract (packet, data)) and passes the data up to the upper layer (via 
the action deliver_data(data)). In practice, the rdt_rcv(packet) event 
would result from a procedure call (for example, to rdt_rcv()) from the lower-
layer protocol.

In this simple protocol, there is no difference between a unit of data and a packet. 
Also, all packet flow is from the sender to receiver; with a perfectly reliable chan-
nel there is no need for the receiver side to provide any feedback to the sender since 
nothing can go wrong! Note that we have also assumed that the receiver is able to 
receive data as fast as the sender happens to send data. Thus, there is no need for the 
receiver to ask the sender to slow down!

Reliable Data Transfer over a Channel with Bit Errors: rdt2.0

A more realistic model of the underlying channel is one in which bits in a packet may 
be corrupted. Such bit errors typically occur in the physical components of a network 
as a packet is transmitted, propagates, or is buffered. We’ll continue to assume for 
the moment that all transmitted packets are received (although their bits may be cor-
rupted) in the order in which they were sent.

Before developing a protocol for reliably communicating over such a channel, 
first consider how people might deal with such a situation. Consider how you yourself 
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Figure 3.9 ♦ rdt1.0—A protocol for a completely reliable channel
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might dictate a long message over the phone. In a typical scenario, the message taker 
might say “OK” after each sentence has been heard, understood, and recorded. If the 
message taker hears a garbled sentence, you’re asked to repeat the garbled sentence. 
This message-dictation protocol uses both positive acknowledgments (“OK”) and 
negative acknowledgments (“Please repeat that.”). These control messages allow 
the receiver to let the sender know what has been received correctly, and what has 
been received in error and thus requires repeating. In a computer network setting, 
reliable data transfer protocols based on such retransmission are known as ARQ 
(Automatic Repeat reQuest) protocols.

Fundamentally, three additional protocol capabilities are required in ARQ pro-
tocols to handle the presence of bit errors:

• Error detection. First, a mechanism is needed to allow the receiver to detect when 
bit errors have occurred. Recall from the previous section that UDP uses the Inter-
net checksum field for exactly this purpose. In Chapter 6, we’ll examine error-
detection and -correction techniques in greater detail; these techniques allow the 
receiver to detect and possibly correct packet bit errors. For now, we need only 
know that these techniques require that extra bits (beyond the bits of original data 
to be transferred) be sent from the sender to the receiver; these bits will be gath-
ered into the packet checksum field of the rdt2.0 data packet.

• Receiver feedback. Since the sender and receiver are typically executing on dif-
ferent end systems, possibly separated by thousands of miles, the only way for 
the sender to learn of the receiver’s view of the world (in this case, whether or not 
a packet was received correctly) is for the receiver to provide explicit feedback 
to the sender. The positive (ACK) and negative (NAK) acknowledgment replies 
in the message-dictation scenario are examples of such feedback. Our rdt2.0 
protocol will similarly send ACK and NAK packets back from the receiver to 
the sender. In principle, these packets need only be one bit long; for example, a 0 
value could indicate a NAK and a value of 1 could indicate an ACK.

• Retransmission. A packet that is received in error at the receiver will be retrans-
mitted by the sender.

Figure 3.10 shows the FSM representation of rdt2.0, a data transfer 
protocol employing error detection, positive acknowledgments, and negative 
acknowledgments.

The send side of rdt2.0 has two states. In the leftmost state, the send-side 
protocol is waiting for data to be passed down from the upper layer. When the 
rdt_send(data) event occurs, the sender will create a packet (sndpkt) con-
taining the data to be sent, along with a packet checksum (for example, as discussed 
in Section 3.3.2 for the case of a UDP segment), and then send the packet via the 
udt_send(sndpkt) operation. In the rightmost state, the sender protocol is wait-
ing for an ACK or a NAK packet from the receiver. If an ACK packet is received 
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(the notation rdt_rcv(rcvpkt) && isACK(rcvpkt) in Figure 3.10 cor-
responds to this event), the sender knows that the most recently transmitted packet 
has been received correctly and thus the protocol returns to the state of waiting for 
data from the upper layer. If a NAK is received, the protocol retransmits the last 
packet and waits for an ACK or NAK to be returned by the receiver in response to 
the retransmitted data packet. It is important to note that when the sender is in the 
wait-for-ACK-or-NAK state, it cannot get more data from the upper layer; that is, the 
rdt_send() event can not occur; that will happen only after the sender receives 
an ACK and leaves this state. Thus, the sender will not send a new piece of data until 
it is sure that the receiver has correctly received the current packet. Because of this 
behavior, protocols such as rdt2.0 are known as stop-and-wait protocols.
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Figure 3.10 ♦ rdt2.0—A protocol for a channel with bit errors
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The receiver-side FSM for rdt2.0 still has a single state. On packet arrival, 
the receiver replies with either an ACK or a NAK, depending on whether or not the 
received packet is corrupted. In Figure 3.10, the notation rdt_rcv(rcvpkt) && 
corrupt(rcvpkt) corresponds to the event in which a packet is received and is 
found to be in error.

Protocol rdt2.0 may look as if it works but, unfortunately, it has a fatal flaw. 
In particular, we haven’t accounted for the possibility that the ACK or NAK packet 
could be corrupted! (Before proceeding on, you should think about how this prob-
lem may be fixed.) Unfortunately, our slight oversight is not as innocuous as it may 
seem. Minimally, we will need to add checksum bits to ACK/NAK packets in order 
to detect such errors. The more difficult question is how the protocol should recover 
from errors in ACK or NAK packets. The difficulty here is that if an ACK or NAK 
is corrupted, the sender has no way of knowing whether or not the receiver has cor-
rectly received the last piece of transmitted data.

Consider three possibilities for handling corrupted ACKs or NAKs:

• For the first possibility, consider what a human might do in the message-dictation 
scenario. If the speaker didn’t understand the “OK” or “Please repeat that” reply 
from the receiver, the speaker would probably ask, “What did you say?” (thus 
introducing a new type of sender-to-receiver packet to our protocol). The receiver 
would then repeat the reply. But what if the speaker’s “What did you say?” is cor-
rupted? The receiver, having no idea whether the garbled sentence was part of the 
dictation or a request to repeat the last reply, would probably then respond with 
“What did you say?” And then, of course, that response might be garbled. Clearly, 
we’re heading down a difficult path.

• A second alternative is to add enough checksum bits to allow the sender not only 
to detect, but also to recover from, bit errors. This solves the immediate problem 
for a channel that can corrupt packets but not lose them.

• A third approach is for the sender simply to resend the current data packet when 
it receives a garbled ACK or NAK packet. This approach, however, introduces 
duplicate packets into the sender-to-receiver channel. The fundamental diffi-
culty with duplicate packets is that the receiver doesn’t know whether the ACK 
or NAK it last sent was received correctly at the sender. Thus, it cannot know a 
priori whether an arriving packet contains new data or is a retransmission!

A simple solution to this new problem (and one adopted in almost all exist-
ing data transfer protocols, including TCP) is to add a new field to the data packet 
and have the sender number its data packets by putting a sequence number into 
this field. The receiver then need only check this sequence number to determine 
whether or not the received packet is a retransmission. For this simple case of a 
stop-and-wait protocol, a 1-bit sequence number will suffice, since it will allow the 
receiver to know whether the sender is resending the previously transmitted packet 
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(the sequence number of the received packet has the same sequence number as the 
most recently received packet) or a new packet (the sequence number changes, mov-
ing “forward” in modulo-2 arithmetic). Since we are currently assuming a channel 
that does not lose packets, ACK and NAK packets do not themselves need to indicate 
the sequence number of the packet they are acknowledging. The sender knows that a 
received ACK or NAK packet (whether garbled or not) was generated in response to 
its most recently transmitted data packet.

Figures 3.11 and 3.12 show the FSM description for rdt2.1, our fixed version 
of rdt2.0. The rdt2.1 sender and receiver FSMs each now have twice as many 
states as before. This is because the protocol state must now reflect whether the 
packet currently being sent (by the sender) or expected (at the receiver) should have a 
sequence number of 0 or 1. Note that the actions in those states where a 0-numbered 
packet is being sent or expected are mirror images of those where a 1-numbered 
packet is being sent or expected; the only differences have to do with the handling 
of the sequence number.

Protocol rdt2.1 uses both positive and negative acknowledgments from the 
receiver to the sender. When an out-of-order packet is received, the receiver sends 
a positive acknowledgment for the packet it has received. When a corrupted packet 

Wait for
call 0 from

above

rdt_rcv(rcvpkt)&&
(corrupt(rcvpkt)||
isNAK(rcvpkt))

udt_send(sndpkt)

rdt_rcv(rcvpkt)&&
(corrupt(rcvpkt)||
isNAK(rcvpkt))

udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

L L

rdt_send(data)

sndpkt=make_pkt(0,data,checksum)
udt_send(sndpkt)

rdt_send(data)

sndpkt=make_pkt(1,data,checksum)
udt_send(sndpkt)

Wait for
ACK or
NAK 0

Wait for
ACK or
NAK 1

Wait for
call 1 from

above

Figure 3.11 ♦ rdt2.1 sender
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is received, the receiver sends a negative acknowledgment. We can accomplish the 
same effect as a NAK if, instead of sending a NAK, we send an ACK for the last 
correctly received packet. A sender that receives two ACKs for the same packet (that 
is, receives duplicate ACKs) knows that the receiver did not correctly receive the 
packet following the packet that is being ACKed twice. Our NAK-free reliable data 
transfer protocol for a channel with bit errors is rdt2.2, shown in Figures 3.13 and 
3.14. One subtle change between rtdt2.1 and rdt2.2 is that the receiver must 
now include the sequence number of the packet being acknowledged by an ACK 
message (this is done by including the ACK, 0 or ACK, 1 argument in make_pkt() 
in the receiver FSM), and the sender must now check the sequence number of the 
packet being acknowledged by a received ACK message (this is done by including 
the 0 or 1 argument in isACK() in the sender FSM).

Reliable Data Transfer over a Lossy Channel with Bit Errors: rdt3.0

Suppose now that in addition to corrupting bits, the underlying channel can lose 
packets as well, a not-uncommon event in today’s computer networks (including 
the Internet). Two additional concerns must now be addressed by the protocol: how 
to detect packet loss and what to do when packet loss occurs. The use of check-
summing, sequence numbers, ACK packets, and retransmissions—the techniques 

rdt_rcv(rcvpkt)&& notcorrupt
(rcvpkt)&& has_seq0(rcvpkt)

sndpkt=make_pkt(ACK,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

sndpkt=make_pkt(NAK,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt)
 && corrupt(rcvpkt)

sndpkt=make_pkt(NAK,checksum)
udt_send(sndpkt)

sndpkt=make_pkt(ACK,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt=make_pkt(ACK,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt)&& notcorrupt(rcvpkt)
 && has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt=make_pkt(ACK,checksum)
udt_send(sndpkt)

Wait for
0 from
below

Wait for
1 from
belowrdt_rcv(rcvpkt)&& notcorrupt

(rcvpkt)&& has_seq1(rcvpkt)

Figure 3.12 ♦ rdt2.1 receiver
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Wait for
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above

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt)||
isACK(rcvpkt,1))

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt)||
isACK(rcvpkt,0))

udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

rdt_send(data)

sndpkt=make_pkt(0,data,checksum)
udt_send(sndpkt)

rdt_send(data)

sndpkt=make_pkt(1,data,checksum)
udt_send(sndpkt)

Wait for
ACK 0

Wait for
ACK 1

L L

Wait for
call 1 from

above

Figure 3.13 ♦ rdt2.2 sender

already developed in rdt2.2—will allow us to answer the latter concern. Handling 
the first concern will require adding a new protocol mechanism.

There are many possible approaches toward dealing with packet loss (several 
more of which are explored in the exercises at the end of the chapter). Here, we’ll 
put the burden of detecting and recovering from lost packets on the sender. Suppose 
that the sender transmits a data packet and either that packet, or the receiver’s ACK 
of that packet, gets lost. In either case, no reply is forthcoming at the sender from the 
receiver. If the sender is willing to wait long enough so that it is certain that a packet 
has been lost, it can simply retransmit the data packet. You should convince yourself 
that this protocol does indeed work.

But how long must the sender wait to be certain that something has been lost? 
The sender must clearly wait at least as long as a round-trip delay between the sender 
and receiver (which may include buffering at intermediate routers) plus whatever 
amount of time is needed to process a packet at the receiver. In many networks, this 
worst-case maximum delay is very difficult even to estimate, much less know with 
certainty. Moreover, the protocol should ideally recover from packet loss as soon as 
possible; waiting for a worst-case delay could mean a long wait until error recovery 
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is initiated. The approach thus adopted in practice is for the sender to judiciously 
choose a time value such that packet loss is likely, although not guaranteed, to have 
happened. If an ACK is not received within this time, the packet is retransmitted. 
Note that if a packet experiences a particularly large delay, the sender may retrans-
mit the packet even though neither the data packet nor its ACK have been lost. This 
introduces the possibility of duplicate data packets in the sender-to-receiver chan-
nel. Happily, protocol rdt2.2 already has enough functionality (that is, sequence 
numbers) to handle the case of duplicate packets.

From the sender’s viewpoint, retransmission is a panacea. The sender does not 
know whether a data packet was lost, an ACK was lost, or if the packet or ACK was 
simply overly delayed. In all cases, the action is the same: retransmit. Implement-
ing a time-based retransmission mechanism requires a countdown timer that can 
interrupt the sender after a given amount of time has expired. The sender will thus 
need to be able to (1) start the timer each time a packet (either a first-time packet or 
a retransmission) is sent, (2) respond to a timer interrupt (taking appropriate actions), 
and (3) stop the timer.

Figure 3.15 shows the sender FSM for rdt3.0, a protocol that reliably transfers 
data over a channel that can corrupt or lose packets; in the homework problems, you’ll 
be asked to provide the receiver FSM for rdt3.0. Figure 3.16 shows how the pro-
tocol operates with no lost or delayed packets and how it handles lost data packets. In 
Figure 3.16, time moves forward from the top of the diagram toward the bottom of the 

Wait for
0 from
below

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt)||
has_seq0(rcvpkt))

sndpkt=make_pkt(ACK,0,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt)||
has_seq1(rcvpkt))

sndpkt=make_pkt(ACK,1,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt=make_pkt(ACK,1,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt=make_pkt(ACK,0,checksum)
udt_send(sndpkt)

Wait for
1 from
below

Figure 3.14 ♦ rdt2.2 receiver

M03_KURO1557_08_SE_C03.indd   210 11/02/20   12:15 PM



3.4  •  PRINCIPLES OF RELIABLE DATA TRANSFER     211

diagram; note that a receive time for a packet is necessarily later than the send time for 
a packet as a result of transmission and propagation delays. In Figures 3.16(b)–(d), the 
send-side brackets indicate the times at which a timer is set and later times out. Sev-
eral of the more subtle aspects of this protocol are explored in the exercises at the end 
of this chapter. Because packet sequence numbers alternate between 0 and 1, protocol 
rdt3.0 is sometimes known as the alternating-bit protocol.

We have now assembled the key elements of a data transfer protocol. Check-
sums, sequence numbers, timers, and positive and negative acknowledgment packets 
each play a crucial and necessary role in the operation of the protocol. We now have 
a working reliable data transfer protocol!

3.4.2 Pipelined Reliable Data Transfer Protocols
Protocol rdt3.0 is a functionally correct protocol, but it is unlikely that anyone 
would be happy with its performance, particularly in today’s high-speed networks. 
At the heart of rdt3.0’s performance problem is the fact that it is a stop-and-wait 
protocol.
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Figure 3.15 ♦ rdt3.0 sender
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Figure 3.16 ♦ Operation of rdt3.0, the alternating-bit protocol
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To appreciate the performance impact of this stop-and-wait behavior, consider 
an idealized case of two hosts, one located on the West Coast of the United States 
and the other located on the East Coast, as shown in Figure 3.17. The speed-of-light 
round-trip propagation delay between these two end systems, RTT, is approximately 
30 milliseconds. Suppose that they are connected by a channel with a transmission 
rate, R, of 1 Gbps (109 bits per second). With a packet size, L, of 1,000 bytes (8,000 
bits) per packet, including both header fields and data, the time needed to actually 
transmit the packet into the 1 Gbps link is

dtrans =
L
R

=
8000 bits

109 bits/sec
= 8 microseconds

Figure 3.18(a) shows that with our stop-and-wait protocol, if the sender begins 
sending the packet at t = 0, then at t = L/R = 8 microseconds, the last bit enters 
the channel at the sender side. The packet then makes its 15-msec cross-country jour-
ney, with the last bit of the packet emerging at the receiver at t = RTT/2 + L/R =
15.008 msec. Assuming for simplicity that ACK packets are extremely small (so that 
we can ignore their transmission time) and that the receiver can send an ACK as soon 
as the last bit of a data packet is received, the ACK emerges back at the sender at 
t = RTT + L/R = 30.008 msec. At this point, the sender can now transmit the next 
message. Thus, in 30.008 msec, the sender was sending for only 0.008 msec. If we 
define the utilization of the sender (or the channel) as the fraction of time the sender 
is actually busy sending bits into the channel, the analysis in Figure 3.18(a) shows 
that the stop-and-wait protocol has a rather dismal sender utilization, Usender, of

Usender =
L>R

RTT + L>R =
.008

30.008
= 0.00027

Data packetsData packet

ACK packets

a. A stop-and-wait protocol in operation b. A pipelined protocol in operation

Figure 3.17 ♦ Stop-and-wait versus pipelined protocol
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Figure 3.18 ♦ Stop-and-wait and pipelined sending
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That is, the sender was busy only 2.7 hundredths of one percent of the time! 
Viewed another way, the sender was able to send only 1,000 bytes in 30.008 mil-
liseconds, an effective throughput of only 267 kbps—even though a 1 Gbps link 
was available! Imagine the unhappy network manager who just paid a fortune for 
a gigabit capacity link but manages to get a throughput of only 267 kilobits per 
second! This is a graphic example of how network protocols can limit the capabili-
ties provided by the underlying network hardware. Also, we have neglected lower- 
layer protocol-processing times at the sender and receiver, as well as the process-
ing and queuing delays that would occur at any intermediate routers between the 
sender and receiver. Including these effects would serve only to further increase the  
delay and further accentuate the poor performance.

The solution to this particular performance problem is simple: Rather than oper-
ate in a stop-and-wait manner, the sender is allowed to send multiple packets with-
out waiting for acknowledgments, as illustrated in Figure 3.17(b). Figure 3.18(b) 
shows that if the sender is allowed to transmit three packets before having to wait for 
acknowledgments, the utilization of the sender is essentially tripled. Since the many 
in-transit sender-to-receiver packets can be visualized as filling a pipeline, this tech-
nique is known as pipelining. Pipelining has the following consequences for reliable 
data transfer protocols:

• The range of sequence numbers must be increased, since each in-transit packet 
(not counting retransmissions) must have a unique sequence number and there 
may be multiple, in-transit, unacknowledged packets.

• The sender and receiver sides of the protocols may have to buffer more than one 
packet. Minimally, the sender will have to buffer packets that have been transmit-
ted but not yet acknowledged. Buffering of correctly received packets may also 
be needed at the receiver, as discussed below.

• The range of sequence numbers needed and the buffering requirements will 
depend on the manner in which a data transfer protocol responds to lost, cor-
rupted, and overly delayed packets. Two basic approaches toward pipelined error 
recovery can be identified: Go-Back-N and selective repeat.

3.4.3 Go-Back-N (GBN)
In a Go-Back-N (GBN) protocol, the sender is allowed to transmit multiple packets 
(when available) without waiting for an acknowledgment, but is constrained to have 
no more than some maximum allowable number, N, of unacknowledged packets in 
the pipeline. We describe the GBN protocol in some detail in this section. But before 
reading on, you are encouraged to play with the GBN animation (an awesome inter-
active animation) at the companion Web site.

Figure 3.19 shows the sender’s view of the range of sequence numbers in a GBN 
protocol. If we define base to be the sequence number of the oldest unacknowledged 
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packet and nextseqnum to be the smallest unused sequence number (that is, the 
sequence number of the next packet to be sent), then four intervals in the range of 
sequence numbers can be identified. Sequence numbers in the interval [0,base-1] 
correspond to packets that have already been transmitted and acknowledged. The inter-
val [base,nextseqnum-1] corresponds to packets that have been sent but not 
yet acknowledged. Sequence numbers in the interval [nextseqnum,base+N-1] 
can be used for packets that can be sent immediately, should data arrive from the 
upper layer. Finally, sequence numbers greater than or equal to base+N cannot 
be used until an unacknowledged packet currently in the pipeline (specifically, the 
packet with sequence number base) has been acknowledged.

As suggested by Figure 3.19, the range of permissible sequence numbers for 
transmitted but not yet acknowledged packets can be viewed as a window of size N 
over the range of sequence numbers. As the protocol operates, this window slides 
forward over the sequence number space. For this reason, N is often referred to as the 
window size and the GBN protocol itself as a sliding-window protocol. You might 
be wondering why we would even limit the number of outstanding, unacknowledged 
packets to a value of N in the first place. Why not allow an unlimited number of such 
packets? We’ll see in Section 3.5 that flow control is one reason to impose a limit 
on the sender. We’ll examine another reason to do so in Section 3.7, when we study 
TCP congestion control.

In practice, a packet’s sequence number is carried in a fixed-length field in the 
packet header. If k is the number of bits in the packet sequence number field, the 
range of sequence numbers is thus [0,2k - 1]. With a finite range of sequence num-
bers, all arithmetic involving sequence numbers must then be done using modulo 2k 
arithmetic. (That is, the sequence number space can be thought of as a ring of size 
2k, where sequence number 2k - 1 is immediately followed by sequence number 0.) 
Recall that rdt3.0 had a 1-bit sequence number and a range of sequence numbers 
of [0,1]. Several of the problems at the end of this chapter explore the consequences 
of a finite range of sequence numbers. We will see in Section 3.5 that TCP has a 
32-bit sequence number field, where TCP sequence numbers count bytes in the byte 
stream rather than packets.

Figures 3.20 and 3.21 give an extended FSM description of the sender and 
receiver sides of an ACK-based, NAK-free, GBN protocol. We refer to this FSM 

base nextseqnum

Window size
N

Key:

Already
ACK’d

Sent, not
yet ACK’d

Usable,
not yet sent

Not usable

Figure 3.19 ♦ Sender’s view of sequence numbers in Go-Back-N
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rdt_send(data)

if(nextseqnum<base+N){
   sndpkt[nextseqnum]=make_pkt(nextseqnum,data,checksum)
   udt_send(sndpkt[nextseqnum])
   if(base==nextseqnum)
      start_timer
   nextseqnum++
   }
else
   refuse_data(data)

L

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

base=getacknum(rcvpkt)+1
If(base==nextseqnum)
   stop_timer
else
   start_timer

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

L

base=1
nextseqnum=1

timeout

start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
...
udt_send(sndpkt[nextseqnum-1])

Wait

Figure 3.20 ♦ Extended FSM description of the GBN sender

rdt_rcv(rcvpkt)
  && notcorrupt(rcvpkt)
  && hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt=make_pkt(expectedseqnum,ACK,checksum)
udt_send(sndpkt)
expectedseqnum++

L

expectedseqnum=1
sndpkt=make_pkt(0,ACK,checksum)

default

udt_send(sndpkt)
Wait

Figure 3.21 ♦ Extended FSM description of the GBN receiver
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description as an extended FSM because we have added variables (similar to  
programming-language variables) for base and nextseqnum, and added opera-
tions on these variables and conditional actions involving these variables. Note that 
the extended FSM specification is now beginning to look somewhat like a program-
ming-language specification. [Bochman 1984] provides an excellent survey of addi-
tional extensions to FSM techniques as well as other programming-language-based 
techniques for specifying protocols.

The GBN sender must respond to three types of events:

• Invocation from above. When rdt_send() is called from above, the sender 
first checks to see if the window is full, that is, whether there are N outstand-
ing, unacknowledged packets. If the window is not full, a packet is created and 
sent, and variables are appropriately updated. If the window is full, the sender 
simply returns the data back to the upper layer, an implicit indication that the 
window is full. The upper layer would presumably then have to try again later. 
In a real implementation, the sender would more likely have either buffered (but 
not immediately sent) this data, or would have a synchronization mechanism 
(for example, a semaphore or a flag) that would allow the upper layer to call  
rdt_send() only when the window is not full.

• Receipt of an ACK. In our GBN protocol, an acknowledgment for a packet with 
sequence number n will be taken to be a cumulative acknowledgment, indicat-
ing that all packets with a sequence number up to and including n have been 
correctly received at the receiver. We’ll come back to this issue shortly when we 
examine the receiver side of GBN.

• A timeout event. The protocol’s name, “Go-Back-N,” is derived from the sender’s 
behavior in the presence of lost or overly delayed packets. As in the stop-and-wait 
protocol, a timer will again be used to recover from lost data or acknowledgment 
packets. If a timeout occurs, the sender resends all packets that have been previ-
ously sent but that have not yet been acknowledged. Our sender in Figure 3.20 
uses only a single timer, which can be thought of as a timer for the oldest trans-
mitted but not yet acknowledged packet. If an ACK is received but there are still 
additional transmitted but not yet acknowledged packets, the timer is restarted. If 
there are no outstanding, unacknowledged packets, the timer is stopped.

The receiver’s actions in GBN are also simple. If a packet with sequence number 
n is received correctly and is in order (that is, the data last delivered to the upper layer 
came from a packet with sequence number n - 1), the receiver sends an ACK for 
packet n and delivers the data portion of the packet to the upper layer. In all other 
cases, the receiver discards the packet and resends an ACK for the most recently 
received in-order packet. Note that since packets are delivered one at a time to the 
upper layer, if packet k has been received and delivered, then all packets with a 
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sequence number lower than k have also been delivered. Thus, the use of cumulative 
acknowledgments is a natural choice for GBN.

In our GBN protocol, the receiver discards out-of-order packets. Although 
it may seem silly and wasteful to discard a correctly received (but out-of-order) 
packet, there is some justification for doing so. Recall that the receiver must 
deliver data in order to the upper layer. Suppose now that packet n is expected, but 
packet n + 1 arrives. Because data must be delivered in order, the receiver could 
buffer (save) packet n + 1 and then deliver this packet to the upper layer after it 
had later received and delivered packet n. However, if packet n is lost, both it and 
packet n + 1 will eventually be retransmitted as a result of the GBN retransmis-
sion rule at the sender. Thus, the receiver can simply discard packet n + 1. The 
advantage of this approach is the simplicity of receiver buffering—the receiver 
need not buffer any out-of-order packets. Thus, while the sender must maintain 
the upper and lower bounds of its window and the position of nextseqnum 
within this window, the only piece of information the receiver need maintain is 
the sequence number of the next in-order packet. This value is held in the variable 
expectedseqnum, shown in the receiver FSM in Figure 3.21. Of course, the 
disadvantage of throwing away a correctly received packet is that the subsequent 
retransmission of that packet might be lost or garbled and thus even more retrans-
missions would be required.

Figure 3.22 shows the operation of the GBN protocol for the case of a window 
size of four packets. Because of this window size limitation, the sender sends pack-
ets 0 through 3 but then must wait for one or more of these packets to be acknowl-
edged before proceeding. As each successive ACK (for example, ACK0 and ACK1) 
is received, the window slides forward and the sender can transmit one new packet 
(pkt4 and pkt5, respectively). On the receiver side, packet 2 is lost and thus packets 
3, 4, and 5 are found to be out of order and are discarded.

Before closing our discussion of GBN, it is worth noting that an implementa-
tion of this protocol in a protocol stack would likely have a structure similar to that 
of the extended FSM in Figure 3.20. The implementation would also likely be in 
the form of various procedures that implement the actions to be taken in response to 
the various events that can occur. In such event-based programming, the various 
procedures are called (invoked) either by other procedures in the protocol stack, or 
as the result of an interrupt. In the sender, these events would be (1) a call from the 
upper-layer entity to invoke rdt_send(), (2) a timer interrupt, and (3) a call from 
the lower layer to invoke rdt_rcv() when a packet arrives. The programming 
exercises at the end of this chapter will give you a chance to actually implement these 
routines in a simulated, but realistic, network setting.

We note here that the GBN protocol incorporates almost all of the techniques 
that we will encounter when we study the reliable data transfer components of TCP 
in Section 3.5. These techniques include the use of sequence numbers, cumulative 
acknowledgments, checksums, and a timeout/retransmit operation.
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3.4.4 Selective Repeat (SR)
The GBN protocol allows the sender to potentially “fill the pipeline” in Figure 3.17 
with packets, thus avoiding the channel utilization problems we noted with stop-
and-wait protocols. There are, however, scenarios in which GBN itself suffers from 
performance problems. In particular, when the window size and bandwidth-delay 
product are both large, many packets can be in the pipeline. A single packet error 
can thus cause GBN to retransmit a large number of packets, many unnecessarily. 
As the probability of channel errors increases, the pipeline can become filled with 
these unnecessary retransmissions. Imagine, in our message-dictation scenario, that 

Sender Receiver

 send pkt0

 send pkt1

 send pkt2

send pkt3

  (wait)

 rcv ACK0

send pkt4

 rcv ACK1

send pkt5

send pkt2

send pkt3

send pkt4

send pkt5

pkt2 timeout

rcv pkt0

send ACK0

rcv pkt1

send ACK1

rcv pkt3, discard

send ACK1

rcv pkt4, discard

send ACK1

rcv pkt5, discard

send ACK1

rcv pkt2, deliver

send ACK2

rcv pkt3, deliver

send ACK3

X
(loss)

Figure 3.22 ♦ Go-Back-N in operation
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if every time a word was garbled, the surrounding 1,000 words (for example, a win-
dow size of 1,000 words) had to be repeated. The dictation would be slowed by all 
of the reiterated words.

As the name suggests, selective-repeat protocols avoid unnecessary retrans-
missions by having the sender retransmit only those packets that it suspects were 
received in error (that is, were lost or corrupted) at the receiver. This individual, 
as-needed, retransmission will require that the receiver individually acknowledge 
correctly received packets. A window size of N will again be used to limit the num-
ber of outstanding, unacknowledged packets in the pipeline. However, unlike GBN, 
the sender will have already received ACKs for some of the packets in the window. 
Figure 3.23 shows the SR sender’s view of the sequence number space. Figure 3.24 
details the various actions taken by the SR sender.

The SR receiver will acknowledge a correctly received packet whether or not it is 
in order. Out-of-order packets are buffered until any missing packets (that is, packets 
with lower sequence numbers) are received, at which point a batch of packets can be 
delivered in order to the upper layer. Figure 3.25 itemizes the various actions taken by 
the SR receiver. Figure 3.26 shows an example of SR operation in the presence of lost 
packets. Note that in Figure 3.26, the receiver initially buffers packets 3, 4, and 5, and 
delivers them together with packet 2 to the upper layer when packet 2 is finally received.

send_base nextseqnum

Window size
N

Key:

Key:

Already
ACK’d

Sent, not
yet ACK’d

Usable,
not yet sent

Not usable

Out of order
(buffered) but
already ACK’d

Expected, not
yet received

Acceptable
(within
window)

Not usable

a. Sender view of sequence numbers

b. Receiver view of sequence numbers

rcv_base

Window size
N

Figure 3.23 ♦  Selective-repeat (SR) sender and receiver views  
of sequence-number space
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It is important to note that in Step 2 in Figure 3.25, the receiver reacknowledges 
(rather than ignores) already received packets with certain sequence numbers below 
the current window base. You should convince yourself that this reacknowledgment 
is indeed needed. Given the sender and receiver sequence number spaces in Fig-
ure 3.23, for example, if there is no ACK for packet send_base propagating from 

1. Data received from above. When data is received from above, the SR sender
checks the next available sequence number for the packet. If the sequence
number is within the sender’s window, the data is packetized and sent; other-
wise it is either bu!ered or returned to the upper layer for later transmission, 
as in GBN.

2. Timeout. Timers are again used to protect against lost packets. However, each
packet must now have its own logical timer, since only a single packet will 
be transmitted on timeout. A single hardware timer can be used to mimic the
operation of multiple logical timers [Varghese 1997].

3. ACK received. If an ACK is received, the SR sender marks that packet as 
having been received, provided it is in the window. If the packet’s sequence
number is equal to send_base, the window base is moved forward to the 
unacknowledged packet with the smallest sequence number. If the window
moves and there are untransmitted packets with sequence numbers that now
fall within the window, these packets are transmitted.

Figure 3.24 ♦ SR sender events and actions

1. Packet with sequence number in [rcv_base, rcv_base+N-1]is cor-
rectly received. In this case, the received packet falls within the receiver’s win-
dow and a selective ACK packet is returned to the sender. If the packet was not
previously received, it is bu!ered. If this packet has a sequence number equal to
the base of the receive window (rcv_base in Figure 3.22), then this packet,
and any previously bu!ered and consecutively numbered (beginning with
rcv_base) packets are delivered to the upper layer. The receive window is
then moved forward by the number of packets delivered to the upper layer. As
an example, consider Figure 3.26. When a packet with a sequence number of
rcv_base=2 is received, it and packets 3, 4, and 5 can be delivered to the
upper layer.

2. Packet with sequence number in [rcv_base-N, rcv_base-1]is cor-
rectly received. In this case, an ACK must be generated, even though this is a
packet that the receiver has previously acknowledged.

3. Otherwise. Ignore the packet.

Figure 3.25 ♦ SR receiver events and actions
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the receiver to the sender, the sender will eventually retransmit packet send_base, 
even though it is clear (to us, not the sender!) that the receiver has already received 
that packet. If the receiver were not to acknowledge this packet, the sender’s win-
dow would never move forward! This example illustrates an important aspect of 
SR protocols (and many other protocols as well). The sender and receiver will not 
always have an identical view of what has been received correctly and what has not. 
For SR protocols, this means that the sender and receiver windows will not always 
coincide.

pkt0 rcvd, delivered, ACK0 sent

0 1 2 3 4 5 6 7 8 9

pkt1 rcvd, delivered, ACK1 sent

0 1 2 3 4 5 6 7 8 9

pkt3 rcvd, bu!ered, ACK3 sent

0 1 2 3 4 5 6 7 8 9

pkt4 rcvd, bu!ered, ACK4 sent

0 1 2 3 4 5 6 7 8 9

pkt5 rcvd; bu!ered, ACK5 sent

0 1 2 3 4 5 6 7 8 9

pkt2 rcvd, pkt2,pkt3,pkt4,pkt5
delivered, ACK2 sent

0 1 2 3 4 5 6 7 8 9

pkt0 sent

0 1 2 3 4 5 6 7 8 9

pkt1 sent

0 1 2 3 4 5 6 7 8 9

pkt2 sent

0 1 2 3 4 5 6 7 8 9

pkt3 sent, window full

0 1 2 3 4 5 6 7 8 9

ACK0 rcvd, pkt4 sent

0 1 2 3 4 5 6 7 8 9

ACK1 rcvd, pkt5 sent

0 1 2 3 4 5 6 7 8 9

pkt2 TIMEOUT, pkt2
resent

0 1 2 3 4 5 6 7 8 9

ACK3 rcvd, nothing sent

0 1 2 3 4 5 6 7 8 9

X
(loss)

Sender Receiver

Figure 3.26 ♦ SR operation
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The lack of synchronization between sender and receiver windows has impor-
tant consequences when we are faced with the reality of a finite range of sequence 
numbers. Consider what could happen, for example, with a finite range of four packet 
sequence numbers, 0, 1, 2, 3, and a window size of three. Suppose packets 0 through 
2 are transmitted and correctly received and acknowledged at the receiver. At this 
point, the receiver’s window is over the fourth, fifth, and sixth packets, which have 
sequence numbers 3, 0, and 1, respectively. Now consider two scenarios. In the first 
scenario, shown in Figure 3.27(a), the ACKs for the first three packets are lost and 
the sender retransmits these packets. The receiver thus next receives a packet with 
sequence number 0—a copy of the first packet sent.

In the second scenario, shown in Figure 3.27(b), the ACKs for the first three 
packets are all delivered correctly. The sender thus moves its window forward and 
sends the fourth, fifth, and sixth packets, with sequence numbers 3, 0, and 1, respec-
tively. The packet with sequence number 3 is lost, but the packet with sequence 
number 0 arrives—a packet containing new data.

Now consider the receiver’s viewpoint in Figure 3.27, which has a figurative 
curtain between the sender and the receiver, since the receiver cannot “see” the 
actions taken by the sender. All the receiver observes is the sequence of messages 
it receives from the channel and sends into the channel. As far as it is concerned, 
the two scenarios in Figure 3.27 are identical. There is no way of distinguishing the 
retransmission of the first packet from an original transmission of the fifth packet. 
Clearly, a window size that is 1 less than the size of the sequence number space 
won’t work. But how small must the window size be? A problem at the end of the 
chapter asks you to show that the window size must be less than or equal to half the 
size of the sequence number space for SR protocols.

At the companion Web site, you will find an animation that illustrates the opera-
tion of the SR protocol. Try performing the same experiments that you did with the 
GBN animation. Do the results agree with what you expect?

This completes our discussion of reliable data transfer protocols. We’ve covered 
a lot of ground and introduced numerous mechanisms that together provide for reli-
able data transfer. Table 3.1 summarizes these mechanisms. Now that we have seen 
all of these mechanisms in operation and can see the “big picture,” we encourage you 
to review this section again to see how these mechanisms were incrementally added 
to cover increasingly complex (and realistic) models of the channel connecting the 
sender and receiver, or to improve the performance of the protocols.

Let’s conclude our discussion of reliable data transfer protocols by consider-
ing one remaining assumption in our underlying channel model. Recall that we 
have assumed that packets cannot be reordered within the channel between the 
sender and receiver. This is generally a reasonable assumption when the sender and 
receiver are connected by a single physical wire. However, when the “channel” 
connecting the two is a network, packet reordering can occur. One manifestation of 
packet reordering is that old copies of a packet with a sequence or acknowledgment 
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Figure 3.27 ♦  SR receiver dilemma with too-large windows: A new packet 
or a retransmission?
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number of x can appear, even though neither the sender’s nor the receiver’s win-
dow contains x. With packet reordering, the channel can be thought of as essen-
tially buffering packets and spontaneously emitting these packets at any point in 
the future. Because sequence numbers may be reused, some care must be taken to 
guard against such duplicate packets. The approach taken in practice is to ensure 
that a sequence number is not reused until the sender is “sure” that any previously 
sent packets with sequence number x are no longer in the network. This is done 
by assuming that a packet cannot “live” in the network for longer than some fixed 
maximum amount of time. A maximum packet lifetime of approximately three 
minutes is assumed in the TCP extensions for high-speed networks [RFC 7323]. 
[Sunshine 1978] describes a method for using sequence numbers such that reorder-
ing problems can be completely avoided.

Table 3.1 ♦ Summary of reliable data transfer mechanisms and their use

Mechanism Use, Comments

Checksum Used to detect bit errors in a transmitted packet.
Timer Used to timeout/retransmit a packet, possibly because the packet (or its ACK) 

was lost within the channel. Because timeouts can occur when a packet is delayed 
but not lost (premature timeout), or when a packet has been received by the 
receiver but the receiver-to-sender ACK has been lost, duplicate copies of a packet 
may be received by a receiver.

Sequence number Used for sequential numbering of packets of data flowing from sender to receiver. 
Gaps in the sequence numbers of received packets allow the receiver to detect a 
lost packet. Packets with duplicate sequence numbers allow the receiver to detect 
duplicate copies of a packet.

Acknowledgment Used by the receiver to tell the sender that a packet or set of packets has been 
received correctly. Acknowledgments will typically carry the sequence number of 
the packet or packets being acknowledged. Acknowledgments may be individual 
or cumulative, depending on the protocol.

Negative acknowledgment Used by the receiver to tell the sender that a packet has not been received 
correctly. Negative acknowledgments will typically carry the sequence number  
of the packet that was not received correctly.

Window, pipelining The sender may be restricted to sending only packets with sequence numbers that 
fall within a given range. By allowing multiple packets to be transmitted but not 
yet acknowledged, sender utilization can be increased over a stop-and-wait mode 
of operation. We’ll see shortly that the window size may be set on the basis of 
the receiver’s ability to receive and buffer messages, or the level of congestion in 
the network, or both.
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3.5 Connection-Oriented Transport: TCP

Now that we have covered the underlying principles of reliable data transfer, 
let’s turn to TCP—the Internet’s transport-layer, connection-oriented, reliable 
transport protocol. In this section, we’ll see that in order to provide reliable 
data transfer, TCP relies on many of the underlying principles discussed in 
the previous section, including error detection, retransmissions, cumulative 
acknowledgments, timers, and header fields for sequence and acknowledgment 
numbers. TCP is defined in RFC 793, RFC 1122, RFC 2018, RFC 5681, and 
RFC 7323.

3.5.1 The TCP Connection
TCP is said to be connection-oriented because before one application process can 
begin to send data to another, the two processes must first “handshake” with each 
other—that is, they must send some preliminary segments to each other to establish 
the parameters of the ensuing data transfer. As part of TCP connection establish-
ment, both sides of the connection will initialize many TCP state variables (many of 
which will be discussed in this section and in Section 3.7) associated with the TCP 
connection.

The TCP “connection” is not an end-to-end TDM or FDM circuit as in a circuit-
switched network. Instead, the “connection” is a logical one, with common state 
residing only in the TCPs in the two communicating end systems. Recall that because 
the TCP protocol runs only in the end systems and not in the intermediate network 
elements (routers and link-layer switches), the intermediate network elements do 
not maintain TCP connection state. In fact, the intermediate routers are completely 
oblivious to TCP connections; they see datagrams, not connections.

A TCP connection provides a full-duplex service: If there is a TCP con-
nection between Process A on one host and Process B on another host, then 
application-layer data can flow from Process A to Process B at the same time 
as application-layer data flows from Process B to Process A. A TCP connec-
tion is also always point-to-point, that is, between a single sender and a single 
receiver. So-called “multicasting” (see the online supplementary materials for 
this text)—the transfer of data from one sender to many receivers in a single 
send operation—is not possible with TCP. With TCP, two hosts are company 
and three are a crowd!

Let’s now take a look at how a TCP connection is established. Suppose a process 
running in one host wants to initiate a connection with another process in another 
host. Recall that the process that is initiating the connection is called the client  
process, while the other process is called the server process. The client application 
process first informs the client transport layer that it wants to establish a connection 
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to a process in the server. Recall from Section 2.7.2, a Python client program does 
this by issuing the command

clientSocket.connect((serverName,serverPort))

where serverName is the name of the server and serverPort identifies the 
process on the server. TCP in the client then proceeds to establish a TCP connec-
tion with TCP in the server. At the end of this section we discuss in some detail the 
connection-establishment procedure. For now it suffices to know that the client first 
sends a special TCP segment; the server responds with a second special TCP seg-
ment; and finally the client responds again with a third special segment. The first 
two segments carry no payload, that is, no application-layer data; the third of these 
segments may carry a payload. Because three segments are sent between the two 
hosts, this connection-establishment procedure is often referred to as a three-way 
handshake.

VINTON CERF, ROBERT KAHN, AND TCP/IP

In the early 1970s, packet-switched networks began to proliferate, with the 
ARPAnet—the precursor of the Internet—being just one of many networks. Each of 
these networks had its own protocol. Two researchers, Vinton Cerf and Robert Kahn, 
recognized the importance of interconnecting these networks and invented a cross-
network protocol called TCP/IP, which stands for Transmission Control Protocol/
Internet Protocol. Although Cerf and Kahn began by seeing the protocol as a single 
entity, it was later split into its two parts, TCP and IP, which operated separately. 
Cerf and Kahn published a paper on TCP/IP in May 1974 in IEEE Transactions on 
Communications Technology [Cerf 1974].

The TCP/IP protocol, which is the bread and butter of today’s Internet, was 
devised before PCs, workstations, smartphones, and tablets, before the prolifera-
tion of Ethernet, cable, and DSL, WiFi, and other access network technologies, and 
before the Web, social media, and streaming video. Cerf and Kahn saw the need 
for a networking protocol that, on the one hand, provides broad support for yet-to-
be-defined applications and, on the other hand, allows arbitrary hosts and link-layer 
protocols to interoperate.

In 2004, Cerf and Kahn received the ACM’s Turing Award, considered the 
“Nobel Prize of Computing” for “pioneering work on internetworking, including the 
design and implementation of the Internet’s basic communications protocols, TCP/IP, 
and for inspired leadership in networking.”

CASE HISTORY
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Once a TCP connection is established, the two application processes can send 
data to each other. Let’s consider the sending of data from the client process to the 
server process. The client process passes a stream of data through the socket (the door 
of the process), as described in Section 2.7. Once the data passes through the door, 
the data is in the hands of TCP running in the client. As shown in Figure 3.28, TCP 
directs this data to the connection’s send buffer, which is one of the buffers that is 
set aside during the initial three-way handshake. From time to time, TCP will grab 
chunks of data from the send buffer and pass the data to the network layer. Interest-
ingly, the TCP specification [RFC 793] is very laid back about specifying when TCP 
should actually send buffered data, stating that TCP should “send that data in seg-
ments at its own convenience.” The maximum amount of data that can be grabbed 
and placed in a segment is limited by the maximum segment size (MSS). The MSS 
is typically set by first determining the length of the largest link-layer frame that 
can be sent by the local sending host (the so-called maximum transmission unit, 
MTU), and then setting the MSS to ensure that a TCP segment (when encapsulated 
in an IP datagram) plus the TCP/IP header length (typically 40 bytes) will fit into a 
single link-layer frame. Both Ethernet and PPP link-layer protocols have an MTU of 
1,500 bytes. Thus, a typical value of MSS is 1460 bytes. Approaches have also been 
proposed for discovering the path MTU—the largest link-layer frame that can be sent 
on all links from source to destination [RFC 1191]—and setting the MSS based on 
the path MTU value. Note that the MSS is the maximum amount of application-layer 
data in the segment, not the maximum size of the TCP segment including headers. 
(This terminology is confusing, but we have to live with it, as it is well entrenched.)

TCP pairs each chunk of client data with a TCP header, thereby forming TCP 
segments. The segments are passed down to the network layer, where they are sepa-
rately encapsulated within network-layer IP datagrams. The IP datagrams are then 
sent into the network. When TCP receives a segment at the other end, the segment’s 
data is placed in the TCP connection’s receive buffer, as shown in Figure 3.28. The 
application reads the stream of data from this buffer. Each side of the connection has 

Process
writes data

Process
reads data

TCP
send

buffer

Socket

TCP
receive
buffer

Socket

Segment Segment

Figure 3.28 ♦ TCP send and receive buffers
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its own send buffer and its own receive buffer. (You can see the online flow-control 
interactive animation  at http://www.awl.com/kurose-ross, which provides an anima-
tion of the send and receive buffers.)

We see from this discussion that a TCP connection consists of buffers, variables, 
and a socket connection to a process in one host, and another set of buffers, vari-
ables, and a socket connection to a process in another host. As mentioned earlier, no 
buffers or variables are allocated to the connection in the network elements (routers, 
switches, and repeaters) between the hosts.

3.5.2 TCP Segment Structure
Having taken a brief look at the TCP connection, let’s examine the TCP segment 
structure. The TCP segment consists of header fields and a data field. The data field 
contains a chunk of application data. As mentioned above, the MSS limits the maxi-
mum size of a segment’s data field. When TCP sends a large file, such as an image as 
part of a Web page, it typically breaks the file into chunks of size MSS (except for the 
last chunk, which will often be less than the MSS). Interactive applications, however, 
often transmit data chunks that are smaller than the MSS; for example, with remote 
login applications such as Telnet and ssh, the data field in the TCP segment is often 
only one byte. Because the TCP header is typically 20 bytes (12 bytes more than the 
UDP header), segments sent by Telnet and ssh may be only 21 bytes in length.

Figure 3.29 shows the structure of the TCP segment. As with UDP, the header 
includes source and destination port numbers, which are used for multiplexing/
demultiplexing data from/to upper-layer applications. Also, as with UDP, the header 
includes a checksum field. A TCP segment header also contains the following fields:

• The 32-bit sequence number field and the 32-bit acknowledgment number 
field are used by the TCP sender and receiver in implementing a reliable data 
transfer service, as discussed below.

• The 16-bit receive window field is used for flow control. We will see shortly that 
it is used to indicate the number of bytes that a receiver is willing to accept.

• The 4-bit header length field specifies the length of the TCP header in 32-bit 
words. The TCP header can be of variable length due to the TCP options field. 
(Typically, the options field is empty, so that the length of the typical TCP header 
is 20 bytes.)

• The optional and variable-length options field is used when a sender and receiver 
negotiate the maximum segment size (MSS) or as a window scaling factor for use 
in high-speed networks. A time-stamping option is also defined. See RFC 854 
and RFC 1323 for additional details.

• The flag field contains 6 bits. The ACK bit is used to indicate that the value 
carried in the acknowledgment field is valid; that is, the segment contains an 
acknowledgment for a segment that has been successfully received. The RST, 
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SYN, and FIN bits are used for connection setup and teardown, as we will discuss 
at the end of this section. The CWR and ECE bits are used in explicit congestion 
notification, as discussed in Section 3.7.2. Setting the PSH bit indicates that the 
receiver should pass the data to the upper layer immediately. Finally, the URG bit 
is used to indicate that there is data in this segment that the sending-side upper-
layer entity has marked as “urgent.” The location of the last byte of this urgent 
data is indicated by the 16-bit urgent data pointer field. TCP must inform the 
receiving-side upper-layer entity when urgent data exists and pass it a pointer to 
the end of the urgent data. (In practice, the PSH, URG, and the urgent data pointer 
are not used. However, we mention these fields for completeness.)

Our experience as teachers is that our students sometimes find discussion of 
packet formats rather dry and perhaps a bit boring. For a fun and fanciful look at 
TCP header fields, particularly if you love Legos™ as we do, see [Pomeranz 2010].

Sequence Numbers and Acknowledgment Numbers

Two of the most important fields in the TCP segment header are the sequence number 
field and the acknowledgment number field. These fields are a critical part of TCP’s 
reliable data transfer service. But before discussing how these fields are used to pro-
vide reliable data transfer, let us first explain what exactly TCP puts in these fields.
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Figure 3.29 ♦ TCP segment structure
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TCP views data as an unstructured, but ordered, stream of bytes. TCP’s use of 
sequence numbers reflects this view in that sequence numbers are over the stream 
of transmitted bytes and not over the series of transmitted segments. The sequence 
number for a segment is therefore the byte-stream number of the first byte in the 
segment. Let’s look at an example. Suppose that a process in Host A wants to send a 
stream of data to a process in Host B over a TCP connection. The TCP in Host A will 
implicitly number each byte in the data stream. Suppose that the data stream consists 
of a file consisting of 500,000 bytes, that the MSS is 1,000 bytes, and that the first 
byte of the data stream is numbered 0. As shown in Figure 3.30, TCP constructs 500 
segments out of the data stream. The first segment gets assigned sequence number 
0, the second segment gets assigned sequence number 1,000, the third segment gets 
assigned sequence number 2,000, and so on. Each sequence number is inserted in the 
sequence number field in the header of the appropriate TCP segment.

Now let’s consider acknowledgment numbers. These are a little trickier than 
sequence numbers. Recall that TCP is full-duplex, so that Host A may be receiving 
data from Host B while it sends data to Host B (as part of the same TCP connection). 
Each of the segments that arrive from Host B has a sequence number for the data 
flowing from B to A. The acknowledgment number that Host A puts in its segment 
is the sequence number of the next byte Host A is expecting from Host B. It is good 
to look at a few examples to understand what is going on here. Suppose that Host A 
has received all bytes numbered 0 through 535 from B and suppose that it is about 
to send a segment to Host B. Host A is waiting for byte 536 and all the subsequent 
bytes in Host B’s data stream. So Host A puts 536 in the acknowledgment number 
field of the segment it sends to B.

As another example, suppose that Host A has received one segment from Host 
B containing bytes 0 through 535 and another segment containing bytes 900 through 
1,000. For some reason Host A has not yet received bytes 536 through 899. In this 
example, Host A is still waiting for byte 536 (and beyond) in order to re-create B’s 
data stream. Thus, A’s next segment to B will contain 536 in the acknowledgment 
number field. Because TCP only acknowledges bytes up to the first missing byte in 
the stream, TCP is said to provide cumulative acknowledgments.

0 1 1,000 1,999 499,999

File

Data for 1st segment Data for 2nd segment

Figure 3.30 ♦ Dividing file data into TCP segments
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This last example also brings up an important but subtle issue. Host A received 
the third segment (bytes 900 through 1,000) before receiving the second segment 
(bytes 536 through 899). Thus, the third segment arrived out of order. The sub-
tle issue is: What does a host do when it receives out-of-order segments in a TCP 
connection? Interestingly, the TCP RFCs do not impose any rules here and leave 
the decision up to the programmers implementing a TCP implementation. There 
are basically two choices: either (1) the receiver immediately discards out-of-order 
segments (which, as we discussed earlier, can simplify receiver design), or (2) the 
receiver keeps the out-of-order bytes and waits for the missing bytes to fill in the 
gaps. Clearly, the latter choice is more efficient in terms of network bandwidth, and 
is the approach taken in practice.

In Figure 3.30, we assumed that the initial sequence number was zero. In truth, 
both sides of a TCP connection randomly choose an initial sequence number. This 
is done to minimize the possibility that a segment that is still present in the network 
from an earlier, already-terminated connection between two hosts is mistaken for a 
valid segment in a later connection between these same two hosts (which also happen 
to be using the same port numbers as the old connection) [Sunshine 1978].

Telnet: A Case Study for Sequence and Acknowledgment Numbers

Telnet, defined in RFC 854, is a popular application-layer protocol used for remote 
login. It runs over TCP and is designed to work between any pair of hosts. Unlike the 
bulk data transfer applications discussed in Chapter 2, Telnet is an interactive appli-
cation. We discuss a Telnet example here, as it nicely illustrates TCP sequence and 
acknowledgment numbers. We note that many users now prefer to use the SSH proto-
col rather than Telnet, since data sent in a Telnet connection (including passwords!) 
are not encrypted, making Telnet vulnerable to eavesdropping attacks (as discussed 
in Section 8.7).

Suppose Host A initiates a Telnet session with Host B. Because Host A initiates 
the session, it is labeled the client, and Host B is labeled the server. Each character 
typed by the user (at the client) will be sent to the remote host; the remote host will 
send back a copy of each character, which will be displayed on the Telnet user’s 
screen. This “echo back” is used to ensure that characters seen by the Telnet user 
have already been received and processed at the remote site. Each character thus 
traverses the network twice between the time the user hits the key and the time the 
character is displayed on the user’s monitor.

Now suppose the user types a single letter, ‘C,’ and then grabs a coffee. Let’s 
examine the TCP segments that are sent between the client and server. As shown 
in Figure 3.31, we suppose the starting sequence numbers are 42 and 79 for the cli-
ent and server, respectively. Recall that the sequence number of a segment is the 
sequence number of the first byte in the data field. Thus, the first segment sent from 
the client will have sequence number 42; the first segment sent from the server will 
have sequence number 79. Recall that the acknowledgment number is the sequence 
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number of the next byte of data that the host is waiting for. After the TCP connec-
tion is established but before any data is sent, the client is waiting for byte 79 and the 
server is waiting for byte 42.

As shown in Figure 3.31, three segments are sent. The first segment is sent from 
the client to the server, containing the 1-byte ASCII representation of the letter ‘C’ in 
its data field. This first segment also has 42 in its sequence number field, as we just 
described. Also, because the client has not yet received any data from the server, this 
first segment will have 79 in its acknowledgment number field.

The second segment is sent from the server to the client. It serves a dual purpose. 
First it provides an acknowledgment of the data the server has received. By putting 
43 in the acknowledgment field, the server is telling the client that it has successfully 
received everything up through byte 42 and is now waiting for bytes 43 onward. The 
second purpose of this segment is to echo back the letter ‘C.’ Thus, the second seg-
ment has the ASCII representation of ‘C’ in its data field. This second segment has 
the sequence number 79, the initial sequence number of the server-to-client data flow 
of this TCP connection, as this is the very first byte of data that the server is send-
ing. Note that the acknowledgment for client-to-server data is carried in a segment 

Time Time

Host A Host B

User types
'C'

Seq=42, ACK=79, data='C'

Seq=
79, 

ACK=
43, 

data
='C'

Seq=43, ACK=80

Host ACKs
receipt of 'C',
echoes back 'C'

Host ACKs
receipt of
echoed 'C'

Figure 3.31 ♦  Sequence and acknowledgment numbers for a simple Telnet 
application over TCP
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carrying server-to-client data; this acknowledgment is said to be piggybacked on the 
server-to-client data segment.

The third segment is sent from the client to the server. Its sole purpose is to 
acknowledge the data it has received from the server. (Recall that the second seg-
ment contained data—the letter ‘C’—from the server to the client.) This segment 
has an empty data field (that is, the acknowledgment is not being piggybacked with 
any client-to-server data). The segment has 80 in the acknowledgment number field 
because the client has received the stream of bytes up through byte sequence number 
79 and it is now waiting for bytes 80 onward. You might think it odd that this seg-
ment also has a sequence number since the segment contains no data. But because 
TCP has a sequence number field, the segment needs to have some sequence number.

3.5.3 Round-Trip Time Estimation and Timeout
TCP, like our rdt protocol in Section 3.4, uses a timeout/retransmit mechanism to 
recover from lost segments. Although this is conceptually simple, many subtle issues 
arise when we implement a timeout/retransmit mechanism in an actual protocol such 
as TCP. Perhaps the most obvious question is the length of the timeout intervals. 
Clearly, the timeout should be larger than the connection’s round-trip time (RTT), 
that is, the time from when a segment is sent until it is acknowledged. Otherwise, 
unnecessary retransmissions would be sent. But how much larger? How should the 
RTT be estimated in the first place? Should a timer be associated with each and 
every unacknowledged segment? So many questions! Our discussion in this section 
is based on the TCP work in [Jacobson 1988] and the current IETF recommendations 
for managing TCP timers [RFC 6298].

Estimating the Round-Trip Time

Let’s begin our study of TCP timer management by considering how TCP estimates 
the round-trip time between sender and receiver. This is accomplished as follows. 
The sample RTT, denoted SampleRTT, for a segment is the amount of time between 
when the segment is sent (that is, passed to IP) and when an acknowledgment for 
the segment is received. Instead of measuring a SampleRTT for every transmitted 
segment, most TCP implementations take only one SampleRTT measurement at 
a time. That is, at any point in time, the SampleRTT is being estimated for only 
one of the transmitted but currently unacknowledged segments, leading to a new 
value of SampleRTT approximately once every RTT. Also, TCP never computes a  
SampleRTT for a segment that has been retransmitted; it only measures  
SampleRTT for segments that have been transmitted once [Karn 1987]. (A problem 
at the end of the chapter asks you to consider why.)

Obviously, the SampleRTT values will fluctuate from segment to segment due 
to congestion in the routers and to the varying load on the end systems. Because of 
this fluctuation, any given SampleRTT value may be atypical. In order to estimate 
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a typical RTT, it is therefore natural to take some sort of average of the SampleRTT 
values. TCP maintains an average, called EstimatedRTT, of the SampleRTT 
values. Upon obtaining a new SampleRTT, TCP updates EstimatedRTT accord-
ing to the following formula:

EstimatedRTT = (1 – α) # EstimatedRTT + α # SampleRTT
The formula above is written in the form of a programming-language state-

ment—the new value of EstimatedRTT is a weighted combination of the previous 
value of EstimatedRTT and the new value for SampleRTT. The recommended 
value of α is α = 0.125 (that is, 1/8) [RFC 6298], in which case the formula above 
becomes:

EstimatedRTT = 0.875 # EstimatedRTT + 0.125 # SampleRTT
Note that EstimatedRTT is a weighted average of the SampleRTT values. As 

discussed in a homework problem at the end of this chapter, this weighted average 
puts more weight on recent samples than on old samples. This is natural, as the more 
recent samples better reflect the current congestion in the network. In statistics, such 
an average is called an exponential weighted moving average (EWMA). The word 
“exponential” appears in EWMA because the weight of a given SampleRTT decays 
exponentially fast as the updates proceed. In the homework problems, you will be 
asked to derive the exponential term in EstimatedRTT.

Figure 3.32 shows the SampleRTT values and EstimatedRTT for a value 
of α = 1/8 for a TCP connection between gaia.cs.umass.edu (in Amherst, 
Massachusetts) to fantasia.eurecom.fr (in the south of France). Clearly, 
the variations in the SampleRTT are smoothed out in the computation of the 
EstimatedRTT.

In addition to having an estimate of the RTT, it is also valuable to have a meas-
ure of the variability of the RTT. [RFC 6298] defines the RTT variation, DevRTT, 
as an estimate of how much SampleRTT typically deviates from EstimatedRTT:

DevRTT = (1 – β) # DevRTT + β # | SampleRTT – EstimatedRTT |

Note that DevRTT is an EWMA of the difference between SampleRTT and 
EstimatedRTT. If the SampleRTT values have little fluctuation, then DevRTT 
will be small; on the other hand, if there is a lot of fluctuation, DevRTT will be large. 
The recommended value of β is 0.25.

Setting and Managing the Retransmission Timeout Interval

Given values of EstimatedRTT and DevRTT, what value should be used for 
TCP’s timeout interval? Clearly, the interval should be greater than or equal to  
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EstimatedRTT, or unnecessary retransmissions would be sent. But the timeout 
interval should not be too much larger than EstimatedRTT; otherwise, when a 
segment is lost, TCP would not quickly retransmit the segment, leading to large  
data transfer delays. It is therefore desirable to set the timeout equal to the  
EstimatedRTT plus some margin. The margin should be large when there is a lot 
of fluctuation in the SampleRTT values; it should be small when there is little fluc-
tuation. The value of DevRTT should thus come into play here. All of these consid-
erations are taken into account in TCP’s method for determining the retransmission 
timeout interval:

TimeoutInterval = EstimatedRTT + 4 # DevRTT
An initial TimeoutInterval value of 1 second is recommended [RFC 

6298]. Also, when a timeout occurs, the value of TimeoutInterval is doubled 
to avoid a premature timeout occurring for a subsequent segment that will soon be 
acknowledged. However, as soon as a segment is received and EstimatedRTT is 
updated, the TimeoutInterval is again computed using the formula above.

TCP provides reliable data transfer by using positive acknowledgments and timers in much 
the same way that we studied in Section 3.4. TCP acknowledges data that has been 
received correctly, and it then retransmits segments when segments or their corresponding 
acknowledgments are thought to be lost or corrupted. Certain versions of TCP also have 
an implicit NAK mechanism—with TCP’s fast retransmit mechanism, the receipt of three 
duplicate ACKs for a given segment serves as an implicit NAK for the following segment, 
triggering retransmission of that segment before timeout. TCP uses sequences of numbers to 
allow the receiver to identify lost or duplicate segments. Just as in the case of our reliable 
data transfer protocol, rdt3.0, TCP cannot itself tell for certain if a segment, or its ACK, is 
lost, corrupted, or overly delayed. At the sender, TCP’s response will be the same: retrans-
mit the segment in question.

TCP also uses pipelining, allowing the sender to have multiple transmitted but yet-to-
be-acknowledged segments outstanding at any given time. We saw earlier that pipelining 
can greatly improve a session’s throughput when the ratio of the segment size to round-
trip delay is small. The specific number of outstanding, unacknowledged segments that a 
sender can have is determined by TCP’s flow-control and congestion-control mechanisms. 
TCP flow control is discussed at the end of this section; TCP congestion control is discussed 
in Section 3.7. For the time being, we must simply be aware that the TCP sender uses 
pipelining.

PRINCIPLES IN PRACTICE
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3.5.4 Reliable Data Transfer
Recall that the Internet’s network-layer service (IP service) is unreliable. IP does 
not guarantee datagram delivery, does not guarantee in-order delivery of datagrams, 
and does not guarantee the integrity of the data in the datagrams. With IP service, 
datagrams can overflow router buffers and never reach their destination, datagrams 
can arrive out of order, and bits in the datagram can get corrupted (flipped from 0 to 
1 and vice versa). Because transport-layer segments are carried across the network 
by IP datagrams, transport-layer segments can suffer from these problems as well.

TCP creates a reliable data transfer service on top of IP’s unreliable best-
effort service. TCP’s reliable data transfer service ensures that the data stream that 
a process reads out of its TCP receive buffer is uncorrupted, without gaps, with-
out duplication, and in sequence; that is, the byte stream is exactly the same byte 
stream that was sent by the end system on the other side of the connection. How TCP 
provides a reliable data transfer involves many of the principles that we studied in  
Section 3.4.

In our earlier development of reliable data transfer techniques, it was conceptu-
ally easiest to assume that an individual timer is associated with each transmitted 
but not yet acknowledged segment. While this is great in theory, timer management 
can require considerable overhead. Thus, the recommended TCP timer management 
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procedures [RFC 6298] use only a single retransmission timer, even if there are mul-
tiple transmitted but not yet acknowledged segments. The TCP protocol described in 
this section follows this single-timer recommendation.

We will discuss how TCP provides reliable data transfer in two incremental 
steps. We first present a highly simplified description of a TCP sender that uses only 
timeouts to recover from lost segments; we then present a more complete description 
that uses duplicate acknowledgments in addition to timeouts. In the ensuing discus-
sion, we suppose that data is being sent in only one direction, from Host A to Host B, 
and that Host A is sending a large file.

Figure 3.33 presents a highly simplified description of a TCP sender. We see 
that there are three major events related to data transmission and retransmission 
in the TCP sender: data received from application above; timer timeout; and ACK 

/* Assume sender is not constrained by TCP flow or congestion control, that data from above is less

than MSS in size, and that data transfer is in one direction only. */

NextSeqNum=InitialSeqNumber

SendBase=InitialSeqNumber

loop (forever) {

switch(event)

event: data received from application above

create TCP segment with sequence number NextSeqNum

if (timer currently not running)

start timer

pass segment to IP

NextSeqNum=NextSeqNum+length(data)

break;

event: timer timeout

retransmit not-yet-acknowledged segment with

smallest sequence number

start timer

break;

event: ACK received, with ACK field value of y

if (y > SendBase) {

SendBase=y

if (there are currently any not-yet-acknowledged segments)

start timer

}

break;

} /* end of loop forever */

Figure 3.33 ♦ Simplified TCP sender
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receipt. Upon the occurrence of the first major event, TCP receives data from the 
application, encapsulates the data in a segment, and passes the segment to IP. Note 
that each segment includes a sequence number that is the byte-stream number of 
the first data byte in the segment, as described in Section 3.5.2. Also note that if the 
timer is already not running for some other segment, TCP starts the timer when the 
segment is passed to IP. (It is helpful to think of the timer as being associated with 
the oldest unacknowledged segment.) The expiration interval for this timer is the 
TimeoutInterval, which is calculated from EstimatedRTT and DevRTT, as 
described in Section 3.5.3.

The second major event is the timeout. TCP responds to the timeout event by 
retransmitting the segment that caused the timeout. TCP then restarts the timer.

The third major event that must be handled by the TCP sender is the arrival of 
an acknowledgment segment (ACK) from the receiver (more specifically, a segment 
containing a valid ACK field value). On the occurrence of this event, TCP compares 
the ACK value y with its variable SendBase. The TCP state variable SendBase 
is the sequence number of the oldest unacknowledged byte. (Thus SendBase–1 is 
the sequence number of the last byte that is known to have been received correctly 
and in order at the receiver.) As indicated earlier, TCP uses cumulative acknowl-
edgments, so that y acknowledges the receipt of all bytes before byte number y. If  
y > SendBase, then the ACK is acknowledging one or more previously unac-
knowledged segments. Thus the sender updates its SendBase variable; it also 
restarts the timer if there currently are any not-yet-acknowledged segments.

A Few Interesting Scenarios

We have just described a highly simplified version of how TCP provides reliable data 
transfer. But even this highly simplified version has many subtleties. To get a good 
feeling for how this protocol works, let’s now walk through a few simple scenarios. 
Figure 3.34 depicts the first scenario, in which Host A sends one segment to Host B. 
Suppose that this segment has sequence number 92 and contains 8 bytes of data. After 
sending this segment, Host A waits for a segment from B with acknowledgment num-
ber 100. Although the segment from A is received at B, the acknowledgment from B 
to A gets lost. In this case, the timeout event occurs, and Host A retransmits the same 
segment. Of course, when Host B receives the retransmission, it observes from the 
sequence number that the segment contains data that has already been received. Thus, 
TCP in Host B will discard the bytes in the retransmitted segment.

In a second scenario, shown in Figure 3.35, Host A sends two segments back to 
back. The first segment has sequence number 92 and 8 bytes of data, and the second 
segment has sequence number 100 and 20 bytes of data. Suppose that both segments 
arrive intact at B, and B sends two separate acknowledgments for each of these seg-
ments. The first of these acknowledgments has acknowledgment number 100; the 
second has acknowledgment number 120. Suppose now that neither of the acknowl-
edgments arrives at Host A before the timeout. When the timeout event occurs, Host 
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A resends the first segment with sequence number 92 and restarts the timer. As long 
as the ACK for the second segment arrives before the new timeout, the second seg-
ment will not be retransmitted.

In a third and final scenario, suppose Host A sends the two segments, exactly 
as in the second example. The acknowledgment of the first segment is lost in the 
network, but just before the timeout event, Host A receives an acknowledgment with 
acknowledgment number 120. Host A therefore knows that Host B has received  
everything up through byte 119; so Host A does not resend either of the two  
segments. This scenario is illustrated in Figure 3.36.

Doubling the Timeout Interval

We now discuss a few modifications that most TCP implementations employ. The 
first concerns the length of the timeout interval after a timer expiration. In this modi-
fication, whenever the timeout event occurs, TCP retransmits the not-yet-acknowl-
edged segment with the smallest sequence number, as described above. But each 
time TCP retransmits, it sets the next timeout interval to twice the previous value, 

Time Time

Host A Host B

Timeout

Seq=92, 8 bytes data

Seq=92, 8 bytes data

ACK=1
00

ACK=1
00

X
(loss)

Figure 3.34 ♦ Retransmission due to a lost acknowledgment
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rather than deriving it from the last EstimatedRTT and DevRTT (as described 
in Section 3.5.3). For example, suppose TimeoutInterval associated with 
the oldest not yet acknowledged segment is .75 sec when the timer first expires. 
TCP will then retransmit this segment and set the new expiration time to 1.5 sec. If 
the timer expires again 1.5 sec later, TCP will again retransmit this segment, now 
setting the expiration time to 3.0 sec. Thus, the intervals grow exponentially after 
each retransmission. However, whenever the timer is started after either of the two 
other events (that is, data received from application above, and ACK received), the  
TimeoutInterval is derived from the most recent values of EstimatedRTT 
and DevRTT.

This modification provides a limited form of congestion control. (More com-
prehensive forms of TCP congestion control will be studied in Section 3.7.) The 
timer expiration is most likely caused by congestion in the network, that is, too many 
packets arriving at one (or more) router queues in the path between the source and 
destination, causing packets to be dropped and/or long queuing delays. In times of 
congestion, if the sources continue to retransmit packets persistently, the congestion 
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Seq=92, 8 bytes dataSeq=100, 20 bytes data
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ACK=
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Figure 3.35 ♦ Segment 100 not retransmitted
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may get worse. Instead, TCP acts more politely, with each sender retransmitting after 
longer and longer intervals. We will see that a similar idea is used by Ethernet when 
we study CSMA/CD in Chapter 6.

Fast Retransmit

One of the problems with timeout-triggered retransmissions is that the timeout period 
can be relatively long. When a segment is lost, this long timeout period forces the 
sender to delay resending the lost packet, thereby increasing the end-to-end delay. 
Fortunately, the sender can often detect packet loss well before the timeout event 
occurs by noting so-called duplicate ACKs. A duplicate ACK is an ACK that reac-
knowledges a segment for which the sender has already received an earlier acknowl-
edgment. To understand the sender’s response to a duplicate ACK, we must look at 
why the receiver sends a duplicate ACK in the first place. Table 3.2 summarizes the 
TCP receiver’s ACK generation policy [RFC 5681]. When a TCP receiver receives 
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X
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Figure 3.36 ♦  A cumulative acknowledgment avoids retransmission of the 
first segment
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a segment with a sequence number that is larger than the next, expected, in-order 
sequence number, it detects a gap in the data stream—that is, a missing segment. 
This gap could be the result of lost or reordered segments within the network. Since 
TCP does not use negative acknowledgments, the receiver cannot send an explicit 
negative acknowledgment back to the sender. Instead, it simply reacknowledges 
(that is, generates a duplicate ACK for) the last in-order byte of data it has received. 
(Note that Table 3.2 allows for the case that the receiver does not discard out-of-
order segments.)

Because a sender often sends a large number of segments back to back, if one 
segment is lost, there will likely be many back-to-back duplicate ACKs. If the TCP 
sender receives three duplicate ACKs for the same data, it takes this as an indication 
that the segment following the segment that has been ACKed three times has been 
lost. (In the homework problems, we consider the question of why the sender waits 
for three duplicate ACKs, rather than just a single duplicate ACK.) In the case that 
three duplicate ACKs are received, the TCP sender performs a fast retransmit [RFC 
5681], retransmitting the missing segment before that segment’s timer expires. This 
is shown in Figure 3.37, where the second segment is lost, then retransmitted before 
its timer expires. For TCP with fast retransmit, the following code snippet replaces 
the ACK received event in Figure 3.33:

event: ACK received, with ACK field value of y
            if (y > SendBase) {
            SendBase=y
            if (there are currently any not yet
                       acknowledged segments)
               start timer
               }

Table 3.2 ♦ TCP ACK Generation Recommendation [RFC 5681]

Event TCP Receiver Action
Arrival of in-order segment with expected sequence number. All  
data up to expected sequence number already acknowledged.

Delayed ACK. Wait up to 500 msec for arrival of another in-order segment.  
If next in-order segment does not arrive in this interval, send an ACK.

Arrival of in-order segment with expected sequence number. One  
other in-order segment waiting for ACK transmission.

Immediately send single cumulative ACK, ACKing both in-order segments.

Arrival of out-of-order segment with higher-than-expected sequence 
number. Gap detected.

Immediately send duplicate ACK, indicating sequence number of next 
expected byte (which is the lower end of the gap).

Arrival of segment that partially or completely fills in gap in  
received data.

Immediately send ACK, provided that segment starts at the lower end  
of gap.
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Host A Host B

seq=100, 20 bytes of data

Timeout

Time Time

X

seq=100, 20 bytes of data

seq=92, 8 bytes of dataseq=120, 15 bytes of data
seq=135, 6 bytes of data
seq=141, 16 bytes of data

ack=100

ack=100

ack=100

ack=100

Figure 3.37 ♦  Fast retransmit: retransmitting the missing segment before 
the segment’s timer expires

            else {/* a duplicate ACK for already ACKed
                   segment */
               increment number of duplicate ACKs
                   received for y
               if (number of duplicate ACKS received
                   for y==3)
                   /* TCP fast retransmit */
                   resend segment with sequence number y
               }
           break;

We noted earlier that many subtle issues arise when a timeout/retransmit mech-
anism is implemented in an actual protocol such as TCP. The procedures above, 
which have evolved as a result of more than 30 years of experience with TCP timers, 
should convince you that this is indeed the case!
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Go-Back-N or Selective Repeat?

Let us close our study of TCP’s error-recovery mechanism by considering the fol-
lowing question: Is TCP a GBN or an SR protocol? Recall that TCP acknowledg-
ments are cumulative and correctly received but out-of-order segments are not 
individually ACKed by the receiver. Consequently, as shown in Figure 3.33 (see 
also Figure 3.19), the TCP sender need only maintain the smallest sequence number 
of a transmitted but unacknowledged byte (SendBase) and the sequence number 
of the next byte to be sent (NextSeqNum). In this sense, TCP looks a lot like a 
GBN-style protocol. But there are some striking differences between TCP and Go-
Back-N. Many TCP implementations will buffer correctly received but out-of-order 
segments [Stevens 1994]. Consider also what happens when the sender sends a 
sequence of segments 1, 2, . . . , N, and all of the segments arrive in order without 
error at the receiver. Further suppose that the acknowledgment for packet n 6 N 
gets lost, but the remaining N - 1 acknowledgments arrive at the sender before 
their respective timeouts. In this example, GBN would retransmit not only packet n, 
but also all of the subsequent packets n + 1, n + 2, . . . , N. TCP, on the other hand, 
would retransmit at most one segment, namely, segment n. Moreover, TCP would 
not even retransmit segment n if the acknowledgment for segment n + 1 arrived 
before the timeout for segment n.

A proposed modification to TCP, the so-called selective acknowledgment  
[RFC 2018], allows a TCP receiver to acknowledge out-of-order segments selectively 
rather than just cumulatively acknowledging the last correctly received, in-order  
segment. When combined with selective retransmission—skipping the retransmis-
sion of segments that have already been selectively acknowledged by the receiver—
TCP looks a lot like our generic SR protocol. Thus, TCP’s error-recovery mechanism 
is probably best categorized as a hybrid of GBN and SR protocols.

3.5.5 Flow Control
Recall that the hosts on each side of a TCP connection set aside a receive buffer 
for the connection. When the TCP connection receives bytes that are correct and in 
sequence, it places the data in the receive buffer. The associated application process 
will read data from this buffer, but not necessarily at the instant the data arrives. 
Indeed, the receiving application may be busy with some other task and may not even 
attempt to read the data until long after it has arrived. If the application is relatively 
slow at reading the data, the sender can very easily overflow the connection’s receive 
buffer by sending too much data too quickly.

TCP provides a flow-control service to its applications to eliminate the pos-
sibility of the sender overflowing the receiver’s buffer. Flow control is thus a speed-
matching service—matching the rate at which the sender is sending against the rate 
at which the receiving application is reading. As noted earlier, a TCP sender can also 
be throttled due to congestion within the IP network; this form of sender control is 
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referred to as congestion control, a topic we will explore in detail in Sections 3.6 
and 3.7. Even though the actions taken by flow and congestion control are similar 
(the throttling of the sender), they are obviously taken for very different reasons. 
Unfortunately, many authors use the terms interchangeably, and the savvy reader 
would be wise to distinguish between them. Let’s now discuss how TCP provides its 
flow-control service. In order to see the forest for the trees, we suppose throughout 
this section that the TCP implementation is such that the TCP receiver discards out-
of-order segments.

TCP provides flow control by having the sender maintain a variable called 
the receive window. Informally, the receive window is used to give the sender an 
idea of how much free buffer space is available at the receiver. Because TCP is 
full-duplex, the sender at each side of the connection maintains a distinct receive 
window. Let’s investigate the receive window in the context of a file transfer. Sup-
pose that Host A is sending a large file to Host B over a TCP connection. Host B 
allocates a receive buffer to this connection; denote its size by RcvBuffer. From 
time to time, the application process in Host B reads from the buffer. Define the 
following variables:

• LastByteRead: the number of the last byte in the data stream read from the 
buffer by the application process in B

• LastByteRcvd: the number of the last byte in the data stream that has arrived 
from the network and has been placed in the receive buffer at B

Because TCP is not permitted to overflow the allocated buffer, we must have

LastByteRcvd – LastByteRead … RcvBuffer

The receive window, denoted rwnd is set to the amount of spare room in the buffer:

rwnd = RcvBuffer – [LastByteRcvd – LastByteRead]

Because the spare room changes with time, rwnd is dynamic. The variable rwnd is 
illustrated in Figure 3.38.

How does the connection use the variable rwnd to provide the flow-control 
service? Host B tells Host A how much spare room it has in the connection buffer 
by placing its current value of rwnd in the receive window field of every segment it 
sends to A. Initially, Host B sets rwnd = RcvBuffer. Note that to pull this off, 
Host B must keep track of several connection-specific variables.

Host A in turn keeps track of two variables, LastByteSent and Last-
ByteAcked, which have obvious meanings. Note that the difference between these 
two variables, LastByteSent – LastByteAcked, is the amount of unac-
knowledged data that A has sent into the connection. By keeping the amount of 
unacknowledged data less than the value of rwnd, Host A is assured that it is not 
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overflowing the receive buffer at Host B. Thus, Host A makes sure throughout the 
connection’s life that

LastByteSent – LastByteAcked … rwnd

There is one minor technical problem with this scheme. To see this, suppose Host 
B’s receive buffer becomes full so that rwnd = 0. After advertising rwnd = 0 to 
Host A, also suppose that B has nothing to send to A. Now consider what happens. 
As the application process at B empties the buffer, TCP does not send new seg-
ments with new rwnd values to Host A; indeed, TCP sends a segment to Host A 
only if it has data to send or if it has an acknowledgment to send. Therefore, Host 
A is never informed that some space has opened up in Host B’s receive buffer—
Host A is blocked and can transmit no more data! To solve this problem, the TCP 
specification requires Host A to continue to send segments with one data byte when 
B’s receive window is zero. These segments will be acknowledged by the receiver. 
Eventually the buffer will begin to empty and the acknowledgments will contain a 
nonzero rwnd value.

The online site at for this book provides an interactive animation that illustrates 
the operation of the TCP receive window.

Having described TCP’s flow-control service, we briefly mention here that UDP 
does not provide flow control and consequently, segments may be lost at the receiver 
due to buffer overflow. For example, consider sending a series of UDP segments 
from a process on Host A to a process on Host B. For a typical UDP implementation, 
UDP will append the segments in a finite-sized buffer that “precedes” the corre-
sponding socket (that is, the door to the process). The process reads one entire seg-
ment at a time from the buffer. If the process does not read the segments fast enough 
from the buffer, the buffer will overflow and segments will get dropped.

Application
process 

Data
from IP TCP data

in buffer

rwnd

RcvBu!er

Spare room

Figure 3.38 ♦  The receive window (rwnd) and the receive buffer 
(RcvBuffer)
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3.5.6 TCP Connection Management
In this subsection, we take a closer look at how a TCP connection is established and 
torn down. Although this topic may not seem particularly thrilling, it is important 
because TCP connection establishment can significantly add to perceived delays (for 
example, when surfing the Web). Furthermore, many of the most common network 
attacks—including the incredibly popular SYN flood attack (see sidebar on the SYN 
flood attack)—exploit vulnerabilities in TCP connection management. Let’s first 
take a look at how a TCP connection is established. Suppose a process running in 
one host (client) wants to initiate a connection with another process in another host 
(server). The client application process first informs the client TCP that it wants to 
establish a connection to a process in the server. The TCP in the client then proceeds 
to establish a TCP connection with the TCP in the server in the following manner:

• Step 1. The client-side TCP first sends a special TCP segment to the server-side 
TCP. This special segment contains no application-layer data. But one of the flag 
bits in the segment’s header (see Figure 3.29), the SYN bit, is set to 1. For this 
reason, this special segment is referred to as a SYN segment. In addition, the cli-
ent randomly chooses an initial sequence number (client_isn) and puts this 
number in the sequence number field of the initial TCP SYN segment. This seg-
ment is encapsulated within an IP datagram and sent to the server. There has been 
considerable interest in properly randomizing the choice of the client_isn in 
order to avoid certain security attacks [CERT 2001–09; RFC 4987].

• Step 2. Once the IP datagram containing the TCP SYN segment arrives at the 
server host (assuming it does arrive!), the server extracts the TCP SYN segment 
from the datagram, allocates the TCP buffers and variables to the connection, 
and sends a connection-granted segment to the client TCP. (We’ll see in Chapter 
8 that the allocation of these buffers and variables before completing the third 
step of the three-way handshake makes TCP vulnerable to a denial-of-service 
attack known as SYN flooding.) This connection-granted segment also contains 
no application-layer data. However, it does contain three important pieces of 
information in the segment header. First, the SYN bit is set to 1. Second, the 
acknowledgment field of the TCP segment header is set to client_isn+1. 
Finally, the server chooses its own initial sequence number (server_isn) and 
puts this value in the sequence number field of the TCP segment header. This 
connection-granted segment is saying, in effect, “I received your SYN packet to 
start a connection with your initial sequence number, client_isn. I agree to 
establish this connection. My own initial sequence number is server_isn.” 
The connection-granted segment is referred to as a SYNACK segment.

• Step 3. Upon receiving the SYNACK segment, the client also allocates buffers 
and variables to the connection. The client host then sends the server yet another 
segment; this last segment acknowledges the server’s connection-granted segment 
(the client does so by putting the value server_isn+1 in the acknowledgment 
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field of the TCP segment header). The SYN bit is set to zero, since the connection 
is established. This third stage of the three-way handshake may carry client-to-
server data in the segment payload.

Once these three steps have been completed, the client and server hosts can send 
segments containing data to each other. In each of these future segments, the SYN 
bit will be set to zero. Note that in order to establish the connection, three packets 
are sent between the two hosts, as illustrated in Figure 3.39. For this reason, this 
connection-establishment procedure is often referred to as a three-way handshake. 
Several aspects of the TCP three-way handshake are explored in the homework prob-
lems (Why are initial sequence numbers needed? Why is a three-way handshake, 
as opposed to a two-way handshake, needed?). It’s interesting to note that a rock 
climber and a belayer (who is stationed below the rock climber and whose job it is 
to handle the climber’s safety rope) use a three-way-handshake communication pro-
tocol that is identical to TCP’s to ensure that both sides are ready before the climber 
begins ascent.

All good things must come to an end, and the same is true with a TCP connec-
tion. Either of the two processes participating in a TCP connection can end the con-
nection. When a connection ends, the “resources” (that is, the buffers and variables) 
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Figure 3.39 ♦ TCP three-way handshake: segment exchange
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in the hosts are deallocated. As an example, suppose the client decides to close the 
connection, as shown in Figure 3.40. The client application process issues a close 
command. This causes the client TCP to send a special TCP segment to the server 
process. This special segment has a flag bit in the segment’s header, the FIN bit (see 
Figure 3.29), set to 1. When the server receives this segment, it sends the client an 
acknowledgment segment in return. The server then sends its own shutdown segment, 
which has the FIN bit set to 1. Finally, the client acknowledges the server’s shutdown 
segment. At this point, all the resources in the two hosts are now deallocated.

During the life of a TCP connection, the TCP protocol running in each host 
makes transitions through various TCP states. Figure 3.41 illustrates a typical 
sequence of TCP states that are visited by the client TCP. The client TCP begins 
in the CLOSED state. The application on the client side initiates a new TCP con-
nection (by creating a Socket object in our Python examples from Chapter 2). This 
causes TCP in the client to send a SYN segment to TCP in the server. After hav-
ing sent the SYN segment, the client TCP enters the SYN_SENT state. While in 
the SYN_SENT state, the client TCP waits for a segment from the server TCP that 
includes an acknowledgment for the client’s previous segment and has the SYN bit 

Time Time

Client

Close

Close

Server

FIN

ACK

ACK

FIN

Closed

Timed wait

Figure 3.40 ♦ Closing a TCP connection
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set to 1. Having received such a segment, the client TCP enters the ESTABLISHED 
state. While in the ESTABLISHED state, the TCP client can send and receive TCP 
segments containing payload (that is, application-generated) data.

Suppose that the client application decides it wants to close the connection. (Note 
that the server could also choose to close the connection.) This causes the client TCP 
to send a TCP segment with the FIN bit set to 1 and to enter the FIN_WAIT_1 state. 
While in the FIN_WAIT_1 state, the client TCP waits for a TCP segment from the 
server with an acknowledgment. When it receives this segment, the client TCP enters 
the FIN_WAIT_2 state. While in the FIN_WAIT_2 state, the client waits for another 
segment from the server with the FIN bit set to 1; after receiving this segment, the client 
TCP acknowledges the server’s segment and enters the TIME_WAIT state. The TIME_
WAIT state lets the TCP client resend the final acknowledgment in case the ACK is 
lost. The time spent in the TIME_WAIT state is implementation-dependent, but typical 
values are 30 seconds, 1 minute, and 2 minutes. After the wait, the connection formally 
closes and all resources on the client side (including port numbers) are released.

Figure 3.42 illustrates the series of states typically visited by the server-side 
TCP, assuming the client begins connection teardown. The transitions are self-
explanatory. In these two state-transition diagrams, we have only shown how a TCP 
connection is normally established and shut down. We have not described what hap-
pens in certain pathological scenarios, for example, when both sides of a connection 
want to initiate or shut down at the same time. If you are interested in learning about 

CLOSED

SYN_SENT

ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2

TIME_WAIT

Send SYN

Send FIN

Receive ACK, 
send nothing

Wait 30 seconds

Receive FIN, 
send ACK

Receive SYN & ACK, 
send ACK

Client application
initiates a TCP connection

Client application
initiates close connection

Figure 3.41 ♦ A typical sequence of TCP states visited by a client TCP
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this and other advanced issues concerning TCP, you are encouraged to see Stevens’ 
comprehensive book [Stevens 1994].

Our discussion above has assumed that both the client and server are prepared to 
communicate, that is, that the server is listening on the port to which the client sends 
its SYN segment. Let’s consider what happens when a host receives a TCP segment 
whose port numbers or source IP address do not match with any of the ongoing sock-
ets in the host. For example, suppose a host receives a TCP SYN packet with desti-
nation port 80, but the host is not accepting connections on port 80 (that is, it is not 
running a Web server on port 80). Then the host will send a special reset segment to 
the source. This TCP segment has the RST flag bit (see Section 3.5.2) set to 1. Thus, 
when a host sends a reset segment, it is telling the source “I don’t have a socket for 
that segment. Please do not resend the segment.” When a host receives a UDP packet 
whose destination port number doesn’t match with an ongoing UDP socket, the host 
sends a special ICMP datagram, as discussed in Chapter 5.

Now that we have a good understanding of TCP connection management, let’s 
revisit the nmap port-scanning tool and examine more closely how it works. To explore 
a specific TCP port, say port 6789, on a target host, nmap will send a TCP SYN seg-
ment with destination port 6789 to that host. There are three possible outcomes:

• The source host receives a TCP SYNACK segment from the target host. Since this 
means that an application is running with TCP port 6789 on the target post, nmap 
returns “open.”

CLOSED

LISTEN

SYN_RCVD

ESTABLISHED

CLOSE_WAIT

LAST_ACK

Receive FIN,
send ACK

Receive ACK, 
send nothing

Send FIN Receive SYN 
send SYN & ACK

Server application
creates a listen socket

Receive ACK, 
send nothing

Figure 3.42 ♦  A typical sequence of TCP states visited by a server-side TCP
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THE SYN FLOOD ATTACK

We’ve seen in our discussion of TCP’s three-way handshake that a server allocates 
and initializes connection variables and buffers in response to a received SYN. The 
server then sends a SYNACK in response, and awaits an ACK segment from the cli-
ent. If the client does not send an ACK to complete the third step of this 3-way hand-
shake, eventually (often after a minute or more) the server will terminate the half-open 
connection and reclaim the allocated resources.

This TCP connection management protocol sets the stage for a classic Denial of 
Service (DoS) attack known as the SYN flood attack. In this attack, the attacker(s) send 
a large number of TCP SYN segments, without completing the third handshake step. With 
this deluge of SYN segments, the server’s connection resources become exhausted as 
they are allocated (but never used!) for half-open connections; legitimate clients are then 
denied service. Such SYN flooding attacks were among the first documented DoS attacks 
[CERT SYN 1996]. Fortunately, an effective defense known as SYN cookies [RFC 
4987] are now deployed in most major operating systems. SYN cookies work as follows:

•  When the server receives a SYN segment, it does not know if the segment is 
coming from a legitimate user or is part of a SYN flood attack. So, instead of 
creating a half-open TCP connection for this SYN, the server creates an initial 
TCP sequence number that is a complicated function (hash function) of source 
and destination IP addresses and port numbers of the SYN segment, as well as 
a secret number only known to the server. This carefully crafted initial sequence 
number is the so-called “cookie.” The server then sends the client a SYNACK 
packet with this special initial sequence number. Importantly, the server does not 
remember the cookie or any other state information corresponding to the SYN.

•  A legitimate client will return an ACK segment. When the server receives this 
ACK, it must verify that the ACK corresponds to some SYN sent earlier. But how 
is this done if the server maintains no memory about SYN segments? As you may 
have guessed, it is done with the cookie. Recall that for a legitimate ACK, the 
value in the acknowledgment field is equal to the initial sequence number in the 
SYNACK (the cookie value in this case) plus one (see Figure 3.39). The server 
can then run the same hash function using the source and destination IP address 
and port numbers in the SYNACK (which are the same as in the original SYN) 
and the secret number. If the result of the function plus one is the same as the 
acknowledgment (cookie) value in the client’s SYNACK, the server concludes that 
the ACK corresponds to an earlier SYN segment and is hence valid. The server 
then creates a fully open connection along with a socket.

•  On the other hand, if the client does not return an ACK segment, then the origi-
nal SYN has done no harm at the server, since the server hasn’t yet allocated 
any resources in response to the original bogus SYN.

FOCUS ON SECURITY
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• The source host receives a TCP RST segment from the target host. This means 
that the SYN segment reached the target host, but the target host is not running 
an application with TCP port 6789. But the attacker at least knows that the seg-
ments destined to the host at port 6789 are not blocked by any firewall on the path 
between source and target hosts. (Firewalls are discussed in Chapter 8.)

• The source receives nothing. This likely means that the SYN segment was blocked 
by an intervening firewall and never reached the target host.

Nmap is a powerful tool that can “case the joint” not only for open TCP ports, 
but also for open UDP ports, for firewalls and their configurations, and even for 
the versions of applications and operating systems. Most of this is done by manip-
ulating TCP connection-management segments. You can download nmap from 
www.nmap.org.

This completes our introduction to error control and flow control in TCP. In 
Section 3.7, we’ll return to TCP and look at TCP congestion control in some depth. 
Before doing so, however, we first step back and examine congestion-control issues 
in a broader context.

3.6 Principles of Congestion Control

In the previous sections, we examined both the general principles and specific TCP 
mechanisms used to provide for a reliable data transfer service in the face of packet 
loss. We mentioned earlier that, in practice, such loss typically results from the over-
flowing of router buffers as the network becomes congested. Packet retransmission 
thus treats a symptom of network congestion (the loss of a specific transport-layer 
segment) but does not treat the cause of network congestion—too many sources 
attempting to send data at too high a rate. To treat the cause of network congestion, 
mechanisms are needed to throttle senders in the face of network congestion.

In this section, we consider the problem of congestion control in a general con-
text, seeking to understand why congestion is a bad thing, how network congestion 
is manifested in the performance received by upper-layer applications, and various 
approaches that can be taken to avoid, or react to, network congestion. This more 
general study of congestion control is appropriate since, as with reliable data trans-
fer, it is high on our “top-ten” list of fundamentally important problems in network-
ing. The following section contains a detailed study of TCP’s congestion-control 
algorithm.

3.6.1 The Causes and the Costs of Congestion
Let’s begin our general study of congestion control by examining three increas-
ingly complex scenarios in which congestion occurs. In each case, we’ll look at why  
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congestion occurs in the first place and at the cost of congestion (in terms of resources 
not fully utilized and poor performance received by the end systems). We’ll not (yet) 
focus on how to react to, or avoid, congestion but rather focus on the simpler issue of 
understanding what happens as hosts increase their transmission rate and the network 
becomes congested.

Scenario 1: Two Senders, a Router with Infinite Buffers

We begin by considering perhaps the simplest congestion scenario possible: Two 
hosts (A and B) each have a connection that shares a single hop between source and 
destination, as shown in Figure 3.43.

Let’s assume that the application in Host A is sending data into the connection 
(for example, passing data to the transport-level protocol via a socket) at an average 
rate of lin bytes/sec. These data are original in the sense that each unit of data is sent 
into the socket only once. The underlying transport-level protocol is a simple one. 
Data is encapsulated and sent; no error recovery (e.g., retransmission), flow control, 
or congestion control is performed. Ignoring the additional overhead due to adding 
transport- and lower-layer header information, the rate at which Host A offers traffic 
to the router in this first scenario is thus lin bytes/sec. Host B operates in a similar 
manner, and we assume for simplicity that it too is sending at a rate of lin bytes/sec. 
Packets from Hosts A and B pass through a router and over a shared outgoing link 
of capacity R. The router has buffers that allow it to store incoming packets when 
the packet-arrival rate exceeds the outgoing link’s capacity. In this first scenario, we 
assume that the router has an infinite amount of buffer space.

Figure 3.44 plots the performance of Host A’s connection under this first sce-
nario. The left graph plots the per-connection throughput (number of bytes per 

Host B

Unlimited shared
output link buffers

lin: original data

Host A Host DHost C

lout 

Figure 3.43 ♦  Congestion scenario 1: Two connections sharing a single 
hop with infinite buffers
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second at the receiver) as a function of the connection-sending rate. For a sending 
rate between 0 and R/2, the throughput at the receiver equals the sender’s sending 
rate—everything sent by the sender is received at the receiver with a finite delay. 
When the sending rate is above R/2, however, the throughput is only R/2. This upper 
limit on throughput is a consequence of the sharing of link capacity between two 
connections. The link simply cannot deliver packets to a receiver at a steady-state 
rate that exceeds R/2. No matter how high Hosts A and B set their sending rates, they 
will each never see a throughput higher than R/2.

Achieving a per-connection throughput of R/2 might actually appear to be a good 
thing, because the link is fully utilized in delivering packets to their destinations. The 
right-hand graph in Figure 3.44, however, shows the consequence of operating near link 
capacity. As the sending rate approaches R/2 (from the left), the average delay becomes 
larger and larger. When the sending rate exceeds R/2, the average number of queued 
packets in the router is unbounded, and the average delay between source and destina-
tion becomes infinite (assuming that the connections operate at these sending rates for 
an infinite period of time and there is an infinite amount of buffering available). Thus, 
while operating at an aggregate throughput of near R may be ideal from a throughput 
standpoint, it is far from ideal from a delay standpoint. Even in this (extremely) ideal-
ized scenario, we’ve already found one cost of a congested network—large queuing 
delays are experienced as the packet-arrival rate nears the link capacity.

Scenario 2: Two Senders and a Router with Finite Buffers

Let’s now slightly modify scenario 1 in the following two ways (see Figure 3.45). 
First, the amount of router buffering is assumed to be finite. A consequence of this 
real-world assumption is that packets will be dropped when arriving to an already-
full buffer. Second, we assume that each connection is reliable. If a packet containing 
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Figure 3.44 ♦  Congestion scenario 1: Throughput and delay as a function 
of host sending rate
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a transport-level segment is dropped at the router, the sender will eventually retrans-
mit it. Because packets can be retransmitted, we must now be more careful with our 
use of the term sending rate. Specifically, let us again denote the rate at which the 
application sends original data into the socket by lin bytes/sec. The rate at which the 
transport layer sends segments (containing original data and retransmitted data) into 
the network will be denoted l′in bytes/sec. l′in is sometimes referred to as the offered 
load to the network.

The performance realized under scenario 2 will now depend strongly on how 
retransmission is performed. First, consider the unrealistic case that Host A is able 
to somehow (magically!) determine whether or not a buffer is free in the router and 
thus sends a packet only when a buffer is free. In this case, no loss would occur, lin 
would be equal to l′in, and the throughput of the connection would be equal to lin. 
This case is shown in Figure 3.46(a). From a throughput standpoint, performance 
is ideal—everything that is sent is received. Note that the average host sending rate 
cannot exceed R/2 under this scenario, since packet loss is assumed never to occur.

Consider next the slightly more realistic case that the sender retransmits only 
when a packet is known for certain to be lost. (Again, this assumption is a bit of 
a stretch. However, it is possible that the sending host might set its timeout large 
enough to be virtually assured that a packet that has not been acknowledged has been 
lost.) In this case, the performance might look something like that shown in Fig-
ure 3.46(b). To appreciate what is happening here, consider the case that the offered 
load, l′in (the rate of original data transmission plus retransmissions), equals R/2. 
According to Figure 3.46(b), at this value of the offered load, the rate at which data 

Finite shared output
link buffers

Host BHost A Host DHost C

lout 

lin: original data

l’in: original data, plus
retransmitted data

Figure 3.45 ♦  Scenario 2: Two hosts (with retransmissions) and a router 
with finite buffers
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are delivered to the receiver application is R/3. Thus, out of the 0.5R units of data 
transmitted, 0.333R bytes/sec (on average) are original data and 0.166R bytes/sec (on 
average) are retransmitted data. We see here another cost of a congested network—
the sender must perform retransmissions in order to compensate for dropped (lost) 
packets due to buffer overflow.

Finally, let us consider the case that the sender may time out prematurely and 
retransmit a packet that has been delayed in the queue but not yet lost. In this case, 
both the original data packet and the retransmission may reach the receiver. Of 
course, the receiver needs but one copy of this packet and will discard the retrans-
mission. In this case, the work done by the router in forwarding the retransmitted 
copy of the original packet was wasted, as the receiver will have already received 
the original copy of this packet. The router would have better used the link trans-
mission capacity to send a different packet instead. Here then is yet another cost of 
a congested network—unneeded retransmissions by the sender in the face of large 
delays may cause a router to use its link bandwidth to forward unneeded copies of a 
packet. Figure 3.46 (c) shows the throughput versus offered load when each packet 
is assumed to be forwarded (on average) twice by the router. Since each packet is 
forwarded twice, the throughput will have an asymptotic value of R/4 as the offered 
load approaches R/2.

Scenario 3: Four Senders, Routers with Finite Buffers, and  
Multihop Paths

In our final congestion scenario, four hosts transmit packets, each over overlap-
ping two-hop paths, as shown in Figure 3.47. We again assume that each host uses 
a timeout/retransmission mechanism to implement a reliable data transfer service, 
that all hosts have the same value of lin, and that all router links have capacity  
R bytes/sec.
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Figure 3.46 ♦ Scenario 2 performance with finite buffers
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Let’s consider the connection from Host A to Host C, passing through routers 
R1 and R2. The A–C connection shares router R1 with the D–B connection and 
shares router R2 with the B–D connection. For extremely small values of lin, buffer 
overflows are rare (as in congestion scenarios 1 and 2), and the throughput approxi-
mately equals the offered load. For slightly larger values of lin, the corresponding 
throughput is also larger, since more original data is being transmitted into the net-
work and delivered to the destination, and overflows are still rare. Thus, for small 
values of lin, an increase in lin results in an increase in lout.

Having considered the case of extremely low traffic, let’s next examine the case 
that lin (and hence l′in) is extremely large. Consider router R2. The A–C traffic 
arriving to router R2 (which arrives at R2 after being forwarded from R1) can have 
an arrival rate at R2 that is at most R, the capacity of the link from R1 to R2, regard-
less of the value of lin. If l′in is extremely large for all connections (including the  

Host BHost A

R1

R4 R2

R3

Host CHost D
Finite shared output

link buffers

lin: original data

l’in: original
data, plus
retransmitted
data

lout

Figure 3.47 ♦ Four senders, routers with finite buffers, and multihop paths
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B–D connection), then the arrival rate of B–D traffic at R2 can be much larger than 
that of the A–C traffic. Because the A–C and B–D traffic must compete at router 
R2 for the limited amount of buffer space, the amount of A–C traffic that success-
fully gets through R2 (that is, is not lost due to buffer overflow) becomes smaller 
and smaller as the offered load from B–D gets larger and larger. In the limit, as the 
offered load approaches infinity, an empty buffer at R2 is immediately filled by a 
B–D packet, and the throughput of the A–C connection at R2 goes to zero. This, in 
turn, implies that the A–C end-to-end throughput goes to zero in the limit of heavy 
traffic. These considerations give rise to the offered load versus throughput tradeoff 
shown in Figure 3.48.

The reason for the eventual decrease in throughput with increasing offered 
load is evident when one considers the amount of wasted work done by the net-
work. In the high-traffic scenario outlined above, whenever a packet is dropped at 
a second-hop router, the work done by the first-hop router in forwarding a packet 
to the second-hop router ends up being “wasted.” The network would have been 
equally well off (more accurately, equally bad off) if the first router had simply 
discarded that packet and remained idle. More to the point, the transmission capac-
ity used at the first router to forward the packet to the second router could have 
been much more profitably used to transmit a different packet. (For example, when 
selecting a packet for transmission, it might be better for a router to give priority 
to packets that have already traversed some number of upstream routers.) So here 
we see yet another cost of dropping a packet due to congestion—when a packet 
is dropped along a path, the transmission capacity that was used at each of the 
upstream links to forward that packet to the point at which it is dropped ends up 
having been wasted.

R/2
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Figure 3.48 ♦  Scenario 3 performance with finite buffers and multihop 
paths
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3.6.2 Approaches to Congestion Control
In Section 3.7, we’ll examine TCP’s specific approach to congestion control in great 
detail. Here, we identify the two broad approaches to congestion control that are 
taken in practice and discuss specific network architectures and congestion-control 
protocols embodying these approaches.

At the highest level, we can distinguish among congestion-control approaches 
by whether the network layer provides explicit assistance to the transport layer for 
congestion-control purposes:

• End-to-end congestion control. In an end-to-end approach to congestion control, 
the network layer provides no explicit support to the transport layer for conges-
tion-control purposes. Even the presence of network congestion must be inferred 
by the end systems based only on observed network behavior (for example, packet 
loss and delay). We’ll see shortly in Section 3.7.1 that TCP takes this end-to-end 
approach toward congestion control, since the IP layer is not required to provide 
feedback to hosts regarding network congestion. TCP segment loss (as indicated 
by a timeout or the receipt of three duplicate acknowledgments) is taken as an 
indication of network congestion, and TCP decreases its window size accord-
ingly. We’ll also see a more recent proposal for TCP congestion control that 
uses increasing round-trip segment delay as an indicator of increased network  
congestion

• Network-assisted congestion control. With network-assisted congestion control, 
routers provide explicit feedback to the sender and/or receiver regarding the con-
gestion state of the network. This feedback may be as simple as a single bit indi-
cating congestion at a link—an approach taken in the early IBM SNA [Schwartz 
1982], DEC DECnet [Jain 1989; Ramakrishnan 1990] architectures, and ATM 
[Black 1995] network architectures. More sophisticated feedback is also possible. 
For example, in ATM Available Bite Rate (ABR) congestion control, a router 
informs the sender of the maximum host sending rate it (the router) can support 
on an outgoing link. As noted above, the Internet-default versions of IP and TCP 
adopt an end-to-end approach towards congestion control. We’ll see, however, 
in Section 3.7.2 that, more recently, IP and TCP may also optionally implement 
network-assisted congestion control.

For network-assisted congestion control, congestion information is typically 
fed back from the network to the sender in one of two ways, as shown in Fig-
ure 3.49. Direct feedback may be sent from a network router to the sender. This 
form of notification typically takes the form of a choke packet (essentially say-
ing, “I’m congested!”). The second and more common form of notification occurs 
when a router marks/updates a field in a packet flowing from sender to receiver to 
indicate congestion. Upon receipt of a marked packet, the receiver then notifies 
the sender of the congestion indication. This latter form of notification takes a full 
round-trip time.
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3.7 TCP Congestion Control

In this section, we return to our study of TCP. As we learned in Section 3.5, TCP provides 
a reliable transport service between two processes running on different hosts. Another key 
component of TCP is its congestion-control mechanism. As indicated in the previous sec-
tion, what we might refer to as “Classic”  TCP—the version of TCP standardized in [RFC 
2581] and most recently [RFC 5681]—uses end-to-end congestion control rather than 
network-assisted congestion control, since the IP layer provides no explicit feedback to 
the end systems regarding network congestion. We’ll first cover this “classic” version of 
TCP in depth in Section 7.3.1. In Section 7.3.2, we’ll then look at newer flavors of TCP 
that use an explicit congestion indication provided by the network layer, or differ a bit 
from “classic” TCP in any of several different ways. We’ll then cover the challenge of 
providing fairness among transport layer flows that must share a congested link.

3.7.1 Classic TCP Congestion Control
The approach taken by TCP is to have each sender limit the rate at which it sends traf-
fic into its connection as a function of perceived network congestion. If a TCP sender 
perceives that there is little congestion on the path between itself and the destination, 
then the TCP sender increases its send rate; if the sender perceives that there is conges-
tion along the path, then the sender reduces its send rate. But this approach raises three 
questions. First, how does a TCP sender limit the rate at which it sends traffic into its 
connection? Second, how does a TCP sender perceive that there is congestion on the 
path between itself and the destination? And third, what algorithm should the sender 
use to change its send rate as a function of perceived end-to-end congestion?

Host A

Network feedback via receiver

Direct network
feedback

Host B

Figure 3.49 ♦  Two feedback pathways for network-indicated congestion 
information
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Let’s first examine how a TCP sender limits the rate at which it sends traffic into 
its connection. In Section 3.5, we saw that each side of a TCP connection consists of 
a receive buffer, a send buffer, and several variables (LastByteRead, rwnd, and 
so on). The TCP congestion-control mechanism operating at the sender keeps track 
of an additional variable, the congestion window. The congestion window, denoted 
cwnd, imposes a constraint on the rate at which a TCP sender can send traffic into 
the network. Specifically, the amount of unacknowledged data at a sender may not 
exceed the minimum of cwnd and rwnd, that is:

LastByteSent – LastByteAcked … min{cwnd, rwnd}

In order to focus on congestion control (as opposed to flow control), let us henceforth 
assume that the TCP receive buffer is so large that the receive-window constraint can 
be ignored; thus, the amount of unacknowledged data at the sender is solely limited 
by cwnd. We will also assume that the sender always has data to send, that is, that 
all segments in the congestion window are sent.

The constraint above limits the amount of unacknowledged data at the sender and 
therefore indirectly limits the sender’s send rate. To see this, consider a connection for 
which loss and packet transmission delays are negligible. Then, roughly, at the begin-
ning of every RTT, the constraint permits the sender to send cwnd bytes of data into the 
connection; at the end of the RTT the sender receives acknowledgments for the data. 
Thus the sender’s send rate is roughly cwnd/RTT bytes/sec. By adjusting the value of 
cwnd, the sender can therefore adjust the rate at which it sends data into its connection.

Let’s next consider how a TCP sender perceives that there is congestion on the 
path between itself and the destination. Let us define a “loss event” at a TCP sender 
as the occurrence of either a timeout or the receipt of three duplicate ACKs from the 
receiver. (Recall our discussion in Section 3.5.4 of the timeout event in Figure 3.33 
and the subsequent modification to include fast retransmit on receipt of three dupli-
cate ACKs.) When there is excessive congestion, then one (or more) router buffers 
along the path overflows, causing a datagram (containing a TCP segment) to be 
dropped. The dropped datagram, in turn, results in a loss event at the sender—either 
a timeout or the receipt of three duplicate ACKs—which is taken by the sender to be 
an indication of congestion on the sender-to-receiver path.

Having considered how congestion is detected, let’s next consider the more opti-
mistic case when the network is congestion-free, that is, when a loss event doesn’t 
occur. In this case, acknowledgments for previously unacknowledged segments 
will be received at the TCP sender. As we’ll see, TCP will take the arrival of these 
acknowledgments as an indication that all is well—that segments being transmitted 
into the network are being successfully delivered to the destination—and will use 
acknowledgments to increase its congestion window size (and hence its transmis-
sion rate). Note that if acknowledgments arrive at a relatively slow rate (e.g., if the 
end-end path has high delay or contains a low-bandwidth link), then the congestion 
window will be increased at a relatively slow rate. On the other hand, if acknowl-
edgments arrive at a high rate, then the congestion window will be increased more 
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quickly. Because TCP uses acknowledgments to trigger (or clock) its increase in 
congestion window size, TCP is said to be self-clocking.

Given the mechanism of adjusting the value of cwnd to control the sending rate, 
the critical question remains: How should a TCP sender determine the rate at which it 
should send? If TCP senders collectively send too fast, they can congest the network, 
leading to the type of congestion collapse that we saw in Figure 3.48. Indeed, the ver-
sion of TCP that we’ll study shortly was developed in response to observed Internet 
congestion collapse [Jacobson 1988] under earlier versions of TCP. However, if TCP 
senders are too cautious and send too slowly, they could under utilize the bandwidth 
in the network; that is, the TCP senders could send at a higher rate without congest-
ing the network. How then do the TCP senders determine their sending rates such 
that they don’t congest the network but at the same time make use of all the avail-
able bandwidth? Are TCP senders explicitly coordinated, or is there a distributed 
approach in which the TCP senders can set their sending rates based only on local 
information? TCP answers these questions using the following guiding principles:

• A lost segment implies congestion, and hence, the TCP sender’s rate should be 
decreased when a segment is lost. Recall from our discussion in Section 3.5.4, 
that a timeout event or the receipt of four acknowledgments for a given segment 
(one original ACK and then three duplicate ACKs) is interpreted as an implicit 
“loss event” indication of the segment following the quadruply ACKed segment, 
triggering a retransmission of the lost segment. From a congestion-control stand-
point, the question is how the TCP sender should decrease its congestion window 
size, and hence its sending rate, in response to this inferred loss event.

• An acknowledged segment indicates that the network is delivering the sender’s 
segments to the receiver, and hence, the sender’s rate can be increased when an 
ACK arrives for a previously unacknowledged segment. The arrival of acknowl-
edgments is taken as an implicit indication that all is well—segments are being 
successfully delivered from sender to receiver, and the network is thus not con-
gested. The congestion window size can thus be increased.

• Bandwidth probing. Given ACKs indicating a congestion-free source-to-destina-
tion path and loss events indicating a congested path, TCP’s strategy for adjusting 
its transmission rate is to increase its rate in response to arriving ACKs until a loss 
event occurs, at which point, the transmission rate is decreased. The TCP sender 
thus increases its transmission rate to probe for the rate that at which congestion 
onset begins, backs off from that rate, and then to begins probing again to see 
if the congestion onset rate has changed. The TCP sender’s behavior is perhaps 
analogous to the child who requests (and gets) more and more goodies until finally 
he/she is finally told “No!”, backs off a bit, but then begins making requests again 
shortly afterward. Note that there is no explicit signaling of congestion state by 
the network—ACKs and loss events serve as implicit signals—and that each TCP 
sender acts on local information asynchronously from other TCP senders.

Given this overview of TCP congestion control, we’re now in a position to consider the 
details of the celebrated TCP congestion-control algorithm, which was first described 
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in [Jacobson 1988] and is standardized in [RFC 5681]. The algorithm has three major 
components: (1) slow start, (2) congestion avoidance, and (3) fast recovery. Slow start 
and congestion avoidance are mandatory components of TCP, differing in how they 
increase the size of cwnd in response to received ACKs. We’ll see shortly that slow 
start increases the size of cwnd more rapidly (despite its name!) than congestion avoid-
ance. Fast recovery is recommended, but not required, for TCP senders.

Slow Start

When a TCP connection begins, the value of cwnd is typically initialized to a small 
value of 1 MSS [RFC 3390], resulting in an initial sending rate of roughly MSS/
RTT. For example, if MSS = 500 bytes and RTT = 200 msec, the resulting initial  
sending rate is only about 20 kbps. Since the available bandwidth to the TCP sender 
may be much larger than MSS/RTT, the TCP sender would like to find the amount of 
available bandwidth quickly. Thus, in the slow-start state, the value of cwnd begins 
at 1 MSS and increases by 1 MSS every time a transmitted segment is first acknowl-
edged. In the example of Figure 3.50, TCP sends the first segment into the network 

Host A Host B

one segment

two segments

four segments

RTT

Time Time

Figure 3.50 ♦ TCP slow start
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and waits for an acknowledgment. When this acknowledgment arrives, the TCP 
sender increases the congestion window by one MSS and sends out two maximum-
sized segments. These segments are then acknowledged, with the sender increasing 
the congestion window by 1 MSS for each of the acknowledged segments, giving a 
congestion window of 4 MSS, and so on. This process results in a doubling of the 
sending rate every RTT. Thus, the TCP send rate starts slow but grows exponentially 
during the slow start phase.

But when should this exponential growth end? Slow start provides several 
answers to this question. First, if there is a loss event (i.e., congestion) indicated 
by a timeout, the TCP sender sets the value of cwnd to 1 and begins the slow start 
process anew. It also sets the value of a second state variable, ssthresh (short-
hand for “slow start threshold”) to cwnd/2—half of the value of the congestion 
window value when congestion was detected. The second way in which slow start 
may end is directly tied to the value of ssthresh. Since ssthresh is half the 
value of cwnd when congestion was last detected, it might be a bit reckless to keep 
doubling cwnd when it reaches or surpasses the value of ssthresh. Thus, when 
the value of cwnd equals ssthresh, slow start ends and TCP transitions into con-
gestion avoidance mode. As we’ll see, TCP increases cwnd more cautiously when 
in congestion-avoidance mode. The final way in which slow start can end is if three 
duplicate ACKs are detected, in which case TCP performs a fast retransmit (see Sec-
tion 3.5.4) and enters the fast recovery state, as discussed below. TCP’s behavior in 
slow start is summarized in the FSM description of TCP congestion control in Figure 
3.51. The slow-start algorithm traces it roots to [Jacobson 1988]; an approach similar 
to slow start was also proposed independently in [Jain 1986].

Congestion Avoidance

On entry to the congestion-avoidance state, the value of cwnd is approximately half 
its value when congestion was last encountered—congestion could be just around 
the corner! Thus, rather than doubling the value of cwnd every RTT, TCP adopts a 
more conservative approach and increases the value of cwnd by just a single MSS 
every RTT [RFC 5681]. This can be accomplished in several ways. A common 
approach is for the TCP sender to increase cwnd by MSS bytes (MSS/cwnd) when-
ever a new acknowledgment arrives. For example, if MSS is 1,460 bytes and cwnd 
is 14,600 bytes, then 10 segments are being sent within an RTT. Each arriving ACK 
(assuming one ACK per segment) increases the congestion window size by 1/10 
MSS, and thus, the value of the congestion window will have increased by one MSS 
after ACKs when all 10 segments have been received.

But when should congestion avoidance’s linear increase (of 1 MSS per RTT) 
end? TCP’s congestion-avoidance algorithm behaves the same when a timeout occurs 
as in the case of slow start: The value of cwnd is set to 1 MSS, and the value of 
ssthresh is updated to half the value of cwnd when the loss event occurred. Recall, 
however, that a loss event also can be triggered by a triple duplicate ACK event.  
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In this case, the network is continuing to deliver some segments from sender to receiver 
(as indicated by the receipt of duplicate ACKs). So TCP’s behavior to this type of loss 
event should be less drastic than with a timeout-indicated loss: TCP halves the value 
of cwnd (adding in 3 MSS for good measure to account for the triple duplicate ACKs 
received) and records the value of ssthresh to be half the value of cwnd when the 
triple duplicate ACKs were received. The fast-recovery state is then entered.

Fast Recovery

In fast recovery, the value of cwnd is increased by 1 MSS for every duplicate 
ACK received for the missing segment that caused TCP to enter the fast-recovery 
state. Eventually, when an ACK arrives for the missing segment, TCP enters the  
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congestion-avoidance state after deflating cwnd. If a timeout event occurs, fast 
recovery transitions to the slow-start state after performing the same actions as in 
slow start and congestion avoidance: The value of cwnd is set to 1 MSS, and the 
value of ssthresh is set to half the value of cwnd when the loss event occurred.

TCP SPLITTING: OPTIMIZING THE PERFORMANCE OF CLOUD SERVICES

For cloud services such as search, e-mail, and social networks, it is desirable to provide a 
high-level of responsiveness, ideally giving users the illusion that the services are running 
within their own end systems (including their smartphones). This can be a major challenge, 
as users are often located far away from the data centers responsible for serving the 
dynamic content associated with the cloud services. Indeed, if the end system is far from 
a data center, then the RTT will be large, potentially leading to poor response time perfor-
mance due to TCP slow start.

As a case study, consider the delay in receiving a response for a search query. 
Typically, the server requires three TCP windows during slow start to deliver the response 
[Pathak 2010]. Thus the time from when an end system initiates a TCP connection until the 
time when it receives the last packet of the response is roughly 4 # RTT (one RTT to set up 
the TCP connection plus three RTTs for the three windows of data) plus the processing time 
in the data center. These RTT delays can lead to a noticeable delay in returning search 
results for a significant fraction of queries. Moreover, there can be significant packet loss 
in access networks, leading to TCP retransmissions and even larger delays.

One way to mitigate this problem and improve user-perceived performance is to  
(1) deploy front-end servers closer to the users, and (2) utilize TCP splitting by break-
ing the TCP connection at the front-end server. With TCP splitting, the client establishes 
a TCP connection to the nearby front-end, and the front-end maintains a persistent TCP 
connection to the data center with a very large TCP congestion window [Tariq 2008, 
Pathak 2010, Chen 2011]. With this approach, the response time roughly becomes 
4 # RTTFE + RTTBE + processing time, where RTTFE is the round-trip time between client and 
front-end server, and RTTBE is the round-trip time between the front-end server and the data 
center (back-end server). If the front-end server is close to client, then this response time 
approximately becomes RTT plus processing time, since RTTFE is negligibly small and RTTBE 
is approximately RTT. In summary, TCP splitting can reduce the networking delay roughly 
from 4 # RTT to RTT, significantly improving user-perceived performance, particularly for 
users who are far from the nearest data center. TCP splitting also helps reduce TCP  
retransmission delays caused by losses in access networks. Google and Akamai have 
made extensive use of their CDN servers in access networks (recall our discussion in 
Section 2.6) to perform TCP splitting for the cloud services they support [Chen 2011].

PRINCIPLES IN PRACTICE
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Fast recovery is a recommended, but not required, component of TCP [RFC 
5681]. It is interesting that an early version of TCP, known as TCP Tahoe, uncon-
ditionally cut its congestion window to 1 MSS and entered the slow-start phase after 
either a timeout-indicated or triple-duplicate-ACK-indicated loss event. The newer 
version of TCP, TCP Reno, incorporated fast recovery.

Figure 3.52 illustrates the evolution of TCP’s congestion window for both Reno 
and Tahoe. In this figure, the threshold is initially equal to 8 MSS. For the first 
eight transmission rounds, Tahoe and Reno take identical actions. The congestion 
window climbs exponentially fast during slow start and hits the threshold at the fourth 
round of transmission. The congestion window then climbs linearly until a triple 
duplicate- ACK event occurs, just after transmission round 8. Note that the congestion 
window is 12 # MSS when this loss event occurs. The value of ssthresh is then set 
to 0.5 # cwnd = 6 # MSS. Under TCP Reno, the congestion window is set to cwnd =  
9 # MSS and then grows linearly. Under TCP Tahoe, the congestion window is set to 
1 MSS and grows exponentially until it reaches the value of ssthresh, at which 
point it grows linearly.

Figure 3.51 presents the complete FSM description of TCP’s congestion-control 
algorithms—slow start, congestion avoidance, and fast recovery. The figure also 
indicates where transmission of new segments or retransmitted segments can occur. 
Although it is important to distinguish between TCP error control/retransmission and 
TCP congestion control, it’s also important to appreciate how these two aspects of 
TCP are inextricably linked.

TCP Congestion Control: Retrospective

Having delved into the details of slow start, congestion avoidance, and fast recovery,  
it’s worthwhile to now step back and view the forest from the trees. Ignoring the 
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initial slow-start period when a connection begins and assuming that losses are indi-
cated by triple duplicate ACKs rather than timeouts, TCP’s congestion control con-
sists of linear (additive) increase in cwnd of 1 MSS per RTT and then a halving 
(multiplicative decrease) of cwnd on a triple duplicate-ACK event. For this reason, 
TCP congestion control is often referred to as an additive-increase, multiplicative-
decrease (AIMD) form of congestion control. AIMD congestion control gives rise 
to the “saw tooth” behavior shown in Figure 3.53, which also nicely illustrates our 
earlier intuition of TCP “probing” for bandwidth—TCP linearly increases its conges-
tion window size (and hence its transmission rate) until a triple duplicate-ACK event 
occurs. It then decreases its congestion window size by a factor of two but then again 
begins increasing it linearly, probing to see if there is additional available bandwidth.

TCP’s AIMD algorithm was developed based on a tremendous amount of 
engineering insight and experimentation with congestion control in operational  
networks. Ten years after TCP’s development, theoretical analyses showed that 
TCP’s congestion-control algorithm serves as a distributed asynchronous-optimization 
algorithm that results in several important aspects of user and network performance 
being simultaneously optimized [Kelly 1998]. A rich theory of congestion control 
has since been developed [Srikant 2012].

TCP Cubic

Given TCP Reno’s additive-increase, multiplicative-decrease approach to conges-
tion control, one might naturally wonder whether this is the best way to “probe” for a 
packet sending rate that is just below the threshold of triggering packet loss. Indeed, 
cutting the sending rate in half (or even worse, cutting the sending rate to one packet 
per RTT as in an earlier version of TCP known as TCP Tahoe) and then increasing 
rather slowly over time may be overly cautious. If the state of the  congested link 
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where packet loss occurred hasn’t changed much, then perhaps it’s better to more 
quickly ramp up the sending rate to get close to the pre-loss sending rate and only 
then probe cautiously for bandwidth. This insight lies at the heart of a flavor of TCP 
known as TCP CUBIC [Ha 2008, RFC 8312].

TCP CUBIC differs only slightly from TCP Reno. Once again, the congestion 
window is increased only on ACK receipt, and the slow start and fast recovery phases 
remain the same. CUBIC only changes the congestion avoidance phase, as follows:

• Let Wmax be size of TCP’s congestion control window when loss was last detected, 
and let K be the future point in time when TCP CUBIC’s window size will again reach 
Wmax, assuming no losses. Several tunable CUBIC parameters determine the value K, 
that is, how quickly the protocol’s congestion window size would reach Wmax.

• CUBIC increases the congestion window as a function of cube of the distance 
between the current time, t, and K. Thus, when t is further away from K, the 
congestion window size increases are much larger than when t is close to K. That 
is, CUBIC quickly ramps up TCP’s sending rate to get close to the pre-loss rate, 
Wmax, and only then probes cautiously for bandwidth as it approaches Wmax.

• When t is greater than K, the cubic rule implies that CUBIC’s congestion window 
increases are small when t is still close to K (which is good if the congestion 
level of the link causing loss hasn’t changed much) but then increases rapidly as 
t exceeds K (which allows CUBIC to more quickly find a new operating point if 
the congestion level of the link that caused loss has changed significantly).

Under these rules, the idealized performance of TCP Reno and TCP CUBIC are 
compared in Figure 3.54, adapted from [Huston 2017]. We see the slow start phase 
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Figure 3.54 ♦  TCP congestion avoidance sending rates: TCP Reno and 
TCP CUBIC
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ending at t0. Then, when congestion loss occurs at t1, t2, and t3, CUBIC more quickly 
ramps up close to Wmax (thereby enjoying more overall throughput than TCP Reno). 
We can see graphically how TCP CUBIC attempts to maintain the flow for as long 
as possible just below the (unknown to the sender) congestion threshold. Note that 
at t3, the congestion level has presumably decreased appreciably, allowing both TCP 
Reno and TCP CUBIC to achieve sending rates higher than Wmax.

TCP CUBIC has recently gained wide deployment. While measurements 
taken around 2000 on popular Web servers showed that nearly all were running 
some  version of TCP Reno [Padhye 2001], more recent measurements of the 5000 
most popular Web servers shows that nearly 50% are running a version of TCP 
CUBIC [Yang 2014], which is also the default version of TCP used in the Linux 
operating system.

Macroscopic Description of TCP Reno Throughput

Given the saw-toothed behavior of TCP Reno, it’s natural to consider what the 
average throughput (that is, the average rate) of a long-lived TCP Reno connec-
tion might be. In this analysis, we’ll ignore the slow-start phases that occur after 
timeout events. (These phases are typically very short, since the sender grows out 
of the phase exponentially fast.) During a particular round-trip interval, the rate at 
which TCP sends data is a function of the congestion window and the current RTT. 
When the window size is w bytes and the current round-trip time is RTT seconds, 
then TCP’s transmission rate is roughly w/RTT. TCP then probes for additional 
bandwidth by increasing w by 1 MSS each RTT until a loss event occurs. Denote by 
W the value of w when a loss event occurs. Assuming that RTT and W are approxi-
mately constant over the duration of the connection, the TCP transmission rate 
ranges from W/(2 · RTT) to W/RTT.

These assumptions lead to a highly simplified macroscopic model for the steady-
state behavior of TCP. The network drops a packet from the connection when the rate 
increases to W/RTT; the rate is then cut in half and then increases by MSS/RTT every 
RTT until it again reaches W/RTT. This process repeats itself over and over again. 
Because TCP’s throughput (that is, rate) increases linearly between the two extreme 
values, we have

average throughput of a connection =
0.75 # W

RTT

Using this highly idealized model for the steady-state dynamics of TCP, we 
can also derive an interesting expression that relates a connection’s loss rate to its 
available bandwidth [Mathis 1997]. This derivation is outlined in the homework 
problems. A more sophisticated model that has been found empirically to agree with 
measured data is [Padhye 2000].

M03_KURO1557_08_SE_C03.indd   273 11/02/20   12:15 PM



274     CHAPTER 3  •  TRANSPORT LAYER

3.7.2  Network-Assisted Explicit Congestion Notification 
and Delayed-based Congestion Control

Since the initial standardization of slow start and congestion avoidance in the late 
1980’s [RFC 1122], TCP has implemented the form of end-end congestion control 
that we studied in Section 3.7.1: a TCP sender receives no explicit congestion indica-
tions from the network layer, and instead infers congestion through observed packet 
loss. More recently, extensions to both IP and TCP [RFC 3168] have been proposed, 
implemented, and deployed that allow the network to explicitly signal congestion to 
a TCP sender and receiver. In addition, a number of variations of TCP congestion 
control protocols have been proposed that infer congestion using measured packet 
delay. We’ll take a look at both network-assisted and delay-based congestion control 
in this section.

Explicit Congestion Notification

Explicit Congestion Notification [RFC 3168] is the form of network-assisted con-
gestion control performed within the Internet. As shown in Figure 3.55, both TCP 
and IP are involved. At the network layer, two bits (with four possible values, 
 overall) in the Type of Service field of the IP datagram header (which we’ll discuss 
in Section 4.3) are used for ECN.

One setting of the ECN bits is used by a router to indicate that it (the router) is 
experiencing congestion. This congestion indication is then carried in the marked 
IP datagram to the destination host, which then informs the sending host, as shown 
in Figure 3.55. RFC 3168 does not provide a definition of when a router is con-
gested; that decision is a configuration choice made possible by the router vendor, 
and decided by the network operator. However, the intuition is that the congestion 
indication bit can be set to signal the onset of congestion to the send before loss actu-
ally occurs. A second setting of the ECN bits is used by the sending host to inform 
routers that the sender and receiver are ECN-capable, and thus capable of taking 
action in response to ECN-indicated network congestion.

As shown in Figure 3.55, when the TCP in the receiving host receives an ECN 
congestion indication via a received datagram, the TCP in the receiving host informs 
the TCP in the sending host of the congestion indication by setting the ECE (Explicit 
Congestion Notification Echo) bit (see Figure 3.29) in a receiver-to-sender TCP 
ACK segment. The TCP sender, in turn, reacts to an ACK with a congestion indica-
tion by halving the congestion window, as it would react to a lost segment using fast 
retransmit, and sets the CWR (Congestion Window Reduced) bit in the header of the 
next transmitted TCP sender-to-receiver segment.

Other transport-layer protocols besides TCP may also make use of network-
layer-signaled ECN. The Datagram Congestion Control Protocol (DCCP) [RFC 
4340] provides a low-overhead, congestion-controlled UDP-like unreliable service 
that utilizes ECN. DCTCP (Data Center TCP) [Alizadeh 2010, RFC 8257] and 
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DCQCN (Data Center Quantized Congestion Notification) [Zhu 2015] designed 
 specifically for data center networks, also makes use of ECN. Recent Internet meas-
urements show increasing deployment of ECN capabilities in popular servers as well 
as in routers along paths to those servers [Kühlewind 2013].

Delay-based Congestion Control

Recall from our ECN discussion above that a congested router can set the congestion 
indication bit to signal congestion onset to senders before full buffers cause  packets 
to be dropped at that router. This allows senders to decrease their sending rates 
 earlier, hopefully before packet loss, thus avoiding costly packet loss and retrans-
mission. A second congestion-avoidance approach takes a delay-based approach to 
also proactively detect congestion onset before packet loss occurs.

In TCP Vegas [Brakmo 1995], the sender measures the RTT of the source-to-
destination path for all acknowledged packets. Let RTTmin be the minimum of these 
measurements at a sender; this occurs when the path is uncongested and packets 
experience minimal queueing delay. If TCP Vegas’ congestion window size is cwnd, 
then the uncongested throughput rate would be cwnd/RTTmin. The intuition behind 
TCP Vegas is that if the actual sender-measured throughput is close to this value, the 
TCP sending rate can be increased since (by definition and by measurement) the path 
is not yet congested. However, if the actual sender-measured throughput is signifi-
cantly less than the uncongested throughput rate, the path is congested and the Vegas 
TCP sender will decrease its sending rate. Details can be found in [Brakmo 1995].

ECN Echo = 1
Host A Host B

ECN = 11

ECN Echo bit set in 
receiver-to-sender
TCP ACK segment

ECN bits set in IP
datagram header
at congested router

Figure 3.55 ♦  Explicit Congestion Notification: network-assisted  
congestion control
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TCP Vegas operates under the intuition that TCP senders should “Keep the pipe 
just full, but no fuller” [Kleinrock 2018]. “Keeping the pipe full” means that links 
(in particular the bottleneck link that is limiting a connection’s throughput) are kept 
busy transmitting, doing useful work; “but no fuller” means that there is nothing to 
gain (except increased delay!) if large queues are allowed to build up while the pipe 
is kept full.

The BBR congestion control protocol [Cardwell 2017] builds on ideas in TCP 
Vegas, and incorporates mechanisms that allows it compete fairly (see Section 3.7.3) 
with TCP non-BBR senders. [Cardwell 2017] reports that in 2016, Google began 
using BBR for all TCP traffic on its private B4 network [Jain 2013] that intercon-
nects Google data centers, replacing CUBIC. It is also being deployed on Google and 
YouTube Web servers. Other delay-based TCP congestion control protocols include 
TIMELY for data center networks [Mittal 2015], and Compound TCP (CTPC) [Tan 
2006] and FAST [Wei 2006] for high-speed and long distance networks.

3.7.3 Fairness
Consider K TCP connections, each with a different end-to-end path, but all pass-
ing through a bottleneck link with transmission rate R bps. (By bottleneck link, we 
mean that for each connection, all the other links along the connection’s path are not 
congested and have abundant transmission capacity as compared with the transmis-
sion capacity of the bottleneck link.) Suppose each connection is transferring a large 
file and there is no UDP traffic passing through the bottleneck link. A congestion-
control mechanism is said to be fair if the average transmission rate of each connec-
tion is approximately R/K; that is, each connection gets an equal share of the link  
bandwidth.

Is TCP’s AIMD algorithm fair, particularly given that different TCP connec-
tions may start at different times and thus may have different window sizes at a given 
point in time? [Chiu 1989] provides an elegant and intuitive explanation of why TCP 
congestion control converges to provide an equal share of a bottleneck link’s band-
width among competing TCP connections.

Let’s consider the simple case of two TCP connections sharing a single link 
with transmission rate R, as shown in Figure 3.55. Assume that the two connections 
have the same MSS and RTT (so that if they have the same congestion window size, 
then they have the same throughput), that they have a large amount of data to send, 
and that no other TCP connections or UDP datagrams traverse this shared link. Also, 
ignore the slow-start phase of TCP and assume the TCP connections are operating in 
CA mode (AIMD) at all times.

Figure 3.56 plots the throughput realized by the two TCP connections. If TCP is 
to share the link bandwidth equally between the two connections, then the realized 
throughput should fall along the 45-degree arrow (equal bandwidth share) emanat-
ing from the origin. Ideally, the sum of the two throughputs should equal R. (Cer-
tainly, each connection receiving an equal, but zero, share of the link capacity is not 
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a desirable situation!) So the goal should be to have the achieved throughputs fall 
somewhere near the intersection of the equal bandwidth share line and the full band-
width utilization line in Figure 3.56.

Suppose that the TCP window sizes are such that at a given point in time, con-
nections 1 and 2 realize throughputs indicated by point A in Figure 3.56. Because the 
amount of link bandwidth jointly consumed by the two connections is less than R, no 
loss will occur, and both connections will increase their window by 1 MSS per RTT 
as a result of TCP’s congestion-avoidance algorithm. Thus, the joint throughput of 
the two connections proceeds along a 45-degree line (equal increase for both connec-
tions) starting from point A. Eventually, the link bandwidth jointly consumed by the 
two connections will be greater than R, and eventually packet loss will occur. Sup-
pose that connections 1 and 2 experience packet loss when they realize throughputs 
indicated by point B. Connections 1 and 2 then decrease their windows by a factor of 
two. The resulting throughputs realized are thus at point C, halfway along a vector 
starting at B and ending at the origin. Because the joint bandwidth use is less than R 
at point C, the two connections again increase their throughputs along a 45-degree 
line starting from C. Eventually, loss will again occur, for example, at point D, and 
the two connections again decrease their window sizes by a factor of two, and so on. 
You should convince yourself that the bandwidth realized by the two connections 
eventually fluctuates along the equal bandwidth share line. You should also convince 
yourself that the two connections will converge to this behavior regardless of where 
they are in the two-dimensional space! Although a number of idealized assumptions 
lie behind this scenario, it still provides an intuitive feel for why TCP results in an 
equal sharing of bandwidth among connections.

In our idealized scenario, we assumed that only TCP connections traverse the 
bottleneck link, that the connections have the same RTT value, and that only a 
 single TCP connection is associated with a host-destination pair. In practice, these 
 conditions are typically not met, and client-server applications can thus obtain very 
unequal portions of link bandwidth. In particular, it has been shown that when 

TCP connection 2

TCP connection 1

Bottleneck
router capacity R

Figure 3.56 ♦ Two TCP connections sharing a single bottleneck link
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multiple connections share a common bottleneck, those sessions with a smaller RTT 
are able to grab the available bandwidth at that link more quickly as it becomes free 
(that is, open their congestion windows faster) and thus will enjoy higher throughput 
than those connections with larger RTTs [Lakshman 1997].

Fairness and UDP

We have just seen how TCP congestion control regulates an application’s trans-
mission rate via the congestion window mechanism. Many multimedia applications, 
such as Internet phone and video conferencing, often do not run over TCP for this 
very reason—they do not want their transmission rate throttled, even if the network 
is very congested. Instead, these applications prefer to run over UDP, which does 
not have built-in congestion control. When running over UDP, applications can 
pump their audio and video into the network at a constant rate and occasionally lose 
packets, rather than reduce their rates to “fair” levels at times of congestion and not 
lose any packets. From the perspective of TCP, the multimedia applications running 
over UDP are not being fair—they do not cooperate with the other connections nor 
adjust their transmission rates appropriately. Because TCP congestion control will 
decrease its transmission rate in the face of increasing congestion (loss), while UDP 
sources need not, it is possible for UDP sources to crowd out TCP traffic. A number 
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of congestion-control mechanisms have been proposed for the Internet that prevent 
UDP traffic from bringing the Internet’s throughput to a grinding halt [Floyd 1999; 
Floyd 2000; Kohler 2006; RFC 4340].

Fairness and Parallel TCP Connections

But even if we could force UDP traffic to behave fairly, the fairness problem would 
still not be completely solved. This is because there is nothing to stop a TCP-based 
application from using multiple parallel connections. For example, Web browsers 
often use multiple parallel TCP connections to transfer the multiple objects within 
a Web page. (The exact number of multiple connections is configurable in most 
browsers.) When an application uses multiple parallel connections, it gets a larger 
fraction of the bandwidth in a congested link. As an example, consider a link of rate 
R supporting nine ongoing client-server applications, with each of the applications 
using one TCP connection. If a new application comes along and also uses one TCP 
connection, then each application gets approximately the same transmission rate of 
R/10. But if this new application instead uses 11 parallel TCP connections, then the 
new application gets an unfair allocation of more than R/2. Because Web traffic is so 
pervasive in the Internet, multiple parallel connections are not uncommon.

3.8 Evolution of Transport-Layer Functionality

Our discussion of specific Internet transport protocols in this chapter has focused on 
UDP and TCP—the two “work horses” of the Internet transport layer. However, as 
we’ve seen, three decades of experience with these two protocols has identified cir-
cumstances in which neither is ideally suited, and so the design and implementation 
of transport layer functionality has continued to evolve.

We’ve seen a rich evolution in the use of TCP over the past decade. In 
 Sections 3.7.1 and 3.7.2, we learned that in addition to “classic” versions of TCP 
such as TCP Tahoe and Reno, there are now several newer versions of TCP that have 
been developed, implemented, deployed, and are in significant use today. These 
include TCP CUBIC, DCTCP, CTCP, BBR, and more. Indeed, measurements in 
[Yang 2014] indicate that CUBIC (and its predecessor, BIC [Xu 2004]) and CTCP 
are more widely deployed on Web servers than classic TCP Reno; we also saw that 
BBR is being deployed in Google’s internal B4 network, as well as on many of 
Google’s public-facing servers.

And there are many (many!) more versions of TCP! There are versions of TCP 
specifically designed for use over wireless links, over high-bandwidth paths with 
large RTTs, for paths with packet re-ordering, and for short paths strictly within data 
centers. There are versions of TCP that implement different priorities among TCP 
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connections competing for bandwidth at a bottleneck link, and for TCP connections 
whose segments are being sent over different source-destination paths in parallel. 
There are also variations of TCP that deal with packet acknowledgment and TCP 
session establishment/closure differently than we studied in Section 3.5.6. Indeed, 
it’s probably not even correct anymore to refer to “the” TCP protocol; perhaps the 
only common features of these protocols is that they use the TCP segment format that 
we studied in Figure 3.29, and that they should compete “fairly” amongst themselves 
in the face of network congestion! For a survey of the many flavors of TCP, see 
 [Afanasyev 2010] and [Narayan 2018].

QUIC: Quick UDP Internet Connections

If the transport services needed by an application don’t quite fit either the UDP 
or TCP service models—perhaps an application needs more services than those 
provided by UDP but does not want all of the particular functionality that comes 
with TCP, or may want different services than those provided by TCP—applica-
tion designers can always “roll their own” protocol at the application layer. This 
is the approach taken in the QUIC (Quick UDP Internet Connections) protocol 
[Langley 2017, QUIC 2020]. Specifically, QUIC is a new application-layer pro-
tocol designed from the ground up to improve the performance of transport-layer 
services for secure HTTP. QUIC has already been widely deployed, although is 
still in the process of being standardized as an Internet RFC [QUIC 2020]. Google 
has deployed QUIC on many of its public-facing Web servers, in its mobile video 
streaming YouTube app, in its Chrome browser, and in Android’s Google Search 
app. With more than 7% of Internet traffic today now being QUIC [Langley 2017], 
we’ll want to take a closer look. Our study of QUIC will also serve as a nice culmi-
nation of our study of the transport layer, as QUIC uses many of the approaches for 
reliable data transfer, congestion control, and connection management that we’ve 
studied in this chapter.

As shown in Figure 3.58, QUIC is an application-layer protocol, using UDP as 
its underlying transport-layer protocol, and is designed to interface above specifi-
cally to a simplified but evolved version of HTTP/2. In the near future, HTTP/3 
will natively incorporate QUIC [HTTP/3 2020]. Some of QUIC’s major features 
include:

• Connection-Oriented and Secure. Like TCP, QUIC is a connection-oriented 
protocol between two endpoints. This requires a handshake between endpoints 
to  set up the QUIC connection state. Two pieces of connection state are the 
source and destination connection ID. All QUIC packets are encrypted, and as 
suggested in Figure 3.58, QUIC combines the handshakes needed to establish 
connection state with those needed for authentication and encryption (transport 
layer security topics that we’ll study in Chapter 8), thus providing faster estab-
lishment than the protocol stack in Figure 3.58(a), where multiple RTTs are 
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required to first establish a TCP connection, and then establish a TLS connection 
over the TCP connection.

• Streams. QUIC allows several different application-level “streams” to be mul-
tiplexed through a single QUIC connection, and once a QUIC connection is 
established, new streams can be quickly added. A stream is an abstraction for the 
reliable, in-order bi-directional delivery of data between two QUIC endpoints. In  
the context of HTTP/3, there would be a different stream  for each object in a Web 
page. Each connection has a connection ID, and each stream within a connection 
has a stream ID; both of these IDs are contained in a QUIC packet header (along 
with other header information). Data from multiple streams may be contained 
within a single QUIC segment, which is carried over UDP. The Stream Control 
Transmission Protocol (SCTP) [RFC 4960, RFC 3286] is an earlier reliable, mes-
sage-oriented protocol that pioneered the notion of multiplexing multiple appli-
cation-level “streams” through a single SCTP connection. We’ll see in Chapter 7 
that SCTP is used in  control plane protocols in 4G/5G cellular wireless networks.

• Reliable, TCP-friendly congestion-controlled data transfer. As illustrated 
in Figure 3.59(b), QUIC provides reliable data transfer to each QUIC stream 
separately. Figure 3.59(a) shows the case of HTTP/1.1 sending multiple HTTP 
requests, all over a single TCP connection. Since TCP provides reliable, in-order 
byte delivery, this means that the multiple HTTP requests must be delivered in-
order at the destination HTTP server. Thus, if bytes from one HTTP request are 
lost, the remaining HTTP requests can not be delivered until those lost bytes are 
retransmitted and correctly received by TCP at the HTTP server—the so-called 
HOL blocking problem that we encountered earlier in Section 2.2.5. Since QUIC 
provides a reliable in-order delivery on a per-stream basis, a lost UDP segment 
only impacts those streams whose data was carried in that segment; HTTP mes-
sages in other streams can continue to be received and delivered to the applica-
tion. QUIC provides reliable data transfer using acknowledgment mechanisms 
similar to TCP’s, as specified in [RFC 5681].
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Figure 3.58 ♦  (a) traditional secure HTTP protocol stack, and the 
(b) secure QUIC-based HTTP/3 protocol stack
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 QUIC’s congestion control is based on TCP NewReno [RFC 6582], a slight 
modification to the TCP Reno protocol that we studied in Section 3.7.1. QUIC’s 
Draft specification [QUIC-recovery 2020] notes “Readers familiar with TCP’s 
loss detection and congestion control will find algorithms here that parallel well-
known TCP ones.” Since we’ve carefully studied TCP’s congestion control in 
Section 3.7.1, we’d be right at home reading the details of QUIC’s draft specifica-
tion of its congestion control algorithm!

In closing, it’s worth highlighting again that QUIC is an application-layer 
 protocol providing reliable, congestion-controlled data transfer between two 
 endpoints. The authors of QUIC [Langley 2017] stress that this means that changes 
can be made to QUIC at “application-update timescales,” that is, much faster than 
TCP or UDP update timescales.

3.9 Summary

We began this chapter by studying the services that a transport-layer protocol can 
provide to network applications. At one extreme, the transport-layer protocol can be 
very simple and offer a no-frills service to applications, providing only a multiplexing/
demultiplexing function for communicating processes. The Internet’s UDP  protocol 
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Figure 3.59 ♦  (a) HTTP/1.1: a single-connection client and server using application-level TLS 
encryption over TCP’s reliable data transfer (RDT) and congestion control (CC) 
(b) HTTP/3: a  multi-stream client and server using QUIC’s encryption, reliable 
data transfer and congestion  control over UDP’s unreliable datagram service

M03_KURO1557_08_SE_C03.indd   282 12/02/20   3:46 PM



3.9  •  SUMMARY     283

is an example of such a no-frills transport-layer protocol. At the other extreme, a 
 transport-layer  protocol can provide a variety of guarantees to applications, such as 
reliable delivery of data, delay guarantees, and bandwidth guarantees. Nevertheless, 
the services that a transport protocol can provide are often constrained by the service 
model of the underlying network-layer protocol. If the network-layer protocol cannot 
provide delay or bandwidth guarantees to transport-layer segments, then the transport-
layer protocol cannot provide delay or bandwidth guarantees for the messages sent 
between processes.

We learned in Section 3.4 that a transport-layer protocol can provide reliable 
data transfer even if the underlying network layer is unreliable. We saw that provid-
ing reliable data transfer has many subtle points, but that the task can be accom-
plished by carefully combining acknowledgments, timers, retransmissions, and 
sequence numbers.

Although we covered reliable data transfer in this chapter, we should keep 
in mind that reliable data transfer can be provided by link-, network-, transport-, 
or application-layer protocols. Any of the upper four layers of the protocol 
stack can implement acknowledgments, timers, retransmissions, and sequence 
numbers and provide reliable data transfer to the layer above. In fact, over 
the years, engineers and computer scientists have independently designed and 
implemented link-, network-, transport-, and application-layer protocols that 
provide reliable data transfer (although many of these protocols have quietly 
disappeared).

In Section 3.5, we took a close look at TCP, the Internet’s connection-oriented 
and reliable transport-layer protocol. We learned that TCP is complex, involving con-
nection management, flow control, and round-trip time estimation, as well as reli-
able data transfer. In fact, TCP is actually more complex than our description—we 
intentionally did not discuss a variety of TCP patches, fixes, and improvements that 
are widely implemented in various versions of TCP. All of this complexity, however, 
is hidden from the network application. If a client on one host wants to send data 
reliably to a server on another host, it simply opens a TCP socket to the server and 
pumps data into that socket. The client-server application is blissfully unaware of 
TCP’s complexity.

In Section 3.6, we examined congestion control from a broad perspective, and 
in Section 3.7, we showed how TCP implements congestion control. We learned that 
congestion control is imperative for the well-being of the network. Without conges-
tion control, a network can easily become gridlocked, with little or no data being 
transported end-to-end. In Section 3.7, we learned that classic TCP implements an 
end-to-end congestion-control mechanism that additively increases its transmission 
rate when the TCP connection’s path is judged to be congestion-free, and multiplica-
tively decreases its transmission rate when loss occurs. This mechanism also strives 
to give each TCP connection passing through a congested link an equal share of the 
link bandwidth. We also studied several newer variations of TCP congestion control 
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that try to determine TCP’s sending rate rate more quickly than classic TCP, use a 
delay-based approach or explicit congestion notification from the network (rather 
than a loss-based approach) to determine TCP’s sending rate. We also examined in 
some depth the impact of TCP connection establishment and slow start on latency. 
We observed that in many important scenarios, connection establishment and slow 
start significantly contribute to end-to-end delay. We emphasize once more that 
while TCP congestion control has evolved over the years, it remains an area of 
intensive research and will likely continue to evolve in the upcoming years. To 
wrap up this chapter, in Section 3.8, we studied recent developments in implement-
ing many of the transport layer’s functions—reliable data transfer, congestion con-
trol, connection establishment, and more—in the application layer using the QUIC 
protocol.

In Chapter 1, we said that a computer network can be partitioned into the 
 “network edge” and the “network core.” The network edge covers everything 
that happens in the end systems. Having now covered the application layer and 
the t ransport layer, our discussion of the network edge is complete. It is time to 
explore the network core! This journey begins in the next two chapters, where 
we’ll study the network layer, and continues into Chapter 6, where we’ll study the 
link layer.

Homework Problems and Questions

Chapter 3 Review Questions
SECTIONS 3.1–3.3 
 R1. Suppose the network layer provides the following service. The network 

layer in the source host accepts a segment of maximum size 1,200 bytes and 
a destination host address from the transport layer. The network layer then 
guarantees to deliver the segment to the transport layer at the destination 
host. Suppose many network application processes can be running at the 
destination host.

a. Design the simplest possible transport-layer protocol that will get applica-
tion data to the desired process at the destination host. Assume the operat-
ing system in the destination host has assigned a 4-byte port number to 
each running application process.

b. Modify this protocol so that it provides a “return address” to the destina-
tion process.

c. In your protocols, does the transport layer “have to do anything” in the 
core of the computer network?
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 R2. Consider a planet where everyone belongs to a family of six, every family 
lives in its own house, each house has a unique address, and each person 
in a given house has a unique name. Suppose this planet has a mail service 
that delivers letters from source house to destination house. The mail service 
requires that (1) the letter be in an envelope, and that (2) the address of the 
destination house (and nothing more) be clearly written on the envelope. Sup-
pose each family has a delegate family member who collects and distributes 
letters for the other family members. The letters do not necessarily provide 
any indication of the recipients of the letters.

a. Using the solution to Problem R1 above as inspiration, describe a protocol 
that the delegates can use to deliver letters from a sending family member 
to a receiving family member.

b. In your protocol, does the mail service ever have to open the envelope and 
examine the letter in order to provide its service?

 R3. Consider a TCP connection between Host A and Host B. Suppose that the 
TCP segments traveling from Host A to Host B have source port number x 
and destination port number y. What are the source and destination port num-
bers for the segments traveling from Host B to Host A?

 R4. Describe why an application developer might choose to run an application 
over UDP rather than TCP.

 R5. Why is it that voice and video traffic is often sent over TCP rather than UDP 
in today’s Internet? (Hint: The answer we are looking for has nothing to do 
with TCP’s congestion-control mechanism.)

 R6. Is it possible for an application to enjoy reliable data transfer even when the 
application runs over UDP? If so, how?

 R7. Suppose a process in Host C has a UDP socket with port number 6789. 
Suppose both Host A and Host B each send a UDP segment to Host C with 
destination port number 6789. Will both of these segments be directed to the 
same socket at Host C? If so, how will the process at Host C know that these 
two segments originated from two different hosts?

 R8. Suppose that a Web server runs in Host C on port 80. Suppose this Web 
server uses persistent connections, and is currently receiving requests from 
two different Hosts, A and B. Are all of the requests being sent through the 
same socket at Host C? If they are being passed through different sockets, do 
both of the sockets have port 80? Discuss and explain.

SECTION 3.4
 R9. In our rdt protocols, why did we need to introduce sequence numbers?

 R10. In our rdt protocols, why did we need to introduce timers?

HOMEWORK PROBLEMS AND QUESTIONS     285
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 R11. Suppose that the roundtrip delay between sender and receiver is constant and 
known to the sender. Would a timer still be necessary in protocol rdt 3.0, 
assuming that packets can be lost? Explain.

 R12. Visit the Go-Back-N interactive animation at the companion Web site.

a. Have the source send five packets, and then pause the animation before 
any of the five packets reach the destination. Then kill the first packet and 
resume the animation. Describe what happens.

b. Repeat the experiment, but now let the first packet reach the destination 
and kill the first acknowledgment. Describe again what happens.

c. Finally, try sending six packets. What happens?

 R13. Repeat R12, but now with the Selective Repeat interactive animation. How 
are Selective Repeat and Go-Back-N different?

SECTION 3.5
 R14. True or false?

a. Host A is sending Host B a large file over a TCP connection. Assume Host 
B has no data to send Host A. Host B will not send acknowledgments to 
Host A because Host B cannot piggyback the acknowledgments on data.

b. The size of the TCP rwnd never changes throughout the duration of the 
connection.

c. Suppose Host A is sending Host B a large file over a TCP connection. The 
number of unacknowledged bytes that A sends cannot exceed the size of 
the receive buffer.

d. Suppose Host A is sending a large file to Host B over a TCP connection. 
If the sequence number for a segment of this connection is m, then the 
sequence number for the subsequent segment will necessarily be m + 1.

e. The TCP segment has a field in its header for rwnd.

f. Suppose that the last SampleRTT in a TCP connection is equal to 1 sec. 
The current value of TimeoutInterval for the connection will neces-
sarily be Ú  1 sec.

g. Suppose Host A sends one segment with sequence number 38 and 4 
bytes of data over a TCP connection to Host B. In this same segment, the 
acknowledgment number is necessarily 42.

 R15. Suppose Host A sends two TCP segments back to back to Host B over a 
TCP connection. The first segment has sequence number 90; the second has 
sequence number 110.

a. How much data is in the first segment?

b. Suppose that the first segment is lost but the second segment arrives at 
B. In the acknowledgment that Host B sends to Host A, what will be the 
acknowledgment number?
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 R16. Consider the Telnet example discussed in Section 3.5. A few seconds after 
the user types the letter ‘C,’ the user types the letter ‘R.’ After typing the let-
ter ‘R,’ how many segments are sent, and what is put in the sequence number 
and acknowledgment fields of the segments?

SECTION 3.7
 R17. Suppose two TCP connections are present over some bottleneck link of rate R 

bps. Both connections have a huge file to send (in the same direction over the 
bottleneck link). The transmissions of the files start at the same time. What 
transmission rate would TCP like to give to each of the connections?

 R18. True or false? Consider congestion control in TCP. When the timer expires at 
the sender, the value of ssthresh is set to one half of its previous value.

 R19. In the discussion of TCP splitting in the sidebar in Section 3.7, it was 
claimed that the response time with TCP splitting is approximately 
4 # RTTFE + RTTBE + processing time. Justify this claim.

Problems

 P1. Suppose Client A initiates a Telnet session with Server S. At about the same 
time, Client B also initiates a Telnet session with Server S. Provide possible 
source and destination port numbers for

a. The segments sent from A to S.

b. The segments sent from B to S.

c. The segments sent from S to A.

d. The segments sent from S to B.

e. If A and B are different hosts, is it possible that the source port number in 
the segments from A to S is the same as that from B to S?

f. How about if they are the same host?

 P2. Consider Figure 3.5. What are the source and destination port values in the 
segments flowing from the server back to the clients’ processes? What are 
the IP addresses in the network-layer datagrams carrying the transport-layer 
segments?

 P3. UDP and TCP use 1s complement for their checksums. Suppose you have 
the following three 8-bit bytes: 01010011, 01100110, 01110100. What is the 
1s complement of the sum of these 8-bit bytes? (Note that although UDP and 
TCP use 16-bit words in computing the checksum, for this problem you are 
being asked to consider 8-bit sums.) Show all work. Why is it that UDP takes 
the 1s complement of the sum; that is, why not just use the sum? With the 1s 
complement scheme, how does the receiver detect errors? Is it possible that a 
1-bit error will go undetected? How about a 2-bit error?

M03_KURO1557_08_SE_C03.indd   287 12/02/20   4:08 PM



288     CHAPTER 3  •  TRANSPORT LAYER

 P4. a.  Suppose you have the following 2 bytes: 01011100 and 01100101. What 
is the 1s complement of the sum of these 2 bytes?

b. Suppose you have the following 2 bytes: 11011010 and 01100101. What 
is the 1s complement of the sum of these 2 bytes?

c. For the bytes in part (a), give an example where one bit is flipped in each 
of the 2 bytes and yet the 1s complement doesn’t change.

 P5. Suppose that the UDP receiver computes the Internet checksum for the 
received UDP segment and finds that it matches the value carried in the 
checksum field. Can the receiver be absolutely certain that no bit errors have 
occurred? Explain.

 P6. Consider our motivation for correcting protocol rdt2.1. Show that the 
receiver, shown in Figure 3.60, when operating with the sender shown in 
Figure 3.11, can lead the sender and receiver to enter into a deadlock state, 
where each is waiting for an event that will never occur.

 P7. In protocol rdt3.0, the ACK packets flowing from the receiver to the 
sender do not have sequence numbers (although they do have an ACK field 
that contains the sequence number of the packet they are acknowledging). 
Why is it that our ACK packets do not require sequence numbers?

Wait for
0 from
below

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt)||
has_seq0(rcvpkt)))

compute chksum
make_pkt(sndpkt,NAK,chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt)||
has_seq1(rcvpkt)))

compute chksum
make_pkt(sndpkt,NAK,chksum)
udt_send(sndpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
compute chksum
make_pkt(sendpkt,ACK,chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
compute chksum
make_pkt(sendpkt,ACK,chksum)
udt_send(sndpkt)

Wait for
1 from
below

Figure 3.60 ♦ An incorrect receiver for protocol rdt 2.1
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 P8. Draw the FSM for the receiver side of protocol rdt3.0.

 P9. Give a trace of the operation of protocol rdt3.0 when data packets and 
acknowledgment packets are garbled. Your trace should be similar to that 
used in Figure 3.16.

 P10. Consider a channel that can lose packets but has a maximum delay that is 
known. Modify protocol rdt2.1 to include sender timeout and retransmit. 
Informally argue why your protocol can communicate correctly over this 
channel.

 P11. Consider the rdt2.2 receiver in Figure 3.14, and the creation of a new 
packet in the self-transition (i.e., the transition from the state back to 
itself) in the Wait-for-0-from-below and the Wait-for-1-from-below states: 
sndpkt=make_pkt(ACK,1,checksum) and sndpkt=make_
pkt(ACK,0,checksum). Would the protocol work correctly if this action 
were removed from the self-transition in the Wait-for-1-from-below state? 
Justify your answer. What if this event were removed from the self-transition 
in the Wait-for-0-from-below state? [Hint: In this latter case, consider what 
would happen if the first sender-to-receiver packet were corrupted.]

 P12. The sender side of rdt3.0 simply ignores (that is, takes no action on)  
all received packets that are either in error or have the wrong value in the 
acknum field of an acknowledgment packet. Suppose that in such circum-
stances, rdt3.0 were simply to retransmit the current data packet. Would 
the protocol still work? (Hint: Consider what would happen if there were 
only bit errors; there are no packet losses but premature timeouts can occur. 
Consider how many times the nth packet is sent, in the limit as n approaches 
infinity.)

 P13. Consider the rdt 3.0 protocol. Draw a diagram showing that if the 
network connection between the sender and receiver can reorder messages 
(that is, that two messages propagating in the medium between the sender 
and receiver can be reordered), then the alternating-bit protocol will not 
work correctly (make sure you clearly identify the sense in which it will 
not work correctly). Your diagram should have the sender on the left and 
the receiver on the right, with the time axis running down the page, show-
ing data (D) and acknowledgment (A) message exchange. Make sure you 
indicate the sequence number associated with any data or acknowledgment 
segment.

 P14. Consider a reliable data transfer protocol that uses only negative acknowledg-
ments. Suppose the sender sends data only infrequently. Would a NAK-only 
protocol be preferable to a protocol that uses ACKs? Why? Now suppose the 
sender has a lot of data to send and the end-to-end connection experiences 
few losses. In this second case, would a NAK-only protocol be preferable to 
a protocol that uses ACKs? Why?
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 P15. Consider the cross-country example shown in Figure 3.17. How big would 
the window size have to be for the channel utilization to be greater than 
98 percent? Suppose that the size of a packet is 1,500 bytes, including both 
header fields and data.

 P16. Suppose an application uses rdt 3.0 as its transport layer protocol. As the 
stop-and-wait protocol has very low channel utilization (shown in the cross-
country example), the designers of this application let the receiver keep send-
ing back a number (more than two) of alternating ACK 0 and ACK 1 even if 
the corresponding data have not arrived at the receiver. Would this applica-
tion design increase the channel utilization? Why? Are there any potential 
problems with this approach? Explain.

 P17. Consider two network entities, A and B, which are connected by a perfect 
bi-directional channel (i.e., any message sent will be received correctly; the 
channel will not corrupt, lose, or re-order packets). A and B are to deliver 
data messages to each other in an alternating manner: First, A must deliver 
a message to B, then B must deliver a message to A, then A must deliver a 
message to B and so on. If an entity is in a state where it should not attempt 
to deliver a message to the other side, and there is an event like rdt_
send(data) call from above that attempts to pass data down for transmis-
sion to the other side, this call from above can simply be ignored with a call 
to rdt_unable_to_send(data), which informs the higher layer that it 
is currently not able to send data. [Note: This simplifying assumption is made 
so you don’t have to worry about buffering data.]

  Draw a FSM specification for this protocol (one FSM for A, and one FSM 
for B!). Note that you do not have to worry about a reliability mechanism 
here; the main point of this question is to create a FSM specification that 
reflects the synchronized behavior of the two entities. You should use the 
following events and actions that have the same meaning as protocol rdt1.0 in 
Figure 3.9: rdt_send(data), packet = make_pkt(data), udt_
send(packet), rdt_rcv(packet), extract (packet,data), 
deliver_data(data). Make sure your protocol reflects the strict alter-
nation of sending between A and B. Also, make sure to indicate the initial 
states for A and B in your FSM descriptions.

 P18. In the generic SR protocol that we studied in Section 3.4.4, the sender 
transmits a message as soon as it is available (if it is in the window) without 
waiting for an acknowledgment. Suppose now that we want an SR protocol 
that sends messages two at a time. That is, the sender will send a pair of mes-
sages and will send the next pair of messages only when it knows that both 
messages in the first pair have been received correctly.

  Suppose that the channel may lose messages but will not corrupt or reorder 
messages. Design an error-control protocol for the unidirectional reliable 
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transfer of messages. Give an FSM description of the sender and receiver. 
Describe the format of the packets sent between sender and receiver, and vice 
versa. If you use any procedure calls other than those in Section 3.4  
(for example, udt_send(), start_timer(), rdt_rcv(), and so on), 
clearly state their actions. Give an example (a timeline trace of sender and 
receiver) showing how your protocol recovers from a lost packet.

 P19. Consider a scenario in which Host A wants to simultaneously send packets 
to Hosts B and C. A is connected to B and C via a broadcast channel—a 
packet sent by A is carried by the channel to both B and C. Suppose that 
the broadcast channel connecting A, B, and C can independently lose and 
corrupt packets (and so, for example, a packet sent from A might be cor-
rectly received by B, but not by C). Design a stop-and-wait-like error-control 
protocol for reliably transferring packets from A to B and C, such that A will 
not get new data from the upper layer until it knows that both B and C have 
correctly received the current packet. Give FSM descriptions of A and C. 
(Hint: The FSM for B should be essentially the same as for C.) Also, give a 
description of the packet format(s) used.

 P20. Consider a scenario in which Host A and Host B want to send messages to 
Host C. Hosts A and C are connected by a channel that can lose and corrupt 
(but not reorder) messages. Hosts B and C are connected by another channel 
(independent of the channel connecting A and C) with the same properties. 
The transport layer at Host C should alternate in delivering messages from  
A and B to the layer above (that is, it should first deliver the data from a packet 
from A, then the data from a packet from B, and so on). Design a stop-and-
wait-like error-control protocol for reliably transferring packets from A and 
B to C, with alternating delivery at C as described above. Give FSM descrip-
tions of A and C. (Hint: The FSM for B should be essentially the same as  
for A.) Also, give a description of the packet format(s) used.

 P21. Suppose we have two network entities, A and B. B has a supply of data mes-
sages that will be sent to A according to the following conventions. When A 
gets a request from the layer above to get the next data (D) message from B, 
A must send a request (R) message to B on the A-to-B channel. Only when B 
receives an R message can it send a data (D) message back to A on the B-to-
A channel. A should deliver exactly one copy of each D message to the layer 
above. R messages can be lost (but not corrupted) in the A-to-B channel; D 
messages, once sent, are always delivered correctly. The delay along both 
channels is unknown and variable.

  Design (give an FSM description of) a protocol that incorporates the appro-
priate mechanisms to compensate for the loss-prone A-to-B channel and 
implements message passing to the layer above at entity A, as discussed 
above. Use only those mechanisms that are absolutely necessary.
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 P22. Consider the GBN protocol with a sender window size of 4 and a sequence 
number range of 1,024. Suppose that at time t, the next in-order packet 
that the receiver is expecting has a sequence number of k. Assume that the 
medium does not reorder messages. Answer the following questions:

a. What are the possible sets of sequence numbers inside the sender’s  
window at time t? Justify your answer.

b. What are all possible values of the ACK field in all possible messages 
currently propagating back to the sender at time t? Justify your answer.

 P23. Consider the GBN and SR protocols. Suppose the sequence number space  
is of size k. What is the largest allowable sender window that will avoid  
the occurrence of problems such as that in Figure 3.27 for each of these 
protocols?

 P24. Answer true or false to the following questions and briefly justify your 
answer:

a. With the SR protocol, it is possible for the sender to receive an ACK for a 
packet that falls outside of its current window.

b. With GBN, it is possible for the sender to receive an ACK for a packet 
that falls outside of its current window.

c. The alternating-bit protocol is the same as the SR protocol with a sender 
and receiver window size of 1.

d. The alternating-bit protocol is the same as the GBN protocol with a sender 
and receiver window size of 1.

 P25. We have said that an application may choose UDP for a transport protocol 
because UDP offers finer application control (than TCP) of what data is sent 
in a segment and when.

Why does an application have more control of what data is sent in a segment?

Why does an application have more control on when the segment is sent?

 P26. Consider transferring an enormous file of L bytes from Host A to Host B. 
Assume an MSS of 536 bytes.

a. What is the maximum value of L such that TCP sequence numbers are not 
exhausted? Recall that the TCP sequence number field has 4 bytes.

b. For the L you obtain in (a), find how long it takes to transmit the file. 
Assume that a total of 66 bytes of transport, network, and data-link header 
are added to each segment before the resulting packet is sent out over a 
155 Mbps link. Ignore flow control and congestion control so A can pump 
out the segments back to back and continuously.

 P27. Host A and B are communicating over a TCP connection, and Host B has 
already received from A all bytes up through byte 126. Suppose Host A  
then sends two segments to Host B back-to-back. The first and second  
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segments contain 80 and 40 bytes of data, respectively. In the first segment, 
the sequence number is 127, the source port number is 302, and the des-
tination port number is 80. Host B sends an acknowledgment whenever it 
receives a segment from Host A.

a. In the second segment sent from Host A to B, what are the sequence num-
ber, source port number, and destination port number?

b. If the first segment arrives before the second segment, in the acknowledg-
ment of the first arriving segment, what is the acknowledgment number, 
the source port number, and the destination port number?

c. If the second segment arrives before the first segment, in the acknowledg-
ment of the first arriving segment, what is the acknowledgment number?

d. Suppose the two segments sent by A arrive in order at B. The first 
acknowledgment is lost and the second acknowledgment arrives after the 
first timeout interval. Draw a timing diagram, showing these segments 
and all other segments and acknowledgments sent. (Assume there is no 
additional packet loss.) For each segment in your figure, provide the 
sequence number and the number of bytes of data; for each acknowledg-
ment that you add, provide the acknowledgment number.

 P28. Host A and B are directly connected with a 100 Mbps link. There is one TCP 
connection between the two hosts, and Host A is sending to Host B an enor-
mous file over this connection. Host A can send its application data into its 
TCP socket at a rate as high as 120 Mbps but Host B can read out of its TCP 
receive buffer at a maximum rate of 50 Mbps. Describe the effect of TCP 
flow control.

 P29. SYN cookies were discussed in Section 3.5.6.

a. Why is it necessary for the server to use a special initial sequence number 
in the SYNACK?

b. Suppose an attacker knows that a target host uses SYN cookies. Can the 
attacker create half-open or fully open connections by simply sending an 
ACK packet to the target? Why or why not?

c. Suppose an attacker collects a large amount of initial sequence numbers sent 
by the server. Can the attacker cause the server to create many fully open 
connections by sending ACKs with those initial sequence numbers? Why?

 P30. Consider the network shown in Scenario 2 in Section 3.6.1. Suppose both 
sending hosts A and B have some fixed timeout values.

a. Argue that increasing the size of the finite buffer of the router might pos-
sibly decrease the throughput (lout).

b. Now suppose both hosts dynamically adjust their timeout values (like 
what TCP does) based on the buffering delay at the router. Would increas-
ing the buffer size help to increase the throughput? Why?
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 P31. Suppose that the five measured SampleRTT values (see Section 3.5.3) 
are 106 ms, 120 ms, 140 ms, 90 ms, and 115 ms. Compute the Estimat-
edRTT after each of these SampleRTT values is obtained, using a value of 
α = 0.125 and assuming that the value of EstimatedRTT was 100 ms 
just before the first of these five samples were obtained. Compute also the 
DevRTT after each sample is obtained, assuming a value of β = 0.25 and 
assuming the value of DevRTT was 5 ms just before the first of these five 
samples was obtained. Last, compute the TCP TimeoutInterval after 
each of these samples is obtained.

 P32. Consider the TCP procedure for estimating RTT. Suppose that α = 0.1. Let 
SampleRTT1 be the most recent sample RTT, let SampleRTT2 be the next 
most recent sample RTT, and so on.

a. For a given TCP connection, suppose four acknowledgments have  
been returned with corresponding sample RTTs: SampleRTT4,  
SampleRTT3, SampleRTT2, and SampleRTT1. Express  
EstimatedRTT in terms of the four sample RTTs.

b. Generalize your formula for n sample RTTs.

c. For the formula in part (b) let n approach infinity. Comment on why this 
averaging procedure is called an exponential moving average.

 P33. In Section 3.5.3, we discussed TCP’s estimation of RTT. Why do you think 
TCP avoids measuring the SampleRTT for retransmitted segments?

 P34. What is the relationship between the variable SendBase in Section 3.5.4 
and the variable LastByteRcvd in Section 3.5.5?

 P35. What is the relationship between the variable LastByteRcvd in  
Section 3.5.5 and the variable y in Section 3.5.4?

 P36. In Section 3.5.4, we saw that TCP waits until it has received three dupli-
cate ACKs before performing a fast retransmit. Why do you think the TCP 
designers chose not to perform a fast retransmit after the first duplicate ACK 
for a segment is received?

 P37. Compare GBN, SR, and TCP (no delayed ACK). Assume that the timeout 
values for all three protocols are sufficiently long such that five consecutive 
data segments and their corresponding ACKs can be received (if not lost in 
the channel) by the receiving host (Host B) and the sending host (Host A) 
respectively. Suppose Host A sends five data segments to Host B, and the 
second segment (sent from A) is lost. In the end, all five data segments have 
been correctly received by Host B.

a. How many segments has Host A sent in total and how many ACKs has 
Host B sent in total? What are their sequence numbers? Answer this  
question for all three protocols.
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b. If the timeout values for all three protocol are much longer than 5 RTT, 
then which protocol successfully delivers all five data segments in short-
est time interval?

 P38. In our description of TCP in Figure 3.53, the value of the threshold,  
ssthresh, is set as ssthresh=cwnd/2 in several places and 
ssthresh value is referred to as being set to half the window size when a 
loss event occurred. Must the rate at which the sender is sending when the 
loss event occurred be approximately equal to cwnd segments per RTT? 
Explain your answer. If your answer is no, can you suggest a different  
manner in which ssthresh should be set?

 P39. Consider Figure 3.46(b). If l′in increases beyond R/2, can lout increase 
beyond R/3? Explain. Now consider Figure 3.46(c). If l′in increases beyond 
R/2, can lout increase beyond R/4 under the assumption that a packet will be 
forwarded twice on average from the router to the receiver? Explain.

 P40. Consider Figure 3.61. Assuming TCP Reno is the protocol experiencing the 
behavior shown above, answer the following questions. In all cases, you 
should provide a short discussion justifying your answer.

a. Identify the intervals of time when TCP slow start is operating.

b. Identify the intervals of time when TCP congestion avoidance is operating.

c. After the 16th transmission round, is segment loss detected by a triple 
duplicate ACK or by a timeout?

d. After the 22nd transmission round, is segment loss detected by a triple 
duplicate ACK or by a timeout?
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e. What is the initial value of ssthresh at the first transmission round?

f. What is the value of ssthresh at the 18th transmission round?

g. What is the value of ssthresh at the 24th transmission round?

h. During what transmission round is the 70th segment sent?

i. Assuming a packet loss is detected after the 26th round by the receipt of 
a triple duplicate ACK, what will be the values of the congestion window 
size and of ssthresh?

j. Suppose TCP Tahoe is used (instead of TCP Reno), and assume that triple 
duplicate ACKs are received at the 16th round. What are the ssthresh 
and the congestion window size at the 19th round?

k. Again suppose TCP Tahoe is used, and there is a timeout event at  
22nd round. How many packets have been sent out from 17th round till 
22nd round, inclusive?

 P41. Refer to Figure 3.55, which illustrates the convergence of TCP’s AIMD 
algorithm. Suppose that instead of a multiplicative decrease, TCP decreased 
the window size by a constant amount. Would the resulting AIAD algorithm 
converge to an equal share algorithm? Justify your answer using a diagram 
similar to Figure 3.55.

 P42. In Section 3.5.4, we discussed the doubling of the timeout interval after a 
timeout event. This mechanism is a form of congestion control. Why does 
TCP need a window-based congestion-control mechanism (as studied in  
Section 3.7) in addition to this doubling-timeout-interval mechanism?

 P43. Host A is sending an enormous file to Host B over a TCP connection. Over 
this connection there is never any packet loss and the timers never expire. 
Denote the transmission rate of the link connecting Host A to the Internet by 
R bps. Suppose that the process in Host A is capable of sending data into its 
TCP socket at a rate S bps, where S = 10 # R. Further suppose that the TCP 
receive buffer is large enough to hold the entire file, and the send buffer can 
hold only one percent of the file. What would prevent the process in Host 
A from continuously passing data to its TCP socket at rate S bps? TCP flow 
control? TCP congestion control? Or something else? Elaborate.

 P44. Consider sending a large file from a host to another over a TCP connection 
that has no loss.

a. Suppose TCP uses AIMD for its congestion control without slow start. 
Assuming cwnd increases by 1 MSS every time a batch of ACKs is 
received and assuming approximately constant round-trip times, how long 
does it take for cwnd increase from 6 MSS to 12 MSS (assuming no loss 
events)?

b. What is the average throughput (in terms of MSS and RTT) for this con-
nection up through time = 6 RTT?
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 P45. Consider Figure 3.54. Suppose that at t3, the sending rate at which conges-
tion loss next occurs drops to 0.75*Wmax (unbeknownst to the TCP senders, 
of course). Show the evolution of both TCP Reno and TCP CUBIC for two 
more rounds each (Hint: note that the times at which TCP Reno and TCP 
CUBIC react to congestion loss may not be the same anymore).

 P46. Consider Figure 3.54 again. Suppose that at t3, the sending rate at which conges-
tion loss next occurs increases to 1.5*Wmax. Show the evolution of both TCP 
Reno and TCP CUBIC for at two more rounds each (Hint: see the hint in P45).

 P47. Recall the macroscopic description of TCP throughput. In the period of time 
from when the connection’s rate varies from W/(2 ? RTT) to W/RTT, only one 
packet is lost (at the very end of the period).

a. Show that the loss rate (fraction of packets lost) is equal to

L = loss rate =
1

3
8

 W2 + 3
4

 W

b. Use the result above to show that if a connection has loss rate L, then its 
average rate is approximately given by

≈
1.22 # MSS

RTT 2L

 P48. Consider that only a single TCP (Reno) connection uses one 10 Mbps link 
which does not buffer any data. Suppose that this link is the only congested 
link between the sending and receiving hosts. Assume that the TCP sender 
has a huge file to send to the receiver, and the receiver’s receive buffer 
is much larger than the congestion window. We also make the following 
assumptions: each TCP segment size is 1,500 bytes; the two-way propagation 
delay of this connection is 150 msec; and this TCP connection is always in 
congestion avoidance phase, that is, ignore slow start.

a. What is the maximum window size (in segments) that this TCP connec-
tion can achieve?

b. What is the average window size (in segments) and average throughput 
(in bps) of this TCP connection?

c. How long would it take for this TCP connection to reach its maximum 
window again after recovering from a packet loss?

 P49. Consider the scenario described in the previous problem. Suppose that the 
10 Mbps link can buffer a finite number of segments. Argue that in order for 
the link to always be busy sending data, we would like to choose a buffer size 
that is at least the product of the link speed C and the two-way propagation 
delay between the sender and the receiver.
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 P50. Repeat Problem 46, but replacing the 10 Mbps link with a 10 Gbps link. Note 
that in your answer to part c, you will realize that it takes a very long time for 
the congestion window size to reach its maximum window size after recover-
ing from a packet loss. Sketch a solution to solve this problem.

 P51. Let T (measured by RTT) denote the time interval that a TCP connection 
takes to increase its congestion window size from W/2 to W, where W is the 
maximum congestion window size. Argue that T is a function of TCP’s  
average throughput.

 P52. Consider a simplified TCP’s AIMD algorithm where the congestion window 
size is measured in number of segments, not in bytes. In additive increase, the 
congestion window size increases by one segment in each RTT. In multipli-
cative decrease, the congestion window size decreases by half (if the result 
is not an integer, round down to the nearest integer). Suppose that two TCP 
connections, C1 and C2, share a single congested link of speed 30 segments 
per second. Assume that both C1 and C2 are in the congestion avoidance 
phase. Connection C1’s RTT is 50 msec and connection C2’s RTT is 100 msec. 
Assume that when the data rate in the link exceeds the link’s speed, all  
TCP connections experience data segment loss.

a. If both C1 and C2 at time t0 have a congestion window of 10 segments, 
what are their congestion window sizes after 1000 msec?

b. In the long run, will these two connections get the same share of the band-
width of the congested link? Explain.

 P53. Consider the network described in the previous problem. Now suppose that 
the two TCP connections, C1 and C2, have the same RTT of 100 msec.  
Suppose that at time t0, C1’s congestion window size is 15 segments but C2’s 
congestion window size is 10 segments.

a. What are their congestion window sizes after 2200 msec?

b. In the long run, will these two connections get about the same share of the 
bandwidth of the congested link?

c. We say that two connections are synchronized, if both connections reach 
their maximum window sizes at the same time and reach their minimum 
window sizes at the same time. In the long run, will these two connec-
tions get synchronized eventually? If so, what are their maximum window 
sizes?

d. Will this synchronization help to improve the utilization of the shared 
link? Why? Sketch some idea to break this synchronization.

 P54. Consider a modification to TCP’s congestion control algorithm. Instead of 
additive increase, we can use multiplicative increase. A TCP sender increases 
its window size by a small positive constant a (0 6 a 6 1) whenever it 
receives a valid ACK. Find the functional relationship between loss rate L 
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and maximum congestion window W. Argue that for this modified TCP, 
regardless of TCP’s average throughput, a TCP connection always spends the 
same amount of time to increase its congestion window size from W/2 to W.

 P55. In our discussion of TCP futures in Section 3.7, we noted that to achieve a 
throughput of 10 Gbps, TCP could only tolerate a segment loss probability of 
2 # 10-10 (or equivalently, one loss event for every 5,000,000,000 segments). 
Show the derivation for the values of 2 # 10-10 (1 out of 5,000,000) for the 
RTT and MSS values given in Section 3.7. If TCP needed to support a  
100 Gbps connection, what would the tolerable loss be?

 P56. In our discussion of TCP congestion control in Section 3.7, we implicitly 
assumed that the TCP sender always had data to send. Consider now the case 
that the TCP sender sends a large amount of data and then goes idle (since it 
has no more data to send) at t1. TCP remains idle for a relatively long period 
of time and then wants to send more data at t2. What are the advantages and 
disadvantages of having TCP use the cwnd and ssthresh values from t1 
when starting to send data at t2? What alternative would you recommend? 
Why?

 P57. In this problem, we investigate whether either UDP or TCP provides a degree 
of end-point authentication.

a. Consider a server that receives a request within a UDP packet and 
responds to that request within a UDP packet (for example, as done by a 
DNS server). If a client with IP address X spoofs its address with address 
Y, where will the server send its response?

b. Suppose a server receives a SYN with IP source address Y, and after 
responding with a SYNACK, receives an ACK with IP source address Y 
with the correct acknowledgment number. Assuming the server chooses a 
random initial sequence number and there is no “man-in-the-middle,” can 
the server be certain that the client is indeed at Y (and not at some other 
address X that is spoofing Y)?

 P58. In this problem, we consider the delay introduced by the TCP slow-start 
phase. Consider a client and a Web server directly connected by one link of 
rate R. Suppose the client wants to retrieve an object whose size is exactly 
equal to 15 S, where S is the maximum segment size (MSS). Denote the 
round-trip time between client and server as RTT (assumed to be constant). 
Ignoring protocol headers, determine the time to retrieve the object (includ-
ing TCP connection establishment) when

a. 4 S/R 7 S/R + RTT 7 2S/R

b. S/R + RTT 7 4 S/R

c. S/R 7 RTT .
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Programming Assignments

Implementing a Reliable Transport Protocol
In this laboratory programming assignment, you will be writing the sending and 
receiving transport-level code for implementing a simple reliable data transfer pro-
tocol. There are two versions of this lab, the alternating-bit-protocol version and the 
GBN version. This lab should be fun—your implementation will differ very little 
from what would be required in a real-world situation.

Since you probably don’t have standalone machines (with an OS that you can 
modify), your code will have to execute in a simulated hardware/software environ-
ment. However, the programming interface provided to your routines—the code that 
would call your entities from above and from below—is very close to what is done 
in an actual UNIX environment. (Indeed, the software interfaces described in this 
programming assignment are much more realistic than the infinite loop senders and 
receivers that many texts describe.) Stopping and starting timers are also simulated, 
and timer interrupts will cause your timer handling routine to be activated.

The full lab assignment, as well as code you will need to compile with your own 
code, are available at this book’s Web site: www.pearsonhighered.com/cs-resources.

Wireshark Lab: Exploring TCP

In this lab, you’ll use your Web browser to access a file from a Web server. As in earlier 
Wireshark labs, you’ll use Wireshark to capture the packets arriving at your computer. 
Unlike earlier labs, you’ll also be able to download a Wireshark-readable packet trace 
from the Web server from which you downloaded the file. In this server trace, you’ll 
find the packets that were generated by your own access of the Web server. You’ll ana-
lyze the client- and server-side traces to explore aspects of TCP. In particular, you’ll 
evaluate the performance of the TCP connection between your computer and the Web 
server. You’ll trace TCP’s window behavior, and infer packet loss, retransmission, 
flow control and congestion control behavior, and estimated roundtrip time.

As is the case with all Wireshark labs, the full description of this lab is available 
at this book’s Web site, www.pearsonhighered.com/cs-resources.

Wireshark Lab: Exploring UDP

In this short lab, you’ll do a packet capture and analysis of your favorite application 
that uses UDP (for example, DNS or a multimedia application such as Skype). As we 
learned in Section 3.3, UDP is a simple, no-frills transport protocol. In this lab, you’ll 
investigate the header fields in the UDP segment as well as the checksum calculation.

As is the case with all Wireshark labs, the full description of this lab is available 
at this book’s Web site, www.pearsonhighered.com/cs-resources.
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Please describe one or two of the most exciting projects you have worked on during your 
career. What were the biggest challenges?
School teaches us lots of ways to find answers. In every interesting problem I’ve worked 
on, the challenge has been finding the right question. When Mike Karels and I started look-
ing at TCP congestion, we spent months staring at protocol and packet traces asking “Why 
is it failing?”. One day in Mike’s office, one of us said “The reason I can’t figure out why 
it fails is because I don’t understand how it ever worked to begin with.” That turned out to 
be the right question and it forced us to figure out the “ack clocking” that makes TCP work. 
After that, the rest was easy.

More generally, where do you see the future of networking and the Internet?
For most people, the Web is the Internet. Networking geeks smile politely since we know 
the Web is an application running over the Internet but what if they’re right? The Internet 
is about enabling conversations between pairs of hosts. The Web is about distributed infor-
mation production and consumption. “Information propagation” is a very general view of 
communication of which “pairwise conversation” is a tiny subset. We need to move into the 
larger tent. Networking today deals with broadcast media (radios, PONs, etc.) by pretending 
it’s a point-to-point wire. That’s massively inefficient. Terabits-per-second of data are being 
exchanged all over the World via thumb drives or smart phones but we don’t know how to 
treat that as “networking”. ISPs are busily setting up caches and CDNs to scalably distribute 
video and audio. Caching is a necessary part of the solution but there’s no part of today’s 
networking—from Information, Queuing or Traffic Theory down to the Internet protocol 

Van Jacobson works at Google and was previously a Research 
Fellow at PARC. Prior to that, he was co-founder and Chief Scientist 
of Packet Design. Before that, he was Chief Scientist at Cisco. 
Before joining Cisco, he was head of the Network Research 
Group at Lawrence Berkeley National Laboratory and taught at UC 
Berkeley and Stanford. Van received the ACM SIGCOMM Award 
in 2001 for outstanding lifetime contribution to the field of commu-
nication networks and the IEEE Kobayashi Award in 2002 for “con-
tributing to the understanding of network congestion and developing 
congestion control mechanisms that enabled the successful scaling 
of the Internet”. He was elected to the U.S. National Academy of 
Engineering in 2004.
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specs—that tells us how to engineer and deploy it. I think and hope that over the next few 
years, networking will evolve to embrace the much larger vision of communication that 
underlies the Web.

What people inspired you professionally?
When I was in grad school, Richard Feynman visited and gave a colloquium. He talked 
about a piece of Quantum theory that I’d been struggling with all semester and his explana-
tion was so simple and lucid that what had been incomprehensible gibberish to me became 
obvious and inevitable. That ability to see and convey the simplicity that underlies our  
complex world seems to me a rare and wonderful gift.

What are your recommendations for students who want careers in computer science and 
networking?
It’s a wonderful field—computers and networking have probably had more impact on society 
than any invention since the book. Networking is fundamentally about connecting stuff, and 
studying it helps you make intellectual connections: Ant foraging & Bee dances demonstrate 
protocol design better than RFCs, traffic jams or people leaving a packed stadium are the 
essence of congestion, and students finding flights back to school in a post-Thanksgiving  
blizzard are the core of dynamic routing. If you’re interested in lots of stuff and want to 
have an impact, it’s hard to imagine a better field.
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We learned in the previous chapter that the transport layer provides various forms 
of process-to-process communication by relying on the network layer’s host-to-host 
communication service. We also learned that the transport layer does so without any 
knowledge about how the network layer actually implements this service. So perhaps 
you’re now wondering, what’s under the hood of the host-to-host communication 
service, what makes it tick?

In this chapter and the next, we’ll learn exactly how the network layer can pro-
vide its host-to-host communication service. We’ll see that unlike the transport and 
application layers, there is a piece of the network layer in each and every host and 
router in the network. Because of this, network-layer protocols are among the most 
challenging (and therefore among the most interesting!) in the protocol stack.

Since the network layer is arguably the most complex layer in the protocol 
stack, we’ll have a lot of ground to cover here. Indeed, there is so much to cover 
that we cover the network layer in two chapters. We’ll see that the network layer 
can be decomposed into two interacting parts, the data plane and the control plane. 
In Chapter 4, we’ll first cover the data plane functions of the network layer—the 
per-router functions in the network layer that determine how a datagram (that is, a 
network-layer packet) arriving on one of a router’s input links is forwarded to one 
of that router’s output links. We’ll cover both traditional IP forwarding (where for-
warding is based on a datagram’s destination address) and generalized forwarding 
(where forwarding and other functions may be performed using values in several 
different fields in the datagram’s header). We’ll study the IPv4 and IPv6 protocols 
and addressing in detail. In Chapter 5, we’ll cover the control plane functions of 
the network layer—the network-wide logic that controls how a datagram is routed 

The Network 
Layer: Data 
Plane

4CHAPTER
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among routers along an end-to-end path from the source host to the destination host. 
We’ll cover routing algorithms, as well as routing protocols, such as OSPF and BGP, 
that are in widespread use in today’s Internet. Traditionally, these control-plane rout-
ing protocols and data-plane forwarding functions have been implemented together, 
monolithically, within a router. Software-defined networking (SDN) explicitly sepa-
rates the data plane and control plane by implementing these control plane functions 
as a separate service, typically in a remote “controller.” We’ll also cover SDN con-
trollers in Chapter 5.

This distinction between data-plane and control-plane functions in the network 
layer is an important concept to keep in mind as you learn about the network layer —
it will help structure your thinking about the network layer and reflects a modern 
view of the network layer’s role in computer networking.

4.1 Overview of Network Layer

Figure 4.1 shows a simple network with two hosts, H1 and H2, and several routers on 
the path between H1 and H2. Let’s suppose that H1 is sending information to H2, and 
consider the role of the network layer in these hosts and in the intervening routers. The 
network layer in H1 takes segments from the transport layer in H1, encapsulates each 
segment into a datagram, and then sends the datagrams to its nearby router, R1. At the 
receiving host, H2, the network layer receives the datagrams from its nearby router 
R2, extracts the transport-layer segments, and delivers the segments up to the transport 
layer at H2. The primary data-plane role of each router is to forward datagrams from 
its input links to its output links; the primary role of the network control plane is to 
coordinate these local, per-router forwarding actions so that datagrams are ultimately 
transferred end-to-end, along paths of routers between source and destination hosts. 
Note that the routers in Figure 4.1 are shown with a truncated protocol stack, that is, 
with no upper layers above the network layer, because routers do not run application-  
and transport-layer protocols such as those we examined in Chapters 2 and 3.

4.1.1  Forwarding and Routing: The Data and  
Control Planes

The primary role of the network layer is deceptively simple—to move packets from 
a sending host to a receiving host. To do so, two important network-layer functions 
can be identified:

• Forwarding. When a packet arrives at a router’s input link, the router must move 
the packet to the appropriate output link. For example, a packet arriving from 
Host H1 to Router R1 in Figure 4.1 must be forwarded to the next router on 
a path to H2. As we will see, forwarding is but one function (albeit the most  
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common and important one!) implemented in the data plane. In the more general 
case, which we’ll cover in Section 4.4, a packet might also be blocked from exit-
ing a router (for example, if the packet originated at a known malicious sending 
host, or if the packet were destined to a forbidden destination host), or might be 
duplicated and sent over multiple outgoing links.

• Routing. The network layer must determine the route or path taken by packets as 
they flow from a sender to a receiver. The algorithms that calculate these paths 
are referred to as routing algorithms. A routing algorithm would determine, for 
example, the path along which packets flow from H1 to H2 in Figure 4.1. Routing 
is implemented in the control plane of the network layer.

The terms forwarding and routing are often used interchangeably by authors dis-
cussing the network layer. We’ll use these terms much more precisely in this book.  
Forwarding refers to the router-local action of transferring a packet from an input 
link interface to the appropriate output link interface. Forwarding takes place at very 
short timescales (typically a few nanoseconds), and thus is typically implemented in 
hardware. Routing refers to the network-wide process that determines the end-to-end 
paths that packets take from source to destination. Routing takes place on much longer 
timescales (typically seconds), and as we will see is often implemented in software. 
Using our driving analogy, consider the trip from Pennsylvania to Florida undertaken 
by our traveler back in Section 1.3.1. During this trip, our driver passes through many 
interchanges en route to Florida. We can think of forwarding as the process of getting 
through a single interchange: A car enters the interchange from one road and deter-
mines which road it should take to leave the interchange. We can think of routing as 
the process of planning the trip from Pennsylvania to Florida: Before embarking on 
the trip, the driver has consulted a map and chosen one of many paths possible, with 
each path consisting of a series of road segments connected at interchanges.

A key element in every network router is its forwarding table. A router forwards 
a packet by examining the value of one or more fields in the arriving packet’s header, 
and then using these header values to index into its forwarding table. The value stored 
in the forwarding table entry for those values indicates the outgoing link interface at 
that router to which that packet is to be forwarded. For example, in Figure 4.2, a packet 
with header field value of 0110 arrives to a router. The router indexes into its forward-
ing table and determines that the output link interface for this packet is interface 2. 
The router then internally forwards the packet to interface 2. In Section 4.2, we’ll look 
inside a router and examine the forwarding function in much greater detail. Forward-
ing is the key function performed by the data-plane functionality of the network layer.

Control Plane: The Traditional Approach 
But now you are undoubtedly wondering how a router’s forwarding tables are con-
figured in the first place. This is a crucial issue, one that exposes the important inter-
play between forwarding (in data plane) and routing (in control plane). As shown  
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in Figure 4.2, the routing algorithm determines the contents of the routers’ forward-
ing tables. In this example, a routing algorithm runs in each and every router and 
both forwarding and routing functions are contained within a router. As we’ll see in 
Sections 5.3 and 5.4, the routing algorithm function in one router communicates with 
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages 
containing routing information according to a routing protocol! We’ll cover routing 
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can 
be further illustrated by considering the hypothetical (and unrealistic, but technically 
feasible) case of a network in which all forwarding tables are configured directly by 
human network operators physically present at the routers. In this case, no routing 
protocols would be required! Of course, the human operators would need to interact 
with each other to ensure that the forwarding tables were configured in such a way 
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have 
both a forwarding and a routing function!
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Figure 4.2 ♦ Routing algorithms determine values in forward tables
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Control Plane: The SDN Approach 
The approach to implementing routing functionality shown in Figure 4.2—with each 
router having a routing component that communicates with the routing component of 
other routers—has been the traditional approach adopted by routing vendors in their 
products, at least until recently. Our observation that humans could manually configure 
forwarding tables does suggest, however, that there may be other ways for control-
plane functionality to determine the contents of the data-plane forwarding tables.

Figure 4.3 shows an alternative approach in which a physically separate, remote 
controller computes and distributes the forwarding tables to be used by each and 
every router.  Note that the data plane components of Figures 4.2 and 4.3 are identi-
cal. In Figure 4.3; however, control-plane routing functionality is separated from the 
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physical router—the routing device performs forwarding only, while the remote con-
troller computes and distributes forwarding tables. The remote controller might be 
implemented in a remote data center with high reliability and redundancy, and might 
be managed by the ISP or some third party. How might the routers and the remote 
controller communicate? By exchanging messages containing forwarding tables and 
other pieces of routing information. The control-plane approach shown in Figure 4.3 
is at the heart of software-defined networking (SDN), where the network is “soft-
ware-defined” because the controller that computes forwarding tables and interacts 
with routers is implemented in software. Increasingly, these software implementa-
tions are also open, that is, similar to Linux OS code, the code is publically available, 
allowing ISPs (and networking researchers and students!) to innovate and propose 
changes to the software that controls network-layer functionality. We will cover the 
SDN control plane in Section 5.5.

4.1.2 Network Service Model
Before delving into the network layer’s data plane, let’s wrap up our introduction 
by taking the broader view and consider the different types of service that might be 
offered by the network layer. When the transport layer at a sending host transmits a 
packet into the network (that is, passes it down to the network layer at the sending 
host), can the transport layer rely on the network layer to deliver the packet to the 
destination? When multiple packets are sent, will they be delivered to the transport 
layer in the receiving host in the order in which they were sent? Will the amount 
of time between the sending of two sequential packet transmissions be the same 
as the amount of time between their reception? Will the network provide any feed-
back about congestion in the network? The answers to these questions and others 
are determined by the service model provided by the network layer. The network 
service model defines the characteristics of end-to-end delivery of packets between 
sending and receiving hosts.

Let’s now consider some possible services that the network layer could provide. 
These services could include:

• Guaranteed delivery. This service guarantees that a packet sent by a source host 
will eventually arrive at the destination host.

• Guaranteed delivery with bounded delay. This service not only guarantees 
delivery of the packet, but delivery within a specified host-to-host delay bound  
(for example, within 100 msec).

• In-order packet delivery. This service guarantees that packets arrive at the desti-
nation in the order that they were sent.

• Guaranteed minimal bandwidth. This network-layer service emulates the behav-
ior of a transmission link of a specified bit rate (for example, 1 Mbps) between 
sending and receiving hosts. As long as the sending host transmits bits (as part 
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of packets) at a rate below the specified bit rate, then all packets are eventually 
delivered to the destination host.

• Security. The network layer could encrypt all datagrams at the source and decrypt them 
at the destination, thereby providing confidentiality to all transport-layer segments.

This is only a partial list of services that a network layer could provide—there are 
countless variations possible.

The Internet’s network layer provides a single service, known as best-effort 
service. With best-effort service, packets are neither guaranteed to be received in the 
order in which they were sent, nor is their eventual delivery even guaranteed. There 
is no guarantee on the end-to-end delay nor is there a minimal bandwidth guaran-
tee. It might appear that best-effort service is a euphemism for no service at all—a 
network that delivered no packets to the destination would satisfy the definition of  
best-effort delivery service! Other network architectures have defined and imple-
mented service models that go beyond the Internet’s best-effort service. For example, 
the ATM network architecture [Black 1995] provides for guaranteed in-order delay, 
bounded delay, and guaranteed minimal bandwidth. There have also been proposed 
service model extensions to the Internet architecture; for example, the Intserv archi-
tecture [RFC 1633] aims to provide end-end delay guarantees and congestion-free 
communication. Interestingly, in spite of these well-developed alternatives, the 
Internet’s basic best-effort service model combined with adequate bandwidth provi-
sioning and bandwidth-adaptive application-level protocols such as the DASH pro-
tocol we encountered in Section 2.6.2 have arguably proven to be more than “good 
enough” to enable an amazing range of applications, including streaming video ser-
vices such as Netflix and video-over-IP, real-time conferencing applications such as 
Skype and Facetime.

An Overview of Chapter 4
Having now provided an overview of the network layer, we’ll cover the data-plane 
component of the network layer in the following sections in this chapter. In Section 4.2, 
we’ll dive down into the internal hardware operations of a router, including input 
and output packet processing, the router’s internal switching mechanism, and packet 
queueing and scheduling. In Section 4.3, we’ll take a look at traditional IP forwarding, 
in which packets are forwarded to output ports based on their destination IP addresses. 
We’ll encounter IP addressing, the celebrated IPv4 and IPv6 protocols and more. In 
Section 4.4, we’ll cover more generalized forwarding, where packets may be for-
warded to output ports based on a large number of header values (i.e., not only based 
on destination IP address). Packets may be blocked or duplicated at the router, or 
may have certain header field values rewritten—all under software control. This more 
generalized form of packet forwarding is a key component of a modern network data 
plane, including the data plane in software-defined networks (SDN). In Section 4.5, 
we’ll learn about “middleboxes” that can perform functions in addition to forwarding.
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We mention here in passing that the terms forwarding and switching are often 
used interchangeably by computer-networking researchers and practitioners; we’ll 
use both terms interchangeably in this textbook as well. While we’re on the topic 
of terminology, it’s also worth mentioning two other terms that are often used inter-
changeably, but that we will use more carefully. We’ll reserve the term packet switch 
to mean a general packet-switching device that transfers a packet from input link 
interface to output link interface, according to values in a packet’s header fields. 
Some packet switches, called link-layer switches (examined in Chapter 6), base 
their forwarding decision on values in the fields of the link-layer frame; switches are 
thus referred to as link-layer (layer 2) devices. Other packet switches, called routers, 
base their forwarding decision on header field values in the network-layer datagram. 
Routers are thus network-layer (layer 3) devices. (To fully appreciate this important 
distinction, you might want to review Section 1.5.2, where we discuss network-layer 
datagrams and link-layer frames and their relationship.) Since our focus in this chap-
ter is on the network layer, we’ll mostly use the term router in place of packet switch.

4.2 What’s Inside a Router?

Now that we’ve overviewed the data and control planes within the network layer, the 
important distinction between forwarding and routing, and the services and functions of 
the network layer, let’s turn our attention to its forwarding function—the actual transfer 
of packets from a router’s incoming links to the appropriate outgoing links at that router.

A high-level view of a generic router architecture is shown in Figure 4.4. Four 
router components can be identified:

Input port Output port

Input port Output port

Routing
processor

Routing, management
control plane (software)

Forwarding
data plane (hardware)

Switch
fabric

Figure 4.4 ♦ Router architecture
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• Input ports. An input port performs several key functions. It performs the physi-
cal layer function of terminating an incoming physical link at a router; this is 
shown in the leftmost box of an input port and the rightmost box of an output 
port in Figure 4.4. An input port also performs link-layer functions needed to 
interoperate with the link layer at the other side of the incoming link; this is 
represented by the middle boxes in the input and output ports. Perhaps most cru-
cially, a lookup function is also performed at the input port; this will occur in the 
rightmost box of the input port. It is here that the forwarding table is consulted 
to determine the router output port to which an arriving packet will be forwarded 
via the switching fabric. Control packets (for example, packets carrying routing 
protocol information) are forwarded from an input port to the routing processor. 
Note that the term “port” here—referring to the physical input and output router 
interfaces—is distinctly different from the software ports associated with network 
applications and sockets discussed in Chapters 2 and 3. In practice, the number of 
ports supported by a router can range from a relatively small number in enterprise 
routers, to hundreds of 10 Gbps ports in a router at an ISP’s edge, where the num-
ber of incoming lines tends to be the greatest. The Juniper MX2020, edge router, 
for example, supports up to 800 100 Gbps Ethernet ports, with an overall router 
system capacity of 800 Tbps [Juniper MX 2020 2020].

• Switching fabric. The switching fabric connects the router’s input ports to its 
output ports. This switching fabric is completely contained within the router—a 
network inside of a network router!

• Output ports. An output port stores packets received from the switching fabric 
and transmits these packets on the outgoing link by performing the necessary 
link-layer and physical-layer functions. When a link is bidirectional (that is, car-
ries traffic in both directions), an output port will typically be paired with the 
input port for that link on the same line card.

• Routing processor. The routing processor performs control-plane functions. In tra-
ditional routers, it executes the routing protocols (which we’ll study in Sections 5.3 
and 5.4), maintains routing tables and attached link state information, and com-
putes the forwarding table for the router. In SDN routers, the routing processor is 
responsible for communicating with the remote controller in order to (among other 
activities) receive forwarding table entries computed by the remote controller, and 
install these entries in the router’s input ports. The routing processor also performs 
the network management functions that we’ll study in Section 5.7.

A router’s input ports, output ports, and switching fabric are almost always 
implemented in hardware, as shown in Figure 4.4. To appreciate why a hardware 
implementation is needed, consider that with a 100 Gbps input link and a 64-byte 
IP datagram, the input port has only 5.12 ns to process the datagram before another 
datagram may arrive. If N ports are combined on a line card (as is often done in 
practice), the datagram-processing pipeline must operate N times faster—far too 

M04_KURO1557_08_SE_C04.indd   312 12/02/20   4:11 PM



4.2  •  WHAT’S INSIDE A ROUTER?     313

fast for software implementation. Forwarding hardware can be implemented either 
using a router vendor’s own hardware designs, or constructed using purchased  
merchant-silicon chips (for example, as sold by companies such as Intel and Broadcom).

While the data plane operates at the nanosecond time scale, a router’s control 
functions—executing the routing protocols, responding to attached links that go up 
or down, communicating with the remote controller (in the SDN case) and perform-
ing management functions—operate at the millisecond or second timescale. These 
control plane functions are thus usually implemented in software and execute on the 
routing processor (typically a traditional CPU).

Before delving into the details of router internals, let’s return to our analogy 
from the beginning of this chapter, where packet forwarding was compared to cars 
entering and leaving an interchange. Let’s suppose that the interchange is a rounda-
bout, and that as a car enters the roundabout, a bit of processing is required. Let’s 
consider what information is required for this processing:

• Destination-based forwarding. Suppose the car stops at an entry station and indi-
cates its final destination (not at the local roundabout, but the ultimate destination 
of its journey). An attendant at the entry station looks up the final destination, 
determines the roundabout exit that leads to that final destination, and tells the 
driver which roundabout exit to take.

• Generalized forwarding. The attendant could also determine the car’s exit ramp on 
the basis of many other factors besides the destination. For example, the selected 
exit ramp might depend on the car’s origin, for example the state that issued the 
car’s license plate. Cars from a certain set of states might be directed to use one exit 
ramp (that leads to the destination via a slow road), while cars from other states 
might be directed to use a different exit ramp (that leads to the destination via super-
highway). The same decision might be made based on the model, make and year 
of the car. Or a car not deemed roadworthy might be blocked and not be allowed to 
pass through the roundabout. In the case of generalized forwarding, any number of 
factors may contribute to the attendant’s choice of the exit ramp for a given car.

Once the car enters the roundabout (which may be filled with other cars entering 
from other input roads and heading to other roundabout exits), it eventually leaves at 
the prescribed roundabout exit ramp, where it may encounter other cars leaving the 
roundabout at that exit.

We can easily recognize the principal router components in Figure 4.4 in this 
analogy—the entry road and entry station correspond to the input port (with a lookup 
function to determine to local outgoing port); the roundabout corresponds to the 
switch fabric; and the roundabout exit road corresponds to the output port. With this 
analogy, it’s instructive to consider where bottlenecks might occur. What happens if 
cars arrive blazingly fast (for example, the roundabout is in Germany or Italy!) but 
the station attendant is slow? How fast must the attendant work to ensure there’s no 
backup on an entry road? Even with a blazingly fast attendant, what happens if cars 
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traverse the roundabout slowly—can backups still occur? And what happens if most 
of the cars entering at all of the roundabout’s entrance ramps all want to leave the 
roundabout at the same exit ramp—can backups occur at the exit ramp or elsewhere? 
How should the roundabout operate if we want to assign priorities to different cars, 
or block certain cars from entering the roundabout in the first place? These are all 
analogous to critical questions faced by router and switch designers.

In the following subsections, we’ll look at router functions in more detail. [Turner 
1988; McKeown 1997a; Partridge 1998; Iyer 2008; Serpanos 2011; Zilberman 2019] 
provide a discussion of specific router architectures. For concreteness and simplicity, 
we’ll initially assume in this section that forwarding decisions are based only on the 
packet’s destination address, rather than on a generalized set of packet header fields. We 
will cover the case of more generalized packet forwarding in Section 4.4.

4.2.1 Input Port Processing and Destination-Based Forwarding
A more detailed view of input processing is shown in Figure 4.5. As just discussed, 
the input port’s line-termination function and link-layer processing implement the 
physical and link layers for that individual input link. The lookup performed in the 
input port is central to the router’s operation—it is here that the router uses the for-
warding table to look up the output port to which an arriving packet will be forwarded 
via the switching fabric. The forwarding table is either computed and updated by the 
routing processor (using a routing protocol to interact with the routing processors in 
other network routers) or is received from a remote SDN controller. The forwarding 
table is copied from the routing processor to the line cards over a separate bus (e.g., 
a PCI bus) indicated by the dashed line from the routing processor to the input line 
cards in Figure 4.4. With such a shadow copy at each line card, forwarding decisions 
can be made locally, at each input port, without invoking the centralized routing pro-
cessor on a per-packet basis and thus avoiding a centralized processing bottleneck.

Let’s now consider the “simplest” case that the output port to which an incoming 
packet is to be switched is based on the packet’s destination address. In the case of 
32-bit IP addresses, a brute-force implementation of the forwarding table would have 
one entry for every possible destination address. Since there are more than 4 billion 
possible addresses, this option is totally out of the question.

Line
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(protocol,
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Lookup, fowarding,
queuing Switch

fabric

Figure 4.5 ♦ Input port processing
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As an example of how this issue of scale can be handled, let’s suppose that our 
router has four links, numbered 0 through 3, and that packets are to be forwarded to 
the link interfaces as follows:

 Destination Address Range Link Interface

 11001000 00010111 00010000 00000000 
 through 0
 11001000 00010111 00010111 11111111 

 11001000 00010111 00011000 00000000 
 through 1
 11001000 00010111 00011000 11111111 

 11001000 00010111 00011001 00000000 
 through 2
 11001000 00010111 00011111 11111111 

 Otherwise 3

Clearly, for this example, it is not necessary to have 4 billion entries in the router’s 
forwarding table. We could, for example, have the following forwarding table with 
just four entries:

 Prefix Link Interface

 11001000 00010111 00010 0
 11001000 00010111 00011000 1
 11001000 00010111 00011 2
 Otherwise 3

With this style of forwarding table, the router matches a prefix of the packet’s des-
tination address with the entries in the table; if there’s a match, the router forwards 
the packet to a link associated with the match. For example, suppose the packet’s 
destination address is 11001000 00010111 00010110 10100001; because 
the 21-bit prefix of this address matches the first entry in the table, the router forwards 
the packet to link interface 0. If a prefix doesn’t match any of the first three entries, 
then the router forwards the packet to the default interface 3. Although this sounds 
simple enough, there’s a very important subtlety here. You may have noticed that it is 
possible for a destination address to match more than one entry. For example, the first 
24 bits of the address 11001000 00010111 00011000 10101010 match the 
second entry in the table, and the first 21 bits of the address match the third entry in the 
table. When there are multiple matches, the router uses the longest prefix matching 
rule; that is, it finds the longest matching entry in the table and forwards the packet to 
the link interface associated with the longest prefix match. We’ll see exactly why this 
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longest prefix-matching rule is used when we study Internet addressing in more detail 
in Section 4.3.

Given the existence of a forwarding table, lookup is conceptually simple— 
hardware logic just searches through the forwarding table looking for the longest 
prefix match. But at Gigabit transmission rates, this lookup must be performed in 
nanoseconds (recall our earlier example of a 10 Gbps link and a 64-byte IP data-
gram). Thus, not only must lookup be performed in hardware, but techniques beyond 
a simple linear search through a large table are needed; surveys of fast lookup algo-
rithms can be found in [Gupta 2001, Ruiz-Sanchez 2001]. Special attention must 
also be paid to memory access times, resulting in designs with embedded on-chip 
DRAM and faster SRAM (used as a DRAM cache) memories. In practice, Ternary 
Content Addressable Memories (TCAMs) are also often used for lookup [Yu 2004]. 
With a TCAM, a 32-bit IP address is presented to the memory, which returns the 
content of the forwarding table entry for that address in essentially constant time. 
The Cisco Catalyst 6500 and 7600 Series routers and switches can hold upwards of 
a million TCAM forwarding table entries [Cisco TCAM 2014].

Once a packet’s output port has been determined via the lookup, the packet 
can be sent into the switching fabric. In some designs, a packet may be temporarily 
blocked from entering the switching fabric if packets from other input ports are cur-
rently using the fabric. A blocked packet will be queued at the input port and then 
scheduled to cross the fabric at a later point in time. We’ll take a closer look at the 
blocking, queuing, and scheduling of packets (at both input ports and output ports) 
shortly. Although “lookup” is arguably the most important action in input port pro-
cessing, many other actions must be taken: (1) physical- and link-layer processing 
must occur, as discussed previously; (2) the packet’s version number, checksum and 
time-to-live field—all of which we’ll study in Section 4.3—must be checked and the 
latter two fields rewritten; and (3) counters used for network management (such as 
the number of IP datagrams received) must be updated.

Let’s close our discussion of input port processing by noting that the input port 
steps of looking up a destination IP address (“match”) and then sending the packet 
into the switching fabric to the specified output port (“action”) is a specific case of a 
more general “match plus action” abstraction that is performed in many networked 
devices, not just routers. In link-layer switches (covered in Chapter 6), link-layer 
destination addresses are looked up and several actions may be taken in addition to 
sending the frame into the switching fabric towards the output port. In firewalls (cov-
ered in Chapter 8)—devices that filter out selected incoming packets—an incoming 
packet whose header matches a given criteria (e.g., a combination of source/destina-
tion IP addresses and transport-layer port numbers) may be dropped (action). In a 
network address translator (NAT, covered in Section 4.3), an incoming packet whose 
transport-layer port number matches a given value will have its port number rewrit-
ten before forwarding (action). Indeed, the “match plus action” abstraction [Bosshart 
2013] is both powerful and prevalent in network devices today, and is central to the 
notion of generalized forwarding that we’ll study in Section 4.4.
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4.2.2 Switching
The switching fabric is at the very heart of a router, as it is through this fabric that 
the packets are actually switched (that is, forwarded) from an input port to an output 
port. Switching can be accomplished in a number of ways, as shown in Figure 4.6:

• Switching via memory. The simplest, earliest routers were traditional computers, 
with switching between input and output ports being done under direct control of 
the CPU (routing processor). Input and output ports functioned as traditional I/O 
devices in a traditional operating system. An input port with an arriving packet 
first signaled the routing processor via an interrupt. The packet was then copied 
from the input port into processor memory. The routing processor then extracted 
the destination address from the header, looked up the appropriate output port 
in the forwarding table, and copied the packet to the output port’s buffers. In 
this scenario, if the memory bandwidth is such that a maximum of B packets per 
second can be written into, or read from, memory, then the overall forwarding 
throughput (the total rate at which packets are transferred from input ports to out-
put ports) must be less than B/2. Note also that two packets cannot be forwarded 
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Figure 4.6 ♦ Three switching techniques
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at the same time, even if they have different destination ports, since only one 
memory read/write can be done at a time over the shared system bus.

 Some modern routers switch via memory. A major difference from early routers, 
however, is that the lookup of the destination address and the storing of the packet 
into the appropriate memory location are performed by processing on the input line 
cards. In some ways, routers that switch via memory look very much like shared-
memory multiprocessors, with the processing on a line card switching (writing) 
packets into the memory of the appropriate output port. Cisco’s Catalyst 8500 
series switches [Cisco 8500 2020] internally switches packets via a shared memory.

• Switching via a bus. In this approach, an input port transfers a packet directly to the 
output port over a shared bus, without intervention by the routing processor. This is 
typically done by having the input port pre-pend a switch-internal label (header) to 
the packet indicating the local output port to which this packet is being transferred 
and transmitting the packet onto the bus. All output ports receive the packet, but 
only the port that matches the label will keep the packet. The label is then removed 
at the output port, as this label is only used within the switch to cross the bus. If mul-
tiple packets arrive to the router at the same time, each at a different input port, all 
but one must wait since only one packet can cross the bus at a time. Because every 
packet must cross the single bus, the switching speed of the router is limited to the 
bus speed; in our roundabout analogy, this is as if the roundabout could only contain 
one car at a time. Nonetheless, switching via a bus is often sufficient for routers that 
operate in small local area and enterprise networks. The Cisco 6500 router [Cisco 
6500 2020] internally switches packets over a 32-Gbps-backplane bus.

• Switching via an interconnection network. One way to overcome the bandwidth 
limitation of a single, shared bus is to use a more sophisticated interconnection net-
work, such as those that have been used in the past to interconnect processors in a 
multiprocessor computer architecture. A crossbar switch is an interconnection net-
work consisting of 2N buses that connect N input ports to N output ports, as shown 
in Figure 4.6. Each vertical bus intersects each horizontal bus at a crosspoint, 
which can be opened or closed at any time by the switch fabric controller (whose 
logic is part of the switching fabric itself). When a packet arrives from port A and 
needs to be forwarded to port Y, the switch controller closes the crosspoint at the 
intersection of busses A and Y, and port A then sends the packet onto its bus, which 
is picked up (only) by bus Y. Note that a packet from port B can be forwarded to 
port X at the same time, since the A-to-Y and B-to-X packets use different input 
and output busses. Thus, unlike the previous two switching approaches, cross-
bar switches are capable of forwarding multiple packets in parallel. A crossbar 
switch is non-blocking—a packet being forwarded to an output port will not be 
blocked from reaching that output port as long as no other packet is currently being 
forwarded to that output port. However, if two packets from two different input 
ports are destined to that same output port, then one will have to wait at the input, 
since only one packet can be sent over any given bus at a time. Cisco 12000 series 
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switches [Cisco 12000 2020] use a crossbar switching network; the Cisco 7600 
series can be configured to use either a bus or crossbar switch [Cisco 7600 2020].

 More sophisticated interconnection networks use multiple stages of switching 
elements to allow packets from different input ports to proceed towards the same 
output port at the same time through the multi-stage switching fabric. See [Tobagi 
1990] for a survey of switch architectures. The Cisco CRS employs a three-stage 
non-blocking switching strategy. A router’s switching capacity can also be scaled 
by running multiple switching fabrics in parallel. In this approach, input ports 
and output ports are connected to N switching fabrics that operate in parallel. An 
input port breaks a packet into K smaller chunks, and sends (“sprays”) the chunks 
through K of these N switching fabrics to the selected output port, which reas-
sembles the K chunks back into the original packet.

4.2.3 Output Port Processing
Output port processing, shown in Figure 4.7, takes packets that have been stored 
in the output port’s memory and transmits them over the output link. This includes 
selecting (i.e., scheduling) and de-queueing packets for transmission, and perform-
ing the needed link-layer and physical-layer transmission functions.

4.2.4 Where Does Queuing Occur?
If we consider input and output port functionality and the configurations shown  
in Figure 4.6, it’s clear that packet queues may form at both the input ports and the 
output ports, just as we identified cases where cars may wait at the inputs and out-
puts of the traffic intersection in our roundabout analogy. The location and extent of 
queueing (either at the input port queues or the output port queues) will depend on 
the traffic load, the relative speed of the switching fabric, and the line speed. Let’s 
now consider these queues in a bit more detail, since as these queues grow large, the 
router’s memory can eventually be exhausted and packet loss will occur when no 
memory is available to store arriving packets. Recall that in our earlier  discussions, 
we said that packets were “lost within the network” or “dropped at a router.” It is here, 
at these queues within a router, where such packets are actually dropped and lost.

Line
termination

Data link
processing
(protocol,

encapsulation)

Queuing (buffer
management)Switch

fabric

Figure 4.7 ♦ Output port processing
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Suppose that the input and output line speeds (transmission rates) all have an 
identical transmission rate of Rline packets per second, and that there are N input ports 
and N output ports. To further simplify the discussion, let’s assume that all packets 
have the same fixed length, and that packets arrive to input ports in a synchronous 
manner. That is, the time to send a packet on any link is equal to the time to receive a 
packet on any link, and during such an interval of time, either zero or one packets can 
arrive on an input link. Define the switching fabric transfer rate Rswitch as the rate at 
which packets can be moved from input port to output port. If Rswitch is N times faster 
than Rline, then only negligible queuing will occur at the input ports. This is because 
even in the worst case, where all N input lines are receiving packets, and all packets 
are to be forwarded to the same output port, each batch of N packets (one packet per 
input port) can be cleared through the switch fabric before the next batch arrives.

Input Queueing

But what happens if the switch fabric is not fast enough (relative to the input line 
speeds) to transfer all arriving packets through the fabric without delay? In this case, 
packet queuing can also occur at the input ports, as packets must join input port 
queues to wait their turn to be transferred through the switching fabric to the output 
port. To illustrate an important consequence of this queuing, consider a crossbar 
switching fabric and suppose that (1) all link speeds are identical, (2) that one packet 
can be transferred from any one input port to a given output port in the same amount 
of time it takes for a packet to be received on an input link, and (3) packets are moved 
from a given input queue to their desired output queue in an FCFS manner. Multiple 
packets can be transferred in parallel, as long as their output ports are different. How-
ever, if two packets at the front of two input queues are destined for the same output 
queue, then one of the packets will be blocked and must wait at the input queue—the 
switching fabric can transfer only one packet to a given output port at a time.

Figure 4.8 shows an example in which two packets (darkly shaded) at the front 
of their input queues are destined for the same upper-right output port. Suppose that 
the switch fabric chooses to transfer the packet from the front of the upper-left queue. 
In this case, the darkly shaded packet in the lower-left queue must wait. But not only 
must this darkly shaded packet wait, so too must the lightly shaded packet that is 
queued behind that packet in the lower-left queue, even though there is no conten-
tion for the middle-right output port (the destination for the lightly shaded packet). 
This phenomenon is known as head-of-the-line (HOL) blocking in an input-queued 
switch—a queued packet in an input queue must wait for transfer through the fabric 
(even though its output port is free) because it is blocked by another packet at the 
head of the line. [Karol 1987] shows that due to HOL blocking, the input queue will 
grow to unbounded length (informally, this is equivalent to saying that significant 
packet loss will occur) under certain assumptions as soon as the packet arrival rate 
on the input links reaches only 58 percent of their capacity. A number of solutions to 
HOL blocking are discussed in [McKeown 1997].
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Output Queueing

Let’s next consider whether queueing can occur at a switch’s output ports. Suppose 
that Rswitch is again N times faster than Rline and that packets arriving at each of the N 
input ports are destined to the same output port. In this case, in the time it takes to send a  
single packet onto the outgoing link, N new packets will arrive at this output port 
(one from each of the N input ports). Since the output port can transmit only a single 
packet in a unit of time (the packet transmission time), the N arriving packets will 
have to queue (wait) for transmission over the outgoing link. Then N more packets 
can possibly arrive in the time it takes to transmit just one of the N packets that had 
just previously been queued. And so on. Thus, packet queues can form at the output 
ports even when the switching fabric is N times faster than the port line speeds. 
Eventually, the number of queued packets can grow large enough to exhaust avail-
able memory at the output port.

Switch
fabric

Output port contention at time t —
one dark packet can be transferred

Light blue packet experiences HOL blocking

Switch
fabric

Key:

destined for upper output 
port

destined for middle output 
port

destined for lower output 
port

Figure 4.8 ♦ HOL blocking at and input-queued switch
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When there is not enough memory to buffer an incoming packet, a decision must 
be made to either drop the arriving packet (a policy known as drop-tail) or remove 
one or more already-queued packets to make room for the newly arrived packet. In 
some cases, it may be advantageous to drop (or mark the header of) a packet before 
the buffer is full in order to provide a congestion signal to the sender. This mark-
ing could be done using the Explicit Congestion Notification bits that we studied in 
Section 3.7.2. A number of proactive packet-dropping and -marking policies (which 
collectively have become known as active queue management (AQM) algorithms) 
have been proposed and analyzed [Labrador 1999, Hollot 2002]. One of the most 
widely studied and implemented AQM algorithms is the Random Early Detection 
(RED) algorithm [Christiansen 2001]. More recent AQM policies include PIE (the 
Proportional Integral controller Enhanced [RFC 8033]), and CoDel [Nichols 2012].

Output port queuing is illustrated in Figure 4.9. At time t, a packet has arrived 
at each of the incoming input ports, each destined for the uppermost outgoing port. 
Assuming identical line speeds and a switch operating at three times the line speed, one 
time unit later (that is, in the time needed to receive or send a packet), all three original 
packets have been transferred to the outgoing port and are queued awaiting transmis-
sion. In the next time unit, one of these three packets will have been transmitted over the 
outgoing link. In our example, two new packets have arrived at the incoming side of the 

Switch
fabric

Output port contention at time t

One packet time later

Switch
fabric

Figure 4.9 ♦ Output port queueing
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switch; one of these packets is destined for this uppermost output port. A consequence 
of such queuing is that a packet scheduler at the output port must choose one packet, 
among those queued, for transmission—a topic we’ll cover in the following section.

How Much Buffering Is “Enough?”

Our study above has shown how a packet queue forms when bursts of packets arrive 
at a router’s input or (more likely) output port, and the packet arrival rate temporarily 
exceeds the rate at which packets can be forwarded. The longer the amount of time 
that this mismatch persists, the longer the queue will grow, until eventually a port’s 
buffers become full and packets are dropped. One natural question is how much 
buffering should be provisioned at a port. It turns out the answer to this question is 
much more complicated than one might imagine and can teach us quite a bit about 
the subtle interaction among congestion-aware senders at the network’s edge and the 
network core!

For many years, the rule of thumb [RFC 3439] for buffer sizing was that the 
amount of buffering (B) should be equal to an average round-trip time (RTT, say 
250 msec) times the link capacity (C). Thus, a 10-Gbps link with an RTT of 250 msec 
would need an amount of buffering equal to B = RTT # C = 2.5 Gbits of buff-
ers. This result was based on an analysis of the queueing dynamics of a relatively 
small number of TCP flows [Villamizar 1994]. More recent theoretical and experi-
mental efforts [Appenzeller 2004], however, suggest that when a large number of 
independent TCP flows (N) pass through a link, the amount of buffering needed is 
B = RTT # C>2N. In core networks, where a large number of TCP flows typi-
cally pass through large backbone router links, the value of N can be large, with 
the decrease in needed buffer size becoming quite significant. [Appenzeller 2004; 
Wischik 2005; Beheshti 2008] provide very readable discussions of the buffer-sizing 
problem from a theoretical, implementation, and operational standpoint.

It’s temping to think that more buffering must be better—larger buffers would 
allow a router to absorb larger fluctuations in the packet arrival rate, thereby decreas-
ing the router’s packet loss rate. But larger buffers also mean potentially longer 
queueing delays. For gamers and for interactive teleconferencing users, tens of mil-
liseconds count. Increasing the amount of per-hop buffer by a factor of 10 to decrease 
packet loss could increase the end-end delay by a factor of 10! Increased RTTs also 
make TCP senders less responsive and slower to respond to incipient congestion and/
or packet loss. These delay-based considerations show that buffering is a double-
edged sword—buffering can be used to absorb short-term statistical fluctuations in 
traffic but can also lead to increased delay and the attendant concerns. Buffering is 
a bit like salt—just the right amount of salt makes food better, but too much makes 
it inedible!

In the discussion above, we’ve implicitly assumed that many independent send-
ers are competing for bandwidth and buffers at a congested link. While this is prob-
ably an excellent assumption for routers within the network core, at the network edge 
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this may not hold. Figure 4.10(a) shows a home router sending TCP segments to a 
remote game server. Following [Nichols 2012], suppose that it takes 20 ms to trans-
mit a packet (containing a gamer’s TCP segment), that there are negligible queueing 
delays elsewhere on the path to the game server, and that the RTT is 200 ms. As 
shown in Figure 4.10(b), suppose that at time t = 0, a burst of 25 packets arrives to 
the queue. One of these queued packets is then transmitted once every 20 ms, so that 
at t = 200 msec, the first ACK arrives, just as the 21st packet is being transmitted. 
This ACK arrival causes the TCP sender to send another packet, which is queued at 
the outgoing link of the home router. At t = 220, the next ACK arrives, and another 
TCP segment is released by the gamer and is queued, as the 22nd packet is being 
transmitted, and so on. You should convince yourself that in this scenario, ACK 
clocking results in a new packet arriving at the queue every time a queued packet 
is sent, resulting in queue size at the home router’s outgoing link that is always five 
packets! That is, the end-end-pipe is full (delivering packets to the destination at the 
path bottleneck rate of one packet every 20 ms), but the amount of queueing delay is 
constant and persistent. As a result, the gamer is unhappy with the delay, and the par-
ent (who even knows wireshark!) is confused because he or she doesn’t understand 
why delays are persistent and excessively long, even when there is no other traffic 
on the home network.

This scenario above of long delay due to persistent buffering is known as buff-
erbloat and illustrates that not only is throughput important, but also minimal delay 
is important as well [Kleinrock 2018], and that the interaction among senders at the 
network edge and queues within the network can indeed be complex and subtle. The 
DOCSIS 3.1 standard for cable networks that we will study in Chapter 6, recently 
added a specific AQM mechanism [RFC 8033, RFC 8034] to combat bufferbloat, 
while preserving bulk throughput performance.
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Figure 4.10 ♦ Bufferbloat: persistent queues
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4.2.5 Packet Scheduling
Let’s now return to the question of determining the order in which queued packets are 
transmitted over an outgoing link. Since you yourself have undoubtedly had to wait in 
long lines on many occasions and observed how waiting customers are served, you’re 
no doubt familiar with many of the queueing disciplines commonly used in routers. 
There is first-come-first-served (FCFS, also known as first-in-first-out, FIFO). The 
British are famous for patient and orderly FCFS queueing at bus stops and in the mar-
ketplace (“Oh, are you queueing?”). Other countries operate on a priority basis, with 
one class of waiting customers given priority service over other waiting customers. 
There is also round-robin queueing, where customers are again divided into classes 
(as in priority queueing) but each class of customer is given service in turn.

First-in-First-Out (FIFO)

Figure 4.11 shows the queuing model abstraction for the FIFO link-scheduling dis-
cipline. Packets arriving at the link output queue wait for transmission if the link is 
currently busy transmitting another packet. If there is not sufficient buffering space 
to hold the arriving packet, the queue’s packet-discarding policy then determines 
whether the packet will be dropped (lost) or whether other packets will be removed 
from the queue to make space for the arriving packet, as discussed above. In our  
discussion below, we’ll ignore packet discard. When a packet is completely transmit-
ted over the outgoing link (that is, receives service) it is removed from the queue.

The FIFO (also known as first-come-first-served, or FCFS) scheduling discipline 
selects packets for link transmission in the same order in which they arrived 
at the output link queue. We’re all familiar with FIFO queuing from service centers, 
where arriving customers join the back of the single waiting line, remain in order, and 
are then served when they reach the front of the line. Figure 4.12 shows the FIFO queue 
in operation. Packet arrivals are indicated by numbered arrows above the upper time-
line, with the number indicating the order in which the packet arrived. Individual packet 
departures are shown below the lower timeline. The time that a packet spends in service 
(being transmitted) is indicated by the shaded rectangle between the two timelines. In 
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Figure 4.11 ♦ FIFO queueing abstraction
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our examples here, let’s assume that each packet takes three units of time to be transmit-
ted. Under the FIFO discipline, packets leave in the same order in which they arrived. 
Note that after the departure of packet 4, the link remains idle (since packets 1 through 
4 have been transmitted and removed from the queue) until the arrival of packet 5.

Priority Queuing

Under priority queuing, packets arriving at the output link are classified into prior-
ity classes upon arrival at the queue, as shown in Figure 4.13. In practice, a network 
operator may configure a queue so that packets carrying network management infor-
mation (for example, as indicated by the source or destination TCP/UDP port num-
ber) receive priority over user traffic; additionally, real-time voice-over-IP packets 
might receive priority over non-real-time traffic such e-mail packets. Each priority 
class typically has its own queue. When choosing a packet to transmit, the priority 
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Figure 4.12 ♦ The FIFO queue in operation
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Figure 4.13 ♦ The priority queueing model
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NET NEUTRALITY

We’ve seen that packet scheduling mechanisms (e.g., priority traffic scheduling disciplines 
such a strict priority, and WFQ) can be used to provide different levels of service to differ-
ent “classes” of traffic. The definition of what precisely constitutes a “class” of traffic is up 
to an ISP to decide, but could be potentially based on any set of fields in the IP datagram 
header. For example, the port field in the IP datagram header could be used to classify 
datagrams according to the “well-know service” associated with that port: SNMP network 
management datagram (port 161) might be assigned to a higher priority class than an 
IMAP e-mail protocol (ports 143, or 993) datagram and therefore receive better service. 
An ISP could also potentially use a datagram’s source IP address to provide priority to 
datagrams being sent by certain companies (who have presumably paid the ISP for this 
privilege) over datagrams being sent from other companies (who have not paid); an ISP 

PRINCIPLES IN PRACTICE

queuing discipline will transmit a packet from the highest priority class that has a 
nonempty queue (that is, has packets waiting for transmission). The choice among 
packets in the same priority class is typically done in a FIFO manner.

Figure 4.14 illustrates the operation of a priority queue with two priority classes. 
Packets 1, 3, and 4 belong to the high-priority class, and packets 2 and 5 belong to 
the low-priority class. Packet 1 arrives and, finding the link idle, begins transmission. 
During the transmission of packet 1, packets 2 and 3 arrive and are queued in the low- 
and high-priority queues, respectively. After the transmission of packet 1, packet 3  
(a  high-priority packet) is selected for transmission over packet 2 (which, even 
though it arrived earlier, is a low-priority packet). At the end of the transmission of 
packet 3, packet 2 then begins transmission. Packet 4 (a high-priority packet) arrives 
during the transmission of packet 2 (a low-priority packet). Under a non-preemptive 
priority queuing discipline, the transmission of a packet is not interrupted once it 
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Figure 4.14 ♦ The priority queue in operation
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could even block traffic with a source IP address in a given company, or country. There 
are many mechanisms that would allow an ISP to provide different levels of service to dif-
ferent classes of traffic. The real question is what policies and laws determine what an ISP 
can actually do. Of course, these laws will vary by country; see [Smithsonian 2017] for a 
brief survey. Here, we’ll briefly consider US policy on what has come to be known as “net 
neutrality.”

The term “net neutrality” doesn’t have a precise decision, but the March 2015 
Order on Protecting and Promoting an Open Internet [FCC 2015] by the US Federal 
Communications Commission provides three “clear, bright line” rules that are now often 
associated with net neutrality:

• “No Blocking. . . . A person engaged in the provision of broadband Internet access 
service, . . . shall not block lawful content, applications, services, or non-harmful 
devices, subject to reasonable network management.”

• “No Throttling. . . . A person engaged in the provision of broadband Internet 
access service, . . . shall not impair or degrade lawful Internet traffic on the basis of 
Internet content, application, or service, or use of a non-harmful device, subject to rea-
sonable network management.”

• “No Paid Prioritization. . . . A person engaged in the provision of broadband 
Internet access service, . . . shall not engage in paid prioritization. “Paid prioritization” 
refers to the management of a broadband provider’s network to directly or indirectly 
favor some traffic over other traffic, including through use of techniques such as traffic 
shaping, prioritization, resource reservation, or other forms of preferential traffic man-
agement, . . .”

Quite interestingly, before the Order, ISP behaviors violating the first two of these rules 
had been observed [Faulhaber 2012]. In 2005, an ISP in North Carolina agreed to stop 
its practice of blocking its customers from using Vonage, a voice-over-IP service that com-
peted with its own telephone service. In 2007, Comcast was judged to be interfering with 
BitTorrent P2P traffic by internally creating and sending TCP RST packets to BitTorrent send-
ers and receivers, which caused them to close their BitTorrent connection [FCC 2008].

Both sides of the net neutrality debate have been argued strenuously, mostly focused 
on the extent to which net neutrality provides benefits to customers, while at the same 
time promoting innovation. See [Peha 2006, Faulhaber 2012, Economides 2017, 
Madhyastha 2017].

The 2015 FCC Order on Protecting and Promoting an Open Internet, which banned 
ISPs from blocking, throttling, or providing paid prioritizing, was superseded by the 2017 
FCC Restoring Internet Freedom Order, [FCC 2017] which rolled back these prohibitions 
and focused instead on ISP transparency. With so much interest and so many changes,  
it’s probably safe to say we aren’t close to having seen the final chapter written on net 
neutrality in the United States, or elsewhere.
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has begun. In this case, packet 4 queues for transmission and begins being transmit-
ted after the transmission of packet 2 is completed.

Round Robin and Weighted Fair Queuing (WFQ)

Under the round robin queuing discipline, packets are sorted into classes as with 
priority queuing. However, rather than there being a strict service priority among 
classes, a round robin scheduler alternates service among the classes. In the simplest 
form of round robin scheduling, a class 1 packet is transmitted, followed by a class 
2 packet, followed by a class 1 packet, followed by a class 2 packet, and so on. A 
so-called work-conserving queuing discipline will never allow the link to remain 
idle whenever there are packets (of any class) queued for transmission. A work-
conserving round robin discipline that looks for a packet of a given class but finds 
none will immediately check the next class in the round robin sequence.

Figure 4.15 illustrates the operation of a two-class round robin queue. In this 
example, packets 1, 2, and 4 belong to class 1, and packets 3 and 5 belong to the 
second class. Packet 1 begins transmission immediately upon arrival at the output 
queue. Packets 2 and 3 arrive during the transmission of packet 1 and thus queue for 
transmission. After the transmission of packet 1, the link scheduler looks for a class 2 
packet and thus transmits packet 3. After the transmission of packet 3, the scheduler 
looks for a class 1 packet and thus transmits packet 2. After the transmission of packet 2, 
packet 4 is the only queued packet; it is thus transmitted immediately after packet 2.

A generalized form of round robin queuing that has been widely implemented 
in routers is the so-called weighted fair queuing (WFQ) discipline [Demers 1990; 
Parekh 1993. WFQ is illustrated in Figure 4.16. Here, arriving packets are classified 
and queued in the appropriate per-class waiting area. As in round robin scheduling, 
a WFQ scheduler will serve classes in a circular manner—first serving class 1, then 
serving class 2, then serving class 3, and then (assuming there are three classes) 
repeating the service pattern. WFQ is also a work-conserving queuing discipline and 
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Figure 4.15 ♦ The two-class robin queue in operation
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thus will immediately move on to the next class in the service sequence when it finds 
an empty class queue.

WFQ differs from round robin in that each class may receive a differential amount 
of service in any interval of time. Specifically, each class, i, is assigned a weight, wi. 
Under WFQ, during any interval of time during which there are class i packets to send, 
class i will then be guaranteed to receive a fraction of service equal to wi>(gwj), where 
the sum in the denominator is taken over all classes that also have packets queued for 
transmission. In the worst case, even if all classes have queued packets, class i will still 
be guaranteed to receive a fraction wi >(gwj) of the bandwidth, where in this worst 
case the sum in the denominator is over all classes. Thus, for a link with transmission 
rate R, class i will always achieve a throughput of at least R # wi >(gwj). Our descrip-
tion of WFQ has been idealized, as we have not considered the fact that packets are 
discrete and a packet’s transmission will not be interrupted to begin transmission of 
another packet; [Demers 1990; Parekh 1993] discuss this packetization issue.

4.3 The Internet Protocol (IP): IPv4, Addressing, 
IPv6, and More

Our study of the network layer thus far in Chapter 4—the notion of the data and con-
trol plane component of the network layer, our distinction between forwarding and 
routing, the identification of various network service models, and our look inside a 
router—have often been without reference to any specific computer network archi-
tecture or protocol. In this section, we’ll focus on key aspects of the network layer on 
today’s Internet and the celebrated Internet Protocol (IP).

There are two versions of IP in use today. We’ll first examine the widely 
deployed IP protocol version 4, which is usually referred to simply as IPv4 [RFC 
791] in Section 4.3.1. We’ll examine IP version 6 [RFC 2460; RFC 4291], which has 
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been proposed to replace IPv4, in Section 4.3.4. In between, we’ll primarily cover 
Internet addressing—a topic that might seem rather dry and detail-oriented but we’ll 
see is crucial to understanding how the Internet’s network layer works. To master IP 
addressing is to master the Internet’s network layer itself!

4.3.1 IPv4 Datagram Format
Recall that the Internet’s network-layer packet is referred to as a datagram. We begin 
our study of IP with an overview of the syntax and semantics of the IPv4 datagram. 
You might be thinking that nothing could be drier than the syntax and semantics of a 
packet’s bits. Nevertheless, the datagram plays a central role in the Internet—every 
networking student and professional needs to see it, absorb it, and master it. (And 
just to see that protocol headers can indeed be fun to study, check out [Pomeranz 
2010]). The IPv4 datagram format is shown in Figure 4.17. The key fields in the IPv4 
datagram are the following:

• Version number. These 4 bits specify the IP protocol version of the datagram. 
By looking at the version number, the router can determine how to interpret the 
remainder of the IP datagram. Different versions of IP use different datagram 
formats. The datagram format for IPv4 is shown in Figure 4.17. The datagram 
format for the new version of IP (IPv6) is discussed in Section 4.3.4.

• Header length. Because an IPv4 datagram can contain a variable number of 
options (which are included in the IPv4 datagram header), these 4 bits are needed 

Version Type of serviceHeader
length

Upper-layer
protocol

16-bit Identifier

Time-to-live

13-bit Fragmentation offsetFlags

Datagram length (bytes)

Header checksum

32 bits

32-bit Source IP address

32-bit Destination IP address

Options (if any)

Data

Figure 4.17 ♦ IPv4 datagram format
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to determine where in the IP datagram the payload (for example, the transport-
layer segment being encapsulated in this datagram) actually begins. Most IP data-
grams do not contain options, so the typical IP datagram has a 20-byte header.

• Type of service. The type of service (TOS) bits were included in the IPv4 header 
to allow different types of IP datagrams to be distinguished from each other. For 
example, it might be useful to distinguish real-time datagrams (such as those 
used by an IP telephony application) from non-real-time traffic (e.g., FTP). The 
 specific level of service to be provided is a policy issue determined and config-
ured by the network administrator for that router. We also learned in Section 3.7.2 
that two of the TOS bits are used for Explicit Congestion  Notification.

• Datagram length. This is the total length of the IP datagram (header plus data), meas-
ured in bytes. Since this field is 16 bits long, the theoretical maximum size of the IP 
datagram is 65,535 bytes. However, datagrams are rarely larger than 1,500 bytes, which 
allows an IP datagram to fit in the payload field of a maximally sized Ethernet frame.

• Identifier, flags, fragmentation offset. These three fields have to do with so-called 
IP fragmentation, when a large IP datagram is broken into several smaller IP data-
grams which are then forwarded independently to the destination, where they are 
reassembled before their payload data (see below) is passed up to the transport layer 
at the destination host. Interestingly, the new version of IP, IPv6, does not allow for 
fragmentation. We’ll not cover fragmentation here; but readers can find a detailed 
discussion online, among the “retired” material from earlier versions of this book.

• Time-to-live. The time-to-live (TTL) field is included to ensure that datagrams 
do not circulate forever (due to, for example, a long-lived routing loop) in the 
network. This field is decremented by one each time the datagram is processed by 
a router. If the TTL field reaches 0, a router must drop that datagram.

• Protocol. This field is typically used only when an IP datagram reaches its final 
destination. The value of this field indicates the specific transport-layer protocol 
to which the data portion of this IP datagram should be passed. For example, a 
value of 6 indicates that the data portion is passed to TCP, while a value of 17 indi-
cates that the data is passed to UDP. For a list of all possible values, see [IANA 
Protocol Numbers 2016]. Note that the protocol number in the IP datagram has 
a role that is analogous to the role of the port number field in the transport-layer 
segment. The protocol number is the glue that binds the network and transport 
layers together, whereas the port number is the glue that binds the transport and 
application layers together. We’ll see in Chapter 6 that the link-layer frame also 
has a special field that binds the link layer to the network layer.

• Header checksum. The header checksum aids a router in detecting bit errors in a 
received IP datagram. The header checksum is computed by treating each 2 bytes 
in the header as a number and summing these numbers using 1s complement arith-
metic. As discussed in Section 3.3, the 1s complement of this sum, known as 
the Internet checksum, is stored in the checksum field. A router computes the 
header checksum for each received IP datagram and detects an error condition if 
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the checksum carried in the datagram header does not equal the computed check-
sum. Routers typically discard datagrams for which an error has been detected. 
Note that the checksum must be recomputed and stored again at each router, since 
the TTL field, and possibly the options field as well, will change. An interesting 
discussion of fast algorithms for computing the Internet checksum is [RFC 1071]. 
A question often asked at this point is, why does TCP/IP perform error checking at 
both the transport and network layers? There are several reasons for this repetition. 
First, note that only the IP header is checksummed at the IP layer, while the TCP/
UDP checksum is computed over the entire TCP/UDP segment. Second, TCP/
UDP and IP do not necessarily both have to belong to the same protocol stack. 
TCP can, in principle, run over a different network-layer protocol (for example, 
ATM) [Black 1995]) and IP can carry data that will not be passed to TCP/UDP.

• Source and destination IP addresses. When a source creates a datagram, it inserts 
its IP address into the source IP address field and inserts the address of the ulti-
mate destination into the destination IP address field. Often the source host deter-
mines the destination address via a DNS lookup, as discussed in Chapter 2. We’ll 
discuss IP addressing in detail in Section 4.3.2.

• Options. The options fields allow an IP header to be extended. Header options 
were meant to be used rarely—hence the decision to save overhead by not includ-
ing the information in options fields in every datagram header. However, the 
mere existence of options does complicate matters—since datagram headers can 
be of variable length, one cannot determine a priori where the data field will start. 
Also, since some datagrams may require options processing and others may not, 
the amount of time needed to process an IP datagram at a router can vary greatly. 
These considerations become particularly important for IP processing in high-
performance routers and hosts. For these reasons and others, IP options were not 
included in the IPv6 header, as discussed in Section 4.3.4.

• Data (payload). Finally, we come to the last and most important field—the raison 
d’etre for the datagram in the first place! In most circumstances, the data field of 
the IP datagram contains the transport-layer segment (TCP or UDP) to be deliv-
ered to the destination. However, the data field can carry other types of data, such 
as ICMP messages (discussed in Section 5.6).

Note that an IP datagram has a total of 20 bytes of header (assuming no options). 
If the datagram carries a TCP segment, then each datagram carries a total of 
40 bytes of header (20 bytes of IP header plus 20 bytes of TCP header) along with 
the application-layer message.

4.3.2 IPv4 Addressing
We now turn our attention to IPv4 addressing. Although you may be thinking that 
addressing must be a straightforward topic, hopefully by the end of this section you’ll 
be convinced that Internet addressing is not only a juicy, subtle, and interesting topic 
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but also one that is of central importance to the Internet. An excellent treatment of 
IPv4 addressing can be found in the first chapter in [Stewart 1999].

Before discussing IP addressing, however, we’ll need to say a few words about 
how hosts and routers are connected into the Internet. A host typically has only a 
single link into the network; when IP in the host wants to send a datagram, it does 
so over this link. The boundary between the host and the physical link is called 
an interface. Now consider a router and its interfaces. Because a router’s job is to 
receive a datagram on one link and forward the datagram on some other link, a router 
necessarily has two or more links to which it is connected. The boundary between the 
router and any one of its links is also called an interface. A router thus has multiple 
interfaces, one for each of its links. Because every host and router is capable of send-
ing and receiving IP datagrams, IP requires each host and router interface to have 
its own IP address. Thus, an IP address is technically associated with an interface, 
rather than with the host or router containing that interface.

Each IP address is 32 bits long (equivalently, 4 bytes), and there are thus a total 
of 232 (or approximately 4 billion) possible IP addresses. These addresses are typi-
cally written in so-called dotted-decimal notation, in which each byte of the address 
is written in its decimal form and is separated by a period (dot) from other bytes in 
the address. For example, consider the IP address 193.32.216.9. The 193 is the deci-
mal equivalent of the first 8 bits of the address; the 32 is the decimal equivalent of 
the second 8 bits of the address, and so on. Thus, the address 193.32.216.9 in binary 
notation is

11000001 00100000 11011000 00001001

Each interface on every host and router in the global Internet must have an IP address 
that is globally unique (except for interfaces behind NATs, as discussed in Section 4.3.3). 
These addresses cannot be chosen in a willy-nilly manner, however. A portion of 
an interface’s IP address will be determined by the subnet to which it is connected.

Figure 4.18 provides an example of IP addressing and interfaces. In this figure, 
one router (with three interfaces) is used to interconnect seven hosts. Take a close 
look at the IP addresses assigned to the host and router interfaces, as there are sev-
eral things to notice. The three hosts in the upper-left portion of Figure 4.18, and 
the router interface to which they are connected, all have an IP address of the form 
223.1.1.xxx. That is, they all have the same leftmost 24 bits in their IP address. These 
four interfaces are also interconnected to each other by a network that contains no 
routers. This network could be interconnected by an Ethernet LAN, in which case 
the interfaces would be interconnected by an Ethernet switch (as we’ll discuss in 
Chapter 6), or by a wireless access point (as we’ll discuss in Chapter 7). We’ll repre-
sent this routerless network connecting these hosts as a cloud for now, and dive into 
the internals of such networks in Chapters 6 and 7.

In IP terms, this network interconnecting three host interfaces and one router 
interface forms a subnet [RFC 950]. (A subnet is also called an IP network or simply 
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a network in the Internet literature.) IP addressing assigns an address to this subnet: 
223.1.1.0/24, where the /24 (“slash-24”) notation, sometimes known as a subnet 
mask, indicates that the leftmost 24 bits of the 32-bit quantity define the subnet 
address. The 223.1.1.0/24 subnet thus consists of the three host interfaces (223.1.1.1, 
223.1.1.2, and 223.1.1.3) and one router interface (223.1.1.4). Any additional hosts 
attached to the 223.1.1.0/24 subnet would be required to have an address of the form 
223.1.1.xxx. There are two additional subnets shown in Figure 4.18: the 223.1.2.0/24 
network and the 223.1.3.0/24 subnet. Figure 4.19 illustrates the three IP subnets pre-
sent in Figure 4.18.

The IP definition of a subnet is not restricted to Ethernet segments that connect 
multiple hosts to a router interface. To get some insight here, consider Figure 4.20, 
which shows three routers that are interconnected with each other by point-to-point 
links. Each router has three interfaces, one for each point-to-point link and one for 
the broadcast link that directly connects the router to a pair of hosts. What subnets 
are present here? Three subnets, 223.1.1.0/24, 223.1.2.0/24, and 223.1.3.0/24, are 
similar to the subnets we encountered in Figure 4.18. But note that there are three 
additional subnets in this example as well: one subnet, 223.1.9.0/24, for the inter-
faces that connect routers R1 and R2; another subnet, 223.1.8.0/24, for the interfaces 
that connect routers R2 and R3; and a third subnet, 223.1.7.0/24, for the interfaces 
that connect routers R3 and R1. For a general interconnected system of routers and 
hosts, we can use the following recipe to define the subnets in the system:

223.1.1.1

223.1.2.1

223.1.2.2

223.1.1.2

223.1.1.4 223.1.2.9

223.1.3.27

223.1.1.3

223.1.3.1 223.1.3.2

Figure 4.18 ♦ Interface addresses and subnets
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To determine the subnets, detach each interface from its host or router, creating 
islands of isolated networks, with interfaces terminating the end points of the 
isolated networks. Each of these isolated networks is called a subnet.

If we apply this procedure to the interconnected system in Figure 4.20, we get six 
islands or subnets.

From the discussion above, it’s clear that an organization (such as a company or 
academic institution) with multiple Ethernet segments and point-to-point links will 
have multiple subnets, with all of the devices on a given subnet having the same subnet 
address. In principle, the different subnets could have quite different subnet addresses. 
In practice, however, their subnet addresses often have much in common. To understand 
why, let’s next turn our attention to how addressing is handled in the global Internet.

The Internet’s address assignment strategy is known as Classless Interdomain 
Routing (CIDR—pronounced cider) [RFC 4632]. CIDR generalizes the notion of 
subnet addressing. As with subnet addressing, the 32-bit IP address is divided into 
two parts and again has the dotted-decimal form a.b.c.d/x, where x indicates the 
number of bits in the first part of the address.

The x most significant bits of an address of the form a.b.c.d/x constitute the 
network portion of the IP address, and are often referred to as the prefix (or network 
prefix) of the address. An organization is typically assigned a block of contiguous 
addresses, that is, a range of addresses with a common prefix (see the Principles in 
Practice feature). In this case, the IP addresses of devices within the organization 
will share the common prefix. When we cover the Internet’s BGP routing protocol in 

223.1.1.0/24

223.1.2.0/24

223.1.3.0/24

Figure 4.19 ♦ Subnet addresses
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Section 5.4, we’ll see that only these x leading prefix bits are considered by routers 
outside the organization’s network. That is, when a router outside the organization 
forwards a datagram whose destination address is inside the organization, only the 
leading x bits of the address need be considered. This considerably reduces the size 
of the forwarding table in these routers, since a single entry of the form a.b.c.d/x will 
be sufficient to forward packets to any destination within the organization.

The remaining 32-x bits of an address can be thought of as distinguishing among the 
devices within the organization, all of which have the same network prefix. These are 
the bits that will be considered when forwarding packets at routers within the organiza-
tion. These lower-order bits may (or may not) have an additional subnetting structure, 
such as that discussed above. For example, suppose the first 21 bits of the CIDRized 
address a.b.c.d/21 specify the organization’s network prefix and are common to the IP 
addresses of all devices in that organization. The remaining 11 bits then identify the 
specific hosts in the organization. The organization’s internal structure might be such 
that these 11 rightmost bits are used for subnetting within the organization, as discussed 
above. For example, a.b.c.d/24 might refer to a specific subnet within the organization.

Before CIDR was adopted, the network portions of an IP address were constrained 
to be 8, 16, or 24 bits in length, an addressing scheme known as classful addressing, 

223.1.8.1 223.1.8.0

223.1.9.1 223.1.7.1

223.1.2.6

223.1.2.1 223.1.2.2 223.1.3.1 223.1.3.2

223.1.1.3

223.1.7.0223.1.9.2

223.1.3.27

223.1.1.1 223.1.1.4

R1

R2 R3

Figure 4.20 ♦ Three routers interconnecting six subnets
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since subnets with 8-, 16-, and 24-bit subnet addresses were known as class A, B, and 
C networks, respectively. The requirement that the subnet portion of an IP address be 
exactly 1, 2, or 3 bytes long turned out to be problematic for supporting the rapidly 
growing number of organizations with small and medium-sized subnets. A class C 
(/24) subnet could accommodate only up to 28 2 2 5 254 hosts (two of the 28 5 256 
addresses are reserved for special use)—too small for many organizations. However, a 
class B (/16) subnet, which supports up to 65,634 hosts, was too large. Under classful 
addressing, an organization with, say, 2,000 hosts was typically allocated a class B 
(/16) subnet address. This led to a rapid depletion of the class B address space and 
poor utilization of the assigned address space. For example, the organization that 
used a class B address for its 2,000 hosts was allocated enough of the address space 
for up to 65,534 interfaces—leaving more than 63,000 addresses that could not be 
used by other organizations.

This example of an ISP that connects eight organizations to the Internet nicely illustrates how 
carefully allocated CIDRized addresses facilitate routing. Suppose, as shown in Figure 4.21, 
that the ISP (which we’ll call Fly-By-Night-ISP) advertises to the outside world that it should 
be sent any datagrams whose first 20 address bits match 200.23.16.0/20. The rest of 
the world need not know that within the address block 200.23.16.0/20 there are in fact 
eight other organizations, each with its own subnets. This ability to use a single prefix to 
advertise multiple networks is often referred to as address aggregation (also route 
aggregation or route summarization).

Address aggregation works extremely well when addresses are allocated in blocks 
to ISPs and then from ISPs to client organizations. But what happens when addresses 
are not allocated in such a hierarchical manner? What would happen, for example, if 
Fly-By-Night-ISP acquires ISPs-R-Us and then has Organization 1 connect to the Internet 
through its subsidiary ISPs-R-Us? As shown in Figure 4.21, the subsidiary ISPs-R-Us owns 
the address block 199.31.0.0/16, but Organization 1’s IP addresses are unfortunately 
outside of this address block. What should be done here? Certainly, Organization 1 could 
renumber all of its routers and hosts to have addresses within the ISPs-R-Us address block. 
But this is a costly solution, and Organization 1 might well be reassigned to another 
subsidiary in the future. The solution typically adopted is for Organization 1 to keep its 
IP addresses in 200.23.18.0/23. In this case, as shown in Figure 4.22, Fly-By-Night-ISP 
continues to advertise the address block 200.23.16.0/20 and ISPs-R-Us continues to 
advertise 199.31.0.0/16. However, ISPs-R-Us now also advertises the block of addresses 
for Organization 1, 200.23.18.0/23. When other routers in the larger Internet see the 
address blocks 200.23.16.0/20 (from Fly-By-Night-ISP) and 200.23.18.0/23 (from ISPs-
R-Us) and want to route to an address in the block 200.23.18.0/23, they will use longest 
prefix matching (see Section 4.2.1), and route toward ISPs-R-Us, as it advertises the long-
est (i.e., most-specific) address prefix that matches the destination address.

PRINCIPLES IN PRACTICE
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Organization 0

200.23.16.0/23

Organization 1

Fly-By-Night-ISP

“Send me anything
  with addresses
  beginning
  200.23.16.0/20”

ISPs-R-Us

200.23.18.0/23

Organization 2

200.23.20.0/23

Organization 7

200.23.30.0/23

Internet

“Send me anything
  with addresses
  beginning
  199.31.0.0/16”

Figure 4.21 ♦ Hierarchical addressing and route aggregation

Organization 0

200.23.16.0/23

Organization 2

Fly-By-Night-ISP

“Send me anything
  with addresses
  beginning
  200.23.16.0/20”

ISPs-R-Us

200.23.20.0/23

Organization 7

200.23.30.0/23

Organization 1

200.23.18.0/23

Internet
“Send me anything
  with addresses
  beginning
  199.31.0.0/16 or
  200.23.18.0/23”

Figure 4.22 ♦ ISPs-R-Us has a more specific route to Organization 1
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We would be remiss if we did not mention yet another type of IP address, the IP 
broadcast address 255.255.255.255. When a host sends a datagram with destination 
address 255.255.255.255, the message is delivered to all hosts on the same subnet. 
Routers optionally forward the message into neighboring subnets as well (although 
they usually don’t).

Having now studied IP addressing in detail, we need to know how hosts and 
subnets get their addresses in the first place. Let’s begin by looking at how an 
organization gets a block of addresses for its devices, and then look at how a 
device (such as a host) is assigned an address from within the organization’s block 
of addresses.

Obtaining a Block of Addresses

In order to obtain a block of IP addresses for use within an organization’s subnet, 
a network administrator might first contact its ISP, which would provide addresses 
from a larger block of addresses that had already been allocated to the ISP. For 
example, the ISP may itself have been allocated the address block 200.23.16.0/20. 
The ISP, in turn, could divide its address block into eight equal-sized contiguous 
address blocks and give one of these address blocks out to each of up to eight organi-
zations that are supported by this ISP, as shown below. (We have underlined the 
subnet part of these addresses for your convenience.)

ISP’s block:     200.23.16.0/20     11001000 00010111 00010000 00000000

Organization 0   200.23.16.0/23     11001000 00010111 00010000 00000000

Organization 1   200.23.18.0/23     11001000 00010111 00010010 00000000

Organization 2   200.23.20.0/23     11001000 00010111 00010100 00000000

    …   …                                        …

Organization 7   200.23.30.0/23     11001000 00010111 00011110 00000000

While obtaining a set of addresses from an ISP is one way to get a block of 
addresses, it is not the only way. Clearly, there must also be a way for the ISP itself 
to get a block of addresses. Is there a global authority that has ultimate responsibility 
for managing the IP address space and allocating address blocks to ISPs and other 
organizations? Indeed there is! IP addresses are managed under the authority of the 
Internet Corporation for Assigned Names and Numbers (ICANN) [ICANN 2020], 
based on guidelines set forth in [RFC 7020]. The role of the nonprofit ICANN organ-
ization is not only to allocate IP addresses, but also to manage the DNS root servers. 
It also has the very contentious job of assigning domain names and resolving domain 
name disputes. The ICANN allocates addresses to regional Internet registries (for 
example, ARIN, RIPE, APNIC, and LACNIC, which together form the Address 
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Supporting Organization of ICANN [ASO-ICANN 2020]), and handle the alloca-
tion/management of addresses within their regions.

Obtaining a Host Address: The Dynamic Host Configuration Protocol

Once an organization has obtained a block of addresses, it can assign individual 
IP addresses to the host and router interfaces in its organization. A system admin-
istrator will typically manually configure the IP addresses into the router (often 
remotely, with a network management tool). Host addresses can also be config-
ured manually, but typically this is done using the Dynamic Host Configuration 
Protocol (DHCP) [RFC 2131]. DHCP allows a host to obtain (be allocated) an 
IP address automatically. A network administrator can configure DHCP so that a 
given host receives the same IP address each time it connects to the network, or a 
host may be assigned a temporary IP address that will be different each time the 
host connects to the network. In addition to host IP address assignment, DHCP also 
allows a host to learn additional information, such as its subnet mask, the address 
of its first-hop router (often called the default gateway), and the address of its local 
DNS server.

Because of DHCP’s ability to automate the network-related aspects of connect-
ing a host into a network, it is often referred to as a plug-and-play or zeroconf 
(zero-configuration) protocol. This capability makes it very attractive to the network 
administrator who would otherwise have to perform these tasks manually! DHCP 
is also enjoying widespread use in residential Internet access networks, enterprise 
networks, and in wireless LANs, where hosts join and leave the network frequently. 
Consider, for example, the student who carries a laptop from a dormitory room to 
a library to a classroom. It is likely that in each location, the student will be con-
necting into a new subnet and hence will need a new IP address at each location. 
DHCP is ideally suited to this situation, as there are many users coming and going, 
and addresses are needed for only a limited amount of time. The value of DHCP’s 
plug-and-play capability is clear, since it’s unimaginable that a system administrator 
would be able to reconfigure laptops at each location, and few students (except those 
taking a computer networking class!) would have the expertise to configure their 
laptops manually.

DHCP is a client-server protocol. A client is typically a newly arriving host 
wanting to obtain network configuration information, including an IP address for 
itself. In the simplest case, each subnet (in the addressing sense of Figure 4.20) will 
have a DHCP server. If no server is present on the subnet, a DHCP relay agent (typi-
cally a router) that knows the address of a DHCP server for that network is needed. 
Figure 4.23 shows a DHCP server attached to subnet 223.1.2/24, with the router 
serving as the relay agent for arriving clients attached to subnets 223.1.1/24 and 
223.1.3/24. In our discussion below, we’ll assume that a DHCP server is available 
on the subnet.
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For a newly arriving host, the DHCP protocol is a four-step process, as shown in 
Figure 4.24 for the network setting shown in Figure 4.23. In this figure, yiaddr (as 
in “your Internet address”) indicates the address being allocated to the newly arriving 
client. The four steps are:

• DHCP server discovery. The first task of a newly arriving host is to find a DHCP 
server with which to interact. This is done using a DHCP discover message, 
which a client sends within a UDP packet to port 67. The UDP packet is encap-
sulated in an IP datagram. But to whom should this datagram be sent? The host 
doesn’t even know the IP address of the network to which it is attaching, much 
less the address of a DHCP server for this network. Given this, the DHCP client 
creates an IP datagram containing its DHCP discover message along with the 
broadcast destination IP address of 255.255.255.255 and a “this host” source IP 
address of 0.0.0.0. The DHCP client passes the IP datagram to the link layer, 
which then broadcasts this frame to all nodes attached to the subnet (we will cover 
the details of link-layer broadcasting in Section 6.4).

• DHCP server offer(s). A DHCP server receiving a DHCP discover message 
responds to the client with a DHCP offer message that is broadcast to all 

223.1.1.1

223.1.1.2

223.1.1.4 223.1.2.9

223.1.3.27

223.1.1.3

223.1.3.1 223.1.3.2

223.1.2.1

223.1.2.5

223.1.2.2

Arriving
DHCP
client

DHCP
server

Figure 4.23 ♦ DHCP client and server
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DHCP server:
223.1.2.5

Arriving client

DHCP discover

Time Time

src: 0.0.0.0, 68
dest: 255.255.255.255,67
DHCPDISCOVER
yiaddr: 0.0.0.0
transaction ID: 654

src: 223.1.2.5, 67
dest: 255.255.255.255,68
DHCPOFFER
yiaddrr: 223.1.2.4
transaction ID: 654
DHCP server ID: 223.1.2.5
Lifetime: 3600 secs

DHCP offer

src: 223.1.2.5, 67
dest: 255.255.255.255,68
DHCPACK
yiaddrr: 223.1.2.4
transaction ID: 655
DHCP server ID: 223.1.2.5
Lifetime: 3600 secs

DHCP ACK

src: 0.0.0.0, 68
dest: 255.255.255.255, 67
DHCPREQUEST
yiaddrr: 223.1.2.4
transaction ID: 655
DHCP server ID: 223.1.2.5
Lifetime: 3600 secs

DHCP request

Figure 4.24 ♦ DHCP client-server interaction

nodes on the subnet, again using the IP broadcast address of 255.255.255.255. 
(You might want to think about why this server reply must also be broadcast). 
Since several DHCP servers can be present on the subnet, the client may find 
itself in the enviable position of being able to choose from among several 
offers. Each server offer message contains the transaction ID of the received 
discover message, the proposed IP address for the client, the network mask, 
and an IP address lease time—the amount of time for which the IP address 
will be valid. It is common for the server to set the lease time to several hours 
or days [Droms 2002].
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• DHCP request. The newly arriving client will choose from among one or more 
server offers and respond to its selected offer with a DHCP request message, 
echoing back the configuration parameters.

• DHCP ACK. The server responds to the DHCP request message with a DHCP 
ACK message, confirming the requested parameters.

Once the client receives the DHCP ACK, the interaction is complete and the 
client can use the DHCP-allocated IP address for the lease duration. Since a client 
may want to use its address beyond the lease’s expiration, DHCP also provides a 
mechanism that allows a client to renew its lease on an IP address.

From a mobility aspect, DHCP does have one very significant shortcoming. 
Since a new IP address is obtained from DHCP each time a node connects to a 
new subnet, a TCP connection to a remote application cannot be maintained as a 
mobile node moves between subnets. In Chapter 7, we will learn how mobile cel-
lular networks allow a host to retain its IP address and ongoing TCP connections as 
it moves between base stations in a provider’s cellular network. Additional details 
about DHCP can be found in [Droms 2002] and [dhc 2020]. An open source refer-
ence implementation of DHCP is available from the Internet Systems Consortium 
[ISC 2020].

4.3.3 Network Address Translation (NAT)
Given our discussion about Internet addresses and the IPv4 datagram format, 
we’re now well aware that every IP-capable device needs an IP address. With the 
 proliferation of small office, home office (SOHO) subnets, this would seem to imply 
that whenever a SOHO wants to install a LAN to connect multiple machines, a range 
of addresses would need to be allocated by the ISP to cover all of the SOHO’s IP 
devices (including phones, tablets, gaming devices, IP TVs, printers and more). 
If the subnet grew bigger, a larger block of addresses would have to be allocated. 
But what if the ISP had already allocated the contiguous portions of the SOHO 
 network’s current address range? And what typical homeowner wants (or should 
need) to know how to manage IP addresses in the first place? Fortunately, there 
is a simpler approach to address allocation that has found increasingly widespread 
use in such scenarios: network address translation (NAT) [RFC 2663; RFC 3022; 
Huston 2004, Zhang 2007; Huston 2017].

Figure 4.25 shows the operation of a NAT-enabled router. The NAT-enabled 
router, residing in the home, has an interface that is part of the home network on 
the right of Figure 4.25. Addressing within the home network is exactly as we 
have seen above—all four interfaces in the home network have the same subnet 
address of 10.0.0.0/24. The address space 10.0.0.0/8 is one of three portions of 
the IP address space that is reserved in [RFC 1918] for a private network or a 
realm with private addresses, such as the home network in Figure 4.25. A realm 
with private addresses refers to a network whose addresses only have meaning to 
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devices within that network. To see why this is important, consider the fact that 
there are hundreds of thousands of home networks, many using the same address 
space, 10.0.0.0/24. Devices within a given home network can send packets to each 
other using 10.0.0.0/24 addressing. However, packets forwarded beyond the home 
network into the larger global Internet clearly cannot use these addresses (as either 
a source or a destination address) because there are hundreds of thousands of net-
works using this block of addresses. That is, the 10.0.0.0/24 addresses can only 
have meaning within the given home network. But if private addresses only have 
meaning within a given network, how is addressing handled when packets are sent 
to or received from the global Internet, where addresses are necessarily unique? The 
answer lies in understanding NAT.

The NAT-enabled router does not look like a router to the outside world. Instead 
the NAT router behaves to the outside world as a single device with a single IP 
address. In Figure 4.25, all traffic leaving the home router for the larger Internet has 
a source IP address of 138.76.29.7, and all traffic entering the home router must have a 
destination address of 138.76.29.7. In essence, the NAT-enabled router is hiding 
the details of the home network from the outside world. (As an aside, you might 
wonder where the home network computers get their addresses and where the router 
gets its single IP address. Often, the answer is the same—DHCP! The router gets its 
address from the ISP’s DHCP server, and the router runs a DHCP server to provide 
addresses to computers within the NAT-DHCP-router-controlled home network’s 
address space.)

3

2

10.0.0.1

138.76.29.7

10.0.0.4 10.0.0.2

10.0.0.3

NAT translation table

WAN side

138.76.29.7, 5001

LAN side

10.0.0.1, 3345
. . . . . .

S = 138.76.29.7, 5001
D = 128.119.40.186, 80 

1

4
S = 128.119.40.186, 80
D = 138.76.29.7, 5001

S = 128.119.40.186, 80
D = 10.0.0.1, 3345 

S = 10.0.0.1, 3345
D = 128.119.40.186, 80

Figure 4.25 ♦ Network address translation
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If all datagrams arriving at the NAT router from the WAN have the same desti-
nation IP address (specifically, that of the WAN-side interface of the NAT router), 
then how does the router know the internal host to which it should forward a given 
datagram? The trick is to use a NAT translation table at the NAT router, and to 
include port numbers as well as IP addresses in the table entries.

Consider the example in Figure 4.25. Suppose a user sitting in a home net-
work behind host 10.0.0.1 requests a Web page on some Web server (port 80) 
with IP address 128.119.40.186. The host 10.0.0.1 assigns the (arbitrary) source 
port number 3345 and sends the datagram into the LAN. The NAT router receives 
the datagram, generates a new source port number 5001 for the datagram, replaces 
the source IP address with its WAN-side IP address 138.76.29.7, and replaces the 
original source port number 3345 with the new source port number 5001. When 
generating a new source port number, the NAT router can select any source port 
number that is not currently in the NAT translation table. (Note that because a port 
number field is 16 bits long, the NAT protocol can support over 60,000 simul-
taneous connections with a single WAN-side IP address for the router!) NAT 
in the router also adds an entry to its NAT translation table. The Web server, 
blissfully unaware that the arriving datagram containing the HTTP request has 
been manipulated by the NAT router, responds with a datagram whose destination 
address is the IP address of the NAT router, and whose destination port number is 
5001. When this datagram arrives at the NAT router, the router indexes the NAT 
translation table using the destination IP address and destination port number to 
obtain the appropriate IP address (10.0.0.1) and destination port number (3345) 
for the browser in the home network. The router then rewrites the datagram’s 
destination address and destination port number, and forwards the datagram into 
the home network.

NAT has enjoyed widespread deployment in recent years. But NAT is 
not without detractors. First, one might argue that, port numbers are meant to 
be used for addressing processes, not for addressing hosts. This violation can 
indeed cause problems for servers running on the home network, since, as we 
have seen in Chapter 2, server processes wait for incoming requests at well-
known port numbers and peers in a P2P protocol need to accept incoming con-
nections when acting as servers. How can one peer connect to another peer that 
is behind a NAT server, and has a DHCP-provided NAT address? Technical 
solutions to these problems include NAT traversal tools [RFC 5389] [RFC 
5389, RFC 5128, Ford 2005].

More “philosophical” arguments have also been raised against NAT by 
architectural purists. Here, the concern is that routers are meant to be layer 3 
(i.e., network-layer) devices, and should process packets only up to the net-
work layer. NAT violates this principle that hosts should be talking directly 
with each other, without interfering nodes modifying IP addresses, much less 
port numbers. We’ll return to this debate later in Section 4.5, when we cover 
middleboxes.
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4.3.4 IPv6
In the early 1990s, the Internet Engineering Task Force began an effort to develop a 
successor to the IPv4 protocol. A prime motivation for this effort was the realization 
that the 32-bit IPv4 address space was beginning to be used up, with new subnets 

INSPECTING DATAGRAMS: FIREWALLS AND INTRUSION DETECTION SYSTEMS

Suppose you are assigned the task of administering a home, departmental, university, or 
corporate network. Attackers, knowing the IP address range of your network, can easily 
send IP datagrams to addresses in your range. These datagrams can do all kinds of  
devious things, including mapping your network with ping sweeps and port scans, 
crashing vulnerable hosts with malformed packets, scanning for open TCP/UDP ports on 
servers in your network, and infecting hosts by including malware in the packets. As the 
network administrator, what are you going to do about all those bad guys out there, each 
capable of sending malicious packets into your network? Two popular defense mechanisms  
to malicious packet attacks are firewalls and intrusion detection systems (IDSs).

As a network administrator, you may first try installing a firewall between your 
network and the Internet. (Most access routers today have firewall capability.) 
Firewalls inspect the datagram and segment header fields, denying suspicious data-
grams entry into the internal network. For example, a firewall may be configured to 
block all ICMP echo request packets (see Section 5.6), thereby preventing an attack-
er from doing a traditional port scan across your IP address range. Firewalls can 
also block packets based on source and destination IP addresses and port numbers. 
Additionally, firewalls can be configured to track TCP connections, granting entry 
only to datagrams that belong to approved connections.

Additional protection can be provided with an IDS. An IDS, typically situated at 
the network boundary, performs “deep packet inspection,” examining not only head-
er fields but also the payloads in the datagram (including application-layer data). 
An IDS has a database of packet signatures that are known to be part of attacks. 
This database is automatically updated as new attacks are discovered. As packets 
pass through the IDS, the IDS attempts to match header fields and payloads to the 
signatures in its signature database. If such a match is found, an alert is created. An 
intrusion prevention system (IPS) is similar to an IDS, except that it actually blocks 
packets in addition to creating alerts. We’ll explore firewalls and IDSs in more detail 
in Section 4.5 and in again Chapter 8.

Can firewalls and IDSs fully shield your network from all attacks? The answer is 
clearly no, as attackers continually find new attacks for which signatures are not yet 
available. But firewalls and traditional signature-based IDSs are useful in protecting 
your network from known attacks.

FOCUS ON SECURITY
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and IP nodes being attached to the Internet (and being allocated unique IP addresses) 
at a breathtaking rate. To respond to this need for a large IP address space, a new 
IP protocol, IPv6, was developed. The designers of IPv6 also took this opportunity 
to tweak and augment other aspects of IPv4, based on the accumulated operational 
experience with IPv4.

The point in time when IPv4 addresses would be completely allocated (and 
hence no new networks could attach to the Internet) was the subject of considerable 
debate. The estimates of the two leaders of the IETF’s Address Lifetime Expec-
tations working group were that addresses would become exhausted in 2008 and 
2018, respectively [Solensky 1996]. In February 2011, IANA allocated out the last 
remaining pool of unassigned IPv4 addresses to a regional registry. While these reg-
istries still have available IPv4 addresses within their pool, once these addresses are 
exhausted, there are no more available address blocks that can be allocated from a 
central pool [Huston 2011a]. A recent survey of IPv4 address-space exhaustion, and 
the steps taken to prolong the life of the address space is [Richter 2015]; a recent 
analysis of IPv4 address use is [Huston 2019].

Although the mid-1990s estimates of IPv4 address depletion suggested that a 
considerable amount of time might be left until the IPv4 address space was exhausted, 
it was realized that considerable time would be needed to deploy a new technology 
on such an extensive scale, and so the process to develop IP version 6 (IPv6) [RFC 
2460] was begun [RFC 1752]. (An often-asked question is what happened to IPv5? 
It was initially envisioned that the ST-2 protocol would become IPv5, but ST-2 was 
later dropped.) An excellent source of information about IPv6 is [Huitema 1998].

IPv6 Datagram Format

The format of the IPv6 datagram is shown in Figure 4.26. The most important 
changes introduced in IPv6 are evident in the datagram format:

• Expanded addressing capabilities. IPv6 increases the size of the IP address from 
32 to 128 bits. This ensures that the world won’t run out of IP addresses. Now, 
every grain of sand on the planet can be IP-addressable. In addition to unicast and 
multicast addresses, IPv6 has introduced a new type of address, called an anycast 
address, that allows a datagram to be delivered to any one of a group of hosts. 
(This feature could be used, for example, to send an HTTP GET to the nearest of 
a number of mirror sites that contain a given document.)

• A streamlined 40-byte header. As discussed below, a number of IPv4 fields have 
been dropped or made optional. The resulting 40-byte fixed-length header allows 
for faster processing of the IP datagram by a router. A new encoding of options 
allows for more flexible options processing.

• Flow labeling. IPv6 has an elusive definition of a flow. RFC 2460 states that this 
allows “labeling of packets belonging to particular flows for which the sender 
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requests special handling, such as a non-default quality of service or real-time 
service.” For example, audio and video transmission might likely be treated as 
a flow. On the other hand, the more traditional applications, such as file transfer 
and e-mail, might not be treated as flows. It is possible that the traffic carried by a 
high-priority user (for example, someone paying for better service for their traffic)  
might also be treated as a flow. What is clear, however, is that the designers of 
IPv6 foresaw the eventual need to be able to differentiate among the flows, even 
if the exact meaning of a flow had yet to be determined.

As noted above, a comparison of Figure 4.26 with Figure 4.17 reveals the sim-
pler, more streamlined structure of the IPv6 datagram. The following fields are 
defined in IPv6:

• Version. This 4-bit field identifies the IP version number. Not surprisingly, IPv6 
carries a value of 6 in this field. Note that putting a 4 in this field does not create 
a valid IPv4 datagram. (If it did, life would be a lot simpler—see the discussion 
below regarding the transition from IPv4 to IPv6.)

• Traffic class. The 8-bit traffic class field, like the TOS field in IPv4, can be used 
to give priority to certain datagrams within a flow, or it can be used to give pri-
ority to datagrams from certain applications (for example, voice-over-IP) over 
datagrams from other applications (for example, SMTP e-mail).

• Flow label. As discussed above, this 20-bit field is used to identify a flow of datagrams.

• Payload length. This 16-bit value is treated as an unsigned integer giving the 
number of bytes in the IPv6 datagram following the fixed-length, 40-byte data-
gram header.

Version Traffic class

Payload length Next hdr Hop limit

Flow label

32 bits

Source address
(128 bits)

Destination address
(128 bits)

Data

Figure 4.26 ♦ IPv6 datagram format

M04_KURO1557_08_SE_C04.indd   349 11/02/20   12:48 PM



350     CHAPTER 4  •  THE NETWORK LAYER: DATA PLANE

• Next header. This field identifies the protocol to which the contents (data field) of 
this datagram will be delivered (for example, to TCP or UDP). The field uses the 
same values as the protocol field in the IPv4 header.

• Hop limit. The contents of this field are decremented by one by each router that 
forwards the datagram. If the hop limit count reaches zero, a router must discard 
that datagram.

• Source and destination addresses. The various formats of the IPv6 128-bit address 
are described in RFC 4291.

• Data. This is the payload portion of the IPv6 datagram. When the datagram 
reaches its destination, the payload will be removed from the IP datagram and 
passed on to the protocol specified in the next header field.

The discussion above identified the purpose of the fields that are included in the 
IPv6 datagram. Comparing the IPv6 datagram format in Figure 4.26 with the IPv4 
datagram format that we saw in Figure 4.17, we notice that several fields appearing 
in the IPv4 datagram are no longer present in the IPv6 datagram:

• Fragmentation/reassembly. IPv6 does not allow for fragmentation and reassem-
bly at intermediate routers; these operations can be performed only by the source 
and destination. If an IPv6 datagram received by a router is too large to be for-
warded over the outgoing link, the router simply drops the datagram and sends a 
“Packet Too Big” ICMP error message (see Section 5.6) back to the sender. The 
sender can then resend the data, using a smaller IP datagram size. Fragmentation 
and reassembly is a time-consuming operation; removing this functionality from 
the routers and placing it squarely in the end systems considerably speeds up IP 
forwarding within the network.

• Header checksum. Because the transport-layer (for example, TCP and UDP) and 
link-layer (for example, Ethernet) protocols in the Internet layers perform check-
summing, the designers of IP probably felt that this functionality was sufficiently 
redundant in the network layer that it could be removed. Once again, fast pro-
cessing of IP packets was a central concern. Recall from our discussion of IPv4 
in Section 4.3.1 that since the IPv4 header contains a TTL field (similar to the 
hop limit field in IPv6), the IPv4 header checksum needed to be recomputed at 
every router. As with fragmentation and reassembly, this too was a costly opera-
tion in IPv4.

• Options. An options field is no longer a part of the standard IP header. How-
ever, it has not gone away. Instead, the options field is one of the possible next 
headers pointed to from within the IPv6 header. That is, just as TCP or UDP 
protocol headers can be the next header within an IP packet, so too can an 
options field. The removal of the options field results in a fixed-length, 40-byte 
IP header.
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Transitioning from IPv4 to IPv6

Now that we have seen the technical details of IPv6, let us consider a very practi-
cal matter: How will the public Internet, which is based on IPv4, be transitioned to 
IPv6? The problem is that while new IPv6-capable systems can be made backward-
compatible, that is, can send, route, and receive IPv4 datagrams, already deployed 
IPv4-capable systems are not capable of handling IPv6 datagrams. Several options 
are possible [Huston 2011b, RFC 4213].

One option would be to declare a flag day—a given time and date when all 
Internet machines would be turned off and upgraded from IPv4 to IPv6. The last 
major technology transition (from using NCP to using TCP for reliable transport 
service) occurred almost 40 years ago. Even back then [RFC 801], when the Internet 
was tiny and still being administered by a small number of “wizards,” it was real-
ized that such a flag day was not possible. A flag day involving billions of devices 
is even more unthinkable today.

The approach to IPv4-to-IPv6 transition that has been most widely adopted in 
practice involves tunneling [RFC 4213]. The basic idea behind tunneling—a key 
concept with applications in many other scenarios beyond IPv4-to-IPv6 transition, 
including wide use in the all-IP cellular networks that we’ll cover in Chapter 7—is 
the following. Suppose two IPv6 nodes (in this example, B and E in Figure 4.27) 
want to interoperate using IPv6 datagrams but are connected to each other by inter-
vening IPv4 routers. We refer to the intervening set of IPv4 routers between two 
IPv6 routers as a tunnel, as illustrated in Figure 4.27. With tunneling, the IPv6 node 
on the sending side of the tunnel (in this example, B) takes the entire IPv6 datagram 
and puts it in the data (payload) field of an IPv4 datagram. This IPv4 datagram is 
then addressed to the IPv6 node on the receiving side of the tunnel (in this example, 
E) and sent to the first node in the tunnel (in this example, C). The intervening IPv4 
routers in the tunnel route this IPv4 datagram among themselves, just as they would 
any other datagram, blissfully unaware that the IPv4 datagram itself contains a com-
plete IPv6 datagram. The IPv6 node on the receiving side of the tunnel eventually 
receives the IPv4 datagram (it is the destination of the IPv4 datagram!), determines 
that the IPv4 datagram contains an IPv6 datagram (by observing that the protocol 
number field in the IPv4 datagram is 41 [RFC 4213], indicating that the IPv4 
payload is a IPv6 datagram), extracts the IPv6 datagram, and then routes the IPv6 
datagram exactly as it would if it had received the IPv6 datagram from a directly 
connected IPv6 neighbor.

We end this section by noting that while the adoption of IPv6 was initially slow 
to take off [Lawton 2001; Huston 2008b], momentum has been building. NIST 
[NIST IPv6 2020] reports that more than a third of US government second-level 
domains are IPv6-enabled. On the client side, Google reports that about 25 percent 
of the clients accessing Google services do so via IPv6 [Google IPv6 2020]. Other 
recent measurements [Czyz 2014] indicate that IPv6 adoption has been accelerating. 
The proliferation of devices such as IP-enabled phones and other portable devices 
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provides an additional push for more widespread deployment of IPv6. Europe’s 
Third Generation Partnership Program [3GPP 2020] has specified IPv6 as the stand-
ard addressing scheme for mobile multimedia.

One important lesson that we can learn from the IPv6 experience is that it is enor-
mously difficult to change network-layer protocols. Since the early 1990s, numerous 
new network-layer protocols have been trumpeted as the next major revolution for 
the Internet, but most of these protocols have had limited penetration to date. These 
protocols include IPv6, multicast protocols, and resource reservation protocols; a dis-
cussion of these latter two classes of protocols can be found in the online supplement 
to this text. Indeed, introducing new protocols into the network layer is like replac-
ing the foundation of a house—it is difficult to do without tearing the whole house 
down or at least temporarily relocating the house’s residents. On the other hand, the 
Internet has witnessed rapid deployment of new protocols at the application layer. 
The classic examples, of course, are the Web, instant messaging, streaming media, 
distributed games, and various forms of social media. Introducing new application-
layer protocols is like adding a new layer of paint to a house—it is relatively easy to 
do, and if you choose an attractive color, others in the neighborhood will copy you. 
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Figure 4.27 ♦ Tunneling
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In summary, in the future, we can certainly expect to see changes in the Internet’s 
network layer, but these changes will likely occur on a time scale that is much slower 
than the changes that will occur at the application layer.

4.4 Generalized Forwarding and SDN

Recall that Section 4.2.1 characterized destination-based forwarding as the two steps 
of looking up a destination IP address (“match”), then sending the packet into the 
switching fabric to the specified output port (“action”). Let’s now consider a signifi-
cantly more general “match-plus-action” paradigm, where the “match” can be made 
over multiple header fields associated with different protocols at different layers in 
the protocol stack. The “action” can include forwarding the packet to one or more 
output ports (as in destination-based forwarding), load balancing packets across 
multiple outgoing interfaces that lead to a service (as in load balancing), rewriting 
header values (as in NAT), purposefully blocking/dropping a packet (as in a fire-
wall), sending a packet to a special server for further processing and action (as in 
DPI), and more.

In generalized forwarding, a match-plus-action table generalizes the notion of 
the destination-based forwarding table that we encountered in Section 4.2.1. Because 
forwarding decisions may be made using network-layer and/or link-layer source 
and destination addresses, the forwarding devices shown in Figure 4.28 are more 
accurately described as “packet switches” rather than layer 3 “routers” or layer 2 
“switches.” Thus, in the remainder of this section, and in Section 5.5, we’ll refer 
to these devices as packet switches, adopting the terminology that is gaining wide-
spread adoption in SDN literature.

Figure 4.28 shows a match-plus-action table in each packet switch, with the 
table being computed, installed, and updated by a remote controller. We note that 
while it is possible for the control components at the individual packet switches to 
interact with each other (e.g., in a manner similar to that in Figure 4.2), in practice, 
generalized match-plus-action capabilities are implemented via a remote controller 
that computes, installs, and updates these tables. You might take a minute to compare 
Figures 4.2, 4.3, and 4.28—what similarities and differences do you notice between 
destination-based forwarding shown in Figures 4.2 and 4.3, and generalized forward-
ing shown in Figure 4.28?

Our following discussion of generalized forwarding will be based on Open-
Flow [McKeown 2008, ONF 2020, Casado 2014, Tourrilhes 2014]—a highly visible  
standard that has pioneered the notion of the match-plus-action forwarding abstrac-
tion and controllers, as well as the SDN revolution more generally [Feamster 2013]. 
We’ll primarily consider OpenFlow 1.0, which introduced key SDN abstractions 
and functionality in a particularly clear and concise manner. Later versions of 
 OpenFlow introduced additional capabilities as a result of experience gained through 
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implementation and use; current and earlier versions of the OpenFlow standard can 
be found at [ONF 2020].

Each entry in the match-plus-action forwarding table, known as a flow table in 
OpenFlow, includes:

• A set of header field values to which an incoming packet will be matched. As in 
the case of destination-based forwarding, hardware-based matching is most rap-
idly performed in TCAM memory, with more than a million destination address 
entries being possible [Bosshart 2013]. A packet that matches no flow table entry 
can be dropped or sent to the remote controller for more processing. In practice, 
a flow table may be implemented by multiple flow tables for performance or cost 
reasons [Bosshart 2013], but we’ll focus here on the abstraction of a single flow 
table.

11010100

Remote Controller

Values in arriving
packet’s header
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2
3

Local flow table

...
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...
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Headers Counters Actions

Control plane

Data plane

Figure 4.28 ♦  Generalized forwarding: Each packet switch contains a 
match-plus-action table that is computed and distributed  
by a remote controller

M04_KURO1557_08_SE_C04.indd   354 11/02/20   12:48 PM



4.4  •  GENERALIZED FORWARDING AND SDN     355

• A set of counters that are updated as packets are matched to flow table entries. 
These counters might include the number of packets that have been matched by 
that table entry, and the time since the table entry was last updated.

• A set of actions to be taken when a packet matches a flow table entry. These 
actions might be to forward the packet to a given output port, to drop the packet, 
makes copies of the packet and sent them to multiple output ports, and/or to 
rewrite selected header fields.

We’ll explore matching and actions in more detail in Sections 4.4.1 and 4.4.2, 
respectively. We’ll then study how the network-wide collection of per-packet switch 
matching rules can be used to implement a wide range of functions including routing, 
layer-2 switching, firewalling, load-balancing, virtual networks, and more in Sec-
tion 4.4.3. In closing, we note that the flow table is essentially an API, the abstrac-
tion through which an individual packet switch’s behavior can be programmed; 
we’ll see in Section 4.4.3 that network-wide behaviors can similarly be programmed 
by appropriately programming/configuring these tables in a collection of network 
packet switches [Casado 2014].

4.4.1 Match
Figure 4.29 shows the 11 packet-header fields and the incoming port ID that can 
be matched in an OpenFlow 1.0 match-plus-action rule. Recall from Section 1.5.2 
that a link-layer (layer 2) frame arriving to a packet switch will contain a net-
work-layer (layer 3) datagram as its payload, which in turn will typically con-
tain a transport-layer (layer 4) segment. The first observation we make is that 
OpenFlow’s match abstraction allows for a match to be made on selected fields 
from three layers of protocol headers (thus rather brazenly defying the layer-
ing principle we studied in Section 1.5). Since we’ve not yet covered the link 
layer, suffice it to say that the source and destination MAC addresses shown in 
Figure 4.29 are the link-layer addresses associated with the frame’s sending and 
receiving interfaces; by forwarding on the basis of Ethernet addresses rather than 
IP addresses, we can see that an OpenFlow-enabled device can equally perform 
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TCP/UDP
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Figure 4.29 ♦ Packet matching fields, OpenFlow 1.0 flow table
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as a router (layer-3 device) forwarding datagrams as well as a switch (layer-2 
device) forwarding frames. The Ethernet type field corresponds to the upper layer 
protocol (e.g., IP) to which the frame’s payload will be de-multiplexed, and the 
VLAN fields are concerned with so-called virtual local area networks that we’ll 
study in Chapter 6. The set of 12 values that can be matched in the OpenFlow 
1.0 specification has grown to 41 values in more recent OpenFlow specifications 
[Bosshart 2014].

The ingress port refers to the input port at the packet switch on which a packet 
is received. The packet’s IP source address, IP destination address, IP protocol field, 
and IP type of service fields were discussed earlier in Section 4.3.1. The transport-layer 
source and destination port number fields can also be matched.

Flow table entries may also have wildcards. For example, an IP address of 
128.119.*.* in a flow table will match the corresponding address field of any data-
gram that has 128.119 as the first 16 bits of its address. Each flow table entry also has 
an associated priority. If a packet matches multiple flow table entries, the selected 
match and corresponding action will be that of the highest priority entry with which 
the packet matches.

Lastly, we observe that not all fields in an IP header can be matched. For exam-
ple OpenFlow does not allow matching on the basis of TTL field or datagram length 
field. Why are some fields allowed for matching, while others are not? Undoubtedly, 
the answer has to do with the tradeoff between functionality and complexity. The 
“art” in choosing an abstraction is to provide for enough functionality to accomplish 
a task (in this case to implement, configure, and manage a wide range of network-
layer functions that had previously been implemented through an assortment of 
 network-layer devices), without over-burdening the abstraction with so much detail 
and generality that it becomes bloated and unusable. Butler Lampson has famously 
noted [Lampson 1983]:

Do one thing at a time, and do it well. An interface should capture the minimum 
essentials of an abstraction. Don’t generalize; generalizations are generally 
wrong.

Given OpenFlow’s success, one can surmise that its designers indeed chose their 
abstraction well. Additional details of OpenFlow matching can be found in [ONF 
2020].

4.4.2 Action
As shown in Figure 4.28, each flow table entry has a list of zero or more actions 
that determine the processing that is to be applied to a packet that matches a flow 
table entry. If there are multiple actions, they are performed in the order specified 
in the list.
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Among the most important possible actions are:

• Forwarding. An incoming packet may be forwarded to a particular physical 
output port, broadcast over all ports (except the port on which it arrived) or 
multicast over a selected set of ports. The packet may be encapsulated and sent 
to the remote controller for this device. That controller then may (or may not) 
take some action on that packet, including installing new flow table entries, and 
may return the packet to the device for forwarding under the updated set of flow 
table rules.

• Dropping. A flow table entry with no action indicates that a matched packet 
should be dropped.

• Modify-field. The values in 10 packet-header fields (all layer 2, 3, and 4 fields 
shown in Figure 4.29 except the IP Protocol field) may be re-written before the 
packet is forwarded to the chosen output port.

4.4.3 OpenFlow Examples of Match-plus-action in Action
Having now considered both the match and action components of generalized 
forwarding, let’s put these ideas together in the context of the sample network 
shown in Figure 4.30. The network has 6 hosts (h1, h2, h3, h4, h5 and h6) and 
three packet switches (s1, s2 and s3), each with four local interfaces (numbered 
1 through 4). We’ll consider a number of network-wide behaviors that we’d like 
to implement, and the flow table entries in s1, s2 and s3 needed to implement this 
behavior.
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Figure 4.30 ♦  OpenFlow match-plus-action network with three packet 
switches, 6 hosts, and an OpenFlow controller
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A First Example: Simple Forwarding

As a very simple example, suppose that the desired forwarding behavior is that  
packets from h5 or h6 destined to h3 or h4 are to be forwarded from s3 to s1, and then 
from s1 to s2 (thus completely avoiding the use of the link between s3 and s2). The 
flow table entry in s1 would be:

s1 Flow Table (Example 1)

Match Action
Ingress Port = 1 ; IP Src = 10.3.*.* ; IP Dst = 10.2.*.* Forward(4)
… …

Of course, we’ll also need a flow table entry in s3 so that datagrams sent from 
h5 or h6 are forwarded to s1 over outgoing interface 3:

s3 Flow Table (Example 1)

Match Action
IP Src = 10.3.*.* ; IP Dst = 10.2.*.* Forward(3)
… …

Lastly, we’ll also need a flow table entry in s2 to complete this first example, so 
that datagrams arriving from s1 are forwarded to their destination, either host h3 or h4:

s2 Flow Table (Example 1)

Match Action
Ingress port = 2 ; IP Dst = 10.2.0.3 Forward(3)
Ingress port = 2 ; IP Dst = 10.2.0.4 Forward(4)
… …

A Second Example: Load Balancing

As a second example, let’s consider a load-balancing scenario, where datagrams from 
h3 destined to 10.1.*.* are to be forwarded over the direct link between s2 and s1, while 
datagrams from h4 destined to 10.1.*.* are to be forwarded over the link between s2 
and s3 (and then from s3 to s1). Note that this behavior couldn’t be achieved with IP’s 
destination-based forwarding. In this case, the flow table in s2 would be:
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s2 Flow Table (Example 2)

Match Action
Ingress port = 3; IP Dst = 10.1.*.* Forward(2)
Ingress port = 4; IP Dst = 10.1.*.* Forward(1)
… …

Flow table entries are also needed at s1 to forward the datagrams received from 
s2 to either h1 or h2; and flow table entries are needed at s3 to forward datagrams 
received on interface 4 from s2 over interface 3 toward s1. See if you can figure out 
these flow table entries at s1 and s3.

A Third Example: Firewalling

As a third example, let’s consider a firewall scenario in which s2 wants only to 
receive (on any of its interfaces) traffic sent from hosts attached to s3.

s2 Flow Table (Example 3)

Match Action
IP Src = 10.3.*.* IP Dst = 10.2.0.3 Forward(3)
IP Src = 10.3.*.* IP Dst = 10.2.0.4 Forward(4)
… …

If there were no other entries in s2’s flow table, then only traffic from 10.3.*.* would 
be forwarded to the hosts attached to s2.

Although we’ve only considered a few basic scenarios here, the versatility and 
advantages of generalized forwarding are hopefully apparent. In homework prob-
lems, we’ll explore how flow tables can be used to create many different logical 
behaviors, including virtual networks—two or more logically separate networks 
(each with their own independent and distinct forwarding behavior)—that use the 
same physical set of packet switches and links. In Section 5.5, we’ll return to flow 
tables when we study the SDN controllers that compute and distribute the flow tables, 
and the protocol used for communicating between a packet switch and its controller.

The match-plus-action flow tables that we’ve seen in this section are actually 
a limited form of programmability, specifying how a router should forward and 
manipulate (e.g., change a header field) a datagram, based on the match between 
the datagram’s header values and the matching conditions. One could imagine an 
even richer form of programmability—a programming language with higher-level 
constructs such as variables, general purpose arithmetic and Boolean operations, 
variables, functions, and conditional statements, as well as constructs specifically 
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designed for datagram processing at line rate. P4 (Programming Protocol-independent 
Packet Processors) [P4 2020] is such a language, and has gained considerable inter-
est and traction since its introduction five years ago [Bosshart 2014].

4.5 Middleboxes

Routers are the workhorses of the network layer, and in this chapter, we’ve learned 
how they accomplish their “bread and butter” job of forwarding IP datagrams toward 
their destination. But in this chapter, and in earlier chapters, we’ve also encoun-
tered other network equipment (“boxes”) within the network that sit on the data path 
and perform functions other than forwarding. We encountered Web caches in Sec-
tion 2.2.5; TCP connection splitters in section 3.7; and network address translation 
(NAT), firewalls, and intrusion detection systems in Section 4.3.4. We learned in 
Section 4.4 that generalized forwarding allows a modern router to easily and natu-
rally perform firewalling and load balancing with generalized “match plus action” 
operations.

In the past 20 years, we’ve seen tremendous growth in such middleboxes, which 
RFC 3234 defines as:

“any intermediary box performing functions apart from normal, standard func-
tions of an IP router on the data path between a source host and destination 
host”

We can broadly identify three types of services performed by middleboxes:

• NAT Translation. As we saw in Section 4.3.4, NAT boxes implement private 
network addressing, rewriting datagram header IP addresses and port numbers.

• Security Services. Firewalls block traffic based on header-field values or redirect 
packets for additional processing, such as deep packet inspection (DPI). Intru-
sion Detection Systems (IDS) are able to detect predetermined patterns and filter 
packets accordingly. Application-level e-mail filters block e-mails considered to 
be junk, phishing or otherwise posing a security threat.

• Performance Enhancement. These middleboxes perform services such as com-
pression, content caching, and load balancing of service requests (e.g., an HTTP 
request, or a search engine query) to one of a set of servers that can provide the 
desired service.

Many other middleboxes [RFC 3234] provide capabilities belonging to these three 
types of services, in both wired and wireless cellular [Wang 2011] networks.

With the proliferation of middleboxes comes the attendant need to operate, 
manage, and upgrade this equipment. Separate specialized hardware boxes, separate 
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software stacks, and separate management/operation skills translate to significant 
operational and capital costs. It is perhaps not surprising then that researchers are 
exploring the use of commodity hardware (networking, computing, and storage) with 
specialized software built on top of a common software stack—exactly the approach 
taken in SDN a decade earlier—to implement these services. This approach has 
become known as network function virtualization (NFV) [Mijumbi 2016]. An 
alternate approach that has also been explored is to outsource middlebox functional-
ity to the cloud [Sherry 2012].

For many years, the Internet architecture had a clear separation between the 
network layer and the transport/application layers. In these “good old days,” the 
network layer consisted of routers, operating within the network core, to forward 
datagrams toward their destinations using fields only in the IP datagram header. The 
transport and application layers were implemented in hosts operating at the network 
edge. Hosts exchanged packets among themselves in transport-layer segments and 
application-layer messages. Today’s middleboxes clearly violate this separation: a 
NAT box, sitting between a router and host, rewrites network-layer IP addresses and 
transport-layer port numbers; an in-network firewall blocks suspect datagrams using 
application-layer (e.g., HTTP), transport-layer, and network-layer header fields; 
e-mail security gateways are injected between the e-mail sender (whether malicious 
or not) and the intended e-mail receiver, filtering application-layer e-mail messages 
based on whitelisted/blacklisted IP addresses as well as e-mail message content. 
While there are those who have considered such middleboxes as a bit of an archi-
tectural abomination [Garfinkel 2003], others have adopted the philosophy that such 
middleboxes “exist for important and permanent reasons”—that they fill an important 
need—and that we’ll have more, not fewer, middleboxes in the future [Walfish 2004]. 
See the section in attached sidebar on “The end-to-end argument” for a slightly differ-
ent lens on the question of where to place service functionality in a network.

ARCHITECTURAL PRINCIPLES OF THE INTERNET

Given the phenomenal success of the Internet, one might naturally wonder about the 
architectural principles that have guided the development of what is arguably the larg-
est and most complex engineered system ever built by humankind. RFC 1958, entitled 
“Architectural Principles of the Internet,” suggests that these principles, if indeed they exist, 
are truly minimal:

“Many members of the Internet community would argue that there is no architecture, 
but only a tradition, which was not written down for the first 25 years (or at least not 
by the IAB). However, in very general terms, the community believes that the goal is 
connectivity, the tool is the Internet Protocol, and the intelligence is end to end rather 
than hidden in the network.” [RFC 1958]

PRINCIPLES IN PRACTICE
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So there we have it! The goal was to provide connectivity, there would be just one net-
work-layer protocol (the celebrated IP protocol we have studied in this chapter), and “intelli-
gence” (one might say the “complexity”) would be placed at the network edge, rather than 
in the network core. Let’s look these last two considerations in a bit more detail.

THE IP HOURGLASS

By now, we’re well acquainted with the five-layer Internet protocol stack that we first 
encountered in Figure 1.23. Another visualization of this stack, shown in Figure 4.31 and 
sometimes known as the “IP hourglass,” illustrates the “narrow waist” of the layered 
Internet architecture. While the Internet has many protocols in the physical, link, transport, 
and application layers, there is only one network layer protocol—the IP protocol. This is 
the one protocol that must be implemented by each and every of the billions of Internet-
connected devices. This narrow waist has played a critical role in the phenomenal growth 
of the Internet. The relative simplicity of the IP protocol, and the fact that it is the only 
universal requirement for Internet connectivity has allowed a rich variety of networks—with 
very different underlying link-layer technologies, from Ethernet to WiFi to cellular to optical 
networks to become part of the Internet. [Clark 1997] notes that role of the narrow waist, 
which he refers to as a “spanning layer,” is to “… hide the detailed differences among 
these various [underlying] technologies and present a uniform service interface to the appli-
cations above.” For the IP layer in particular: “How does the IP spanning layer achieve 
its purpose? It defines a basic set of services, which were carefully designed so that they 
could be constructed from a wide range of underlying network technologies. Software, as 
a part of the Internet [i.e., network] layer, translates what each of these lower-layer tech-
nologies offers into the common service of the Internet layer.”

For a discussion the narrow waist, including examples beyond the Internet, see [Beck 2019; 
Akhshabi 2011]. We note here that as the Internet architecture enters mid-life (certainly, 
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Figure 4.31 ♦ The narrow-waisted Internet hourglass
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the Internet’s age of 40 to 50 years qualifies it for middle age!), one might observe that 
its “narrow waist” may indeed be widening a bit (as often happens in middle age!) via 
the rise of middleboxes.

THE END-TO-END ARGUMENT

The third principle in RFC 1958—that “intelligence is end to end rather than hidden in the 
network”—speaks to the placement of functionality within the network. Here, we’ve seen 
that until the recent rise of middleboxes, most Internet functionality was indeed placed at 
the network’s edge. It’s worth noting that, in direct contrast with the 20th century telephone 
network—which had “dumb” (non-programmable) endpoints and smart switches—the 
Internet has always had smart endpoints (programmable computers), enabling complex 
functionality to be placed at those endpoints. But a more principled argument for actually 
placing functionality at the endpoints was made in an extremely influential paper [Saltzer 
1984] that articulated the “end-to-end argument.” It stated:

“ . . . there is a list of functions each of which might be implemented in any of several 
ways: by the communication subsystem, by its client, as a joint venture, or perhaps 
redundantly, each doing its own version. In reasoning about this choice, the require-
ments of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with 
the knowledge and help of the application standing at the end points of the com-
munication system. Therefore, providing that questioned function as a feature of the 
communication system itself is not possible. (Sometimes an incomplete version of the 
function provided by the communication system may be useful as a performance 
enhancement.)

We call this line of reasoning against low-level function implementation the “end-to-end 
argument.”

An example illustrating the end-to-end argument is that of reliable data transfer. Since 
packets can be lost within the network (e.g., even without buffer overflows, a router hold-
ing a queued packet could crash, or a portion of the network in which a packet is queued 
becomes detached due to link failures), the endpoints (in this case via the TCP protocol) 
must perform error control. As we will see in Chapter 6, some link-layer protocols do 
indeed perform local error control, but this local error control alone is “incomplete” and 
not sufficient to provide end-to-end reliable data transfer. And so reliable data transfer must 
be implemented end to end.

RFC 1958 deliberately includes only two references, both of which are “fundamental 
papers on the Internet architecture.” One of these is the end-to-end paper itself [Saltzer 1984];  
the second paper [Clark 1988] discusses the design philosophy of the DARPA Internet Protocols. 
Both are interesting “must reads” for anyone interested in Internet architecture. Follow-ons to 
[Clark 1988] are [Blumenthal 2001; Clark 2005] which reconsider Internet architecture in light 
of the much more complex environment in which today’s Internet must now operate.
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4.6 Summary

In this chapter, we’ve covered the data plane functions of the network layer—the per-
router functions that determine how packets arriving on one of a router’s input links are 
forwarded to one of that router’s output links. We began by taking a detailed look at the 
internal operations of a router, studying input and output port functionality and destination-
based forwarding, a router’s internal switching mechanism, packet queue management and 
more. We covered both traditional IP forwarding (where forwarding is based on a data-
gram’s destination address) and generalized forwarding (where forwarding and other func-
tions may be performed using values in several different fields in the datagram’s header) 
and seen the versatility of the latter approach. We also studied the IPv4 and IPv6 protocols 
in detail, and Internet addressing, which we found to be much deeper, subtler, and more 
interesting than we might have expected. We completed our study of the network-layer 
data plane with a study of middleboxes, and a broad  discussion of Internet architecture.

With our newfound understanding of the network-layer’s data plane, we’re now 
ready to dive into the network layer’s control plane in Chapter 5!

Homework Problems and Questions

Chapter 4 Review Questions
SECTION 4.1
 R1. Let’s review some of the terminology used in this textbook. Recall that the 

name of a transport-layer packet is segment and that the name of a link-layer 
packet is frame. What is the name of a network-layer packet? Recall that both 
routers and link-layer switches are called packet switches. What is the funda-
mental difference between a router and link-layer switch?

 R2. We noted that network layer functionality can be broadly divided into  
data plane functionality and control plane functionality. What are the main 
functions of the data plane? Of the control plane?

 R3. We made a distinction between the forwarding function and the routing func-
tion performed in the network layer. What are the key differences between 
routing and forwarding?

 R4. What is the role of the forwarding table within a router?

 R5. We said that a network layer’s service model “defines the characteristics of 
end-to-end transport of packets between sending and receiving hosts.” What is 
the service model of the Internet’s network layer? What guarantees are made by 
the Internet’s service model regarding the host-to-host delivery of datagrams?

SECTION 4.2
 R6. In Section 4.2, we saw that a router typically consists of input ports, output ports, 

a switching fabric and a routing processor. Which of these are implemented in 

M04_KURO1557_08_SE_C04.indd   364 11/02/20   12:48 PM



HOMEWORK PROBLEMS AND QUESTIONS     365

hardware and which are implemented in software? Why? Returning to the 
notion of the network layer’s data plane and control plane, which are imple-
mented in hardware and which are implemented in software? Why?

   R7. Discuss why each input port in a high-speed router stores a shadow copy of 
the forwarding table.

   R8. What is meant by destination-based forwarding? How does this differ from 
generalized forwarding (assuming you’ve read Section 4.4, which of the two 
approaches are adopted by Software-Defined Networking)?

   R9. Suppose that an arriving packet matches two or more entries in a router’s 
forwarding table. With traditional destination-based forwarding, what rule 
does a router apply to determine which of these rules should be applied 
to determine the output port to which the arriving packet should be 
switched?

 R10. Three types of switching fabrics are discussed in Section 4.2. List and briefly 
describe each type. Which, if any, can send multiple packets across the fabric 
in parallel?

 R11. Describe how packet loss can occur at input ports. Describe how packet loss 
at input ports can be eliminated (without using infinite buffers).

 R12. Describe how packet loss can occur at output ports. Can this loss be pre-
vented by increasing the switch fabric speed?

 R13. What is HOL blocking? Does it occur in input ports or output ports?

 R14. In Section 4.2, we studied FIFO, Priority, Round Robin (RR), and Weighted 
Fair Queueing (WFQ) packet scheduling disciplines? Which of these queueing 
disciplines ensure that all packets depart in the order in which they arrived?

 R15. Give an example showing why a network operator might want one class of 
packets to be given priority over another class of packets.

 R16. What is an essential different between RR and WFQ packet scheduling? Is 
there a case (Hint: Consider the WFQ weights) where RR and WFQ will 
behave exactly the same?

SECTION 4.3
 R17. Suppose Host A sends Host B a TCP segment encapsulated in an IP data-

gram. When Host B receives the datagram, how does the network layer in 
Host B know it should pass the segment (that is, the payload of the datagram) 
to TCP rather than to UDP or to some other upper-layer protocol?

 R18. What field in the IP header can be used to ensure that a packet is forwarded 
through no more than N routers?

 R19. Recall that we saw the Internet checksum being used in both transport-layer 
segment (in UDP and TCP headers, Figures 3.7 and 3.29 respectively) and in 
network-layer datagrams (IP header, Figure 4.17). Now consider a transport 
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layer segment encapsulated in an IP datagram. Are the checksums in the seg-
ment header and datagram header computed over any common bytes in the IP 
datagram? Explain your answer.

 R20. When a large datagram is fragmented into multiple smaller datagrams, where 
are these smaller datagrams reassembled into a single larger datagram?

 R21. Do routers have IP addresses? If so, how many?

 R22. What is the 32-bit binary equivalent of the IP address 223.1.3.27?

 R23. Visit a host that uses DHCP to obtain its IP address, network mask, default 
router, and IP address of its local DNS server. List these values.

 R24. Suppose there are three routers between a source host and a destination host. 
Ignoring fragmentation, an IP datagram sent from the source host to the desti-
nation host will travel over how many interfaces? How many forwarding tables 
will be indexed to move the datagram from the source to the  destination?

 R25. Suppose an application generates chunks of 40 bytes of data every 20 msec, 
and each chunk gets encapsulated in a TCP segment and then an IP datagram. 
What percentage of each datagram will be overhead, and what percentage 
will be application data?

 R26. Suppose you purchase a wireless router and connect it to your cable modem. 
Also suppose that your ISP dynamically assigns your connected device (that 
is, your wireless router) one IP address. Also suppose that you have five PCs 
at home that use 802.11 to wirelessly connect to your wireless router. How 
are IP addresses assigned to the five PCs? Does the wireless router use NAT? 
Why or why not?

 R27. What is meant by the term “route aggregation”? Why is it useful for a router 
to perform route aggregation?

 R28. What is meant by a “plug-and-play” or “zeroconf” protocol?

 R29. What is a private network address? Should a datagram with a private network 
address ever be present in the larger public Internet? Explain.

 R30. Compare and contrast the IPv4 and the IPv6 header fields. Do they have any 
fields in common?

 R31. It has been said that when IPv6 tunnels through IPv4 routers, IPv6 treats the 
IPv4 tunnels as link-layer protocols. Do you agree with this statement? Why 
or why not?

SECTION 4.4
 R32. How does generalized forwarding differ from destination-based  forwarding?

 R33. What is the difference between a forwarding table that we encountered in 
destination-based forwarding in Section 4.1 and OpenFlow’s flow table that 
we encountered in Section 4.4?
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 R34. What is meant by the “match plus action” operation of a router or switch? In 
the case of destination-based forwarding packet switch, what is matched and 
what is the action taken? In the case of an SDN, name three fields that can be 
matched, and three actions that can be taken. 

 R35. Name three header fields in an IP datagram that can be “matched” in Open-
Flow 1.0 generalized forwarding. What are three IP datagram header fields 
that cannot be “matched” in OpenFlow?

Problems

 P1. Consider the network below.

a. Show the forwarding table in router A, such that all traffic destined to host 
H3 is forwarded through interface 3.

b. Can you write down a forwarding table in router A, such that all traffic 
from H1 destined to host H3 is forwarded through interface 3, while all 
traffic from H2 destined to host H3 is forwarded through interface 4? 
(Hint: This is a trick question.)

B

A

1 3

2 4

2

D

1

2

3

H3

H1

H2

1

1 2

C

 P2. Suppose two packets arrive to two different input ports of a router at exactly 
the same time. Also suppose there are no other packets anywhere in the 
router.

a. Suppose the two packets are to be forwarded to two different output ports. 
Is it possible to forward the two packets through the switch fabric at the 
same time when the fabric uses a shared bus?

b. Suppose the two packets are to be forwarded to two different output ports. 
Is it possible to forward the two packets through the switch fabric at the 
same time when the fabric uses switching via memory?

c. Suppose the two packets are to be forwarded to the same output port. Is it 
possible to forward the two packets through the switch fabric at the same 
time when the fabric uses a crossbar?
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 P3. In Section 4.2.4, it was said that if R_switch  is N  times faster than R_line, 
then only negligible queuing will occur at the input ports, even if all the 
packets are to be forwarded to the same output port. Now suppose that 
R_switch = R_line, but all packets are to be forwarded to different output 
ports. Let D be the time to transmit a packet. As a function of D, what is the 
maximum input queuing delay for a packet for the (a) memory, (b) bus, and 
(c) crossbar switching fabrics?

 P4. Consider the switch shown below. Suppose that all datagrams have the same 
fixed length, that the switch operates in a slotted, synchronous manner, and 
that in one time slot a datagram can be transferred from an input port to an 
output port. The switch fabric is a crossbar so that at most one datagram can 
be transferred to a given output port in a time slot, but different output ports 
can receive datagrams from different input ports in a single time slot. What is 
the minimal number of time slots needed to transfer the packets shown from 
input ports to their output ports, assuming any input queue scheduling order 
you want (i.e., it need not have HOL blocking)? What is the largest number 
of slots needed, assuming the worst-case scheduling order you can devise, 
assuming that a non-empty input queue is never idle?

X Y Switch
fabric

Output port X

Output port Y

Output port Z

X

YZ

 P5. Suppose that the WEQ scheduling policy is applied to a buffer that supports 
three classes, and suppose the weights are 0.5, 0.25, and 0.25 for the three 
classes.

a. Suppose that each class has a large number of packets in the buffer. 
In what sequence might the three classes be served in order to achieve 
the WFQ weights? (For round robin scheduling, a natural sequence is 
123123123 . . .).

b. Suppose that classes 1 and 2 have a large number of packets in the buffer, 
and there are no class 3 packets in the buffer. In what sequence might the 
three classes be served in to achieve the WFQ weights?
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 P6. Consider the figure below. Answer the following questions:

Time

Arrivals

Departures

Packet
in service

Time

1

1

6 10

2

8

93

4

5

7

11

12

1

t = 0 t = 2 t = 4 t = 6 t = 8 t = 10 t = 12 t = 14

a. Assuming FIFO service, indicate the time at which packets 2 through 
12 each leave the queue. For each packet, what is the delay between its 
arrival and the beginning of the slot in which it is transmitted? What is the 
average of this delay over all 12 packets?

b. Now assume a priority service, and assume that odd-numbered packets 
are high priority, and even-numbered packets are low priority. Indicate the 
time at which packets 2 through 12 each leave the queue. For each packet, 
what is the delay between its arrival and the beginning of the slot in which 
it is transmitted? What is the average of this delay over all 12 packets?

c. Now assume round robin service. Assume that packets 1, 2, 3, 6, 11, and 
12 are from class 1, and packets 4, 5, 7, 8, 9, and 10 are from class 2. 
Indicate the time at which packets 2 through 12 each leave the queue. For 
each packet, what is the delay between its arrival and its departure? What 
is the average delay over all 12 packets?

d. Now assume weighted fair queueing (WFQ) service. Assume that odd-
numbered packets are from class 1, and even-numbered packets are from 
class 2. Class 1 has a WFQ weight of 2, while class 2 has a WFQ weight 
of 1. Note that it may not be possible to achieve an idealized WFQ sched-
ule as described in the text, so indicate why you have chosen the particu-
lar packet to go into service at each time slot. For each packet what is the 
delay between its arrival and its departure? What is the average delay over 
all 12 packets?

e. What do you notice about the average delay in all four cases (FIFO, RR, 
priority, and WFQ)?
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 P7. Consider again the figure for P6.

a. Assume a priority service, with packets 1, 4, 5, 6, and 11 being high-
priority packets. The remaining packets are low priority. Indicate the slots 
in which packets 2 through 12 each leave the queue.

b. Now suppose that round robin service is used, with packets 1, 4, 5, 6, and 
11 belonging to one class of traffic, and the remaining packets belonging 
to the second class of traffic. Indicate the slots in which packets 2 through 
12 each leave the queue.

c. Now suppose that WFQ service is used, with packets 1, 4, 5, 6, and 11 
belonging to one class of traffic, and the remaining packets belonging to the 
second class of traffic. Class 1 has a WFQ weight of 1, while class 2 has a 
WFQ weight of 2 (note that these weights are different than in the previous 
question). Indicate the slots in which packets 2 through 12 each leave the 
queue. See also the caveat in the question above regarding WFQ service.

 P8. Consider a datagram network using 32-bit host addresses. Suppose a router 
has four links, numbered 0 through 3, and packets are to be forwarded to the 
link interfaces as follows:

 Destination Address Range Link Interface

 11100000 00000000 00000000 00000000
 through 0

 11100000 00111111 11111111 11111111

 11100000 01000000 00000000 00000000
 through 1

 11100000 01000000 11111111 11111111

 11100000 01000001 00000000 00000000
 through 2

 11100001 01111111 11111111 11111111

 otherwise 3

a. Provide a forwarding table that has five entries, uses longest prefix match-
ing, and forwards packets to the correct link interfaces.

b. Describe how your forwarding table determines the appropriate link inter-
face for datagrams with destination addresses:

 11001000 10010001 01010001 01010101
 11100001 01000000 11000011 00111100
 11100001 10000000 00010001 01110111
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 P9. Consider a datagram network using 8-bit host addresses. Suppose a router 
uses longest prefix matching and has the following forwarding table:

Prefix Match Interface
00 0
010 1
011 2
10 2
11 3

  For each of the four interfaces, give the associated range of destination host 
addresses and the number of addresses in the range.

 P10. Consider a datagram network using 8-bit host addresses. Suppose a router 
uses longest prefix matching and has the following forwarding table:

Prefix Match Interface
1 0
10 1
111 2
otherwise 3

  For each of the four interfaces, give the associated range of destination host 
addresses and the number of addresses in the range.

 P11. Consider a router that interconnects three subnets: Subnet 1, Subnet 2, 
and Subnet 3. Suppose all of the interfaces in each of these three subnets 
are required to have the prefix 223.1.17/24. Also suppose that Subnet 1 is 
required to support at least 60 interfaces, Subnet 2 is to support at least 90 
interfaces, and Subnet 3 is to support at least 12 interfaces. Provide three 
network addresses (of the form a.b.c.d/x) that satisfy these constraints.

 P12. In Section 4.2.2, an example forwarding table (using longest prefix matching) 
is given. Rewrite this forwarding table using the a.b.c.d/x notation instead of 
the binary string notation.

 P13. In Problem P8, you are asked to provide a forwarding table (using longest 
prefix matching). Rewrite this forwarding table using the a.b.c.d/x notation 
instead of the binary string notation.

 P14. Consider a subnet with prefix 128.119.40.128/26. Give an example of one  
IP address (of form xxx.xxx.xxx.xxx) that can be assigned to this network. 
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Suppose an ISP owns the block of addresses of the form 128.119.40.64/26. 
Suppose it wants to create four subnets from this block, with each block 
having the same number of IP addresses. What are the prefixes (of form 
a.b.c.d/x) for the four subnets?

 P15. Consider the topology shown in Figure 4.20. Denote the three subnets with 
hosts (starting clockwise at 12:00) as Networks A, B, and C. Denote the  
subnets without hosts as Networks D, E, and F.
a. Assign network addresses to each of these six subnets, with the following 

constraints: All addresses must be allocated from 214.97.254/23; Subnet A 
should have enough addresses to support 250 interfaces; Subnet B should 
have enough addresses to support 120 interfaces; and Subnet C should 
have enough addresses to support 120 interfaces. Of course, subnets D, E 
and F should each be able to support two interfaces. For each subnet, the 
assignment should take the form a.b.c.d/x or a.b.c.d/x – e.f.g.h/y.

b. Using your answer to part (a), provide the forwarding tables (using long-
est prefix matching) for each of the three routers.

 P16. Use the whois service at the American Registry for Internet Numbers  
(http://www.arin.net/whois) to determine the IP address blocks for three 
universities. Can the whois services be used to determine with certainty the 
geographical location of a specific IP address? Use www.maxmind.com to 
determine the locations of the Web servers at each of these universities.

 P17. Suppose datagrams are limited to 1,500 bytes (including header) between 
source Host A and destination Host B. Assuming a 20-byte IP header, how 
many datagrams would be required to send an MP3 consisting of 5 million 
bytes? Explain how you computed your answer.

 P18. Consider the network setup in Figure 4.25. Suppose that the ISP instead 
assigns the router the address 24.34.112.235 and that the network address  
of the home network is 192.168.1/24.

a. Assign addresses to all interfaces in the home network.

b. Suppose each host has two ongoing TCP connections, all to port 80 at 
host 128.119.40.86. Provide the six corresponding entries in the NAT 
translation table.

 P19. Suppose you are interested in detecting the number of hosts behind a NAT. 
You observe that the IP layer stamps an identification number sequentially on 
each IP packet. The identification number of the first IP packet generated by 
a host is a random number, and the identification numbers of the subsequent 
IP packets are sequentially assigned. Assume all IP packets generated by 
hosts behind the NAT are sent to the outside world.

a. Based on this observation, and assuming you can sniff all packets sent by 
the NAT to the outside, can you outline a simple technique that detects the 
number of unique hosts behind a NAT? Justify your answer.
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b. If the identification numbers are not sequentially assigned but randomly 
assigned, would your technique work? Justify your answer.

 P20. In this problem, we’ll explore the impact of NATs on P2P applications. 
Suppose a peer with username Arnold discovers through querying that a 
peer with username Bernard has a file it wants to download. Also suppose 
that Bernard and Arnold are both behind a NAT. Try to devise a technique 
that will allow Arnold to establish a TCP connection with Bernard without 
application-specific NAT configuration. If you have difficulty devising such 
a technique, discuss why.

 P21. Consider the SDN OpenFlow network shown in Figure 4.30. Suppose 
that the desired forwarding behavior for datagrams arriving at s2 is as 
follows:

• any datagrams arriving on input port 1 from hosts h5 or h6 that are des-
tined to hosts h1 or h2 should be forwarded over output port 2;

• any datagrams arriving on input port 2 from hosts h1 or h2 that are des-
tined to hosts h5 or h6 should be forwarded over output port 1;

• any arriving datagrams on input ports 1 or 2 and destined to hosts h3 or h4 
should be delivered to the host specified;

• hosts h3 and h4 should be able to send datagrams to each other.

Specify the flow table entries in s2 that implement this forwarding behavior.

 P22. Consider again the SDN OpenFlow network shown in Figure 4.30. Suppose 
that the desired forwarding behavior for datagrams arriving from hosts h3 or 
h4 at s2 is as follows:

• any datagrams arriving from host h3 and destined for h1, h2, h5 or h6 
should be forwarded in a clockwise direction in the network;

• any datagrams arriving from host h4 and destined for h1, h2, h5  
or h6 should be forwarded in a counter-clockwise direction in the 
network.

Specify the flow table entries in s2 that implement this forwarding behavior.

 P23. Consider again the scenario from P21 above. Give the flow tables entries at 
packet switches s1 and s3, such that any arriving datagrams with a source 
address of h3 or h4 are routed to the destination hosts specified in the desti-
nation address field in the IP datagram. (Hint: Your forwarding table rules 
should include the cases that an arriving datagram is destined for a directly 
attached host or should be forwarded to a neighboring router for eventual 
host delivery there.)

 P24. Consider again the SDN OpenFlow network shown in Figure 4.30. Suppose 
we want switch s2 to function as a firewall. Specify the flow table in s2 that 
implements the following firewall behaviors (specify a different flow table 
for each of the four firewalling behaviors below) for delivery of datagrams 
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destined to h3 and h4. You do not need to specify the forwarding behavior in 
s2 that forwards traffic to other routers.

• Only traffic arriving from hosts h1 and h6 should be delivered to hosts h3 
or h4 (i.e., that arriving traffic from hosts h2 and h5 is blocked).

• Only TCP traffic is allowed to be delivered to hosts h3 or h4 (i.e., that 
UDP traffic is blocked).

• Only traffic destined to h3 is to be delivered (i.e., all traffic to h4 is 
blocked).

• Only UDP traffic from h1 and destined to h3 is to be delivered. All other 
traffic is blocked.

 P25. Consider the Internet protocol stack in Figures 1.23 and 4.31.  Would you 
consider the ICMP protocol to be a network-layer protocol or a transport-
layer protocol?  Justify your answer.

Wireshark Lab: IP

In the Web site for this textbook, www.pearsonhighered.com/cs-resources, you’ll 
find a Wireshark lab assignment that examines the operation of the IP protocol, and 
the IP datagram format in particular.

M04_KURO1557_08_SE_C04.indd   374 11/02/20   12:48 PM



375

What brought you to specialize in networking?
I was working as a programmer at UCLA in the late 1960s. My job was supported by the 
US Defense Advanced Research Projects Agency (called ARPA then and DARPA now). I 
was working in the laboratory of Professor Leonard Kleinrock in the Network Measurement 
Center of the newly created ARPANet. The first node of the ARPANet was installed at 
UCLA on September 1, 1969. I was responsible for programming a computer that was 
used to capture performance information about the ARPANet and to report this information 
back for comparison with mathematical models and predictions of the performance of the 
network.

Several of the other graduate students and I were made responsible for working on 
the so-called host-level protocols of the ARPAnet—the procedures and formats that would 
allow many different kinds of computers on the network to interact with each other. It 
was a fascinating exploration into a new world (for me) of distributed computing and 
communication.

Did you imagine that IP would become  as pervasive as it is today when you first 
designed the protocol?
When Bob Kahn and I first worked on this in 1973, I think we were mostly very focused on 
the central question: How can we make heterogeneous packet networks interoperate with 
one another, assuming we cannot actually change the networks themselves? We hoped that 
we could find a way to permit an arbitrary collection of packet-switched networks to be 
interconnected in a transparent fashion, so that host computers could communicate end-to-
end without having to do any translations in between. I think we knew that we were dealing 

Vinton G. Cerf has served as Vice President and Chief Internet 
Evangelist for Google since 2005.  He served for over 15 years 
at MCI in various positions, ending up his tenure there as Senior 
Vice President for Technology Strategy. He is widely known as 
the co-designer of the TCP/IP protocols and the architecture of the 
Internet. During his time from 1976 to 1982 at the US Department 
of Defense Advanced Research Projects Agency (DARPA), he played 
a key role leading the development of Internet and Internet-related  
packet communication and security techniques. He received the US 
Presidential Medal of Freedom in 2005 and the US National Medal 
of Technology in 1997. He holds a BS in Mathematics from Stanford 
University and an MS and PhD in computer science from UCLA.
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with powerful and expandable technology, but I doubt we had a clear image of what the 
world would be like with billions of computers all interlinked on the Internet.

What do you now envision for the future of networking and the Internet? What major 
challenges/obstacles do you think lie ahead in their development?
I believe the Internet itself and networks in general will continue to proliferate. There are 
already billions of Internet-enabled devices on the Internet, including appliances like cell 
phones, refrigerators, personal digital assistants, home servers, televisions, as well as the 
usual array of laptops, servers, and so on. Big challenges include support for mobility, bat-
tery life, capacity of the access links to the network, and ability to scale  the optical core of 
the network in an unlimited fashion. The interplanetary extension of the Internet is a project 
that is well underway at NASA and other space agencies. We still need to add IPv6 [128-
bit] addressing to the original IPv4 [32-bit addresses] packet format. The list is long!

Who has inspired you professionally?
My colleague Bob Kahn; my thesis advisor, Gerald Estrin; my best friend, Steve Crocker 
(we met in high school and he introduced me to computers in 1960!); and the thousands of 
engineers who continue to evolve the Internet today.

Do you have any advice for students  entering  the networking/Internet  field?
Think outside the limitations of existing systems—imagine what might be possible; but then 
do the hard work of figuring out how to get there from the current state of affairs. Dare to 
dream. The “Internet of Things” is the next big phase of Internet expansion. Safety, security, 
privacy, reliability, and autonomy all need attention. The interplanetary extension of the 
terrestrial Internet started as a speculative design but is becoming a reality. It may take 
decades to implement this, mission by mission, but to paraphrase: “A man’s reach should 
exceed his grasp, or what are the heavens for?”

376
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In this chapter, we’ll complete our journey through the network layer by covering the 
control-plane component of the network layer—the network-wide logic that con-
trols not only how a datagram is routed along an end-to-end path from the source 
host to the destination host, but also how network-layer components and services are 
configured and managed. In Section 5.2, we’ll cover traditional routing algorithms 
for computing least cost paths in a graph; these algorithms are the basis for two 
widely deployed Internet routing protocols: OSPF and BGP, that we’ll cover in Sec-
tions 5.3 and 5.4, respectively. As we’ll see, OSPF is a routing protocol that operates 
within a single ISP’s network. BGP is a routing protocol that serves to interconnect 
all of the networks in the Internet; BGP is thus often referred to as the “glue” that 
holds the Internet together. Traditionally, control-plane routing protocols have been 
implemented together with data-plane forwarding functions, monolithically, within a 
router. As we learned in the introduction to Chapter 4, software-defined networking 
(SDN) makes a clear separation between the data and control planes, implementing 
control-plane functions in a separate “controller” service that is distinct, and remote, 
from the forwarding components of the routers it controls. We’ll cover SDN control-
lers in Section 5.5.

In Sections 5.6 and 5.7, we’ll cover some of the nuts and bolts of managing an 
IP network: ICMP (the Internet Control Message Protocol) and SNMP (the Simple 
Network Management Protocol).

The Network 
Layer: Control 
Plane

5CHAPTER 

377
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5.1 Introduction

Let’s quickly set the context for our study of the network control plane by recall-
ing Figures 4.2 and 4.3. There, we saw that the forwarding table (in the case of 
 destination-based forwarding) and the flow table (in the case of generalized forward-
ing) were the principal elements that linked the network layer’s data and control 
planes. We learned that these tables specify the local data-plane forwarding behavior 
of a router. We saw that in the case of generalized forwarding, the actions taken 
could include not only forwarding a packet to a router’s output port, but also drop-
ping a packet, replicating a packet, and/or rewriting layer 2, 3 or 4 packet-header 
fields.

In this chapter, we’ll study how those forwarding and flow tables are computed, 
maintained and installed. In our introduction to the network layer in Section 4.1, we 
learned that there are two possible approaches for doing so.

• Per-router control. Figure 5.1 illustrates the case where a routing algorithm runs 
in each and every router; both a forwarding and a routing function are contained 

Control plane

Data plane

Routing
Algorithm

Forwarding
Table

Figure 5.1 ♦  Per-router control: Individual routing algorithm components 
interact in the control plane
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within each router. Each router has a routing component that communicates with 
the routing components in other routers to compute the values for its forwarding 
table. This per-router control approach has been used in the Internet for decades. 
The OSPF and BGP protocols that we’ll study in Sections 5.3 and 5.4 are based 
on this per-router approach to control.

• Logically centralized control. Figure 5.2 illustrates the case in which a logically 
centralized controller computes and distributes the forwarding tables to be used 
by each and every router. As we saw in Sections 4.4 and 4.5, the generalized 
match-plus-action abstraction allows the router to perform traditional IP forward-
ing as well as a rich set of other functions (load sharing, firewalling, and NAT) 
that had been previously implemented in separate middleboxes.

Logically centralized routing controller

Control plane

Data plane

Control
Agent (CA)

CA

CA

CA

CA

Figure 5.2 ♦  Logically centralized control: A distinct, typically remote,  
controller interacts with local control agents (CAs)
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The controller interacts with a control agent (CA) in each of the routers via a 
well-defined protocol to configure and manage that router’s flow table. Typically, 
the CA has minimum functionality; its job is to communicate with the controller, 
and to do as the controller commands. Unlike the routing algorithms in Figure 5.1, 
the CAs do not directly interact with each other nor do they actively take part 
in computing the forwarding table. This is a key distinction between per-router 
control and logically centralized control.

By “logically centralized” control [Levin 2012] we mean that the routing 
control service is accessed as if it were a single central service point, even though 
the service is likely to be implemented via multiple servers for fault-tolerance, 
and performance scalability reasons. As we will see in Section 5.5, SDN adopts 
this notion of a logically centralized controller—an approach that is finding 
increased use in production deployments. Google uses SDN to control the rout-
ers in its internal B4 global wide-area network that interconnects its data centers  
[Jain 2013]. SWAN [Hong 2013], from Microsoft Research, uses a logically 
 centralized controller to manage routing and forwarding between a wide area 
network and a data center network. Major ISP deployments, including COM-
CAST’s ActiveCore and Deutsche Telecom’s Access 4.0 are actively integrating 
SDN into their networks. And as we’ll see in Chapter 8, SDN control is central to  
4G/5G cellular networking as well. [AT&T 2019] notes, “ … SDN, isn’t a vision, 
a goal, or a promise. It’s a reality. By the end of next year, 75% of our network 
functions will be fully virtualized and software-controlled.” China Telecom and 
China Unicom are using SDN both within data centers and between data centers 
[Li 2015].

5.2 Routing Algorithms

In this section, we’ll study routing algorithms, whose goal is to determine good 
paths (equivalently, routes), from senders to receivers, through the network of 
routers. Typically, a “good” path is one that has the least cost. We’ll see that in 
practice, however, real-world concerns such as policy issues (for example, a rule 
such as “router x, belonging to organization Y, should not forward any packets 
originating from the network owned by organization Z ”) also come into play. We 
note that whether the network control plane adopts a per-router control approach or 
a logically centralized approach, there must always be a well-defined sequence of 
routers that a packet will cross in traveling from sending to receiving host. Thus, 
the routing algorithms that compute these paths are of fundamental importance, 
and another candidate for our top-10 list of fundamentally important networking 
concepts.

A graph is used to formulate routing problems. Recall that a graph G = (N, E) 
is a set N of nodes and a collection E of edges, where each edge is a pair of nodes 
from N. In the context of network-layer routing, the nodes in the graph represent 
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routers—the points at which packet-forwarding decisions are made—and the edges 
connecting these nodes represent the physical links between these routers. Such a 
graph abstraction of a computer network is shown in Figure 5.3. When we study the 
BGP inter-domain routing protocol, we’ll see that nodes represent networks, and the 
edge connecting two such nodes represents direction connectivity (know as peering) 
between the two networks. To view some graphs representing real network maps, see 
[CAIDA 2020]; for a discussion of how well different graph-based models model the 
Internet, see [Zegura 1997, Faloutsos 1999, Li 2004].

As shown in Figure 5.3, an edge also has a value representing its cost. Typically, 
an edge’s cost may reflect the physical length of the corresponding link (for example, 
a transoceanic link might have a higher cost than a short-haul terrestrial link), the link 
speed, or the monetary cost associated with a link. For our purposes, we’ll simply 
take the edge costs as a given and won’t worry about how they are determined. For 
any edge (x, y) in E, we denote c(x, y) as the cost of the edge between nodes x and y. 
If the pair (x, y) does not belong to E, we set c(x, y) = ∞ . Also, we’ll only consider 
undirected graphs (i.e., graphs whose edges do not have a direction) in our discussion 
here, so that edge (x, y) is the same as edge (y, x) and that c(x, y) = c(y, x); however, 
the algorithms we’ll study can be easily extended to the case of directed links with a 
different cost in each direction. Also, a node y is said to be a neighbor of node x if 
(x, y) belongs to E.

Given that costs are assigned to the various edges in the graph abstraction, 
a natural goal of a routing algorithm is to identify the least costly paths between 
sources and destinations. To make this problem more precise, recall that a path 
in a graph G = (N, E) is a sequence of nodes (x1, x2, g, xp) such that each 
of the pairs (x1, x2), (x2, x3), g, (xp-1, xp) are edges in E. The cost of a path 
(x1, x2, g, xp) is simply the sum of all the edge costs along the path, that is, 
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Figure 5.3 ♦ Abstract graph model of a computer network
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c(x1, x2) + c(x2, x3) +  g+  c(xp-1, xp). Given any two nodes x and y, there are typi-
cally many paths between the two nodes, with each path having a cost. One or more 
of these paths is a least-cost path. The least-cost problem is therefore clear: Find a 
path between the source and destination that has least cost. In Figure 5.3, for exam-
ple, the least-cost path between source node u and destination node w is (u, x, y, w) 
with a path cost of 3. Note that if all edges in the graph have the same cost, the least-
cost path is also the shortest path (that is, the path with the smallest number of links 
between the source and the destination).

As a simple exercise, try finding the least-cost path from node u to z in 
Figure 5.3 and reflect for a moment on how you calculated that path. If you are 
like most people, you found the path from u to z by examining Figure 5.3, tracing 
a few routes from u to z, and somehow convincing yourself that the path you had 
chosen had the least cost among all possible paths. (Did you check all of the 17 pos-
sible paths between u and z? Probably not!) Such a calculation is an example of a 
centralized routing algorithm—the routing algorithm was run in one location, your 
brain, with complete information about the network. Broadly, one way in which 
we can classify routing algorithms is according to whether they are centralized or 
decentralized.

• A centralized routing algorithm computes the least-cost path between a source 
and destination using complete, global knowledge about the network. That is, the 
algorithm takes the connectivity between all nodes and all link costs as inputs. 
This then requires that the algorithm somehow obtain this information before 
actually performing the calculation. The calculation itself can be run at one site 
(e.g., a logically centralized controller as in Figure 5.2) or could be replicated in 
the routing component of each and every router (e.g., as in Figure 5.1). The key 
distinguishing feature here, however, is that the algorithm has complete informa-
tion about connectivity and link costs. Algorithms with global state information 
are often referred to as link-state (LS) algorithms, since the algorithm must 
be aware of the cost of each link in the network. We’ll study LS algorithms in  
Section 5.2.1.

• In a decentralized routing algorithm, the calculation of the least-cost path is 
carried out in an iterative, distributed manner by the routers. No node has com-
plete information about the costs of all network links. Instead, each node begins 
with only the knowledge of the costs of its own directly attached links. Then, 
through an iterative process of calculation and exchange of information with its 
neighboring nodes, a node gradually calculates the least-cost path to a destination 
or set of destinations. The decentralized routing algorithm we’ll study below in  
Section 5.2.2 is called a distance-vector (DV) algorithm, because each node main-
tains a vector of estimates of the costs (distances) to all other nodes in the net-
work. Such decentralized algorithms, with interactive message exchange between 
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neighboring routers is perhaps more naturally suited to control planes where the 
routers interact directly with each other, as in Figure 5.1.

A second broad way to classify routing algorithms is according to whether they 
are static or dynamic. In static routing algorithms, routes change very slowly over 
time, often as a result of human intervention (for example, a human manually editing 
a link costs). Dynamic routing algorithms change the routing paths as the network 
traffic loads or topology change. A dynamic algorithm can be run either periodically 
or in direct response to topology or link cost changes. While dynamic algorithms 
are more responsive to network changes, they are also more susceptible to problems 
such as routing loops and route oscillation.

A third way to classify routing algorithms is according to whether they are load-
sensitive or load-insensitive. In a load-sensitive algorithm, link costs vary dynami-
cally to reflect the current level of congestion in the underlying link. If a high cost 
is associated with a link that is currently congested, a routing algorithm will tend 
to choose routes around such a congested link. While early ARPAnet routing algo-
rithms were load-sensitive [McQuillan 1980], a number of difficulties were encoun-
tered [Huitema 1998]. Today’s Internet routing algorithms (such as RIP, OSPF, and 
BGP) are load-insensitive, as a link’s cost does not explicitly reflect its current (or 
recent past) level of congestion.

5.2.1 The Link-State (LS) Routing Algorithm
Recall that in a link-state algorithm, the network topology and all link costs are 
known, that is, available as input to the LS algorithm. In practice, this is accom-
plished by having each node broadcast link-state packets to all other nodes in 
the network, with each link-state packet containing the identities and costs of 
its attached links. In practice (for example, with the Internet’s OSPF routing 
protocol, discussed in Section 5.3), this is often accomplished by a link-state 
broadcast algorithm  [Perlman 1999]. The result of the nodes’ broadcast is that 
all nodes have an identical and complete view of the network. Each node can 
then run the LS algorithm and compute the same set of least-cost paths as every 
other node.

The link-state routing algorithm we present below is known as Dijkstra’s 
algorithm, named after its inventor. A closely related algorithm is Prim’s algo-
rithm; see [Cormen 2001] for a general discussion of graph algorithms. Dijkstra’s 
algorithm computes the least-cost path from one node (the source, which we will 
refer to as u) to all other nodes in the network. Dijkstra’s algorithm is iterative and 
has the property that after the kth iteration of the algorithm, the least-cost paths 
are known to k destination nodes, and among the least-cost paths to all destination 
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nodes, these k paths will have the k smallest costs. Let us define the following 
notation:

• D(v): cost of the least-cost path from the source node to destination v as of this 
iteration of the algorithm.

• p(v): previous node (neighbor of v) along the current least-cost path from the 
source to v.

• N′: subset of nodes; v is in N′ if the least-cost path from the source to v is defini-
tively known.

The centralized routing algorithm consists of an initialization step followed by 
a loop. The number of times the loop is executed is equal to the number of nodes in 
the network. Upon termination, the algorithm will have calculated the shortest paths 
from the source node u to every other node in the network.

Link-State (LS) Algorithm for Source Node u

1  Initialization: 
2   N’ = {u}
3   for all nodes v
4     if v is a neighbor of u
5       then D(v) = c(u,v)
6     else D(v) = ∞
7
8  Loop
9   find w not in N’ such that D(w) is a minimum
10  add w to N’
11  update D(v) for each neighbor v of w and not in N’:
12        D(v) = min(D(v), D(w)+ c(w,v) )
13   /* new cost to v is either old cost to v or known
14    least path cost to w plus cost from w to v */
15 until N’= N

As an example, let’s consider the network in Figure 5.3 and compute the least-
cost paths from u to all possible destinations. A tabular summary of the algorithm’s 
computation is shown in Table 5.1, where each line in the table gives the values of 
the algorithm’s variables at the end of the iteration. Let’s consider the few first steps 
in detail.

• In the initialization step, the currently known least-cost paths from u to its directly 
attached neighbors, v, x, and w, are initialized to 2, 1, and 5, respectively. Note in 
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particular that the cost to w is set to 5 (even though we will soon see that a lesser-cost  
path does indeed exist) since this is the cost of the direct (one hop) link from u to 
w. The costs to y and z are set to infinity because they are not directly connected 
to u.

• In the first iteration, we look among those nodes not yet added to the set N′ and 
find that node with the least cost as of the end of the previous iteration. That node 
is x, with a cost of 1, and thus x is added to the set N′. Line 12 of the LS algorithm 
is then performed to update D(v) for all nodes v, yielding the results shown in the 
second line (Step 1) in Table 5.1. The cost of the path to v is unchanged. The cost 
of the path to w (which was 5 at the end of the initialization) through node x is 
found to have a cost of 4. Hence this lower-cost path is selected and w’s predeces-
sor along the shortest path from u is set to x. Similarly, the cost to y (through x) is 
computed to be 2, and the table is updated accordingly.

• In the second iteration, nodes v and y are found to have the least-cost paths (2), 
and we break the tie arbitrarily and add y to the set N′ so that N′ now contains u, 
x, and y. The cost to the remaining nodes not yet in N′, that is, nodes v, w, and z, 
are updated via line 12 of the LS algorithm, yielding the results shown in the third 
row in Table 5.1.

• And so on . . . 

When the LS algorithm terminates, we have, for each node, its predecessor 
along the least-cost path from the source node. For each predecessor, we also have its 
predecessor, and so in this manner we can construct the entire path from the source to 
all destinations. The forwarding table in a node, say node u, can then be constructed 
from this information by storing, for each destination, the next-hop node on the least-
cost path from u to the destination. Figure 5.4 shows the resulting least-cost paths 
and forwarding table in u for the network in Figure 5.3.

Table 5.1 ♦ Running the link-state algorithm on the network in Figure 5.3

step N’ D (v), p (v) D (w), p (w) D (x), p (x) D (y), p (y) D (z), p (z)
0 u 2, u 5, u 1,u ∞ ∞
1 ux 2, u 4, x 2, x ∞
2 uxy 2, u 3, y 4, y
3 uxyv 3, y 4, y
4 uxyvw 4, y
5 uxyvwz
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What is the computational complexity of this algorithm? That is, given n nodes 
(not counting the source), how much computation must be done in the worst case to 
find the least-cost paths from the source to all destinations? In the first iteration, we 
need to search through all n nodes to determine the node, w, not in N′ that has the 
minimum cost. In the second iteration, we need to check n - 1 nodes to determine 
the minimum cost; in the third iteration n - 2 nodes, and so on. Overall, the total 
number of nodes we need to search through over all the iterations is n(n + 1)/2, and 
thus we say that the preceding implementation of the LS algorithm has worst-case 
complexity of order n squared: O(n2). (A more sophisticated implementation of this 
algorithm, using a data structure known as a heap, can find the minimum in line 9 in 
logarithmic rather than linear time, thus reducing the complexity.)

Before completing our discussion of the LS algorithm, let us consider a pathol-
ogy that can arise. Figure 5.5 shows a simple network topology where link costs are 
equal to the load carried on the link, for example, reflecting the delay that would 
be experienced. In this example, link costs are not symmetric; that is, c(u,v) equals 
c(v,u) only if the load carried on both directions on the link (u,v) is the same. In this 
example, node z originates a unit of traffic destined for w, node x also originates a 
unit of traffic destined for w, and node y injects an amount of traffic equal to e, also 
destined for w. The initial routing is shown in Figure 5.5(a) with the link costs cor-
responding to the amount of traffic carried.

When the LS algorithm is next run, node y determines (based on the link costs 
shown in Figure 5.5(a)) that the clockwise path to w has a cost of 1, while the coun-
terclockwise path to w (which it had been using) has a cost of 1 + e. Hence y’s least-
cost path to w is now clockwise. Similarly, x determines that its new least-cost path to 
w is also clockwise, resulting in costs shown in Figure 5.5(b). When the LS algorithm 
is run next, nodes x, y, and z all detect a zero-cost path to w in the counterclockwise 
direction, and all route their traffic to the counterclockwise routes. The next time the 
LS algorithm is run, x, y, and z all then route their traffic to the clockwise routes.

What can be done to prevent such oscillations (which can occur in any algo-
rithm, not just an LS algorithm, that uses a congestion or delay-based link metric)? 
One solution would be to mandate that link costs not depend on the amount of traffic 
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Figure 5.4 ♦ Least cost path and forwarding table for node u
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carried—an unacceptable solution since one goal of routing is to avoid highly con-
gested (for example, high-delay) links. Another solution is to ensure that not all rout-
ers run the LS algorithm at the same time. This seems a more reasonable solution, 
since we would hope that even if routers ran the LS algorithm with the same perio-
dicity, the execution instance of the algorithm would not be the same at each node. 
Interestingly, researchers have found that routers in the Internet can self-synchronize 
among themselves [Floyd Synchronization 1994]. That is, even though they initially 
execute the algorithm with the same period but at different instants of time, the algo-
rithm execution instance can eventually become, and remain, synchronized at the 
routers. One way to avoid such self-synchronization is for each router to randomize 
the time it sends out a link advertisement.

Having studied the LS algorithm, let’s consider the other major routing algo-
rithm that is used in practice today—the distance-vector routing algorithm.
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Figure 5.5 ♦ Oscillations with congestion-sensitive routing
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5.2.2 The Distance-Vector (DV) Routing Algorithm
Whereas the LS algorithm is an algorithm using global information, the distance-
vector (DV) algorithm is iterative, asynchronous, and distributed. It is distributed in 
that each node receives some information from one or more of its directly attached 
neighbors, performs a calculation, and then distributes the results of its calculation 
back to its neighbors. It is iterative in that this process continues on until no more 
information is exchanged between neighbors. (Interestingly, the algorithm is also 
self-terminating—there is no signal that the computation should stop; it just stops.) 
The algorithm is asynchronous in that it does not require all of the nodes to operate in 
lockstep with each other. We’ll see that an asynchronous, iterative, self-terminating, 
distributed algorithm is much more interesting and fun than a centralized algorithm!

Before we present the DV algorithm, it will prove beneficial to discuss an impor-
tant relationship that exists among the costs of the least-cost paths. Let dx(y) be the 
cost of the least-cost path from node x to node y. Then the least costs are related by 
the celebrated Bellman-Ford equation, namely,

 dx(y) = minv5c(x, v) + dv( y)6 , (5.1)

where the minv in the equation is taken over all of x’s neighbors. The Bellman-
Ford equation is rather intuitive. Indeed, after traveling from x to v, if we then take 
the least-cost path from v to y, the path cost will be c(x, v) + dv(y). Since we must 
begin by traveling to some neighbor v, the least cost from x to y is the minimum of 
c(x, v) + dv(y) taken over all neighbors v.

But for those who might be skeptical about the validity of the equation, let’s 
check it for source node u and destination node z in Figure 5.3. The source node u 
has three neighbors: nodes v, x, and w. By walking along various paths in the graph, 
it is easy to see that dv(z) = 5, dx(z) = 3, and dw(z) = 3. Plugging these values into 
Equation 5.1, along with the costs c(u, v) = 2, c(u, x) = 1, and c(u, w) = 5, gives 
du(z) = min52 + 5, 5 + 3, 1 + 36 = 4, which is obviously true and which is 
exactly what the Dijskstra algorithm gave us for the same network. This quick veri-
fication should help relieve any skepticism you may have.

The Bellman-Ford equation is not just an intellectual curiosity. It actually has signif-
icant practical importance: the solution to the Bellman-Ford equation provides the entries 
in node x’s forwarding table. To see this, let v* be any neighboring node that achieves 
the minimum in Equation 5.1. Then, if node x wants to send a packet to node y along a 
least-cost path, it should first forward the packet to node v*. Thus, node x’s forwarding 
table would specify node v* as the next-hop router for the ultimate destination y. Another 
important practical contribution of the Bellman-Ford equation is that it suggests the form 
of the neighbor-to-neighbor communication that will take place in the DV algorithm.

The basic idea is as follows. Each node x begins with Dx(y), an estimate of the cost 
of the least-cost path from itself to node y, for all nodes, y, in N. Let Dx = [Dx(y): y in N] 
be node x’s distance vector, which is the vector of cost estimates from x to all other nodes, 
y, in N. With the DV algorithm, each node x maintains the following routing information:
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• For each neighbor v, the cost c(x,v) from x to directly attached neighbor, v

• Node x’s distance vector, that is, Dx = [Dx(y): y in N], containing x’s estimate of 
its cost to all destinations, y, in N

• The distance vectors of each of its neighbors, that is, Dv = [Dv(y): y in N] for 
each neighbor v of x

In the distributed, asynchronous algorithm, from time to time, each node sends a 
copy of its distance vector to each of its neighbors. When a node x receives a new 
distance vector from any of its neighbors w, it saves w’s distance vector, and then 
uses the Bellman-Ford equation to update its own distance vector as follows:

Dx(y) = minv5c(x, v) + Dv(y)6  for each node y in N

If node x’s distance vector has changed as a result of this update step, node x will then 
send its updated distance vector to each of its neighbors, which can in turn update 
their own distance vectors. Miraculously enough, as long as all the nodes continue 
to exchange their distance vectors in an asynchronous fashion, each cost estimate 
Dx(y) converges to dx(y), the actual cost of the least-cost path from node x to node y 
[Bertsekas 1991]!

Distance-Vector (DV) Algorithm

At each node, x:

1  Initialization:
2    for all destinations y in N:
3       Dx(y)= c(x,y)/* if y is not a neighbor then c(x,y)= ∞ */
4    for each neighbor w
5       Dw(y) = ? for all destinations y in N
6    for each neighbor w
7       send distance vector  Dx = [Dx(y): y in N] to w
8
9  loop 
10    wait  (until I see a link cost change to some neighbor w or
11            until I receive a distance vector from some neighbor w)
12
13    for each y in N:
14        Dx(y) = minv{c(x,v) + Dv(y)}
15
16 if Dx(y) changed for any destination y
17       send distance vector Dx  = [Dx(y): y in N] to all neighbors
18
19 forever 
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In the DV algorithm, a node x updates its distance-vector estimate when it either 
sees a cost change in one of its directly attached links or receives a distance-vector 
update from some neighbor. But to update its own forwarding table for a given des-
tination y, what node x really needs to know is not the shortest-path distance to y but 
instead the neighboring node v*(y) that is the next-hop router along the shortest path 
to y. As you might expect, the next-hop router v*(y) is the neighbor v that achieves 
the minimum in Line 14 of the DV algorithm. (If there are multiple neighbors v that 
achieve the minimum, then v*(y) can be any of the minimizing neighbors.) Thus, 
in Lines 13–14, for each destination y, node x also determines v*(y) and updates its 
forwarding table for destination y.

Recall that the LS algorithm is a centralized algorithm in the sense that it 
requires each node to first obtain a complete map of the network before running the 
Dijkstra algorithm. The DV algorithm is decentralized and does not use such global 
information. Indeed, the only information a node will have is the costs of the links 
to its directly attached neighbors and information it receives from these neighbors. 
Each node waits for an update from any neighbor (Lines 10–11), calculates its new 
distance vector when receiving an update (Line 14), and distributes its new distance 
vector to its neighbors (Lines 16–17). DV-like algorithms are used in many routing 
protocols in practice, including the Internet’s RIP and BGP, ISO IDRP, Novell IPX, 
and the original ARPAnet.

Figure 5.6 illustrates the operation of the DV algorithm for the simple three-
node network shown at the top of the figure. The operation of the algorithm is illus-
trated in a synchronous manner, where all nodes simultaneously receive distance 
vectors from their neighbors, compute their new distance vectors, and inform their 
neighbors if their distance vectors have changed. After studying this example, you 
should convince yourself that the algorithm operates correctly in an asynchronous 
manner as well, with node computations and update generation/reception occurring 
at any time.

The leftmost column of the figure displays three initial routing tables for each 
of the three nodes. For example, the table in the upper-left corner is node x’s ini-
tial routing table. Within a specific routing table, each row is a distance vector— 
specifically, each node’s routing table includes its own distance vector and that 
of each of its neighbors. Thus, the first row in node x’s initial routing table is 
Dx = [Dx(x), Dx(y), Dx(z)] = [0, 2, 7]. The second and third rows in this table are 
the most recently received distance vectors from nodes y and z, respectively. Because 
at initialization node x has not received anything from node y or z, the entries in  
the second and third rows are initialized to infinity.

After initialization, each node sends its distance vector to each of its two neigh-
bors. This is illustrated in Figure 5.6 by the arrows from the first column of tables 
to the second column of tables. For example, node x sends its distance vector Dx =  
[0, 2, 7] to both nodes y and z. After receiving the updates, each node recomputes its 
own distance vector. For example, node x computes
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 Dx(x) = 0

 Dx(y) = min5c(x,y) + Dy(y), c(x,z) + Dz(y)6 = min52 + 0, 7 + 16 = 2

 Dx(z) = min5c(x,y) + Dy(z), c(x,z) + Dz(z)6 = min52 + 1, 7 + 06 = 3

The second column therefore displays, for each node, the node’s new distance vector 
along with distance vectors just received from its neighbors. Note, for example, that 
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Figure 5.6 ♦ Distance-vector (DV) algorithm in operation
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node x’s estimate for the least cost to node z, Dx(z), has changed from 7 to 3. Also 
note that for node x, neighboring node y achieves the minimum in line 14 of the DV 
algorithm; thus, at this stage of the algorithm, we have at node x that v*(y) = y and 
v*(z) = y.

After the nodes recompute their distance vectors, they again send their updated 
distance vectors to their neighbors (if there has been a change). This is illustrated in 
Figure 5.6 by the arrows from the second column of tables to the third column of 
tables. Note that only nodes x and z send updates: node y’s distance vector didn’t 
change so node y doesn’t send an update. After receiving the updates, the nodes then 
recompute their distance vectors and update their routing tables, which are shown in 
the third column.

The process of receiving updated distance vectors from neighbors, recomputing 
routing table entries, and informing neighbors of changed costs of the least-cost path 
to a destination continues until no update messages are sent. At this point, since no 
update messages are sent, no further routing table calculations will occur and the 
algorithm will enter a quiescent state; that is, all nodes will be performing the wait in 
Lines 10–11 of the DV algorithm. The algorithm remains in the quiescent state until 
a link cost changes, as discussed next.

Distance-Vector Algorithm: Link-Cost Changes and Link Failure

When a node running the DV algorithm detects a change in the link cost from 
itself to a neighbor (Lines 10–11), it updates its distance vector (Lines 13–14) 
and, if there’s a change in the cost of the least-cost path, informs its neighbors 
(Lines 16–17) of its new distance vector. Figure 5.7(a) illustrates a scenario where 
the link cost from y to x changes from 4 to 1. We focus here only on y’ and z’s 
distance table entries to destination x. The DV algorithm causes the following 
sequence of events to occur:

• At time t0, y detects the link-cost change (the cost has changed from 4 to 1), 
updates its distance vector, and informs its neighbors of this change since its dis-
tance vector has changed.

• At time t1, z receives the update from y and updates its table. It computes a new 
least cost to x (it has decreased from a cost of 5 to a cost of 2) and sends its new 
distance vector to its neighbors.

• At time t2, y receives z’s update and updates its distance table. y’s least costs do 
not change and hence y does not send any message to z. The algorithm comes to 
a quiescent state.

Thus, only two iterations are required for the DV algorithm to reach a quiescent  
state. The good news about the decreased cost between x and y has propagated 
quickly through the network.
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Let’s now consider what can happen when a link cost increases. Suppose that 
the link cost between x and y increases from 4 to 60, as shown in Figure 5.7(b).

 1. Before the link cost changes, Dy(x) = 4, Dy(z) = 1, Dz(y) = 1, and Dz(x) = 5. 
At time t0, y detects the link-cost change (the cost has changed from 4 to 60). y 
computes its new minimum-cost path to x to have a cost of

Dy(x) = min5c(y,x) + Dx(x), c(y,z) + Dz(x)6 = min560 + 0, 1 + 56 = 6

  Of course, with our global view of the network, we can see that this new cost via 
z is wrong. But the only information node y has is that its direct cost to x is 60 
and that z has last told y that z could get to x with a cost of 5. So in order to get 
to x, y would now route through z, fully expecting that z will be able to get to x 
with a cost of 5. As of t1 we have a routing loop—in order to get to x, y routes 
through z, and z routes through y. A routing loop is like a black hole—a packet 
destined for x arriving at y or z as of t1 will bounce back and forth between these 
two nodes forever (or until the forwarding tables are changed).

 2. Since node y has computed a new minimum cost to x, it informs z of its new 
distance vector at time t1.

 3. Sometime after t1, z receives y’s new distance vector, which indicates that y’s 
minimum cost to x is 6. z knows it can get to y with a cost of 1 and hence com-
putes a new least cost to x of Dz(x) = min550 + 0,1 + 66 = 7. Since z’s 
least cost to x has increased, it then informs y of its new distance vector at t2.

 4. In a similar manner, after receiving z’s new distance vector, y determines 
Dy(x) = 8 and sends z its distance vector. z then determines Dz(x) = 9 and 
sends y its distance vector, and so on.

How long will the process continue? You should convince yourself that the loop will 
persist for 44 iterations (message exchanges between y and z)—until z eventually 
computes the cost of its path via y to be greater than 50. At this point, z will (finally!) 
determine that its least-cost path to x is via its direct connection to x. y will then 
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Figure 5.7 ♦ Changes in link cost
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route to x via z. The result of the bad news about the increase in link cost has indeed  
traveled slowly! What would have happened if the link cost c(y, x) had changed from 
4 to 10,000 and the cost c(z, x) had been 9,999? Because of such scenarios, the prob-
lem we have seen is sometimes referred to as the count-to-infinity  problem.

Distance-Vector Algorithm: Adding Poisoned Reverse

The specific looping scenario just described can be avoided using a technique known 
as poisoned reverse. The idea is simple—if z routes through y to get to destination x, 
then z will advertise to y that its distance to x is infinity, that is, z will advertise to y 
that Dz(x) = ∞  (even though z knows Dz(x) = 5 in truth). z will continue telling this 
little white lie to y as long as it routes to x via y. Since y believes that z has no path 
to x, y will never attempt to route to x via z, as long as z continues to route to x via y 
(and lies about doing so).

Let’s now see how poisoned reverse solves the particular looping problem we 
encountered before in Figure 5.5(b). As a result of the poisoned reverse, y’s distance 
table indicates Dz(x) = ∞. When the cost of the (x, y) link changes from 4 to 60 at 
time t0, y updates its table and continues to route directly to x, albeit at a higher cost 
of 60, and informs z of its new cost to x, that is, Dy(x) =  60. After receiving the 
update at t1, z immediately shifts its route to x to be via the direct (z, x) link at a cost 
of 50. Since this is a new least-cost path to x, and since the path no longer passes 
through y, z now informs y that Dz(x) = 50 at t2. After receiving the update from 
z, y updates its distance table with Dy(x) = 51. Also, since z is now on y’s least-
cost path to x, y poisons the reverse path from z to x by informing z at time t3 that 
Dy(x) = ∞  (even though y knows that Dy(x) = 51 in truth).

Does poisoned reverse solve the general count-to-infinity problem? It does not. 
You should convince yourself that loops involving three or more nodes (rather than 
simply two immediately neighboring nodes) will not be detected by the poisoned 
reverse technique.

A Comparison of LS and DV Routing Algorithms

The DV and LS algorithms take complementary approaches toward computing rout-
ing. In the DV algorithm, each node talks to only its directly connected neighbors, 
but it provides its neighbors with least-cost estimates from itself to all the nodes (that 
it knows about) in the network. The LS algorithm requires global information. Con-
sequently, when implemented in each and every router, for example, as in Figures 4.2 
and 5.1, each node would need to communicate with all other nodes (via broadcast), 
but it tells them only the costs of its directly connected links. Let’s conclude our 
study of LS and DV algorithms with a quick comparison of some of their attributes. 
Recall that N is the set of nodes (routers) and E is the set of edges (links).

• Message complexity. We have seen that LS requires each node to know the 
cost of each link in the network. This requires O(|N| |E|) messages to be sent. 
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Also, whenever a link cost changes, the new link cost must be sent to all nodes. 
The DV algorithm requires message exchanges between directly connected 
neighbors at each iteration. We have seen that the time needed for the algo-
rithm to converge can depend on many factors. When link costs change, the 
DV algorithm will propagate the results of the changed link cost only if the 
new link cost results in a changed least-cost path for one of the nodes attached 
to that link.

• Speed of convergence. We have seen that our implementation of LS is an O(|N|2) 
algorithm requiring O(|N| |E|)) messages. The DV algorithm can converge slowly 
and can have routing loops while the algorithm is converging. DV also suffers 
from the count-to-infinity problem.

• Robustness. What can happen if a router fails, misbehaves, or is sabotaged? 
Under LS, a router could broadcast an incorrect cost for one of its attached links 
(but no others). A node could also corrupt or drop any packets it received as part 
of an LS broadcast. But an LS node is computing only its own forwarding tables; 
other nodes are performing similar calculations for themselves. This means route 
calculations are somewhat separated under LS, providing a degree of robustness. 
Under DV, a node can advertise incorrect least-cost paths to any or all destina-
tions. (Indeed, in 1997, a malfunctioning router in a small ISP provided national 
backbone routers with erroneous routing information. This caused other routers 
to flood the malfunctioning router with traffic and caused large portions of the 
Internet to become disconnected for up to several hours [Neumann 1997].) More 
generally, we note that, at each iteration, a node’s calculation in DV is passed on 
to its neighbor and then indirectly to its neighbor’s neighbor on the next iteration. 
In this sense, an incorrect node calculation can be diffused through the entire 
network under DV.

In the end, neither algorithm is an obvious winner over the other; indeed, both algo-
rithms are used in the Internet.

5.3 Intra-AS Routing in the Internet: OSPF

In our study of routing algorithms so far, we’ve viewed the network simply as a 
collection of interconnected routers. One router was indistinguishable from another 
in the sense that all routers executed the same routing algorithm to compute routing 
paths through the entire network. In practice, this model and its view of a homog-
enous set of routers all executing the same routing algorithm is simplistic for two 
important reasons:

• Scale. As the number of routers becomes large, the overhead involved in communi-
cating, computing, and storing routing information becomes prohibitive. Today’s 

M05_KURO1557_08_SE_C05.indd   395 11/02/20   5:21 PM



396     CHAPTER 5  •  THE NETWORK LAYER: CONTROL PLANE

Internet consists of hundreds of millions of routers. Storing routing information  
for possible destinations at each of these routers would clearly require enormous 
amounts of memory. The overhead required to broadcast connectivity and link 
cost updates among all of the routers would be huge! A distance-vector algorithm 
that iterated among such a large number of routers would surely never converge. 
Clearly, something must be done to reduce the complexity of route computation 
in a network as large as the Internet.

• Administrative autonomy. As described in Section 1.3, the Internet is a network 
of ISPs, with each ISP consisting of its own network of routers. An ISP generally 
desires to operate its network as it pleases (for example, to run whatever rout-
ing algorithm it chooses within its network) or to hide aspects of its network’s 
internal organization from the outside. Ideally, an organization should be able to 
operate and administer its network as it wishes, while still being able to connect 
its network to other outside networks.

Both of these problems can be solved by organizing routers into autonomous 
 systems (ASs), with each AS consisting of a group of routers that are under the same 
administrative control. Often the routers in an ISP, and the links that interconnect 
them, constitute a single AS. Some ISPs, however, partition their network into multi-
ple ASs. In particular, some tier-1 ISPs use one gigantic AS for their entire network, 
whereas others break up their ISP into tens of interconnected ASs. An autonomous 
system is identified by its globally unique autonomous system number (ASN) [RFC 
1930]. AS numbers, like IP addresses, are assigned by ICANN regional registries 
[ICANN 2020].

Routers within the same AS all run the same routing algorithm and have infor-
mation about each other. The routing algorithm  running within an autonomous sys-
tem is called an intra-autonomous system routing  protocol.

Open Shortest Path First (OSPF) 

OSPF routing and its closely related cousin, IS-IS, are widely used for intra-AS 
routing in the Internet. The Open in OSPF indicates that the routing protocol speci-
fication is publicly available (for example, as opposed to Cisco’s EIGRP protocol, 
which was only recently became open [Savage 2015], after roughly 20 years as a 
Cisco-proprietary protocol). The most recent version of OSPF, version 2, is defined 
in [RFC 2328], a public document.

OSPF is a link-state protocol that uses flooding of link-state information 
and a Dijkstra’s least-cost path algorithm. With OSPF, each router constructs 
a complete topological map (that is, a graph) of the entire autonomous system. 
Each router then locally runs Dijkstra’s shortest-path algorithm to determine a 
shortest-path tree to all subnets, with itself as the root node. Individual link costs 
are configured by the network administrator (see sidebar, Principles and Practice: 
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Setting OSPF Weights). The administrator might choose to set all link costs to 1, 
thus achieving minimum-hop routing, or might choose to set the link weights to 
be inversely proportional to link capacity in order to discourage traffic from using 
low-bandwidth links. OSPF does not mandate a policy for how link weights are 
set (that is the job of the  network administrator), but instead provides the mecha-
nisms (protocol) for determining least-cost path routing for the given set of link 
weights.

With OSPF, a router broadcasts routing information to all other routers in the 
autonomous system, not just to its neighboring routers. A router broadcasts link-state 
information whenever there is a change in a link’s state (for example, a change in 
cost or a change in up/down status). It also broadcasts a link’s state periodically (at 
least once every 30 minutes), even if the link’s state has not changed. RFC 2328 
notes that “this periodic updating of link state advertisements adds robustness to the 
link state algorithm.” OSPF advertisements are contained in OSPF messages that are 

SETTING OSPF L INK WEIGHTS

Our discussion of link-state routing has implicitly assumed that link weights are set, a 
routing algorithm such as OSPF is run, and traffic flows according to the routing tables 
computed by the LS algorithm. In terms of cause and effect, the link weights are given (i.e., 
they come first) and result (via Dijkstra’s algorithm) in routing paths that minimize overall 
cost. In this viewpoint, link weights reflect the cost of using a link (for example, if link 
weights are inversely proportional to capacity, then the use of high-capacity links would 
have smaller weight and thus be more attractive from a routing standpoint) and Dijsktra’s 
algorithm serves to minimize overall cost.

In practice, the cause and effect relationship between link weights and routing paths 
may be reversed, with network operators configuring link weights in order to obtain rout-
ing paths that achieve certain traffic engineering goals [Fortz 2000, Fortz 2002]. For 
example, suppose a network operator has an estimate of traffic flow entering the network 
at each ingress point and destined for each egress point. The operator may then want 
to put in place a specific routing of ingress-to-egress flows that minimizes the maximum 
utilization over all of the network’s links. But with a routing algorithm such as OSPF, the 
operator’s main “knobs” for tuning the routing of flows through the network are the link 
weights. Thus, in order to achieve the goal of minimizing the maximum link utilization, the 
operator must find the set of link weights that achieves this goal. This is a reversal of the 
cause and effect relationship—the desired routing of flows is known, and the OSPF link 
weights must be found such that the OSPF routing algorithm results in this desired routing 
of flows.

PRINCIPLES IN PRACTICE
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carried directly by IP, with an upper-layer protocol of 89 for OSPF. Thus, the OSPF 
protocol must itself implement functionality such as reliable message transfer and 
link-state broadcast. The OSPF protocol also checks that links are operational (via a 
HELLO message that is sent to an attached neighbor) and allows an OSPF router to 
obtain a neighboring router’s database of network-wide link state.

Some of the advances embodied in OSPF include the following:

• Security. Exchanges between OSPF routers (for example, link-state updates) can 
be authenticated. With authentication, only trusted routers can participate in the 
OSPF protocol within an AS, thus preventing malicious intruders (or networking 
students taking their newfound knowledge out for a joyride) from injecting incor-
rect information into router tables. By default, OSPF packets between routers 
are not authenticated and could be forged. Two types of authentication can be 
configured—simple and MD5 (see Chapter 8 for a discussion on MD5 and 
authentication in general). With simple authentication, the same password is con-
figured on each router. When a router sends an OSPF packet, it includes the 
password in plaintext. Clearly, simple authentication is not very secure. MD5 
authentication is based on shared secret keys that are configured in all the routers. 
For each OSPF packet that it sends, the router computes the MD5 hash of the 
content of the OSPF packet appended with the secret key. (See the discussion of 
message authentication codes in Chapter 8.) Then the router includes the resulting 
hash value in the OSPF packet. The receiving router, using the preconfigured 
secret key, will compute an MD5 hash of the packet and compare it with the hash 
value that the packet carries, thus verifying the packet’s authenticity. Sequence 
numbers are also used with MD5 authentication to protect against replay attacks.

• Multiple same-cost paths. When multiple paths to a destination have the same 
cost, OSPF allows multiple paths to be used (that is, a single path need not be 
chosen for carrying all traffic when multiple equal-cost paths exist).

• Integrated support for unicast and multicast routing. Multicast OSPF (MOSPF) 
[RFC 1584] provides simple extensions to OSPF to provide for multicast routing. 
MOSPF uses the existing OSPF link database and adds a new type of link-state 
advertisement to the existing OSPF link-state broadcast mechanism.

• Support for hierarchy within a single AS. An OSPF autonomous system can 
be configured hierarchically into areas. Each area runs its own OSPF link-state 
routing algorithm, with each router in an area broadcasting its link state to all 
other routers in that area. Within each area, one or more area border routers are 
responsible for routing packets outside the area. Lastly, exactly one OSPF area 
in the AS is configured to be the backbone area. The primary role of the back-
bone area is to route traffic between the other areas in the AS. The backbone 
always contains all area border routers in the AS and may contain non-border 
routers as well. Inter-area routing within the AS requires that the packet be first 
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routed to an area border router (intra-area routing), then routed through the back-
bone to the area border router that is in the destination area, and then routed to 
the final destination.

OSPF is a relatively complex protocol, and our coverage here has been necessar-
ily brief; [Huitema 1998; Moy 1998; RFC 2328] provide additional details.

5.4 Routing Among the ISPs: BGP

We just learned that OSPF is an example of an intra-AS routing protocol. When 
routing a packet between a source and destination within the same AS, the route 
the packet follows is entirely determined by the intra-AS routing protocol. How-
ever, to route a packet across multiple ASs, say from a smartphone in Timbuktu to 
a server in a datacenter in Silicon Valley, we need an inter-autonomous  system 
routing protocol. Since an inter-AS routing protocol involves coordination 
among multiple ASs, communicating ASs must run the same inter-AS routing 
protocol. In fact, in the Internet, all ASs run the same inter-AS routing protocol, 
called the Border Gateway Protocol, more commonly known as BGP [RFC 4271; 
Stewart 1999].

BGP is arguably the most important of all the Internet protocols (the only other 
contender would be the IP protocol that we studied in Section 4.3), as it is the pro-
tocol that glues the thousands of ISPs in the Internet together. As we will soon see, 
BGP is a decentralized and asynchronous protocol in the vein of distance-vector 
routing described in Section 5.2.2. Although BGP is a complex and challenging pro-
tocol, to understand the Internet on a deep level, we need to become familiar with 
its underpinnings and operation. The time we devote to learning BGP will be well 
worth the effort.

5.4.1 The Role of BGP
To understand the responsibilities of BGP, consider an AS and an arbitrary router 
in that AS. Recall that every router has a forwarding table, which plays the central 
role in the process of forwarding arriving packets to outbound router links. As we 
have learned, for destinations that are within the same AS, the entries in the router’s 
forwarding table are determined by the AS’s intra-AS routing protocol. But what 
about destinations that are outside of the AS? This is precisely where BGP comes to 
the rescue.

In BGP, packets are not routed to a specific destination address, but instead to 
CIDRized prefixes, with each prefix representing a subnet or a collection of subnets. 

Gluing the Internet 
Together: BGP

VideoNote
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In the world of BGP, a destination may take the form 138.16.68/22, which for this 
example includes 1,024 IP addresses. Thus, a router’s forwarding table will have 
entries of the form (x, I), where x is a prefix (such as 138.16.68/22) and I is an inter-
face number for one of the router’s interfaces.

As an inter-AS routing protocol, BGP provides each router a means to:

 1. Obtain prefix reachability information from neighboring ASs. In particular, 
BGP allows each subnet to advertise its existence to the rest of the Internet. A 
subnet screams, “I exist and I am here,” and BGP makes sure that all the rout-
ers in the Internet know about this subnet. If it weren’t for BGP, each subnet 
would be an isolated island—alone, unknown and unreachable by the rest of the 
Internet.

 2. Determine the “best” routes to the prefixes. A router may learn about two or 
more different routes to a specific prefix. To determine the best route, the router 
will locally run a BGP route-selection procedure (using the prefix reachability 
information it obtained via neighboring routers). The best route will be deter-
mined based on policy as well as the reachability information.

Let us now delve into how BGP carries out these two tasks.

5.4.2 Advertising BGP Route Information
Consider the network shown in Figure 5.8. As we can see, this simple network has 
three autonomous systems: AS1, AS2, and AS3. As shown, AS3 includes a subnet 
with prefix x. For each AS, each router is either a gateway router or an internal 
router. A gateway router is a router on the edge of an AS that directly connects to 
one or more routers in other ASs. An internal router connects only to hosts and 
routers within its own AS. In AS1, for example, router 1c is a gateway router; routers 
1a, 1b, and 1d are internal routers.

Let’s consider the task of advertising reachability information for prefix x to 
all of the routers shown in Figure 5.8. At a high level, this is straightforward. First, 
AS3 sends a BGP message to AS2, saying that x exists and is in AS3; let’s denote 
this message as “AS3 x”. Then AS2 sends a BGP message to AS1, saying that x 
exists and that you can get to x by first passing through AS2 and then going to AS3; 
let’s denote that message as “AS2 AS3 x”. In this manner, each of the autonomous 
systems will not only learn about the existence of x, but also learn about a path of 
autonomous systems that leads to x. 

Although the discussion in the above paragraph about advertising BGP reacha-
bility information should get the general idea across, it is not precise in the sense that 
autonomous systems do not actually send messages to each other, but instead routers 
do. To understand this, let’s now re-examine the example in Figure 5.8. In BGP, 
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pairs of routers exchange routing information over semi-permanent TCP connections 
using port 179. Each such TCP connection, along with all the BGP messages sent 
over the connection, is called a BGP connection. Furthermore, a BGP connection 
that spans two ASs is called an external BGP (eBGP) connection, and a BGP ses-
sion between routers in the same AS is called an internal BGP (iBGP) connection. 
Examples of BGP connections for the network in Figure 5.8 are shown in Figure 5.9. 
There is typically one eBGP connection for each link that directly connects gateway 
routers in different ASs; thus, in Figure 5.9, there is an eBGP connection between 
gateway routers 1c and 2a and an eBGP connection between gateway routers 2c  
and 3a.

There are also iBGP connections between routers within each of the ASs. In 
particular, Figure 5.9 displays a common configuration of one BGP connection for 
each pair of routers internal to an AS, creating a mesh of TCP connections within 
each AS. In Figure 5.9, the eBGP connections are shown with the long dashes; the 
iBGP connections are shown with the short dashes. Note that iBGP connections do 
not always correspond to physical links.

In order to propagate the reachability information, both iBGP and eBGP 
sessions are used. Consider again advertising the reachability information for 
prefix x to all routers in AS1 and AS2. In this process, gateway router 3a first 
sends an eBGP message “AS3 x” to gateway router 2c. Gateway router 2c then 
sends the iBGP message “AS3 x” to all of the other routers in AS2, including 
to gateway router 2a. Gateway router 2a then sends the eBGP message “AS2 
AS3 x” to gateway router 1c. Finally, gateway router 1c uses iBGP to send the 
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Figure 5.8 ♦  Network with three autonomous systems. AS3 includes a  
subnet with prefix x
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message “AS2 AS3 x” to all the routers in AS1. After this process is complete, 
each router in AS1 and AS2 is aware of the existence of x and is also aware of 
an AS path that leads to x.

Of course, in a real network, from a given router there may be many different 
paths to a given destination, each through a different sequence of ASs. For example, 
consider the network in Figure 5.10, which is the original network in Figure 5.8, with 
an additional physical link from router 1d to router 3d. In this case, there are two 
paths from AS1 to x: the path “AS2 AS3 x” via router 1c; and the new path “AS3 x” 
via the router 1d.

5.4.3 Determining the Best Routes
As we have just learned, there may be many paths from a given router to a destina-
tion subnet. In fact, in the Internet, routers often receive reachability information 
about dozens of different possible paths. How does a router choose among these 
paths (and then configure its forwarding table accordingly)?

Before addressing this critical question, we need to introduce a little more 
BGP terminology. When a router advertises a prefix across a BGP connection, it 
includes with the prefix several BGP attributes. In BGP jargon, a prefix along with 
its attributes is called a route. Two of the more important attributes are AS-PATH 
and NEXT-HOP. The AS-PATH attribute contains the list of ASs through which the 
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Figure 5.9 ♦ eBGP and iBGP connections
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advertisement has passed, as we’ve seen in our examples above. To generate the AS-
PATH value, when a prefix is passed to an AS, the AS adds its ASN to the existing 
list in the AS-PATH. For example, in Figure 5.10, there are two routes from AS1 
to subnet x: one which uses the AS-PATH “AS2 AS3”; and another that uses the 
AS-PATH “A3”. BGP routers also use the AS-PATH attribute to detect and prevent 
looping advertisements; specifically, if a router sees that its own AS is contained in 
the path list, it will reject the advertisement.

Providing the critical link between the inter-AS and intra-AS routing protocols, 
the NEXT-HOP attribute has a subtle but important use. The NEXT-HOP is the IP 
address of the router interface that begins the AS-PATH. To gain insight into this 
attribute, let’s again refer to Figure 5.10. As indicated in Figure 5.10, the NEXT-
HOP attribute for the route “AS2 AS3 x” from AS1 to x that passes through AS2 
is the IP address of the left interface on router 2a. The NEXT-HOP attribute for the 
route “AS3 x” from AS1 to x that bypasses AS2 is the IP address of the leftmost 
interface of router 3d. In summary, in this toy example, each router in AS1 becomes 
aware of two BGP routes to prefix x:

IP address of leftmost interface for router 2a; AS2 AS3; x
IP address of leftmost interface of router 3d; AS3; x

Here, each BGP route is written as a list with three components: NEXT-HOP; AS-
PATH; destination prefix. In practice, a BGP route includes additional attributes, 
which we will ignore for the time being. Note that the NEXT-HOP attribute is an IP 
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Figure 5.10 ♦  Network augmented with peering link between AS1  
and AS3

M05_KURO1557_08_SE_C05.indd   403 11/02/20   5:21 PM



404     CHAPTER 5  •  THE NETWORK LAYER: CONTROL PLANE

address of a router that does not belong to AS1; however, the subnet that contains 
this IP address directly attaches to AS1.

Hot Potato Routing

We are now finally in position to talk about BGP routing algorithms in a precise 
manner. We will begin with one of the simplest routing algorithms, namely, hot 
potato routing.

Consider router 1b in the network in Figure 5.10. As just described, this router 
will learn about two possible BGP routes to prefix x. In hot potato routing, the route 
chosen (from among all possible routes) is that route with the least cost to the NEXT-
HOP router beginning that route. In this example, router 1b will consult its intra-AS 
routing information to find the least-cost intra-AS path to NEXT-HOP router 2a and 
the least-cost intra-AS path to NEXT-HOP router 3d, and then select the route with 
the smallest of these least-cost paths. For example, suppose that cost is defined as the 
number of links traversed. Then the least cost from router 1b to router 2a is 2, the least 
cost from router 1b to router 2d is 3, and router 2a would therefore be selected. Router 
1b would then consult its forwarding table (configured by its intra-AS algorithm) and 
find the interface I that is on the least-cost path to router 2a. It then adds (x, I) to its 
forwarding table.

The steps for adding an outside-AS prefix in a router’s forwarding table for hot 
potato routing are summarized in Figure 5.11. It is important to note that when add-
ing an outside-AS prefix into a forwarding table, both the inter-AS routing protocol 
(BGP) and the intra-AS routing protocol (e.g., OSPF) are used.

The idea behind hot-potato routing is for router 1b to get packets out of its 
AS as quickly as possible (more specifically, with the least cost possible) without 
worrying about the cost of the remaining portions of the path outside of its AS to 
the destination. In the name “hot potato routing,” a packet is analogous to a hot 
potato that is burning in your hands. Because it is burning hot, you want to pass it 
off to another person (another AS) as quickly as possible. Hot potato routing is thus 

Learn from inter-AS
protocol that subnet

x is reachable via
multiple gateways.

Use routing info from
intra-AS protocol to
determine costs of
least-cost paths to

each of the gateways.

Hot potato routing:
Choose the gateway

that has the
smallest least cost.

Determine from
forwarding table the
interface I that leads
to least-cost gateway.

Enter (x,I) in
forwarding table.

Figure 5.11 ♦  Steps in adding outside-AS destination in a router’s 
 forwarding table
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a selfish  algorithm—it tries to reduce the cost in its own AS while ignoring the other 
components of the end-to-end costs outside its AS. Note that with hot potato routing, 
two routers in the same AS may choose two different AS paths to the same prefix. 
For example, we just saw that router 1b would send packets through AS2 to reach  
x. However, router 1d would bypass AS2 and send packets directly to AS3 to reach x.

Route-Selection Algorithm

In practice, BGP uses an algorithm that is more complicated than hot potato routing, 
but nevertheless incorporates hot potato routing. For any given destination prefix, the 
input into BGP’s route-selection algorithm is the set of all routes to that prefix that have 
been learned and accepted by the router. If there is only one such route, then BGP obvi-
ously selects that route. If there are two or more routes to the same prefix, then BGP 
sequentially invokes the following elimination rules until one route remains:

 1. A route is assigned a local preference value as one of its attributes (in addition 
to the AS-PATH and NEXT-HOP attributes). The local preference of a route 
could have been set by the router or could have been learned from another router 
in the same AS. The value of the local preference attribute is a policy decision 
that is left entirely up to the AS’s network administrator. (We will shortly dis-
cuss BGP policy issues in some detail.) The routes with the highest local prefer-
ence values are selected.

 2. From the remaining routes (all with the same highest local preference value), 
the route with the shortest AS-PATH is selected. If this rule were the only rule 
for route selection, then BGP would be using a DV algorithm for path determi-
nation, where the distance metric uses the number of AS hops rather than the 
number of router hops.

 3. From the remaining routes (all with the same highest local preference value and 
the same AS-PATH length), hot potato routing is used, that is, the route with the 
closest NEXT-HOP router is selected.

 4. If more than one route still remains, the router uses BGP identifiers to select the 
route; see [Stewart 1999].

As an example, let’s again consider router 1b in Figure 5.10. Recall that there 
are exactly two BGP routes to prefix x, one that passes through AS2 and one that 
bypasses AS2. Also recall that if hot potato routing on its own were used, then BGP 
would route packets through AS2 to prefix x. But in the above route-selection algo-
rithm, rule 2 is applied before rule 3, causing BGP to select the route that bypasses 
AS2, since that route has a shorter AS PATH. So we see that with the above route-
selection algorithm, BGP is no longer a selfish algorithm—it first looks for routes 
with short AS paths (thereby likely reducing end-to-end delay).

As noted above, BGP is the de facto standard for inter-AS routing for the 
Internet. To see the contents of various BGP routing tables (large!) extracted from 

M05_KURO1557_08_SE_C05.indd   405 11/02/20   5:21 PM



406     CHAPTER 5  •  THE NETWORK LAYER: CONTROL PLANE

routers in tier-1 ISPs, see http://www.routeviews.org. BGP routing tables often 
contain over half a million routes (that is, prefixes and corresponding attributes). 
Statistics about the size and characteristics of BGP routing tables are presented in 
[Huston 2019b].

5.4.4 IP-Anycast
In addition to being the Internet’s inter-AS routing protocol, BGP is often used to 
implement the IP-anycast service [RFC 1546, RFC 7094], which is commonly used 
in DNS. To motivate IP-anycast, consider that in many applications, we are interested 
in (1) replicating the same content on different servers in many different dispersed 
geographical locations, and (2) having each user access the content from the server 
that is closest. For example, a CDN may replicate videos and other objects on servers 
in different countries. Similarly, the DNS system can replicate DNS records on DNS 
servers throughout the world. When a user wants to access this replicated content, it 
is desirable to point the user to the “nearest” server with the replicated content. BGP’s 
route-selection algorithm provides an easy and natural mechanism for doing so.

To make our discussion concrete, let’s describe how a CDN might use IP- 
anycast. As shown in Figure 5.12, during the IP-anycast configuration stage, the 
CDN company assigns the same IP address to each of its servers, and uses stand-
ard BGP to advertise this IP address from each of the servers. When a BGP router 
receives multiple route advertisements for this IP address, it treats these advertise-
ments as providing different paths to the same physical location (when, in fact, 
the advertisements are for different paths to different physical locations). When 
configuring its routing table, each router will locally use the BGP route-selec-
tion algorithm to pick the “best” (for example, closest, as determined by AS-hop 
counts) route to that IP address. For example, if one BGP route (corresponding to 
one location) is only one AS hop away from the router, and all other BGP routes 
(corresponding to other locations) are two or more AS hops away, then the BGP 
router would choose to route packets to the location that is one hop away. After 
this initial BGP address-advertisement phase, the CDN can do its main job of dis-
tributing content. When a client requests the video, the CDN returns to the client 
the common IP address used by the geographically dispersed servers, no matter 
where the client is located. When the client sends a request to that IP address, 
Internet routers then forward the request packet to the “closest” server, as defined 
by the BGP route-selection algorithm.

Although the above CDN example nicely illustrates how IP-anycast can be 
used, in practice, CDNs generally choose not to use IP-anycast because BGP routing 
changes can result in different packets of the same TCP connection arriving at differ-
ent instances of the Web server. But IP-anycast is extensively used by the DNS system 
to direct DNS queries to the closest root DNS server. Recall from Section 2.4, there 
are currently 13 IP addresses for root DNS servers. But corresponding to each of these 
addresses, there are multiple DNS root servers, with some of these addresses having 
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over 100 DNS root servers scattered over all corners of the world. When a DNS query 
is sent to one of these 13 IP addresses, IP anycast is used to route the query to the 
nearest of the DNS root servers that is responsible for that address. [Li 2018] presents 
recent measurements illustrating Internet anycast, use, performance, and challenges. 

5.4.5 Routing Policy
When a router selects a route to a destination, the AS routing policy can trump all 
other considerations, such as shortest AS path or hot potato routing. Indeed, in the 
route-selection algorithm, routes are first selected according to the local-preference 
attribute, whose value is fixed by the policy of the local AS.

Let’s illustrate some of the basic concepts of BGP routing policy with a simple 
example. Figure 5.13 shows six interconnected autonomous systems: A, B, C, W, X, 
and Y. It is important to note that A, B, C, W, X, and Y are ASs, not routers. Let’s 
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Figure 5.12 ♦ Using IP-anycast to bring users to the closest CDN server
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assume that autonomous systems W, X, and Y are access ISPs and that A, B, and C 
are backbone provider networks. We’ll also assume that A, B, and C, directly send 
traffic to each other, and provide full BGP information to their customer networks. 
All traffic entering an ISP access network must be destined for that network, and  
all traffic leaving an ISP access network must have originated in that network.  
W and Y are clearly access ISPs. X is a multi-homed access ISP, since it is con-
nected to the rest of the network via two different providers (a scenario that is becom-
ing increasingly common in practice). However, like W and Y, X itself must be the 
source/destination of all traffic leaving/entering X. But how will this stub network 
behavior be implemented and enforced? How will X be prevented from forwarding 
traffic between B and C? This can easily be accomplished by controlling the manner 
in which BGP routes are advertised. In particular, X will function as an access ISP 
network if it advertises (to its neighbors B and C) that it has no paths to any other 
destinations except itself. That is, even though X may know of a path, say XCY, that 
reaches network Y, it will not advertise this path to B. Since B is unaware that X has 
a path to Y, B would never forward traffic destined to Y (or C) via X. This simple 
example illustrates how a selective route advertisement policy can be used to imple-
ment customer/provider routing relationships.

Let’s next focus on a provider network, say AS B. Suppose that B has learned 
(from A) that A has a path AW to W. B can thus install the route AW into its routing 
information base. Clearly, B also wants to advertise the path BAW to its customer, 
X, so that X knows that it can route to W via B. But should B advertise the path 
BAW to C? If it does so, then C could route traffic to W via BAW. If A, B, and C are 
all backbone providers, than B might rightly feel that it should not have to shoulder 
the burden (and cost!) of carrying transit traffic between A and C. B might rightly 
feel that it is A’s and C’s job (and cost!) to make sure that C can route to/from A’s 
customers via a direct connection between A and C. There are currently no official 
standards that govern how backbone ISPs route among themselves. However, a rule 
of thumb followed by commercial ISPs is that any traffic flowing across an ISP’s 
backbone network must have either a source or a destination (or both) in a network 
that is a customer of that ISP; otherwise the traffic would be getting a free ride on 
the ISP’s network. Individual peering agreements (that would govern questions such 
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Figure 5.13 ♦ A simple BGP policy scenario
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as those raised above) are typically negotiated between pairs of ISPs and are often 
confidential; [Huston 1999a; Huston 2012] provide an interesting discussion of peer-
ing agreements. For a detailed description of how routing policy reflects commercial 
relationships among ISPs, see [Gao 2001; Dmitiropoulos 2007]. For a discussion of 
BGP routing polices from an ISP standpoint, see [Caesar 2005b].

WHY ARE THERE DIFFERENT INTER-AS AND INTRA-AS ROUTING 
PROTOCOLS?

Having now studied the details of specific inter-AS and intra-AS routing protocols deployed 
in today’s Internet, let’s conclude by considering perhaps the most fundamental question 
we could ask about these protocols in the first place (hopefully, you have been wondering 
this all along, and have not lost the forest for the trees!): Why are different inter-AS and 
intra-AS routing protocols used?

The answer to this question gets at the heart of the differences between the goals of 
routing within an AS and among ASs:

• Policy. Among ASs, policy issues dominate. It may well be important that traffic origi-
nating in a given AS not be able to pass through another specific AS. Similarly, a 
given AS may well want to control what transit traffic it carries between other ASs. We 
have seen that BGP carries path attributes and provides for controlled distribution of 
routing information so that such policy-based routing decisions can be made. Within 
an AS, everything is nominally under the same administrative control, and thus policy 
issues play a much less important role in choosing routes within the AS.

• Scale. The ability of a routing algorithm and its data structures to scale to handle 
routing to/among large numbers of networks is a critical issue in inter-AS routing. 
Within an AS, scalability is less of a concern. For one thing, if a single ISP becomes 
too large, it is always possible to divide it into two ASs and perform inter-AS routing 
between the two new ASs. (Recall that OSPF allows such a hierarchy to be built by 
splitting an AS into areas.)

• Performance. Because inter-AS routing is so policy oriented, the quality (for example, 
performance) of the routes used is often of secondary concern (that is, a longer or 
more costly route that satisfies certain policy criteria may well be taken over a route 
that is shorter but does not meet that criteria). Indeed, we saw that among ASs, there 
is not even the notion of cost (other than AS hop count) associated with routes. Within 
a single AS, however, such policy concerns are of less importance, allowing routing to 
focus more on the level of performance realized on a route.

PRINCIPLES IN PRACTICE
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This completes our brief introduction to BGP. Understanding BGP is important 
because it plays a central role in the Internet. We encourage you to see the references 
[Stewart 1999; Huston 2019a; Labovitz 1997; Halabi 2000; Huitema 1998; Gao 2001; 
Feamster 2004; Caesar 2005b; Li 2007] to learn more about BGP.

5.4.6  Putting the Pieces Together: Obtaining  
Internet Presence

Although this subsection is not about BGP per se, it brings together many of the 
protocols and concepts we’ve seen thus far, including IP addressing, DNS, and BGP.

Suppose you have just created a small company that has a number of servers, 
including a public Web server that describes your company’s products and services, 
a mail server from which your employees obtain their e-mail messages, and a DNS 
server. Naturally, you would like the entire world to be able to visit your Web site in 
order to learn about your exciting products and services. Moreover, you would like your 
employees to be able to send and receive e-mail to potential customers throughout the 
world.

To meet these goals, you first need to obtain Internet connectivity, which is 
done by contracting with, and connecting to, a local ISP. Your company will have 
a gateway router, which will be connected to a router in your local ISP. This con-
nection might be a DSL connection through the existing telephone infrastructure, a 
leased line to the ISP’s router, or one of the many other access solutions described 
in Chapter 1. Your local ISP will also provide you with an IP address range, for 
example, a /24 address range consisting of 256 addresses. Once you have your physi-
cal connectivity and your IP address range, you will assign one of the IP addresses 
(in your address range) to your Web server, one to your mail server, one to your 
DNS server, one to your gateway router, and other IP addresses to other servers and 
 networking devices in your company’s network.

In addition to contracting with an ISP, you will also need to contract with an 
Internet registrar to obtain a domain name for your company, as described in Chapter 2. 
For example, if your company’s name is, say, Xanadu Inc., you will naturally try 
to obtain the domain name xanadu.com. Your company must also obtain presence 
in the DNS system. Specifically, because outsiders will want to contact your DNS 
server to obtain the IP addresses of your servers, you will also need to provide your 
registrar with the IP address of your DNS server. Your registrar will then put an 
entry for your DNS server (domain name and corresponding IP address) in the .com 
top-level-domain servers, as described in Chapter 2. After this step is completed, any 
user who knows your domain name (e.g., xanadu.com) will be able to obtain the IP 
address of your DNS server via the DNS system.

So that people can discover the IP addresses of your Web server, in your DNS 
server you will need to include entries that map the host name of your Web server 
(e.g., www.xanadu.com) to its IP address. You will want to have similar entries for 
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other publicly available servers in your company, including your mail server. In this 
manner, if Alice wants to browse your Web server, the DNS system will contact your 
DNS server, find the IP address of your Web server, and give it to Alice. Alice can 
then establish a TCP connection directly with your Web server.

However, there still remains one other necessary and crucial step to allow out-
siders from around the world to access your Web server. Consider what happens 
when Alice, who knows the IP address of your Web server, sends an IP datagram 
(e.g., a TCP SYN segment) to that IP address. This datagram will be routed through 
the Internet, visiting a series of routers in many different ASs, and eventually reach 
your Web server. When any one of the routers receives the datagram, it is going 
to look for an entry in its forwarding table to determine on which outgoing port it 
should forward the datagram. Therefore, each of the routers needs to know about the 
existence of your company’s /24 prefix (or some aggregate entry). How does a router 
become aware of your company’s prefix? As we have just seen, it becomes aware of 
it from BGP! Specifically, when your company contracts with a local ISP and gets 
assigned a prefix (i.e., an address range), your local ISP will use BGP to advertise 
your prefix to the ISPs to which it connects. Those ISPs will then, in turn, use BGP 
to propagate the advertisement. Eventually, all Internet routers will know about your 
prefix (or about some aggregate that includes your prefix) and thus be able to appro-
priately forward datagrams destined to your Web and mail servers.

5.5 The SDN Control Plane

In this section, we’ll dive into the SDN control plane—the network-wide logic that 
controls packet forwarding among a network’s SDN-enabled devices, as well as the 
configuration and management of these devices and their services. Our study here 
builds on our earlier discussion of generalized SDN forwarding in Section 4.4, so you 
might want to first review that section, as well as Section 5.1 of this chapter, before 
continuing on. As in Section 4.4, we’ll again adopt the terminology used in the SDN 
literature and refer to the network’s forwarding devices as “packet switches” (or just 
switches, with “packet” being understood), since forwarding decisions can be made 
on the basis of network-layer source/destination addresses, link-layer source/destina-
tion addresses, as well as many other values in transport-, network-, and link-layer 
packet-header fields.

Four key characteristics of an SDN architecture can be identified [Kreutz 2015]:

• Flow-based forwarding. Packet forwarding by SDN-controlled switches can be 
based on any number of header field values in the transport-layer, network-layer, 
or link-layer header. We saw in Section 4.4 that the OpenFlow1.0 abstraction 
allows forwarding based on eleven different header field values. This contrasts 
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sharply with the traditional approach to router-based forwarding that we studied 
in Sections 5.2–5.4, where forwarding of IP datagrams was based solely on a 
datagram’s destination IP address. Recall from Figure 5.2 that packet forwarding 
rules are specified in a switch’s flow table; it is the job of the SDN control plane 
to compute, manage and install flow table entries in all of the network’s switches.

• Separation of data plane and control plane. This separation is shown clearly 
in Figures 5.2 and 5.14. The data plane consists of the network’s switches— 
relatively simple (but fast) devices that execute the “match plus action” rules in 
their flow tables. The control plane consists of servers and software that deter-
mine and manage the switches’ flow tables.

• Network control functions: external to data-plane switches. Given that the “S” in 
SDN is for “software,” it’s perhaps not surprising that the SDN control plane is 
implemented in software. Unlike traditional routers, however, this software exe-
cutes on servers that are both distinct and remote from the network’s switches. As 
shown in Figure 5.14, the control plane itself consists of two components—an SDN 
controller (or network operating system [Gude 2008]) and a set of network-control 
applications. The controller maintains accurate network state information (e.g., the 
state of remote links, switches, and hosts); provides this information to the network-
control applications running in the control plane; and provides the means through 
which these applications can monitor, program, and control the underlying network 
devices. Although the controller in Figure 5.14 is shown as a single central server, 
in practice the controller is only logically centralized; it is typically implemented on 
several servers that provide coordinated, scalable performance and high availability.

• A programmable network. The network is programmable through the network-
control applications running in the control plane. These applications represent the 
“brains” of the SDN control plane, using the APIs provided by the SDN controller 
to specify and control the data plane in the network devices. For example, a routing 
network-control application might determine the end-end paths between sources 
and destinations (for example, by executing Dijkstra’s algorithm using the node-
state and link-state information maintained by the SDN controller). Another net-
work application might perform access control, that is, determine which packets 
are to be blocked at a switch, as in our third example in Section 4.4.3. Yet another 
application might have switches forward packets in a manner that performs server 
load balancing (the second example we considered in Section 4.4.3).

From this discussion, we can see that SDN represents a significant “unbundling” 
of network functionality—data plane switches, SDN controllers, and network-control  
applications are separate entities that may each be provided by different vendors 
and organizations. This contrasts with the pre-SDN model in which a switch/router 
(together with its embedded control plane software and protocol implementations) 
was monolithic, vertically integrated, and sold by a single vendor. This unbundling 
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of network functionality in SDN has been likened to the earlier evolution from main-
frame computers (where hardware, system software, and applications were provided 
by a single vendor) to personal computers (with their separate hardware, operating 
systems, and applications). The unbundling of computing hardware, system soft-
ware, and applications has led to a rich, open ecosystem driven by innovation in all 
three of these areas; one hope for SDN is that it will continue to drive and enable 
such rich innovation.

Given our understanding of the SDN architecture of Figure 5.14, many questions 
naturally arise. How and where are the flow tables actually computed? How are these 
tables updated in response to events at SDN-controlled devices (e.g., an attached link 
going up/down)? And how are the flow table entries at multiple switches coordinated 
in such a way as to result in orchestrated and consistent network-wide functionality 
(e.g., end-to-end paths for forwarding packets from sources to destinations, or coor-
dinated distributed firewalls)? It is the role of the SDN control plane to provide these, 
and many other, capabilities.

Routing

Network-control Applications

Control
plane

Data
plane

SDN-Controlled Switches

Access
Control

Load
Balancer

Northbound
API

Southbound
API

SDN Controller
(network operating system)

Figure 5.14 ♦  Components of the SDN architecture: SDN-controlled 
switches, the SDN controller, network-control applications
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5.5.1  The SDN Control Plane: SDN Controller and  
SDN Network-control Applications

Let’s begin our discussion of the SDN control plane in the abstract, by consider-
ing the generic capabilities that the control plane must provide. As we’ll see, this 
abstract, “first principles” approach will lead us to an overall architecture that reflects 
how SDN control planes have been implemented in practice.

As noted above, the SDN control plane divides broadly into two components—
the SDN controller and the SDN network-control applications. Let’s explore the 
controller first. Many SDN controllers have been developed since the earliest SDN 
controller [Gude 2008]; see [Kreutz 2015] for an extremely thorough survey. Figure 5.15 
provides a more detailed view of a generic SDN controller. A controller’s function-
ality can be broadly organized into three layers. Let’s consider these layers in an 
uncharacteristically bottom-up fashion:

• A communication layer: communicating between the SDN controller and con-
trolled network devices. Clearly, if an SDN controller is going to control the 
operation of a remote SDN-enabled switch, host, or other device, a protocol is 
needed to transfer information between the controller and that device. In addition, 
a device must be able to communicate locally-observed events to the controller  
(for example, a message indicating that an attached link has gone up or down, 
that a device has just joined the network, or a heartbeat indicating that a device 
is up and operational). These events provide the SDN controller with an up-to-
date view of the network’s state. This protocol constitutes the lowest layer of the 
controller architecture, as shown in Figure 5.15. The communication between 
the controller and the controlled devices cross what has come to be known as the 
controller’s “southbound” interface. In Section 5.5.2, we’ll study OpenFlow—a 
specific protocol that provides this communication functionality. OpenFlow is 
implemented in most, if not all, SDN controllers.

• A network-wide state-management layer. The ultimate control decisions made by 
the SDN control plane—for example, configuring flow tables in all switches to 
achieve the desired end-end forwarding, to implement load balancing, or to imple-
ment a particular firewalling capability—will require that the controller have up-
to-date information about state of the networks’ hosts, links, switches, and other 
SDN-controlled devices. A switch’s flow table contains counters whose values 
might also be profitably used by network-control applications; these values should 
thus be available to the applications. Since the ultimate aim of the control plane is 
to determine flow tables for the various controlled devices, a controller might also 
maintain a copy of these tables. These pieces of information all constitute exam-
ples of the network-wide “state” maintained by the SDN controller.

• The interface to the network-control application layer. The controller interacts 
with network-control applications through its “northbound” interface. This API 
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allows network-control applications to read/write network state and flow tables 
within the state-management layer. Applications can register to be notified when 
state-change events occur, so that they can take actions in response to network 
event notifications sent from SDN-controlled devices. Different types of APIs 
may be provided; we’ll see that two popular SDN controllers communicate with 
their applications using a REST [Fielding 2000] request-response interface.

We have noted several times that an SDN controller can be considered to be 
 “logically centralized,” that is, that the controller may be viewed externally (for exam-
ple, from the point of view of SDN-controlled devices and external network-control 
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Figure 5.15 ♦ Components of an SDN controller
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applications) as a single, monolithic service. However, these services and the data-
bases used to hold state information are implemented in practice by a distributed 
set of servers for fault tolerance, high availability, or for performance reasons. With 
controller functions being implemented by a set of servers, the semantics of the con-
troller’s internal operations (e.g., maintaining logical time ordering of events, con-
sistency, consensus, and more) must be considered [Panda 2013]. Such concerns are 
common across many different distributed systems; see [Lamport 1989, Lampson 
1996] for elegant solutions to these challenges. Modern controllers such as Open-
Daylight [OpenDaylight 2020] and ONOS [ONOS 2020] (see sidebar) have placed 
considerable emphasis on architecting a logically centralized but physically distrib-
uted controller platform that provides scalable services and high availability to the 
controlled devices and network-control applications alike.

The architecture depicted in Figure 5.15 closely resembles the architecture of the 
originally proposed NOX controller in 2008 [Gude 2008], as well as that of today’s 
OpenDaylight [OpenDaylight 2020] and ONOS [ONOS 2020] SDN controllers (see  
sidebar). We’ll cover an example of controller operation in Section 5.5.3. First, how-
ever, let’s examine the OpenFlow protocol, the earliest and now one of several pro-
tocols that can be used for communication between an SDN controller and a controlled 
device, which lies in the controller’s communication layer.

5.5.2 OpenFlow Protocol
The OpenFlow protocol [OpenFlow 2009, ONF 2020] operates between an SDN 
controller and an SDN-controlled switch or other device implementing the Open-
Flow API that we studied earlier in Section 4.4. The OpenFlow protocol operates 
over TCP, with a default port number of 6653.

Among the important messages flowing from the controller to the controlled 
switch are the following:

• Configuration. This message allows the controller to query and set a switch’s 
configuration parameters.

• Modify-State. This message is used by a controller to add/delete or modify entries 
in the switch’s flow table, and to set switch port properties.

• Read-State. This message is used by a controller to collect statistics and counter 
values from the switch’s flow table and ports.

• Send-Packet. This message is used by the controller to send a specific packet out 
of a specified port at the controlled switch. The message itself contains the packet 
to be sent in its payload.

Among the messages flowing from the SDN-controlled switch to the controller 
are the following:

• Flow-Removed. This message informs the controller that a flow table entry has been 
removed, for example by a timeout or as the result of a received modify-state message.

M05_KURO1557_08_SE_C05.indd   416 11/02/20   5:21 PM



5.5  •  THE SDN CONTROL PLANE     417

• Port-status. This message is used by a switch to inform the controller of a change 
in port status.

• Packet-in. Recall from Section 4.4 that a packet arriving at a switch port and not 
matching any flow table entry is sent to the controller for additional processing. 
Matched packets may also be sent to the controller, as an action to be taken on a 
match. The packet-in message is used to send such packets to the controller.

Additional OpenFlow messages are defined in [OpenFlow 2009, ONF 2020].

GOOGLE’S SOFTWARE-DEFINED GLOBAL NETWORK

Recall from the case study in Section 2.6 that Google deploys a dedicated wide-area 
network (WAN) that interconnects its data centers and server clusters (in IXPs and ISPs). 
This network, called B4, has a Google-designed SDN control plane built on OpenFlow. 
Google’s network is able to drive WAN links at near 70% utilization over the long run  
(a two to three fold increase over typical link utilizations) and split application flows among 
multiple paths based on application priority and existing flow demands [Jain 2013].

The Google B4 network is particularly it well-suited for SDN: (i) Google controls all 
devices from the edge servers in IXPs and ISPs to routers in their network core; (ii) the 
most bandwidth-intensive applications are large-scale data copies between sites that can 
defer to higher-priority interactive applications during times of resource congestion;  
(iii) with only a few dozen data centers being connected, centralized control is feasible.

Google’s B4 network uses custom-built switches, each implementing a slightly extended ver-
sion of OpenFlow, with a local Open Flow Agent (OFA) that is similar in spirit to the control 
agent we encountered in Figure 5.2. Each OFA in turn connects to an Open Flow Controller 
(OFC) in the network control server (NCS), using a separate “out of band” network, distinct 
from the network that carries data-center traffic between data centers. The OFC thus provides 
the services used by the NCS to communicate with its controlled switches, similar in spirit to 
the lowest layer in the SDN architecture shown in Figure 5.15. In B4, the OFC also performs 
state management functions, keeping node and link status in a Network Information Base 
(NIB). Google’s implementation of the OFC is based on the ONIX SDN controller [Koponen 
2010]. Two routing protocols, BGP (for routing between the data centers) and IS-IS (a close 
relative of OSPF, for routing within a data center), are implemented. Paxos [Chandra 2007] is 
used to execute hot replicas of NCS components to protect against failure.

A traffic engineering network-control application, sitting logically above the set of 
network control servers, interacts with these servers to provide global, network-wide band-
width provisioning for groups of application flows. With B4, SDN made an important 
leap forward into the operational networks of a global network provider. See [Jain 2013; 
Hong 2018] for a detailed description of B4.

PRINCIPLES IN PRACTICE
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5.5.3 Data and Control Plane Interaction: An Example
In order to solidify our understanding of the interaction between SDN-controlled 
switches and the SDN controller, let’s consider the example shown in Figure 5.16, 
in which Dijkstra’s algorithm (which we studied in Section 5.2) is used to determine 
shortest path routes. The SDN scenario in Figure 5.16 has two important differ-
ences from the earlier per-router-control scenario of Sections 5.2.1 and 5.3, where 
 Dijkstra’s algorithm was implemented in each and every router and link-state updates 
were flooded among all network routers:

• Dijkstra’s algorithm is executed as a separate application, outside of the packet 
switches.

• Packet switches send link updates to the SDN controller and not to each other.

In this example, let’s assume that the link between switch s1 and s2 goes 
down; that shortest path routing is implemented, and consequently and that incom-
ing and outgoing flow forwarding rules at s1, s3, and s4 are affected, but that s2’s 

Figure 5.16 ♦ SDN controller scenario: Link-state change
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operation is unchanged. Let’s also assume that OpenFlow is used as the communi-
cation layer protocol, and that the control plane performs no other function other 
than link-state routing.

 1. Switch s1, experiencing a link failure between itself and s2, notifies the SDN 
controller of the link-state change using the OpenFlow port-status message.

 2. The SDN controller receives the OpenFlow message indicating the link-state 
change, and notifies the link-state manager, which updates a link-state  database.

 3. The network-control application that implements Dijkstra’s link-state routing 
has previously registered to be notified when link state changes. That applica-
tion receives the notification of the link-state change.

 4. The link-state routing application interacts with the link-state manager to get 
updated link state; it might also consult other components in the state- management 
layer. It then computes the new least-cost paths.

 5. The link-state routing application then interacts with the flow table manager, 
which determines the flow tables to be updated.

 6. The flow table manager then uses the OpenFlow protocol to update flow table 
entries at affected switches—s1 (which will now route packets destined to s2 via s4), 
s2 (which will now begin receiving packets from s1 via intermediate switch s4), and 
s4 (which must now forward packets from s1 destined to s2).

This example is simple but illustrates how the SDN control plane provides control-
plane services (in this case, network-layer routing) that had been previously imple-
mented with per-router control exercised in each and every network router. One can 
now easily appreciate how an SDN-enabled ISP could easily switch from least-cost 
path routing to a more hand-tailored approach to routing. Indeed, since the controller 
can tailor the flow tables as it pleases, it can implement any form of forwarding that 
it pleases—simply by changing its application-control software. This ease of change 
should be contrasted to the case of a traditional per-router control plane, where soft-
ware in all routers (which might be provided to the ISP by multiple independent 
vendors) must be changed.

5.5.4 SDN: Past and Future
Although the intense interest in SDN is a relatively recent phenomenon, the techni-
cal roots of SDN, and the separation of the data and control planes in particular, go  
back considerably further. In 2004, [Feamster 2004, Lakshman 2004, RFC 3746] all  
argued for the separation of the network’s data and control planes. [van der Merwe  
1998] describes a control framework for ATM networks [Black 1995] with multiple  
controllers, each controlling a number of ATM switches. The Ethane project [Casado  
2007] pioneered the notion of a network of simple flow-based Ethernet switches 
with  match-plus-action flow tables, a centralized controller that managed flow 
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admission and routing, and the forwarding of unmatched packets from the switch 
to the controller. A network of more than 300 Ethane switches was operational in 
2007. Ethane quickly evolved into the OpenFlow project, and the rest (as the saying 
goes) is history!

Numerous research efforts are aimed at developing future SDN architectures 
and capabilities. As we have seen, the SDN revolution is leading to the disruptive 
replacement of dedicated monolithic switches and routers (with both data and control 
planes) by simple commodity switching hardware and a sophisticated software con-
trol plane. A generalization of SDN known as network functions virtualization (NFV) 
(which we discussed earlier in Section 4.5) similarly aims at disruptive replacement 
of sophisticated middleboxes (such as middleboxes with dedicated hardware and 
proprietary software for media caching/service) with simple commodity servers, 
switching, and storage. A second area of important research seeks to extend SDN 
concepts from the intra-AS setting to the inter-AS setting [Gupta 2014].

SDN CONTROLLER CASE STUDIES: THE OPENDAYLIGHT  
AND ONOS CONTROLLERS

In the earliest days of SDN, there was a single SDN protocol (OpenFlow [McKeown 
2008; OpenFlow 2009]) and a single SDN controller (NOX [Gude 2008]). Since then, 
the number of SDN controllers in particular has grown significantly [Kreutz 2015]. Some 
SDN controllers are company-specific and proprietary, particularly when used to control 
internal proprietary networks (e.g., within or among a company’s data centers). But many 
more controllers are open-source and implemented in a variety of programming languages 
[Erickson 2013]. Most recently, the OpenDaylight controller [OpenDaylight 2020] and the 
ONOS controller [ONOS 2020] have found considerable industry support. They are both 
open-source and are being developed in partnership with the Linux Foundation.

The OpenDayl ight Control ler

Figure 5.17 presents a simplified view of the OpenDaylight (ODL) controller platform 
[OpenDaylight 2020, Eckel 2017].

ODL’s Basic Network Functions are at the heart of the controller, and correspond 
closely to the network-wide state management capabilities that we encountered in Figure 5.15. 
The Service Abstraction Layer (SAL) is the controller’s nerve center, allowing controller 
components and applications to invoke each other’s services, access configuration and 
operational data, and to subscribe to events they generate. The SAL also provides a uni-
form abstract interface to specific protocols operating between the ODL controller and the 
controlled devices. These protocols include OpenFlow (which we covered in Section 4.5), 

PRINCIPLES IN PRACTICE
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and the Simple Network Management Protocol (SNMP) and the Network Configuration 
(NETCONF) protocol, both of which we’ll cover in Section 5.7. The Open vSwitch 
Database Management Protocol (OVSDB) is used to manage data center switching, an 
important application area for SDN technology. We’ll introduce data center networking in 
Chapter 6. 

Network Orchestrations and Applications determine how data-plane forwarding 
and other services, such as firewalling and load balancing, are accomplished in the 
controlled devices. ODL provides two ways in which applications can interoperate with 
native controller services (and hence devices) and with each other. In the API-Driven 
(AD-SAL) approach, shown in Figure 5.17, applications communicate with controller 
modules using a REST request-response API running over HTTP. Initial releases of the 
OpenDaylight controller provided only the AD-SAL. As ODL became increasingly used 
for network configuration and management, later ODL releases introduced a Model-
Driven (MD-SAL) approach. Here, the YANG data modeling language [RFC 6020] 
defines models of device, protocol, and network configuration and operational state 
data. Devices are then configured and managed by manipulating this data using the 
NETCONF protocol.

Figure 5.17 ♦ A simplified view of the OpenDaylight controller
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The ONOS Control ler

Figure 5.18 presents a simplified view of the ONOS controller ONOS 2020]. Similar 
to the canonical controller in Figure 5.15, three layers can be identified in the ONOS 
 controller:

• Northbound abstractions and protocols. A unique feature of ONOS is its intent 
framework, which allows an application to request a high-level service (e.g., to setup 
a connection between host A and Host B, or conversely to not allow Host A and host 
B to communicate) without having to know the details of how this service is performed. 
State information is provided to network-control applications across the northbound API 
either synchronously (via query) or asynchronously (via listener callbacks, e.g., when 
network state changes).

• Distributed core. The state of the network’s links, hosts, and devices is maintained 
in ONOS’s distributed core. ONOS is deployed as a service on a set of intercon-
nected servers, with each server running an identical copy of the ONOS software; an 
increased number of servers offers an increased service capacity. The ONOS core 

Figure 5.18 ♦ ONOS controller architecture
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5.6 ICMP: The Internet Control Message Protocol

The Internet Control Message Protocol (ICMP), specified in [RFC 792], is used by 
hosts and routers to communicate network-layer information to each other. The most 
typical use of ICMP is for error reporting. For example, when running an HTTP 
session, you may have encountered an error message such as “Destination network 
unreachable.” This message had its origins in ICMP. At some point, an IP router was 
unable to find a path to the host specified in your HTTP request. That router created 
and sent an ICMP message to your host indicating the error.

ICMP is often considered part of IP, but architecturally it lies just above IP, as 
ICMP messages are carried inside IP datagrams. That is, ICMP messages are carried 
as IP payload, just as TCP or UDP segments are carried as IP payload. Similarly, 
when a host receives an IP datagram with ICMP specified as the upper-layer protocol 
(an upper-layer protocol number of 1), it demultiplexes the datagram’s contents to 
ICMP, just as it would demultiplex a datagram’s content to TCP or UDP.

ICMP messages have a type and a code field, and contain the header and the first 
8 bytes of the IP datagram that caused the ICMP message to be generated in the first 
place (so that the sender can determine the datagram that caused the error). Selected 
ICMP message types are shown in Figure 5.19. Note that ICMP messages are used 
not only for signaling error conditions.

The well-known ping program sends an ICMP type 8 code 0 message to the 
specified host. The destination host, seeing the echo request, sends back a type 0 
code 0 ICMP echo reply. Most TCP/IP implementations support the ping server 
directly in the operating system; that is, the server is not a process. Chapter 11 of 
[Stevens 1990] provides the source code for the ping client program. Note that the 
client program needs to be able to instruct the operating system to generate an ICMP 
message of type 8 code 0.

Another interesting ICMP message is the source quench message. This message 
is seldom used in practice. Its original purpose was to perform congestion control—to  
allow a congested router to send an ICMP source quench message to a host to force 

provides the mechanisms for service replication and coordination among instances, 
providing the applications above and the network devices below with the abstraction 
of logically centralized core services.

• Southbound abstractions and protocols. The southbound abstractions mask the hetero-
geneity of the underlying hosts, links, switches, and protocols, allowing the distributed 
core to be both device and protocol agnostic. Because of this abstraction, the south-
bound interface below the distributed core is logically higher than in our canonical 
controller in Figure 5.14 or the ODL controller in Figure 5.17.
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that host to reduce its transmission rate. We have seen in Chapter 3 that TCP has its 
own congestion-control mechanism that operates at the transport layer, and that Explicit 
Congestion Notification bits can be used by network-later devices to signal congestion.

In Chapter 1, we introduced the Traceroute program, which allows us to trace a 
route from a host to any other host in the world. Interestingly, Traceroute is imple-
mented with ICMP messages. To determine the names and addresses of the routers 
between source and destination, Traceroute in the source sends a series of ordinary IP 
datagrams to the destination. Each of these datagrams carries a UDP segment with an 
unlikely UDP port number. The first of these datagrams has a TTL of 1, the second of 2, 
the third of 3, and so on. The source also starts timers for each of the datagrams. When 
the nth datagram arrives at the nth router, the nth router observes that the TTL of the 
datagram has just expired. According to the rules of the IP protocol, the router discards 
the datagram and sends an ICMP warning message to the source (type 11 code 0). This 
warning message includes the name of the router and its IP address. When this ICMP 
message arrives back at the source, the source obtains the round-trip time from the 
timer and the name and IP address of the nth router from the ICMP message.

How does a Traceroute source know when to stop sending UDP segments? 
Recall that the source increments the TTL field for each datagram it sends. Thus, one 
of the datagrams will eventually make it all the way to the destination host. Because 
this datagram contains a UDP segment with an unlikely port number, the destination 

Figure 5.19 ♦ ICMP message types
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host sends a port unreachable ICMP message (type 3 code 3) back to the source. 
When the source host receives this particular ICMP message, it knows it does not 
need to send additional probe packets. (The standard Traceroute program actually 
sends sets of three packets with the same TTL; thus, the Traceroute output provides 
three results for each TTL.)

In this manner, the source host learns the number and the identities of routers 
that lie between it and the destination host and the round-trip time between the two 
hosts. Note that the Traceroute client program must be able to instruct the operating 
system to generate UDP datagrams with specific TTL values and must also be able to 
be notified by its operating system when ICMP messages arrive. Now that you under-
stand how Traceroute works, you may want to go back and play with it some more.

A new version of ICMP has been defined for IPv6 in RFC 4443. In addition to 
reorganizing the existing ICMP type and code definitions, ICMPv6 also added new 
types and codes required by the new IPv6 functionality. These include the “Packet 
Too Big” type and an “unrecognized IPv6 options” error code.

5.7 Network Management and SNMP,  
NETCONF/YANG

Having now made our way to the end of our study of the network layer, with only the 
link-layer before us, we’re well aware that a network consists of many complex, interact-
ing pieces of hardware and software—from the links, switches, routers, hosts, and other 
devices that comprise the physical components of the network to the many protocols that 
control and coordinate these devices. When hundreds or thousands of such components 
are brought together by an organization to form a network, the job of the network admin-
istrator to keep the network “up and running” is surely a challenge. We saw in Section 5.5 
that the logically centralized controller can help with this process in an SDN context. But 
the challenge of network management has been around long before SDN, with a rich 
set of network management tools and approaches that help the network administrator 
monitor, manage, and control the network. We’ll study these tools and techniques in this 
section, as well as new tools and techniques that have co-evolved along with SDN.

An often-asked question is “What is network management?” A well-conceived, 
single-sentence (albeit a rather long run-on sentence) definition of network manage-
ment from [Saydam 1996] is:

Network management includes the deployment, integration, and coordination of 
the hardware, software, and human elements to monitor, test, poll, configure, ana-
lyze, evaluate, and control the network and element resources to meet the real-time, 
operational performance, and Quality of Service requirements at a reasonable cost.

Given this broad definition, we’ll cover only the rudiments of network man-
agement in this section—the architecture, protocols, and data used by a network 
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administrator in performing their task. We’ll not cover the administrator’s decision-
making processes, where topics such as fault identification [Labovitz 1997; Steinder 
2002; Feamster 2005; Wu 2005; Teixeira 2006], anomaly detection [Lakhina 2005; 
Barford 2009], network design/engineering to meet contracted Service Level Agree-
ments (SLA’s) [Huston 1999a], and more come into consideration. Our focus is thus 
purposefully narrow; the interested reader should consult these references, the excel-
lent overviews in [Subramanian 2000; Schonwalder 2010; Claise 2019], and the more 
detailed treatment of network management available on the Web site for this text.

5.7.1 The Network Management Framework
Figure 5.20 shows the key components of network management:

• Managing server. The managing server is an application, typically with network 
managers (humans) in the loop, running in a centralized network management 
station in the network operations center (NOC). The managing server is the locus 
of activity for network management: it controls the collection, processing, analy-
sis, and dispatching of network management information and commands. It is 
here that actions are initiated to configure, monitor, and control the network’s 
managed devices. In practice, a network may have several such managing servers.

• Managed device. A managed device is a piece of network equipment (including 
its software) that resides on a managed network. A managed device might be 
a host, router, switch, middlebox, modem, thermometer, or other network-con-
nected device. The device itself will have many manageable components (e.g., 
a network interface is but one component of a host or router), and configuration 
parameters for these hardware and software components (e.g., an intra-AS rout-
ing protocol, such as OSPF).

• Data. Each managed device will have data, also known as “state,” associated with it. 
There are several different types of data. Configuration data is device information 
explicitly configured by the network manager, for example, a manager-assigned/
configured IP address or interface speed for a device interface. Operational data is 
information that the device acquires as it operates, for example, the list of immedi-
ate neighbors in OSPF protocol. Device statistics are status indicators and counts 
that are updated as the device operators (e.g., the number of dropped packets on 
an interface, or the device’s cooling fan speed). The network manager can query 
remote device data, and in some cases, control the remote device by writing device 
data values, as discussed below. As shown in Figure 5.17, the managing server also 
maintains its own copy of configuration, operational and statistics data from its 
managed devices as well as network-wide data (e.g., the network’s topology).

• Network management agent. The network management agent is a software pro-
cess running in the managed device that communicates with the managing server, 
taking local actions at the managed device under the command and control of the 
managing server. The network management agent is similar to the routing agent 
that we saw in Figure 5.2.
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• Network management protocol. The final component of a network management 
framework is the network management protocol. This protocol runs between 
the managing server and the managed devices, allowing the managing server to 
query the status of managed devices and take actions at these devices via its 
agents. Agents can use the network management protocol to inform the managing 
server of exceptional events (e.g., component failures or violation of performance 
thresholds). It’s important to note that the network management protocol does not 
itself manage the network. Instead, it provides capabilities that network managers 
can use to manage (“monitor, test, poll, configure, analyze, evaluate, and con-
trol”) the network. This is a subtle, but important, distinction.  

In practice, there are three commonly used ways in a network operator can man-
age the network, using the components described above:

• CLI. A network operator may issue direct Command Line Interface (CLI) 
commands to the device. These commands can be typed directly on a managed 
device’s console (if the operator is physically present at the device), or over a 
Telnet or secure shell (SSH) connection, possibly via scripting, between the 

Figure 5.20 ♦  Elements of network management
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 managing server/controller and the managed device. CLI commands are vendor- 
and device-specific and can be rather arcane. While seasoned network wizards 
may be able to use CLI to flawlessly configure network devices, CLI use is prone 
to errors, and it is difficult to automate or efficiently scale for large networks. Con-
sumer-oriented network devices, such as your wireless home router, may export a 
management menu that you (the network manager!) can access via HTTP to con-
figure that device. While this approach may work well for single, simple devices 
and is less error-prone than CLI, it also doesn’t scale to larger-sized networks.

• SNMP/MIB. In this approach, the network operator can query/set the data con-
tained in a device’s Management Information Base (MIB) objects using the 
Simple Network Management Protocol (SNMP). Some MIBs are device- and 
vendor-specific, while other MIBs (e.g., the number of IP datagrams discarded at 
a router due to errors in an IP datagram header, or the number of UDP segments 
received at a host) are device-agnostic, providing abstraction and generality. A net-
work operator would most typically use this approach to query and monitor opera-
tional state and device statistics, and then use CLI to actively control/configure the 
device. We note, importantly, that both approaches manage devices individually. 
We’ll cover the SNMP and MIBs, which have been in use since the late 1980s, in 
Section 5.7.2 below. A network-management workshop convened by the Internet 
Architecture Board in 2002 [RFC 3535] noted not only the value of the SNMP/
MIB approach for device monitoring but also noted its shortcomings, particularly 
for device configuration and network management at scale. This gave rise to the 
most recent approach for network management, using NETCONF and YANG.

• NETCONF/YANG. The NETCONF/YANG approach takes a more abstract, net-
work-wide, and holistic view toward network management, with a much stronger 
emphasis on configuration management, including specifying correctness con-
straints and providing atomic management operations over multiple controlled 
devices. YANG [RFC 6020] is a data modeling language used to model configu-
ration and operational data. The NETCONF protocol [RFC 6241] is used to com-
municate YANG-compatible actions and data to/from/among remote devices. We 
briefly encountered NETCONF and YANG in our case study of OpenDaylight 
Controller in Figure 5.17 and will study them in Section 5.7.3 below.

5.7.2  The Simple Network Management Protocol (SNMP) 
and the Management Information Base (MIB)

The Simple Network Management Protocol version 3 (SNMPv3) [RFC 3410] 
is an application-layer protocol used to convey network-management control and 
information messages between a managing server and an agent executing on behalf 
of that managing server. The most common usage of SNMP is in a request-response 
mode in which an SNMP managing server sends a request to an SNMP agent, who 
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receives the request, performs some action, and sends a reply to the request. Typi-
cally, a request will be used to query (retrieve) or modify (set) MIB object values 
associated with a managed device. A second common usage of SNMP is for an agent 
to send an unsolicited message, known as a trap message, to a managing server. Trap 
messages are used to notify a managing server of an exceptional situation (e.g., a 
link interface going up or down) that has resulted in changes to MIB object values.

MIB objects are specified in a data description language known as SMI (Structure 
of Management Information) [RFC 2578; RFC 2579; RFC 2580], a rather oddly named 
component of the network management framework whose name gives no hint of its 
functionality. A formal definition language is used to ensure that the syntax and seman-
tics of the network management data are well defined and unambiguous. Related MIB 
objects are gathered into MIB modules. As of late 2019, there are more than 400 MIB-
related RFCs and a much larger number of vendor-specific (private) MIB modules.

SNMPv3 defines seven types of messages, known generically as protocol data 
units—PDUs—as shown in Table 5.2 and described below. The format of the PDU 
is shown in Figure 5.21.

• The GetRequest, GetNextRequest, and GetBulkRequest PDUs are 
all sent from a managing server to an agent to request the value of one or more 

Table 5.2 ♦ SNMPv3 PDU types

SNMPv3 PDU Type Sender-receiver Description

GetRequest manager-to-agent get value of one or more MIB object instances
GetNextRequest manager-to-agent get value of next MIB object instance in list or table
GetBulkRequest manager-to-agent get values in large block of data, for example, values 

in a large table
InformRequest manager-to-manager inform remote managing entity of MIB values remote 

to its access
SetRequest manager-to-agent set value of one or more MIB object instances
Response agent-to-manager or generated in response to 

manager-to-manager  GetRequest,  

 GetNextRequest,  

 GetBulkRequest,  

 SetRequest PDU, or  
 InformRequest

SNMPv2-Trap agent-to-manager inform manager of an exceptional event #
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MIB objects at the agent’s managed device. The MIB objects whose values 
are being requested are specified in the variable binding portion of the PDU. 
 GetRequest, GetNextRequest, and GetBulkRequest differ in the 
granularity of their data requests. GetRequest can request an arbitrary set of 
MIB values; multiple GetNextRequests can be used to sequence through 
a list or table of MIB objects; GetBulkRequest allows a large block of 
data to be returned, avoiding the overhead incurred if multiple GetRequest 
or  GetNextRequest messages were to be sent. In all three cases, the agent 
responds with a Response PDU containing the object identifiers and their 
associated values.

• The SetRequest PDU is used by a managing server to set the value of one or 
more MIB objects in a managed device. An agent replies with a Response PDU 
with the “noError” error status to confirm that the value has indeed been set.

• The InformRequest PDU is used by a managing server to notify another 
managing server of MIB information that is remote to the receiving server.

• The Response PDU is typically sent from a managed device to the managing 
server in response to a request message from that server, returning the requested 
information.

• The final type of SNMPv3 PDU is the trap message. Trap messages are gener-
ated asynchronously; that is, they are not generated in response to a received 
request but rather in response to an event for which the managing server requires 
notification. RFC 3418 defines well-known trap types that include a cold or 
warm start by a device, a link going up or down, the loss of a neighbor, or an 
authentication failure event. A received trap request has no required response 
from a managing server.

Figure 5.21 ♦ SNMP PDU format
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Given the request-response nature of SNMP, it is worth noting here that although 
SNMP PDUs can be carried via many different transport protocols, the SNMP PDU 
is typically carried in the payload of a UDP datagram. Indeed, RFC 3417 states 
that UDP is “the  preferred transport mapping.” However, since UDP is an unreli-
able transport protocol, there is no guarantee that a request, or its response, will be 
received at the intended destination. The request ID field of the PDU (see Figure 5.21) is 
used by the managing server to number its requests to an agent; the agent’s response 
takes its request ID from that of the received request. Thus, the request ID field can 
be used by the managing server to detect lost requests or replies. It is up to the man-
aging server to decide whether to retransmit a request if no corresponding response 
is received after a given amount of time. In particular, the SNMP standard does not 
mandate any particular procedure for retransmission, or even if retransmission is 
to be done in the first place. It only requires that the managing server “needs to act 
responsibly in respect to the frequency and duration of retransmissions.” This, of 
course, leads one to wonder how a “responsible” protocol should act!

SNMP has evolved through three versions. The designers of SNMPv3 have said 
that “SNMPv3 can be thought of as SNMPv2 with additional security and admin-
istration capabilities” [RFC 3410]. Certainly, there are changes in SNMPv3 over 
SNMPv2, but nowhere are those changes more evident than in the area of administra-
tion and security. The central role of security in SNMPv3 was particularly important, 
since the lack of adequate security resulted in SNMP being used primarily for moni-
toring rather than control (for example, SetRequest is rarely used in SNMPv1). 
Once again, we see that  security—a topic we’ll cover in detail in Chapter 8 — is of 
critical concern, but once again a concern whose importance had been realized per-
haps a bit late and only then “added on.”

The Management Information Base (MIB)

We learned earlier that a managed device’s operational state data (and to some extent 
its configuration data) in the SNMP/MIB approach to network management are rep-
resented as objects that are gathered together into an MIB for that device. An MIB 
object might be a counter, such as the number of IP datagrams discarded at a router 
due to errors in an IP datagram header; or the number of carrier sense errors in an 
Ethernet interface card; descriptive information such as the version of the software 
running on a DNS server; status information such as whether a particular device is 
functioning correctly; or protocol-specific information such as a routing path to a 
destination. Related MIB objects are gathered into MIB modules. There are over 
400 MIB modules defined in various IETC RFC’s; there are many more device- and 
vendor-specific MIBs. [RFC 4293] specifies the MIB module that defines managed 
objects (including ipSystemStatsInDelivers) for managing implementations of the 
Internet Protocol (IP) and its associated Internet Control Message Protocol (ICMP). 
[RFC 4022] specifies the MIB module for TCP, and [RFC 4113] specifies the MIB 
module for UDP.
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While MIB-related RFCs make for rather tedious and dry reading, it is nonethe-
less instructive (i.e., like eating vegetables, it is “good for you”) to consider an exam-
ple of a MIB object, The ipSystem-StatsInDelivers object-type definition 
from [RFC 4293] defines a 32-bit read-only counter that keeps track of the number 
of IP datagrams that were received at the managed device and were successfully 
delivered to an upper-layer protocol. In the example below, Counter32 is one of the 
basic data types defined in the SMI.

ipSystemStatsInDelivers OBJECT-TYPE
    SYNTAX Counter32
    MAX-ACCESS read-only
    STATUS current
    DESCRIPTION

           “The total number of datagrams successfully de-
livered to IPuser-protocols (including ICMP).

           When tracking interface statistics, the coun-
ter of the interface to which these datagrams 
were addressed is incremented. This interface 
might not be the same as the input interface 
for some of the datagrams.

           Discontinuities in the value of this counter can  
occur at re-initialization of the management 
system, and at other times as indicated by the 
value of ipSystemStatsDiscontinuityTime.”

    ::= { ipSystemStatsEntry 18 }

5.7.3  The Network Configuration Protocol (NETCONF)  
and YANG

The NETCONF protocol operates between the managing server and the man-
aged network devices, providing messaging to (i) retrieve, set, and modify con-
figuration data at managed devices; (ii) to query operational data and statistics 
at managed devices; and (iii) to subscribe to notifications generated by managed 
devices. The managing server actively controls a managed device by sending it 
configurations, which are specified in a structured XML document, and activat-
ing a configuration at the managed device. NETCONF uses a remote procedure 
call (RPC) paradigm, where protocol messages are also encoded in XML and 
exchanged between the managing server and a managed device over a secure, 
connection-oriented session such as the TLS (Transport Layer Security) protocol 
(discussed in Chapter 8) over TCP.
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Figure 5.22 shows an example NETCONF session. First, the managing server 
establishes a secure connection to the managed device. (In NETCONF parlance, the 
managing server is actually referred to as the “client” and the managed device as 
the “server,” since the managing server establishes the connection to the managed 
device. But we’ll ignore that here for consistency with the longer-standing network-
management server/client terminology shown in Figure 5.20.) Once a secure con-
nection has been established, the managing server and the managed device exchange 
<hello> messages, declaring their “capabilities”—NETCONF functionality that sup-
plements the base NETCONF specification in [RFC 6241]. Interactions between the 
managing server and managed device take the form of a remote procedure call, using 
the <rpc> and <rpc-response> messages. These messages are used to retrieve, set, 
query and modify device configurations, operational data and statistics, and to sub-
scribe to device notifications. Device notifications themselves are proactively sent 
from managed device to the managing server using NETCONF <notification> mes-
sages. A session is closed with the <session-close message>.

Figure 5.22 ♦  NETCONF session between managing server/controller 
and managed device
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Table 5.3 shows a number of the important NETCONF operations that a man-
aging server can perform at a managed device. As in the case of SNMP, we see 
operations for retrieving operational state data (<get>), and for event notification. 
However, the <get-config>, <edit-config>, <lock> and <unlock> operation demon-
strate NETCONF’s particular emphasis on device configuration. Using the basic 
operations shown in Table 5.3, it is also possible to create a set of more sophisticated 
network management transactions that either complete atomically (i.e., as a group) 
and successfully on a set of devices, or are fully reversed and leave the devices in 
their pre-transaction state. Such multi-device transactions—“enabl[ing] operators to 
concentrate on the configuration of the network as a whole rather than individual 
devices” was an important operator requirement put forth in [RFC 3535].

A full description of NETCONF is beyond our scope here; [RFC 6241, RFC 
5277, Claise 2019; Schonwalder 2010] provide more in-depth coverage.

But since this is the first time we’ve seen protocol messages formatted as an 
XML document (rather than the traditional message with header fields and message 
body, e.g., as shown in Figure 5.21 for the SNMP PDU), let’s conclude our brief 
study of NETCONF with two examples. 

In the first example, the XML document sent from the managing server to the 
managed device is a NETCONF <get> command requesting all device configuration 

Table 5.3 ♦  Selected NETCONF operations

NETCONF Operation Description
<get-config> Retrieve all or part of a given configuration. A device may have multiple 

configurations. There is always a running/ configuration that describes 
the devices current (running) configuration.

<get> Retrieve all or part of both configuration state and operational state data.
<edit-config> Change all or part of a specified configuration at the managed device. If 

the running/configuration is specified, then the device’s current (running) 
configuration will be changed. If the managed device was able to satisfy the 
request, an <rpc-reply> is sent containing an <ok> element; otherwise <rpc-
error> response is returned. On error, the device’s configuration state can be 
roll-ed-back to its previous state.

<lock>, <unlock> The <lock> (<unlock>) operation allows the managing server to lock 
(unlock) the entire configuration datastore system of a managed device. 
Locks are intended to be short-lived and allow a client to make a change 
without fear of interaction with other NETCONF, SNMP, or CLIs commands 
from other sources.

<create-subscription> ,

<notification>

This operation initiates an event notification subscription that will send 
asynchronous event <notification> for specified events of interest from the 
managed device to the managing server, until the subscription is terminated.
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and operational data. With this command, the server can learn about the device’s 
configuration.

 01 <?xml version=”1.0” encoding=”UTF-8”?>
 02 <rpc message-id=”101”
 03 xmlns=”urn:ietf:params:xml:ns:netconf:base:1.0”>
 04 <get/>
 05 </rpc>

Although few people can completely parse XML directly, we see that the NET-
CONF command is relatively human-readable, and is much more reminiscent of HTTP 
and HTML than the protocol message formats that we saw for SNMP PDU format in 
Figure 5.21. The RPC message itself spans lines 02–05 (we have added line numbers 
here for pedagogical purposes). The RPC has a message ID value of 101, declared in 
line 02, and contains a single NETCONF <get> command. The reply from the device 
contains a matching ID number (101), and all of the device’s configuration data (in 
XML format, of course), starting in line 04, ultimately with a closing </rpc-reply>.

 01 <?xml version=”1.0” encoding=”UTF-8”?>
 02 <rpc-reply message-id=”101”
 03 xmlns=”urn:ietf:params:xml:ns:netconf:base:1.0”>
 04 <!-- . . . all configuration data returned... -->
  . . . 
 </rpc-reply>

In the second example below, adapted from [RFC 6241], the XML document 
sent from the managing server to the managed device sets the Maximum Transmis-
sion Unit (MTU) of an interface named “Ethernet0/0” to 1500 bytes:

 01 <?xml version=”1.0” encoding=”UTF-8”?>
 02 <rpc message-id=”101”
 03 xmlns=”urn:ietf:params:xml:ns:netconf:base:1.0”>
 04 <edit-config>
 05 <target>
 06 <running/>
 07 </target>
 08 <config>
 09  <top xmlns=”http://example.com/schema/ 

1.2/config”>
 10 <interface>
 11 <name>Ethernet0/0</name>
 12 <mtu>1500</mtu>
 13 </interface>
 14 </top>
 15 </config>
 16 </edit-config>
 17 </rpc>
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The RPC message itself spans lines 02–17, has a message ID value of 101, and 
contains a single NETCONF <edit-config> command, spanning lines 04–15. Line 
06 indicates that the running device configuration at the managed device will be 
changed. Lines 11 and 12 specify the MTU size to be set of the Ethernet0/0 interface.

Once the managed device has changed the interface’s MTU size in the configu-
ration, it responds back to the managing server with an OK reply (line 04 below), 
again within an XML document:

 01 <?xml version=”1.0” encoding=”UTF-8”?>
 02 <rpc-reply message-id=”101”
 03 xmlns=”urn:ietf:params:xml:ns:netconf:base:1.0”>
 04 <ok/>
 05 </rpc-reply>

YANG

YANG is the data modeling language used to precisely specify the structure, syntax, 
and semantics of network management data used by NETCONF, in much the same 
way that the SMI is used to specify MIBs in SNMP. All YANG definitions are con-
tained in modules, and an XML document describing a device and its capabilities can 
be generated from a YANG module.

YANG features a small set of built-in data types (as in the case of SMI) and also 
allows data modelers to express constraints that must be satisfied by a valid NET-
CONF configuration—a powerful aid in helping ensure that NETCONF configura-
tions satisfy specified correctness and consistency constraints. YANG is also used to 
specify NETCONF notifications.

A fuller discussion of YANG is beyond our scope here. For more information, 
we refer the interested reader to the excellent book [Claise 2019].

5.8 Summary

We have now completed our two-chapter journey into the network core—a journey 
that began with our study of the network layer’s data plane in Chapter 4 and finished 
here with our study of the network layer’s control plane. We learned that the control 
plane is the network-wide logic that controls not only how a datagram is forwarded 
among routers along an end-to-end path from the source host to the destination host, 
but also how network-layer components and services are configured and managed.

We learned that there are two broad approaches towards building a control plane: 
traditional per-router control (where a routing algorithm runs in each and every router 
and the routing component in the router communicates with the routing components in 
other routers) and software-defined networking (SDN) control (where a logically cen-
tralized controller computes and distributes the forwarding tables to be used by each 
and every router). We studied two fundamental routing algorithms for computing least 
cost paths in a graph—link-state routing and distance-vector routing—in Section 5.2; 

M05_KURO1557_08_SE_C05.indd   436 11/02/20   5:21 PM



HOMEWORK PROBLEMS AND QUESTIONS     437

these algorithms find application in both per-router control and in SDN control. These 
algorithms are the basis for two widely deployed Internet routing protocols, OSPF and 
BGP, that we covered in Sections 5.3 and 5.4. We covered the SDN approach to the 
network-layer control plane in Section 5.5, investigating SDN network-control appli-
cations, the SDN controller, and the OpenFlow protocol for communicating between 
the controller and SDN-controlled devices. In Sections 5.6 and 5.7, we covered some 
of the nuts and bolts of managing an IP network: ICMP (the Internet Control Message 
Protocol) and network management using SNMP and NETCONF/YANG.

Having completed our study of the network layer, our journey now takes us 
one step further down the protocol stack, namely, to the link layer. Like the network 
layer, the link layer is part of each and every network-connected device. But we will 
see in the next chapter that the link layer has the much more localized task of moving 
packets between nodes on the same link or LAN. Although this task may appear on 
the surface to be rather simple compared with that of the network layer’s tasks, we 
will see that the link layer involves a number of important and fascinating issues that 
can keep us busy for a long time.

Homework Problems and Questions

Chapter 5 Review Questions
SECTION 5.1
 R1. What is meant by a control plane that is based on per-router control? In such 

cases, when we say the network control and data planes are implemented 
“monolithically,” what do we mean?

 R2. What is meant by a control plane that is based on logically centralized 
control? In such cases, are the data plane and the control plane implemented 
within the same device or in separate devices? Explain.

SECTION 5.2
 R3. Compare and contrast the properties of a centralized and a distributed routing 

algorithm. Give an example of a routing protocol that takes a centralized and 
a decentralized approach.

 R4. Compare and contrast link-state and distance-vector routing algorithms.

 R5. What is the “count to infinity” problem in distance vector routing?

 R6. Is it necessary that every autonomous system use the same intra-AS routing 
algorithm? Why or why not?

SECTIONS 5.3–5.4
 R7. Why are different inter-AS and intra-AS protocols used in the Internet?

 R8. True or false: When an OSPF route sends its link state information, it is sent 
only to those nodes directly attached neighbors. Explain.
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   R9. What is meant by an area in an OSPF autonomous system? Why was the 
concept of an area introduced?

 R10. Define and contrast the following terms: subnet, prefix, and BGP route.

 R11. How does BGP use the NEXT-HOP attribute? How does it use the AS-PATH 
attribute?

 R12. Describe how a network administrator of an upper-tier ISP can implement 
policy when configuring BGP.

 R13. True or false: When a BGP router receives an advertised path from its neigh-
bor, it must add its own identity to the received path and then send that new 
path on to all of its neighbors. Explain.

SECTION 5.5
 R14. Describe the main role of the communication layer, the network-wide state- 

management layer, and the network-control application layer in an SDN 
controller.

 R15. Suppose you wanted to implement a new routing protocol in the SDN control 
plane. At which layer would you implement that protocol? Explain.

 R16. What types of messages flow across an SDN controller’s northbound and 
southbound APIs? Who is the recipient of these messages sent from the 
controller across the southbound interface, and who sends messages to the 
controller across the northbound interface?

 R17. Describe the purpose of two types of OpenFlow messages (of your choosing) 
that are sent from a controlled device to the controller. Describe the purpose 
of two types of Openflow messages (of your choosing) that are send from the 
controller to a controlled device.

 R18. What is the purpose of the service abstraction layer in the OpenDaylight SDN 
controller?

SECTIONS 5.6–5.7
 R19. Names four different types of ICMP messages

 R20. What two types of ICMP messages are received at the sending host executing 
the Traceroute program?

 R21. Define the following terms in the context of SNMP: managing server, 
 managed device, network management agent and MIB.

 R22. What are the purposes of the SNMP GetRequest and SetRequest messages?

 R23. What is the purpose of the SNMP trap message?
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Problems

 P1. Looking at Figure 5.3, enumerate the paths from y to u that do not contain 
any loops.

 P2. Repeat Problem P1 for paths from x to z, z to u, and z to w.
 P3. Consider the following network. With the indicated link costs, use Dijkstra’s 

shortest-path algorithm to compute the shortest path from x to all network nodes. 
Show how the algorithm works by computing a table similar to Table 5.1. 

x

v

ty

z

u

w

6

12

8
7

8

3

6
4

3

2
4

3

 P4. Consider the network shown in Problem P3. Using Dijkstra’s algorithm, and 
showing your work using a table similar to Table 5.1, do the following:
a. Compute the shortest path from t to all network nodes.
b. Compute the shortest path from u to all network nodes.
c. Compute the shortest path from v to all network nodes.
d. Compute the shortest path from w to all network nodes.
e. Compute the shortest path from y to all network nodes.
f. Compute the shortest path from z to all network nodes.

 P5. Consider the network shown below, and assume that each node initially 
knows the costs to each of its neighbors. Consider the distance-vector algo-
rithm and show the distance table entries at node z.

u

z

v

y

2 3

6

2

3

1

x

Dijkstra’s algorithm: 
discussion and example

VideoNote
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 P6. Consider a general topology (that is, not the specific network shown above) and a 
synchronous version of the distance-vector algorithm. Suppose that at each itera-
tion, a node exchanges its distance vectors with its neighbors and receives their 
distance vectors. Assuming that the algorithm begins with each node knowing 
only the costs to its immediate neighbors, what is the maximum number of itera-
tions required before the distributed algorithm converges? Justify your answer.

 P7. Consider the network fragment shown below. x has only two attached neigh-
bors, w and y. w has a minimum-cost path to destination u (not shown) of 5, 
and y has a minimum-cost path to u of 6. The complete paths from w and y 
to u (and between w and y) are not shown. All link costs in the network have 
strictly positive integer values.

x y

w
2 2

5

a. Give x’s distance vector for destinations w, y, and u.

b. Give a link-cost change for either c(x,w) or c(x,y) such that x will inform 
its neighbors of a new minimum-cost path to u as a result of executing the 
distance-vector algorithm.

c. Give a link-cost change for either c(x,w) or c(x,y) such that x will not 
inform its neighbors of a new minimum-cost path to u as a result of 
executing the distance-vector algorithm.

 P8. Consider the three-node topology shown in Figure 5.6. Rather than having 
the link costs shown in Figure 5.6, the link costs are c(x,y) =  3, c(y,z) =  6, 
c(z,x) =  4. Compute the distance tables after the initialization step and after 
each iteration of a synchronous version of the distance-vector algorithm (as 
we did in our earlier discussion of Figure 5.6).

 P9. Consider the count-to-infinity problem in the distance vector routing. Will 
the count-to-infinity problem occur if we decrease the cost of a link? Why? 
How about if we connect two nodes which do not have a link?

 P10. Argue that for the distance-vector algorithm in Figure 5.6, each value in the 
distance vector D(x) is non-increasing and will eventually stabilize in a finite 
number of steps.

 P11. Consider Figure 5.7. Suppose there is another router w, connected to router 
y and z. The costs of all links are given as follows: c(x,y) =  4, c(x,z) =  50, 
c(y,w) =  1, c(z,w) =  1, c(y,z) =  3. Suppose that poisoned reverse is used in 
the distance-vector routing algorithm.
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a. When the distance vector routing is stabilized, router w, y, and z inform their 
distances to x to each other. What distance values do they tell each other?

b. Now suppose that the link cost between x and y increases to 60. Will there be 
a count-to-infinity problem even if poisoned reverse is used? Why or why not? 
If there is a count-to-infinity problem, then how many iterations are needed for 
the distance-vector routing to reach a stable state again? Justify your answer.

c. How do you modify c(y,z) such that there is no count-to-infinity problem 
at all if c(y,x) changes from 4 to 60?

 P12. Describe how loops in paths can be detected in BGP.

 P13. Will a BGP router always choose the loop-free route with the shortest ASpath 
length? Justify your answer.

 P14. Consider the network shown below. Suppose AS3 and AS2 are running 
OSPF for their intra-AS routing protocol. Suppose AS1 and AS4 are running 
RIP for their intra-AS routing protocol. Suppose eBGP and iBGP are used 
for the inter-AS routing protocol. Initially suppose there is no physical link 
between AS2 and AS4.

a. Router 3c learns about prefix x from which routing protocol: OSPF, RIP, 
eBGP, or iBGP?

b. Router 3a learns about x from which routing protocol?

c. Router 1c learns about x from which routing protocol?

d. Router 1d learns about x from which routing protocol?

AS4

AS3

AS1

AS2

x

4b

4c 4a

3c

3b
3a

1c

1b

1d

1a

I1 I2

2c

2a
2b
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 P15. Referring to the previous problem, once router 1d learns about x it will put an 
entry (x, I) in its forwarding table.

a. Will I be equal to I1 or I2 for this entry? Explain why in one sentence.

b. Now suppose that there is a physical link between AS2 and AS4, shown 
by the dotted line. Suppose router 1d learns that x is accessible via AS2 as 
well as via AS3. Will I be set to I1 or I2? Explain why in one sentence.

c. Now suppose there is another AS, called AS5, which lies on the path 
between AS2 and AS4 (not shown in diagram). Suppose router 1d learns 
that x is accessible via AS2 AS5 AS4 as well as via AS3 AS4. Will I be 
set to I1 or I2? Explain why in one sentence.

P16. Consider the following network. ISP B provides national backbone service 
to regional ISP A. ISP C provides national backbone service to regional 
ISP D. Each ISP consists of one AS. B and C peer with each other in two 
places using BGP. Consider traffic going from A to D. B would prefer 
to hand that traffic over to C on the West Coast (so that C would have 
to absorb the cost of carrying the traffic cross-country), while C would 
prefer to get the traffic via its East Coast peering point with B (so that B 
would have carried the traffic across the country). What BGP mechanism 
might C use, so that B would hand over A-to-D traffic at its East Coast 
peering point? To answer this question, you will need to dig into the BGP 
 specification.

ISP B

ISP C

ISP D

ISP A
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 P17. In Figure 5.13, consider the path information that reaches stub networks W, 
X, and Y. Based on the information available at W and X, what are their 
respective views of the network topology? Justify your answer. The topology 
view at Y is shown below.

W

Y

X
A

C
Stub network
Y’s view of
the topology

 P18. Consider Figure 5.13. B would never forward traffic destined to Y via X based 
on BGP routing. But there are some very popular applications for which data 
packets go to X first and then flow to Y. Identify one such application, and 
describe how data packets follow a path not given by BGP routing.

 P19. In Figure 5.13, suppose that there is another stub network V that is a cus-
tomer of ISP A. Suppose that B and C have a peering relationship, and A is 
a customer of both B and C. Suppose that A would like to have the traffic 
destined to W to come from B only, and the traffic destined to V from either 
B or C. How should A advertise its routes to B and C? What AS routes does 
C receive?

 P20. Suppose ASs X and Z are not directly connected but instead are connected 
by AS Y. Further suppose that X has a peering agreement with Y, and that Y 
has a peering agreement with Z. Finally, suppose that Z wants to transit all 
of Y’s traffic but does not want to transit X’s traffic. Does BGP allow Z to 
 implement this policy?

 P21. Consider the two ways in which communication occurs between a managing 
entity and a managed device: request-response mode and trapping. What are 
the pros and cons of these two approaches, in terms of (1) overhead, (2) noti-
fication time when exceptional events occur, and (3) robustness with respect 
to lost messages between the managing entity and the device?

 P22. In Section 5.7, we saw that it was preferable to transport SNMP messages in 
unreliable UDP datagrams. Why do you think the designers of SNMP chose 
UDP rather than TCP as the transport protocol of choice for SNMP?

Socket Programming Assignment 5: ICMP Ping

At the end of Chapter 2, there are four socket programming assignments. Here 
you will find a fifth assignment which employs ICMP, a protocol discussed in this 
chapter.
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Ping is a popular networking application used to test from a remote location 
whether a particular host is up and reachable. It is also often used to measure latency 
between the client host and the target host. It works by sending ICMP “echo request” 
packets (i.e., ping packets) to the target host and listening for ICMP “echo response” 
replies (i.e., pong packets). Ping measures the RRT, records packet loss, and calcu-
lates a statistical summary of multiple ping-pong exchanges (the minimum, mean, 
max, and standard deviation of the round-trip times).

In this lab, you will write your own Ping application in Python. Your application 
will use ICMP. But in order to keep your program simple, you will not exactly fol-
low the official specification in RFC 1739. Note that you will only need to write the 
client side of the program, as the functionality needed on the server side is built into 
almost all operating systems. You can find full details of this assignment, as well as 
important snippets of the Python code, at the Web site http://www.pearsonhighered.
com/cs-resources.

Programming Assignment: Routing

In this programming assignment, you will be writing a “distributed” set of proce-
dures that implements a distributed asynchronous distance-vector routing for the 
network shown below.

You are to write the following routines that will “execute” asynchronously 
within the emulated environment provided for this assignment. For node 0, you will 
write the routines:

3 2

0
1

7
3

1

2

1

• rtinit0(). This routine will be called once at the beginning of the emulation. 
rtinit0() has no arguments. It should initialize your distance table in node 0 to 
reflect the direct costs of 1, 3, and 7 to nodes 1, 2, and 3, respectively. In the 
figure above, all links are bidirectional and the costs in both directions are identi-
cal. After initializing the distance table and any other data structures needed by 
your node 0 routines, it should then send its directly connected neighbors (in this 
case, 1, 2, and 3) the cost of its minimum-cost paths to all other network nodes. 
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This minimum-cost information is sent to neighboring nodes in a routing update 
packet by calling the routine tolayer2(), as described in the full assignment. The 
format of the routing update packet is also described in the full assignment.

• rtupdate0(struct rtpkt *rcvdpkt). This routine will be called when node 0 receives 
a routing packet that was sent to it by one of its directly connected neighbors. 
The parameter *rcvdpkt is a pointer to the packet that was received. rtupdate0() 
is the “heart” of the distance-vector algorithm. The values it receives in a routing 
update packet from some other node i contain i’s current shortest-path costs to 
all other network nodes. rtupdate0() uses these received values to update its own 
distance table (as specified by the distance-vector algorithm). If its own minimum 
cost to another node changes as a result of the update, node 0 informs its directly 
connected neighbors of this change in minimum cost by sending them a rout-
ing packet. Recall that in the distance-vector algorithm, only directly connected 
nodes will exchange routing packets. Thus, nodes 1 and 2 will communicate with 
each other, but nodes 1 and 3 will not communicate with each other.

Similar routines are defined for nodes 1, 2, and 3. Thus, you will write eight pro-
cedures in all: rtinit0(), rtinit1(), rtinit2(), rtinit3(), rtupdate0(), rtupdate1(), rtup-
date2(), and rtupdate3(). These routines will together implement a distributed, 
asynchronous computation of the distance tables for the topology and costs shown in 
the figure on the preceding page.

You can find the full details of the programming assignment, as well as C code 
that you will need to create the simulated hardware/software environment, at http://
www.pearsonhighered.com/cs-resource. A Java version of the assignment is also 
available.

Wireshark Lab: ICMP

In the Web site for this textbook, www.pearsonhighered.com/cs-resources, you’ll 
find a Wireshark lab assignment that examines the use of the ICMP protocol in the 
ping and traceroute commands.
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Please describe one or two of the most exciting projects you have worked on during your 
career. What were the biggest challenges?
When I was a researcher at AT&T, a group of us designed a new way to manage rout-
ing in Internet Service Provider backbone networks. Traditionally, network operators 
configure each router individually, and these routers run distributed protocols to compute 
paths through the network. We believed that network management would be simpler and 
more flexible if network operators could exercise direct control over how routers forward 
traffic based on a network-wide view of the topology and traffic. The Routing Control 
Platform (RCP) we designed and built could compute the routes for all of AT&T’s 
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backbone on a single commodity computer, and could control legacy routers without 
modification. To me, this project was exciting because we had a provocative idea, a 
working system, and ultimately a real deployment in an operational network. Fast forward 
a few years, and software-defined networking (SDN) has become a mainstream technology, 
and standard protocols (like standard protocols (like OpenFlow) and languages (like P4) 
have made it much easier to tell the underlying switches what to do.

How do you think software-defined networking should evolve in the future?
In a major break from the past, the software controlling network devices can be created by 
many different programmers, not just at companies selling network equipment. Yet, unlike 
the applications running on a server or a smart phone, SDN applications must work together 
to handle the same traffic. Network operators do not want to perform load balancing on 
some traffic and routing on other traffic; instead, they want to perform load balancing and 
routing, together, on the same traffic. Future SDN platforms should offer good program-
ming abstractions for composing independently written multiple applications together. More 
broadly, good programming abstractions can make it easier to create applications, without 
having to worry about low-level details like flow table entries, traffic counters, bit patterns 
in packet headers, and so on. Also, while an SDN controller is logically centralized, the 
network still consists of a distributed collection of devices. Future programmable networks 
should offer good abstractions for updating a distributed set of devices, so network admin-
istrators can reason about what happens to packets in flight while the devices are updated. 
Programming abstractions for programmable network is an exciting area for interdisciplinary 
research between computer networking, distributed systems, and programming languages, 
with a real chance for practical impact in the years ahead.

Where do you see the future of networking and the Internet?
Networking is an exciting field because the applications and the underlying technologies 
change all the time. We are always reinventing ourselves! Who would have predicted even 
ten years ago the dominance of smart phones, allowing mobile users to access existing 
applications as well as new location-based services? The emergence of cloud computing is 
fundamentally changing the relationship between users and the applications they run, and 
networked sensors and actuators (the “Internet of Things”) are enabling a wealth of new 
applications (and security vulnerabilities!). The pace of innovation is truly inspiring.

The underlying network is a crucial component in all of these innovations. Yet, the 
network is notoriously “in the way”—limiting performance, compromising reliability, con-
straining applications, and complicating the deployment and management of services. We 
should strive to make the network of the future as invisible as the air we breathe, so it never 
stands in the way of new ideas and valuable services. To do this, we need to raise the level 
of abstraction above individual network devices and protocols (and their attendant acro-
nyms!), so we can reason about the network and the user’s high-level goals as a whole.
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What people inspired you professionally?
I’ve long been inspired by Sally Floyd who worked for many years at the International 
Computer Science Institute. Her research was always purposeful, focusing on the important 
challenges facing the Internet. She dug deeply into hard questions until she understood the 
problem and the space of solutions completely, and she devoted serious energy into “mak-
ing things happen,” such as pushing her ideas into protocol standards and network equip-
ment. Also, she gave back to the community, through professional service in numerous 
standards and research organizations and by creating tools (such as the widely used ns-2 and 
ns-3 simulators) that enable other researchers to succeed. She retired in 2009, and passed 
away in 2019, but her influence on the field will be felt for years to come.

What are your recommendations for students who want careers in computer science and 
networking?
Networking is an inherently interdisciplinary field. Applying techniques from other disci-
pline’s breakthroughs in networking come from such diverse areas as queuing theory, game 
theory, control theory, distributed systems, network optimization, programming languages, 
machine learning, algorithms, data structures, and so on. I think that becoming conversant 
in a related field, or collaborating closely with experts in those fields, is a wonderful way 
to put networking on a stronger foundation, so we can learn how to build networks that are 
worthy of society’s trust. Beyond the theoretical disciplines, networking is exciting because 
we create real artifacts that real people use. Mastering how to design and build systems—by 
gaining experience in operating systems, computer architecture, and so on—is another fan-
tastic way to amplify your knowledge of networking to help make the world a better place. 
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In the previous two chapters, we learned that the network layer provides a commu-
nication service between any two network hosts. Between the two hosts, datagrams 
travel over a series of communication links, some wired and some wireless, starting 
at the source host, passing through a series of packet switches (switches and routers) 
and ending at the destination host. As we continue down the protocol stack, from 
the network layer to the link layer, we naturally wonder how packets are sent across 
the individual links that make up the end-to-end communication path. How are the 
network-layer datagrams encapsulated in the link-layer frames for transmission over 
a single link? Are different link-layer protocols used in the different links along the 
communication path? How are transmission conflicts in broadcast links resolved? 
Is there addressing at the link layer and, if so, how does the link-layer addressing 
operate with the network-layer addressing we learned about in Chapter 4? And what 
exactly is the difference between a switch and a router? We’ll answer these and other 
important questions in this chapter.

In discussing the link layer, we’ll see that there are two fundamentally  different 
types of link-layer channels. The first type are broadcast channels, which connect 
multiple hosts in wireless LANs, in satellite networks, and in hybrid fiber-coaxial 
cable (HFC) access networks. Since many hosts are connected to the same broadcast 
communication channel, a so-called medium access protocol is needed to coordinate 
frame transmission. In some cases, a central controller may be used to coordinate 

The Link Layer 
and LANs
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transmissions; in other cases, the hosts themselves coordinate transmissions. The 
second type of link-layer channel is the point-to-point communication link, such as 
that often found between two routers connected by a long-distance link, or between 
a user’s office computer and the nearby Ethernet switch to which it is connected. 
Coordinating access to a point-to-point link is simpler; the reference material on this 
book’s Web site has a detailed discussion of the Point-to-Point Protocol (PPP), which 
is used in settings ranging from dial-up service over a telephone line to high-speed 
point-to-point frame transport over fiber-optic links.

We’ll explore several important link-layer concepts and technologies in this 
 chapter. We’ll dive deeper into error detection and correction, a topic we touched on 
briefly in Chapter 3. We’ll consider multiple access networks and switched LANs, 
including Ethernet—by far the most prevalent wired LAN technology. We’ll also 
look at virtual LANs, and data center networks. Although WiFi, and more generally 
wireless LANs, are link-layer topics, we’ll postpone our study of these important 
topics until Chapter 7.

6.1 Introduction to the Link Layer

Let’s begin with some important terminology. We’ll find it convenient in this chapter 
to refer to any device that runs a link-layer (i.e., layer 2) protocol as a node. Nodes 
include hosts, routers, switches, and WiFi access points (discussed in Chapter 7). 
We will also refer to the communication channels that connect adjacent nodes along 
the communication path as links. In order for a datagram to be transferred from 
source host to destination host, it must be moved over each of the individual links 
in the end-to-end path. As an example, in the company network shown at the bot-
tom of Figure 6.1, consider sending a datagram from one of the wireless hosts to 
one of the servers. This datagram will actually pass through six links: a WiFi link 
between sending host and WiFi access point, an Ethernet link between the access 
point and a link-layer switch; a link between the link-layer switch and the router, a 
link between the two routers; an Ethernet link between the router and a link-layer 
switch; and finally an Ethernet link between the switch and the server. Over a given 
link, a transmitting node encapsulates the datagram in a link-layer frame and trans-
mits the frame into the link.

In order to gain further insight into the link layer and how it relates to the 
 network layer, let’s consider a transportation analogy. Consider a travel agent who 
is planning a trip for a tourist traveling from Princeton, New Jersey, to Lausanne, 
Switzerland. The travel agent decides that it is most convenient for the tourist to take 
a limousine from Princeton to JFK airport, then a plane from JFK airport to Geneva’s 
airport, and finally a train from Geneva’s airport to Lausanne’s train station. Once 
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Figure 6.1 ♦ Six link-layer hops between wireless host and server

the travel agent makes the three reservations, it is the responsibility of the Princeton 
limousine company to get the tourist from Princeton to JFK; it is the responsibility of 
the airline company to get the tourist from JFK to Geneva; and it is the responsibility 
of the Swiss train service to get the tourist from Geneva to Lausanne. Each of the 
three segments of the trip is “direct” between two “adjacent” locations. Note that the 
three transportation segments are managed by different companies and use entirely 
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different transportation modes (limousine, plane, and train). Although the transporta-
tion modes are different, they each provide the basic service of moving passengers 
from one location to an adjacent location. In this transportation analogy, the tourist is 
a datagram, each transportation segment is a link, the transportation mode is a link-
layer protocol, and the travel agent is a routing protocol.

6.1.1 The Services Provided by the Link Layer
Although the basic service of any link layer is to move a datagram from one node 
to an adjacent node over a single communication link, the details of the provided 
service can vary from one link-layer protocol to the next. Possible services that can 
be offered by a link-layer protocol include:

• Framing. Almost all link-layer protocols encapsulate each network-layer data-
gram within a link-layer frame before transmission over the link. A frame consists 
of a data field, in which the network-layer datagram is inserted, and a number of 
header fields. The structure of the frame is specified by the link-layer protocol. 
We’ll see several different frame formats when we examine specific link-layer 
protocols in the second half of this chapter.

• Link access. A medium access control (MAC) protocol specifies the rules by 
which a frame is transmitted onto the link. For point-to-point links that have 
a single sender at one end of the link and a single receiver at the other end of 
the link, the MAC protocol is simple (or nonexistent)—the sender can send a 
frame whenever the link is idle. The more interesting case is when multiple 
nodes share a single broadcast link—the so-called multiple access problem. 
Here, the MAC protocol serves to coordinate the frame transmissions of the 
many nodes.

• Reliable delivery. When a link-layer protocol provides reliable delivery service, 
it guarantees to move each network-layer datagram across the link without error. 
Recall that certain transport-layer protocols (such as TCP) also provide a reliable 
delivery service. Similar to a transport-layer reliable delivery service, a link-layer 
reliable delivery service can be achieved with acknowledgments and retransmis-
sions (see Section 3.4). A link-layer reliable delivery service is often used for 
links that are prone to high error rates, such as a wireless link, with the goal of 
correcting an error locally—on the link where the error occurs—rather than forc-
ing an end-to-end retransmission of the data by a transport- or application-layer 
protocol. However, link-layer reliable delivery can be considered an unnecessary 
overhead for low bit-error links, including fiber, coax, and many twisted-pair 
copper links. For this reason, many wired link-layer protocols do not provide a 
reliable delivery service.

• Error detection and correction. The link-layer hardware in a receiving node 
can incorrectly decide that a bit in a frame is zero when it was transmitted as 
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a one, and vice versa. Such bit errors are introduced by signal attenuation and 
electromagnetic noise. Because there is no need to forward a datagram that 
has an error, many link-layer protocols provide a mechanism to detect such 
bit errors. This is done by having the transmitting node include error-detection 
bits in the frame, and having the receiving node perform an error check. Recall 
from Chapters 3 and 4 that the Internet’s transport layer and network layer 
also provide a limited form of error detection—the Internet checksum. Error 
detection in the link layer is usually more sophisticated and is implemented in 
hardware. Error correction is similar to error detection, except that a receiver 
not only detects when bit errors have occurred in the frame but also deter-
mines exactly where in the frame the errors have occurred (and then corrects 
these errors).

6.1.2 Where Is the Link Layer Implemented?
Before diving into our detailed study of the link layer, let’s conclude this introduc-
tion by considering the question of where the link layer is implemented. Is a host’s 
link layer implemented in hardware or software? Is it implemented on a separate card 
or chip, and how does it interface with the rest of a host’s hardware and operating 
system components?

Figure 6.2 shows a typical host architecture. The Ethernet capabilities are either 
integrated into the motherboard chipset or implemented via a low-cost dedicated 
Ethernet chip. For the most part, the link layer is implemented on a chip called the 
network adapter, also sometimes known as a network interface controller (NIC). 
The network adapter implements many link layer services including framing, link 
access, error detection, and so on. Thus, much of a link-layer controller’s functional-
ity is implemented in hardware. For example, Intel’s 700 series adapters [Intel 2020] 
implements the Ethernet protocols we’ll study in Section 6.5; the Atheros AR5006 
[Atheros 2020] controller implements the 802.11 WiFi protocols we’ll study in 
Chapter 7.

On the sending side, the controller takes a datagram that has been created and 
stored in host memory by the higher layers of the protocol stack, encapsulates the 
datagram in a link-layer frame (filling in the frame’s various fields), and then trans-
mits the frame into the communication link, following the link-access protocol. On 
the receiving side, a controller receives the entire frame, and extracts the network-
layer datagram. If the link layer performs error detection, then it is the sending con-
troller that sets the error-detection bits in the frame header and it is the receiving 
controller that performs error detection.

Figure 6.2 shows that while most of the link layer is implemented in hardware, 
part of the link layer is implemented in software that runs on the host’s CPU. The 
software components of the link layer implement higher-level link-layer func-
tionality such as assembling link-layer addressing information and activating the 
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controller hardware. On the receiving side, link-layer software responds to con-
troller interrupts (for example, due to the receipt of one or more frames), handling 
error conditions and passing a datagram up to the network layer. Thus, the link 
layer is a combination of hardware and software—the place in the protocol stack 
where software meets hardware. [Intel 2020] provides a readable overview (as 
well as a detailed description) of the XL710 controller from a software-program-
ming point of view.

6.2 Error-Detection and -Correction Techniques

In the previous section, we noted that bit-level error detection and correction—
detecting and correcting the corruption of bits in a link-layer frame sent from one 
node to another physically connected neighboring node—are two services often 
 provided by the link layer. We saw in Chapter 3 that error-detection and -correction 
services are also often offered at the transport layer as well. In this section, we’ll 
examine a few of the simplest techniques that can be used to detect and, in some 

Figure 6.2 ♦  Network adapter: Its relationship to other host components 
and to protocol stack functionality
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cases, correct such bit errors. A full treatment of the theory and implementation of 
this topic is itself the topic of many textbooks (e.g., [Schwartz 1980] or [Bertsekas 
1991]), and our treatment here is necessarily brief. Our goal here is to develop an 
intuitive feel for the capabilities that error-detection and -correction techniques pro-
vide and to see how a few simple techniques work and are used in practice in the 
link layer.

Figure 6.3 illustrates the setting for our study. At the sending node, data, D, to 
be protected against bit errors is augmented with error-detection and -correction bits 
(EDC). Typically, the data to be protected includes not only the datagram passed 
down from the network layer for transmission across the link, but also link-level 
addressing information, sequence numbers, and other fields in the link frame header. 
Both D and EDC are sent to the receiving node in a link-level frame. At the receiv-
ing node, a sequence of bits, D′ and EDC′ is received. Note that D′ and EDC′ may 
differ from the original D and EDC as a result of in-transit bit flips.

The receiver’s challenge is to determine whether or not D′ is the same as the 
original D, given that it has only received D′ and EDC′. The exact wording of the 
receiver’s decision in Figure 6.3 (we ask whether an error is detected, not whether an 
error has occurred!) is important. Error-detection and -correction techniques allow 
the receiver to sometimes, but not always, detect that bit errors have occurred. Even 
with the use of error-detection bits there still may be undetected bit errors; that is, 
the receiver may be unaware that the received information contains bit errors. As a 

Figure 6.3 ♦ Error-detection and -correction scenario
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consequence, the receiver might deliver a corrupted datagram to the network layer, 
or be unaware that the contents of a field in the frame’s header has been corrupted. 
We thus want to choose an error-detection scheme that keeps the probability of such 
occurrences small. Generally, more sophisticated error-detection and -correction 
techniques (that is, those that have a smaller probability of allowing undetected bit 
errors) incur a larger overhead—more computation is needed to compute and trans-
mit a larger number of error-detection and -correction bits.

Let’s now examine three techniques for detecting errors in the transmitted data—
parity checks (to illustrate the basic ideas behind error detection and correction), check-
summing methods (which are more typically used in the transport layer), and cyclic 
redundancy checks (which are more typically used in the link layer in an adapter).

6.2.1 Parity Checks
Perhaps the simplest form of error detection is the use of a single parity bit. Suppose 
that the information to be sent, D in Figure 6.4, has d bits. In an even parity scheme, 
the sender simply includes one additional bit and chooses its value such that the total 
number of 1s in the d +  1 bits (the original information plus a parity bit) is even. For 
odd parity schemes, the parity bit value is chosen such that there is an odd number 
of 1s. Figure 6.4 illustrates an even parity scheme, with the single parity bit being 
stored in a separate field.

Receiver operation is also simple with a single parity bit. The receiver need only 
count the number of 1s in the received d +  1 bits. If an odd number of 1-valued bits 
are found with an even parity scheme, the receiver knows that at least one bit error has 
occurred. More precisely, it knows that some odd number of bit errors have occurred.

But what happens if an even number of bit errors occur? You should convince 
yourself that this would result in an undetected error. If the probability of bit errors is 
small and errors can be assumed to occur independently from one bit to the next, the 
probability of multiple bit errors in a packet would be extremely small. In this case, 
a single parity bit might suffice. However, measurements have shown that, rather 
than occurring independently, errors are often clustered together in “bursts.” Under 
burst error conditions, the probability of undetected errors in a frame protected by 
single-bit parity can approach 50 percent [Spragins 1991]. Clearly, a more robust 
error-detection scheme is needed (and, fortunately, is used in practice!). But before 
examining error-detection schemes that are used in practice, let’s consider a simple 

Figure 6.4 ♦ One-bit even parity
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generalization of one-bit parity that will provide us with insight into error-correction 
techniques.

Figure 6.5 shows a two-dimensional generalization of the single-bit parity 
scheme. Here, the d bits in D are divided into i rows and j columns. A parity value 
is computed for each row and for each column. The resulting i +  j +  1 parity bits 
comprise the link-layer frame’s error-detection bits.

Suppose now that a single bit error occurs in the original d bits of information. 
With this two-dimensional parity scheme, the parity of both the column and the row 
containing the flipped bit will be in error. The receiver can thus not only detect the 
fact that a single bit error has occurred, but can use the column and row indices of 
the column and row with parity errors to actually identify the bit that was corrupted 
and correct that error! Figure 6.5 shows an example in which the 1-valued bit in 
position (2,2) is corrupted and switched to a 0—an error that is both detectable and 
correctable at the receiver. Although our discussion has focused on the original d bits 
of information, a single error in the parity bits themselves is also detectable and cor-
rectable. Two-dimensional parity can also detect (but not correct!) any combination 
of two errors in a packet. Other properties of the two-dimensional parity scheme are 
explored in the problems at the end of the chapter.

Figure 6.5 ♦ Two-dimensional even parity
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The ability of the receiver to both detect and correct errors is known as forward 
error correction (FEC). These techniques are commonly used in audio storage and 
playback devices such as audio CDs. In a network setting, FEC techniques can be 
used by themselves, or in conjunction with link-layer ARQ techniques similar to 
those we examined in Chapter 3. FEC techniques are valuable because they can 
decrease the number of sender retransmissions required. Perhaps more important, 
they allow for immediate correction of errors at the receiver. This avoids having to 
wait for the round-trip propagation delay needed for the sender to receive a NAK 
packet and for the retransmitted packet to propagate back to the receiver—a poten-
tially important advantage for real-time network applications [Rubenstein 1998] or 
links (such as deep-space links) with long propagation delays. Research examining 
the use of FEC in error-control protocols includes [Biersack 1992; Nonnenmacher 
1998; Byers 1998; Shacham 1990].

6.2.2 Checksumming Methods
In checksumming techniques, the d bits of data in Figure 6.4 are treated as a sequence 
of k-bit integers. One simple checksumming method is to simply sum these k-bit inte-
gers and use the resulting sum as the error-detection bits. The Internet checksum is 
based on this approach—bytes of data are treated as 16-bit integers and summed. The 
1s complement of this sum then forms the Internet checksum that is carried in the 
segment header. As discussed in Section 3.3, the receiver checks the checksum by 
taking the 1s complement of the sum of the received data (including the checksum) 
and checking whether the result is all 0 bits. If any of the bits are 1, an error is indi-
cated. RFC 1071 discusses the Internet checksum algorithm and its implementation 
in detail. In the TCP and UDP protocols, the Internet checksum is computed over all 
fields (header and data fields included). In IP, the checksum is computed over the IP 
header (since the UDP or TCP segment has its own checksum). In other protocols, 
for example, XTP [Strayer 1992], one checksum is computed over the header and 
another checksum is computed over the entire packet.

Checksumming methods require relatively little packet overhead. For example, 
the checksums in TCP and UDP use only 16 bits. However, they provide relatively 
weak protection against errors as compared with cyclic redundancy check, which is 
discussed below and which is often used in the link layer. A natural question at this 
point is, Why is checksumming used at the transport layer and cyclic redundancy 
check used at the link layer? Recall that the transport layer is typically implemented 
in software in a host as part of the host’s operating system. Because transport-layer 
error detection is implemented in software, it is important to have a simple and fast 
error-detection scheme such as checksumming. On the other hand, error detection at 
the link layer is implemented in dedicated hardware in adapters, which can rapidly 
perform the more complex CRC operations. Feldmeier [Feldmeier 1995] presents 
fast software implementation techniques for not only weighted checksum codes, but 
CRC (see below) and other codes as well.
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6.2.3 Cyclic Redundancy Check (CRC)
An error-detection technique used widely in today’s computer networks is based on 
cyclic redundancy check (CRC) codes. CRC codes are also known as polynomial 
codes, since it is possible to view the bit string to be sent as a polynomial whose 
coefficients are the 0 and 1 values in the bit string, with operations on the bit string 
interpreted as polynomial arithmetic.

CRC codes operate as follows. Consider the d-bit piece of data, D, that the send-
ing node wants to send to the receiving node. The sender and receiver must first 
agree on an r +  1 bit pattern, known as a generator, which we will denote as G. 
We will require that the most significant (leftmost) bit of G be a 1. The key idea 
behind CRC codes is shown in Figure 6.6. For a given piece of data, D, the sender 
will choose r additional bits, R, and append them to D such that the resulting d +  r  
bit pattern (interpreted as a binary number) is exactly divisible by G (i.e., has no 
remainder) using modulo-2 arithmetic. The process of error checking with CRCs is 
thus simple: The receiver divides the d +  r received bits by G. If the remainder is 
nonzero, the receiver knows that an error has occurred; otherwise the data is accepted 
as being correct.

All CRC calculations are done in modulo-2 arithmetic without carries in addi-
tion or borrows in subtraction. This means that addition and subtraction are identical, 
and both are equivalent to the bitwise exclusive-or (XOR) of the operands. Thus, for 
example,

1011 XOR 0101 = 1110

1001 XOR 1101 = 0100

Also, we similarly have

1011 - 0101 = 1110

1001 - 1101 = 0100

Multiplication and division are the same as in base-2 arithmetic, except that any 
required addition or subtraction is done without carries or borrows. As in regular 

Figure 6.6 ♦ CRC
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binary arithmetic, multiplication by 2k left shifts a bit pattern by k places. Thus, given 
D and R, the quantity D #  2r XOR R yields the d +  r bit pattern shown in Figure 6.6. 
We’ll use this algebraic characterization of the d +  r bit pattern from Figure 6.6 in 
our discussion below.

Let us now turn to the crucial question of how the sender computes R. Recall 
that we want to find R such that there is an n such that

D #  2r XOR R = nG

That is, we want to choose R such that G divides into D #  2r XOR R without 
remainder. If we XOR (that is, add modulo-2, without carry) R to both sides of the 
above equation, we get

D #  2r = nG XOR R

This equation tells us that if we divide D #  2r by G, the value of the remainder 
is precisely R. In other words, we can calculate R as

R = remainder 
D # 2r

G

Figure 6.7 illustrates this calculation for the case of D = 101110, d = 6, 
G = 1001, and r = 3. The 9 bits transmitted in this case are 101 110  011. 
You should check these calculations for yourself and also check that indeed 
D #  2r = 101011 #  G XOR R.

Figure 6.7 ♦ A sample CRC calculation
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International standards have been defined for 8-, 12-, 16-, and 32-bit generators, 
G. The CRC-32 32-bit standard, which has been adopted in a number of link-level 
IEEE protocols, uses a generator of

GCRC@32 = 100000100110000010001110110110111

Each of the CRC standards can detect burst errors of fewer than r +  1 bits. (This 
means that all consecutive bit errors of r bits or fewer will be detected.) Furthermore, 
under appropriate assumptions, a burst of length greater than r +  1 bits is detected 
with probability 1 - 0.5r. Also, each of the CRC standards can detect any odd num-
ber of bit errors. See [Williams 1993] for a discussion of implementing CRC checks. 
The theory behind CRC codes and even more powerful codes is beyond the scope of 
this text. The text [Schwartz 1980] provides an excellent introduction to this topic.

6.3 Multiple Access Links and Protocols

In the introduction to this chapter, we noted that there are two types of network links: 
point-to-point links and broadcast links. A point-to-point link consists of a single 
sender at one end of the link and a single receiver at the other end of the link. Many 
link-layer protocols have been designed for point-to-point links; the point-to-point 
protocol (PPP) and high-level data link control (HDLC) are two such protocols. The 
second type of link, a broadcast link, can have multiple sending and receiving nodes 
all connected to the same, single, shared broadcast channel. The term broadcast is 
used here because when any one node transmits a frame, the channel broadcasts the 
frame and each of the other nodes receives a copy. Ethernet and wireless LANs are  
examples of broadcast link-layer technologies. In this section, we’ll take a step back 
from specific link-layer protocols and first examine a problem of central importance 
to the link layer: how to coordinate the access of multiple sending and receiving 
nodes to a shared broadcast channel—the multiple access problem. Broadcast chan-
nels are often used in LANs, networks that are geographically concentrated in a 
single building (or on a corporate or university campus). Thus, we’ll look at how 
multiple access channels are used in LANs at the end of this section.

We are all familiar with the notion of broadcasting—television has been using it 
since its invention. But traditional television is a one-way broadcast (that is, one fixed 
node transmitting to many receiving nodes), while nodes on a computer network 
broadcast channel can both send and receive. Perhaps a more apt human analogy for 
a broadcast channel is a cocktail party, where many people gather in a large room 
(the air providing the broadcast medium) to talk and listen. A second good analogy is 
something many readers will be familiar with—a classroom—where teacher(s) and 
student(s) similarly share the same, single, broadcast medium. A central problem in 
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both scenarios is that of determining who gets to talk (that is, transmit into the chan-
nel) and when. As humans, we’ve evolved an elaborate set of protocols for sharing 
the broadcast channel:

“Give everyone a chance to speak.”
“Don’t speak until you are spoken to.”
“Don’t monopolize the conversation.”
“Raise your hand if you have a question.”
“Don’t interrupt when someone is speaking.”
“Don’t fall asleep when someone is talking.”

Computer networks similarly have protocols—so-called multiple access 
 protocols—by which nodes regulate their transmission into the shared broadcast 
channel. As shown in Figure 6.8, multiple access protocols are needed in a wide 
variety of network settings, including both wired and wireless access networks, and 
satellite networks. Although technically each node accesses the broadcast chan-
nel through its adapter, in this section, we will refer to the node as the sending and 

Figure 6.8 ♦ Various multiple access channels
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receiving device. In practice, hundreds or even thousands of nodes can directly com-
municate over a broadcast channel.

Because all nodes are capable of transmitting frames, more than two nodes can 
transmit frames at the same time. When this happens, all of the nodes receive multiple 
frames at the same time; that is, the transmitted frames collide at all of the receiv-
ers. Typically, when there is a collision, none of the receiving nodes can make any 
sense of any of the frames that were transmitted; in a sense, the signals of the col-
liding frames become inextricably tangled together. Thus, all the frames involved in 
the collision are lost, and the broadcast channel is wasted during the collision inter-
val. Clearly, if many nodes want to transmit frames frequently, many transmissions 
will result in collisions, and much of the bandwidth of the broadcast channel will be 
wasted.

In order to ensure that the broadcast channel performs useful work when mul-
tiple nodes are active, it is necessary to somehow coordinate the transmissions of 
the active nodes. This coordination job is the responsibility of the multiple access 
protocol. Over the past 40 years, thousands of papers and hundreds of PhD disserta-
tions have been written on multiple access protocols; a comprehensive survey of the 
first 20 years of this body of work is [Rom 1990]. Furthermore, active research in 
multiple access protocols continues due to the continued emergence of new types of 
links, particularly new wireless links.

Over the years, dozens of multiple access protocols have been implemented in 
a variety of link-layer technologies. Nevertheless, we can classify just about any 
multiple access protocol as belonging to one of three categories: channel partition-
ing protocols, random access protocols, and taking-turns protocols. We’ll cover 
these categories of multiple access protocols in the following three subsections.

Let’s conclude this overview by noting that, ideally, a multiple access protocol 
for a broadcast channel of rate R bits per second should have the following desirable 
characteristics:

 1. When only one node has data to send, that node has a throughput of R bps.
 2. When M nodes have data to send, each of these nodes has a throughput of R/M 

bps. This need not necessarily imply that each of the M nodes always has an 
instantaneous rate of R/M, but rather that each node should have an average 
transmission rate of R/M over some suitably defined interval of time.

 3. The protocol is decentralized; that is, there is no master node that represents a 
single point of failure for the network.

 4. The protocol is simple, so that it is inexpensive to implement.

6.3.1 Channel Partitioning Protocols
Recall from our early discussion back in Section 1.3 that time-division  multiplexing 
(TDM) and frequency-division multiplexing (FDM) are two techniques that can 
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be used to partition a broadcast channel’s bandwidth among all nodes sharing that 
channel. As an example, suppose the channel supports N nodes and that the trans-
mission rate of the channel is R bps. TDM divides time into time frames and further 
divides each time frame into N time slots. (The TDM time frame should not be 
confused with the link-layer unit of data exchanged between sending and receiving 
adapters, which is also called a frame. In order to reduce confusion, in this subsec-
tion we’ll refer to the link-layer unit of data exchanged as a packet.) Each time slot 
is then assigned to one of the N nodes. Whenever a node has a packet to send, it 
transmits the packet’s bits during its assigned time slot in the revolving TDM frame. 
Typically, slot sizes are chosen so that a single packet can be transmitted during a 
slot time. Figure 6.9 shows a simple four-node TDM example. Returning to our 
cocktail party analogy, a TDM-regulated cocktail party would allow one partygoer 
to speak for a fixed period of time, then allow another partygoer to speak for the 
same amount of time, and so on. Once everyone had had a chance to talk, the  pattern 
would repeat.

TDM is appealing because it eliminates collisions and is perfectly fair: Each 
node gets a dedicated transmission rate of R/N bps during each frame time. However, 
it has two major drawbacks. First, a node is limited to an average rate of R/N bps 
even when it is the only node with packets to send. A second drawback is that a node 
must always wait for its turn in the transmission sequence—again, even when it is 
the only node with a frame to send. Imagine the partygoer who is the only one with 
anything to say (and imagine that this is the even rarer circumstance where everyone 

Figure 6.9 ♦ A four-node TDM and FDM example
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wants to hear what that one person has to say). Clearly, TDM would be a poor choice 
for a multiple access protocol for this particular party.

While TDM shares the broadcast channel in time, FDM divides the R bps chan-
nel into different frequencies (each with a bandwidth of R/N) and assigns each fre-
quency to one of the N nodes. FDM thus creates N smaller channels of R/N bps out 
of the single, larger R bps channel. FDM shares both the advantages and drawbacks 
of TDM. It avoids collisions and divides the bandwidth fairly among the N nodes. 
However, FDM also shares a principal disadvantage with TDM—a node is limited to 
a bandwidth of R/N, even when it is the only node with packets to send.

A third channel partitioning protocol is code division multiple access 
(CDMA). While TDM and FDM assign time slots and frequencies, respectively, 
to the nodes, CDMA assigns a different code to each node. Each node then uses 
its unique code to encode the data bits it sends. If the codes are chosen carefully, 
CDMA networks have the wonderful property that different nodes can transmit 
simultaneously and yet have their respective receivers correctly receive a send-
er’s encoded data bits (assuming the receiver knows the sender’s code) in spite 
of interfering transmissions by other nodes. CDMA has been used in military 
systems for some time (due to its anti-jamming properties) and now has wide-
spread civilian use, particularly in cellular telephony. Because CDMA’s use is so 
tightly tied to wireless channels, we’ll save our discussion of the technical details 
of CDMA until Chapter 7. For now, it will suffice to know that CDMA codes, 
like time slots in TDM and frequencies in FDM, can be allocated to the multiple 
access channel users.

6.3.2 Random Access Protocols
The second broad class of multiple access protocols are random access protocols. 
In a random access protocol, a transmitting node always transmits at the full rate 
of the channel, namely, R bps. When there is a collision, each node involved in the 
collision repeatedly retransmits its frame (that is, packet) until its frame gets through 
without a collision. But when a node experiences a collision, it doesn’t necessarily 
retransmit the frame right away. Instead it waits a random delay before retrans-
mitting the frame. Each node involved in a collision chooses independent random 
delays. Because the random delays are independently chosen, it is possible that one 
of the nodes will pick a delay that is sufficiently less than the delays of the other col-
liding nodes and will therefore be able to sneak its frame into the channel without a 
collision.

There are dozens if not hundreds of random access protocols described in the 
literature [Rom 1990; Bertsekas 1991]. In this section we’ll describe a few of the 
most commonly used random access protocols—the ALOHA protocols [Abram-
son 1970; Abramson 1985; Abramson 2009] and the carrier sense multiple access 
(CSMA) protocols [Kleinrock 1975b]. Ethernet [Metcalfe 1976] is a popular and 
widely deployed CSMA protocol.
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Slotted ALOHA

Let’s begin our study of random access protocols with one of the simplest random 
access protocols, the slotted ALOHA protocol. In our description of slotted ALOHA, 
we assume the following:

• All frames consist of exactly L bits.

• Time is divided into slots of size L/R seconds (that is, a slot equals the time to 
transmit one frame).

• Nodes start to transmit frames only at the beginnings of slots.

• The nodes are synchronized so that each node knows when the slots begin.

• If two or more frames collide in a slot, then all the nodes detect the collision event 
before the slot ends.

Let p be a probability, that is, a number between 0 and 1. The operation of slotted 
ALOHA in each node is simple:

• When the node has a fresh frame to send, it waits until the beginning of the next 
slot and transmits the entire frame in the slot.

• If there isn’t a collision, the node has successfully transmitted its frame and thus 
need not consider retransmitting the frame. (The node can prepare a new frame 
for transmission, if it has one.)

• If there is a collision, the node detects the collision before the end of the slot. The 
node retransmits its frame in each subsequent slot with probability p until the 
frame is transmitted without a collision.

By retransmitting with probability p, we mean that the node effectively tosses 
a biased coin; the event heads corresponds to “retransmit,” which occurs with prob-
ability p. The event tails corresponds to “skip the slot and toss the coin again in the 
next slot”; this occurs with probability (1 - p). All nodes involved in the collision 
toss their coins independently.

Slotted ALOHA would appear to have many advantages. Unlike channel par-
titioning, slotted ALOHA allows a node to transmit continuously at the full rate, R, 
when that node is the only active node. (A node is said to be active if it has frames 
to send.) Slotted ALOHA is also highly decentralized, because each node detects 
collisions and independently decides when to retransmit. (Slotted ALOHA does, 
however, require the slots to be synchronized in the nodes; shortly we’ll discuss 
an unslotted version of the ALOHA protocol, as well as CSMA protocols, none of 
which require such synchronization.) Slotted ALOHA is also an extremely simple 
protocol.

Slotted ALOHA works well when there is only one active node, but how 
 efficient is it when there are multiple active nodes? There are two possible efficiency 
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concerns here. First, as shown in Figure 6.10, when there are multiple active nodes, 
a certain fraction of the slots will have collisions and will therefore be “wasted.” The 
second concern is that another fraction of the slots will be empty because all active 
nodes refrain from transmitting as a result of the probabilistic transmission policy. 
The only “unwasted” slots will be those in which exactly one node transmits. A slot 
in which exactly one node transmits is said to be a successful slot. The efficiency of 
a slotted multiple access protocol is defined to be the long-run fraction of successful 
slots in the case when there are a large number of active nodes, each always having 
a large number of frames to send. Note that if no form of access control were used, 
and each node were to immediately retransmit after each collision, the efficiency 
would be zero. Slotted ALOHA clearly increases the efficiency beyond zero, but by 
how much?

We now proceed to outline the derivation of the maximum efficiency of slotted 
ALOHA. To keep this derivation simple, let’s modify the protocol a little and assume 
that each node attempts to transmit a frame in each slot with probability p. (That is, 
we assume that each node always has a frame to send and that the node transmits 
with probability p for a fresh frame as well as for a frame that has already suffered a 
collision.) Suppose there are N nodes. Then the probability that a given slot is a suc-
cessful slot is the probability that one of the nodes transmits and that the remaining 
N - 1 nodes do not transmit. The probability that a given node transmits is p; the 
probability that the remaining nodes do not transmit is (1 - p)N-1. Therefore, the 
probability a given node has a success is p(1 - p)N-1. Because there are N nodes, 
the probability that any one of the N nodes has a success is Np(1 - p)N-1.

Figure 6.10 ♦  Nodes 1, 2, and 3 collide in the first slot. Node 2 finally 
succeeds in the fourth slot, node 1 in the eighth slot, and 
node 3 in the ninth slot
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Thus, when there are N active nodes, the efficiency of slotted ALOHA is 
Np(1 - p)N-1. To obtain the maximum efficiency for N active nodes, we have to find the 
p* that maximizes this expression. (See the homework problems for a general outline of  
this derivation.) And to obtain the maximum efficiency for a large number of active 
nodes, we take the limit of Np*(1 - p*)N-1 as N approaches infinity. (Again, see the 
homework problems.) After performing these calculations, we’ll find that the maximum 
efficiency of the protocol is given by 1/e =  0.37. That is, when a large number of nodes 
have many frames to transmit, then (at best) only 37 percent of the slots do useful work. 
Thus, the effective transmission rate of the channel is not R bps but only 0.37 R bps! 
A similar analysis also shows that 37 percent of the slots go empty and 26 percent 
of slots have collisions. Imagine the poor network administrator who has purchased a 
100-Mbps slotted ALOHA system, expecting to be able to use the network to transmit 
data among a large number of users at an aggregate rate of, say, 80 Mbps! Although the 
channel is capable of transmitting a given frame at the full channel rate of 100 Mbps, in 
the long run, the successful throughput of this channel will be less than 37 Mbps.

ALOHA

The slotted ALOHA protocol required that all nodes synchronize their transmissions 
to start at the beginning of a slot. The first ALOHA protocol [Abramson 1970] was 
actually an unslotted, fully decentralized protocol. In pure ALOHA, when a frame 
first arrives (that is, a network-layer datagram is passed down from the network layer 
at the sending node), the node immediately transmits the frame in its entirety into the 
broadcast channel. If a transmitted frame experiences a collision with one or more 
other transmissions, the node will then immediately (after completely transmitting 
its collided frame) retransmit the frame with probability p. Otherwise, the node waits 
for a frame transmission time. After this wait, it then transmits the frame with prob-
ability p, or waits (remaining idle) for another frame time with probability 1 – p.

To determine the maximum efficiency of pure ALOHA, we focus on an individual 
node. We’ll make the same assumptions as in our slotted ALOHA analysis and take the 
frame transmission time to be the unit of time. At any given time, the probability that a 
node is transmitting a frame is p. Suppose this frame begins transmission at time t0. As 
shown in Figure 6.11, in order for this frame to be successfully transmitted, no other 
nodes can begin their transmission in the interval of time [t0 - 1, t0]. Such a transmis-
sion would overlap with the beginning of the transmission of node i’s frame. The prob-
ability that all other nodes do not begin a transmission in this interval is (1 - p)N-1. 
Similarly, no other node can begin a transmission while node i is transmitting, as such a 
transmission would overlap with the latter part of node i’s transmission. The probabil-
ity that all other nodes do not begin a transmission in this interval is also (1 - p)N-1. 
Thus, the probability that a given node has a successful transmission is p(1 - p)2(N-1).  
By taking limits as in the slotted ALOHA case, we find that the maximum efficiency 
of the pure ALOHA protocol is only 1/(2e)—exactly half that of slotted ALOHA. This 
then is the price to be paid for a fully decentralized ALOHA protocol.
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Carrier Sense Multiple Access (CSMA)

In both slotted and pure ALOHA, a node’s decision to transmit is made indepen-
dently of the activity of the other nodes attached to the broadcast channel. In particu-
lar, a node neither pays attention to whether another node happens to be transmitting 
when it begins to transmit, nor stops transmitting if another node begins to interfere 
with its transmission. In our cocktail party analogy, ALOHA protocols are quite 
like a boorish partygoer who continues to chatter away regardless of whether other 
people are talking. As humans, we have human protocols that allow us not only to 
behave with more civility, but also to decrease the amount of time spent “colliding” 
with each other in conversation and, consequently, to increase the amount of data we 
exchange in our conversations. Specifically, there are two important rules for polite 
human conversation:

• Listen before speaking. If someone else is speaking, wait until they are finished. 
In the networking world, this is called carrier sensing—a node listens to the 
channel before transmitting. If a frame from another node is currently being trans-
mitted into the channel, a node then waits until it detects no transmissions for a 
short amount of time and then begins transmission.

• If someone else begins talking at the same time, stop talking. In the network-
ing world, this is called collision detection—a transmitting node listens to the 
channel while it is transmitting. If it detects that another node is transmitting an 
interfering frame, it stops transmitting and waits a random amount of time before 
repeating the sense-and-transmit-when-idle cycle.

These two rules are embodied in the family of carrier sense multiple access 
(CSMA) and CSMA with collision detection (CSMA/CD) protocols [Kleinrock 
1975b; Metcalfe 1976; Lam 1980; Rom 1990]. Many variations on CSMA and 

Figure 6.11 ♦ Interfering transmissions in pure ALOHA
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CSMA/CD have been proposed. Here, we’ll consider a few of the most important, 
and fundamental, characteristics of CSMA and CSMA/CD.

The first question that you might ask about CSMA is why, if all nodes perform 
carrier sensing, do collisions occur in the first place? After all, a node will refrain 
from transmitting whenever it senses that another node is transmitting. The answer 
to the question can best be illustrated using space-time diagrams [Molle 1987]. 
 Figure 6.12 shows a space-time diagram of four nodes (A, B, C, D) attached to a 
linear broadcast bus. The horizontal axis shows the position of each node in space; 
the vertical axis represents time.

At time t0, node B senses the channel is idle, as no other nodes are currently trans-
mitting. Node B thus begins transmitting, with its bits propagating in both directions 
along the broadcast medium. The downward propagation of B’s bits in Figure 6.12 
with increasing time indicates that a nonzero amount of time is needed for B’s bits 
actually to propagate (albeit at near the speed of light) along the broadcast medium. At 
time t1 (t1 7 t0), node D has a frame to send. Although node B is currently transmit-
ting at time t1, the bits being transmitted by B have yet to reach D, and thus D senses 

NORM ABRAMSON AND ALOHANET

Norm Abramson, a PhD engineer, had a passion for surfing and an interest in 
packet switching. This combination of interests brought him to the University of 
Hawaii in 1969. Hawaii consists of many mountainous islands, making it difficult 
to install and operate land-based networks. When not surfing, Abramson thought 
about how to design a network that does packet switching over radio. The network 
he designed had one central host and several secondary nodes scattered over the 
Hawaiian Islands. The network had two channels, each using a different frequency 
band. The downlink channel broadcasted packets from the central host to the sec-
ondary hosts; and the upstream channel sent packets from the secondary hosts to 
the central host. In addition to sending informational packets, the central host also 
sent on the downstream channel an acknowledgment for each packet successfully 
received from the secondary hosts.

Because the secondary hosts transmitted packets in a decentralized fashion, col-
lisions on the upstream channel inevitably occurred. This observation led Abramson 
to devise the pure ALOHA protocol, as described in this chapter. In 1970, with 
continued funding from ARPA, Abramson connected his ALOHAnet to the ARPAnet. 
Abramson’s work is important not only because it was the first example of a radio 
packet network, but also because it inspired Bob Metcalfe. A few years later, 
Metcalfe modified the ALOHA protocol to create the CSMA/CD protocol and the 
Ethernet LAN.

CASE HISTORY
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the channel idle at t1. In accordance with the CSMA protocol, D thus begins transmit-
ting its frame. A short time later, B’s transmission begins to interfere with D’s trans-
mission at D. From Figure 6.12, it is evident that the end-to-end channel propagation 
delay of a broadcast channel—the time it takes for a signal to propagate from one of 
the nodes to another—will play a crucial role in determining its performance. The 
longer this propagation delay, the larger the chance that a carrier-sensing node is not 
yet able to sense a transmission that has already begun at another node in the network.

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

In Figure 6.12, nodes do not perform collision detection; both B and D continue to 
transmit their frames in their entirety even though a collision has occurred. When a 
node performs collision detection, it ceases transmission as soon as it detects a col-
lision. Figure 6.13 shows the same scenario as in Figure 6.12, except that the two 

Figure 6.12 ♦  Space-time diagram of two CSMA nodes with colliding 
transmissions
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nodes each abort their transmission a short time after detecting a collision. Clearly, 
adding collision detection to a multiple access protocol will help protocol perfor-
mance by not transmitting a useless, damaged (by interference with a frame from 
another node) frame in its entirety.

Before analyzing the CSMA/CD protocol, let us now summarize its operation 
from the perspective of an adapter (in a node) attached to a broadcast channel:

 1. The adapter obtains a datagram from the network layer, prepares a link-layer 
frame, and puts the frame adapter buffer.

 2. If the adapter senses that the channel is idle (that is, there is no signal energy 
entering the adapter from the channel), it starts to transmit the frame. If, on the 
other hand, the adapter senses that the channel is busy, it waits until it senses 
no signal energy and then starts to transmit the frame.

 3. While transmitting, the adapter monitors for the presence of signal energy 
coming from other adapters using the broadcast channel.

Figure 6.13 ♦ CSMA with collision detection
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 4. If the adapter transmits the entire frame without detecting signal energy from 
other adapters, the adapter is finished with the frame. If, on the other hand, the 
adapter detects signal energy from other adapters while transmitting, it aborts 
the transmission (that is, it stops transmitting its frame).

 5. After aborting, the adapter waits a random amount of time and then returns to 
step 2.

The need to wait a random (rather than fixed) amount of time is hopefully clear—if 
two nodes transmitted frames at the same time and then both waited the same fixed 
amount of time, they’d continue colliding forever. But what is a good interval of 
time from which to choose the random backoff time? If the interval is large and the 
number of colliding nodes is small, nodes are likely to wait a large amount of time 
(with the channel remaining idle) before repeating the sense-and-transmit-when-
idle step. On the other hand, if the interval is small and the number of colliding 
nodes is large, it’s likely that the chosen random values will be nearly the same, 
and transmitting nodes will again collide. What we’d like is an interval that is short 
when the number of colliding nodes is small, and long when the number of colliding 
nodes is large.

The binary exponential backoff algorithm, used in Ethernet as well as in DOC-
SIS cable network multiple access protocols [DOCSIS 3.1 2014], elegantly solves 
this problem. Specifically, when transmitting a frame that has already experienced n 
collisions, a node chooses the value of K at random from {0,1,2, . . . . 2n-1}. Thus, 
the more collisions experienced by a frame, the larger the interval from which K is 
chosen. For Ethernet, the actual amount of time a node waits is K # 512 bit times (i.e., 
K times the amount of time needed to send 512 bits into the Ethernet) and the maxi-
mum value that n can take is capped at 10.

Let’s look at an example. Suppose that a node attempts to transmit a frame for 
the first time and while transmitting it detects a collision. The node then chooses  
K =  0 with probability 0.5 or chooses K = 1 with probability 0.5. If the node 
chooses K =  0, then it immediately begins sensing the channel. If the node chooses 
K =  1, it waits 512 bit times (e.g., 5.12 microseconds for a 100 Mbps Ethernet) 
before beginning the sense-and-transmit-when-idle cycle. After a second collision, 
K is chosen with equal probability from {0,1,2,3}. After three collisions, K is chosen 
with equal probability from {0,1,2,3,4,5,6,7}. After 10 or more collisions, K is cho-
sen with equal probability from {0,1,2, . . . , 1023}. Thus, the size of the sets from 
which K is chosen grows exponentially with the number of collisions; for this reason 
this algorithm is referred to as binary exponential backoff.

We also note here that each time a node prepares a new frame for transmission, 
it runs the CSMA/CD algorithm, not taking into account any collisions that may 
have occurred in the recent past. So it is possible that a node with a new frame will 
immediately be able to sneak in a successful transmission while several other nodes 
are in the exponential backoff state.
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CSMA/CD Efficiency

When only one node has a frame to send, the node can transmit at the full channel 
rate (e.g., for Ethernet typical rates are 10 Mbps, 100 Mbps, or 1 Gbps). However, if 
many nodes have frames to transmit, the effective transmission rate of the channel 
can be much less. We define the efficiency of CSMA/CD to be the long-run fraction 
of time during which frames are being transmitted on the channel without collisions 
when there is a large number of active nodes, with each node having a large number 
of frames to send. In order to present a closed-form approximation of the efficiency 
of Ethernet, let dprop denote the maximum time it takes signal energy to propagate 
between any two adapters. Let dtrans be the time to transmit a maximum-size frame 
(approximately 1.2 msecs for a 10 Mbps Ethernet). A derivation of the efficiency of 
CSMA/CD is beyond the scope of this book (see [Lam 1980] and [Bertsekas 1991]). 
Here we simply state the following approximation:

Efficiency =
1

1 + 5dprop>dtrans

We see from this formula that as dprop approaches 0, the efficiency approaches 1. 
This matches our intuition that if the propagation delay is zero, colliding nodes will 
abort immediately without wasting the channel. Also, as dtrans becomes very large, 
efficiency approaches 1. This is also intuitive because when a frame grabs the chan-
nel, it will hold on to the channel for a very long time; thus, the channel will be doing 
productive work most of the time.

6.3.3 Taking-Turns Protocols
Recall that two desirable properties of a multiple access protocol are (1) when only 
one node is active, the active node has a throughput of R bps, and (2) when M nodes 
are active, then each active node has a throughput of nearly R/M bps. The ALOHA 
and CSMA protocols have this first property but not the second. This has motivated 
researchers to create another class of protocols—the taking-turns protocols. As with 
random access protocols, there are dozens of taking-turns protocols, and each one of 
these protocols has many variations. We’ll discuss two of the more important protocols 
here. The first one is the polling protocol. The polling protocol requires one of the 
nodes to be designated as a master node. The master node polls each of the nodes in 
a round-robin fashion. In particular, the master node first sends a message to node 1, 
saying that it (node 1) can transmit up to some maximum number of frames. After node 
1 transmits some frames, the master node tells node 2 it (node 2) can transmit up to the 
maximum number of frames. (The master node can determine when a node has finished 
sending its frames by observing the lack of a signal on the channel.) The procedure con-
tinues in this manner, with the master node polling each of the nodes in a cyclic manner.

The polling protocol eliminates the collisions and empty slots that plague ran-
dom access protocols. This allows polling to achieve a much higher efficiency. But 
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it also has a few drawbacks. The first drawback is that the protocol introduces a 
polling delay—the amount of time required to notify a node that it can transmit. If, 
for example, only one node is active, then the node will transmit at a rate less than 
R bps, as the master node must poll each of the inactive nodes in turn each time the 
active node has sent its maximum number of frames. The second drawback, which is 
potentially more serious, is that if the master node fails, the entire channel becomes 
inoperative. The Bluetooth protocol, which we will study in Section 6.3, is an exam-
ple of a polling protocol.

The second taking-turns protocol is the token-passing protocol. In this pro-
tocol there is no master node. A small, special-purpose frame known as a token is 
exchanged among the nodes in some fixed order. For example, node 1 might always 
send the token to node 2, node 2 might always send the token to node 3, and node 
N might always send the token to node 1. When a node receives a token, it holds 
onto the token only if it has some frames to transmit; otherwise, it immediately for-
wards the token to the next node. If a node does have frames to transmit when it 
receives the token, it sends up to a maximum number of frames and then forwards 
the token to the next node. Token passing is decentralized and highly efficient. But 
it has its problems as well. For example, the failure of one node can crash the entire 
channel. Or if a node accidentally neglects to release the token, then some recovery 
procedure must be invoked to get the token back in circulation. Over the years many 
token-passing protocols have been developed, including the fiber distributed data 
interface (FDDI) protocol [Jain 1994] and the IEEE 802.5 token ring protocol [IEEE 
802.5 2012], and each one had to address these as well as other sticky issues.

6.3.4  DOCSIS: The Link-Layer Protocol for Cable  
Internet Access

In the previous three subsections, we’ve learned about three broad classes of mul-
tiple access protocols: channel partitioning protocols, random access protocols, and 
taking turns protocols. A cable access network will make for an excellent case study 
here, as we’ll find aspects of each of these three classes of multiple access protocols 
with the cable access network!

Recall from Section 1.2.1 that a cable access network typically connects several 
thousand residential cable modems to a cable modem termination system (CMTS) 
at the cable network headend. The Data-Over-Cable Service Interface Specifica-
tions (DOCSIS) [DOCSIS 3.1 2014; Hamzeh 2015] specifies the cable data network 
architecture and its protocols. DOCSIS uses FDM to divide the downstream (CMTS 
to modem) and upstream (modem to CMTS) network segments into multiple fre-
quency channels. Each downstream channel is between 24 MHz and 192 MHz wide, 
with a maximum throughput of approximately 1.6 Gbps per channel; each upstream 
channel has channel widths ranging from 6.4 MHz to 96 MHz, with a maximum 
upstream throughput of approximately 1 Gbps. Each upstream and downstream 
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channel is a broadcast channel. Frames transmitted on the downstream channel by 
the CMTS are received by all cable modems receiving that channel; since there is 
just a single CMTS transmitting into the downstream channel, however, there is no 
multiple access problem. The upstream direction, however, is more interesting and 
technically challenging, since multiple cable modems share the same upstream chan-
nel (frequency) to the CMTS, and thus collisions can potentially occur.

As illustrated in Figure 6.14, each upstream channel is divided into intervals 
of time (TDM-like), each containing a sequence of mini-slots during which cable 
modems can transmit to the CMTS. The CMTS explicitly grants permission to indi-
vidual cable modems to transmit during specific mini-slots. The CMTS accomplishes 
this by sending a control message known as a MAP message on a downstream chan-
nel to specify which cable modem (with data to send) can transmit during which 
mini-slot for the interval of time specified in the control message. Since mini-slots 
are explicitly allocated to cable modems, the CMTS can ensure there are no colliding 
transmissions during a mini-slot.

But how does the CMTS know which cable modems have data to send in the 
first place? This is accomplished by having cable modems send mini-slot-request 
frames to the CMTS during a special set of interval mini-slots that are dedicated for 
this purpose, as shown in Figure 6.14. These mini-slot-request frames are transmit-
ted in a random access manner and so may collide with each other. A cable modem 
can neither sense whether the upstream channel is busy nor detect collisions. Instead, 
the cable modem infers that its mini-slot-request frame experienced a collision if it 
does not receive a response to the requested allocation in the next downstream con-
trol message. When a collision is inferred, a cable modem uses binary exponential 

Figure 6.14 ♦  Upstream and downstream channels between CMTS and 
cable modems
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backoff to defer the retransmission of its mini-slot-request frame to a future time 
slot. When there is little traffic on the upstream channel, a cable modem may actually 
transmit data frames during slots nominally assigned for mini-slot-request frames 
(and thus avoid having to wait for a mini-slot assignment).

A cable access network thus serves as a terrific example of multiple access pro-
tocols in action—FDM, TDM, random access, and centrally allocated time slots all 
within one network!

6.4 Switched Local Area Networks

Having covered broadcast networks and multiple access protocols in the previ-
ous section, let’s turn our attention next to switched local networks. Figure 6.15 
shows a  switched local network connecting three departments, two servers and a 
router with  four switches. Because these switches operate at the link layer, they 
switch  link-layer frames (rather than network-layer datagrams), don’t recognize 
network-layer addresses, and don’t use routing algorithms like OSPF to determine 

Figure 6.15 ♦ An institutional network connected together by four switches
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paths through the network of layer-2 switches. Instead of using IP addresses, we will 
soon see that they use link-layer addresses to forward link-layer frames through the 
network of switches. We’ll begin our study of switched LANs by first covering link-
layer addressing (Section 6.4.1). We then examine the celebrated Ethernet protocol 
(Section 6.4.2). After examining link-layer addressing and Ethernet, we’ll look at 
how link-layer switches operate (Section 6.4.3), and then see (Section 6.4.4) how 
these switches are often used to build large-scale LANs.

6.4.1 Link-Layer Addressing and ARP
Hosts and routers have link-layer addresses. Now you might find this surprising, 
recalling from Chapter 4 that hosts and routers have network-layer addresses as well. 
You might be asking, why in the world do we need to have addresses at both the 
network and link layers? In addition to describing the syntax and function of the 
link-layer addresses, in this section we hope to shed some light on why the two lay-
ers of addresses are useful and, in fact, indispensable. We’ll also cover the Address 
Resolution Protocol (ARP), which provides a mechanism to translate IP addresses to 
link-layer addresses.

MAC Addresses

In truth, it is not hosts and routers that have link-layer addresses but rather their 
adapters (that is, network interfaces) that have link-layer addresses. A host or router 
with multiple network interfaces will thus have multiple link-layer addresses associ-
ated with it, just as it would also have multiple IP addresses associated with it. It’s 
important to note, however, that link-layer switches do not have link-layer addresses 
associated with their interfaces that connect to hosts and routers. This is because the 
job of the link-layer switch is to carry datagrams between hosts and routers; a switch 
does this job transparently, that is, without the host or router having to explicitly 
address the frame to the intervening switch. This is illustrated in Figure 6.16. A link-
layer address is variously called a LAN address, a physical address, or a MAC 
address. Because MAC address seems to be the most popular term, we’ll henceforth 
refer to link-layer addresses as MAC addresses. For most LANs (including Ethernet 
and 802.11 wireless LANs), the MAC address is 6 bytes long, giving 248 possi-
ble MAC addresses. As shown in Figure 6.16, these 6-byte addresses are typically 
expressed in hexadecimal notation, with each byte of the address expressed as a pair 
of hexadecimal numbers. Although MAC addresses were designed to be permanent, 
it is now possible to change an adapter’s MAC address via software. For the rest of 
this section, however, we’ll assume that an adapter’s MAC address is fixed.

One interesting property of MAC addresses is that no two adapters have the 
same address. This might seem surprising given that adapters are manufactured in 
many countries by many companies. How does a company manufacturing adapters in 
Taiwan make sure that it is using different addresses from a company manufacturing 
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adapters in Belgium? The answer is that the IEEE manages the MAC address space. 
In particular, when a company wants to manufacture adapters, it purchases a chunk 
of the address space consisting of 224 addresses for a nominal fee. IEEE allocates the 
chunk of 224 addresses by fixing the first 24 bits of a MAC address and letting the 
company create unique combinations of the last 24 bits for each adapter.

An adapter’s MAC address has a flat structure (as opposed to a hierarchical 
structure) and doesn’t change no matter where the adapter goes. A laptop with an 
Ethernet interface always has the same MAC address, no matter where the computer 
goes. A smartphone with an 802.11 interface always has the same MAC address, no 
matter where the smartphone goes. Recall that, in contrast, IP addresses have a hier-
archical structure (that is, a network part and a host part), and a host’s IP addresses 
needs to be changed when the host moves, i.e., changes the network to which it is 
attached. An adapter’s MAC address is analogous to a person’s social security num-
ber, which also has a flat addressing structure and which doesn’t change no matter 
where the person goes. An IP address is analogous to a person’s postal address, 
which is hierarchical and which must be changed whenever a person moves. Just as a 
person may find it useful to have both a postal address and a social security number, 
it is useful for a host and router interfaces to have both a network-layer address and 
a MAC address.

When an adapter wants to send a frame to some destination adapter, the sending 
adapter inserts the destination adapter’s MAC address into the frame and then sends the 
frame into the LAN. As we will soon see, a switch occasionally broadcasts an incom-
ing frame onto all of its interfaces. We’ll see in Chapter 7 that 802.11 also broadcasts 
frames. Thus, an adapter may receive a frame that isn’t addressed to it. Thus, when 
an adapter receives a frame, it will check to see whether the destination MAC address 

Figure 6.16 ♦  Each interface connected to a LAN has a unique MAC 
address

88-B2-2F-54-1A-0F5C-66-AB-90-75-B1

1A-23-F9-CD-06-9B

49-BD-D2-C7-56-2A
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in the frame matches its own MAC address. If there is a match, the adapter extracts 
the enclosed datagram and passes the datagram up the protocol stack. If there isn’t a 
match, the adapter discards the frame, without passing the network-layer datagram up. 
Thus, the destination only will be interrupted when the frame is received.

However, sometimes a sending adapter does want all the other adapters on the 
LAN to receive and process the frame it is about to send. In this case, the sending 
adapter inserts a special MAC broadcast address into the destination address field 
of the frame. For LANs that use 6-byte addresses (such as Ethernet and 802.11), the 
broadcast address is a string of 48 consecutive 1s (that is, FF-FF-FF-FF-FF-FF in 
hexadecimal notation).

Address Resolution Protocol (ARP)

Because there are both network-layer addresses (for example, Internet IP addresses) 
and link-layer addresses (that is, MAC addresses), there is a need to translate between 
them. For the Internet, this is the job of the Address Resolution Protocol (ARP) 
[RFC 826].

To understand the need for a protocol such as ARP, consider the network 
shown in Figure 6.17. In this simple example, each host and router has a single IP 
address and single MAC address. As usual, IP addresses are shown in dotted-decimal 

KEEPING THE LAYERS INDEPENDENT

There are several reasons why hosts and router interfaces have MAC addresses in 
 addition to network-layer addresses. First, LANs are designed for arbitrary network-layer 
protocols, not just for IP and the Internet. If adapters were assigned IP addresses rather 
than “neutral” MAC addresses, then adapters would not easily be able to support other 
network-layer protocols (for example, IPX or DECnet). Second, if adapters were to use 
network-layer addresses instead of MAC addresses, the network-layer address would have 
to be stored in the adapter RAM and reconfigured every time the adapter was moved (or 
powered up). Another option is to not use any addresses in the adapters and have each 
adapter pass the data (typically, an IP datagram) of each frame it receives up the protocol 
stack. The network layer could then check for a matching network-layer address. One 
problem with this option is that the host would be interrupted by every frame sent on the 
LAN, including by frames that were destined for other hosts on the same broadcast LAN. 
In summary, in order for the layers to be largely independent building blocks in a network 
architecture, different layers need to have their own addressing scheme. We have now 
seen three types of addresses: host names for the application layer, IP addresses for the 
network layer, and MAC addresses for the link layer.

PRINCIPLES IN PRACTICE
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notation and MAC addresses are shown in hexadecimal notation. For the purposes of 
this discussion, we will assume in this section that the switch broadcasts all frames; 
that is, whenever a switch receives a frame on one interface, it forwards the frame 
on all of its other interfaces. In the next section, we will provide a more accurate 
explanation of how switches operate.

Now suppose that the host with IP address 222.222.222.220 wants to send an IP 
datagram to host 222.222.222.222. In this example, both the source and destination 
are in the same subnet, in the addressing sense of Section 4.3.3. To send a datagram, 
the source must give its adapter not only the IP datagram but also the MAC address 
for destination 222.222.222.222. The sending adapter will then construct a link-layer 
frame containing the destination’s MAC address and send the frame into the LAN.

The important question addressed in this section is, How does the sending host 
determine the MAC address for the destination host with IP address 222.222.222.222? 
As you might have guessed, it uses ARP. An ARP module in the sending host takes 
any IP address on the same LAN as input, and returns the corresponding MAC 
address. In the example at hand, sending host 222.222.222.220 provides its ARP 
module the IP address 222.222.222.222, and the ARP module returns the corre-
sponding MAC address 49-BD-D2-C7-56-2A.

So we see that ARP resolves an IP address to a MAC address. In many ways 
it is analogous to DNS (studied in Section 2.5), which resolves host names to IP 
addresses. However, one important difference between the two resolvers is that DNS 
resolves host names for hosts anywhere in the Internet, whereas ARP resolves IP 
addresses only for hosts and router interfaces on the same subnet. If a node in Cali-
fornia were to try to use ARP to resolve the IP address for a node in Mississippi, ARP 
would return with an error.

Figure 6.17 ♦  Each interface on a LAN has an IP address and a MAC 
address
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Now that we have explained what ARP does, let’s look at how it works. Each host 
and router has an ARP table in its memory, which contains mappings of IP addresses 
to MAC addresses. Figure 6.18 shows what an ARP table in host 222.222.222.220 
might look like. The ARP table also contains a time-to-live (TTL) value, which indi-
cates when each mapping will be deleted from the table. Note that a table does not 
necessarily contain an entry for every host and router on the subnet; some may have 
never been entered into the table, and others may have expired. A typical expiration 
time for an entry is 20 minutes from when an entry is placed in an ARP table.

Now suppose that host 222.222.222.220 wants to send a datagram that is IP-
addressed to another host or router on that subnet. The sending host needs to obtain the 
MAC address of the destination given the IP address. This task is easy if the sender’s 
ARP table has an entry for the destination node. But what if the ARP table doesn’t cur-
rently have an entry for the destination? In particular, suppose 222.222.222.220 wants 
to send a datagram to 222.222.222.222. In this case, the sender uses the ARP protocol 
to resolve the address. First, the sender constructs a special packet called an ARP 
packet. An ARP packet has several fields, including the sending and receiving IP and 
MAC addresses. Both ARP query and response packets have the same format. The pur-
pose of the ARP query packet is to query all the other hosts and routers on the subnet 
to determine the MAC address corresponding to the IP address that is being resolved.

Returning to our example, 222.222.222.220 passes an ARP query packet to 
the adapter along with an indication that the adapter should send the packet to the 
MAC broadcast address, namely, FF-FF-FF-FF-FF-FF. The adapter encapsulates the 
ARP packet in a link-layer frame, uses the broadcast address for the frame’s destina-
tion address, and transmits the frame into the subnet. Recalling our social security 
 number/postal address analogy, an ARP query is equivalent to a person shouting out 
in a crowded room of cubicles in some company (say, AnyCorp): “What is the social 
security number of the person whose postal address is Cubicle 13, Room 112, Any-
Corp, Palo Alto, California?” The frame containing the ARP query is received by all 
the other adapters on the subnet, and (because of the broadcast address) each adapter 
passes the ARP packet within the frame up to its ARP module. Each of these ARP 
modules checks to see if its IP address matches the destination IP address in the ARP 
packet. The one with a match sends back to the querying host a response ARP packet 
with the desired mapping. The querying host 222.222.222.220 can then update its 
ARP table and send its IP datagram, encapsulated in a link-layer frame whose desti-
nation MAC is that of the host or router responding to the earlier ARP query.

Figure 6.18 ♦ A possible ARP table in 222.222.222.220

IP Address MAC Address TTL

222.222.222.221 88-B2-2F-54-1A-0F 13:45:00

222.222.222.223 5C-66-AB-90-75-B1 13:52:00
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There are a couple of interesting things to note about the ARP protocol. First, 
the query ARP message is sent within a broadcast frame, whereas the response 
ARP message is sent within a standard frame. Before reading on you should think 
about why this is so. Second, ARP is plug-and-play; that is, an ARP table gets built 
 automatically—it doesn’t have to be configured by a system administrator. And if a 
host becomes disconnected from the subnet, its entry is eventually deleted from the 
other ARP tables in the subnet.

Students often wonder if ARP is a link-layer protocol or a network-layer proto-
col. As we’ve seen, an ARP packet is encapsulated within a link-layer frame and thus 
lies architecturally above the link layer. However, an ARP packet has fields contain-
ing link-layer addresses and thus is arguably a link-layer protocol, but it also contains 
network-layer addresses and thus is also arguably a network-layer protocol. In the 
end, ARP is probably best considered a protocol that straddles the boundary between 
the link and network layers—not fitting neatly into the simple layered protocol stack 
we studied in Chapter 1. Such are the complexities of real-world protocols!

Sending a Datagram off the Subnet

It should now be clear how ARP operates when a host wants to send a datagram to 
another host on the same subnet. But now let’s look at the more complicated situ-
ation when a host on a subnet wants to send a network-layer datagram to a host off 
the subnet (that is, across a router onto another subnet). Let’s discuss this issue in 
the context of Figure 6.19, which shows a simple network consisting of two subnets 
interconnected by a router.

There are several interesting things to note about Figure 6.19. Each host has 
exactly one IP address and one adapter. But, as discussed in Chapter 4, a router has 
an IP address for each of its interfaces. For each router interface there is also an ARP 
module (in the router) and an adapter. Because the router in Figure 6.19 has two 
interfaces, it has two IP addresses, two ARP modules, and two adapters. Of course, 
each adapter in the network has its own MAC address.

Figure 6.19 ♦ Two subnets interconnected by a router
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Also note that Subnet 1 has the network address 111.111.111/24 and that Subnet 2  
has the network address 222.222.222/24. Thus, all of the interfaces connected to Sub-
net 1 have addresses of the form 111.111.111.xxx and all of the interfaces connected 
to Subnet 2 have addresses of the form 222.222.222.xxx.

Now let’s examine how a host on Subnet 1 would send a datagram to a host 
on Subnet 2. Specifically, suppose that host 111.111.111.111 wants to send an IP 
datagram to a host 222.222.222.222. The sending host passes the datagram to its 
adapter, as usual. But the sending host must also indicate to its adapter an appro-
priate destination MAC address. What MAC address should the adapter use? One 
might be tempted to guess that the appropriate MAC address is that of the adapter for 
host 222.222.222.222, namely, 49-BD-D2-C7-56-2A. This guess, however, would 
be wrong! If the sending adapter were to use that MAC address, then none of the 
 adapters on Subnet 1 would bother to pass the IP datagram up to its network layer, 
since the frame’s destination address would not match the MAC address of any 
adapter on Subnet 1. The datagram would just die and go to datagram heaven.

If we look carefully at Figure 6.19, we see that in order for a datagram to go from 
111.111.111.111 to a host on Subnet 2, the datagram must first be sent to the router 
interface 111.111.111.110, which is the IP address of the first-hop router on the 
path to the final destination. Thus, the appropriate MAC address for the frame is the 
address of the adapter for router interface 111.111.111.110, namely, E6-E9-00-17-
BB-4B. How does the sending host acquire the MAC address for 111.111.111.110? 
By using ARP, of course! Once the sending adapter has this MAC address, it cre-
ates a frame (containing the datagram addressed to 222.222.222.222) and sends the 
frame into Subnet 1. The router adapter on Subnet 1 sees that the link-layer frame 
is addressed to it, and therefore passes the frame to the network layer of the router. 
Hooray—the IP datagram has successfully been moved from source host to the 
router! But we are not finished. We still have to move the datagram from the router 
to the destination. The router now has to determine the correct interface on which the 
datagram is to be forwarded. As discussed in Chapter 4, this is done by consulting a 
forwarding table in the router. The forwarding table tells the router that the datagram 
is to be forwarded via router interface 222.222.222.220. This interface then passes 
the datagram to its adapter, which encapsulates the datagram in a new frame and 
sends the frame into Subnet 2. This time, the destination MAC address of the frame 
is indeed the MAC address of the ultimate destination. And how does the router 
obtain this destination MAC address? From ARP, of course!

ARP for Ethernet is defined in RFC 826. A nice introduction to ARP is given in 
the TCP/IP tutorial, RFC 1180. We’ll explore ARP in more detail in the homework 
problems.

6.4.2 Ethernet
Ethernet has pretty much taken over the wired LAN market. In the 1980s and the 
early 1990s, Ethernet faced many challenges from other LAN technologies,  including 
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token ring, FDDI, and ATM. Some of these other technologies succeeded in captur-
ing a part of the LAN market for a few years. But since its invention in the mid-
1970s, Ethernet has continued to evolve and grow and has held on to its dominant 
position. Today, Ethernet is by far the most prevalent wired LAN technology, and it 
is likely to remain so for the foreseeable future. One might say that Ethernet has been 
to local area networking what the Internet has been to global networking.

There are many reasons for Ethernet’s success. First, Ethernet was the first 
widely deployed high-speed LAN. Because it was deployed early, network admin-
istrators became intimately familiar with Ethernet—its wonders and its quirks—and 
were reluctant to switch over to other LAN technologies when they came on the 
scene. Second, token ring, FDDI, and ATM were more complex and expensive than 
Ethernet, which further discouraged network administrators from switching over. 
Third, the most compelling reason to switch to another LAN technology (such as 
FDDI or ATM) was usually the higher data rate of the new technology; however, 
Ethernet always fought back, producing versions that operated at equal data rates 
or higher. Switched Ethernet was also introduced in the early 1990s, which further 
increased its effective data rates. Finally, because Ethernet has been so popular, Eth-
ernet hardware (in particular, adapters and switches) has become a commodity and 
is remarkably cheap.

The original Ethernet LAN was invented in the mid-1970s by Bob Metcalfe 
and David Boggs. The original Ethernet LAN used a coaxial bus to interconnect the 
nodes. Bus topologies for Ethernet actually persisted throughout the 1980s and into 
the mid-1990s. Ethernet with a bus topology is a broadcast LAN—all transmitted 
frames travel to and are processed by all adapters connected to the bus. Recall that 
we covered Ethernet’s CSMA/CD multiple access protocol with binary exponential 
backoff in Section 6.3.2.

By the late 1990s, most companies and universities had replaced their LANs 
with Ethernet installations using a hub-based star topology. In such an installation 
the hosts (and routers) are directly connected to a hub with twisted-pair copper wire. 
A hub is a physical-layer device that acts on individual bits rather than frames. 
When a bit, representing a zero or a one, arrives from one interface, the hub sim-
ply re-creates the bit, boosts its energy strength, and transmits the bit onto all the 
other interfaces. Thus, Ethernet with a hub-based star topology is also a broadcast 
LAN—whenever a hub receives a bit from one of its interfaces, it sends a copy out 
on all of its other interfaces. In particular, if a hub receives frames from two different 
interfaces at the same time, a collision occurs and the nodes that created the frames 
must retransmit.

In the early 2000s, Ethernet experienced yet another major evolutionary change. 
Ethernet installations continued to use a star topology, but the hub at the center was 
replaced with a switch. We’ll be examining switched Ethernet in depth later in this 
chapter. For now, we only mention that a switch is not only “collision-less” but is 
also a bona-fide store-and-forward packet switch; but unlike routers, which operate 
up through layer 3, a switch operates only up through layer 2.
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Ethernet Frame Structure

We can learn a lot about Ethernet by examining the Ethernet frame, which is shown 
in Figure 6.20. To give this discussion about Ethernet frames a tangible context, 
let’s consider sending an IP datagram from one host to another host, with both 
hosts on the same Ethernet LAN (for example, the Ethernet LAN in Figure 6.17.) 
(Although the payload of our Ethernet frame is an IP datagram, we note that an 
Ethernet frame can carry other network-layer packets as well.) Let the sending 
adapter, adapter A, have the MAC address AA-AA-AA-AA-AA-AA and the 
receiving adapter, adapter B, have the MAC address BB-BB-BB-BB-BB-BB. The 
sending adapter encapsulates the IP datagram within an Ethernet frame and passes 
the frame to the physical layer. The receiving adapter receives the frame from the 
physical layer, extracts the IP datagram, and passes the IP datagram to the network 
layer. In this context, let’s now examine the six fields of the Ethernet frame, as 
shown in Figure 6.20.

• Data field (46 to 1,500 bytes). This field carries the IP datagram. The maxi-
mum transmission unit (MTU) of Ethernet is 1,500 bytes. This means that if the 
IP datagram exceeds 1,500 bytes, then the host has to fragment the datagram, 
as discussed in Section 4.3.2. The minimum size of the data field is 46 bytes. 
This means that if the IP datagram is less than 46 bytes, the data field has to be 
“stuffed” to fill it out to 46 bytes. When stuffing is used, the data passed to the 
network layer contains the stuffing as well as an IP datagram. The network layer 
uses the length field in the IP datagram header to remove the stuffing.

• Destination address (6 bytes). This field contains the MAC address of the 
destination adapter, BB-BB-BB-BB-BB-BB. When adapter B receives an Eth-
ernet frame whose destination address is either BB-BB-BB-BB-BB-BB or the 
MAC broadcast address, it passes the contents of the frame’s data field to the 
network layer; if it receives a frame with any other MAC address, it discards 
the frame.

• Source address (6 bytes). This field contains the MAC address of the adapter that 
transmits the frame onto the LAN, in this example, AA-AA-AA-AA-AA-AA.

• Type field (2 bytes). The type field permits Ethernet to multiplex network-layer 
protocols. To understand this, we need to keep in mind that hosts can use other 
network-layer protocols besides IP. In fact, a given host may support multi-
ple network-layer protocols using different protocols for different applications. 

Figure 6.20 ♦ Ethernet frame structure
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For this reason, when the Ethernet frame arrives at adapter B, adapter B needs  
to know to which network-layer protocol it should pass (that is, demultiplex)  
the contents of the data field. IP and other network-layer protocols (for exam-
ple, Novell IPX or AppleTalk) each have their own, standardized type number.  
Furthermore, the ARP protocol (discussed in the previous section) has its own  
type number, and if the arriving frame contains an ARP packet (i.e., has a type  
field of 0806 hexadecimal), the ARP packet will be demultiplexed up to 
the ARP protocol. Note that the type field is analogous to the protocol field 
in the network-layer datagram and the port-number fields in the transport-layer 
segment; all of these fields serve to glue a protocol at one layer to a protocol at 
the layer above.

• Cyclic redundancy check (CRC) (4 bytes). As discussed in Section 6.2.3, the pur-
pose of the CRC field is to allow the receiving adapter, adapter B, to detect bit 
errors in the frame.

• Preamble (8 bytes). The Ethernet frame begins with an 8-byte preamble field. 
Each of the first 7 bytes of the preamble has a value of 10101010; the last byte 
is 10101011. The first 7 bytes of the preamble serve to “wake up” the receiv-
ing adapters and to synchronize their clocks to that of the sender’s clock. Why 
should the clocks be out of synchronization? Keep in mind that adapter A aims 
to transmit the frame at 10 Mbps, 100 Mbps, or 1 Gbps, depending on the type 
of Ethernet LAN. However, because nothing is absolutely perfect, adapter A will 
not transmit the frame at exactly the target rate; there will always be some drift 
from the target rate, a drift which is not known a priori by the other adapters on 
the LAN. A receiving adapter can lock onto adapter A’s clock simply by locking 
onto the bits in the first 7 bytes of the preamble. The last 2 bits of the eighth byte 
of the preamble (the first two consecutive 1s) alert adapter B that the “important 
stuff” is about to come.

All of the Ethernet technologies provide connectionless service to the network 
layer. That is, when adapter A wants to send a datagram to adapter B, adapter A 
encapsulates the datagram in an Ethernet frame and sends the frame into the LAN, 
without first handshaking with adapter B. This layer-2 connectionless service is anal-
ogous to IP’s layer-3 datagram service and UDP’s layer-4 connectionless service.

Ethernet technologies provide an unreliable service to the network layer. Spe-
cifically, when adapter B receives a frame from adapter A, it runs the frame through 
a CRC check, but neither sends an acknowledgment when a frame passes the CRC 
check nor sends a negative acknowledgment when a frame fails the CRC check. 
When a frame fails the CRC check, adapter B simply discards the frame. Thus, 
adapter A has no idea whether its transmitted frame reached adapter B and passed 
the CRC check. This lack of reliable transport (at the link layer) helps to make Eth-
ernet simple and cheap. But it also means that the stream of datagrams passed to the 
network layer can have gaps.
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If there are gaps due to discarded Ethernet frames, does the application at 
Host B see gaps as well? As we learned in Chapter 3, this depends on whether 
the application is using UDP or TCP. If the application is using UDP, then the 
application in Host B will indeed see gaps in the data. On the other hand, if the 
application is using TCP, then TCP in Host B will not acknowledge the data 
contained in discarded frames, causing TCP in Host A to retransmit. Note that 
when TCP retransmits data, the data will eventually return to the Ethernet adapter 
at which it was discarded. Thus, in this sense, Ethernet does retransmit data, 
although Ethernet is unaware of whether it is transmitting a brand-new datagram 
with brand-new data, or a datagram that contains data that has already been trans-
mitted at least once.

Ethernet Technologies

In our discussion above, we’ve referred to Ethernet as if it were a single protocol 
standard. But in fact, Ethernet comes in many different flavors, with somewhat bewil-
dering acronyms such as 10BASE-T, 10BASE-2, 100BASE-T, 1000BASE-LX, 

BOB METCALFE AND ETHERNET

As a PhD student at Harvard University in the early 1970s, Bob Metcalfe worked 
on the ARPAnet at MIT. During his studies, he also became exposed to Abramson’s 
work on ALOHA and random access protocols. After completing his PhD and just 
before beginning a job at Xerox Palo Alto Research Center (Xerox PARC), he vis-
ited Abramson and his University of Hawaii colleagues for three months, getting a 
firsthand look at ALOHAnet. At Xerox PARC, Metcalfe became exposed to Alto com-
puters, which in many ways were the forerunners of the personal computers of the 
1980s. Metcalfe saw the need to network these computers in an inexpensive man-
ner. So armed with his knowledge about ARPAnet, ALOHAnet, and random access 
protocols, Metcalfe—along with colleague David Boggs—invented Ethernet.

Metcalfe and Boggs’s original Ethernet ran at 2.94 Mbps and linked up to 256 
hosts separated by up to one mile. Metcalfe and Boggs succeeded at getting most of 
the researchers at Xerox PARC to communicate through their Alto computers. Metcalfe 
then forged an alliance between Xerox, Digital, and Intel to establish Ethernet as a 
10 Mbps Ethernet standard, ratified by the IEEE. Xerox did not show much interest in 
commercializing Ethernet. In 1979, Metcalfe formed his own company, 3Com, which 
developed and commercialized networking technology, including Ethernet technol-
ogy. In particular, 3Com developed and marketed Ethernet cards in the early 1980s 
for the immensely popular IBM PCs.

CASE HISTORY
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10GBASE-T and 40GBASE-T. These and many other Ethernet technologies have 
been standardized over the years by the IEEE 802.3 CSMA/CD (Ethernet) working 
group [IEEE 802.3 2020]. While these acronyms may appear bewildering, there is 
actually considerable order here. The first part of the acronym refers to the speed of 
the standard: 10, 100, 1000, or 10G, for 10 Megabit (per second), 100 Megabit, Giga-
bit, 10 Gigabit and 40 Gigibit Ethernet, respectively. “BASE” refers to baseband 
Ethernet, meaning that the physical media only carries Ethernet traffic; almost all of 
the 802.3 standards are for baseband Ethernet. The final part of the acronym refers to 
the physical media itself; Ethernet is both a link-layer and a physical-layer specifica-
tion and is carried over a variety of physical media including coaxial cable, copper 
wire, and fiber. Generally, a “T” refers to twisted-pair copper wires.

Historically, an Ethernet was initially conceived of as a segment of coaxial cable. 
The early 10BASE-2 and 10BASE-5 standards specify 10 Mbps Ethernet over two 
types of coaxial cable, each limited in length to 500 meters. Longer runs could be 
obtained by using a repeater—a physical-layer device that receives a signal on the 
input side, and regenerates the signal on the output side. A coaxial cable corresponds 
nicely to our view of Ethernet as a broadcast medium—all frames transmitted by one 
interface are received at other interfaces, and Ethernet’s CDMA/CD protocol nicely 
solves the multiple access problem. Nodes simply attach to the cable, and voila, we 
have a local area network!

Ethernet has passed through a series of evolutionary steps over the years, and 
today’s Ethernet is very different from the original bus-topology designs using coax-
ial cable. In most installations today, nodes are connected to a switch via point-to-
point segments made of twisted-pair copper wires or fiber-optic cables, as shown in 
Figures 6.15–6.17.

In the mid-1990s, Ethernet was standardized at 100 Mbps, 10 times faster than 
10 Mbps Ethernet. The original Ethernet MAC protocol and frame format were pre-
served, but higher-speed physical layers were defined for copper wire (100BASE-T) 
and fiber (100BASE-FX, 100BASE-SX, 100BASE-BX). Figure 6.21 shows these 
different standards and the common Ethernet MAC protocol and frame format. 
100 Mbps Ethernet is limited to a 100-meter distance over twisted pair, and to 
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100BASE-T4
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Figure 6.21 ♦  100 Mbps Ethernet standards: A common link layer, 
 different physical layers
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several kilometers over fiber, allowing Ethernet switches in different buildings to 
be connected.

Gigabit Ethernet is an extension to the highly successful 10 Mbps and 100 Mbps 
Ethernet standards. Offering a raw data rate of 40,000 Mbps, 40 Gigabit Ethernet 
maintains full compatibility with the huge installed base of Ethernet equipment. The 
standard for Gigabit Ethernet, referred to as IEEE 802.3z, does the following:

• Uses the standard Ethernet frame format (Figure 6.20) and is backward com-
patible with 10BASE-T and 100BASE-T technologies. This allows for easy 
integration of Gigabit Ethernet with the existing installed base of Ethernet 
equipment.

• Allows for point-to-point links as well as shared broadcast channels. Point-to-
point links use switches while broadcast channels use hubs, as described earlier. 
In Gigabit Ethernet jargon, hubs are called buffered distributors.

• Uses CSMA/CD for shared broadcast channels. In order to have acceptable effi-
ciency, the maximum distance between nodes must be severely restricted.

• Allows for full-duplex operation at 40 Gbps in both directions for point-to-point 
channels.

Initially operating over optical fiber, Gigabit Ethernet is now able to run over cat-
egory 5 UTP cabling (for 1000BASE-T and 10GBASE-T).

Let’s conclude our discussion of Ethernet technology by posing a question 
that may have begun troubling you. In the days of bus topologies and hub-based 
star topologies, Ethernet was clearly a broadcast link (as defined in Section 6.3) in 
which frame collisions occurred when nodes transmitted at the same time. To deal 
with these collisions, the Ethernet standard included the CSMA/CD protocol, which 
is particularly effective for a wired broadcast LAN spanning a small geographical 
region. But if the prevalent use of Ethernet today is a switch-based star topology, 
using store-and-forward packet switching, is there really a need anymore for an Eth-
ernet MAC protocol? As we’ll see shortly, a switch coordinates its transmissions 
and never forwards more than one frame onto the same interface at any time. Fur-
thermore, modern switches are full-duplex, so that a switch and a node can each 
send frames to each other at the same time without interference. In other words, in 
a switch-based Ethernet LAN there are no collisions and, therefore, there is no need 
for a MAC protocol!

As we’ve seen, today’s Ethernets are very different from the original Ethernet 
conceived by Metcalfe and Boggs more than 40 years ago—speeds have increased 
by three orders of magnitude, Ethernet frames are carried over a variety of media, 
switched-Ethernets have become dominant, and now even the MAC protocol is often 
unnecessary! Is all of this really still Ethernet? The answer, of course, is “yes, by 
definition.” It is interesting to note, however, that through all of these changes, there 
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has indeed been one enduring constant that has remained unchanged over 30 years—
Ethernet’s frame format. Perhaps this then is the one true and timeless centerpiece of 
the Ethernet standard.

6.4.3 Link-Layer Switches
Up until this point, we have been purposefully vague about what a switch actually 
does and how it works. The role of the switch is to receive incoming link-layer 
frames and forward them onto outgoing links; we’ll study this forwarding function 
in detail in this subsection. We’ll see that the switch itself is transparent to the 
hosts and routers in the subnet; that is, a host/router addresses a frame to another 
host/router (rather than addressing the frame to the switch) and happily sends the 
frame into the LAN, unaware that a switch will be receiving the frame and forward-
ing it. The rate at which frames arrive to any one of the switch’s output interfaces 
may temporarily exceed the link capacity of that interface. To accommodate this 
problem, switch output interfaces have buffers, in much the same way that router 
output interfaces have buffers for datagrams. Let’s now take a closer look at how 
switches operate.

Forwarding and Filtering

Filtering is the switch function that determines whether a frame should be for-
warded to some interface or should just be dropped. Forwarding is the switch 
function that determines the interfaces to which a frame should be directed, and 
then moves the frame to those interfaces. Switch filtering and forwarding are done 
with a switch table. The switch table contains entries for some, but not necessarily  
all,  of the hosts and routers on a LAN. An entry in the switch table contains 
(1) a MAC address, (2) the switch interface that leads toward that MAC address, 
and (3) the time at which the entry was placed in the table. An example switch table 
for the uppermost switch in Figure 6.15 is shown in Figure 6.22. This description 
of frame forwarding may sound similar to our discussion of datagram forwarding 

Figure 6.22 ♦  Portion of a switch table for the uppermost switch in  
Figure 6.15

TimeInterfaceAddress

62-FE-F7-11-89-A3 1 9:32

7C-BA-B2-B4-91-10 3 9:36

............
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in Chapter 4. Indeed, in our discussion of generalized forwarding in Section 4.4, 
we learned that many modern packet switches can be configured to forward on the 
basis of layer-2 destination MAC addresses (i.e., function as a layer-2 switch) or 
layer-3 IP destination addresses (i.e., function as a layer-3 router). Nonetheless,  
we’ll make the important distinction that switches forward packets based on MAC 
addresses rather than on IP addresses. We will also see that a traditional (i.e., in a 
non-SDN context) switch table is constructed in a very different manner from a 
router’s forwarding table.

To understand how switch filtering and forwarding work, suppose a frame with 
destination address DD-DD-DD-DD-DD-DD arrives at the switch on interface x. 
The switch indexes its table with the MAC address DD-DD-DD-DD-DD-DD. There 
are three possible cases:

• There is no entry in the table for DD-DD-DD-DD-DD-DD. In this case, the switch 
forwards copies of the frame to the output buffers preceding all interfaces except 
for interface x. In other words, if there is no entry for the destination address, the 
switch broadcasts the frame.

• There is an entry in the table, associating DD-DD-DD-DD-DD-DD with interface 
x. In this case, the frame is coming from a LAN segment that contains adapter 
DD-DD-DD-DD-DD-DD. There being no need to forward the frame to any of 
the other interfaces, the switch performs the filtering function by discarding the 
frame.

• There is an entry in the table, associating DD-DD-DD-DD-DD-DD with interface 
y≠x. In this case, the frame needs to be forwarded to the LAN segment attached 
to interface y. The switch performs its forwarding function by putting the frame 
in an output buffer that precedes interface y.

Let’s walk through these rules for the uppermost switch in Figure 6.15 and its 
switch table in Figure 6.22. Suppose that a frame with destination address 62-FE-
F7-11-89-A3 arrives at the switch from interface 1. The switch examines its table 
and sees that the destination is on the LAN segment connected to interface 1 (that 
is, Electrical Engineering). This means that the frame has already been broadcast on 
the LAN segment that contains the destination. The switch therefore filters (that is, 
discards) the frame. Now suppose a frame with the same destination address arrives 
from interface 2. The switch again examines its table and sees that the destination 
is in the direction of interface 1; it therefore forwards the frame to the output buffer 
preceding interface 1. It should be clear from this example that as long as the switch 
table is complete and accurate, the switch forwards frames toward destinations 
without any broadcasting.

In this sense, a switch is “smarter” than a hub. But how does this switch table get 
configured in the first place? Are there link-layer equivalents to network-layer rout-
ing protocols? Or must an overworked manager manually configure the switch table?
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Self-Learning

A switch has the wonderful property (particularly for the already-overworked network 
administrator) that its table is built automatically, dynamically, and autonomously—
without any intervention from a network administrator or from a configuration pro-
tocol. In other words, switches are self-learning. This capability is accomplished as 
follows:

 1. The switch table is initially empty.
 2. For each incoming frame received on an interface, the switch stores in its table 

(1) the MAC address in the frame’s source address field, (2) the interface from 
which the frame arrived, and (3) the current time. In this manner, the switch 
records in its table the LAN segment on which the sender resides. If every 
host in the LAN eventually sends a frame, then every host will eventually get 
recorded in the table.

 3. The switch deletes an address in the table if no frames are received with that 
address as the source address after some period of time (the aging time). In 
this manner, if a PC is replaced by another PC (with a different adapter), the 
MAC address of the original PC will eventually be purged from the switch 
table.

Let’s walk through the self-learning property for the uppermost switch in Fig-
ure 6.15 and its corresponding switch table in Figure 6.22. Suppose at time 9:39 a 
frame with source address 01-12-23-34-45-56 arrives from interface 2. Suppose that 
this address is not in the switch table. Then the switch adds a new entry to the table, 
as shown in Figure 6.23.

Continuing with this same example, suppose that the aging time for this switch 
is 60 minutes, and no frames with source address 62-FE-F7-11-89-A3 arrive to the 
switch between 9:32 and 10:32. Then at time 10:32, the switch removes this address 
from its table.

Figure 6.23 ♦  Switch learns about the location of an adapter with address 
01-12-23-34-45-56

Address Interface Time

01-12-23-34-45-56 2 9:39

62-FE-F7-11-89-A3 1 9:32

7C-BA-B2-B4-91-10 3 9:36

.... .... ....
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Switches are plug-and-play devices because they require no intervention 
from a network administrator or user. A network administrator wanting to install 
a switch need do nothing more than connect the LAN segments to the switch 
interfaces. The administrator need not configure the switch tables at the time of 
installation or when a host is removed from one of the LAN segments. Switches 
are also full-duplex, meaning any switch interface can send and receive at the 
same time.

Properties of Link-Layer Switching

Having described the basic operation of a link-layer switch, let’s now consider their 
features and properties. We can identify several advantages of using switches, rather 
than broadcast links such as buses or hub-based star topologies:

• Elimination of collisions. In a LAN built from switches (and without hubs), there 
is no wasted bandwidth due to collisions! The switches buffer frames and never 
transmit more than one frame on a segment at any one time. As with a router, the 
maximum aggregate throughput of a switch is the sum of all the switch interface 
rates. Thus, switches provide a significant performance improvement over LANs 
with broadcast links.

• Heterogeneous links. Because a switch isolates one link from another, the differ-
ent links in the LAN can operate at different speeds and can run over different 
media. For example, the uppermost switch in Figure 6.15 might have three1 Gbps 
1000BASE-T copper links, two 100 Mbps 100BASE-FX fiber links, and one 
100BASE-T copper link. Thus, a switch is ideal for mixing legacy equipment 
with new equipment.

• Management. In addition to providing enhanced security (see sidebar on Focus on 
Security), a switch also eases network management. For example, if an adapter 
malfunctions and continually sends Ethernet frames (called a jabbering adapter), 
a switch can detect the problem and internally disconnect the malfunctioning 
adapter. With this feature, the network administrator need not get out of bed and 
drive back to work in order to correct the problem. Similarly, a cable cut discon-
nects only that host that was using the cut cable to connect to the switch. In the 
days of coaxial cable, many a network manager spent hours “walking the line” (or 
more accurately, “crawling the floor”) to find the cable break that brought down 
the entire network. Switches also gather statistics on bandwidth usage, collision 
rates, and traffic types, and make this information available to the network man-
ager. This information can be used to debug and correct problems, and to plan 
how the LAN should evolve in the future. Researchers are exploring adding yet 
more management functionality into Ethernet LANs in prototype deployments 
[Casado 2007; Koponen 2011].
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Switches Versus Routers

As we learned in Chapter 4, routers are store-and-forward packet switches that for-
ward packets using network-layer addresses. Although a switch is also a store-and-
forward packet switch, it is fundamentally different from a router in that it forwards 
packets using MAC addresses. Whereas a router is a layer-3 packet switch, a switch 
is a layer-2 packet switch. Recall, however, that we learned in Section 4.4 that mod-
ern switches using the “match plus action” operation can be used to forward a layer-2 
frame based on the frame's destination MAC address, as well as a layer-3 datagram 
using the datagram's destination IP address. Indeed, we saw that switches using the 
OpenFlow standard can perform generalized packet forwarding based on any of 
eleven different frame, datagram, and transport-layer header fields.

Even though switches and routers are fundamentally different, network admin-
istrators must often choose between them when installing an interconnection device. 
For example, for the network in Figure 6.15, the network administrator could just as 
easily have used a router instead of a switch to connect the department LANs, servers, 
and internet gateway router. Indeed, a router would permit interdepartmental commu-
nication without creating collisions. Given that both switches and routers are candi-
dates for interconnection devices, what are the pros and cons of the two approaches?

SNIFFING A SWITCHED LAN: SWITCH POISONING

When a host is connected to a switch, it typically only receives frames that are 
intended for it. For example, consider a switched LAN in Figure 6.17. When host 
A sends a frame to host B, and there is an entry for host B in the switch table, then 
the switch will forward the frame only to host B. If host C happens to be running a 
sniffer, host C will not be able to sniff this A-to-B frame. Thus, in a switched-LAN  
environment (in contrast to a broadcast link environment such as 802.11 LANs or  
hub–based Ethernet LANs), it is more difficult for an attacker to sniff frames. However,  
because the switch broadcasts frames that have destination addresses that are not in 
the switch table, the sniffer at C can still sniff some frames that are not intended for 
C. Furthermore, a sniffer will be able sniff all Ethernet broadcast frames with broad-
cast destination address FF–FF–FF–FF–FF–FF. A well-known attack against a switch, 
called switch poisoning, is to send tons of packets to the switch with many different 
bogus source MAC addresses, thereby filling the switch table with bogus entries 
and leaving no room for the MAC addresses of the legitimate hosts. This causes the 
switch to broadcast most frames, which can then be picked up by the sniffer [Skoudis 
2006]. As this attack is rather involved even for a sophisticated attacker, switches are 
significantly less vulnerable to sniffing than are hubs and wireless LANs.

FOCUS ON SECURITY
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First consider the pros and cons of switches. As mentioned above, switches are 
plug-and-play, a property that is cherished by all the overworked network adminis-
trators of the world. Switches can also have relatively high filtering and forwarding 
rates—as shown in Figure 6.24, switches have to process frames only up through 
layer 2, whereas routers have to process datagrams up through layer 3. On the other 
hand, to prevent the cycling of broadcast frames, the active topology of a switched 
network is restricted to a spanning tree. Also, a large switched network would require 
large ARP tables in the hosts and routers and would generate substantial ARP traffic 
and processing. Furthermore, switches are susceptible to broadcast storms—if one 
host goes haywire and transmits an endless stream of Ethernet broadcast frames, the 
switches will forward all of these frames, causing the entire network to collapse.

Now consider the pros and cons of routers. Because network addressing is often 
hierarchical (and not flat, as is MAC addressing), packets do not normally cycle 
through routers even when the network has redundant paths. (However, packets can 
cycle when router tables are misconfigured; but as we learned in Chapter 4, IP uses 
a special datagram header field to limit the cycling.) Thus, packets are not restricted 
to a spanning tree and can use the best path between source and destination. Because 
routers do not have the spanning tree restriction, they have allowed the Internet to be 
built with a rich topology that includes, for example, multiple active links between 
Europe and North America. Another feature of routers is that they provide firewall 
protection against layer-2 broadcast storms. Perhaps the most significant drawback 
of routers, though, is that they are not plug-and-play—they and the hosts that connect 
to them need their IP addresses to be configured. Also, routers often have a larger 
per-packet processing time than switches, because they have to process up through 
the layer-3 fields. Finally, there are two different ways to pronounce the word router, 
either as “rootor” or as “rowter,” and people waste a lot of time arguing over the 
proper pronunciation [Perlman 1999].

Given that both switches and routers have their pros and cons (as summarized in 
Table 6.1), when should an institutional network (for example, a university campus 

Figure 6.24 ♦ Packet processing in switches, routers, and hosts
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network or a corporate campus network) use switches, and when should it use rout-
ers? Typically, small networks consisting of a few hundred hosts have a few LAN 
segments. Switches suffice for these small networks, as they localize traffic and 
increase aggregate throughput without requiring any configuration of IP addresses. 
But larger networks consisting of thousands of hosts typically include routers within 
the network (in addition to switches). The routers provide a more robust isolation of 
traffic, control broadcast storms, and use more “intelligent” routes among the hosts 
in the network.

For more discussion of the pros and cons of switched versus routed networks, 
as well as a discussion of how switched LAN technology can be extended to accom-
modate two orders of magnitude more hosts than today’s Ethernets, see [Meyers 
2004; Kim 2008].

6.4.4 Virtual Local Area Networks (VLANs)
In our earlier discussion of Figure 6.15, we noted that modern institutional LANs 
are often configured hierarchically, with each workgroup (department) having its 
own switched LAN connected to the switched LANs of other groups via a switch 
hierarchy. While such a configuration works well in an ideal world, the real world 
is often far from ideal. Three drawbacks can be identified in the configuration in 
Figure 6.15:

• Lack of traffic isolation. Although the hierarchy localizes group traffic to within 
a single switch, broadcast traffic (e.g., frames carrying ARP and DHCP mes-
sages or frames whose destination has not yet been learned by a self-learning 
switch) must still traverse the entire institutional network. Limiting the scope of 
such broadcast traffic would improve LAN performance. Perhaps more impor-
tantly, it also may be desirable to limit LAN broadcast traffic for security/privacy 
reasons. For example, if one group contains the company’s executive manage-
ment team and another group contains disgruntled employees running Wireshark 
packet sniffers, the network manager may well prefer that the executives’ traffic 
never even reaches employee hosts. This type of isolation could be provided by 

Table 6.1 ♦  Comparison of the typical features of popular interconnection 
devices

Hubs Routers Switches

Traffic isolation No Yes Yes
Plug and play Yes No Yes
Optimal routing No Yes No
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replacing the center switch in Figure 6.15 with a router. We’ll see shortly that this 
isolation also can be achieved via a switched (layer 2) solution.

• Inefficient use of switches. If instead of three groups, the institution had 10 
groups, then 10 first-level switches would be required. If each group were 
small, say less than 10 people, then a single 96-port switch would likely be large 
enough to accommodate everyone, but this single switch would not provide 
traffic isolation.

• Managing users. If an employee moves between groups, the physical cabling 
must be changed to connect the employee to a different switch in Figure 6.15. 
Employees belonging to two groups make the problem even harder.

Fortunately, each of these difficulties can be handled by a switch that supports 
virtual local area networks (VLANs). As the name suggests, a switch that sup-
ports VLANs allows multiple virtual local area networks to be defined over a sin-
gle physical local area network infrastructure. Hosts within a VLAN communicate 
with each other as if they (and no other hosts) were connected to the switch. In a 
port-based VLAN, the switch’s ports (interfaces) are divided into groups by the 
network manager. Each group constitutes a VLAN, with the ports in each VLAN 
forming a broadcast domain (i.e., broadcast traffic from one port can only reach 
other ports in the group). Figure 6.25 shows a single switch with 16 ports. Ports 2 
to 8 belong to the EE VLAN, while ports 9 to 15 belong to the CS VLAN (ports 1 
and 16 are unassigned). This VLAN solves all of the difficulties noted above—EE 
and CS VLAN frames are isolated from each other, the two switches in Figure 6.15 
have been replaced by a single switch, and if the user at switch port 8 joins the CS 
Department, the network operator simply reconfigures the VLAN software so that 
port 8 is now associated with the CS VLAN. One can easily imagine how the VLAN 
switch is configured and operates—the network manager declares a port to belong 

Figure 6.25 ♦ A single switch with two configured VLANs
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to a given VLAN (with undeclared ports belonging to a default VLAN) using switch 
management software, a table of port-to-VLAN mappings is maintained within the 
switch; and switch hardware only delivers frames between ports belonging to the 
same VLAN.

But by completely isolating the two VLANs, we have introduced a new dif-
ficulty! How can traffic from the EE Department be sent to the CS Department? 
One way to handle this would be to connect a VLAN switch port (e.g., port 1 in Fig-
ure 6.25) to an external router and configure that port to belong both the EE and CS 
VLANs. In this case, even though the EE and CS departments share the same physi-
cal switch, the logical configuration would look as if the EE and CS departments 
had separate switches connected via a router. An IP datagram going from the EE to 
the CS department would first cross the EE VLAN to reach the router and then be 
forwarded by the router back over the CS VLAN to the CS host. Fortunately, switch 
vendors make such configurations easy for the network manager by building a single 
device that contains both a VLAN switch and a router, so a separate external router 
is not needed. A homework problem at the end of the chapter explores this scenario 
in more detail.

Returning again to Figure 6.15, let’s now suppose that rather than having a sepa-
rate Computer Engineering department, some EE and CS faculty are housed in a 
separate building, where (of course!) they need network access, and (of course!) 
they’d like to be part of their department’s VLAN. Figure 6.26 shows a second 8-port 
switch, where the switch ports have been defined as belonging to the EE or the 
CS VLAN, as needed. But how should these two switches be interconnected? One 
easy solution would be to define a port belonging to the CS VLAN on each switch 
(similarly for the EE VLAN) and to connect these ports to each other, as shown in 
Figure 6.26(a). This solution doesn’t scale, however, since N VLANS would require 
N ports on each switch simply to interconnect the two switches.

A more scalable approach to interconnecting VLAN switches is known as 
VLAN trunking. In the VLAN trunking approach shown in Figure 6.26(b), a spe-
cial port on each switch (port 16 on the left switch and port 1 on the right switch) is 
configured as a trunk port to interconnect the two VLAN switches. The trunk port 
belongs to all VLANs, and frames sent to any VLAN are forwarded over the trunk 
link to the other switch. But this raises yet another question: How does a switch know 
that a frame arriving on a trunk port belongs to a particular VLAN? The IEEE has 
defined an extended Ethernet frame format, 802.1Q, for frames crossing a VLAN 
trunk. As shown in Figure 6.27, the 802.1Q frame consists of the standard Ethernet 
frame with a four-byte VLAN tag added into the header that carries the identity of 
the VLAN to which the frame belongs. The VLAN tag is added into a frame by the 
switch at the sending side of a VLAN trunk, parsed, and removed by the switch at 
the receiving side of the trunk. The VLAN tag itself consists of a 2-byte Tag Protocol 
Identifier (TPID) field (with a fixed hexadecimal value of 81-00), a 2-byte Tag Con-
trol Information field that contains a 12-bit VLAN identifier field, and a 3-bit priority 
field that is similar in intent to the IP datagram TOS field.

M06_KURO1557_08_SE_C06.indd   499 11/02/20   2:30 PM



500     CHAPTER 6  •  THE LINK LAYER AND LANS

Figure 6.26 ♦  Connecting two VLAN switches with two VLANs:  
(a) two cables (b) trunked
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Figure 6.27 ♦  Original Ethernet frame (top), 802.1Q-tagged Ethernet 
VLAN frame (below)
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In this discussion, we’ve only briefly touched on VLANs and have focused on port-
based VLANs. We should also mention that VLANs can be defined in several other 
ways. In MAC-based VLANs, the network manager specifies the set of MAC addresses 
that belong to each VLAN; whenever a device attaches to a port, the port is connected 
into the appropriate VLAN based on the MAC address of the device. VLANs can also 
be defined based on network-layer protocols (e.g., IPv4, IPv6, or Appletalk) and other 
criteria. It is also possible for VLANs to be extended across IP routers, allowing islands 
of LANs to be connected together to form a single VLAN that could span the globe  
[Yu 2011]. See the 802.1Q standard [IEEE 802.1q 2005] for more details.

6.5 Link Virtualization: A Network  
as a Link Layer

Because this chapter concerns link-layer protocols, and given that we’re now nearing 
the chapter’s end, let’s reflect on how our understanding of the term link has evolved. 
We began this chapter by viewing the link as a physical wire connecting two com-
municating hosts. In studying multiple access protocols, we saw that multiple hosts 
could be connected by a shared wire and that the “wire” connecting the hosts could 
be radio spectra or other media. This led us to consider the link a bit more abstractly 
as a channel, rather than as a wire. In our study of Ethernet LANs (Figure 6.15), 
we saw that the interconnecting media could actually be a rather complex switched 
infrastructure. Throughout this evolution, however, the hosts themselves maintained 
the view that the interconnecting medium was simply a link-layer channel connect-
ing two or more hosts. We saw, for example, that an Ethernet host can be blissfully 
unaware of whether it is connected to other LAN hosts by a single short LAN seg-
ment (Figure 6.17) or by a geographically dispersed switched LAN (Figure 6.15) or 
by a VLAN (Figure 6.26).

In the case of a dialup modem connection between two hosts, the link connect-
ing the two hosts is actually the telephone network—a logically separate, global 
telecommunications network with its own switches, links, and protocol stacks for 
data transfer and signaling. From the Internet link-layer point of view, however, 
the dial-up connection through the telephone network is viewed as a simple “wire.” 
In this sense, the Internet virtualizes the telephone network, viewing the telephone 
network as a link-layer technology providing link-layer connectivity between two 
Internet hosts. You may recall from our discussion of overlay networks in Chapter 2  
that an overlay network similarly views the Internet as a means for providing con-
nectivity between overlay nodes, seeking to overlay the Internet in the same way that 
the Internet overlays the telephone network.

In this section, we’ll consider Multiprotocol Label Switching (MPLS) net-
works. Unlike the circuit-switched telephone network, MPLS is a packet-switched, 

M06_KURO1557_08_SE_C06.indd   501 11/02/20   2:30 PM



502     CHAPTER 6  •  THE LINK LAYER AND LANS

virtual-circuit network in its own right. It has its own packet formats and forwarding 
behaviors. Thus, from a pedagogical viewpoint, a discussion of MPLS fits well into a 
study of either the network layer or the link layer. From an Internet viewpoint, how-
ever, we can consider MPLS, like the telephone network and switched- Ethernets, 
as a link-layer technology that serves to interconnect IP devices. Thus, we’ll con-
sider MPLS in our discussion of the link layer. Frame-relay and ATM networks 
can also be used to interconnect IP devices, though they represent a slightly older 
(but still deployed) technology and will not be covered here; see the very readable 
book [Goralski 1999] for details. Our treatment of MPLS will be necessarily brief, 
as entire books could be (and have been) written on these networks. We recommend 
[Davie 2000] for details on MPLS. We’ll focus here primarily on how MPLS  servers 
interconnect to IP devices, although we’ll dive a bit deeper into the underlying tech-
nologies as well.

6.5.1 Multiprotocol Label Switching (MPLS)
Multiprotocol Label Switching (MPLS) evolved from a number of industry efforts 
in the mid-to-late 1990s to improve the forwarding speed of IP routers by adopting a 
key concept from the world of virtual-circuit networks: a fixed-length label. The goal 
was not to abandon the destination-based IP datagram-forwarding infrastructure for 
one based on fixed-length labels and virtual circuits, but to augment it by selectively 
labeling datagrams and allowing routers to forward datagrams based on fixed-length 
labels (rather than destination IP addresses) when possible. Importantly, these tech-
niques work hand-in-hand with IP, using IP addressing and routing. The IETF uni-
fied these efforts in the MPLS protocol [RFC 3031, RFC 3032], effectively blending 
VC techniques into a routed datagram network.

Let’s begin our study of MPLS by considering the format of a link-layer frame 
that is handled by an MPLS-capable router. Figure 6.28 shows that a link-layer 
frame transmitted between MPLS-capable devices has a small MPLS header added 
between the layer-2 (e.g., Ethernet) header and layer-3 (i.e., IP) header. RFC 3032 
defines the format of the MPLS header for such links; headers are defined for ATM 
and frame-relayed networks as well in other RFCs. Among the fields in the MPLS 

PPP or Ethernet
header MPLS header IP header Remainder of link-layer frame

Label Exp S TTL

Figure 6.28 ♦  MPLS header: Located between link- and network-layer 
headers
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header are the label, 3 bits reserved for experimental use, a single S bit, which is used 
to indicate the end of a series of “stacked” MPLS headers (an advanced topic that 
we’ll not cover here), and a time-to-live field.

It’s immediately evident from Figure 6.28 that an MPLS-enhanced frame can 
only be sent between routers that are both MPLS capable (since a non-MPLS-capable 
router would be quite confused when it found an MPLS header where it had expected 
to find the IP header!). An MPLS-capable router is often referred to as a label-
switched router, since it forwards an MPLS frame by looking up the MPLS label 
in its forwarding table and then immediately passing the datagram to the appropriate 
output interface. Thus, the MPLS-capable router need not extract the destination IP 
address and perform a lookup of the longest prefix match in the forwarding table. But 
how does a router know if its neighbor is indeed MPLS capable, and how does a router 
know what label to associate with the given IP destination? To answer these questions, 
we’ll need to take a look at the interaction among a group of MPLS-capable routers.

In the example in Figure 6.29, routers R1 through R4 are MPLS capable. R5 and 
R6 are standard IP routers. R1 has advertised to R2 and R3 that it (R1) can route to 
destination A, and that a received frame with MPLS label 6 will be forwarded to destina-
tion A. Router R3 has advertised to router R4 that it can route to destinations A and D, 
and that incoming frames with MPLS labels 10 and 12, respectively, will be switched 
toward those destinations. Router R2 has also advertised to router R4 that it (R2) can 
reach destination A, and that a received frame with MPLS label 8 will be switched 
toward A. Note that router R4 is now in the interesting position of having two MPLS 

Figure 6.29 ♦ MPLS-enhanced forwarding
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paths to reach A: via interface 0 with outbound MPLS label 10, and via interface 1 with 
an MPLS label of 8. The broad picture painted in Figure 6.29 is that IP devices R5, R6, 
A, and D are connected together via an MPLS infrastructure (MPLS-capable routers R1, 
R2, R3, and R4) in much the same way that a switched LAN or an ATM network can 
connect together IP devices. And like a switched LAN or ATM network, the MPLS-
capable routers R1 through R4 do so without ever touching the IP header of a packet.

In our discussion above, we’ve not specified the specific protocol used to distribute 
labels among the MPLS-capable routers, as the details of this signaling are well beyond the 
scope of this book. We note, however, that the IETF working group on MPLS has speci-
fied in [RFC 3468] that an extension of the RSVP protocol, known as RSVP-TE [RFC 
3209], will be the focus of its efforts for MPLS signaling. We’ve also not discussed how 
MPLS actually computes the paths for packets among MPLS capable routers, nor how it 
gathers link-state information (e.g., amount of link bandwidth unreserved by MPLS) to 
use in these path computations. Existing link-state routing algorithms (e.g., OSPF) have 
been extended to flood this information to MPLS-capable routers. Interestingly, the actual 
path computation algorithms are not standardized, and are currently vendor-specific.

Thus far, the emphasis of our discussion of MPLS has been on the fact that MPLS 
performs switching based on labels, without needing to consider the IP address of a 
packet. The true advantages of MPLS and the reason for current interest in MPLS, 
however, lie not in the potential increases in switching speeds, but rather in the new 
traffic management capabilities that MPLS enables. As noted above, R4 has two MPLS 
paths to A. If forwarding were performed up at the IP layer on the basis of IP address, 
the IP routing protocols we studied in Chapter 5 would specify only a single, least-cost 
path to A. Thus, MPLS provides the ability to forward packets along routes that would 
not be possible using standard IP routing protocols. This is one simple form of traffic 
engineering using MPLS [RFC 3346; RFC 3272; RFC 2702; Xiao 2000], in which a 
network operator can override normal IP routing and force some of the traffic headed 
toward a given destination along one path, and other traffic destined toward the same 
destination along another path (whether for policy, performance, or some other reason).

It is also possible to use MPLS for many other purposes as well. It can be used 
to perform fast restoration of MPLS forwarding paths, e.g., to reroute traffic over a 
precomputed failover path in response to link failure [Kar 2000; Huang 2002; RFC 
3469]. Finally, we note that MPLS can, and has, been used to implement so-called 
 virtual private networks (VPNs). In implementing a VPN for a customer, an ISP uses 
its MPLS-enabled network to connect together the customer’s various networks. MPLS 
can be used to isolate both the resources and addressing used by the customer’s VPN 
from that of other users crossing the ISP’s network; see [DeClercq 2002] for details.

Our discussion of MPLS has been brief, and we encourage you to consult the ref-
erences we’ve mentioned. We note that MPLS rose to prominence before the devel-
opment of software-defined networking, which we studied in Chapter 5, and that 
many of MPLS’ traffic engineering capabilities can also be achieved via SDN and 
the generalized  forwarding paradigm we studied in Chapter 4. Only the future will 
tell whether MPLS and SDN will continue to co-exist, or whether newer technologies 
(such as SDN) will eventually replace MPLS.
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6.6 Data Center Networking

Internet companies such as Google, Microsoft, Amazon, and Alibaba have built mas-
sive data centers, each housing tens to hundreds of thousands of hosts. As briefly 
discussed in the sidebar in Section 1.2, data centers are not only connected to the 
Internet, but also internally include complex computer networks, called data center 
networks, which interconnect their internal hosts. In this section, we provide a brief 
introduction to data center networking for cloud applications.

Broadly speaking, data centers serve three purposes. First, they provide 
content such as Web pages, search results, e-mail, or streaming video to users. 
Second, they serve as massively-parallel computing infrastructures for specific 
data processing tasks, such as distributed index computations for search engines. 
Third, they provide cloud computing to other companies. Indeed, today a major 
trend in computing is for companies to use a cloud provider such as Amazon 
Web Services, Microsoft Azure, and Alibaba Cloud to handle essentially all of 
their IT needs.

6.6.1 Data Center Architectures
Data center designs are carefully kept company secrets, as they often provide critical 
competitive advantages to leading cloud computing companies. The cost of a large 
data center is huge, exceeding $12 million per month for a 100,000 host data center 
in 2009 [Greenberg 2009a]. Of these costs, about 45 percent can be attributed to the 
hosts themselves (which need to be replaced every 3–4 years); 25 percent to infra-
structure, including transformers, uninterruptable power supplies (UPS) systems, 
generators for long-term outages, and cooling systems; 15 percent for electric utility 
costs for the power draw; and 15 percent for networking, including network gear 
(switches, routers, and load balancers), external links, and transit traffic costs. (In 
these percentages, costs for equipment are amortized so that a common cost metric 
is applied for one-time purchases and ongoing expenses such as power.) While net-
working is not the largest cost, networking innovation is the key to reducing overall 
cost and maximizing performance [Greenberg 2009a].

The worker bees in a data center are the hosts. The hosts in data centers, called 
blades and resembling pizza boxes, are generally commodity hosts that include 
CPU, memory, and disk storage. The hosts are stacked in racks, with each rack typi-
cally having 20 to 40 blades. At the top of each rack, there is a switch, aptly named 
the Top of Rack (TOR) switch, that interconnects the hosts in the rack with each 
other and with other switches in the data center. Specifically, each host in the rack 
has a network interface that connects to its TOR switch, and each TOR switch has 
additional ports that can be connected to other switches. Today, hosts typically have 
40 Gbps or 100 Gbps Ethernet connections to their TOR switches [FB 2019; Green-
berg 2015; Roy 2015; Singh 2015]. Each host is also assigned its own data-center-
internal IP address.
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The data center network supports two types of traffic: traffic flowing between 
external clients and internal hosts and traffic flowing between internal hosts. To 
handle flows between external clients and internal hosts, the data center network 
includes one or more border routers, connecting the data center network to the 
public Internet. The data center network therefore interconnects the racks with each 
other and connects the racks to the border routers. Figure 6.30 shows an example of a 
data center network. Data center network design, the art of designing the intercon-
nection network and protocols that connect the racks with each other and with the 
border routers, has become an important branch of computer networking research in 
recent years. (See references in this section.)

Load Balancing

A cloud data center, such as one operated by Google, Microsoft, Amazon, and Ali-
baba, provides many applications concurrently, such as search, e-mail, and video 
applications. To support requests from external clients, each application is associ-
ated with a publicly visible IP address to which clients send their requests and from 
which they receive responses. Inside the data center, the external requests are first 

Figure 6.30 ♦ A data center network with a hierarchical topology
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directed to a load balancer whose job it is to distribute requests to the hosts, balanc-
ing the load across the hosts as a function of their current load [Patel 2013; Eisenbud 
2016]. A large data center will often have several load balancers, each one devoted 
to a set of specific cloud applications. Such a load balancer is sometimes referred to 
as a “layer-4 switch” since it makes decisions based on the destination port number 
(layer 4) as well as destination IP address in the packet. Upon receiving a request for 
a particular application, the load balancer forwards it to one of the hosts that handles 
the application. (A host may then invoke the services of other hosts to help process 
the request.) The load balancer not only balances the work load across hosts, but also 
provides a NAT-like function, translating the public external IP address to the inter-
nal IP address of the appropriate host, and then translating back for packets traveling 
in the reverse direction back to the clients. This prevents clients from contacting 
hosts directly, which has the security benefit of hiding the internal network structure 
and preventing clients from directly interacting with the hosts.

Hierarchical Architecture

For a small data center housing only a few thousand hosts, a simple network consist-
ing of a border router, a load balancer, and a few tens of racks all interconnected by 
a single Ethernet switch could possibly suffice. But to scale to tens to hundreds of 
thousands of hosts, a data center often employs a hierarchy of routers and switches, 
such as the topology shown in Figure 6.30. At the top of the hierarchy, the border 
router connects to access routers (only two are shown in Figure 6.30, but there can be 
many more). Below each access router, there are three tiers of switches. Each access 
router connects to a top-tier switch, and each top-tier switch connects to multiple 
second-tier switches and a load balancer. Each second-tier switch in turn connects to 
multiple racks via the racks’ TOR switches (third-tier switches). All links typically 
use Ethernet for their link-layer and physical-layer protocols, with a mix of copper 
and fiber cabling. With such a hierarchical design, it is possible to scale a data center 
to hundreds of thousands of hosts.

Because it is critical for a cloud application provider to continually provide appli-
cations with high availability, data centers also include redundant network equip-
ment and redundant links in their designs (not shown in Figure 6.30). For example, 
each TOR switch can connect to two tier-2 switches, and each access router, tier-1 
switch, and tier-2 switch can be duplicated and integrated into the design [Cisco 
2012; Greenberg 2009b]. In the hierarchical design in Figure 6.30, observe that the 
hosts below each access router form a single subnet. In order to localize ARP broad-
cast traffic, each of these subnets is further partitioned into smaller VLAN subnets, 
each comprising a few hundred hosts [Greenberg 2009a].

Although the conventional hierarchical architecture just described solves the 
problem of scale, it suffers from limited host-to-host capacity [Greenberg 2009b]. 
To understand this limitation, consider again Figure 6.30, and suppose each host 
connects to its TOR switch with a 10 Gbps link, whereas the links between switches 
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are 100 Gbps Ethernet links. Two hosts in the same rack can always communicate 
at a full 10 Gbps, limited only by the rate of the hosts’ network interface controllers. 
However, if there are many simultaneous flows in the data center network, the maxi-
mum rate between two hosts in different racks can be much less. To gain insight into  
this issue, consider a traffic pattern consisting of 40 simultaneous flows between 
40 pairs of hosts in different racks. Specifically, suppose each of 10 hosts in rack 1 in 
Figure 6.30 sends a flow to a corresponding host in rack 5. Similarly, there are ten 
simultaneous flows between pairs of hosts in racks 2 and 6, ten simultaneous flows 
between racks 3 and 7, and ten simultaneous flows between racks 4 and 8. If each 
flow evenly shares a link’s capacity with other flows traversing that link, then the 
40 flows crossing the 100 Gbps A-to-B link (as well as the 100 Gbps B-to-C link) 
will each only receive 100 Gbps / 40 = 2.5 Gbps, which is significantly less than the 
10 Gbps network interface rate. The problem becomes even more acute for flows 
between hosts that need to travel higher up the hierarchy.

There are several possible solutions to this problem:

• One possible solution to this limitation is to deploy higher-rate switches and 
routers. But this would significantly increase the cost of the data center, because 
switches and routers with high port speeds are very expensive.

• A second solution to this problem, which can be adopted whenever possible, is 
to co-locate related services and data as close to one another as possible (e.g., in 
the same rack or in a nearby rack) [Roy 2015; Singh 2015] in order to minimize 
inter-rack communication via tier-2 or tier-1 switches. But this can only go so far, 
as a key requirement in data centers is flexibility in placement of computation and 
services [Greenberg 2009b; Farrington 2010]. For example, a large-scale Internet 
search engine may run on thousands of hosts spread across multiple racks with 
significant bandwidth requirements between all pairs of hosts. Similarly, a cloud 
computing service (such Amazon Web Services or Microsoft Azure) may wish to 
place the multiple virtual machines comprising a customer’s service on the physi-
cal hosts with the most capacity irrespective of their location in the data center. 
If these physical hosts are spread across multiple racks, network bottlenecks as 
described above may result in poor performance.

• A final piece of the solution is to provide increased connectivity between the TOR 
switches and tier-2 switches, and between tier-2 switches and tier-1 switches. For 
example, as shown in Figure 6.31, each TOR switch could be connected to two 
tier-2 switches, which then provide for multiple link- and switch-disjoint paths 
between racks. In Figure 6.31, there are four distinct paths between the first tier-2 
switch and the second tier-2 switch, together providing an aggregate capacity of 
400 Gbps between the first two tier-2 switches. Increasing the degree of connectiv-
ity between tiers has two significant benefits: there is both increased capacity and 
increased reliability (because of path diversity) between switches. In Facebook’s 
data center [FB 2014; FB 2019], each TOR is connected to four different tier-2 
switches, and each tier-2 switch is connected to four different tier-1 switches.
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 A direct consequence of the increased connectivity between tiers in data center 
networks is that multi-path routing can become a first-class citizen in these net-
works. Flows are by default multipath flows. A very simple scheme to achieve 
multi-path routing is Equal Cost Multi Path (ECMP) [RFC 2992], which per-
forms a randomized next-hop selection along the switches between source and 
destination. Advanced schemes using finer-grained load balancing have also been 
proposed [Alizadeh 2014; Noormohammadpour 2018]. While these schemes per-
form multi-path routing at the flow level, there are also designs that route indi-
vidual packets within a flow among multiple paths [He 2015; Raiciu 2010].

6.6.2 Trends in Data Center Networking
Data center networking is evolving rapidly, with the trends being driven by cost 
reduction, virtualization, physical constraints, modularity, and customization.

Cost Reduction

In order to reduce the cost of data centers, and at the same time improve their delay 
and throughput performance, as well as ease of expansion and deployment, Internet 
cloud giants are continually deploying new data center network designs. Although 
some of these designs are proprietary, others (e.g., [FB 2019]) are explicitly open or 
described in the open literature (e.g., [Greenberg 2009b; Singh 2015]). Many impor-
tant trends can thus be identified.

Figure 6.31 illustrates one of the most important trends in data center network-
ing—the emergence of a hierarchical, tiered network interconnecting the data center 
hosts. This hierarchy conceptually serves the same purpose as a single (very, very!), 
large crossbar switch that we studied in Section 4.2.2, allowing any host in the 
data center to communicate with any other host. But as we have seen, this tiered 

Figure 6.31 ♦ Highly interconnected data network topology
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interconnection network has many advantages over a conceptual crossbar switch, 
including multiple paths from source to destination and the increased capacity (due 
to multipath routing) and reliability (due to multiple switch- and link-disjoint paths 
between any two hosts).

The data center interconnection network is comprised of a large number of small-
sized switches. For example, in Google’s Jupiter datacenter fabric, one configuration has 
48 links between the ToR switch and its servers below, and connections up to 8 tier-2 
switches; a tier-2 switch has links to 256 ToR switches and links up to 16 tier-1 switches 
[Singh 2015]. In Facebook’s data center architecture, each ToR switch connects up to four 
different tier-2 switches (each in a different “spline plane”), and each tier-2 switch connects 
up to 4 of the 48 tier-1 switches in its spline plane; there are four spline planes. Tier-1 and 
tier-2 switches connect down to a larger, scalable number of tier-2 or ToR switches, respec-
tively, below [FB 2019]. For some of the largest data center operators, these switches 
are being built in-house from commodity, off-the-shelf, merchant silicon [Greenberg 
2009b; Roy 2015; Singh 2015] rather than being purchased from switch vendors.

A multi-switch layered (tiered, multistage) interconnection network such as that 
in Figure 6.31 and as implemented in the data center architectures discussed above 
is known as Clos networks, named after Charles Clos, who studied such networks 
[Clos 1953] in the context of telephony switching. Since then, a rich theory of Clos 
networks has been developed, finding additional use in data center networking and 
in multiprocessor interconnection networks.

Centralized SDN Control and Management

Because a data center is managed by a single organization, it is perhaps natural that 
a number of the largest data center operators, including Google, Microsoft, and 
Facebook, are embracing the notion of SDN-like logically centralized control. Their 
architectures also reflect a clear separation of a data plane (comprised of relatively 
simple, commodity switches) and a software-based control plane, as we saw in Sec-
tion 5.5. Due to the immense-scale of their data centers, automated configuration and 
operational state management, as we encountered in Section 5.7, are also crucial.

Virtualization

Virtualization has been a driving force for much of the growth of cloud computing 
and data center networks more generally. Virtual Machines (VMs) decouple soft-
ware running applications from the physical hardware. This decoupling also allows 
seamless migration of VMs between physical servers, which might be located on 
different racks. Standard Ethernet and IP protocols have limitations in enabling the 
movement of VMs while maintaining active network connections across servers. 
Since all data center networks are managed by a single administrative authority, an 
elegant solution to the problem is to treat the entire data center network as a single, 
flat, layer-2 network. Recall that in a typical Ethernet network, the ARP protocol 
maintains the binding between the IP address and hardware (MAC) address on an 
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interface. To emulate the effect of having all hosts connect to a “single” switch, the 
ARP mechanism is modified to use a DNS style query system instead of a broadcast, 
and the directory maintains a mapping of the IP address assigned to a VM and which 
physical switch the VM is currently connected to in the data center network. Scal-
able schemes that implement this basic design have been proposed in [Mysore 2009; 
Greenberg 2009b] and have been successfully deployed in modern data centers.

Physical Constraints

Unlike the wide area Internet, data center networks operate in environments that not 
only have very high capacity (40 Gbps and 100 Gbps links are now commonplace) 
but also have extremely low delays (microseconds). Consequently, buffer sizes are 
small and congestion control protocols such as TCP and its variants do not scale 
well in data centers. In data centers, congestion control protocols have to react fast 
and operate in extremely low loss regimes, as loss recovery and timeouts can lead  
to extreme inefficiency. Several approaches to tackle this issue have been proposed 
and deployed, ranging from data center-specific TCP variants [Alizadeh 2010] to 
implementing Remote Direct Memory Access (RDMA) technologies on standard 
Ethernet [Zhu 2015; Moshref 2016; Guo 2016]. Scheduling theory has also been 
applied to develop mechanisms that decouple flow scheduling from rate control, 
enabling very simple congestion control protocols while maintaining high utilization 
of the links [Alizadeh 2013; Hong 2012].

Hardware Modularity and Customization

Another major trend is to employ shipping container–based modular data centers 
(MDCs) [YouTube 2009; Waldrop 2007]. In an MDC, a factory builds, within a 
standard 12-meter shipping container, a “mini data center” and ships the container to 
the data center location. Each container has up to a few thousand hosts, stacked in tens 
of racks, which are packed closely together. At the data center location, multiple con-
tainers are interconnected with each other and also with the Internet. Once a prefabri-
cated container is deployed at a data center, it is often difficult to service. Thus, each 
container is designed for graceful performance degradation: as components (servers 
and switches) fail over time, the container continues to operate but with degraded per-
formance. When many components have failed and performance has dropped below a 
threshold, the entire container is removed and replaced with a fresh one.

Building a data center out of containers creates new networking challenges. 
With an MDC, there are two types of networks: the container-internal networks 
within each of the containers and the core network connecting each container [Guo 
2009; Farrington 2010]. Within each container, at the scale of up to a few thousand 
hosts, it is possible to build a fully connected network using inexpensive commodity 
Gigabit Ethernet switches. However, the design of the core network, interconnecting 
hundreds to thousands of containers while providing high host-to-host bandwidth 
across containers for typical workloads, remains a challenging problem. A hybrid 
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electrical/optical switch architecture for interconnecting the containers is described 
in [Farrington 2010].

Another important trend is that large cloud providers are increasingly building 
or customizing just about everything that is in their data centers, including network 
adapters, switches routers, TORs, software, and networking protocols [Greenberg 
2015; Singh 2015]. Another trend, pioneered by Amazon, is to improve reliability 
with “availability zones,” which essentially replicate distinct data centers in different 
nearby buildings. By having the buildings nearby (a few kilometers apart), trans-
actional data can be synchronized across the data centers in the same availability 
zone while providing fault tolerance [Amazon 2014]. Many more innovations in data 
center design are likely to continue to come.

6.7 Retrospective: A Day in the Life of a Web 
Page Request

Now that we’ve covered the link layer in this chapter, and the network, transport and 
application layers in earlier chapters, our journey down the protocol stack is com-
plete! In the very beginning of this book (Section 1.1), we wrote “much of this book 
is concerned with computer network protocols,” and in the first five chapters, we’ve 
certainly seen that this is indeed the case! Before heading into the topical chapters in 
second part of this book, we’d like to wrap up our journey down the protocol stack by 
taking an integrated, holistic view of the protocols we’ve learned about so far. One 
way then to take this “big picture” view is to identify the many (many!) protocols 
that are involved in satisfying even the simplest request: downloading a Web page. 
Figure 6.32 illustrates our setting: a student, Bob, connects a laptop to his school’s 
Ethernet switch and downloads a Web page (say the home page of www.google.com). 
As we now know, there’s a lot going on “under the hood” to satisfy this seemingly 
simple request. A Wireshark lab at the end of this chapter examines trace files con-
taining a number of the packets involved in similar scenarios in more detail.

6.7.1 Getting Started: DHCP, UDP, IP, and Ethernet
Let’s suppose that Bob boots up his laptop and then connects it to an Ethernet cable 
connected to the school’s Ethernet switch, which in turn is connected to the school’s 
router, as shown in Figure 6.32. The school’s router is connected to an ISP, in this 
example, comcast.net. In this example, comcast.net is providing the DNS service 
for the school; thus, the DNS server resides in the Comcast network rather than the 
school network. We’ll assume that the DHCP server is running within the router, as 
is often the case.

When Bob first connects his laptop to the network, he can’t do anything  
(e.g., download a Web page) without an IP address. Thus, the first network-related 
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action taken by Bob’s laptop is to run the DHCP protocol to obtain an IP address, as 
well as other information, from the local DHCP server:

 1. The operating system on Bob’s laptop creates a DHCP request message 
 (Section 4.3.3) and puts this message within a UDP segment (Section 3.3) 
with destination port 67 (DHCP server) and source port 68 (DHCP client). The 
UDP segment is then placed within an IP datagram (Section 4.3.1) with a 
broadcast IP destination address (255.255.255.255) and a source IP address of 
0.0.0.0, since Bob’s laptop doesn’t yet have an IP address.

 2. The IP datagram containing the DHCP request message is then placed within 
an Ethernet frame (Section 6.4.2). The Ethernet frame has a destina-
tion MAC addresses of FF:FF:FF:FF:FF:FF so that the frame will be 
broadcast to all devices connected to the switch (hopefully including a 
DHCP server); the frame’s source MAC address is that of Bob’s laptop, 
00:16:D3:23:68:8A.

 3. The broadcast Ethernet frame containing the DHCP request is the first frame 
sent by Bob’s laptop to the Ethernet switch. The switch broadcasts the 
incoming frame on all outgoing ports, including the port connected to the 
router.

00:22:6B:45:1F:1B
68.85.2.1

00:16:D3:23:68:8A
68.85.2.101

comcast.net
DNS server
68.87.71.226

www.google.com
Web server
64.233.169.105

School network
68.80.2.0/24

Comcast’s network
68.80.0.0/13

Google’s network
64.233.160.0/19

1–7
8–13

18–24
14–17

Figure 6.32 ♦  A day in the life of a Web page request: Network setting 
and actions
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 4. The router receives the broadcast Ethernet frame containing the DHCP request 
on its interface with MAC address 00:22:6B:45:1F:1B and the IP datagram 
is extracted from the Ethernet frame. The datagram’s broadcast IP destina-
tion address indicates that this IP datagram should be processed by upper 
layer protocols at this node, so the datagram’s payload (a UDP segment) is 
thus demultiplexed (Section 3.2) up to UDP, and the DHCP request message 
is extracted from the UDP segment. The DHCP server now has the DHCP 
request message.

 5. Let’s suppose that the DHCP server running within the router can allocate IP 
addresses in the CIDR (Section 4.3.3) block 68.85.2.0/24. In this example, all 
IP addresses used within the school are thus within Comcast’s address block. 
Let’s suppose the DHCP server allocates address 68.85.2.101 to Bob’s laptop. 
The DHCP server creates a DHCP ACK message (Section 4.3.3) containing 
this IP address, as well as the IP address of the DNS server (68.87.71.226), 
the IP address for the default gateway router (68.85.2.1), and the subnet block 
(68.85.2.0/24) (equivalently, the “network mask”). The DHCP message is 
put inside a UDP segment, which is put inside an IP datagram, which is put 
inside an Ethernet frame. The Ethernet frame has a source MAC address of the 
router’s interface to the home network (00:22:6B:45:1F:1B) and a destination 
MAC address of Bob’s laptop (00:16:D3:23:68:8A).

 6. The Ethernet frame containing the DHCP ACK is sent (unicast) by the router 
to the switch. Because the switch is self-learning (Section 6.4.3) and previ-
ously received an Ethernet frame (containing the DHCP request) from Bob’s 
laptop, the switch knows to forward a frame addressed to 00:16:D3:23:68:8A 
only to the output port leading to Bob’s laptop.

 7. Bob’s laptop receives the Ethernet frame containing the DHCP ACK, extracts 
the IP datagram from the Ethernet frame, extracts the UDP segment from the 
IP datagram, and extracts the DHCP ACK message from the UDP segment. 
Bob’s DHCP client then records its IP address and the IP address of its DNS 
server. It also installs the address of the default gateway into its IP forward-
ing table (Section 4.1). Bob’s laptop will send all datagrams with destination 
address outside of its subnet 68.85.2.0/24 to the default gateway. At this point, 
Bob’s laptop has initialized its networking components and is ready to begin 
processing the Web page fetch. (Note that only the last two DHCP steps of the 
four presented in Chapter 4 are actually necessary.)

6.7.2 Still Getting Started: DNS and ARP
When Bob types the URL for www.google.com into his Web browser, he begins 
the long chain of events that will eventually result in Google’s home page being 
displayed by his Web browser. Bob’s Web browser begins the process by creating a  
TCP socket (Section 2.7) that will be used to send the HTTP request (Section 2.2) 
to www.google.com. In order to create the socket, Bob’s laptop will need to know 
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the IP address of www.google.com. We learned in Section 2.5, that the DNS  protocol 
is used to provide this name-to-IP-address translation service.

 8. The operating system on Bob’s laptop thus creates a DNS query message 
(Section 2.5.3), putting the string “www.google.com” in the question section 
of the DNS message. This DNS message is then placed within a UDP segment 
with a destination port of 53 (DNS server). The UDP segment is then placed 
within an IP datagram with an IP destination address of 68.87.71.226 (the 
address of the DNS server returned in the DHCP ACK in step 5) and a source 
IP address of 68.85.2.101.

 9. Bob’s laptop then places the datagram containing the DNS query message in 
an Ethernet frame. This frame will be sent (addressed, at the link layer) to the 
gateway router in Bob’s school’s network. However, even though Bob’s laptop 
knows the IP address of the school’s gateway router (68.85.2.1) via the DHCP 
ACK message in step 5 above, it doesn’t know the gateway router’s MAC 
address. In order to obtain the MAC address of the gateway router, Bob’s 
 laptop will need to use the ARP protocol (Section 6.4.1).

 10. Bob’s laptop creates an ARP query message with a target IP address of 
68.85.2.1 (the default gateway), places the ARP message within an Ethernet 
frame with a broadcast destination address (FF:FF:FF:FF:FF:FF) and sends the 
Ethernet frame to the switch, which delivers the frame to all connected devices, 
including the gateway router.

 11. The gateway router receives the frame containing the ARP query message on the 
interface to the school network, and finds that the target IP address of 68.85.2.1 in 
the ARP message matches the IP address of its interface. The gateway router thus 
prepares an ARP reply, indicating that its MAC address of 00:22:6B:45:1F:1B 
corresponds to IP address 68.85.2.1. It places the ARP reply message in an Eth-
ernet frame, with a destination address of 00:16:D3:23:68:8A (Bob’s laptop) and 
sends the frame to the switch, which delivers the frame to Bob’s laptop.

 12. Bob’s laptop receives the frame containing the ARP reply message and 
extracts the MAC address of the gateway router (00:22:6B:45:1F:1B) from the 
ARP reply message.

 13. Bob’s laptop can now (finally!) address the Ethernet frame containing the DNS 
query to the gateway router’s MAC address. Note that the IP datagram in this frame 
has an IP destination address of 68.87.71.226 (the DNS server), while the frame 
has a destination address of 00:22:6B:45:1F:1B (the gateway router). Bob’s laptop 
sends this frame to the switch, which delivers the frame to the gateway router.

6.7.3  Still Getting Started: Intra-Domain Routing to the 
DNS Server

 14. The gateway router receives the frame and extracts the IP datagram containing 
the DNS query. The router looks up the destination address of this datagram 

M06_KURO1557_08_SE_C06.indd   515 11/02/20   2:30 PM



516     CHAPTER 6  •  THE LINK LAYER AND LANS

(68.87.71.226) and determines from its forwarding table that the datagram 
should be sent to the leftmost router in the Comcast network in Figure 6.32. 
The IP datagram is placed inside a link-layer frame appropriate for the link 
connecting the school’s router to the leftmost Comcast router and the frame is 
sent over this link.

 15. The leftmost router in the Comcast network receives the frame, extracts the 
IP datagram, examines the datagram’s destination address (68.87.71.226) and 
determines the outgoing interface on which to forward the datagram toward the 
DNS server from its forwarding table, which has been filled in by  Comcast’s 
intra-domain protocol (such as RIP, OSPF or IS-IS, Section 5.3) as well as the 
Internet’s inter-domain protocol, BGP (Section 5.4).

 16. Eventually the IP datagram containing the DNS query arrives at the DNS  
server. The DNS server extracts the DNS query message, looks up the name 
www.google.com in its DNS database (Section 2.5), and finds the DNS resource  
record that contains the IP address (64.233.169.105) for www.google.com. 
(assuming that it is currently cached in the DNS server). Recall that this cached 
data originated in the authoritative DNS server (Section 2.5.2) for google.com. 
The DNS server forms a DNS reply message containing this hostname-to-IP-
address mapping, and places the DNS reply message in a UDP segment, and the 
segment within an IP datagram addressed to Bob’s laptop (68.85.2.101). This 
datagram will be forwarded back through the Comcast network to the school’s 
router and from there, via the Ethernet switch to Bob’s laptop.

 17. Bob’s laptop extracts the IP address of the server www.google.com from the 
DNS message. Finally, after a lot of work, Bob’s laptop is now ready to con-
tact the www.google.com server!

6.7.4 Web Client-Server Interaction: TCP and HTTP
 18. Now that Bob’s laptop has the IP address of www.google.com, it can create the 

TCP socket (Section 2.7) that will be used to send the HTTP GET message 
(Section 2.2.3) to www.google.com. When Bob creates the TCP socket, the 
TCP in Bob’s laptop must first perform a three-way handshake (Section 3.5.6) 
with the TCP in www.google.com. Bob’s laptop thus first creates a TCP SYN 
segment with destination port 80 (for HTTP), places the TCP segment inside an  
IP datagram with a destination IP address of 64.233.169.105 (www.google.com),  
places the datagram inside a frame with a destination MAC address of 
00:22:6B:45:1F:1B (the gateway router) and sends the frame to the switch.

 19. The routers in the school network, Comcast’s network, and Google’s network 
forward the datagram containing the TCP SYN toward www.google.com, 
using the forwarding table in each router, as in steps 14–16 above. Recall that 
the router forwarding table entries governing forwarding of packets over the 
inter-domain link between the Comcast and Google networks are determined 
by the BGP protocol (Chapter 5).
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 20. Eventually, the datagram containing the TCP SYN arrives at www.google.com.  
The TCP SYN message is extracted from the datagram and demultiplexed to 
the welcome socket associated with port 80. A connection socket (Section 2.7) 
is created for the TCP connection between the Google HTTP server and  
Bob’s laptop. A TCP SYNACK (Section 3.5.6) segment is generated, placed 
inside a datagram addressed to Bob’s laptop, and finally placed inside a 
link-layer frame appropriate for the link connecting www.google.com to its 
first-hop router.

 21. The datagram containing the TCP SYNACK segment is forwarded through 
the Google, Comcast, and school networks, eventually arriving at the Ethernet 
controller in Bob’s laptop. The datagram is demultiplexed within the operating 
system to the TCP socket created in step 18, which enters the connected state.

 22. With the socket on Bob’s laptop now (finally!) ready to send bytes to  
www.google.com, Bob’s browser creates the HTTP GET message (Section 2.2.3)  
containing the URL to be fetched. The HTTP GET message is then written  
into the socket, with the GET message becoming the payload of a TCP  
segment. The TCP segment is placed in a datagram and sent and delivered to 
www.google.com as in steps 18–20 above.

 23. The HTTP server at www.google.com reads the HTTP GET message from 
the TCP socket, creates an HTTP response message (Section 2.2), places the 
requested Web page content in the body of the HTTP response message, and 
sends the message into the TCP socket.

 24. The datagram containing the HTTP reply message is forwarded through the 
Google, Comcast, and school networks, and arrives at Bob’s laptop. Bob’s 
Web browser program reads the HTTP response from the socket, extracts 
the html for the Web page from the body of the HTTP response, and finally 
(finally!) displays the Web page!

Our scenario above has covered a lot of networking ground! If you’ve understood 
most or all of the above example, then you’ve also covered a lot of ground since you 
first read Section 1.1, where we wrote “much of this book is concerned with computer 
network protocols” and you may have wondered what a protocol actually was! As 
detailed as the above example might seem, we’ve omitted a number of possible addi-
tional protocols (e.g., NAT running in the school’s gateway router, wireless access to 
the school’s network, security protocols for accessing the school network or encrypt-
ing segments or datagrams, network management protocols), and considerations 
(Web caching, the DNS hierarchy) that one would encounter in the public  Internet. 
We’ll cover a number of these topics and more in the second part of this book.

Lastly, we note that our example above was an integrated and holistic, but also very 
“nuts and bolts,” view of many of the protocols that we’ve studied in the first part of this 
book. The example focused more on the “how” than the “why.” For a broader, more 
reflective view on the design of network protocols in general, you might want to re-read 
the “Architectural Principles of the Internet” in Section 4.5, and the references therein.
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6.8 Summary

In this chapter, we’ve examined the link layer—its services, the principles underly-
ing its operation, and a number of important specific protocols that use these princi-
ples in implementing link-layer services.

We saw that the basic service of the link layer is to move a network-layer data-
gram from one node (host, switch, router, WiFi access point) to an adjacent node. We 
saw that all link-layer protocols operate by encapsulating a network-layer datagram 
within a link-layer frame before transmitting the frame over the link to the adjacent 
node. Beyond this common framing function, however, we learned that different 
link-layer protocols provide very different link access, delivery, and transmission 
services. These differences are due in part to the wide variety of link types over 
which link-layer protocols must operate. A simple point-to-point link has a single 
sender and receiver communicating over a single “wire.” A multiple access link is 
shared among many senders and receivers; consequently, the link-layer protocol for 
a multiple access channel has a protocol (its multiple access protocol) for coordinat-
ing link access. In the case of MPLS, the “link” connecting two adjacent nodes (for 
example, two IP routers that are adjacent in an IP sense—that they are next-hop 
IP routers toward some destination) may actually be a network in and of itself. In 
one sense, the idea of a network being considered as a link should not seem odd. A 
telephone link connecting a home modem/computer to a remote modem/router, for 
example, is actually a path through a sophisticated and complex telephone network.

Among the principles underlying link-layer communication, we examined error-
detection and -correction techniques, multiple access protocols, link-layer address-
ing, virtualization (VLANs), and the construction of extended switched LANs and 
data center networks. Much of the focus today at the link layer is on these switched 
networks. In the case of error detection/correction, we examined how it is possible 
to add additional bits to a frame’s header in order to detect, and in some cases cor-
rect, bit-flip errors that might occur when the frame is transmitted over the link. We 
covered simple parity and checksumming schemes, as well as the more robust cyclic 
redundancy check. We then moved on to the topic of multiple access protocols. We 
identified and studied three broad approaches for coordinating access to a broadcast 
channel: channel partitioning approaches (TDM, FDM), random access approaches 
(the ALOHA protocols and CSMA protocols), and taking-turns approaches (poll-
ing and token passing). We studied the cable access network and found that it 
uses many of these multiple access methods. We saw that a consequence of hav-
ing multiple nodes share a single broadcast channel was the need to provide node 
addresses at the link layer. We learned that link-layer addresses were quite different 
from  network-layer addresses and that, in the case of the Internet, a special proto-
col (ARP—the Address Resolution Protocol) is used to translate between these two 
forms of addressing and studied the hugely successful Ethernet protocol in detail. We 
then examined how nodes sharing a broadcast channel form a LAN and how multiple 
LANs can be connected together to form larger LANs—all without the intervention 
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of network-layer routing to interconnect these local nodes. We also learned how 
 multiple virtual LANs can be created on a single physical LAN infrastructure.

We ended our study of the link layer by focusing on how MPLS networks pro-
vide link-layer services when they interconnect IP routers and an overview of the 
network designs for today’s massive data centers. We wrapped up this chapter (and 
indeed the first five chapters) by identifying the many protocols that are needed to 
fetch a simple Web page. Having covered the link layer, our journey down the pro-
tocol stack is now over! Certainly, the physical layer lies below the link layer, but 
the details of the physical layer are probably best left for another course (e.g., in com-
munication theory, rather than computer networking). We have, however, touched 
upon several aspects of the physical layer in this chapter and in Chapter 1 (our dis-
cussion of physical media in Section 1.2). We’ll consider the physical layer again 
when we study wireless link characteristics in the next chapter.

Although our journey down the protocol stack is over, our study of computer 
networking is not yet at an end. In the following three chapters, we cover wireless 
networking, network security, and multimedia networking. These four topics do 
not fit conveniently into any one layer; indeed, each topic crosscuts many layers. 
Understanding these topics (billed as advanced topics in some networking texts) thus 
requires a firm foundation in all layers of the protocol stack—a foundation that our 
study of the link layer has now completed!

Homework Problems and Questions

Chapter 6 Review Questions
SECTIONS 6.1–6.2
 R1. Consider the transportation analogy in Section 6.1.1. If the passenger is 

analagous to a datagram, what is analogous to the link layer frame?

 R2. If all the links in the Internet were to provide reliable delivery service, would 
the TCP reliable delivery service be redundant? Why or why not?

 R3. What are some of the possible services that a link-layer protocol can offer 
to the network layer? Which of these link-layer services have corresponding 
services in IP? In TCP?

SECTION 6.3
 R4. Suppose two nodes start to transmit at the same time a packet of length L 

over a broadcast channel of rate R. Denote the propagation delay between the 
two nodes as dprop. Will there be a collision if dprop 6 L /R? Why or why not?

 R5. In Section 6.3, we listed four desirable characteristics of a broadcast channel. 
Which of these characteristics does slotted ALOHA have? Which of these 
characteristics does token passing have?
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   R6. In CSMA/CD, after the fifth collision, what is the probability that a node 
chooses K = 4? The result K = 4 corresponds to a delay of how many 
 seconds on a 10 Mbps Ethernet?

   R7. Describe polling and token-passing protocols using the analogy of cocktail 
party interactions.

   R8. Why would the token-ring protocol be inefficient if a LAN had a very large 
perimeter?

SECTION 6.4
   R9. How big is the MAC address space? The IPv4 address space? The IPv6 

address space?

 R10. Suppose nodes A, B, and C each attach to the same broadcast LAN (through 
their adapters). If A sends thousands of IP datagrams to B with each encap-
sulating frame addressed to the MAC address of B, will C’s adapter process 
these frames? If so, will C’s adapter pass the IP datagrams in these frames 
to the network layer C? How would your answers change if A sends frames 
with the MAC broadcast address?

 R11. Why is an ARP query sent within a broadcast frame? Why is an ARP 
response sent within a frame with a specific destination MAC address?

 R12. For the network in Figure 6.19, the router has two ARP modules, each with its 
own ARP table. Is it possible that the same MAC address appears in both tables?

 R13. Compare the frame structures for 10BASE-T, 100BASE-T, and Gigabit 
 Ethernet. How do they differ?

 R14. Consider Figure 6.15. How many subnetworks are there, in the addressing 
sense of Section 4.3?

 R15. What is the maximum number of VLANs that can be configured on a switch 
supporting the 802.1Q protocol? Why?

 R16. Suppose that N switches supporting K VLAN groups are to be connected via 
a trunking protocol. How many ports are needed to connect the switches? 
Justify your answer.

Problems

 P1. Suppose the information content of a packet is the bit pattern 1110 0110 1001 
0101 and an even parity scheme is being used. What would the value of the field 
containing the parity bits be for the case of a two-dimensional parity scheme? 
Your answer should be such that a minimum-length checksum field is used.

 P2. Show (give an example other than the one in Figure 6.5) that two-dimensional  
parity checks can correct and detect a single bit error. Show (give an example 
of) a double-bit error that can be detected but not corrected.
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 P3. Suppose the information portion of a packet (D in Figure 6.3) contains  
10 bytes consisting of the 8-bit unsigned binary ASCII representation of 
string “Internet.” Compute the Internet checksum for this data.

 P4. Consider the previous problem, but instead suppose these 10 bytes contain

a. the binary representation of the numbers 1 through 10.

b. the ASCII representation of the letters B through K (uppercase).

c. the ASCII representation of the letters b through k (lowercase).

d. Compute the Internet checksum for this data.

 P5. Consider the 5-bit generator, G = 10011, and suppose that D has the value 
1010101010. What is the value of R?

 P6. Consider the previous problem, but suppose that D has the value

a. 1000100101.

b. 0101101010.

c. 0110100011.

 P7. In this problem, we explore some of the properties of the CRC. For  
the  generator G (=  1001) given in Section 6.2.3, answer the following  
questions.

a. Why can it detect any single bit error in data D?

b. Can the above G detect any odd number of bit errors? Why?

 P8. In Section 6.3, we provided an outline of the derivation of the efficiency of 
slotted ALOHA. In this problem we’ll complete the derivation.

a. Recall that when there are N active nodes, the efficiency of slotted 
ALOHA is Np(1 - p)N-1. Find the value of p that maximizes this  
expression.

b. Using the value of p found in (a), find the efficiency of slotted ALOHA 
by letting N approach infinity. Hint: (1 - 1/N)N approaches 1/e as N 
approaches infinity.

 P9. Show that the maximum efficiency of pure ALOHA is 1/(2e). Note: This 
problem is easy if you have completed the problem above!

P 10. Consider two nodes, A and B, that use the slotted ALOHA protocol to con-
tend for a channel. Suppose node A has more data to transmit than node B, 
and node A’s retransmission probability pA is greater than node B’s retrans-
mission probability, pB.

a. Provide a formula for node A’s average throughput. What is the total 
efficiency of the protocol with these two nodes?

b. If pA = 2pB, is node A’s average throughput twice as large as that of node 
B? Why or why not? If not, how can you choose pA and pB to make that 
happen?
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c. In general, suppose there are N nodes, among which node A has retrans-
mission probability 2p and all other nodes have retransmission probability 
p. Provide expressions to compute the average throughputs of node A and 
of any other node.

 P11. Suppose four active nodes—nodes A, B, C and D—are competing for access 
to a channel using slotted ALOHA. Assume each node has an infinite number 
of packets to send. Each node attempts to transmit in each slot with probabil-
ity p. The first slot is numbered slot 1, the second slot is numbered slot 2, and 
so on.

a. What is the probability that node A succeeds for the first time in slot 4?

b. What is the probability that some node (either A, B, C or D) succeeds in 
slot 5?

c. What is the probability that the first success occurs in slot 4?

d. What is the efficiency of this four-node system?

 P12. Graph the efficiency of slotted ALOHA and pure ALOHA as a function of  
p for the following values of N:

a. N = 10.

b. N = 30.

c. N = 50.

 P13. Consider a broadcast channel with N nodes and a transmission rate of R bps. 
Suppose the broadcast channel uses polling (with an additional polling node) 
for multiple access. Suppose the amount of time from when a node completes 
transmission until the subsequent node is permitted to transmit (that is, the 
polling delay) is dpoll. Suppose that within a polling round, a given node is 
allowed to transmit at most Q bits. What is the maximum throughput of the 
broadcast channel?

 P14. Consider three LANs interconnected by two routers, as shown in Figure 6.33.

a. Assign IP addresses to all of the interfaces. For Subnet 1 use 
addresses of the form 192.168.1.xxx; for Subnet 2 uses addresses of 
the form 192.168.2.xxx; and for Subnet 3 use addresses of the form 
192.168.3.xxx.

b. Assign MAC addresses to all of the adapters.

c. Consider sending an IP datagram from Host E to Host B. Suppose all of 
the ARP tables are up to date. Enumerate all the steps, as done for the 
single-router example in Section 6.4.1.

d. Repeat (c), now assuming that the ARP table in the sending host is empty 
(and the other tables are up to date).

 P15. Consider Figure 6.33. Now we replace the router between subnets 1 and 2 
with a switch S1, and label the router between subnets 2 and 3 as R1.
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a. Consider sending an IP datagram from Host E to Host F. Will Host E ask router 
R1 to help forward the datagram? Why? In the Ethernet frame containing the 
IP datagram, what are the source and destination IP and MAC addresses?

b. Suppose E would like to send an IP datagram to B, and assume that E’s 
ARP cache does not contain B’s MAC address. Will E perform an ARP 
query to find B’s MAC address? Why? In the Ethernet frame (containing 
the IP datagram destined to B) that is delivered to router R1, what are the 
source and destination IP and MAC addresses?

c. Suppose Host A would like to send an IP datagram to Host B, and neither A’s 
ARP cache contains B’s MAC address nor does B’s ARP cache contain A’s 
MAC address. Further suppose that the switch S1’s forwarding table contains 
entries for Host B and router R1 only. Thus, A will broadcast an ARP request 
message. What actions will switch S1 perform once it receives the ARP 
request message? Will router R1 also receive this ARP request message? If 
so, will R1 forward the message to Subnet 3? Once Host B receives this ARP 
request message, it will send back to Host A an ARP response message. But 
will it send an ARP query message to ask for A’s MAC address? Why? What 
will switch S1 do once it receives an ARP response message from Host B?

 P16. Consider the previous problem, but suppose now that the router between sub-
nets 2 and 3 is replaced by a switch. Answer questions (a)–(c) in the previous 
problem in this new context.

Figure 6.33 ♦ Three subnets, interconnected by routers
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 P17. Recall that with the CSMA/CD protocol, the adapter waits K #  512 bit times 
after a collision, where K is drawn randomly. For K = 100, how long does 
the adapter wait until returning to Step 2 for a 100 Mbps broadcast channel? 
For a 1 Gbps broadcast channel?

 P18. Suppose nodes A and B are on the same 10 Mbps broadcast channel, and the 
propagation delay between the two nodes is 325 bit times. Suppose CSMA/
CD and Ethernet packets are used for this broadcast channel. Suppose node 
A begins transmitting a frame and, before it finishes, node B begins transmit-
ting a frame. Can A finish transmitting before it detects that B has transmit-
ted? Why or why not? If the answer is yes, then A incorrectly believes that its 
frame was successfully transmitted without a collision. Hint: Suppose at time 
t = 0 bits, A begins transmitting a frame. In the worst case, A transmits a 
minimum-sized frame of 512 + 64 bit times. So A would finish transmitting 
the frame at t = 512 + 64 bit times. Thus, the answer is no, if B’s signal 
reaches A before bit time t = 512 + 64 bits. In the worst case, when does 
B’s signal reach A?

 P19. Suppose nodes A and B are on the same 10 Mbps broadcast channel, and the 
propagation delay between the two nodes is 245 bit times. Suppose A and  
B send Ethernet frames at the same time, the frames collide, and then A and  
B choose different values of K in the CSMA/CD algorithm. Assuming no  
other nodes are active, can the retransmissions from A and B collide? For our 
purposes, it suffices to work out the following example. Suppose A and B 
begin transmission at t = 0 bit times. They both detect collisions at t = 245
t bit times. Suppose KA = 0 and KB = 1. At what time does B schedule its 
retransmission? At what time does A begin transmission? (Note: The nodes 
must wait for an idle channel after returning to Step 2—see protocol.) At 
what time does A’s signal reach B? Does B refrain from transmitting at its 
scheduled time?

 P20. In this problem, you will derive the efficiency of a CSMA/CD-like multiple 
access protocol. In this protocol, time is slotted and all adapters are synchro-
nized to the slots. Unlike slotted ALOHA, however, the length of a slot (in 
seconds) is much less than a frame time (the time to transmit a frame). Let S 
be the length of a slot. Suppose all frames are of constant length L = kRS,  
where R is the transmission rate of the channel and k is a large integer. Sup-
pose there are N nodes, each with an infinite number of frames to send. We 
also assume that dprop 6 S, so that all nodes can detect a collision before the 
end of a slot time. The protocol is as follows:
• If, for a given slot, no node has possession of the channel, all nodes 

contend for the channel; in particular, each node transmits in the slot with 
probability p. If exactly one node transmits in the slot, that node takes 
possession of the channel for the subsequent k - 1 slots and transmits its 
entire frame.
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• If some node has possession of the channel, all other nodes refrain 
from transmitting until the node that possesses the channel has finished 
transmitting its frame. Once this node has transmitted its frame, all nodes 
contend for the channel.

  Note that the channel alternates between two states: the productive state, 
which lasts exactly k slots, and the nonproductive state, which lasts for a ran-
dom number of slots. Clearly, the channel efficiency is the ratio of k/(k + x), 
where x is the expected number of consecutive unproductive slots.

a. For fixed N and p, determine the efficiency of this protocol.

b. For fixed N, determine the p that maximizes the efficiency.

c. Using the p (which is a function of N) found in (b), determine the effi-
ciency as N approaches infinity.

d. Show that this efficiency approaches 1 as the frame length becomes large.

 P21. Consider Figure 6.33 in problem P14. Provide MAC addresses and IP 
addresses for the interfaces at Host A, both routers, and Host F. Suppose 
Host A sends a datagram to Host F. Give the source and destination MAC 
addresses in the frame encapsulating this IP datagram as the frame is trans-
mitted (i) from A to the left router, (ii) from the left router to the right router, 
(iii) from the right router to F. Also give the source and destination IP 
addresses in the IP datagram encapsulated within the frame at each of these 
points in time.

 P22. Suppose now that the leftmost router in Figure 6.33 is replaced by a switch. 
Hosts A, B, C, and D and the right router are all star-connected into this 
switch. Give the source and destination MAC addresses in the frame encap-
sulating this IP datagram as the frame is transmitted (i) from A to the switch, 
(ii) from the switch to the right router, (iii) from the right router to F. Also 
give the source and destination IP addresses in the IP datagram encapsulated 
within the frame at each of these points in time.

 P23. Consider Figure 6.15. Suppose that all links are 1 Gbps. What is the maxi-
mum total aggregate throughput that can be achieved among the 9 hosts and 
2 servers in this network? You can assume that any host or server can send to 
any other host or server. Why?

 P24. Suppose the three departmental switches in Figure 6.15 are replaced by hubs. 
All links are 1 Gbps. Now answer the questions posed in problem P23.

 P25. Suppose that all the switches in Figure 6.15 are replaced by hubs. All links 
are 1 Gbps. Now answer the questions posed in problem P23.

 P26. Let’s consider the operation of a learning switch in the context of a network 
in which 6 nodes labeled A through F are star connected into an Ethernet 
switch. Suppose that (i) B sends a frame to E, (ii) E replies with a frame to B, 
(iii) A sends a frame to B, (iv) B replies with a frame to A. The switch table 

PROBLEMS     525
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is initially empty. Show the state of the switch table before and after each 
of these events. For each of these events, identify the link(s) on which the 
transmitted frame will be forwarded, and briefly justify your answers.

 P27. In this problem, we explore the use of small packets for Voice-over-IP appli-
cations. One of the drawbacks of a small packet size is that a large fraction of 
link bandwidth is consumed by overhead bytes. To this end, suppose that the 
packet consists of P bytes and 5 bytes of header.

a. Consider sending a digitally encoded voice source directly. Suppose the 
source is encoded at a constant rate of 128 kbps. Assume each packet is 
entirely filled before the source sends the packet into the network. The 
time required to fill a packet is the packetization delay. In terms of L, 
determine the packetization delay in milliseconds.

b. Packetization delays greater than 20 msec can cause a noticeable and 
unpleasant echo. Determine the packetization delay for L = 1,500 bytes 
(roughly corresponding to a maximum-sized Ethernet packet) and for 
L = 50 (corresponding to an ATM packet).

c. Calculate the store-and-forward delay at a single switch for a link rate of 
R = 622 Mbps for L = 1,500 bytes, and for L = 50 bytes.

d. Comment on the advantages of using a small packet size.

 P28. Consider the single switch VLAN in Figure 6.25, and assume an external 
router is connected to switch port 1. Assign IP addresses to the EE and CS 
hosts and router interface. Trace the steps taken at both the network layer  
and the link layer to transfer an IP datagram from an EE host to a CS host  
(Hint: Reread the discussion of Figure 6.19 in the text).

 P29. Consider the MPLS network shown in Figure 6.29, and suppose that rout-
ers R5 and R6 are now MPLS enabled. Suppose that we want to perform 
traffic engineering so that packets from R6 destined for A are switched to 
A via R6-R4-R3-R1, and packets from R5 destined for A are switched via 
R5-R4-R2-R1. Show the MPLS tables in R5 and R6, as well as the modified 
table in R4, that would make this possible.

 P30. Consider again the same scenario as in the previous problem, but suppose 
that packets from R6 destined for D are switched via R6-R4-R3, while pack-
ets from R5 destined to D are switched via R4-R2-R1-R3. Show the MPLS 
tables in all routers that would make this possible.

 P31. In this problem, you will put together much of what you have learned about 
Internet protocols. Suppose you walk into a room, connect to Ethernet, and 
want to download a Web page. What are all the protocol steps that take place, 
starting from powering on your PC to getting the Web page? Assume there  
is nothing in our DNS or browser caches when you power on your PC.  
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(Hint: The steps include the use of Ethernet, DHCP, ARP, DNS, TCP, and 
HTTP protocols.) Explicitly indicate in your steps how you obtain the IP and 
MAC addresses of a gateway router.

 P32. Consider the data center network with hierarchical topology in Figure 6.30. 
Suppose now there are 80 pairs of flows, with ten flows between the first 
and ninth rack, ten flows between the second and tenth rack, and so on. 
Further suppose that all links in the network are 10 Gbps, except for the links 
between hosts and TOR switches, which are 1 Gbps.

a. Each flow has the same data rate; determine the maximum rate of a flow.

b. For the same traffic pattern, determine the maximum rate of a flow for the 
highly interconnected topology in Figure 6.31.

c. Now suppose there is a similar traffic pattern, but involving 20 hosts on 
each rack and 160 pairs of flows. Determine the maximum flow rates for 
the two topologies.

 P33. Consider the hierarchical network in Figure 6.30 and suppose that the data 
center needs to support e-mail and video distribution among other applica-
tions. Suppose four racks of servers are reserved for e-mail and four racks are 
reserved for video. For each of the applications, all four racks must lie below 
a single tier-2 switch since the tier-2 to tier-1 links do not have sufficient 
bandwidth to support the intra-application traffic. For the e-mail application, 
suppose that for 99.9 percent of the time only three racks are used, and that 
the video application has identical usage patterns.

a. For what fraction of time does the e-mail application need to use a fourth 
rack? How about for the video application?

b. Assuming e-mail usage and video usage are independent, for what fraction 
of time do (equivalently, what is the probability that) both applications 
need their fourth rack?

c. Suppose that it is acceptable for an application to have a shortage of serv-
ers for 0.001 percent of time or less (causing rare periods of performance 
degradation for users). Discuss how the topology in Figure 6.31 can be 
used so that only seven racks are collectively assigned to the two applica-
tions (assuming that the topology can support all the traffic).

Wireshark Labs: 802.11 Ethernet

At the Companion website for this textbook, http://www.pearsonhighered.com/ 
cs-resources/, you’ll find a Wireshark lab that examines the operation of the IEEE 
802.3 protocol and the Wireshark frame format. A second Wireshark lab examines 
packet traces taken in a home network scenario.
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Albert Greenberg

AN INTERVIEW WITH…

Albert Greenberg is Microsoft Corporate Vice President for Azure 
Networking. He leads development for the Azure Networking team, 
which is responsible for networking R&D at Microsoft - within and 
across data centers and edge sites; global terrestrial and subsea  
networks; optical networking; FPGA and SmartNIC offloads;  
access and hybrid cloud networking; host networking and network 
virtualization; application load balancers and network virtual appli-
ances; network services and analytics; security services; container 
networking; content distribution networks; edge networking including 
application acceleration and 5G, and first party networks. To meet 
the challenges of agility and quality that comes with cloud scale, 
his team has developed and embraced custom hardware, machine 
learning, and open source. Albert moved to Microsoft in 2007  
to innovate on Cloud and bring networking to the host (network  
virtualization), ideas that appeared, among many, in his VL2 paper, 
and which underly Cloud networking today.

Prior to joining Microsoft, Albert worked at Bell Labs and AT&T 
Labs as an AT&T Fellow. He helped build the systems and tools  
that run AT&T’s networks, and pioneered the architecture and systems  
at the foundations of software-defined networking. He holds an  
AB in Mathematics from Dartmouth College and a PhD in Computer 
Science from the University of Washington. 

Albert is a member of the National Academy of Engineering, 
and an ACM Fellow. He has received the IEEE Koji Kobayashi 
Computer and Communication Award, ACM Sigcomm Award, and 
ACM Sigcomm and Sigmetrics Test of Time paper awards. Albert 
and wife Kathryn are proud parents of four daughters. He grew up 
in New Orleans. While the Seattle Seahawks are his team, he  
cannot shake his fondness for the Saints.
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What brought you to specialize in networking?
I’ve always liked solving real-world problems, and also liked mathematics. I’ve found 
that the field of networking has lots of room and scope to do both. That mix was very 
appealing to me. While working on a PhD at the University of Washington, I benefited 
from the influence of Ed Lazowska on the systems side, and Richard Ladner and Martin 
Tompa on the mathematical and theoretical side. One of my MS course projects was to 
get two machines from the same vendor to talk to each other. Now it seems you can’t stop 
machines from communicating!

Do you have any advice for students entering the networking/Internet field? 
The face of networking is changing. It’s becoming a very diverse, inclusive and open  
environment. I mean that in two ways. First, we will see far much more diversity among  
our network developers and researchers, including women and other underrepresented 
groups in technology. I’m proud of the diversity and inclusivity of the team at Microsoft, 
and my earlier teams at AT&T. Diversity makes us more resilient, better able to adapt to 
change, and makes our decisions better. Second, one can bring a diversity of technical 
skills and interests to networking. Those interests might be in architecture, programming 
languages, optics, formal methods, data science, AI, or in fault tolerant and reliable system 
design. Open source systems are having enormous impact. SONiC, a Linux-based an open 
source initiative for networking operating systems, is a great example. Read this book, and 
bring your whole set of skills, experience and knowledge set to creating the networks of the 
future. SDN and Disaggregation brings diversity and openness. So exciting. 

Can you describe one or two of the most exciting projects you have worked on during 
your career? What were the biggest challenges?
The cloud is by far the biggest thing to come along in a long time. The challenges there are  
head and shoulders above other system challenges I’ve worked on, in part because the cloud 
incorporate so many aspects of systems. Cloud scenarios stretch tremendously the challenge 
of networking. Traditional networking technology is only part of it; in practice today there’s 
operating systems and distributed systems, architecture, performance, security, reliability, 
machine learning, data science, and management–the whole stack. If we used to think of 
these individual areas as “gardens”, we can think of the cloud as a “farm” made up of all 
of these wonderful gardens. And the operational concerns of designing, monitoring and 
managing an ultra-reliable global-scale system are crucial, as the cloud provides critically 
important infrastructure for government, industry, education and more. All of that has to 
be rock solid; it needs to be secure; it needs to be trustworthy. Software is, of course, key 
to effectively monitoring and managing such a massive cloud. Here, SDN plays the central 
role in managing and provisioning at scale, creating, in essence, a software-defined data 
center. Software allows us to also innovate rapidly.
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How do you envision the future of networking and the Internet? What major challenges/
obstacles do you think lie ahead in their development, particularly in the areas of data 
center networking, and edge networks?
I’ve already talked about Cloud, and we are just say 10% into its evolution. Yet, it’s clear 
that the division of work in the end-to-end system will be an increasingly important issue. 
How much computation and storage will happen in the application and at the end-host? 
How much will happen in cloud components at the network’s “edge”, at or near the end 
host or container? And how much will happen in the data centers themselves. How will 
all of this be orchestrated? We’ll see cloud computing being pushed closer to the edge and 
we’ll see “horizontal” growth–a richer end-to-end computing/data/networking ecosystem– 
not just growth, say within a data center. This will be an area of great innovation.  
5G wireless will be an important part of this mix. 

Who has inspired you professionally?
I’ve learned a tremendous amount, at both Microsoft and AT&T, from customers and from 
the live site. Interacting with engineers inspires me, for their passion for dev and dev-ops  
of the entire lifecycle (invention to development to deployment to ultimate decommission)  
of operational services and systems. These are the people who know architecture and  
systems from end to end, inside out. They’re great to work with and have so much insight, 
experience and knowledge to share, whether that be Microsoft’s Azure Cloud or earlier  
in my career AT&T’s networks. I’ve also loved working with the researchers who have 
established some of the principles underlying the design and management of these  
at-scale systems.
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In the telephony world, the past 25 years have been the golden years of cellular 
telephony. The number of worldwide mobile cellular subscribers increased from 
34 million in 1993 to 8.3 billion subscribers in 2019. There are now a larger number 
of mobile phone subscriptions than there are people on our planet. The many advan-
tages of cell phones are evident to all—anywhere, anytime, untethered access to the 
global telephone network via a highly portable lightweight device. More recently, 
smartphones, tablets, and laptops have become wirelessly connected to the Internet 
via a cellular or WiFi network. And increasingly, devices such as gaming consoles, 
thermostats, home security systems, home appliances, watches, eye glasses, cars, 
traffic control systems and more are being wirelessly connected to the Internet.

From a networking standpoint, the challenges posed by networking these wire-
less and mobile devices, particularly at the link layer and the network layer, are so 
different from traditional wired computer networks that an individual chapter devoted 
to the study of wireless and mobile networks (i.e., this chapter) is appropriate.

We’ll begin this chapter with a discussion of mobile users, wireless links, and 
networks, and their relationship to the larger (typically wired) networks to which 
they connect. We’ll draw a distinction between the challenges posed by the  wireless 
nature of the communication links in such networks, and by the mobility that these 
wireless links enable. Making this important distinction—between wireless and 
mobility—will allow us to better isolate, identify, and master the key concepts in 
each area.

We will begin with an overview of wireless access infrastructure and associ-
ated  terminology. We’ll then consider the characteristics of this wireless link in 

7CHAPTER

Wireless 
and Mobile 
Networks
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Section 7.2. We include a brief introduction to code division multiple access (CDMA), 
a shared-medium access protocol that is often used in wireless networks, in Section 
7.2. In Section 7.3, we’ll examine the link-level aspects of the IEEE 802.11 (WiFi) 
wireless LAN standard in some depth; we’ll also say a few words about Bluetooth 
wireless personal area networks. In Section 7.4, we’ll provide an overview of cellular 
Internet access, including 4G and emerging 5G cellular technologies that provide 
both voice and high-speed Internet access. In Section 7.5, we’ll turn our attention to 
mobility, focusing on the problems of locating a mobile user, routing to the mobile 
user, and “handing over” the mobile user who dynamically moves from one point 
of attachment to the network to another. We’ll examine how these mobility services 
are implemented in the 4G/5G cellular networks, and the in the Mobile IP standard 
in Section 7.6. Finally, we’ll consider the impact of wireless links and mobility on 
transport-layer protocols and networked applications in Section 7.7.

7.1 Introduction

Figure 7.1 shows the setting in which we’ll consider the topics of wireless data com-
munication and mobility. We’ll begin by keeping our discussion general enough to 
cover a wide range of networks, including both wireless LANs such as WiFi and 4G 
and 5G cellular networks; we’ll drill down into a more detailed discussion of specific 
wireless architectures in later sections. We can identify the following elements in a 
wireless network:

• Wireless hosts. As in the case of wired networks, hosts are the end-system devices 
that run applications. A wireless host might be a smartphone, tablet, or laptop, or 
it could be an Internet of Things (IoT) device such as a sensor, appliance, auto-
mobile, or any other of the myriad devices being connected to the Internet. The 
hosts themselves may or may not be mobile.

• Wireless links. A host connects to a base station (defined below) or to another 
wireless host through a wireless communication link. Different wireless link 
technologies have different transmission rates and can transmit over different 
distances. Figure 7.2 shows two key characteristics, link transmission rates and 
coverage ranges, of the more popular wireless network standards. (The figure is 
only meant to provide a rough idea of these characteristics. For example, some 
of these types of networks are only now being deployed, and some link rates 
can increase or decrease beyond the values shown depending on distance, chan-
nel conditions, and the number of users in the wireless network.) We’ll cover 
these standards later in the first half of this chapter; we’ll also consider other 
wireless link characteristics (such as their bit error rates and the causes of bit 
errors) in Section 7.2.
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 In Figure 7.1, wireless links connect wireless hosts located at the edge of the 
network into the larger network infrastructure. We hasten to add that wireless 
links are also sometimes used within a network to connect routers, switches, and 
other network equipment. However, our focus in this chapter will be on the use of 
wireless communication at the network edge, as it is here that many of the most 
exciting technical challenges, and most of the growth, are occurring.

• Base station. The base station is a key part of the wireless network infrastructure. 
Unlike the wireless host and wireless link, a base station has no obvious counter-
part in a wired network. A base station is responsible for sending and receiving 
data (e.g., packets) to and from a wireless host that is associated with that base 
station. A base station will often be responsible for coordinating the transmission 
of multiple wireless hosts with which it is associated. When we say a wireless host 
is “associated” with a base station, we mean that (1) the host is within the wireless 
communication distance of the base station, and (2) the host uses that base station 
to relay data between it (the host) and the larger network. Cell towers in cellular 
networks and access points in 802.11 wireless LANs are examples of base stations.

Figure 7.1 ♦ Elements of a wireless network

Network
infrastructure
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Wireless access point

Coverage area

Wireless host

Wireless host in motion
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 In Figure 7.1, the base station is connected to the larger network (e.g., the  Internet, 
corporate or home network), thus functioning as a link-layer relay between the 
wireless host and the rest of the world with which the host communicates.

 Hosts associated with a base station are often referred to as operating in 
 infrastructure mode, since all traditional network services (e.g., address assign-
ment and routing) are provided by the network to which a host is connected via 
the base station. In ad hoc networks, wireless hosts have no such infrastructure 
with which to connect. In the absence of such infrastructure, the hosts themselves 
must provide for services such as routing, address assignment, DNS-like name 
translation, and more.

 When a mobile host moves beyond the range of one base station and into the 
range of another, it will change its point of attachment into the larger network 
(i.e., change the base station with which it is associated)—a process referred to as 
handoff or handover. Such mobility raises many challenging questions. If a host 
can move, how does one find the mobile host’s current location in the network 
so that data can be forwarded to that mobile host? How is addressing performed, 
given that a host can be in one of many possible locations? If the host moves 
during a TCP connection or phone call, how is data routed so that the connection 

Figure 7.2 ♦  Wireless transmission rates and range for WiFi, cellular 
4G/5G and Bluetooth standards (note: axes are not linear)

802.11ax

802.11ac

802.11n

802.11 af,ah

5G

4G LTE

802.11g

802.11b

Bluetooth

Indoor Outdoor Mid range
outdoor

Long range
outdoor

10–30m 50–200m 200m–4Km 4Km–15Km

14 Gbps

10 Gbps

3.5 Gbps

600 Mbps

54 Mbps

2 Mbps

11 Mbps

M07_KURO1557_08_SE_C07.indd   534 11/02/20   3:07 PM



7.1  •  INTRODUCTION     535

continues uninterrupted? These and many (many!) other questions make wireless 
and mobile networking an area of exciting networking research.

• Network infrastructure. This is the larger network with which a wireless host may 
wish to communicate.

Having discussed the “pieces” of a wireless network, we note that these pieces 
can be combined in many different ways to form different types of wireless net-
works. You may find a taxonomy of these types of wireless networks useful as you 
read on in this chapter, or read/learn more about wireless networks beyond this book. 
At the highest level we can classify wireless networks according to two criteria: (i) 
whether a packet in the wireless network crosses exactly one wireless hop or multiple 
wireless hops, and (ii) whether there is infrastructure such as a base station in the 
network:

• Single-hop, infrastructure-based. These networks have a base station that is con-
nected to a larger wired network (e.g., the Internet). Furthermore, all communica-
tion is between this base station and a wireless host over a single wireless hop. The 
802.11 networks you use in the classroom, café, or library; and the 4G LTE data 
networks that we will learn about shortly all fall in this category. The vast majority 
of our daily interactions are with single-hop, infrastructure-based  wireless networks.

• Single-hop, infrastructure-less. In these networks, there is no base station that 
is connected to a wireless network. However, as we will see, one of the nodes 
in this single-hop network may coordinate the transmissions of the other nodes. 
 Bluetooth networks (that connect small wireless devices such as keyboards, 
speakers, and headsets, and which we will study in Section 7.3.6) are single-hop, 
infrastructure-less networks.

• Multi-hop, infrastructure-based. In these networks, a base station is present that 
is wired to the larger network. However, some wireless nodes may have to relay 
their communication through other wireless nodes in order to communicate via 
the base station. Some wireless sensor networks and so-called wireless mesh 
networks deployed in homes fall in this category.

• Multi-hop, infrastructure-less. There is no base station in these networks, and 
nodes may have to relay messages among several other nodes in order to reach 
a destination. Nodes may also be mobile, with connectivity changing among 
nodes—a class of networks known as mobile ad hoc networks (MANETs). 
If the mobile nodes are vehicles, the network is a vehicular ad hoc network 
(VANET). As you might imagine, the development of protocols for such net-
works is challenging and is the subject of much ongoing research.

In this chapter, we’ll mostly confine ourselves to single-hop networks, and then 
mostly to infrastructure-based networks.
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Let’s now dig deeper into the technical challenges that arise in wireless and 
mobile networks. We’ll begin by first considering the individual wireless link, defer-
ring our discussion of mobility until later in this chapter.

7.2 Wireless Links and Network Characteristics

Wireless links differ from their wired counterparts in a number important ways:

• Decreasing signal strength. Electromagnetic radiation attenuates as it passes 
through matter (e.g., a radio signal passing through a wall). Even in free space, 
the signal will disperse, resulting in decreased signal strength (sometimes referred 
to as path loss) as the distance between sender and receiver increases.

• Interference from other sources. Radio sources transmitting in the same fre-
quency band will interfere with each other. For example, 2.4 GHz wireless 
phones and 802.11b wireless LANs transmit in the same frequency band. Thus, 
the 802.11b wireless LAN user talking on a 2.4 GHz wireless phone can expect 
that neither the network nor the phone will perform particularly well. In addi-
tion to interference from transmitting sources, electromagnetic noise within the 
environment (e.g., a nearby motor, a microwave) can result in interference. For 
this reason, a number of more recent 802.11 standards operate in the 5GHz 
frequency band.

• Multipath propagation. Multipath propagation occurs when portions of the 
electromagnetic wave reflect off objects and the ground, taking paths of different 
lengths between a sender and receiver. This results in the blurring of the received 
signal at the receiver. Moving objects between the sender and receiver can cause 
multipath propagation to change over time.

For a detailed discussion of wireless channel characteristics, models, and measure-
ments, see [Anderson 1995; Almers 2007].

The discussion above suggests that bit errors will be more common in wireless 
links than in wired links. For this reason, it is perhaps not surprising that wireless 
link protocols (such as the 802.11 protocol we’ll examine in the following section) 
employ not only powerful CRC error detection codes, but also link-level relia-
ble-data-transfer protocols that retransmit corrupted frames.

Having considered the impairments that can occur on a wireless channel, let’s next 
turn our attention to the host receiving the wireless signal. This host receives an elec-
tromagnetic signal that is a combination of a degraded form of the original signal trans-
mitted by the sender (degraded due to the attenuation and multipath propagation effects 
that we discussed above, among others) and background noise in the environment.  
The signal-to-noise ratio (SNR) is a relative measure of the strength of the received 
signal (i.e., the information being transmitted) and this noise. The SNR is typically 
measured in units of decibels (dB), a unit of measure that some think is used by 
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electrical engineers primarily to confuse computer scientists. The SNR, measured 
in dB, is 20 times the ratio of the base-10 logarithm of the amplitude of the received 
signal to the amplitude of the noise. For our purposes here, we need only know that 
a larger SNR makes it easier for the receiver to extract the transmitted signal from 
the background noise.

Figure 7.3 (adapted from [Holland 2001]) shows the bit error rate (BER)—
roughly speaking, the probability that a transmitted bit is received in error at the 
receiver—versus the SNR for three different modulation techniques for encod-
ing information for transmission on an idealized wireless channel. The theory 
of modulation and coding, as well as signal extraction and BER, is well beyond 
the scope of this text (see [Schwartz 1980; Goldsmith 2005] for a discussion of 
these topics). Nonetheless, Figure 7.3 illustrates several physical-layer charac-
teristics that are important in understanding higher-layer wireless communica-
tion protocols:

• For a given modulation scheme, the higher the SNR, the lower the BER. Since 
a sender can increase the SNR by increasing its transmission power, a sender 
can decrease the probability that a frame is received in error by increasing its 
transmission power. Note, however, that there is arguably little practical gain 
in increasing the power beyond a certain threshold, say to decrease the BER 
from 10-12 to 10-13. There are also disadvantages associated with increas-
ing the  transmission power: More energy must be expended by the sender  

Figure 7.3 ♦ Bit error rate, transmission rate, and SNR
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(an important concern for battery-powered mobile users), and the sender’s 
transmissions are more likely to interfere with the transmissions of another 
sender (see Figure 7.4(b)).

• For a given SNR, a modulation technique with a higher bit transmission rate 
(whether in error or not) will have a higher BER. For example, in Figure 7.3, 
with an SNR of 10 dB, BPSK modulation with a transmission rate of 1 Mbps has 
a BER of less than 10-7, while with QAM16 modulation with a transmission rate 
of 4 Mbps, the BER is 10-1, far too high to be practically useful. However, with 
an SNR of 20 dB, QAM16 modulation has a transmission rate of 4 Mbps and a 
BER of 10-7, while BPSK modulation has a transmission rate of only 1 Mbps 
and a BER that is so low as to be (literally) “off the charts.” If one can tolerate a 
BER of 10-7, the higher transmission rate offered by QAM16 would make it the 
preferred modulation technique in this situation. These considerations give rise to 
the final characteristic, described next.

• Dynamic selection of the physical-layer modulation technique can be used to 
adapt the modulation technique to channel conditions. The SNR (and hence 
the BER) may change as a result of mobility or due to changes in the environ-
ment. Adaptive modulation and coding are used in the 802.11 WiFi and in 4G 
and 5G cellular data networks that we’ll study in Sections 7.3 and 7.4. This 
allows, for example, the selection of a modulation technique that provides the 
highest transmission rate possible subject to a constraint on the BER, for given 
channel characteristics.

A higher and time-varying bit error rate is not the only difference between a 
wired and wireless link. Recall that in the case of wired broadcast links, all nodes 

Figure 7.4 ♦ Hidden terminal problem caused by obstacle (a) and fading (b)
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receive the transmissions from all other nodes. In the case of wireless links, the situ-
ation is not as simple, as shown in Figure 7.4. Suppose that Station A is transmit-
ting to Station B. Suppose also that Station C is transmitting to Station B. With the 
so-called hidden terminal problem, physical obstructions in the environment (for 
example, a mountain or a building) may prevent A and C from hearing each other’s 
transmissions, even though A’s and C’s transmissions are indeed interfering at the 
destination, B. This is shown in Figure 7.4(a). A second scenario that results in unde-
tectable collisions at the receiver results from the fading of a signal’s strength as it 
propagates through the wireless medium. Figure 7.4(b) illustrates the case where A 
and C are placed such that their signals are not strong enough to detect each other’s 
transmissions, yet their signals are strong enough to interfere with each other at sta-
tion B. As we’ll see in Section 7.3, the hidden terminal problem and fading make 
multiple access in a wireless network considerably more complex than in a wired 
network.

7.2.1 CDMA
Recall from Chapter 6 that when hosts communicate over a shared medium, a pro-
tocol is needed so that the signals sent by multiple senders do not interfere at the 
receivers. In Chapter 6, we described three classes of medium access protocols: 
channel partitioning, random access, and taking turns. Code division multiple access 
(CDMA) belongs to the family of channel partitioning protocols. It is prevalent in 
wireless LAN and cellular technologies. Because CDMA is so important in the wire-
less world, we’ll take a quick look at CDMA now, before getting into specific wire-
less access technologies in the subsequent sections.

In a CDMA protocol, each bit being sent is encoded by multiplying the bit by 
a signal (the code) that changes at a much faster rate (known as the chipping rate) 
than the original sequence of data bits. Figure 7.5 shows a simple, idealized CDMA 
encoding/decoding scenario. Suppose that the rate at which original data bits reach 
the CDMA encoder defines the unit of time; that is, each original data bit to be 
transmitted requires a one-bit slot time. Let di be the value of the data bit for the 
ith bit slot. For mathematical convenience, we represent a data bit with a 0 value 
as -1. Each bit slot is further subdivided into M mini-slots; in Figure 7.5, M = 8,  
although in practice M is much larger. The CDMA code used by the sender con-
sists of a sequence of M values, cm, m = 1, . . . , M, each taking a +1 or -1 value. 
In the example in Figure 7.5, the M-bit CDMA code being used by the sender is 
(1, 1, 1, -1, 1, -1, -1, -1).

To illustrate how CDMA works, let us focus on the ith data bit, di. For the mth 
mini-slot of the bit-transmission time of di, the output of the CDMA encoder, Zi,m, is 
the value of di multiplied by the mth bit in the assigned CDMA code, cm:

 Zi,m = di
# cm (7.1)
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In a simple world, with no interfering senders, the receiver would receive the encoded 
bits, Zi,m, and recover the original data bit, di, by computing:

 di =
1
M

 a
M

m=1
Zi,m

# cm (7.2)

The reader might want to work through the details of the example in Figure 7.5 to 
see that the original data bits are indeed correctly recovered at the receiver using 
Equation 7.2.

Figure 7.5 ♦ A simple CDMA example: Sender encoding, receiver decoding

11 1 1

–1 –1–1–1

11 1 1

–1 –1–1–1

1

–1 –1–1

1 1 1 1

–1 –1–1–1

1 1 1

Time slot 1
received input

Time slot 0
received input

Code

1

–1 –1–1–1

1 1 1 1

–1 –1–1–1

1 1 1Data bits

Code 11 1 1

–1 –1–1–1

11 1 1

–1 –1–1–1

d1 = –1

d0 = 1

Time slot 1

Sender Channel output Zi,m

Receiver

Zi,m di • cm=

Zi,m • cm

d
M

i
m=1

M

5
S

Time slot 1
channel output

Time slot 0
channel output

Time slot 0

d1 = –1

d0 = 1
–1

M07_KURO1557_08_SE_C07.indd   540 11/02/20   3:07 PM



7.2  •  WIRELESS LINKS AND NETWORK CHARACTERISTICS     541

The world is far from ideal, however, and as noted above, CDMA must work in 
the presence of interfering senders that are encoding and transmitting their data using 
a different assigned code. But how can a CDMA receiver recover a sender’s original 
data bits when those data bits are being tangled with bits being transmitted by other 
senders? CDMA works under the assumption that the interfering transmitted bit sig-
nals are additive. This means, for example, that if three senders send a 1 value, and a 
fourth sender sends a -1 value during the same mini-slot, then the received signal at 
all receivers during that mini-slot is a 2 (since 1 + 1 + 1 - 1 = 2). In the presence 
of multiple senders, sender s computes its encoded transmissions, Zs

i,m, in exactly 
the same manner as in Equation 7.1. The value received at a receiver during the 
mth mini-slot of the ith bit slot, however, is now the sum of the transmitted bits from 
all N senders during that mini-slot:

Z*
i, m = a

N

s=1
Zs

i,m

Amazingly, if the senders’ codes are chosen carefully, each receiver can recover the 
data sent by a given sender out of the aggregate signal simply by using the sender’s 
code in exactly the same manner as in Equation 7.2:

 di =
1
M a

M

m=1
Zi,m

* # cm (7.3)

as shown in Figure 7.6, for a two-sender CDMA example. The M-bit CDMA code 
being used by the upper sender is (1, 1, 1, -1, 1, -1, -1, -1), while the CDMA code 
being used by the lower sender is (1, -1, 1, 1, 1, -1, 1, 1). Figure 7.6 illustrates a 
receiver recovering the original data bits from the upper sender. Note that the receiver 
is able to extract the data from sender 1 in spite of the interfering transmission from  
sender 2.

Recall our cocktail analogy from Chapter 6. A CDMA protocol is similar to 
having partygoers speaking in multiple languages; in such circumstances humans are 
actually quite good at locking into the conversation in the language they understand, 
while filtering out the remaining conversations. We see here that CDMA is a parti-
tioning protocol in that it partitions the codespace (as opposed to time or frequency) 
and assigns each node a dedicated piece of the codespace.

Our discussion here of CDMA is necessarily brief; in practice a number of dif-
ficult issues must be addressed. First, in order for the CDMA receivers to be able 
to extract a particular sender’s signal, the CDMA codes must be carefully chosen. 
 Second, our discussion has assumed that the received signal strengths from various 
senders are the same; in reality, this can be difficult to achieve. There is a consid-
erable body of literature addressing these and other issues related to CDMA; see 
 [Pickholtz 1982; Viterbi 1995] for details.
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7.3 WiFi: 802.11 Wireless LANs

Pervasive in the workplace, the home, educational institutions, cafés, airports, and 
street corners, wireless LANs are now one of the most important access network 
technologies in the Internet today. Although many technologies and standards for 

Figure 7.6 ♦ A two-sender CDMA example
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wireless LANs were developed in the 1990s, one particular class of standards has 
clearly emerged as the winner: the IEEE 802.11 wireless LAN, also known as WiFi. 
In this section, we’ll take a close look at 802.11 wireless LANs, examining its frame 
structure, its medium access protocol, and its internetworking of 802.11 LANs with 
wired Ethernet LANs.

As summarized in Table 7.1, there are several 802.11 standards [IEEE 802.11 
2020]. The 802.11 b, g, n, ac, ax are successive generations of 802.11 technology 
aimed for wireless local area networks (WLANs), typically less than 70 m range in 
a home office, workplace, or business setting. The 802.11 n, ac, and ax standards 
have recently been branded as WiFi 4, 5 and 6, respectively—no doubt competing 
with 4G and 5G cellular network branding. The 802.11 af, ah standards operate over 
longer distances and are aimed at Internet of Things, sensor networks, and metering 
applications.

The different 802.11 b, g, n, ac, ax standards all share some common character-
istics, including the 802.11 frame format that we will study shortly, and are back-
ward compatible, meaning, for example, that a mobile capable only of 802.11 g may 
still interact with a newer 802.11 ac or 802.11 ax base station. They also all use the 
same medium access protocol, CSMA/CA, which we’ll also discuss shortly, while 
also 802.11 ax also supports centralized scheduling by the base station of transmis-
sions from associated wireless devices.

However, as shown in Table 7.1, the standards have some major differences 
at the physical layer. 802.11 devices operate in two different frequency ranges:  
2.4–2.485 GHz (referred to as the 2.4 GHz range) and 5.1–5.8 GHz (referred to as 
the 5 GHz range). The 2.4 GHz range is an unlicensed frequency band, where 802.11 
devices may compete for frequency spectrum with 2.4 GHz phones and appli-
ances such as microwave ovens. At 5 GHz, 802.11 LANs have a shorter transmis-
sion distance for a given power level and suffer more from multipath propagation. 
The 802.11n, 802.11ac, and 802.11ax standards use multiple input multiple-output  
(MIMO) antennas; that is, two or more antennas on the sending side and two or 
more antennas on the receiving side that are transmitting/receiving different signals 

IEEE 802.11 standard Year Max data rate Range Frequency
802.11 b 1999 11 Mbps 30 m 2.4 Ghz
802.11 g 2003 54 Mbps 30 m 2.4 Ghz
802.11 n (WiFi 4) 2009 600 70 m 2.4, 5 Ghz
802.11 ac (WiFi 5) 2013 3.47 Gpbs 70 m 5 Ghz
802.11 ax (WiFi 6) 2020 (expected) 14 Gbps 70 m 2.4, 5 Ghz
802.11 af 2014 35–560 Mbps 1 Km unused TV bands (54–790 MHz)
802.11 ah 2017 347 Mbps 1 Km 900 Mhz

Table 7.1 ♦ Summary of IEEE 802.11 standards
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[Diggavi 2004]. 802.11ac and 802.11 ax base stations may transmit to multiple sta-
tions simultaneously, and use “smart” antennas to adaptively beamform to target 
transmissions in the direction of a receiver. This decreases interference and increases 
the distance reached at a given data rate. The data rates shown in Table 7.1 are  
for an idealized environment, for example, a receiver close to the base station, with no 
 interference—a scenario that we’re unlikely to experience in practice! So as the say-
ing goes, YMMV: Your Mileage (or in this case your wireless data rate) May Vary.

7.3.1 The 802.11 Wireless LAN Architecture
Figure 7.7 illustrates the principal components of the 802.11 wireless LAN architec-
ture. The fundamental building block of the 802.11 architecture is the basic service 
set (BSS). A BSS contains one or more wireless stations and a central base station, 
known as an access point (AP) in 802.11 parlance. Figure 7.7 shows the AP in each 
of two BSSs connecting to an interconnection device (such as a switch or router), 
which in turn leads to the Internet. In a typical home network, there is one AP and one 
router (typically integrated together as one unit) that connects the BSS to the Internet.

As with Ethernet devices, each 802.11 wireless station has a 6-byte MAC address 
that is stored in the firmware of the station’s adapter (that is, 802.11 network interface 
card). Each AP also has a MAC address for its wireless interface. As with Ethernet, 
these MAC addresses are administered by IEEE and are (in theory)  globally unique.

As noted in Section 7.1, wireless LANs that deploy APs are often referred to as 
infrastructure wireless LANs, with the “infrastructure” being the APs along with the 

Figure 7.7 ♦ IEEE 802.11 LAN architecture

Internet
Switch or router

AP

BSS 1

BSS 2

AP

M07_KURO1557_08_SE_C07.indd   544 11/02/20   3:07 PM



7.3  •  WIFI: 802.11 WIRELESS LANS     545

wired Ethernet infrastructure that interconnects the APs and a router. Figure 7.8 shows 
that IEEE 802.11 stations can also group themselves together to form an ad hoc net-
work—a network with no central control and with no connections to the  “outside world.” 
Here, the network is formed “on the fly,” by mobile devices that have found themselves 
in proximity to each other, that have a need to communicate, and that find no preexist-
ing network infrastructure in their location. An ad hoc network might be formed when 
people with laptops get together (e.g., in a conference room, a train, or a car) and want 
to exchange data in the absence of a centralized AP. There has been tremendous interest 
in ad hoc networking, as communicating portable devices continue to proliferate. In this 
section, though, we’ll focus our attention on infrastructure wireless LANs.

Channels and Association

In 802.11, each wireless station needs to associate with an AP before it can send or 
receive network-layer data. Although all of the 802.11 standards use association, 
we’ll discuss this topic specifically in the context of IEEE 802.11b, g, n, ac, ax.

When a network administrator installs an AP, the administrator assigns a one- 
or two-word Service Set Identifier (SSID) to the access point. (When you choose 
Wi-Fi under Setting on your iPhone, for example, a list is displayed showing the 
SSID of each AP in range.) The administrator must also assign a channel number 
to the AP. To understand channel numbers, recall that 802.11 operates in the fre-
quency range of 2.4 GHz to 2.4835 GHz. Within this 85 MHz band, 802.11 defines 
11 partially overlapping channels. Any two channels are non-overlapping if and 
only if they are separated by four or more channels. In particular, the set of chan-
nels 1, 6, and 11 is the only set of three non-overlapping channels. This means that 
an administrator could create a wireless LAN with an aggregate maximum trans-
mission rate of three times the maximum transmission rate shown in Table 7.1 by 
installing three 802.11 APs at the same physical location, assigning channels 1, 6, 
and 11 to the APs, and interconnecting each of the APs with a switch.

Figure 7.8 ♦ An IEEE 802.11 ad hoc network
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Now that we have a basic understanding of 802.11 channels, let’s describe an 
interesting (and not completely uncommon) situation—that of a WiFi jungle. A WiFi 
jungle is any physical location where a wireless station receives a sufficiently strong 
signal from two or more APs. For example, in many cafés in New York City, a wire-
less station can pick up a signal from numerous nearby APs. One of the APs might be 
managed by the café, while the other APs might be in residential apartments near the 
café. Each of these APs would likely be located in a different IP subnet and would 
have been independently assigned a channel.

Now suppose you enter such a WiFi jungle with your smartphone, tablet, or 
 laptop, seeking wireless Internet access and a blueberry muffin. Suppose there are  
five APs in the WiFi jungle. To gain Internet access, your wireless device needs to join 
exactly one of the subnets and hence needs to associate with exactly one of the APs. 
 Associating means the wireless device creates a virtual wire between itself and the 
AP. Specifically, only the associated AP will send data frames (that is, frames con-
taining data, such as a datagram) to your wireless device, and your wireless device 
will send data frames into the Internet only through the associated AP. But how does 
your wireless device associate with a particular AP? And more fundamentally, how 
does your wireless device know which APs, if any, are out there in the jungle?

The 802.11 standard requires that an AP periodically send beacon frames, each 
of which includes the AP’s SSID and MAC address. Your wireless device, know-
ing that APs are sending out beacon frames, scans the 11 channels, seeking beacon 
frames from any APs that may be out there (some of which may be transmitting 
on the same channel—it’s a jungle out there!). Having learned about available APs 
from the beacon frames, you (or your wireless device) select one of the APs for 
association.

The 802.11 standard does not specify an algorithm for selecting which of 
the available APs to associate with; that algorithm is left up to the designers of 
the 802.11 firmware and software in your wireless device. Typically, the device 
chooses the AP whose beacon frame is received with the highest signal strength. 
While a high signal strength is good (see, e.g., Figure 7.3), signal strength is not 
the only AP characteristic that will determine the performance a device receives.  
In particular, it’s possible that the selected AP may have a strong signal, but may be 
overloaded with other affiliated devices (that will need to share the wireless band-
width at that AP), while an unloaded AP is not selected due to a slightly weaker 
signal. A number of alternative ways of choosing APs have thus recently been pro-
posed [Vasudevan 2005; Nicholson 2006; Sundaresan 2006]. For an interesting and 
down-to-earth discussion of how signal strength is measured, see [Bardwell 2004].

The process of scanning channels and listening for beacon frames is known 
as passive scanning (see Figure 7.9a). A wireless device can also perform active 
scanning, by broadcasting a probe frame that will be received by all APs within the 
wireless device’s range, as shown in Figure 7.9b. APs respond to the probe request 
frame with a probe response frame. The wireless device can then choose the AP with 
which to associate from among the responding APs.
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Figure 7.9 ♦ Active and passive scanning for access points
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After selecting the AP with which to associate, the wireless device sends an asso-
ciation request frame to the AP, and the AP responds with an association response 
frame. Note that this second request/response handshake is needed with active scan-
ning, since an AP responding to the initial probe request frame doesn’t know which 
of the (possibly many) responding APs the device will choose to associate with, in 
much the same way that a DHCP client can choose from among multiple DHCP 
servers (see Figure 4.21). Once associated with an AP, the device will want to join 
the subnet (in the IP addressing sense of Section 4.3.3) to which the AP belongs. 
Thus, the device will typically send a DHCP discovery message (see Figure 4.21) 
into the subnet via the AP in order to obtain an IP address on the subnet. Once the 
address is obtained, the rest of the world then views that device simply as another 
host with an IP address in that subnet.

In order to create an association with a particular AP, the wireless device may be 
required to authenticate itself to the AP. 802.11 wireless LANs provide a number of 
alternatives for authentication and access. One approach, used by many companies, is 
to permit access to a wireless network based on a device’s MAC address. A second 
approach, used by many Internet cafés, employs usernames and passwords. In both 
cases, the AP typically communicates with an authentication server, relaying informa-
tion between the wireless device and the authentication server using a protocol such as 
RADIUS [RFC 2865] or DIAMETER [RFC 6733]. Separating the authentication server 
from the AP allows one authentication server to serve many APs, centralizing the (often 
sensitive) decisions of authentication and access within the single server, and keeping 
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AP costs and complexity low. We’ll see in chapter 8 that the new IEEE 802.11i protocol 
defining security aspects of the 802.11 protocol family takes precisely this approach.

7.3.2 The 802.11 MAC Protocol
Once a wireless device is associated with an AP, it can start sending and receiving 
data frames to and from the access point. But because multiple wireless devices, or the 
AP itself may want to transmit data frames at the same time over the same channel, a 
multiple access protocol is needed to coordinate the transmissions. In the following, 
we'll refer to the devices or the AP as wireless “stations” that share the multiple access 
channel. As discussed in Chapter 6 and Section 7.2.1, broadly speaking there are three 
classes of multiple access protocols: channel partitioning (including CDMA), random 
access, and taking turns. Inspired by the huge success of Ethernet and its random 
access protocol, the designers of 802.11 chose a random access protocol for 802.11 
wireless LANs. This random access protocol is referred to as CSMA with collision 
avoidance, or more succinctly as CSMA/CA. As with Ethernet’s CSMA/CD, the 
“CSMA” in CSMA/CA stands for “carrier sense multiple access,” meaning that each 
station senses the channel before transmitting, and refrains from transmitting when the 
channel is sensed busy. Although both  Ethernet and 802.11 use carrier-sensing ran-
dom access, the two MAC protocols have important differences. First, instead of using 
collision detection, 802.11 uses collision-avoidance techniques. Second, because of 
the relatively high bit error rates of wireless channels, 802.11 (unlike Ethernet) uses 
a link-layer acknowledgment/retransmission (ARQ) scheme. We’ll describe 802.11’s 
collision-avoidance and link-layer acknowledgment schemes below.

Recall from Sections 6.3.2 and 6.4.2 that with Ethernet’s collision-detection 
algorithm, an Ethernet station listens to the channel as it transmits. If, while transmit-
ting, it detects that another station is also transmitting, it aborts its transmission and 
tries to transmit again after waiting a small, random amount of time. Unlike the 802.3 
Ethernet protocol, the 802.11 MAC protocol does not implement collision detection. 
There are two important reasons for this:

• The ability to detect collisions requires the ability to send (the station’s own 
 signal) and receive (to determine whether another station is also transmitting) at 
the same time. Because the strength of the received signal is typically very small 
compared to the strength of the transmitted signal at the 802.11 adapter, it is 
costly to build hardware that can detect a collision.

• More importantly, even if the adapter could transmit and listen at the same time 
(and presumably abort transmission when it senses a busy channel), the adapter 
would still not be able to detect all collisions, due to the hidden terminal problem 
and fading, as discussed in Section 7.2.

Because 802.11wireless LANs do not use collision detection, once a station 
begins to transmit a frame, it transmits the frame in its entirety; that is, once a station 
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Figure 7.10 ♦ 802.11 uses link-layer acknowledgments
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gets started, there is no turning back. As one might expect, transmitting entire frames 
(particularly long frames) when collisions are prevalent can significantly degrade a 
multiple access protocol’s performance. In order to reduce the likelihood of collisions, 
802.11 employs several collision-avoidance techniques, which we’ll shortly discuss.

Before considering collision avoidance, however, we’ll first need to examine 
802.11’s link-layer acknowledgment scheme. Recall from Section 7.2 that when a 
station in a wireless LAN sends a frame, the frame may not reach the destination sta-
tion intact for a variety of reasons. To deal with this non-negligible chance of failure, 
the 802.11 MAC protocol uses link-layer acknowledgments. As shown in Figure 7.10, 
when the destination station receives a frame that passes the CRC, it waits a short 
period of time known as the Short Inter-frame Spacing (SIFS) and then sends back 
an acknowledgment frame. If the transmitting station does not receive an acknowl-
edgment within a given amount of time, it assumes that an error has occurred and 
retransmits the frame, using the CSMA/CA protocol to access the channel. If an 
acknowledgment is not received after some fixed number of retransmissions, the trans-
mitting station gives up and discards the frame.
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Having discussed how 802.11 uses link-layer acknowledgments, we’re now in a 
position to describe the 802.11 CSMA/CA protocol. Suppose that a station (wireless 
device or an AP) has a frame to transmit.

 1. If initially the station senses the channel idle, it transmits its frame after a  
short period of time known as the Distributed Inter-frame Space (DIFS);  
see  Figure 7.10.

 2. Otherwise, the station chooses a random backoff value using binary exponen-
tial backoff (as we encountered in Section 6.3.2) and counts down this value 
after DIFS when the channel is sensed idle. While the channel is sensed busy, 
the counter value remains frozen.

 3. When the counter reaches zero (note that this can only occur while the chan-
nel is sensed idle), the station transmits the entire frame and then waits for an 
acknowledgment.

 4. If an acknowledgment is received, the transmitting station knows that its frame 
has been correctly received at the destination station. If the station has another 
frame to send, it begins the CSMA/CA protocol at step 2. If the acknowledg-
ment isn’t received, the transmitting station reenters the backoff phase in step 2,  
with the random value chosen from a larger interval.

Recall that under Ethernet’s CSMA/CD, multiple access protocol (Section 6.3.2), 
a station begins transmitting as soon as the channel is sensed idle. With CSMA/CA, 
however, the station refrains from transmitting while counting down, even when it 
senses the channel to be idle. Why do CSMA/CD and CDMA/CA take such different 
approaches here?

To answer this question, let’s consider a scenario in which two stations each 
have a data frame to transmit, but neither station transmits immediately because each 
senses that a third station is already transmitting. With Ethernet’s CSMA/CD, the 
two stations would each transmit as soon as they detect that the third station has 
finished transmitting. This would cause a collision, which isn’t a serious issue in 
CSMA/CD, since both stations would abort their transmissions and thus avoid the 
useless transmissions of the remainders of their frames. In 802.11, however, the situ-
ation is quite different. Because 802.11 does not detect a collision and abort trans-
mission, a frame suffering a collision will be transmitted in its entirety. The goal 
in 802.11 is thus to avoid collisions whenever possible. In 802.11, if the two sta-
tions sense the channel busy, they both immediately enter random backoff, hopefully 
choosing different backoff values. If these values are indeed different, once the chan-
nel becomes idle, one of the two stations will begin transmitting before the other, and 
(if the two stations are not hidden from each other) the “losing station” will hear the  
“winning station’s” signal, freeze its counter, and refrain from transmitting until the 
winning station has completed its transmission. In this manner, a costly collision is 
avoided. Of course, collisions can still occur with 802.11 in this scenario: The two 
stations could be hidden from each other, or the two stations could choose random 
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backoff values that are close enough that the transmission from the station starting 
first have yet to reach the second station. Recall that we encountered this problem 
earlier in our discussion of random access algorithms in the context of Figure 6.12.

Dealing with Hidden Terminals: RTS and CTS

The 802.11 MAC protocol also includes a nifty (but optional) reservation scheme 
that helps avoid collisions even in the presence of hidden terminals. Let’s investi-
gate this scheme in the context of Figure 7.11, which shows two wireless  stations 
and one access point. Both of the wireless stations are within range of the AP 
(whose  coverage is shown as a shaded circle) and both have associated with the AP. 
 However, due to fading, the signal ranges of wireless stations are limited to the inte-
riors of the shaded circles shown in Figure 7.11. Thus, each of the wireless stations 
is hidden from the other, although neither is hidden from the AP.

Let’s now consider why hidden terminals can be problematic. Suppose Station H1 is 
transmitting a frame and halfway through H1’s transmission, Station H2 wants to send a 
frame to the AP. H2, not hearing the transmission from H1, will first wait a DIFS interval 
and then transmit the frame, resulting in a collision. The channel will therefore be wasted 
during the entire period of H1’s transmission as well as during H2’s transmission.

In order to avoid this problem, the IEEE 802.11 protocol allows a station to 
use a short Request to Send (RTS) control frame and a short Clear to Send (CTS) 
control frame to reserve access to the channel. When a sender wants to send a DATA 
frame, it can first send an RTS frame to the AP, indicating the total time required 
to transmit the DATA frame and the acknowledgment (ACK) frame. When the AP 
receives the RTS frame, it responds by broadcasting a CTS frame. This CTS frame 

Figure 7.11 ♦  Hidden terminal example: H1 is hidden from H2, and  
vice versa

APH1 H2
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serves two purposes: It gives the sender explicit permission to send and also instructs 
the other stations not to send for the reserved duration.

Thus, in Figure 7.12, before transmitting a DATA frame, H1 first broadcasts an RTS 
frame, which is heard by all stations in its circle, including the AP. The AP then responds 
with a CTS frame, which is heard by all stations within its range, including H1 and H2. 
Station H2, having heard the CTS, refrains from transmitting for the time specified in the 
CTS frame. The RTS, CTS, DATA, and ACK frames are shown in Figure 7.12.

Figure 7.12 ♦ Collision avoidance using the RTS and CTS frames
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The use of the RTS and CTS frames can improve performance in two important 
ways:

• The hidden station problem is mitigated, since a long DATA frame is transmitted 
only after the channel has been reserved.

• Because the RTS and CTS frames are short, a collision involving an RTS or CTS 
frame will last only for the duration of the short RTS or CTS frame. Once the RTS 
and CTS frames are correctly transmitted, the following DATA and ACK frames 
should be transmitted without collisions.

You are encouraged to check out the 802.11 animation in the textbook’s Web site. 
This interactive animation illustrates the CSMA/CA protocol, including the RTS/
CTS exchange sequence.

Although the RTS/CTS exchange can help reduce collisions, it also introduces 
delay and consumes channel resources. For this reason, the RTS/CTS exchange is 
only used (if at all) to reserve the channel for the transmission of a long DATA 
frame. In practice, each wireless station can set an RTS threshold such that the RTS/
CTS sequence is used only when the frame is longer than the threshold. For many 
wireless stations, the default RTS threshold value is larger than the maximum frame 
length, so the RTS/CTS sequence is skipped for all DATA frames sent.

Using 802.11 as a Point-to-Point Link

Our discussion so far has focused on the use of 802.11 in a multiple access setting. We 
should mention that if two nodes each have a directional antenna, they can point their 
directional antennas at each other and run the 802.11 protocol over what is essentially 
a point-to-point link. Given the low cost of commodity 802.11 hardware, the use of 
directional antennas and an increased transmission power allow 802.11 to be used as an 
inexpensive means of providing wireless point-to-point connections over tens of kilo-
meters distance. [Raman 2007] describes one of the first such multi-hop wireless net-
works, operating in the rural Ganges plains in India using point-to-point 802.11 links.

7.3.3 The IEEE 802.11 Frame
Although the 802.11 frame shares many similarities with an Ethernet frame, it also con-
tains a number of fields that are specific to its use for wireless links. The 802.11 frame 
is shown in Figure 7.13. The numbers above each of the fields in the frame represent 
the lengths of the fields in bytes; the numbers above each of the subfields in the frame 
control field represent the lengths of the subfields in bits. Let’s now examine the fields 
in the frame as well as some of the more important subfields in the frame’s control field.

Payload and CRC Fields

At the heart of the frame is the payload, which typically consists of an IP datagram 
or an ARP packet. Although the field is permitted to be as long as 2,312 bytes, it is 
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typically fewer than 1,500 bytes, holding an IP datagram or an ARP packet. As with 
an Ethernet frame, an 802.11 frame includes a 32-bit cyclic redundancy check (CRC) 
so that the receiver can detect bit errors in the received frame. As we’ve seen, bit 
errors are much more common in wireless LANs than in wired LANs, so the CRC is 
even more useful here.

Address Fields

Perhaps the most striking difference in the 802.11 frame is that it has four address 
fields, each of which can hold a 6-byte MAC address. But why four address 
fields? Doesn’t a source MAC field and destination MAC field suffice, as they do 
for  Ethernet? It turns out that three address fields are needed for internetworking 
 purposes—specifically, for moving the network-layer datagram from a wireless sta-
tion through an AP to a router interface. The fourth address field is used when APs 
 forward frames to each other in ad hoc mode. Since we are only considering infra-
structure networks here, let’s focus our attention on the first three address fields. The 
802.11 standard defines these fields as follows:

• Address 2 is the MAC address of the station that transmits the frame. Thus, if a 
wireless station transmits the frame, that station’s MAC address is inserted in the 
address 2 field. Similarly, if an AP transmits the frame, the AP’s MAC address is 
inserted in the address 2 field.

• Address 1 is the MAC address of the wireless station that is to receive the frame. 
Thus if a mobile wireless station transmits the frame, address 1 contains the MAC 
address of the destination AP. Similarly, if an AP transmits the frame, address 1 
contains the MAC address of the destination wireless station.

• To understand address 3, recall that the BSS (consisting of the AP and wireless 
stations) is part of a subnet, and that this subnet connects to other subnets via some 
router interface. Address 3 contains the MAC address of this router  interface.

Figure 7.13 ♦ The 802.11 frame
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To gain further insight into the purpose of address 3, let’s walk through an inter-
networking example in the context of Figure 7.14. In this figure, there are two APs, 
each of which is responsible for a number of wireless stations. Each of the APs has a 
direct connection to a router, which in turn connects to the global Internet. We should 
keep in mind that an AP is a link-layer device, and thus neither “speaks” IP nor 
understands IP addresses. Consider now moving a datagram from the router interface 
R1 to the wireless Station H1. The router is not aware that there is an AP between it 
and H1; from the router’s perspective, H1 is just a host in one of the subnets to which 
it (the router) is connected.

• The router, which knows the IP address of H1 (from the destination address of the 
datagram), uses ARP to determine the MAC address of H1, just as in an ordinary Eth-
ernet LAN. After obtaining H1’s MAC address, router interface R1 encapsulates the 
datagram within an Ethernet frame. The source address field of this frame contains 
R1’s MAC address, and the destination address field contains H1’s MAC address.

• When the Ethernet frame arrives at the AP, the AP converts the 802.3 Ethernet 
frame to an 802.11 frame before transmitting the frame into the wireless chan-
nel. The AP fills in address 1 and address 2 with H1’s MAC address and its own 
MAC address, respectively, as described above. For address 3, the AP inserts the 
MAC address of R1. In this manner, H1 can determine (from address 3) the MAC 
address of the router interface that sent the datagram into the subnet.

Figure 7.14 ♦  The use of address fields in 802.11 frames: Sending frames 
between H1 and R1
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Now consider what happens when the wireless station H1 responds by moving a 
datagram from H1 to R1.

• H1 creates an 802.11 frame, filling the fields for address 1 and address 2 with the 
AP’s MAC address and H1’s MAC address, respectively, as described above. For 
address 3, H1 inserts R1’s MAC address.

• When the AP receives the 802.11 frame, it converts the frame to an Ethernet frame. 
The source address field for this frame is H1’s MAC address, and the destination 
address field is R1’s MAC address. Thus, address 3 allows the AP to determine 
the appropriate destination MAC address when constructing the Ethernet frame.

In summary, address 3 plays a crucial role for internetworking the BSS with a wired 
LAN.

Sequence Number, Duration, and Frame Control Fields

Recall that in 802.11, whenever a station correctly receives a frame from another sta-
tion, it sends back an acknowledgment. Because acknowledgments can get lost, the 
sending station may send multiple copies of a given frame. As we saw in our discus-
sion of the rdt2.1 protocol (Section 3.4.1), the use of sequence numbers allows the 
receiver to distinguish between a newly transmitted frame and the retransmission of 
a previous frame. The sequence number field in the 802.11 frame thus serves exactly 
the same purpose here at the link layer as it did in the transport layer in Chapter 3.

Recall that the 802.11 protocol allows a transmitting station to reserve the chan-
nel for a period of time that includes the time to transmit its data frame and the time 
to transmit an acknowledgment. This duration value is included in the frame’s dura-
tion field (both for data frames and for the RTS and CTS frames).

As shown in Figure 7.13, the frame control field includes many subfields. We’ll 
say just a few words about some of the more important subfields; for a more complete 
discussion, you are encouraged to consult the 802.11 specification [Held 2001; Crow 
1997; IEEE 802.11 1999]. The type and subtype fields are used to distinguish the asso-
ciation, RTS, CTS, ACK, and data frames. The to and from fields are used to define 
the meanings of the different address fields. (These meanings change depending on 
whether ad hoc or infrastructure modes are used and, in the case of infrastructure 
mode, whether a wireless station or an AP is sending the frame.) Finally the WEP field 
indicates whether encryption is being used or not (WEP is discussed in Chapter 8).

7.3.4 Mobility in the Same IP Subnet
In order to increase the physical range of a wireless LAN, companies and universities 
will often deploy multiple BSSs within the same IP subnet. This naturally raises the issue 
of mobility among the BSSs—how do wireless stations seamlessly move from one BSS 
to another while maintaining ongoing TCP sessions? As we’ll see in this subsection,  
mobility can be handled in a relatively straightforward manner when the BSSs are part 
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of the subnet. When stations move between subnets, more sophisticated mobility man-
agement protocols will be needed, such as those we’ll study in Sections 7.5 and 7.6.

Let’s now look at a specific example of mobility between BSSs in the same sub-
net. Figure 7.15 shows two interconnected BSSs with a host, H1, moving from BSS1 
to BSS2. Because in this example the interconnection device that connects the two 
BSSs is not a router, all of the stations in the two BSSs, including the APs, belong 
to the same IP subnet. Thus, when H1 moves from BSS1 to BSS2, it may keep its IP 
address and all of its ongoing TCP connections. If the interconnection device were a 
router, then H1 would have to obtain a new IP address in the subnet in which it was 
moving. This address change would disrupt (and eventually terminate) any on-going 
TCP connections at H1. In Section 7.6, we’ll see how a network-layer mobility pro-
tocol, such as mobile IP, can be used to avoid this problem.

But what specifically happens when H1 moves from BSS1 to BSS2? As H1 wanders 
away from AP1, H1 detects a weakening signal from AP1 and starts to scan for a stronger 
signal. H1 receives beacon frames from AP2 (which in many corporate and university 
settings will have the same SSID as AP1). H1 then disassociates with AP1 and associates 
with AP2, while keeping its IP address and maintaining its ongoing TCP sessions.

This addresses the handover problem from the host and AP viewpoint. But what 
about the switch in Figure 7.15? How does it know that the host has moved from one 
AP to another? As you may recall from Chapter 6, switches are “self-learning” and 
automatically build their forwarding tables. This self-learning feature nicely handles 
occasional moves (for example, when an employee gets transferred from one depart-
ment to another); however, switches were not designed to support highly mobile 
users who want to maintain TCP connections while moving between BSSs. To 
appreciate the problem here, recall that before the move, the switch has an entry in 
its forwarding table that pairs H1’s MAC address with the outgoing switch interface 
through which H1 can be reached. If H1 is initially in BSS1, then a datagram des-
tined to H1 will be directed to H1 via AP1. Once H1 associates with BSS2, however, 
its frames should be directed to AP2. One solution (a bit of a hack, really) is for AP2 
to send a broadcast Ethernet frame with H1’s source address to the switch just after 

Figure 7.15 ♦ Mobility in the same subnet
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the new association. When the switch receives the frame, it updates its forwarding 
table, allowing H1 to be reached via AP2. The 802.11f standards group is developing 
an inter-AP protocol to handle these and related issues.

Our discussion above has focused on mobility with the same LAN subnet. Recall 
that VLANs, which we studied in Section 6.4.4, can be used to connect together 
islands of LANs into a large virtual LAN that can span a large geographical region. 
Mobility among base stations within such a VLAN can be handled in exactly the 
same manner as above [Yu 2011].

LOCATION DISCOVERY: GPS AND WIFI  POSITIONING

Many of the most useful and important smartphone apps today are location-based 
mobile apps, including Foursquare, Yelp, Uber, Pokémon Go, and Waze. These 
 software apps all make use of an API that allows them to extract their current geographi-
cal position directly from the smartphone. Have you ever wondered how your smart-
phone obtains its geographical position? Today, it is done by combining two systems, the 
Global Positioning System (GPS) and the WiFi Positioning System (WPS).

The GPS, with a constellation of 30+ satellites, broadcasts satellite location and 
timing information, which in turn is used by each GPS receiver to estimate its geoloca-
tion. The United States government created the system, maintains it, and makes it freely 
accessible to anyone with a GPS receiver. The satellites have very stable atomic clocks 
that are synchronized with one another and with ground clocks. The satellites also know 
their locations with great precision. Each GPS satellite continuously broadcasts a radio 
signal containing its current time and position. If a GPS receiver obtains this information 
from at least four satellites, it can solve triangulation equations to estimate its position.

GPS, however, cannot always provide accurate geolocations if it does not have 
line-of-sight with at least four GPS satellites or when there is interference from other 
high-frequency communication systems. This is particularly true in urban environments, 
where tall buildings frequently block GPS signals. This is where WiFi positioning 
 systems come to the rescue. WiFi positioning systems make use of databases of WiFi 
access points, which are independently maintained by various Internet companies, 
including Google, Apple, and Microsoft. Each database contains information about 
millions of WiFi access points, including each access point’s SSID and an estimate of 
its geographic location. To understand how a WiFi positioning system makes use of 
such a database, consider an Android smartphone along with the Google location ser-
vice. From each nearby access point, the smartphone receives and measures the signal  
strength of beacon signals (see Section 7.3.1), which contain the access point’s SSID. The  
smartphone can therefore continually send messages to the Google location service  
(in the cloud) that include the SSIDs of nearby access points and the corresponding 
signal strengths. It will also send its GPS position (obtained via the satellite broadcast 

CASE HISTORY
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signals, as described above) when available. Using the signal-strength information, 
Google will estimate the distance between the smartphone and each of the WiFi 
access points. Leveraging these estimated distances, it can then solve triangulation 
equations to estimate the smartphone’s geolocation. Finally, this WiFi-based estimate is 
combined with the GPS satellite-based estimate to form an aggregate estimate, which 
is then sent back to the smartphone and used by the location-based mobile apps.

But you may still be wondering how Google (and Apple, Microsoft, and so on) 
obtain and maintain the database of access points, and in particular, the access 
point’s geographic location? Recall that for a given access point, every nearby 
Android smartphone will send to the Google location service the strength of the 
 signal received from the access point as well as the smartphone’s estimated location. 
Given that thousands of smartphones may be passing by the access point during any 
single day, Google’s location service will have lots of data at its disposition to use in 
estimating the access point’s position, again by solving triangulation equations. Thus, 
the access points help the smartphones determine their locations, and in turn the 
smartphones help the access points determine their locations!

7.3.5 Advanced Features in 802.11
We’ll wrap up our coverage of 802.11 with a short discussion of two advanced capabili-
ties found in 802.11 networks. As we’ll see, these capabilities are not completely speci-
fied in the 802.11 standard, but rather are made possible by mechanisms specified in 
the standard. This allows different vendors to implement these capabilities using their 
own (proprietary) approaches, presumably giving them an edge over the competition.

802.11 Rate Adaptation

We saw earlier in Figure 7.3 that different modulation techniques (with the different 
transmission rates that they provide) are appropriate for different SNR scenarios. 
Consider, for example, a mobile 802.11 user who is initially 20 meters away from 
the base station, with a high signal-to-noise ratio. Given the high SNR, the user can 
communicate with the base station using a physical-layer modulation technique that 
provides high transmission rates while maintaining a low BER. This is one happy 
user! Suppose now that the user becomes mobile, walking away from the base sta-
tion, with the SNR falling as the distance from the base station increases. In this case, 
if the modulation technique used in the 802.11 protocol operating between the base 
station and the user does not change, the BER will become unacceptably high as the 
SNR decreases, and eventually no transmitted frames will be received correctly.

For this reason, some 802.11 implementations have a rate adaptation capability 
that adaptively selects the underlying physical-layer modulation technique to use 
based on current or recent channel characteristics. If a node sends two frames in a 
row without receiving an acknowledgment (an implicit indication of bit errors on 
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the channel), the transmission rate falls back to the next lower rate. If 10 frames 
in a row are acknowledged, or if a timer that tracks the time since the last fallback 
expires, the transmission rate increases to the next higher rate. This rate adapta-
tion mechanism shares the same “probing” philosophy as TCP’s congestion-control 
mechanism—when conditions are good (reflected by ACK receipts), the transmis-
sion rate is increased until something “bad” happens (the lack of ACK receipts); 
when something “bad” happens, the transmission rate is reduced. 802.11 rate adapta-
tion and TCP congestion control are thus similar to the young child who is constantly 
pushing his/her parents for more and more (say candy for a young child, later curfew 
hours for the teenager) until the parents finally say “Enough!” and the child backs 
off (only to try again later after conditions have hopefully improved!). A number 
of other schemes have also been proposed to improve on this basic automatic rate-
adjustment scheme [Kamerman 1997; Holland 2001; Lacage 2004].

Power Management

Power is a precious resource in mobile devices, and thus the 802.11 standard pro-
vides power-management capabilities that allow 802.11 nodes to minimize the 
amount of time that their sense, transmit, and receive functions and other circuitry 
need to be “on.” 802.11 power management operates as follows. A node is able to 
explicitly alternate between sleep and wake states (not unlike a sleepy student in a 
classroom!). A node indicates to the access point that it will be going to sleep by set-
ting the power-management bit in the header of an 802.11 frame to 1. A timer in the 
node is then set to wake up the node just before the AP is scheduled to send its bea-
con frame (recall that an AP typically sends a beacon frame every 100 msec). Since 
the AP knows from the set power-transmission bit that the node is going to sleep, it 
(the AP) knows that it should not send any frames to that node, and will buffer any 
frames destined for the sleeping host for later transmission.

A node will wake up just before the AP sends a beacon frame, and quickly enter 
the fully active state (unlike the sleepy student, this wakeup requires only 250 micro-
seconds [Kamerman 1997]!). The beacon frames sent out by the AP contain a list of 
nodes whose frames have been buffered at the AP. If there are no buffered frames 
for the node, it can go back to sleep. Otherwise, the node can explicitly request that 
the buffered frames be sent by sending a polling message to the AP. With an inter-
beacon time of 100 msec, a wakeup time of 250 microseconds, and a similarly small 
time to receive a beacon frame and check to ensure that there are no buffered frames, 
a node that has no frames to send or receive can be asleep 99% of the time, resulting 
in a significant energy savings.

7.3.6 Personal Area Networks: Bluetooth
Bluetooth networks seem to have quickly become part of everyday life. Perhaps 
you’ve used a Bluetooth network as a “cable replacement” technology to interconnect  
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your computer with a wireless keyboard, mouse, or other peripheral device. Or per-
haps you’ve used a Bluetooth network to connect your wireless earbuds, speaker, 
watch, or health monitoring band to your smartphone or to connect your smartphone 
to a car’s audio system. In all of these cases, Bluetooth operates over short ranges (tens 
of meters or less), at low power, and at low cost. For this reason, Bluetooth networks 
are sometimes referred to as wireless personal area networks (WPANs) or piconets.

Although Bluetooth networks are small and relatively simple by design, they’re 
packed with many of the link-level networking techniques that we’ve studied earlier 
including time division multiplexing (TDM) and frequency division (Section 6.3.1), 
randomized backoff (Section 6.3.2), polling (Section 6.3.3), error detection and cor-
rection (Section 6.2), reliable data transfer via ACKs and NAKS (Section 3.4.1). And 
that’s just considering Bluetooth’s link layer!

Bluetooth networks operate in the unlicensed 2.4 GHz Industrial, Scientific 
and Medical (ISM) radio band along with other home appliances such as micro-
waves, garage door openers, and cordless phones. As a result, Bluetooth networks 
are designed explicitly with noise and interference in mind. The Bluetooth wire-
less channel is operated in a TDM manner, with time slots of 625 microseconds. 
During each time slot, a sender transmits on one of 79 channels, with the channel 
(frequency) changing in a known but pseudo-random manner from slot to slot. This 
form of channel hopping, known as frequency-hopping spread spectrum (FHSS), 
is used so that interference from another device or appliance operating in the ISM 
band will only interfere with Bluetooth communications in at most a subset of the 
slots. Bluetooth data rates can reach up to 3 Mbps.

Bluetooth networks are ad hoc networks—no network infrastructure (e.g., an 
access point) is needed. Instead, Bluetooth devices must organize themselves into a 
piconet of up to eight active devices, as shown in Figure 7.16. One of these devices 

Figure 7.16 ♦ A Bluetooth piconet
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is designated as the master, with the remaining devices acting as clients. The mas-
ter node truly rules the piconet—its clock determines time in the piconet (e.g., 
determines TDM slot boundaries), it determine the slot-to-slot frequency hopping 
sequence, it controls entry of client devices into the piconet, it controls the power 
(100 mW, 2.5mW, or 1 mW) at which client devices transmit; and uses polling to 
grant clients permission to transmit once admitted to the network. In addition to the 
active devices, there can also be up to 255 “parked” devices in the piconet. These 
parked devices are often in some form of “sleep mode” to conserve energy (as 
we saw with 802.11 power management) and will awaken periodically, according 
to the master’s schedule, to receive beacon messages from the master. A parked 
device cannot communicate until its status has been changed from parked to active 
by the master node.

Because Bluetooth ad hoc networks must be self-organizing, it’s worth looking 
into how they bootstrap their network structure. When a master node wants to form a 
Bluetooth network, it must first determine which other Bluetooth devices are within 
range; this is the neighbor discovery problem. The master does this by broadcasting 
a series of 32 inquiry messages, each on a different frequency channel, and repeats 
the transmission sequence for up to 128 times. A client device listens on its chosen 
frequency, hoping to hear one of the master’s inquiry messages on this frequency. 
When it hears an inquiry message, it backs off a random amount of time between 
0 and 0.3 seconds (to avoid collisions with other responding nodes, reminiscent of 
Ethernet’s binary backoff) and then responds to the master with a message contain-
ing its device ID.

Once the Bluetooth master has discovered all of the potential clients within 
range, it then invites those clients that it wishes to join the piconet. This second phase 
is known as Bluetooth paging, and is reminiscent of 802.11 clients associating with 
a base station. Through the paging process, the master will inform the client of the 
frequency-hopping pattern to be used, and the sender’s clock. The master begins 
the paging process by again sending 32 identical paging invitation messages, each 
now addressed to a specific client, but again using different frequencies, since that 
client has yet to learn the frequency-hopping pattern. Once the client replies with an 
ACK message to the paging invitation message, the master sends frequency-hopping 
information, clock synchronization information and an active member address to the 
client, and then finally polls the client, now using the frequency-hopping pattern, to 
ensure that the client is connected into the network.

In our discussion above, we have only touched on Bluetooth’s wireless net-
working. Higher level protocols provide for reliable data packet transfer, circuit-
like streaming of audio and video, changing transmission power levels, changing 
active/parked state (and other states), and more. More recent versions of Bluetooth 
have addressed low energy and security considerations. For more information about 
Bluetooth, the interested reader should consult [Bisdikian 2001, Colbach 2017, and 
Bluetooth 2020].
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7.4 Cellular Networks: 4G and 5G

In the previous section, we examined how a host can access the Internet when within 
the vicinity of an 802.11 WiFi access point (AP). But as we’ve seen, APs have small 
coverage areas, and a host certainly will not be able to associate with every AP it 
encounters. As a result, WiFi access is hardly ubiquitous for a user on the move.

By contrast, 4G cellular network access has rapidly become pervasive. A recent 
measurement study of more than one million US mobile cellular network subscribers 
found that they can find 4G signals more than 90% of the time, with download speeds 
of 20 Mbps and higher. Users of Korea’s three major cellular carriers are able to find 
a 4G signal between 95 and 99.5% of the time [Open Signal 2019]. As a result, it is 
now commonplace to stream HD videos or participate in videoconferences while on 
the move in a car, bus, or high-speed train. The ubiquity of 4G Internet access has 
also enabled myriad new IoT applications such as Internet-connected shared bike and 
scooter systems, and smartphone applications such as mobile payments (commonplace 
in China since 2018) and Internet-based messaging (WeChat, WhatsApp, and more).

The term cellular refers to the fact that the region covered by a cellular network 
is partitioned into a number of geographic coverage areas, known as cells. Each cell 
contains a base station that transmits signals to, and receives signals from, the mobile 
devices currently in its cell. The coverage area of a cell depends on many factors, includ-
ing the transmitting power of the base station, the transmitting power of the devices, 
obstructing buildings in the cell, and the height and type of the base station antennas.

In this section, we provide an overview of the current 4G and emerging 5G cellular  
networks. We’ll consider the wireless first hop between the mobile device and the 
base station, as well as the cellular carrier’s all-IP core network that connects the  
wireless first hop into the carrier’s network, other carrier networks, and the larger 
Internet. Perhaps surprisingly (given the origins of mobile cellular networks in the 
telephony world, which had a very different network architecture from the Internet), 
we’ll encounter many of the architectural principles in 4G networks that we encoun-
tered in our Internet-focused studies in Chapters 1–6, including protocol layering, an 
edge/core distinction, the interconnection of multiple provider networks to form a 
global “network of networks,” and the clear separation of data and control planes with 
logically centralized control. We’ll now see these principles through the lens of mobile 
cellular networks (rather than through an Internet lens) and thus see these principles 
instantiated in different ways. And of course, with a carrier’s network having an all-
IP core, we’ll also encounter many of the Internet protocols that we now know well. 
We’ll cover additional 4G topics—mobility management in Section 7.6, and 4G secu-
rity in Section 8.8—later, after developing the basic principles needed for these topics.

Our discussion here of 4G and 5G networks will be relatively brief. Mobile 
cellular networking is an area with great breadth and depth, with many universi-
ties offering several courses on the topic. Readers seeking a deeper understanding 
are encouraged to see [Goodman 1997; Kaaranen 2001; Lin 2001; Korhonen 2003; 
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Schiller 2003; Palat 2009; Scourias 2012; Turner 2012; Akyildiz 2010], as well as 
the particularly excellent and exhaustive books [Mouly 1992; Sauter 2014].

Just as Internet RFCs define Internet-standard architecture and protocols, 4G 
and 5G networks are also defined by standards documents known as Technical Spec-
ifications. These documents are freely available online at [3GPP 2020]. Just like 
RFCs, technical specifications can make for rather dense and detailed reading. But 
when you have a question, they are the definitive source for answers!

7.4.1 4G LTE Cellular Networks: Architecture and Elements
The 4G networks that are pervasive as of this writing in 2020 implement the 4G 
Long-Term Evolution standard, or more succinctly 4G LTE. In this section, we’ll 
describe 4G LTE networks. Figure 7.17 shows the major elements of the 4G LTE 
network architecture. The network broadly divides into the radio network at the 
cellular network’s edge and the core network. All network elements communicate 
with each other using the IP protocol we studied in Chapter 4. As with earlier 2G 
and 3G networks, 4G LTE is full of rather obtuse acronyms and element names. 
We’ll try to cut through that jumble by first focusing on element functions and 
how the various elements of a 4G LTE network interact with each other in both 
the data and the control planes:

• Mobile Device. This is a smartphone, tablet, laptop, or IoT device that connects 
into a cellular carrier’s network. This is where applications such as web browsers, 
map apps, voice and videoconference apps, mobile payment apps, and so much 
more are run. The mobile device typically implements the full 5-layer Internet pro-
tocol stack, including the transport and application layers, as we saw with hosts at 
the Internet’s network edge. The mobile device is a network endpoint, with an IP 
address (obtained through NAT, as we’ll see). The mobile device also has a glob-
ally unique 64-bit identifier called the International Mobile  Subscriber Iden-
tity (IMSI), which is stored on its SIM (Subscriber Identity Module) card. The 
IMSI identifies the subscriber in the worldwide cellular carrier network system, 
including the country and home cellular carrier network to which the subscriber 
belongs. In some ways, the IMSI is analogous to a MAC address. The SIM card 
also stores information about the services that the subscriber is able to access and 
encryption key information for that subscriber. In the official 4G LTE jargon, 
the mobile device is referred to as User Equipment (UE). However, in this text-
book, we’ll use the more reader-friendly term “mobile device” throughout. We 
also note here that a mobile device is not always mobile; for example, the device 
might be a fixed temperature sensor or a surveillance camera.

• Base Station. The base station sits at the “edge” of the carrier’s network and is 
responsible for managing the wireless radio resources and the mobile devices 
with its coverage area (shown as a hexagonal cell in Figure 7.17). As we’ll see, a 
mobile device will interact with a base station to attach to the carrier’s network. 
The base station coordinates device authentication and allocation of resources 
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(channel access) in the radio access network. In this sense, cellular base station 
functions are comparable (but by no means identical) to those of APs in wireless 
LANs. But cellular base stations have several other important roles not found in 
wireless LANs. In particular, base stations create device-specific IP tunnels from 
the mobile device to gateways and interact among themselves to handle device 
mobility among cells. Nearby base stations also coordinate among themselves to 
manage the radio spectrum to minimize interference between cells. In the offi-
cial 4G LTE terminology, the base station is referred to as an “eNode-B,” which 
is rather opaque and non-descriptive. In this textbook, we will instead use the 
reader-friendlier term “base station” throughout.

  As an aside, if you find LTE terminology a bit opaque, you aren’t alone! 
The etymology of “eNode-B” is rooted in earlier 3G terminology, where network 
function points were referred to as “nodes,” with “B” harkening back to earlier 
“Base Station (BS)” 1G terminology or “Base Transceiver Station (BTS)” in 2G 
terminology. 4G LTE is an “e”volution over 3G, and hence, an “e” now precedes 
“Node-B” in 4G LTE terminology. This name opaqueness shows no signs in 
stopping! In 5G systems, eNode-B functions are now referred to as “ng-eNB”; 
perhaps you can guess what that acronym stands for!

• Home Subscriber Server (HSS). As shown in Figure 7.18, the HSS is a 
 control-plane element. The HSS is a database, storing information about the 
mobile devices for which the HSS’s network is their home network. It is used in 
conjunction with the MME (discussed below) for device authentication.

• Serving Gateway (S-GW), Packet Data Network Gateway (P-GW), and 
other network routers. As shown in Figure 7.18, the Serving Gateway and the 
Packet Data Network Gateway are two routers (often collocated in practice) that 
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Figure 7.17 ♦ Elements of the 4G LTE architecture
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lie on the data path between the mobile device and the Internet. The PDN 
Gateway also provides NAT IP addresses to mobile devices and performs NAT 
functions (see Section 4.3.4). The PDN Gateway is the last LTE element that a 
datagram originating at a mobile device encounters before entering the larger 
Internet. To the outside world, the P-GW looks like any other gateway router; 
the mobility of the mobile nodes within the cellular carrier’s LTE network is 
hidden from the outside world behind the P-GW. In addition to these gateway 
routers, a cellular carrier’s all-IP core will have additional routers whose role 
is similar to that of traditional IP routers—to forward IP datagrams among 
themselves along paths that will typically terminate at elements of the LTE 
core network.

• Mobility Management Entity (MME). The MME is also a control-plane element, 
as shown in Figure 7.18. Along with the HSS, it plays an important role in authen-
ticating a device wanting to connect into its network. It also sets up the tunnels on 
the data path from/to the device and the PDN Internet gateway router, and maintains 
information about an active mobile device’s cell location within the carrier’s cel-
lular network. But, as shown in Figure 7.18, it is not in the forwarding path for the 
mobile device’s datagrams being sent to and from the Internet.

 Authentication. It is important for the network and the mobile device attaching 
to the network to mutually authenticate each other—for the network to know 
that the attaching device is indeed the device associated with a given IMSI, and 
for the mobile device to know that the network to which it is attaching is also a 
legitimate cellular carrier network. We will cover authentication in Chapter 8 
and cover 4G authentication in Section 8.8. Here, we simply note that the MME 
plays a middleman role between the mobile and Home Subscriber Service 
(HSS) in the mobile’s home network. Specifically, after receiving an attach 
request from mobile device, the local MME contacts the HSS in the mobile’s 
home network. The mobile’s home HSS then returns enough encrypted infor-
mation to the local MME to prove to the mobile device that the home HSS 
is performing authentication through this MME, and for the mobile device to 
prove to the MME that it is indeed the mobile associated with that IMSI. When 
a mobile device is attached to its home network, the HSS to be contacted dur-
ing authentication is located within that same home network. However, when a 
mobile device is roaming on a visited network operated by a different cellular 
network carrier, the MME in that roaming network will need to contact the HSS 
in the mobile device’s home network.

 Path setup. As shown in the bottom half of Figure 7.18, the data path from the 
mobile device to the carrier’s gateway router consists of a wireless first hop 
between the mobile device and the base station, and concatenated IP tunnels 
between the base station and the Serving Gateway, and the Serving Gateway 
and the PDN Gateway. Tunnels are setup under the control of the MME and 
used for data forwarding (rather than direct forwarding among network routers) 
to facilitate device mobility—when a device moves, only the tunnel endpoint 
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terminating at the base station needs to be changed, while other tunnel end-
points, and the Quality of Service associated with a tunnel, remain unchanged.

 Cell location tracking. As the device moves between cells, the base stations 
will update the MME on the device’s location. If the mobile device is in a 
sleep mode but nonetheless moving between cells, the base stations can no 
longer track the device’s location. In this case, it will be the responsibility of 
the MME to locate the device for wakeup, through a process known as paging.

Table 7.2 summarizes the key LTE architectural elements that we have dis-
cussed above and compares these functions with those we encountered in our study 
of WiFi wireless LANs (WLANs).

LTE Element Description Similar WLAN function(s)
Mobile device (UE: User equipment) End user’s IP-capable wireless/mobile device  

(e.g., smartphone, tablet, laptop)
Host, end-system

Base Station (eNode-B) Network side of wireless access link  
into LTE network

Access point (AP), although the LTE base station 
performs many functions not found in WLANs

The Mobility Management  
Entity (MME)

Coordinator for mobile device services: 
authentication, mobility management

Access point (AP), although the MME performs 
many functions not found in WLANs

Home Subscriber Server (HSS) Located in a mobile device’s home network, 
providing authentication, access privileges in  
home and visited networks

No WLAN equivalent

Serving Gateway (S-GW),  
PDN-Gateway (P-GW)

Routers in a cellular carrier’s network, coordinating 
forwarding to outside of the carrier’s network

iBGP and eBGP routers in access ISP network

Radio Access Network Wireless link between mobile device and a  
base station

802.11 wireless link between mobile and AP

Table 7.2 ♦ LTE Elements, and similar WLAN (WiFi) functions
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THE ARCHITECTURAL EVOLUTION FROM 2G TO 3G TO 4G

In a relatively short span of 20 years, cellular carrier networks have undergone an 
astonishing transition from being almost exclusively circuit-switched telephone net-
works to being all-IP packet-switched data networks which include voice as just one 
of many applications. How did this transition happen from an architectural stand-
point? Was there a “flag day,” when the previous telephony-oriented networks were 
turned “off” and the all-IP cellular network was turned “on”? Or did elements in the 
previous telephony-oriented networks begin taking on dual circuit (legacy) and packet 
(new) functionality, as we saw with the IPv4-to-IPv6 transition in Section 4.3.5?

Figure 7.19 is taken from the earlier 7th edition of this textbook, which covered 
both 2G and 3G cellular networks. (We have retired this historical material, which is 
still available on this book’s website, in favor of a deeper coverage of 4G LTE in this 
8th edition). Although the 2G network is a circuit-switched mobile telephone network, 
a comparison of Figures 7.17 and 7.19 illustrates a similar conceptual structure, 
albeit for voice rather than for data services—a wireless edge controlled by a base 
station, a gateway from the carrier’s network to the outside world, and aggregation 
points between the base stations and the gateway.

CASE HISTORY
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Figure 7.19 ♦  Elements of the 2G cellular architecture, supporting circuit-switched 
voice service with the carrier’s core network
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Figure 7.20 ♦  3G system architecture: supporting separate circuit-switched  
voice service and packet-switched data service with the carrier’s 
core network

Figure 7.20 (also taken from the 7th edition of this textbook) shows the main archi-
tectural components of the 3G cellular architecture, which supports both circuit-switched 
voice service and packet-switched data services. Here, the transition from a voice-only 
network to a combined voice and data network is clear: the existing core 2G cellular 
voice network elements remained untouched. However, additional cellular data func-
tionality was added in parallel to, and functioned independently from, the existing core 
voice network at that time. As shown in Figure 7.20, the splitting point into these two 
separate core voice and data networks happened at the network edge, at the base  
station in the radio access network. The alternative—integrating new data services 
directly into the core elements of the existing cellular voice network—would have raised 
the same challenges encountered in integrating new (IPv6) and legacy (IPv4) technolo-
gies in the Internet. The carriers also wanted to leverage and exploit their considerable 
investment of existing infrastructure (and profitable services!) in their existing cellular voice 
network.
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7.4.2 LTE Protocols Stacks
Since the 4G LTE architecture is an all-IP architecture, we’re already very famil-
iar with the higher-layer protocols in the LTE protocol stack, in particular IP, 
TCP, UDP, and various application layer protocols, from our studies in Chapters 2  
through 5. Consequently, the new LTE protocols that we’ll focus on here are pri-
marily at the link and physical layers, and in mobility management.

Figure 7.21 shows the user-plane protocol stacks at the LTE mobile node, the 
base station, and the serving gateway. We’ll touch on several of LTE’s control-plane 
protocols later when we study LTE mobility management (Section 7.6) and security 
(Section 8.8). As we can see from Figure 7.21, most of the new and interesting user-
plane protocol activity is happening at the wireless radio link between the mobile 
device and the base station.

LTE divides the mobile device’s link layer into three sublayers:

• Packet Data Convergence. This uppermost sublayer of the link layer sits just 
below IP. The Packet Data Convergence Protocol (PDCP) [3GPP PDCP 2019] 
performs IP header/compression in order to decrease the number of bits sent over 
the wireless link, and encryption/decryption of the IP datagram using keys that 
were established via signaling messages between the LTE mobile device and the 
Mobility Management Entity (MME) when the mobile device first attached to the 
network; we’ll cover aspects of LTE security in Section 8.8.2.

• Radio Link Control. The Radio Link Control (RLC) Protocol [3GPP RLCP 
2018] performs two important functions: (i) fragmenting (on the sending side) 
and reassembly (on the receiving) of IP datagrams that are too large to fit into 
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Figure 7.21 ♦ LTE data-plane protocol stacks
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the underlying link-layer frames, and (ii) link-layer reliable data transfer at the 
through the use of an ACK/NAK-based ARQ protocol. Recall the we’ve studied 
the basic elements of ARQ protocols in Section 3.4.1.

• Medium Access Control (MAC). The MAC layer performs transmission sched-
uling, that is, the requesting and use of the radio transmission slots described 
in Section 7.4.4. The MAC sublayer also performs additional error detection/ 
correction functions, including the use of redundant bit transmission as a forward 
error-correction technique. The amount of redundancy can be adapted to channel 
conditions.

Figure 7.21 also shows the use of tunnels in the user data path. As discussed 
above, these tunnels are established, under MME control, when the mobile device 
first attaches to the network. Each tunnel between two endpoints has a unique tunnel 
endpoint identifier (TEID). When the base station receives datagrams from the mobile 
device, it encapsulates them using the GPRS Tunneling Protocol [3GPP GTPv1-U  
2019], including the TEID, and sends them in UDP segments to the Serving Gateway 
at the other end of the tunnel. On the receiving side, the base station decapsulates tun-
neled UDP datagrams, extracts the encapsulated IP datagram destined for the mobile 
device, and forwards that IP datagram over the wireless hop to the mobile device.

7.4.3 LTE Radio Access Network
LTE uses a combination of frequency division multiplexing and time division multi-
plexing on the downstream channel, known as orthogonal frequency division multi-
plexing (OFDM) [Hwang 2009]. (The term “orthogonal” comes from the fact the 
signals being sent on different frequency channels are created so that they interfere 
very little with each other, even when channel frequencies are tightly spaced). In 
LTE, each active mobile device is allocated one or more 0.5 ms time slots in one or 
more of the channel frequencies. Figure 7.22 shows an allocation of eight time slots 
over four frequencies. By being allocated increasingly more time slots (whether on 
the same frequency or on different frequencies), a mobile device is able to achieve 
increasingly higher transmission rates. Slot (re)allocation among mobile devices can 
be performed as often as once every millisecond. Different modulation schemes can 
also be used to change the transmission rate; see our earlier discussion of Figure 7.3 
and dynamic selection of modulation schemes in WiFi networks.

The particular allocation of time slots to mobile devices is not mandated by the 
LTE standard. Instead, the decision of which mobile devices will be allowed to trans-
mit in a given time slot on a given frequency is determined by the scheduling algo-
rithms provided by the LTE equipment vendor and/or the network operator. With 
opportunistic scheduling [Bender 2000; Kolding 2003; Kulkarni 2005], matching the 
physical-layer protocol to the channel conditions between the sender and receiver 
and choosing the receivers to which packets will be sent based on channel conditions 
allow the base station to make best use of the wireless medium. In addition, user 
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priorities and contracted levels of service (e.g., silver, gold, or platinum) can be used 
in scheduling downstream packet transmissions. In addition to the LTE capabilities 
described above, LTE-Advanced allows for downstream bandwidths of hundreds of 
Mbps by allocating aggregated channels to a mobile device [Akyildiz 2010].

7.4.4  Additional LTE Functions: Network Attachment and 
Power Management

Let’s conclude or study of 4G LTE here by considering two additional important 
LTE functions: (i) the process with which a mobile device first attaches to the net-
work and (ii) the techniques used by the mobile device, in conjunction with core 
network elements, to manage its power use.

Network Attachment

The process by which a mobile device attaches to the cellular carrier’s network 
divides broadly into three phases:

• Attachment to a Base Station. This first phase of device attachment is similar in 
purpose to, but quite different in practice from, the 802.11 association protocol 
that we studied in Section 7.31. A mobile device wishing to attach to a cellular 
carrier network will begin a bootstrap process to learn about, and then associate 
with, a nearby base station. The mobile device initially searches all channels in all 
frequency bands for a primary synchronization signal that is periodically broadcast  

Figure 7.22 ♦  Twenty 0.5-ms slots organized into 10 ms frames at each 
frequency. An eight-slot allocation is shown shaded.
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every 5 ms by a base station. Once this signal is found, the mobile device remains on 
this frequency and locates the secondary synchronization signal. With information 
found in this second signal, the device can locate (following several further steps) 
additional information such as channel bandwidth, channel configurations, and the 
cellular carrier information of that base station. Armed with this information, the 
mobile device can select a base station to associate with (preferentially attaching to 
its home network, if available) and establish a control-plane signaling connection 
across the wireless hop with that base station. This mobile-to-base-station channel 
will be used through the remainder of the network attachment process.

• Mutual Authentication. In our earlier description of the Mobility Management 
Entity (MME) in Section 7.4.1, we noted that the base station contacts the local 
MME to perform mutual authentication—a process that we’ll study in further 
detail in Section 8.8.2. This is the second phase of network attachment, allowing 
the network to know that the attaching device is indeed the device associated 
with a given IMSI, and the mobile device to know that the network to which it 
is attaching is also a legitimate cellular carrier network. Once this second phase 
of network attachment is complete, the MME and mobile device have mutually 
authenticated each other, and the MME also knows the identity of the base station 
to which the mobile is attached. Armed with this information, the MME is now 
ready to configure the Mobile-device-to-PDN-gateway data path.

• Mobile-device-to-PDN-gateway Data Path Configuration. The MME contacts 
the PDN gateway (which also provides a NAT address for the mobile device), 
the Serving gateway, and the base station to establish the two tunnels shown in 
Figure 7.21. Once this phase is complete, the mobile device is able to send/receive 
IP datagrams via the base station through these tunnels to and from the Internet!

Power Management: Sleep Modes

Recall in our earlier discussion of advanced features in 802.11 (Section 7.3.5) and 
Bluetooth (Section 7.3.6) that a radio in a wireless device may enter a sleep state to 
save power when it is not transmitting or receiving in order to minimize the amount 
of time that the mobile device’s circuitry needs to be “on” for sending/receiving data, 
and for channel sensing. In 4G LTE, a sleeping mobile device can be in one of two 
different sleep states. In the discontinuous reception state, which is typically entered 
after several hundred milliseconds of inactivity [Sauter 2014], the mobile device and 
the base station will schedule periodic times in advance (typically several hundred 
milliseconds apart) at which the mobile device will wake up and actively monitor the 
channel for downstream (base station to mobile device) transmissions; apart from 
these scheduled times, however, the mobile device’s radio will be sleeping.

If the discontinuous reception state might be considered a “light sleep,” the second 
sleep state—the Idle state—which follows even longer periods of 5 to 10 seconds of 
inactivity, might be thought of as a “deep sleep.” While in this deep sleep, the mobile 
device’s radio wakes up and monitors the channel even less frequently. Indeed, this 
sleep is so deep that if the mobile device moves into a new cell in the carrier’s network  
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while sleeping, it need not inform the base station with which it was previous associ-
ated. Thus, when waking up periodically from this deep sleep, the mobile device will 
need to re-establish an association with a (potentially new) base station in order to 
check for paging messages broadcast by the MME to base stations nearby the base 
station with which the mobile was last associated. These control-plane paging mes-
sages, which are broadcast by these base stations to all mobile devices in their cells, 
indicate which mobile devices should fully wake up and re-establish a new data-plane 
connection to a base station (see Figure 7.18) in order to receive incoming packets.

7.4.5 The Global Cellular Network: A Network of Networks
Having now studied the 4G cellular network architecture, let’s take a step back at 
take a look at how the global cellular network—itself a “network of networks” like 
the Internet—is organized.

Figure 7.23 shows a user’s mobile smartphone connected via a 4G base station 
into its home network. The user’s home mobile network is operated by a cellular 

Home cellular
carrier network

Gateway

Home Subscriber
Server

Visited mobile
carrier network 

Gateway

Public Internet
and IPX

Figure 7.23 ♦  The global cellular data network: a network of networks.
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carrier such as Verizon, AT&T, T-Mobile, or Sprint in the United States; Orange in 
France; or SK Telecom in Korea. The user’s home network, in turn, is connected 
to the networks of other cellular carriers and to the global Internet, though one or 
more gateway routers in the home network, as shown in Figure 7.23. The mobile 
networks themselves interconnect with each other either via the public Internet or via 
an Internet Protocol Packet eXchange (IPX) Network [GSMA 2018a]. An IPX is a 
managed network specifically for interconnecting cellular carriers, similar to Internet 
eXchange Points (see Figure 1.15) for peering among ISPs. From Figure 7.23, we 
can see that the global cellular network is indeed a “network of networks”—just like 
the Internet (recall Figure 1.15 and Section 5.4). 4G networks can also peer with 3G 
cellular voice/data networks and earlier voice-only networks.

We’ll return shortly to additional 4G LTE topics—mobility management in 
Section 7.6, and 4G security in Section 8.8.2—later, after developing the basic 
principles needed for these topics. Let’s now take a quick look at the emerging 
5G networks.

7.4.6 5G Cellular Networks
The ultimate wide-area data service would be one with ubiquitous gigabit connec-
tion speeds, extremely low latency, and unrestricted limitations on the number of 
users and devices that could be supported in any region. Such a service would open 
the door to all kinds of new applications, including pervasive augmented reality and 
virtual reality, control of autonomous vehicles via wireless connections, control of 
robots in factories via wireless connections, and replacement of residential access 
technologies, such as DSL and cable, with fixed wireless Internet services (that is, 
residential wireless connections from base stations to modems in homes).

It is expected that 5G, for which progressively improved versions are likely to 
be rolled out in the 2020 decade, will make a big step towards achieving the goals 
of the ultimate wide-area data service. It is predicted that 5G will provide roughly a 
10x increase in peak bitrate, a 10x decrease in latency, and a 100x increase in traffic 
capacity over 4G [Qualcomm 2019].

Principally, 5G refers to “5G NR (New Radio),” which is the standard adopted 
by 3GPP. Other 5G technologies besides NR do exist, however. For example, Veri-
zon’s proprietary 5G TF network operates on 28 and 39 GHz frequencies and is used 
only for fixed wireless Internet service, not in smartphones.

5G standards divide frequencies into two groups: FR1 (450 MHz–6 GHz) and 
FR2 (24 GHz–52 GHz). Most early deployments will be in the FR1 space, although 
there are early deployments as of 2020 in the FR2 space for fixed Internet residential 
access as mentioned just above. Importantly, the physical layer (that is, wireless) 
aspects of 5G are not backward-compatible with 4G mobile communications systems 
such as LTE: in particular, it can’t be delivered to existing smartphones by deploying 
base station upgrades or software updates. Therefore, in the transition to 5G, wireless 
carriers will need to make substantial investments in physical infrastructure.
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FR2 frequencies are also known as millimeter wave frequencies. While 
millimeter wave frequencies allow for much faster data speeds, they come with  
two major drawbacks:

• Millimeter wave frequencies have much shorter range from base station to receiv-
ers. This makes millimeter wave technology unsuitable in rural areas and requires 
denser deployments of base stations in urban areas.

• Millimeter wave communication is highly susceptible to atmospheric interfer-
ence. Nearby foliage and rain can cause problems for outdoor use.

5G is not one cohesive standard, but instead consists of three co-existing standards 
[Dahlman 2018]:

• eMBB (Enhanced Mobile Broadband). Initial deployments of 5G NR have 
focused on eMBB, which provides for increased bandwidth for higher down-
load and upload speeds, as well as a moderate reduction in latency when 
compared to 4G LTE. eMBB enables rich media applications, such as mobile 
augmented reality and virtual reality, as well as mobile 4K resolution and 360° 
video streaming.

• URLLC (Ultra Reliable Low-Latency Communications). URLLC is targeted 
towards applications that are highly latency-sensitive, such as factory automation 
and autonomous driving. URLLC is targeting latencies of 1msec. As of this writ-
ing, technologies that enable URLLC are still being standardized.

• mMTC (Massive Machine Type Communications). mMTC is a narrowband 
access type for sensing, metering, and monitoring applications. One priority for 
the design of 5G networks is to lower barriers for network connectivity for IoT 
devices. In addition to lowering latency, emerging technologies for 5G networks 
are focusing on reducing power requirements, making the use of IoT devices 
more pervasive than has been with 4G LTE.

5G and Millimeter Wave Frequencies

Many 5G innovations will be a direct result of working in the millimeter wave fre-
quencies in the 24 GHz–52 GHz band. For example, these frequencies offer the 
potential of achieving 100x increase in capacity over 4G. To get some insight into 
this, capacity can be defined as the product of three terms [Björnson 2017]:

capacity =  cell density *  available spectrum *  spectral efficiency

where cell density is in units of cells/km2, available spectrum is in units of Hertz, 
and spectral efficiency is a measure of how efficiently each base station can com-
municate with users and is in units of bps/Hz/cell. By multiplying these units out, it 
is easy to see that capacity is in units of bps/km2. For each of these three terms, the 
values will be larger for 5G than for 4G:
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• Because millimeter frequencies have much shorter range than 4G LTE fre-
quencies, more base stations are required, which in turn increases the cell 
density.

• Because 5G FR2 operates in a much larger frequency band (52 − 24 = 28 GHz) 
than 4G LTE (up to about 2 GHz), it has more available spectrum.

• With regard to spectral efficiency, information theory says that if you want to 
double spectral efficiency, a 17-fold increase in power is needed [Björnson 
2017]. Instead of increasing power, 5G uses MIMO-technology (the same tech-
nology we encountered in our study of 802.11 networks in Section 7.3), which 
uses multiple antennas at each base station. Rather than broadcasting signals in 
all directions, each MIMO antenna employs beam forming and directs the signal 
at the user. MIMO technology allows a base station to send to 10–20 users at the 
same time in the same frequency band.

By increasing all three terms in the capacity equation, 5G is expected to provide 
a 100x increase in capacity in urban areas. Similarly, owing to the much wider fre-
quency band, 5G is expected to provide peak download rates of 1 Gbps or higher.

Millimeter wave signals are, however, easily blocked by buildings and trees. 
Small cell stations are needed to fill in coverage gaps between base stations and 
users. In a highly populous region, the distance between two small cells could vary 
from 10 to 100 meters [Dahlman 2018].

5G Core Network

The 5G Core network is the data network that manages all of the 5G mobile voice, 
data and Internet connections. The 5G Core network is being redesigned to better 
integrate with the Internet and cloud-based services, and also includes distributed 
servers and caches across the network, thereby reducing latency. Network function 
virtualization (as discussed in Chapters 4 and 5), and network slicing for different 
applications and services, will be managed in the core.

The new 5G Core specification introduces major changes in the way mobile 
networks support a wide variety of services with varied performance. As in the case 
of the 4G core network (recall Figures 7.17 and 7.18), the 5G core relays data traffic 
from end devices, authenticates devices, and manages device mobility. The 5G core 
also contains all of the network elements that we encountered in Section 7.4.2—the 
mobile devices, the cells, the base stations, and the Mobility Management Entity 
(now divided into two sub-elements, as discussed below), the HSS, and the Serving 
and PDN gateways.

Although the 4G and 5G core networks perform similar functions, there are some 
major differences in that the new 5G core architecture. The 5G Core is designed for 
complete control and user-plane separation (see Chapter 5). The 5G Core consists 
purely of virtualized software-based network functions. This new architecture will give 
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operators the flexibility to meet the diverse requirements of the different 5G applica-
tions. Some of the new 5G core network functions include [Rommer 2019]:

• User-Plane Function (UPF). Control and user-plane separation (see Chapter 5) 
allows packet processing to be distributed and pushed to the network edge.

• Access and Mobility Management Function (AMF). The 5G Core essentially 
decomposes the 4G Mobility Management Entity (MME) into two functional 
elements: AMF and SMF. The AMF receives all the connection and session 
information from end-user equipment but only handles connection and mobility 
management tasks.

• Session Management Function (SMF). Session management is handled by the 
Session Management Function (SMF). The SMF is responsible for interacting 
with the decoupled data plane. The SMF also performs IP address management 
and plays the role of DHCP.

As of this writing (2020), 5G is in its early stages of deployment, and many 5G 
standards have yet to be finalized. Only time will tell whether 5G will become a per-
vasive broadband wireless service, whether it will successfully compete with WiFi 
for indoor wireless service, whether it will become a critical component of factory 
automation and the autonomous vehicle infrastructure, and whether it will take us a 
big step forward toward the ultimate wide-area wireless service.

7.5 Mobility Management: Principles

Having covered the wireless nature of the communication links in a wireless net-
work, it’s now time to turn our attention to the mobility that these wireless links ena-
ble. In the broadest sense, a mobile device is one that changes its point of attachment 
into the network over time. Because the term mobility has taken on many meanings 
in both the computer and telephony worlds, it will serve us well first to carefully 
consider forms of mobility.

7.5.1 Device Mobility: a Network-layer Perspective
From the network layer’s standpoint, a physically mobile device will present a very 
different set of challenges to the network layer, depending on how active the device is 
as it moves between points of attachment to the network. At the one end of the spec-
trum, scenario (a) in Figure 7.24 is the mobile user who himself/herself physically 
moves between networks, but powers down the mobile device when moving. For 
example, a student might disconnect from a wireless classroom network and power 
down his/her device, head to the dining commons and connect to the wireless access 
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network there while eating, and then disconnect and power down from the dining 
commons network, walk to the library, and connect to the library’s wireless network 
while studying. From a networking perspective, this device is not mobile—it attaches 
to an access network and remains in that access network while on. In this case, the 
device serially associates with, and later disassociates from, each wireless access 
network encountered. This case of device (non-)mobility can be completely handled 
using the networking mechanisms we’ve already studied in Sections 7.3 and 7.4.

In scenario (b) in Figure 7.24, the device is physically mobile but remains 
attached to the same access network. This device is also not mobile from a network-
layer perspective. Additionally, if the device remains associated with the same 802.11 
AP or LTE base station, the device is not even mobile from a link-layer perspective.

From a network standpoint, our interest in device mobility really starts with case (c), 
where a device changes its access network (e.g., 802.11 WLAN or LTE cell) while 
continuing to send and receiving IP datagrams, and while maintaining higher-level 
(e.g., TCP) connections. Here, the network will need to provide handover—a trans-
fer of responsibility for forwarding datagrams to/from one AP or base station to the 
mobile device—as the device moves among WLANs or among LTE cells. We’ll 
cover handover in detail in Section 7.6. If the handover occurs within access net-
works belonging to a single network provider, that provider can orchestrate handover 
on its own. When a mobile device roams between multiple provider networks, as in 
scenario (d), the providers must orchestrate handover together, which considerably 
complicates the handover process.

7.5.2 Home Networks and Roaming on Visited Networks
As we learned in our discussions of cellular 4G LTE networks in Section 7.4.1, every 
subscriber has a “home” with some cellular provider. We learned that the Home 
Subscriber Service (HSS) stores information about each of its subscribers, includ-
ing a globally unique device ID (embedded in a subscriber’s SIM card), information 
about services that the subscriber may access, cryptographic keys to be used for 

(a) Device mobility
 between access
 networks, but
 powered down
 while moving
 between access
 networks

(b) Device mobility
 only within same
 wireless access
 network, in single
 provider network

(c) Device mobility
 among access
 networks in single
 provider network,
 while maintaining
 ongoing connections

(d) Device mobility
 among multiple
 provider networks,
 while maintaining
 ongoing connections

Figure 7.24 ♦  Various degrees of mobility, from a network-layer  
perspective
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communication, and billing/charging information. When a device is connected to a 
cellular network, other than its home network, that device is said to be roaming on a 
visited network. When a mobile device attaches to, and roams on, a visited network, 
coordination will be required between the home network and the visited network.

The Internet does not have a similarly strong notion of a home network or a vis-
ited network. In practice, a student’s home network might be the network operated 
by his/her school; for mobile professionals, their home network might be their com-
pany network. The visited network might be the network of a school or a company 
they are visiting. But there is no notion of a home/visited network deeply embedded 
in the Internet’s architecture. The Mobile IP protocol [Perkins 1998, RFC 5944], 
which we will cover briefly in Section 7.6, was a proposal that strongly incorporated 
the notion of home/visited networks. But Mobile IP has seen limited deployment/use 
in practice. There are also activities underway that are built on top of the existing IP 
infrastructure to provide authenticated network access across visited IP networks. 
Eduroam [Eduroam 2020] is one such activity.

The notion of a mobile device having a home network provides two important 
advantages: the home network provides a single location where information about 
that device can be found, and (as we will see) it can serve as a coordination point for 
communication to/from a roaming mobile device.

To appreciate the potential value of the central point of information and coordi-
nation, consider the human analogy of a 20-something adult Bob moving out of the 
family home. Bob becomes mobile, living in a series of dormitories and apartments, 
and often changing addresses. If an old friend Alice wants to get in touch, how can 
Alice find the current address of Bob? One common way is to contact the family, 
since a mobile 20-something adult will often register his or her current address with 
the family (if for no other reason than so that the parents can send money to help pay 
the rent!). The family home becomes that unique location that others can go to as a 
first step in communicating with Bob. Additionally, later postal communication from 
Alice may be either indirect (e.g., with mail being sent first to Bob’s family home and 
then forwarded to Bob) or direct (e.g., with Alice using the address obtained from 
Bob’s parents to send mail directly to Bob).

7.5.3 Direct and Indirect Routing to/from a Mobile Device
Let us now consider the conundrum faced by the Internet-connected host (that we 
will refer to as a correspondent) in Figure 7.25 wishing to communicate with a 
mobile device that might be located within that mobile device’s cellular home net-
work, or might be roaming in a visited network. In our development below, we’ll 
adopt a 4G/5G cellular network perspective, since these networks have such a long 
history of supporting device mobility. But as we’ll see, the fundamental challenges 
and basic solution approaches for supporting device mobility are equally applicable 
in both cellular networks and in the Internet.

As shown in Figure 7.25, we’ll assume that the mobile device has a globally 
unique identifier associated with it. In 4G, LTE cellular networks (see Section 7.4), 
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this would be the International Mobile Subscriber Identity (IMSI) and an associated 
phone number, stored on a mobile device’s SIM card. For mobile Internet users, this 
would be a permanent IP address in the IP address range of its home network, as in 
the case of the Mobile IP architecture.

What approaches might be used in a mobile network architecture that would 
allow a datagram sent by the correspondent to reach that mobile device? Three basic 
approaches can be identified and are discussed below. As we will see, the latter two 
of these are adopted in practice.

Leveraging the Existing IP Address Infrastructure

Perhaps the simplest approach to routing to a mobile device in a visited network is 
to simply use the existing IP addressing infrastructure—to add nothing new to the 
architecture. What could be easier!

Recall from our discussion of Figure 4.21 that an ISP uses BGP to advertise 
routes to destination networks by enumerating the CIDRized address ranges of reach-
able networks. A visited network could thus advertise to all other networks that a 

Home network
gateway

Visited Network
79.129/16

Home Network
128.119/16

Visited network
gateway

Mobility
managerHome

Subscriber
Service

Correspondent

Public or private
Internet

Mobility
manager

NAT IP:
10.0.0.99
IMSI
78:4f:43:98:d9:27

Permanent IP:
128.119.40.186
IMSI
78:4f:43:98:d9:27

Figure 7.25 ♦ Elements of a mobile network architecture

M07_KURO1557_08_SE_C07.indd   581 11/02/20   3:08 PM



582     CHAPTER 7  •  WIRELESS AND MOBILE NETWORKS

particular mobile device is resident in its network simply by advertising a highly 
specific address—the mobile device’s full 32-bit IP permanent address—essentially 
informing other networks that it has the path to be used to forward datagrams to that 
mobile device. These neighboring networks would then propagate this routing infor-
mation throughout the network as part of the normal BGP procedure of updating rout-
ing information and forwarding tables. Since datagrams will always be forwarded to 
the router advertising the most specific destination for that address (see Section 4.3), 
all datagrams addressed to that mobile device will be forwarded to the visited net-
work. If the mobile device leaves one visited network and joins another, the new vis-
ited network can advertise a new, highly specific route to the mobile device, and the 
old visited network can withdraw its routing information regarding the mobile device. 

This solves two problems at once, and does so without making changes to the 
network-layer infrastructure! Other networks know the location of the mobile device, 
and it is easy to route datagrams to the mobile device, since the forwarding tables 
will direct datagrams to the visited network. The killer drawback, however, is that 
of scalability—network routers would have to maintain forwarding table entries for 
potentially billions of mobile devices, and update a device’s entry each time it roams 
to a different network. Clearly, this approach would not work in practice. Some addi-
tional drawbacks are explored in the problems at the end of this chapter.

An alternative, more practical, approach (and one that has been adopted in prac-
tice) is to push mobility functionality from the network core to the network edge—
a recurring theme in our study of Internet architecture. A natural way to do this 
is via the mobile device’s home network. In much the same way that parents of 
the mobile 20-something adult track their child’s location, a mobility management 
entity (MME) in the mobile device’s home network could track the visited network 
in which the mobile device resides. This information might reside in a database, 
shown as the HSS database in Figure 7.25. A protocol operating between the visited 
network and the home network will be needed to update the network in which the 
mobile device resides. You might recall that we encountered the MME and HSS 
elements in our study of 4G LTE. We’ll reuse their element names here, since they 
are so descriptive, and also because they are pervasively deployed in 4G networks.

Let’s next consider the visited network elements shown in Figure 7.25 in more 
detail. The mobile device will clearly need an IP address in the visited network. 
The possibilities here include using a permanent address associated with the mobile 
device’s home network, allocating a new address in the address range of the visited 
network, or providing an IP address via NAT (see Section 4.3.4). In the latter two 
cases, a mobile device has a transient identifier (a newly allocated IP address) in 
addition to its permanent identifiers stored in the HSS in its home network. These 
cases are analogous to a writer addressing a letter to the address of the house in which 
our mobile 20-something adult is currently living. In the case of a NAT address, 
datagrams destined to the mobile device would eventually reach the NAT gateway 
router in the visited network, which would then perform NAT address translation and 
forward the datagram to the mobile device.
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We have now seen a number of elements of a solution to the correspondent’s 
dilemma in Figure 7.24: home and visited networks, the MME and HSS, and mobile 
device addressing. But how should datagrams be addressed and forwarded to the 
mobile device? Since only the HSS (and not network-wide routers) knows the loca-
tion of the mobile device, the correspondent cannot simply address a datagram to the 
mobile device’s permanent address and send it into the network. Something more 
must be done. Two approaches can be identified: indirect and direct routing.

Indirect Routing to a Mobile Device

Let’s again consider the correspondent that wants to send a datagram to a mobile 
device. In the indirect routing approach, the correspondent simply addresses the 
datagram to the mobile device’s permanent address and sends the datagram into 
the network, blissfully unaware of whether the mobile device is resident in its home 
network or in a visited network; mobility is thus completely transparent to the cor-
respondent. Such datagrams are first routed, as usual, to the mobile device’s home 
network. This is illustrated in step 1 in Figure 7.26.
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Figure 7.26 ♦ Indirect routing to a mobile device
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Let’s now turn our attention to the HSS, which is responsible for interacting with 
visited networks to track the mobile device’s location, and the home network’s gate-
way router. One job of this gateway router is to be on the lookout for an arriving data-
gram addressed to a device whose home is in that network, but that currently resides 
in a visited network. The home network gateway intercepts this datagram, consults 
with the HSS to determine the visited network where the mobile device is resident, 
and forwards the datagram toward the visited network gateway router—step 2 in Fig-
ure 7.26. The visited network gateway router then forwards the datagram toward the 
mobile device—step 3 in Figure 7.26. If NAT translation is used, as in Figure 7.26, 
the visited network gateway router performs NAT translation.

It is instructive to consider the rerouting at the home network in bit more detail. 
Clearly, the home network gateway will need to forward the arriving datagram to 
the gateway router in the visited network. On the other hand, it is desirable to leave 
the correspondent’s datagram intact, since the application receiving the datagram 
should be unaware that the datagram was forwarded via the home network. Both 
goals can be satisfied by having the home gateway encapsulate the correspondent’s 
original complete datagram within a new (larger) datagram. This larger datagram 
is then addressed and delivered to the visited network’s gateway router, which will 
decapsulate the datagram—that is, remove the correspondent’s original datagram 
from within the larger encapsulating datagram—and forward (step 3 in Figure 7.26) 
the original datagram to the mobile device. The sharp reader will note that the encap-
sulation/decapsulation described here is precisely the notion of tunneling, discussed 
in Section 4.3 in the context of IPv6; indeed, we also discussed the use of tunneling 
in the context of Figure 7.18, when we introduced the 4G LTE data plane.

Finally, let’s consider how the mobile device sends datagrams to the corre-
spondent. In the context of Figure 7.26, the mobile device will clearly need to for-
ward the datagram through the visited gateway router, in order to perform NAT 
translation. But how then should the visited gateway router forward the datagram 
to the correspondent? As shown in Figure 7.26, there are two options here: (4a) the 
datagram could be tunneled back to the home gateway router, and sent to the corre-
spondent from there, or (4b) the datagram could be transmitted from the visited net-
work directly to the correspondent—an approach known as local breakout [GSMA 
2019a] in LTE. 

Let’s summarize our discussion of indirect routing by reviewing the new net-
work-layer functionality required to support mobility.

• A mobile-device–to–visited-network association protocol. The mobile device will 
need to associate with the visited network, and will similarly need to disassociate 
when leaving the visited network.

• A visited-network–to–home-network-HSS registration protocol. The visited net-
work will need to register the mobile device’s location with the HSS in the home 
network, and perhaps use information obtained from the HSS in performing 
device authentication.
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• A datagram tunneling protocol between in the home network gateway and the 
visited network gateway router. The sending side performs encapsulation and 
forwarding of the correspondent’s original datagram; on the receiving side, the 
gateway router performs decapsulation, NAT translation, and forwarding of the 
original datagram to the mobile device.

The previous discussion provides all the needed elements for a mobile device to 
maintain an ongoing connection with a correspondent as the device moves among 
networks. When a device roams from one visited network to another, the new visited 
network information needs to be updated in the home network HSS, and the home-
gateway-router-to-visited-gateway-router tunnel endpoint needs to be moved. But will 
the mobile device see an interrupted flow of datagrams as it moves between networks? 
As long as the time between the mobile device disconnection from one visited network 
and its attachment to the next visited network is small, few datagrams will be lost. 
Recall from Chapter 3 that end-to-end connections can experience datagram loss due 
to network congestion. Hence, occasional datagram loss within a connection when a 
device moves between networks is by no means a catastrophic problem. If loss-free 
communication is required, upper-layer mechanisms will recover from datagram loss, 
whether such loss results from network congestion or from device mobility.

Our discussion above has been purposefully somewhat generic. An indirect 
routing approach is used in the mobile IP standard [RFC 5944], as well as in 4G 
LTE networks [Sauter 2014]. Their details, in particular the tunneling procedures 
employed, differ just a bit from our generic discussion above.

Direct Routing to a Mobile Device

The indirect routing approach illustrated in Figure 7.26 suffers from an inefficiency 
known as the triangle routing problem—datagrams addressed to the mobile device 
must be forwarded first to the home network and then to the visited network, even 
when a much more efficient route exists between the correspondent and the roaming 
mobile device. In the worst case, imagine a mobile user who is roaming on the same 
network that is the home network for an overseas colleague who our mobile user is 
visiting. The two are sitting side-by-side and exchanging data. Datagrams between 
the mobile user and his overseas colleague will be forwarded to the mobile user’s 
home network and then back again to the visited network!

Direct routing overcomes the inefficiency of triangle routing, but does so at the 
cost of additional complexity. In the direct routing approach, shown in Figure 7.27, 
the correspondent first discovers the visited network in which the mobile is resident. 
This is done by querying the HSS in the mobile device’s home network, assuming 
(as in the case of indirect routing) that the mobile device’s visited network is regis-
tered in the HSS. This is shown as steps 1 and 2 in Figure 7.27. The correspondent 
then tunnels datagrams from its network directly to the gateway router in the mobile 
device’s visited network.
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While direct routing overcomes the triangle routing problem, it introduces two 
important additional challenges:

• A mobile-user location protocol is needed for the correspondent to query the HSS 
to obtain the mobile device’s visited network (steps 1 and 2 in Figure 7.27). This 
is in addition to the protocol needed for the mobile device to register its location 
with its HSS.

• When the mobile device moves from one visited network to another, how will the 
correspondent know to now forward datagrams to the new visited network? In the 
case of indirect routing, this problem was easily solved by updating the HSS in 
the home network, and changing the tunnel endpoint to terminate at the gateway 
router of the new visited network. However, with direct routing, this change in vis-
ited networks is not so easily handled, as the HSS is queried by the correspondent 
only at the beginning of the session. Thus, additional protocol mechanisms would 
be required to proactively update the correspondent each time the mobile device 
moves. Two problems at the end of this chapter explore solutions to this problem.
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Figure 7.27 ♦ Direct routing to a mobile device
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7.6 Mobility Management in Practice

In the previous section, we identified key fundamental challenges and potential solu-
tions in developing a network architecture to support device mobility: the notions of 
home and visited networks; the home network’s role as a central point of informa-
tion and control for mobile devices subscribed to that home network; control-plane 
functions needed by a home network’s mobility management entity to track a mobile 
device roaming among visited networks; and data-plane approaches of direct and 
indirect routing to enable a correspondent and a mobile device to exchange data-
grams. Let’s now look at how these principles are put into practice! In Section 7.2.1, 
we’ll study mobility management in 4G/5G networks; in Section 7.2.1, we’ll look at 
Mobile IP, which has been proposed for the Internet.

7.6.1 Mobility Management in 4G/5G Networks
Our earlier study of 4G and emerging 5G architectures in Section 7.4 acquainted 
us with all of the network elements that play a central role in 4G/5G mobility 
management. Let’s now illustrate how those elements interoperate with each other 
to provide mobility services in today’s 4G/5G networks [Sauter 2014; GSMA 
2019b], which have their roots in earlier 3G cellular voice and data networks 
[Sauter 2014], and even earlier 2G voice-only networks [Mouly 1992]. This will 
help us synthesize what we’ve learned so far, allow us to introduce a few more 
advanced topics as well, and provide a lens into what might be in store for 5G 
mobility management.

Let’s consider a simple scenario in which a mobile user (e.g., a passenger in a 
car), with a smartphone attaches to a visited 4G/5G network, begins streaming a HD 
video from a remote server, and then moves from the cell coverage of one 4G/5G 
base station to another. The four major steps in this scenario are shown in Figure 7.28:

 1. Mobile device and base station association. The mobile device associates with 
a base station in the visited network.

 2. Control-plane configuration of network elements for the mobile device. The 
visited and home networks establish control-plane state indicating that the 
mobile device is resident in the visited network.

 3. Data-plane configuration of forwarding tunnels for the mobile device. The vis-
ited network and the home network establish tunnels through which the mobile 
device and streaming server can send/receive IP datagrams, using indirect rout-
ing through the home network’s Packet Data Network gateway (P-GW).

 4. Mobile device handover from one base station to another. The mobile device 
changes its point of attachment to the visited network, via handover from one 
base station to another.

Let’s now consider each of these four steps in more detail.
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1. Base station association. Recall that in Section 7.4.2, we studied the procedures 
by which a mobile device associates with a base station. We learned that the mobile 
device listens on all frequencies for primary signals being transmitted by base sta-
tions in its area. The mobile device acquires progressively more information about 
these base stations, ultimately selecting the base station with which to associate, 
and bootstrapping a control- signaling channel with that base station. As part of this 
association, the mobile device provides the base station with its International Mobile 
Subscriber Identity (IMSI), which uniquely identifies the mobile device as well as its 
home network and other additional subscriber information.

2. Control-plane configuration of LTE network elements for the mobile device.
Once the mobile-device-to-base-station signaling channel has been established, the 
base station can contact the MME in the visited network. The MME will consult and 
configure a number of 4G/5G elements in both the home and visited networks to 
establish state on behalf of the mobile node:

• The MME will use to the IMSI and other information provided by the mobile 
device to retrieve authentication, encryption, and available network service infor-
mation for that subscriber. That information might be in the MME’s local cache, 
retrieved from another MME that the mobile device had recently contacted, or 
retrieved from the HSS in the mobile device’s home network. The mutual authen-
tication process (which we will cover in more detail in Section 8.8) ensures that 
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Figure 7.28 ♦ An example 4G/5G mobility scenario
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the visited network is sure about the identity of the mobile device and that the 
device can authenticate the network to which it is attaching.

• The MME informs the HSS in the mobile device’s home network that the mobile 
device is now resident in the visited network, and the HSS updates its database.

• The base station and the mobile device select parameters for the data-plane chan-
nel to be established between the mobile device and the base station (recall that a 
control plane signaling channel is already in operation).

3. Data-plane configuration of forwarding tunnels for the mobile device. 
The MME next configures the data plane for the mobile device, as shown in  
Figure 7.29. Two tunnels are established. One tunnel is between the base station  
and a Serving Gateway in the visited network. The second tunnel is between that 
Serving Gateway and the PDN Gateway router in the mobile device’s home network. 
4G LTE implements this form of symmetric indirect routing—all traffic to/from the 
mobile device will be tunneled through the device’s home network. 4G/5G tunnels 
use the GPRS Tunneling Protocol (GTP), specified in [3GPP GTPv1-U 2019]. The 
Tunnel Endpoint ID (TEID) in the GTP header indicates which tunnel a datagram 
belongs, allowing multiple flows to be multiplexed and de-multiplexed by GTP 
between tunnel endpoints.

It is instructive to compare the configuration of tunnels in Figure 7.29 (the case 
of mobile roaming in a visited network) with that of Figure 7.18 (the case of mobility 
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only within the mobile device’s home network). We see that in both cases, the Serv-
ing Gateway is co-resident in the same network as the mobile device, but PDN Gate-
way (which is always the PDN Gateway in the mobile device’s home network) may 
be in a different network than the mobile device. This is precisely indirect routing. 
An alternative to indirect routing, known as local breakout [GSMA 2019a] has been 
specified in which the Serving Gateway establishes a tunnel to the PDN Gateway in 
the local, visited network. In practice, however, local breakout is not widely used 
[Sauter 2014].

 Once the tunnels have been configured and activated, the mobile device 
can now forward packets to/from the Internet via the PDN gateway in its home 
network!

4. Handover management. A handover occurs when a mobile device changes 
its association from one base station to another. The handover process described 
below is the same, regardless of whether the mobile device is resident in its home 
network, or is roaming in a visited network.

As shown in Figure 7.30, datagrams to/from the device are initially (before 
handover) forwarded to the mobile through one base station (which we’ll refer to as 
the source base station), and after handover are routed to the mobile device through 
another base station (which we’ll refer to as the target base station). As we will see, 
a handover between base stations results not only in the mobile device transmitting/
receiving to/from a new base station but also in a change of the base-station side of 
the Serving-Gateway-to-base-station tunnel in Figure 7.29. In the simplest case of 
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Figure 7.30 ♦  Steps in handing over a mobile device from the source 
base station to the target base station
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handover, when the two base stations are near each other and in the same network, 
all changes occurring as a result of handover are thus relatively local. In particular, 
the PDN gateway being used by the Serving Gateway remains blissfully unaware of 
device mobility. Of course, more complicated handoff scenarios will require the use 
of more complex mechanisms [Sauter 2014; GSMA 2019a].

There may be several reasons for handover to occur. For example, the signal 
between the current base station and the mobile may have deteriorated to such an 
extent that communication is severely impaired. Or a cell may have become over-
loaded, handling a large amount of traffic; handing over mobile devices to less 
congested nearby cells may alleviate this congestion. A mobile device periodically 
measures characteristics of a beacon signal from its current base station as well as 
signals from nearby base stations that it can “hear.” These measurements are reported 
once or twice a second to the mobile device’s current (source) base station. Based on 
these measurements, the current loads of mobiles in nearby cells, and other factors, 
the source base station may choose to initiate a handover. The 4G/5G standards do 
not specify a specific algorithm to be used by a base station to determine whether or 
not to perform handover, or which target base station to choose; this is an active area 
of research [Zheng 2008; Alexandris 2016].

Figure 7.30 illustrates the steps involved when a source base station decides to 
hand over a mobile device to the target base station.

 1. The current (source) base station selects the target base station, and sends a 
Handover Request message to the target base station.

 2. The target base station checks whether it has the resources to support the mobile 
device and its quality of service requirements. If so, it pre-allocates channel 
resources (e.g., time slots) on its radio access network and other resources 
for that device. This pre-allocation of resources frees the mobile device from 
having to go through the time-consuming base-station association protocol 
discussed earlier, allowing handover to be executed as fast as possible. The 
target base station replies to the source base station with a Handover Request 
Acknowledge message, containing all the information at the target base station 
that the mobile device will need to associate with the new base station.

 3. The source base station receives the Handover Request Acknowledgement 
message and informs the mobile device of the target base station’s identity and 
channel access information. At this point, the mobile device can begin send-
ing/receiving datagrams to/from the new target base station. From the mobile 
device’s point of view, handover is now complete! However, there is still a bit 
of work to be done within the network.

 4. The source base station will also stop forwarding datagrams to the mobile 
device and instead forward any tunneled datagrams it receives to the target 
base station, which will later forward these datagrams to the mobile device.

 5. The target base station informs the MME that it (the target base station) will be 
the new base station servicing the mobile device. The MME, in turn, signals 
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to the Serving Gateway and the target base station to reconfigure the Serving-
Gateway-to-base-station tunnel to terminate at the target base station, rather 
than at the source base station.

 6. The target base station confirms back to the source base station that the tunnel 
has been reconfigured, allowing the source base station to release resources 
associated with that mobile device.

 7. At this point, the target base station can also begin delivering datagrams to the 
mobile device, including datagrams forwarded to the target base station by the 
source base station during handover, as well as datagrams newly arriving on 
the reconfigured tunnel from the Serving Gateway. It can also forward outgo-
ing datagrams received from the mobile device into the tunnel to the Serving 
Gateway.

The roaming configurations in today’s 4G LTE networks, such as that dis-
cussed above, will also be used in future emerging 5G networks [GSMA 2019c]. 
Recall, however, from our discussion in Section 7.4.6 that the 5G networks will be 
denser, with significantly smaller cell sizes. This will make handover an even more 
critically important network function. In addition, low handover latency will be 
critical for many real-time 5G applications. The migration of the cellular network 
control plane to the SDN framework that we studied earlier in Chapter 5 [GSMA 
2018b; Condoluci 2018] promises to enable implementations of a higher-capacity, 
lower-latency 5G cellular network control plane. The application of SDN in a 5G 
context is the subject of considerable research [Giust 2015; Ordonez-Lucena 2017; 
Nguyen 2016].

7.6.2 Mobile IP
Today’s Internet does not have any widely deployed infrastructure that provides the 
type of services for “on the go” mobile users that we encountered for 4G/5G cellular 
networks. But this is certainly not due to the lack of technical solutions for providing 
such services in an Internet setting! Indeed, the Mobile IP architecture and protocols 
[RFC 5944] that we will briefly discuss below have been standardized by Internet 
RFCs for more than 20 years, and research has continued on new, more secure and 
more generalized mobility solutions [Venkataramani 2014].

Instead, it has perhaps been the lack of motivating business and use cases [Arkko 
2012] and the timely development and deployment of alternative mobility solutions 
in cellular networks that has blunted the deployment of Mobile IP. Recall that 20 
years ago, 2G cellular networks had already provided a solution for mobile voice 
services (the “killer app” for mobile users); additionally, next generation 3G net-
works supporting voice and data were on the horizon. Perhaps the dual technology 
solution—mobile services via cellular networks when we are truly mobile and “on 
the go” (i.e., the rightmost side of the mobility spectrum in Figure 7.24) and Internet 
services via 802.11 networks or wireline networks when we are stationary or moving 
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locally (i.e., the leftmost side of the mobility spectrum in Figure 7.24)—that we had 
20 years ago and still have today will persist into the future.

It will nonetheless be instructive to briefly overview the Mobile IP standard 
here, as it provides many of the same services as cellular networks and implements 
many of the same basic mobility principles. Earlier editions of this textbook have 
provided a more in-depth study of Mobile IP than we will provide here; the inter-
ested reader can find this retired material on this textbook’s website. The Internet 
architecture and protocols for supporting mobility, collectively known as Mobile IP, 
are defined primarily in RFC 5944 for IPv4. Mobile IP, like 4G/5G, is a complex 
standard, and would require an entire book to describe in detail; indeed one such 
book is [Perkins 1998b]. Our modest goal here is to provide an overview of the most 
important aspects of Mobile IP.

The overall architecture and elements of Mobile IP are strikingly similar to that 
of cellular provider networks. There is a strong notion of a home network, in which a 
mobile device has a permanent IP address, and visited networks (known as “foreign” 
networks in Mobile IP), where the mobile device will be allocated a care-of-address. 
The home agent in Mobile IP has a similar function to the LTE HSS: it tracks the 
location of a mobile device by receiving updates from foreign agents in foreign net-
works visited by that mobile device, just as the HSS receives updates from Mobil-
ity Management Entities (MMEs) in visited networks in which a 4G mobile device 
resides. And both 4G/5G and Mobile IP use indirect routing to a mobile node, using 
tunnels to connect the gateway routers in the home and visited/foreign networks. 
Table 7.3 summarizes the elements of the Mobile IP architecture, along with a com-
parison with similar elements in 4G/5G networks

4G/5G element Mobile IP element Discussion
Home network Home network
Visited network Foreign network
IMSI identifier Permanent IP address Globally unique routable address information
Home Subscriber Service (HSS) Home agent
Mobility Management Entity (MME) Foreign agent
Data plane: indirect forwarding via the home 
network, with tunneling between the home 
and visited network, and tunneling within the 
network in which the mobile device resides

Data plane: indirect forwarding via 
the home network, with tunneling 
between the home and visited 
network

Base station (eNode-B) Access Point (AP) No specific AP technology is specified in Mobile IP
Radio Access Network WLAN No specific WLAN technology is specified in Mobile IP

Table 7.3 ♦ Commonalities between 4G/5G and Mobile IP architectures
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The mobile IP standard consists of three main pieces:

• Agent discovery. Mobile IP defines the protocols used by a foreign agent to adver-
tise its mobility services to a mobile device that wishes to attach to its network. 
Those services will include providing a care-of-address to the mobile device for 
use in the foreign network, registration of the mobile device with the home agent 
in the mobile device’s home network, and forwarding of datagrams to/from the 
mobile device, among other services.

• Registration with the home agent. Mobile IP defines the protocols used by the 
mobile device and/or foreign agent to register and deregister a care-of-address 
with a mobile device’s home agent.

• Indirect routing of datagrams. Mobile IP also defines the manner in which data-
grams are forwarded to mobile devices by a home agent, including rules for for-
warding datagrams and handling error conditions, and several forms of tunneling 
[RFC 2003, RFC 2004].

Again, our coverage here of Mobile IP has been intentionally brief. The inter-
ested reader should consult the references in this section, or more-detailed discus-
sions of Mobile IP in earlier editions of this textbook.

7.7 Wireless and Mobility: Impact on  
 Higher-Layer Protocols

In this chapter, we’ve seen that wireless networks differ significantly from their 
wired counterparts at both the link layer (as a result of wireless channel charac-
teristics such as fading, multipath, and hidden terminals) and at the network layer  
(as a result of mobile users who change their points of attachment to the network). 
But are there important differences at the transport and application layers? It’s tempt-
ing to think that these differences will be minor, since the network layer provides the 
same best-effort delivery service model to upper layers in both wired and wireless 
networks. Similarly, if protocols such as TCP or UDP are used to provide transport-
layer services to applications in both wired and wireless networks, then the applica-
tion layer should remain unchanged as well. In one sense, our intuition is right—TCP 
and UDP can (and do) operate in networks with wireless links. On the other hand, 
transport protocols in general, and TCP in particular, can sometimes have very dif-
ferent performance in wired and wireless networks, and it is here, in terms of perfor-
mance, that differences are manifested. Let’s see why.

Recall that TCP retransmits a segment that is either lost or corrupted on the path 
between sender and receiver. In the case of mobile users, loss can result from either 
network congestion (router buffer overflow) or from handover (e.g., from delays 
in rerouting segments to a mobile’s new point of attachment to the network). In all 
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cases, TCP’s receiver-to-sender ACK indicates only that a segment was not received 
intact; the sender is unaware of whether the segment was lost due to congestion, 
during handover, or due to detected bit errors. In all cases, the sender’s response is 
the same—to retransmit the segment. TCP’s congestion-control response is also the 
same in all cases—TCP decreases its congestion window, as discussed in Section 3.7. 
By unconditionally decreasing its congestion window, TCP implicitly assumes that 
segment loss results from congestion rather than corruption or handover. We saw in 
Section 7.2 that bit errors are much more common in wireless networks than in wired 
networks. When such bit errors occur or when handover loss occurs, there’s really 
no reason for the TCP sender to decrease its congestion window (and thus decrease 
its sending rate). Indeed, it may well be the case that router buffers are empty and 
packets are flowing along the end-to-end path unimpeded by congestion.

Researchers realized in the early to mid 1990s that given high bit error rates on 
wireless links and the possibility of handover loss, TCP’s congestion-control response 
could be problematic in a wireless setting. Three broad classes of approaches are 
possible for dealing with this problem:

• Local recovery. Local recovery protocols recover from bit errors when and where 
(e.g., at the wireless link) they occur, for example, the 802.11 ARQ protocol we 
studied in Section 7.3, or more sophisticated approaches that use both ARQ and 
FEC [Ayanoglu 1995] that we saw in use in 4G/5G networks in Section 7.4.2.

• TCP sender awareness of wireless links. In the local recovery approaches, the 
TCP sender is blissfully unaware that its segments are traversing a wireless link. 
An alternative approach is for the TCP sender and receiver to be aware of the 
existence of a wireless link, to distinguish between congestive losses occurring 
in the wired network and corruption/loss occurring at the wireless link, and to 
invoke congestion control only in response to congestive wired-network losses. 
[Liu 2003] investigates techniques for distinguishing between losses on the wired 
and wireless segments of an end-to-end path. [Huang 2013] provides insights on 
developing transport protocol mechanisms and applications that are more LTE-
friendly.

• Split-connection approaches. In a split-connection approach [Bakre 1995], the 
end-to-end connection between the mobile user and the other end point is broken 
into two transport-layer connections: one from the mobile host to the wireless 
access point, and one from the wireless access point to the other communication  
end point (which we’ll assume here is a wired host). The end-to-end connection 
is thus formed by the concatenation of a wireless part and a wired part. The trans-
port layer over the wireless segment can be a standard TCP connection [Bakre 
1995], or a specially tailored error recovery protocol on top of UDP. [Yavatkar 
1994] investigates the use of a transport-layer selective repeat protocol over the 
wireless connection. Measurements reported in [Wei 2006] indicate that split TCP 
connections have been widely used in cellular data networks, and that significant 
improvements can indeed be made through the use of split TCP connections.
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Our treatment of TCP over wireless links has been necessarily brief here. 
 In-depth surveys of TCP challenges and solutions in wireless networks can be found 
in [Hanabali 2005; Leung 2006]. We encourage you to consult the references for 
details of this ongoing area of research.

Having considered transport-layer protocols, let us next consider the effect of 
wireless and mobility on application-layer protocols. Because of the shared nature of 
the wireless spectrum, applications that operate over wireless links, particularly over 
cellular wireless links, must treat bandwidth as a scarce commodity. For example, a 
Web server serving content to a Web browser executing on a 4G smartphone will 
likely not be able to provide the same image-rich content that it gives to a browser 
operating over a wired connection. Although wireless links do provide challenges at 
the application layer, the mobility they enable also makes possible a rich set of loca-
tion-aware and context-aware applications [Baldauf 2007]. More generally, wireless 
and mobile networks will continue to play a key role in realizing the ubiquitous com-
puting environments of the future [Weiser 1991]. It’s fair to say that we’ve only seen 
the tip of the iceberg when it comes to the impact of wireless and mobile networks on 
networked applications and their protocols!

7.8 Summary

Wireless and mobile networks first revolutionized telephony and are now having 
an increasingly profound impact in the world of computer networks as well. With 
their anytime, anywhere, untethered access into the global network infrastructure, 
they are not only making network access more ubiquitous, they are also enabling an 
exciting new set of location-dependent services. Given the growing importance of 
wireless and mobile networks, this chapter has focused on the principles, common 
link technologies, and network architectures for supporting wireless and mobile 
communication.

We began this chapter with an introduction to wireless and mobile networks, 
drawing an important distinction between the challenges posed by the wireless nature 
of the communication links in such networks, and by the mobility that these wireless 
links enable. This allowed us to better isolate, identify, and master the key concepts in 
each area. We focused first on wireless communication, considering the characteristics 
of a wireless link in Section 7.2. In Sections 7.3 and 7.4, we examined the link-level 
aspects of the IEEE 802.11 (WiFi) wireless LAN standard, Bluetooth, and 4G/5G  
cellular neworks. We then turned our attention to the issue of mobility. In Section 7.5, 
we identified several forms of mobility, with points along this spectrum posing dif-
ferent challenges and admitting different solutions. We considered the problems of 
locating and routing to a mobile user, as well as approaches for handing over the 
mobile user who dynamically moves from one point of attachment to the network to 
another. We examined how these issues were addressed in 4G/5G networks and in the 
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Mobile IP standard. Finally, we considered the impact of wireless links and mobility 
on transport-layer protocols and networked applications in  Section 7.7.

Although we have devoted an entire chapter to the study of wireless and mobile 
networks, an entire book (or more) would be required to fully explore this exciting 
and rapidly expanding field. We encourage you to delve more deeply into this field 
by consulting the many references provided in this chapter.

Homework Problems and Questions

Chapter 7 Review Questions
SECTION 7.1
   R1. What does it mean for a wireless network to be operating in “infrastructure 

mode”? If the network is not in infrastructure mode, what mode of operation 
is it in, and what is the difference between that mode of operation and infra-
structure mode?

   R2. What are the four types of wireless networks identified in our taxonomy in 
Section 7.1? Which of these types of wireless networks have you used?

SECTION 7.2
   R3. What are the differences between the following types of wireless channel 

impairments: path loss, multipath propagation, interference from other sources?

   R4. As a mobile node gets farther and farther away from a base station, what are 
two actions that a base station could take to ensure that the loss probability of 
a transmitted frame does not increase?

SECTION 7.3
   R5. Describe the role of the beacon frames in 802.11.

   R6. True or false: Before an 802.11 station transmits a data frame, it must first 
send an RTS frame and receive a corresponding CTS frame.

   R7. Why are acknowledgments used in 802.11 but not in wired Ethernet?

   R8. True or false: Ethernet and 802.11 use the same frame structure.

   R9. Describe how the RTS threshold works.

 R10. Suppose the IEEE 802.11 RTS and CTS frames were as long as the standard 
DATA and ACK frames. Would there be any advantage to using the CTS and 
RTS frames? Why or why not?

 R11. Section 7.3.4 discusses 802.11 mobility, in which a wireless station moves 
from one BSS to another within the same subnet. When the APs are intercon-
nected with a switch, an AP may need to send a frame with a spoofed MAC 
address to get the switch to forward the frame properly. Why?

M07_KURO1557_08_SE_C07.indd   597 12/02/20   4:59 PM



598     CHAPTER 7  •  WIRELESS AND MOBILE NETWORKS

 R12. What are the differences between a master device in a Bluetooth network and 
a base station in an 802.11 network?

 R13. What is the role of the base station in 4G/5G cellular architecture? With 
which other 4G/5G network elements (mobile device, MME, HSS, Serving 
Gateway Router, PDN Gateway Router) does it directly communicate with in 
the control plane? In the data plane?

 R14. What is an International Mobile Subscriber Identity (IMSI)?

 R15. What is the role of the Home Subscriber Service (HSS) in 4G/5G cellular 
architecture? With which other 4G/5G network elements (mobile device, 
base station, MME, Serving Gateway Router, PDN Gateway Router) does it 
directly communicate with in the control plane? In the data plane?

 R16. What is the role of the Mobility Management Entity (MME) in 4G/5G 
cellular architecture? With which other 4G/5G network elements (mobile 
device, base station, HSS, Serving Gateway Router, PDN Gateway 
Router) does it directly communicate with in the control plane? In the 
data plane?

 R17. Describe the purpose of two tunnels in the data plane of the 4G/5G cellular 
architecture. When a mobile device is attached to its own home network, at 
which 4G/5G network element (mobile device, base station, HSS, MME, 
Serving Gateway Router, PDN Gateway Router) does each end of each of the 
two tunnels terminate?

 R18. What are the three sublayers in the link layer in the LTE protocol stack? 
Briefly describe their functions.

 R19. Does the LTE wireless access network use FDMA, TDMA, or both? Explain 
your answer.

 R20. Describe the two possible sleep modes of a 4G/5G mobile device. In each of 
these sleep modes, will the mobile device remain associated with the same 
base station between the time it goes to sleep and the time it wakes up and 
first sends/receives a new datagram?

 R21. What is meant by a “visited network” and a “home network” in 4G/5G cel-
lular architecture?

 R22. List three important differences between 4G and 5G cellular networks.

SECTION 7.5
 R23. What does it mean that a mobile device is said to be “roaming?”

 R24. What is meant by “hand over” of a network device?

 R25. What is the difference between direct and indirect routing of datagrams to/
from a roaming mobile host?

 R26. What does “triangle routing” mean?
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SECTION 7.6
 R27. Describe the similarity and differences in tunnel configuration when a mobile 

device is resident in its home network, versus when it is roaming in a visited 
network.

R 28. When a mobile device is handed over from one base station to another in a 
4G/5G network, which network element makes the decision to initiate that 
handover? Which network element chooses the target base station to which 
the mobile device will be handed over?

R 29. Describe how and when the forwarding path of datagrams entering the visited net-
work and destined to the mobile device changes before, during, and after hand over.

R 30. Consider the following elements of the Mobile IP architecture: the home net-
work, foreign network permanent IP address, home agent, foreign agent, data 
plane forwarding, Access Point (AP), and WLANs at the network edge. What 
are the closest equivalent elements in the 4G/5G cellular network architecture?

SECTION 7.7
 R31. What are three approaches that can be used to avoid having a single wireless 

link degrade the performance of an end-to-end transport-layer TCP connection?

Problems

 P1. Consider the single-sender CDMA example in Figure 7.5. What would be the 
sender’s output (for the 2 data bits shown) if the sender’s CDMA code were 
(1, -1, 1, -1, 1, 1, 1, -1)?

 P2. Consider sender 2 in Figure 7.6. What is the sender’s output to the channel 
(before it is added to the signal from sender 1), Z2 i,m?

 P3. Suppose that the receiver in Figure 7.6 wanted to receive the data being sent 
by sender 2. Show (by calculation) that the receiver is indeed able to recover 
sender 2’s data from the aggregate channel signal by using sender 2’s code.

 P4. For the two-sender, two-receiver example, give an example of two CDMA 
codes containing 1 and 21 values that do not allow the two receivers to 
extract the original transmitted bits from the two CDMA senders.

 P5. Suppose there are two ISPs providing WiFi access in a particular café, with 
each ISP operating its own AP and having its own IP address block.

a. Further suppose that by accident, each ISP has configured its AP to oper-
ate over channel 11. Will the 802.11 protocol completely break down in 
this situation? Discuss what happens when two stations, each associated 
with a different ISP, attempt to transmit at the same time.

b. Now suppose that one AP operates over channel 1 and the other over 
channel 11. How do your answers change?
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 P6. In step 4 of the CSMA/CA protocol, a station that successfully transmits a 
frame begins the CSMA/CA protocol for a second frame at step 2, rather than 
at step 1. What rationale might the designers of CSMA/CA have had in mind 
by having such a station not transmit the second frame immediately (if the 
channel is sensed idle)?

 P7. Suppose an 802.11b station is configured to always reserve the channel with 
the RTS/CTS sequence. Suppose this station suddenly wants to  transmit  
1,500 bytes of data, and all other stations are idle at this time. As a  function of 
SIFS and DIFS, and ignoring propagation delay and assuming no bit errors, cal-
culate the time required to transmit the frame and receive the acknowledgment.

 P8. Consider the scenario shown in Figure 7.31, in which there are four wireless 
nodes, A, B, C, and D. The radio coverage of the four nodes is shown via 
the shaded ovals; all nodes share the same frequency. When A transmits, it 
can only be heard/received by B; when B transmits, both A and C can hear/
receive from B; when C transmits, both B and D can hear/receive from C; 
when D transmits, only C can hear/receive from D.

  Suppose now that each node has an infinite supply of messages that it wants 
to send to each of the other nodes. If a message’s destination is not an imme-
diate neighbor, then the message must be relayed. For example, if A wants 
to send to D, a message from A must first be sent to B, which then sends 
the message to C, which then sends the message to D. Time is slotted, with 
a message transmission time taking exactly one time slot, e.g., as in slotted 
Aloha. During a slot, a node can do one of the following: (i) send a message, 
(ii) receive a message (if exactly one message is being sent to it), (iii) remain 
silent. As always, if a node hears two or more simultaneous transmissions, 
a collision occurs and none of the transmitted messages are received suc-
cessfully. You can assume here that there are no bit-level errors, and thus if 
exactly one message is sent, it will be received correctly by those within the 
transmission radius of the sender.

a. Suppose now that an omniscient controller (i.e., a controller that knows the 
state of every node in the network) can command each node to do whatever 
it (the omniscient controller) wishes, that is, to send a message, to receive a 

Figure 7.31 ♦ Scenario for problem P8

A B C D
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message, or to remain silent. Given this omniscient controller, what is the 
maximum rate at which a data message can be transferred from C to A, given 
that there are no other messages between any other source/destination pairs?

b. Suppose now that A sends messages to B, and D sends messages to C. 
What is the combined maximum rate at which data messages can flow 
from A to B and from D to C?

c. Suppose now that A sends messages to B, and C sends messages to D. 
What is the combined maximum rate at which data messages can flow 
from A to B and from C to D?

d. Suppose now that the wireless links are replaced by wired links. Repeat 
questions (a) through (c) again in this wired scenario.

e. Now suppose we are again in the wireless scenario, and that for every  
data message sent from source to destination, the destination will send an 
ACK message back to the source (e.g., as in TCP). Also suppose that each ACK 
message takes up one slot. Repeat questions (a)–(c) above for this scenario.

   P9. Describe the format of the Bluetooth frame. You will have to do some read-
ing outside of the text to find this information. Is there anything in the frame 
format that inherently limits the number of active nodes in an network to 
eight active nodes? Explain.

 P10. Consider the following idealized LTE scenario. The downstream channel  
(see Figure 7.22) is slotted in time, across F frequencies. There are four nodes, 
A, B, C, and D, reachable from the base station at rates of 10 Mbps, 5 Mbps, 
2.5 Mbps, and 1 Mbps, respectively, on the downstream channel. These rates 
assume that the base station utilizes all time slots available on all F frequen-
cies to send to just one station. The base station has an infinite amount of data 
to send to each of the nodes, and can send to any one of these four nodes using 
any of the F frequencies during any time slot in the  downstream sub-frame.

a. What is the maximum rate at which the base station can send to the nodes, 
assuming it can send to any node it chooses during each time slot? Is your 
solution fair? Explain and define what you mean by “fair.”

b. If there is a fairness requirement that each node must receive an equal 
amount of data during each one second interval, what is the average 
transmission rate by the base station (to all nodes) during the downstream 
sub-frame? Explain how you arrived at your answer.

c. Suppose that the fairness criterion is that any node can receive at most 
twice as much data as any other node during the sub-frame. What is the 
average transmission rate by the base station (to all nodes) during the sub-
frame? Explain how you arrived at your answer.

 P11. In Section 7.5, one proposed solution that allowed mobile users to maintain 
their IP addresses as they moved among foreign networks was to have a foreign 
network advertise a highly specific route to the mobile user and use the existing 
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routing infrastructure to propagate this information throughout the network. We 
identified scalability as one concern. Suppose that when a mobile user moves 
from one network to another, the new foreign network advertises a specific route 
to the mobile user, and the old foreign network withdraws its route. Consider 
how routing information propagates in a distance-vector algorithm (particularly 
for the case of interdomain routing among networks that span the globe).

a. Will other routers be able to route datagrams immediately to the new for-
eign network as soon as the foreign network begins advertising its route?

b. Is it possible for different routers to believe that different foreign networks 
contain the mobile user?

c. Discuss the timescale over which other routers in the network will eventu-
ally learn the path to the mobile users.

 P12. In 4G/5G networks, what effect will handoff have on end-to-end delays of 
datagrams between the source and destination?

 P13. Consider a mobile device that powers on and attaches to an LTE visited 
network A, and assume that indirect routing to the mobile device from its 
home network H is being used. Subsequently, while roaming, the device 
moves out of range of visited network A and moves into range of an LTE 
visited network B. You will design a handover process from a base sta-
tion BS.A in visited network A to a base station BS.B in visited network B. 
Sketch the series of steps that would need to be taken, taking care to identify 
the network elements involved (and the networks to which they belong), to 
accomplish this handover. Assume that following handover, the tunnel from 
the home network to the visited network will terminate in visiting network B.

 P14. Consider again the scenario in Problem P13. But now assume that the tunnel 
from home network H to visited network A will continue to be used. That is, 
visited network A will serve as an anchor point following handover. (Aside: 
this is actually the process used for routing circuit-switched voice calls to 
a roaming mobile phone in 2G GSM networks.) In this case, additional 
tunnel(s) will need to be built to reach the mobile device in its resident visited 
network B. Once again, sketch the series of steps that would need to be taken, 
taking care to identify the network elements involved (and the networks to 
which they belong), to accomplish this handover.
 What are one advantage and one disadvantage of this approach over the 
approach taken in your solution to Problem P13?

Wireshark Lab: WiFi

At the Web site for this textbook, www.pearsonhighered.com/cs-resources, also  
mirrored on the instructors’ website, http://gaia.cs.umass.edu/kurose_ross, you’ll 
find a Wireshark lab for this chapter that captures and studies the 802.11 frames 
exchanged between a wireless laptop and an access point.
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Please describe a few of the most exciting projects you have worked on during your 
career. What were the biggest challenges?
In the mid-90s at USC and ISI, I had the great fortune to work with the likes of Steve 
Deering, Mark Handley, and Van Jacobson on the design of multicast routing protocols (in 
particular, PIM). I tried to carry many of the architectural design lessons from multicast 
into the design of ecological monitoring arrays, where for the first time I really began to 
take applications and multidisciplinary research seriously. The need for jointly innovating 
in the social and technological space is what interests me so much about my latest area of 
research, mobile health. The challenges in multicast routing, environmental sensing and 
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Dean for Impact at Cornell Tech in New York City and a Professor 
of Public Health at Weill Cornell Medical College. She received 
her Ph.D. (1985) in Computer Science from M.I.T. and her B.S. 
(1980) from UC Berkeley. Estrin’s early research focused on the 
design of network protocols, including multicast and inter-domain 
routing. In 2002 Estrin founded the NSF-funded Science and 
Technology Center at UCLA, Center for Embedded Networked 
Sensing (CENS http://cens.ucla.edu.). CENS launched new areas 
of multi-disciplinary computer systems research from sensor networks 
for environmental monitoring, to participatory sensing and mobile 
health. As described in her 2013 TEDMED talk, she explores how 
individuals can benefit from the pervasive data byproducts of digi-
tal and IoT interactions for health and life management. Professor 
Estrin is an elected member of the American Academy of Arts and 
Sciences (2007), the National Academy of Engineering (2009), 
and the National Academy of Medicine (2019). She is a Fellow of 
the IEEE, ACM, and AAAS. She was selected as the first ACM-W 
Athena Lecturer (2006), awarded the Anita Borg Institute’s Women 
of Vision Award for Innovation (2007), inducted into the WITI hall 
of fame (2008), received honorary doctorates from EPFL (2008) 
and Uppsala University (2011), and was selected as a MacArthur 
Fellow (2018).
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mobile health are as diverse as the problem domains, but what they have in common is the 
need to keep our eyes open to whether we have the problem definition right as we iterate 
between design and deployment, prototype and pilot. None of these are problems that could 
be solved solely analytically, or with simulation or even in constructed laboratory experi-
ments. They challenged our ability to retain clean architectures in the presence of messy 
problems and contexts, and they required extensive collaboration.

What changes and innovations do you see happening in wireless networks and mobility 
in the future?
In a prior edition of this interview I said that I have never put much faith into predicting the 
future, but I did go on to speculate that we might see the end of feature phones (i.e., those 
that are not programmable and are used only for voice and text messaging) as smart phones 
become more and more powerful and the primary point of Internet access for many—and 
now not so many years later that is clearly the case. I also predicted that we would see the 
continued proliferation of embedded SIMs by which all sorts of devices have the ability 
to communicate via the cellular network at low data rates. While that has occurred, we see 
many devices and “Internet of Things” that use embedded WiFi and other lower power, 
shorter range, forms of connectivity to local hubs. I did not anticipate at that time the emer-
gence of a large consumer wearables market or interactive voice agents like Siri and Alexa. 
By the time the next edition is published I expect broad proliferation of personal applica-
tions that leverage data from IoT and other digital traces.

Where do you see the future of networking and the Internet?
Again I think it’s useful to look both back and forward. Previously I commented that the 
efforts in named data and software-defined networking would emerge to create a more 
manageable, evolvable, and richer infrastructure and more generally represent moving the 
role of architecture higher up in the stack. In the beginnings of the Internet, architecture was 
layer 4 and below, with applications being more siloed/monolithic, sitting on top. Now data 
and analytics dominate transport. The adoption of SDN (which I was really happy to see 
introduced into the 7th edition of this book) has been well beyond what I ever anticipated. 
That said, new challenges have emerged from higher up in the stack. Machine Learning 
based systems and services favor scale, particularly when they rely on continuous consumer 
engagement (clicks) for financial viability. The resulting information ecosystem has become 
far more monolithic than in earlier decades. This is a challenge for networking, the Internet, 
and frankly our society.
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What people inspired you professionally?
There are three people who come to mind. First, Dave Clark, the secret sauce and under- 
sung hero of the Internet community. I was lucky to be around in the early days to see him 
act as the “organizing principle” of the IAB and Internet governance; the priest of rough 
consensus and running code. Second, Scott Shenker, for his intellectual brilliance, integrity, 
and persistence. I strive for, but rarely attain, his clarity in defining problems and solutions. 
He is always the first person I e-mail for advice on matters large and small. Third, my sister 
Judy Estrin, who had the creativity and commitment to spend the first half of her career 
bringing ideas and concepts to market; and now has the courage to study, write, and advise 
on how to rebuild it to support a healthier democracy.

What are your recommendations for students who want careers in computer science  
and networking?
First, build a strong foundation in your academic work, balanced with any and every real- 
world work experience you can get. As you look for a working environment, seek opportu-
nities in problem areas you really care about and with smart teams that you can learn from 
and work with to build things that matter.
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Way back in Section 1.6, we described some of the more prevalent and damaging 
classes of Internet attacks, including malware attacks, denial of service, sniffing, 
source masquerading, and message modification and deletion. Although we have 
since learned a tremendous amount about computer networks, we still haven’t exam-
ined how to secure networks from those attacks. Equipped with our newly acquired 
expertise in computer networking and Internet protocols, we’ll now study in-depth 
secure communication and, in particular, how computer networks can be defended 
from those nasty bad guys.

Let us introduce Alice and Bob, two people who want to communicate and wish 
to do so “securely.” This being a networking text, we should remark that Alice and 
Bob could be two routers that want to exchange routing tables securely, a client and 
server that want to establish a secure transport connection, or two e-mail applications 
that want to exchange secure e-mail—all case studies that we will consider later in 
this chapter. Alice and Bob are well-known fixtures in the security community, per-
haps because their names are more fun than a generic entity named “A” that wants 
to communicate securely with a generic entity named “B.” Love affairs, wartime 
communication, and business transactions are the commonly cited human needs for 
secure communications; preferring the first to the latter two, we’re happy to use 
Alice and Bob as our sender and receiver, and imagine them in this first scenario.

We said that Alice and Bob want to communicate and wish to do so “securely,” 
but what precisely does this mean? As we will see, security (like love) is a many-
splendored thing; that is, there are many facets to security. Certainly, Alice and 
Bob would like for the contents of their communication to remain secret from 
an eavesdropper. They probably would also like to make sure that when they are 
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communicating, they are indeed communicating with each other, and that if their 
communication is tampered with by an eavesdropper, that this tampering is detected. 
In the first part of this chapter, we’ll cover the fundamental cryptography techniques 
that allow for encrypting communication, authenticating the party with whom one is 
communicating, and ensuring message integrity.

In the second part of this chapter, we’ll examine how the fundamental 
 cryptography principles can be used to create secure networking protocols. Once 
again taking a top-down approach, we’ll examine secure protocols in each of the 
(top four) layers, beginning with the application layer. We’ll examine how to secure 
e-mail, how to secure a TCP connection, how to provide blanket security at the net-
work layer, and how to secure a wireless LAN. In the third part of this chapter we’ll 
consider operational security, which is about protecting organizational networks 
from attacks. In particular, we’ll take a careful look at how firewalls and intrusion 
detection systems can enhance the security of an organizational network.

8.1 What Is Network Security?

Let’s begin our study of network security by returning to our lovers, Alice and Bob, 
who want to communicate “securely.” What precisely does this mean? Certainly, 
Alice wants only Bob to be able to understand a message that she has sent, even 
though they are communicating over an insecure medium where an intruder (Trudy, 
the intruder) may intercept whatever is transmitted from Alice to Bob. Bob also 
wants to be sure that the message he receives from Alice was indeed sent by Alice, 
and Alice wants to make sure that the person with whom she is communicating is 
indeed Bob. Alice and Bob also want to make sure that the contents of their messages 
have not been altered in transit. They also want to be assured that they can communi-
cate in the first place (i.e., that no one denies them access to the resources needed to 
communicate). Given these considerations, we can identify the following desirable 
properties of secure communication.

• Confidentiality. Only the sender and intended receiver should be able to under-
stand the contents of the transmitted message. Because eavesdroppers may 
intercept the message, this necessarily requires that the message be somehow 
encrypted so that an intercepted message cannot be understood by an interceptor. 
This aspect of confidentiality is probably the most commonly perceived mean-
ing of the term secure communication. We’ll study cryptographic techniques for 
encrypting and decrypting data in Section 8.2.

• Message integrity. Alice and Bob want to ensure that the content of their 
 communication is not altered, either maliciously or by accident, in transit. Exten-
sions to the checksumming techniques that we encountered in reliable transport 
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and data link protocols can be used to provide such message integrity. We will 
study message integrity in Section 8.3.

• End-point authentication. Both the sender and receiver should be able to confirm 
the identity of the other party involved in the communication—to confirm that the 
other party is indeed who or what they claim to be. Face-to-face human commu-
nication solves this problem easily by visual recognition. When communicating 
entities exchange messages over a medium where they cannot see the other party, 
authentication is not so simple. When a user wants to access an inbox, how does 
the mail server verify that the user is the person he or she claims to be? We study 
end-point authentication in Section 8.4.

• Operational security. Almost all organizations (companies, universities, and so 
on) today have networks that are attached to the public Internet. These networks 
therefore can potentially be compromised. Attackers can attempt to deposit worms 
into the hosts in the network, obtain corporate secrets, map the internal network 
configurations, and launch DoS attacks. We’ll see in Section 8.9 that operational 
devices such as firewalls and intrusion detection systems are used to counter 
attacks against an organization’s network. A firewall sits between the organiza-
tion’s network and the public network, controlling packet access to and from 
the network. An intrusion detection system performs “deep packet  inspection,” 
 alerting the network administrators about suspicious activity.

Having established what we mean by network security, let’s next consider 
exactly what information an intruder may have access to, and what actions can be 
taken by the intruder. Figure 8.1 illustrates the scenario. Alice, the sender, wants to 
send data to Bob, the receiver. In order to exchange data securely, while meeting 
the requirements of confidentiality, end-point authentication, and message integrity, 
Alice and Bob will exchange control messages and data messages (in much the same 
way that TCP senders and receivers exchange control segments and data  segments).  

Secure
sender

Alice

Trudy

Channel

Control, data messages
Secure

receiver

Bob

Data Data

Figure 8.1 ♦ Sender, receiver, and intruder (Alice, Bob, and Trudy)
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All or some of these messages will typically be encrypted. As discussed in Section 1.6, 
an intruder can potentially perform

• eavesdropping—sniffing and recording control and data messages on the  channel.

• modification, insertion, or deletion of messages or message content.

As we’ll see, unless appropriate countermeasures are taken, these capabilities 
allow an intruder to mount a wide variety of security attacks: snooping on communi-
cation (possibly stealing passwords and data), impersonating another entity, hijack-
ing an ongoing session, denying service to legitimate network users by overloading 
system resources, and so on. A summary of reported attacks is maintained at the 
CERT Coordination Center [CERT 2020].

Having established that there are indeed real threats loose in the Internet, what 
are the Internet equivalents of Alice and Bob, our friends who need to communicate 
securely? Certainly, Bob and Alice might be human users at two end systems, for 
example, a real Alice and a real Bob who really do want to exchange secure e-mail. 
They might also be participants in an electronic commerce transaction. For example, 
a real Bob might want to transfer his credit card number securely to a Web server 
to purchase an item online. Similarly, a real Alice might want to interact with her 
bank online. The parties needing secure communication might themselves also be 
part of the network infrastructure. Recall that the domain name system (DNS, see 
Section 2.4) or routing daemons that exchange routing information (see Chapter 5) 
require secure communication between two parties. The same is true for network 
management applications, a topic we examined in Chapter 5). An intruder that could 
actively interfere with DNS lookups (as discussed in Section 2.4), routing computa-
tions  (Sections 5.3 and 5.4), or network management functions (Sections 5.5 and 5.7) 
could wreak havoc in the Internet.

Having now established the framework, a few of the most important definitions, 
and the need for network security, let us next delve into cryptography. While the use 
of cryptography in providing confidentiality is self-evident, we’ll see shortly that it 
is also central to providing end-point authentication and message integrity—making 
cryptography a cornerstone of network security.

8.2 Principles of Cryptography

Although cryptography has a long history dating back at least as far as Julius  Caesar, 
modern cryptographic techniques, including many of those used in the Internet, are 
based on advances made in the past 30 years. Kahn’s book, The  Codebreakers [Kahn 
1967], and Singh’s book, The Code Book: The Science of Secrecy from Ancient 
Egypt to Quantum Cryptography [Singh 1999], provide a fascinating look at the 
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long history of cryptography. A complete discussion of cryptography itself requires 
a complete book [Bishop 2003; Kaufman 2002; Schneier 2015] and so we only touch 
on the essential aspects of cryptography, particularly as they are practiced on the 
Internet. We also note that while our focus in this section will be on the use of 
cryptography for confidentiality, we’ll see shortly that cryptographic techniques are 
inextricably woven into authentication, message integrity, nonrepudiation, and more.

Cryptographic techniques allow a sender to disguise data so that an intruder can 
gain no information from the intercepted data. The receiver, of course, must be able 
to recover the original data from the disguised data. Figure 8.2 illustrates some of the 
important terminology.

Suppose now that Alice wants to send a message to Bob. Alice’s message in 
its original form (e.g., “Bob, I love you. Alice”) is known as  plaintext, 
or cleartext. Alice encrypts her plaintext message using an encryption algorithm 
so that the encrypted message, known as ciphertext, looks unintelligible to any 
intruder. Interestingly, in many modern cryptographic systems, including those used 
in the Internet, the encryption technique itself is known—published, standardized, 
and available to everyone (e.g., [RFC 1321; RFC 3447; RFC 2420; NIST 2001]), 
even a potential intruder! Clearly, if everyone knows the method for encoding data, 
then there must be some secret information that prevents an intruder from decrypting 
the transmitted data. This is where keys come in.

In Figure 8.2, Alice provides a key, KA, a string of numbers or characters, as 
input to the encryption algorithm. The encryption algorithm takes the key and the 
plaintext message, m, as input and produces ciphertext as output. The notation 
KA(m) refers to the ciphertext form (encrypted using the key KA) of the plaintext 
message, m. The actual encryption algorithm that uses key KA will be evident from 
the context. Similarly, Bob will provide a key, KB, to the decryption algorithm 

Figure 8.2 ♦ Cryptographic components
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that takes the ciphertext and Bob’s key as input and produces the original plain-
text as output. That is, if Bob receives an encrypted message KA(m), he decrypts it 
by computing KB(KA(m)) = m. In symmetric key systems, Alice’s and Bob’s keys 
are identical and are secret. In public key systems, a pair of keys is used. One of 
the keys is known to both Bob and Alice (indeed, it is known to the whole world).  
The other key is known only by either Bob or Alice (but not both). In the following 
two subsections, we consider symmetric key and public key systems in more detail.

8.2.1 Symmetric Key Cryptography
All cryptographic algorithms involve substituting one thing for another, for exam-
ple, taking a piece of plaintext and then computing and substituting the appropriate 
ciphertext to create the encrypted message. Before studying a modern key-based 
cryptographic system, let us first get our feet wet by studying a very old, very simple 
symmetric key algorithm attributed to Julius Caesar, known as the Caesar cipher  
(a cipher is a method for encrypting data).

For English text, the Caesar cipher would work by taking each letter in the plain-
text message and substituting the letter that is k letters later (allowing wraparound; 
that is, having the letter z followed by the letter a) in the alphabet. For example, if 
k = 3, then the letter a in plaintext becomes d in ciphertext; b in plaintext becomes 
e in ciphertext, and so on. Here, the value of k serves as the key. As an example, the 
plaintext message “bob, i love you. Alice” becomes “ere, l oryh 
brx. dolfh” in ciphertext. While the ciphertext does indeed look like gibberish, 
it wouldn’t take long to break the code if you knew that the Caesar cipher was being 
used, as there are only 25 possible key values.

An improvement on the Caesar cipher is the monoalphabetic cipher, which also 
substitutes one letter of the alphabet with another letter of the alphabet.  However, 
rather than substituting according to a regular pattern (e.g., substitution with an offset 
of k for all letters), any letter can be substituted for any other letter, as long as each 
letter has a unique substitute letter, and vice versa. The substitution rule in Figure 8.3 
shows one possible rule for encoding plaintext.

The plaintext message “bob, i love you. Alice” becomes “nkn, s 
gktc wky. Mgsbc.” Thus, as in the case of the Caesar cipher, this looks like 
gibberish. A monoalphabetic cipher would also appear to be better than the Caesar 
cipher in that there are 26! (on the order of 1026) possible pairings of letters rather 
than 25 possible pairings. A brute-force approach of trying all 1026 possible pairings 

Figure 8.3 ♦ A monoalphabetic cipher

Plaintext letter: a b c d e f g h i j k l m n o p q r s t u v w x y z
Ciphertext letter: m n b v c x z a s d f g h j k l p o i u y t r e w q
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would require far too much work to be a feasible way of breaking the encryption 
algorithm and decoding the message. However, by statistical analysis of the plain-
text language, for example, knowing that the letters e and t are the most frequently 
occurring letters in typical English text (accounting for 13 percent and 9 percent of 
letter occurrences), and knowing that particular two-and three-letter occurrences of 
letters appear quite often together (for example, “in,” “it,” “the,” “ion,” “ing,” and so 
forth) make it relatively easy to break this code. If the intruder has some knowledge 
about the possible contents of the message, then it is even easier to break the code. 
For example, if Trudy the intruder is Bob’s wife and suspects Bob of having an 
affair with Alice, then she might suspect that the names “bob” and “alice” appear in 
the text. If Trudy knew for certain that those two names appeared in the ciphertext 
and had a copy of the example ciphertext message above, then she could immedi-
ately determine seven of the 26 letter pairings, requiring 109 fewer possibilities to 
be checked by a brute-force method. Indeed, if Trudy suspected Bob of having an 
affair, she might well expect to find some other choice words in the message as well.

When considering how easy it might be for Trudy to break Bob and Alice’s 
encryption scheme, one can distinguish three different scenarios, depending on what 
information the intruder has.

• Ciphertext-only attack. In some cases, the intruder may have access only to the 
intercepted ciphertext, with no certain information about the contents of the plain-
text message. We have seen how statistical analysis can help in a ciphertext-only 
attack on an encryption scheme.

• Known-plaintext attack. We saw above that if Trudy somehow knew for sure 
that “bob” and “alice” appeared in the ciphertext message, then she could have 
determined the (plaintext, ciphertext) pairings for the letters a, l, i, c, e, b, and o. 
Trudy might also have been fortunate enough to have recorded all of the cipher-
text transmissions and then found Bob’s own decrypted version of one of the 
transmissions scribbled on a piece of paper. When an intruder knows some of the 
(plaintext, ciphertext) pairings, we refer to this as a known-plaintext attack on 
the encryption scheme.

• Chosen-plaintext attack. In a chosen-plaintext attack, the intruder is able to 
choose the plaintext message and obtain its corresponding ciphertext form. For 
the simple encryption algorithms we’ve seen so far, if Trudy could get Alice to 
send the message, “The quick brown fox jumps over the lazy 
dog,” she could completely break the encryption scheme. We’ll see shortly that 
for more sophisticated encryption techniques, a chosen-plaintext attack does not 
necessarily mean that the encryption technique can be broken.

Five hundred years ago, techniques improving on monoalphabetic encryp-
tion, known as polyalphabetic encryption, were invented. The idea behind 
 polyalphabetic encryption is to use multiple monoalphabetic ciphers, with a specific 
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 monoalphabetic cipher to encode a letter in a specific position in the plaintext mes-
sage. Thus, the same letter, appearing in different positions in the plaintext message, 
might be encoded differently. An example of a polyalphabetic encryption scheme is 
shown in Figure 8.4. It has two Caesar ciphers (with k = 5 and k = 19), shown as 
rows. We might choose to use these two Caesar ciphers, C1 and C2, in the repeating 
pattern C1, C2, C2, C1, C2. That is, the first letter of plaintext is to be encoded using 
C1, the second and third using C2, the fourth using C1, and the fifth using C2. The 
pattern then repeats, with the sixth letter being encoded using C1, the seventh with 
C2, and so on. The plaintext message “bob, i love you.” is thus encrypted 
“ghu, n etox dhz.” Note that the first b in the plaintext message is encrypted 
using C1, while the second b is encrypted using C2. In this example, the encryption 
and decryption “key” is the knowledge of the two Caesar keys (k = 5, k = 19) and 
the pattern C1, C2, C2, C1, C2.

Block Ciphers

Let us now move forward to modern times and examine how symmetric key encryp-
tion is done today. We focus on block ciphers, which are used in many secure Internet 
protocols, including PGP (for secure e-mail), TLS (for securing TCP connections), 
and IPsec (for securing the network-layer transport).

In a block cipher, the message to be encrypted is processed in blocks of k bits. 
For example, if k = 64, then the message is broken into 64-bit blocks, and each block 
is encrypted independently. To encode a block, the cipher uses a one-to-one map-
ping to map the k-bit block of cleartext to a k-bit block of ciphertext. Let’s look at an 
example. Suppose that k = 3, so that the block cipher maps 3-bit inputs  (cleartext) 
to 3-bit outputs (ciphertext). One possible mapping is given in Table 8.1. Notice that 
this is a one-to-one mapping; that is, there is a different output for each input. This 
block cipher breaks the message up into 3-bit blocks and encrypts each block accord-
ing to the above mapping. You should verify that the message 010110001111 gets 
encrypted into 101000111001.

Continuing with this 3-bit block example, note that the mapping in Table 8.1 
is just one mapping of many possible mappings. How many possible mappings are 
there? To answer this question, observe that a mapping is nothing more than a permu-
tation of all the possible inputs. There are 23 (=  8) possible inputs (listed under the 

Figure 8.4 ♦ A polyalphabetic cipher using two Caesar ciphers

Plaintext letter: a b c d e f g h i j k l m n o p q r s t u v w x y z
C1(k = 5): 
C2(k = 19): 

f g h i j k l m n o p q r s t u v w x y z a b c d e
t u v w x y z a b c d e f g h i j k l m n o p q r s
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input columns). These eight inputs can be permuted in 8! = 40,320 different ways. 
Since each of these permutations specifies a mapping, there are 40,320 possible map-
pings. We can view each of these mappings as a key—if Alice and Bob both know 
the mapping (the key), they can encrypt and decrypt the messages sent between them.

The brute-force attack for this cipher is to try to decrypt ciphtertext by using all 
mappings. With only 40,320 mappings (when k = 3), this can quickly be accom-
plished on a desktop PC. To thwart brute-force attacks, block ciphers typically use 
much larger blocks, consisting of k = 64 bits or even larger. Note that the number of 
possible mappings for a general k-block cipher is 2k!, which is astronomical for even 
moderate values of k (such as k = 64).

Although full-table block ciphers, as just described, with moderate values of k 
can produce robust symmetric key encryption schemes, they are unfortunately dif-
ficult to implement. For k = 64 and for a given mapping, Alice and Bob would need to 
maintain a table with 264 input values, which is an infeasible task. Moreover, if Alice 
and Bob were to change keys, they would have to each regenerate the table. Thus, 
a full-table block cipher, providing predetermined mappings between all inputs and 
outputs (as in the example above), is simply out of the question.

Instead, block ciphers typically use functions that simulate randomly permuted 
tables. An example (adapted from [Kaufman 2002]) of such a function for k = 64 bits  
is shown in Figure 8.5. The function first breaks a 64-bit block into 8 chunks, with 
each chunk consisting of 8 bits. Each 8-bit chunk is processed by an 8-bit to 8-bit  
table, which is of manageable size. For example, the first chunk is processed by the 
table denoted by T1. Next, the 8 output chunks are reassembled into a 64-bit block. 
The positions of the 64 bits in the block are then scrambled (permuted) to produce a 
64-bit output. This output is fed back to the 64-bit input, where another cycle begins. 
After n such cycles, the function provides a 64-bit block of ciphertext. The purpose 
of the rounds is to make each input bit affect most (if not all) of the final output bits. 
(If only one round were used, a given input bit would affect only 8 of the 64 output 
bits.) The key for this block cipher algorithm would be the eight permutation tables 
(assuming the scramble function is publicly known).

Today there are a number of popular block ciphers, including DES (standing 
for Data Encryption Standard), 3DES, and AES (standing for Advanced Encryption 

Table 8.1 ♦ A specific 3-bit block cipher

input output input output

000 110 100 011
001 111 101 010
010 101 110 000
011 100 111 001
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Standard). Each of these standards uses functions, rather than predetermined tables, 
along the lines of Figure 8.5 (albeit more complicated and specific to each cipher). 
Each of these algorithms also uses a string of bits for a key. For example, DES uses 
64-bit blocks with a 56-bit key. AES uses 128-bit blocks and can operate with keys 
that are 128, 192, and 256 bits long. An algorithm’s key determines the specific 
“mini-table” mappings and permutations within the algorithm’s internals. The brute-
force attack for each of these ciphers is to cycle through all the keys, applying the 
decryption algorithm with each key. Observe that with a key length of n, there are 2n 
possible keys. NIST [NIST 2001] estimates that a machine that could crack 56-bit 
DES in one second (that is, try all 256 keys in one second) would take approximately 149 
trillion years to crack a 128-bit AES key.

Cipher-Block Chaining

In computer networking applications, we typically need to encrypt long messages  
or long streams of data. If we apply a block cipher as described by simply chopping 
up the message into k-bit blocks and independently encrypting each block, a subtle 
but important problem occurs. To see this, observe that two or more of the cleartext 
blocks can be identical. For example, the cleartext in two or more blocks could be 
“HTTP/1.1”. For these identical blocks, a block cipher would, of course, produce 
the same ciphertext. An attacker could potentially guess the cleartext when it sees 
identical ciphertext blocks and may even be able to decrypt the entire message by 
identifying identical ciphtertext blocks and using knowledge about the underlying 
protocol structure [Kaufman 2002].

Figure 8.5 ♦ An example of a block cipher
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To address this problem, we can mix some randomness into the ciphertext so 
that identical plaintext blocks produce different ciphertext blocks. To explain this 
idea, let m(i) denote the ith plaintext block, c(i) denote the ith ciphertext block, and 
a ⊕ b denote the exclusive-or (XOR) of two bit strings, a and b. (Recall that the  
0 ⊕ 0 = 1 ⊕ 1 = 0 and 0 ⊕ 1 = 1 ⊕ 0 = 1, and the XOR of two bit strings is  
done on a bit-by-bit basis. So, for example, 10101010 ⊕ 11110000 = 01011010.) 
Also, denote the block-cipher encryption algorithm with key S as KS. The basic idea 
is as follows. The sender creates a random k-bit number r(i) for the ith block and 
calculates c(i) = KS(m(i) ⊕ r(i )). Note that a new k-bit random number is chosen for 
each block. The sender then sends c(1), r(1), c(2), r(2), c(3), r(3), and so on. Since the 
receiver receives c(i) and r(i), it can recover each block of the plaintext by computing 
m(i) = KS(c(i)) ⊕ r(i ). It is important to note that, although r(i) is sent in the clear 
and thus can be sniffed by Trudy, she cannot obtain the plaintext m(i), since she does 
not know the key KS. Also note that if two plaintext blocks m(i) and m(j) are the same, 
the corresponding ciphertext blocks c(i) and c(j) will be different (as long as the 
random numbers r(i) and r(j) are different, which occurs with very high probability).

As an example, consider the 3-bit block cipher in Table 8.1. Suppose the plain-
text is 010010010. If Alice encrypts this directly, without including the randomness, 
the resulting ciphertext becomes 101101101. If Trudy sniffs this ciphertext, because 
each of the three cipher blocks is the same, she can correctly surmise that each of the 
three plaintext blocks are the same. Now suppose instead Alice generates the ran-
dom blocks r(1) = 001, r(2) = 111, and r(3) = 100 and uses the above technique 
to generate the ciphertext c(1) = 100, c(2) = 010, and c(3) = 000. Note that the 
three ciphertext blocks are different even though the plaintext blocks are the same. 
Alice then sends c(1), r(1), c(2), and r(2). You should verify that Bob can obtain the 
original plaintext using the shared key KS.

The astute reader will note that introducing randomness solves one problem but 
creates another: namely, Alice must transmit twice as many bits as before. Indeed, 
for each cipher bit, she must now also send a random bit, doubling the required band-
width. In order to have our cake and eat it too, block ciphers typically use a technique 
called Cipher Block Chaining (CBC). The basic idea is to send only one random 
value along with the very first message, and then have the sender and receiver use 
the computed coded blocks in place of the subsequent random number. Specifically, 
CBC operates as follows:

 1. Before encrypting the message (or the stream of data), the sender generates a 
random k-bit string, called the Initialization Vector (IV). Denote this initial-
ization vector by c(0). The sender sends the IV to the receiver in cleartext.

 2. For the first block, the sender calculates m(1) ⊕ c(0), that is, calculates the exclu-
sive-or of the first block of cleartext with the IV. It then runs the result through 
the block-cipher algorithm to get the corresponding ciphertext block; that is, 
c(1) = KS(m(1) ⊕ c(0)). The sender sends the encrypted block c(1) to the receiver.

 3. For the ith block, the sender generates the ith ciphertext block from c(i) =  
KS(m(i) ⊕ c(i - 1)).
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Let’s now examine some of the consequences of this approach. First, the receiver 
will still be able to recover the original message. Indeed, when the receiver receives 
c(i), it decrypts it with KS to obtain s(i) = m(i) ⊕ c(i - 1); since the receiver also 
knows c(i - 1), it then obtains the cleartext block from m(i) = s(i) ⊕ c(i - 1). 
Second, even if two cleartext blocks are identical, the corresponding ciphtertexts 
(almost always) will be different. Third, although the sender sends the IV in the 
clear, an intruder will still not be able to decrypt the ciphertext blocks, since the 
intruder does not know the secret key, S. Finally, the sender only sends one overhead 
block (the IV), thereby negligibly increasing the bandwidth usage for long messages  
(consisting of hundreds of blocks).

As an example, let’s now determine the ciphertext for the 3-bit block cipher in 
Table 8.1 with plaintext 010010010 and IV =  c(0) =  001. The sender first uses the  
IV to calculate c(1) = KS(m(1) ⊕ c(0)) = 100. The sender then calculates c(2) =   
KS(m(2) ⊕ c(1)) = KS(010 ⊕ 100) = 000, and c(3) = KS(m(3) ⊕ c(2)) = KS(010 ⊕  
000) = 101. The reader should verify that the receiver, knowing the IV and KS can 
recover the original plaintext.

CBC has an important consequence when designing secure network proto-
cols: we’ll need to provide a mechanism within the protocol to distribute the IV 
from sender to receiver. We’ll see how this is done for several protocols later in 
this chapter.

8.2.2 Public Key Encryption
For more than 2,000 years (since the time of the Caesar cipher and up to the 1970s), 
encrypted communication required that the two communicating parties share a com-
mon secret—the symmetric key used for encryption and decryption. One difficulty 
with this approach is that the two parties must somehow agree on the shared key; but 
to do so in itself requires secure communication. Perhaps the parties could first meet 
and agree on the key in person (for example, two of Caesar’s centurions might meet 
at the Roman baths) and thereafter communicate with encryption. In a networked 
world, however, communicating parties may never meet and may never converse 
except over the network. 

Is it possible for two parties to communicate with encryption without having 
a shared secret key that is known in advance? In 1976, Diffie and Hellman [Diffie 
1976] demonstrated an algorithm (known now as Diffie-Hellman Key Exchange) 
to do just that—a radically different and marvelously elegant approach toward 
secure communication that has led to the development of today’s public key cryp-
tography systems. We’ll see shortly that public key cryptography systems also 
have several wonderful properties that make them useful not only for encryption, 
but for authentication and digital signatures as well. Interestingly, it has come to light 
that ideas similar to those in [Diffie 1976] and [RSA 1978] had been independently 
developed in the early 1970s in a series of secret reports by researchers at the 
Communications-Electronics Security Group in the United  Kingdom [Ellis 1987]. 
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As is often the case, great ideas can spring up independently in many places; for-
tunately, public key advances took place not only in private, but also in the public 
view, as well.

The use of public key cryptography is conceptually quite simple. Suppose Alice 
wants to communicate with Bob. As shown in Figure 8.6, rather than Bob and Alice 
sharing a single secret key (as in the case of symmetric key systems), Bob (the recipi-
ent of Alice’s messages) instead has two keys—a public key that is available to 
everyone in the world (including Trudy the intruder) and a private key that is known 
only to Bob. We will use the notation K+

B and K-
B to refer to Bob’s public and pri-

vate keys, respectively. In order to communicate with Bob, Alice first fetches Bob’s 
public key. Alice then encrypts her message, m, to Bob using Bob’s public key and 
a known (for example, standardized) encryption algorithm; that is, Alice computes 
K+

B(m). Bob receives Alice’s encrypted message and uses his private key and a known 
(for example, standardized) decryption algorithm to decrypt Alice’s encrypted mes-
sage. That is, Bob computes K-

B(K+
B(m)). We will see below that there are encryption/

decryption algorithms and techniques for choosing public and private keys such that 
K-

B(K+
B(m)) = m; that is, applying Bob’s public key, K+

B, to a message, m (to get 
K+

B(m)), and then applying Bob’s private key, K-
B, to the encrypted version of m (that 

is, computing K-
B(K+

B(m))) gives back m. This is a remarkable result! In this manner, 
Alice can use Bob’s publicly available key to send a secret message to Bob without 
either of them having to distribute any secret keys! We will see shortly that we can 
interchange the public key and private key encryption and get the same remarkable 
result––that is, K-

B (B +(m)) = K+
B (K-

B(m)) = m.
Although public-key cryptography is appealing, one concern immediately 

springs to mind. Since Bob’s encryption key is public, anyone can send an encrypted 

Figure 8.6 ♦ Public key cryptography
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message to Bob, including Alice or someone pretending to be Alice. In the case of 
a single shared secret key, the fact that the sender knows the secret key implicitly 
identifies the sender to the receiver. In the case of public key cryptography, however, 
this is no longer the case since anyone can send an encrypted message to Bob using 
Bob’s publicly available key. A digital signature, a topic we will study in Section 8.3, 
is needed to bind a sender to a message.

RSA

While there may be many algorithms that address these concerns, the RSA  algorithm 
(named after its founders, Ron Rivest, Adi Shamir, and Leonard Adleman) has 
become almost synonymous with public key cryptography. Let’s first see how RSA 
works and then examine why it works.

RSA makes extensive use of arithmetic operations using modulo-n arithmetic. 
So let’s briefly review modular arithmetic. Recall that x mod n simply means the 
remainder of x when divided by n; so, for example, 19 mod 5 = 4. In modular arith-
metic, one performs the usual operations of addition, multiplication, and exponen-
tiation. However, the result of each operation is replaced by the integer remainder 
that is left when the result is divided by n. Adding and multiplying with modular 
arithmetic is facilitated with the following handy facts:

[(a mod n) +  (b mod n)] mod n =  (a +  b) mod n

[(a mod n) -  (b mod n)] mod n =  (a -  b) mod n

[(a mod n) # (b mod n)] mod n =  (a # b) mod n

It follows from the third fact that (a mod n)d mod n = ad mod n, which is an identity 
that we will soon find very useful.

Now suppose that Alice wants to send to Bob an RSA-encrypted message, as 
shown in Figure 8.6. In our discussion of RSA, let’s always keep in mind that a mes-
sage is nothing but a bit pattern, and every bit pattern can be uniquely represented by 
an integer number (along with the length of the bit pattern). For example, suppose 
a message is the bit pattern 1001; this message can be represented by the decimal 
integer 9. Thus, when encrypting a message with RSA, it is equivalent to encrypting 
the unique integer number that represents the message.

There are two interrelated components of RSA:

• The choice of the public key and the private key

• The encryption and decryption algorithm

To generate the public and private RSA keys, Bob performs the following steps:

 1. Choose two large prime numbers, p and q. How large should p and q be? The 
larger the values, the more difficult it is to break RSA, but the longer it takes 
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to perform the encoding and decoding. RSA Laboratories recommends that 
the product of p and q be on the order of 1,024 bits. For a discussion of how to 
find large prime numbers, see [Caldwell 2020].

 2. Compute n = pq and z =  (p -  1)(q -  1).
 3. Choose a number, e, less than n, that has no common factors (other than 1) 

with z. (In this case, e and z are said to be relatively prime.) The letter e is used 
since this value will be used in encryption.

 4. Find a number, d, such that ed -  1 is exactly divisible (that is, with no  remainder) 
by z. The letter d is used because this value will be used in decryption. Put another 
way, given e, we choose d such that

ed mod z =  1

 5. The public key that Bob makes available to the world, K+
B, is the pair of numbers 

(n, e); his private key, K-
B, is the pair of numbers (n, d).

The encryption by Alice and the decryption by Bob are done as follows:

• Suppose Alice wants to send Bob a bit pattern represented by the integer  number 
m (with m 6 n). To encode, Alice performs the exponentiation me, and then 
computes the integer remainder when me is divided by n. In other words, the 
encrypted value, c, of Alice’s plaintext message, m, is

c = me mod n

 The bit pattern corresponding to this ciphertext c is sent to Bob.

• To decrypt the received ciphertext message, c, Bob computes

m = cd mod n

which requires the use of his private key (n, d).
As a simple example of RSA, suppose Bob chooses p =  5 and q =  7.  (Admittedly, 

these values are far too small to be secure.) Then n =  35 and z =  24. Bob chooses  
e =  5, since 5 and 24 have no common factors. Finally, Bob chooses d =  29, since 
5 # 29 - 1 (that is, ed -  1) is exactly divisible by 24. Bob makes the two values, n =  35  
and e =  5, public and keeps the value d =  29 secret. Observing these two public 
values, suppose Alice now wants to send the letters l, o, v, and e to Bob. Interpreting 
each letter as a number between 1 and 26 (with a being 1, and z being 26), Alice and 
Bob perform the encryption and decryption shown in Tables 8.2 and 8.3, respectively. 
Note that in this example, we consider each of the four letters as a distinct message. 
A more realistic example would be to convert the four letters into their 8-bit ASCII 
representations and then encrypt the integer corresponding to the resulting 32-bit bit 
pattern. (Such a realistic example generates numbers that are much too long to print 
in a textbook!)
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Given that the “toy” example in Tables 8.2 and 8.3 has already produced some 
extremely large numbers, and given that we saw earlier that p and q should each be 
several hundred bits long, several practical issues regarding RSA come to mind. 
How does one choose large prime numbers? How does one then choose e and d? 
How does one perform exponentiation with large numbers? A discussion of these 
important issues is beyond the scope of this book; see [Kaufman 2002] and the refer-
ences therein for details.

Session Keys

We note here that the exponentiation required by RSA is a rather time-consuming 
process. As a result, RSA is often used in practice in combination with symmet-
ric key cryptography. For example, if Alice wants to send Bob a large amount of 
encrypted data, she could do the following. First Alice chooses a key that will 
be used to encode the data itself; this key is referred to as a session key, and is 
denoted by KS. Alice must inform Bob of the session key, since this is the shared 
 symmetric key they will use with a symmetric key cipher (e.g., with DES or AES). 
Alice encrypts the session key using Bob’s public key, that is, computes c = (KS)

e 
mod n. Bob receives the RSA-encrypted session key, c, and decrypts it to obtain 

Table 8.2 ♦ Alice’s RSA encryption, e =  5, n =  35

Plaintext Letter m: numeric representation me Ciphertext c =  me mod n

l 12 248832 17
o 15 759375 15
v 22 5153632 22
e 5 3125 10

Table 8.3 ♦ Bob’s RSA decryption, d =  29, n =  35

Ciphertext c cd m = cd mod n Plaintext Letter

17 4819685721067509150915091411825223071697 12 l
15 127834039403948858939111232757568359375 15 o
22 851643319086537701956194499721106030592 22 v
10 1000000000000000000000000000000 5 e
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the session key, KS. Bob now knows the session key that Alice will use for her 
encrypted data transfer.

Why Does RSA Work?

RSA encryption/decryption appears rather magical. Why should it be that by apply-
ing the encryption algorithm and then the decryption algorithm, one recovers the 
original message? In order to understand why RSA works, again denote n =  pq, 
where p and q are the large prime numbers used in the RSA algorithm.

Recall that, under RSA encryption, a message (uniquely represented by an  integer), 
m, is exponentiated to the power e using modulo-n arithmetic, that is,

c =  me mod n

Decryption is performed by raising this value to the power d, again using modulo-n 
arithmetic. The result of an encryption step followed by a decryption step is thus  
(me mod n)d mod n. Let’s now see what we can say about this quantity. As mentioned 
earlier, one important property of modulo arithmetic is (a mod n)d mod n =  ad mod n 
for any values a, n, and d. Thus, using a =  me in this property, we have

(me mod n)d mod n = med mod n

It therefore remains to show that med mod n =  m. Although we’re trying to 
remove some of the magic about why RSA works, to establish this, we’ll need to use a 
rather magical result from number theory here. Specifically, we’ll need the result that 
says if p and q are prime, n =  pq, and z =  (p -  1)(q -  1), then xy mod n is the same as 
x(y mod z) mod n [Kaufman 2002]. Applying this result with x =  m and y =  ed we have

med mod n = m(ed mod z) mod n

But remember that we have chosen e and d such that ed mod z = 1. This gives us

med mod n = m1 mod n = m

which is exactly the result we are looking for! By first exponentiating to the power of 
e (that is, encrypting) and then exponentiating to the power of d (that is,  decrypting), 
we obtain the original value, m. Even more wonderful is the fact that if we first 
exponentiate to the power of d and then exponentiate to the power of e—that is, we 
reverse the order of encryption and decryption, performing the decryption operation 
first and then applying the encryption operation—we also obtain the original value, 
m. This wonderful result follows immediately from the modular arithmetic:

(md mod n)e mod n = mde mod n = med mod n = (me mod n)d mod n
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The security of RSA relies on the fact that there are no known algorithms for 
quickly factoring a number, in this case the public value n, into the primes p and q. If 
one knew p and q, then given the public value e, one could easily compute the secret 
key, d. On the other hand, it is not known whether or not there exist fast algorithms for 
factoring a number, and in this sense, the security of RSA is not guaranteed. With recent 
advances in quantum computing, and published fast factoring algorithms for quantum 
computers, there are concerns that RSA may not be secure forever [MIT TR 2019]. But 
the practical realization of these algorithms still appears to be far in the future.

Another popular public-key encryption algorithm is the Diffie-Hellman algo-
rithm, which we will briefly explore in the homework problems. Diffie-Hellman 
is not as versatile as RSA in that it cannot be used to encrypt messages of arbitrary 
length; it can be used, however, to establish a symmetric session key, which is in turn 
used to encrypt messages.

8.3 Message Integrity and Digital Signatures

In the previous section, we saw how encryption can be used to provide confidenti-
ality to two communicating entities. In this section, we turn to the equally impor-
tant cryptography topic of providing message integrity (also known as message 
 authentication). Along with message integrity, we will discuss two related topics in 
this section: digital signatures and end-point authentication.

We define the message integrity problem using, once again, Alice and Bob. 
Suppose Bob receives a message (which may be encrypted or may be in plaintext) 
and he believes this message was sent by Alice. To authenticate this message, Bob 
needs to verify:

 1. The message indeed originated from Alice.
 2. The message was not tampered with on its way to Bob.

We’ll see in Sections 8.4 through 8.7 that this problem of message integrity is a criti-
cal concern in just about all secure networking protocols.

As a specific example, consider a computer network using a link-state routing 
algorithm (such as OSPF) for determining routes between each pair of routers in the 
network (see Chapter 5). In a link-state algorithm, each router needs to broadcast a 
link-state message to all other routers in the network. A router’s link-state message 
includes a list of its directly connected neighbors and the direct costs to these neigh-
bors. Once a router receives link-state messages from all of the other routers, it can 
create a complete map of the network, run its least-cost routing algorithm, and con-
figure its forwarding table. One relatively easy attack on the routing algorithm is for 
Trudy to distribute bogus link-state messages with incorrect link-state information. 
Thus, the need for message integrity—when router B receives a link-state message 
from router A, router B should verify that router A actually created the message and, 
further, that no one tampered with the message in transit.
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In this section, we describe a popular message integrity technique that is used 
by many secure networking protocols. But before doing so, we need to cover another 
important topic in cryptography—cryptographic hash functions.

8.3.1 Cryptographic Hash Functions
As shown in Figure 8.7, a hash function takes an input, m, and computes a fixed-size 
string H(m) known as a hash. The Internet checksum (Chapter 3) and CRCs (Chapter 6) 
meet this definition. A cryptographic hash function is required to have the follow-
ing additional property:

• It is computationally infeasible to find any two different messages x and y such 
that H(x) =  H(y).

Informally, this property means that it is computationally infeasible for an 
intruder to substitute one message for another message that is protected by the hash 
function. That is, if (m, H(m)) are the message and the hash of the message created 
by the sender, then an intruder cannot forge the contents of another message, y, that 
has the same hash value as the original message.

Let’s convince ourselves that a simple checksum, such as the Internet checksum, 
would make a poor cryptographic hash function. Rather than performing 1s comple-
ment arithmetic (as in the Internet checksum), let us compute a checksum by treating 
each character as a byte and adding the bytes together using 4-byte chunks at a time. 
Suppose Bob owes Alice $100.99 and sends an IOU to Alice consisting of the text 
string “IOU100.99BOB.” The ASCII representation (in hexadecimal notation) for 
these letters is 49,4F,55,31,30,30,2E,39,39,42,4F,42.

Figure 8.8 (top) shows that the 4-byte checksum for this message is B2 
C1 D2 AC. A slightly different message (and a much more costly one for Bob) 

Figure 8.7 ♦ Hash functions

Many-to-one
hash function

Long message: m

Dear Alice:
This is a VERY long letter
since there is so much to
say.....
..........
..........

Bob

Fixed-length
hash: H(m)
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gghPPdogm;lcvkb
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is shown in the bottom half of Figure 8.8. The messages “IOU100.99BOB” and 
“IOU900.19BOB” have the same checksum. Thus, this simple checksum algorithm 
violates the requirement above. Given the original data, it is simple to find another 
set of data with the same checksum. Clearly, for security purposes, we are going to 
need a more powerful hash function than a checksum.

The MD5 hash algorithm of Ron Rivest [RFC 1321] is in wide use today. 
It computes a 128-bit hash in a four-step process consisting of a padding step 
(adding a one followed by enough zeros so that the length of the message satisfies  
certain conditions), an append step (appending a 64-bit representation of the mes-
sage length before padding), an initialization of an accumulator, and a final loop-
ing step in which the message’s 16-word blocks are processed (mangled) in four 
rounds. For a description of MD5 (including a C source code implementation) see 
[RFC 1321].

The second major hash algorithm in use today is the Secure Hash Algorithm 
(SHA-1) [FIPS 1995]. This algorithm is based on principles similar to those used 
in the design of MD4 [RFC 1320], the predecessor to MD5. SHA-1, a US federal 
standard, is required for use whenever a cryptographic hash algorithm is needed for 
federal applications. It produces a 160-bit message digest. The longer output length 
makes SHA-1 more secure.

8.3.2 Message Authentication Code
Let’s now return to the problem of message integrity. Now that we understand hash 
functions, let’s take a first stab at how we might perform message integrity:

Figure 8.8 ♦  Initial message and fraudulent message have the same 
 checksum!

Message
I O U 1
0 0 . 9
9 B O B

ASCII
Representation

49 4F 55 31
30 30 2E 39
39 42 4F 42

B2 C1 D2 AC Checksum

Message
I O U 9
0 0 . 1
9 B O B

ASCII
Representation

49 4F 55 39
30 30 2E 31
39 42 4F 42

B2 C1 D2 AC Checksum
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 1. Alice creates message m and calculates the hash H(m) (for example, with SHA-1).
 2. Alice then appends H(m) to the message m, creating an extended message  

(m, H(m)), and sends the extended message to Bob.
 3. Bob receives an extended message (m, h) and calculates H(m). If H(m) =  h, 

Bob concludes that everything is fine.

This approach is obviously flawed. Trudy can create a bogus message m´ in which 
she says she is Alice, calculate H(m´), and send Bob (m´, H(m´)). When Bob receives 
the message, everything checks out in step 3, so Bob doesn’t suspect any funny 
 business.

To perform message integrity, in addition to using cryptographic hash functions, 
Alice and Bob will need a shared secret s. This shared secret, which is nothing more 
than a string of bits, is called the authentication key. Using this shared secret, mes-
sage integrity can be performed as follows:

 1. Alice creates message m, concatenates s with m to create m +  s, and calculates 
the hash H(m +  s) (for example, with SHA-1). H(m +  s) is called the message 
authentication code (MAC).

 2. Alice then appends the MAC to the message m, creating an extended message 
(m, H(m +  s)), and sends the extended message to Bob.

 3. Bob receives an extended message (m, h) and knowing s, calculates the MAC 
H(m +  s). If H(m +  s) =  h, Bob concludes that everything is fine.

A summary of the procedure is shown in Figure 8.9. Readers should note that the 
MAC here (standing for “message authentication code”) is not the same MAC used 
in link-layer protocols (standing for “medium access control”)!

One nice feature of a MAC is that it does not require an encryption algorithm. 
Indeed, in many applications, including the link-state routing algorithm described 
earlier, communicating entities are only concerned with message integrity and are 

Figure 8.9 ♦ Message authentication code (MAC)
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not concerned with message confidentiality. Using a MAC, the entities can authen-
ticate the messages they send to each other without having to integrate complex 
encryption algorithms into the integrity process.

As you might expect, a number of different standards for MACs have been pro-
posed over the years. The most popular standard today is HMAC, which can be used 
either with MD5 or SHA-1. HMAC actually runs data and the authentication key 
through the hash function twice [Kaufman 2002; RFC 2104].

There still remains an important issue. How do we distribute the shared authen-
tication key to the communicating entities? For example, in the link-state routing 
algorithm, we would somehow need to distribute the secret authentication key to 
each of the routers in the autonomous system. (Note that the routers can all use the 
same authentication key.) A network administrator could actually accomplish this by 
physically visiting each of the routers. Or, if the network administrator is a lazy guy, 
and if each router has its own public key, the network administrator could distribute 
the authentication key to any one of the routers by encrypting it with the router’s 
public key and then sending the encrypted key over the network to the router.

8.3.3 Digital Signatures
Think of the number of the times you’ve signed your name to a piece of paper 
 during the last week. You sign checks, credit card receipts, legal documents, and 
letters. Your signature attests to the fact that you (as opposed to someone else) have 
acknowledged and/or agreed with the document’s contents. In a digital world, one 
often wants to indicate the owner or creator of a document, or to signify one’s agree-
ment with a document’s content. A digital signature is a cryptographic technique 
for achieving these goals in a digital world.

Just as with handwritten signatures, digital signing should be done in a way that 
is verifiable and nonforgeable. That is, it must be possible to prove that a document 
signed by an individual was indeed signed by that individual (the signature must be 
verifiable) and that only that individual could have signed the document (the signa-
ture cannot be forged).

Let’s now consider how we might design a digital signature scheme. Observe that 
when Bob signs a message, Bob must put something on the message that is unique to 
him. Bob could consider attaching a MAC for the signature, where the MAC is created 
by appending his key (unique to him) to the message, and then taking the hash. But for 
Alice to verify the signature, she must also have a copy of the key, in which case the 
key would not be unique to Bob. Thus, MACs are not going to get the job done here.

Recall that with public-key cryptography, Bob has both a public and private key, 
with both of these keys being unique to Bob. Thus, public-key cryptography is an 
excellent candidate for providing digital signatures. Let us now examine how it is done.

Suppose that Bob wants to digitally sign a document, m. We can think of 
the document as a file or a message that Bob is going to sign and send. As shown 
in Figure 8.10, to sign this document, Bob simply uses his private key, K-

B, to compute 
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K-
B(m). At first, it might seem odd that Bob is using his private key (which, as we saw 

in Section 8.2, was used to decrypt a message that had been encrypted with his public 
key) to sign a document. But recall that encryption and decryption are nothing more 
than mathematical operations (exponentiation to the power of e or d in RSA; see Sec-
tion 8.2) and recall that Bob’s goal is not to scramble or obscure the contents of the 
document, but rather to sign the document in a manner that is verifiable and nonforge-
able. Bob’s digital signature of the document is K-

B(m).
Does the digital signature K-

B(m) meet our requirements of being verifiable and 
nonforgeable? Suppose Alice has m and K-

B(m). She wants to prove in court (being 
litigious) that Bob had indeed signed the document and was the only person who 
could have possibly signed the document. Alice takes Bob’s public key, K+

B, and 
applies it to the digital signature, K-

B(m), associated with the document, m. That is, 
she computes K+

B(K-
B(m)), and voilà, with a dramatic flurry, she produces m, which 

exactly matches the original document! Alice then argues that only Bob could have 
signed the document, for the following reasons:

• Whoever signed the message must have used the private key, K-
B, in computing 

the signature K-
B(m), such that K+

B(K-
B(m)) = m.

• The only person who could have known the private key, K-
B, is Bob. Recall from 

our discussion of RSA in Section 8.2 that knowing the public key, K+
B, is of no 

help in learning the private key, K-
B. Therefore, the only person who could know 

K-
B is the person who generated the pair of keys, (K+

B, K-
B), in the first place, Bob. 

(Note that this assumes, though, that Bob has not given K-
B to anyone, nor has 

anyone stolen K-
B from Bob.)

It is also important to note that if the original document, m, is ever modified to 
some alternate form, m´, the signature that Bob created for m will not be valid for m´, 

Figure 8.10 ♦ Creating a digital signature for a document
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since K+
B(K-

B(m)) does not equal m´. Thus, we see that digital signatures also provide 
message integrity, allowing the receiver to verify that the message was unaltered as 
well as the source of the message.

One concern with signing data by encryption is that encryption and decryption 
are computationally expensive. Given the overheads of encryption and decryption, 
signing data via complete encryption/decryption can be overkill. A more efficient 
approach is to introduce hash functions into the digital signature. Recall from 
 Section 8.3.2 that a hash algorithm takes a message, m, of arbitrary length and com-
putes a fixed-length “fingerprint” of the message, denoted by H(m). Using a hash 
function, Bob signs the hash of a message rather than the message itself, that is, 
Bob calculates K-

B(H(m)). Since H(m) is generally much smaller than the original 
message m, the computational effort required to create the digital signature is sub-
stantially reduced.

In the context of Bob sending a message to Alice, Figure 8.11 provides a sum-
mary of the operational procedure of creating a digital signature. Bob puts his origi-
nal long message through a hash function. He then digitally signs the resulting hash 
with his private key. The original message (in cleartext) along with the digitally 
signed message digest (henceforth referred to as the digital signature) is then sent  
to Alice. Figure 8.12 provides a summary of the operational procedure of the signature. 
Alice applies the sender’s public key to the message to obtain a hash result. Alice also 

Figure 8.11 ♦ Sending a digitally signed message
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applies the hash function to the cleartext message to obtain a second hash result. If the 
two hashes match, then Alice can be sure about the integrity and author of the message.

Before moving on, let’s briefly compare digital signatures with MACs, since 
they have parallels, but also have important subtle differences. Both digital signa-
tures and MACs start with a message (or a document). To create a MAC out of the 
message, we append an authentication key to the message, and then take the hash of 
the result. Note that neither public key nor symmetric key encryption is involved in 
creating the MAC. To create a digital signature, we first take the hash of the message 
and then encrypt the message with our private key (using public key cryptography). 
Thus, a digital signature is a “heavier” technique, since it requires an underlying 
Public Key Infrastructure (PKI) with certification authorities as described below. 
We’ll see in Section 8.4 that PGP—a popular secure e-mail system—uses digital 
signatures for message integrity. We’ve seen already that OSPF uses MACs for mes-
sage integrity. We’ll see in Sections 8.5 and 8.6 that MACs are also used for popular 
transport-layer and network-layer security protocols.
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Figure 8.12 ♦ Verifying a signed message
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Public Key Certification

An important application of digital signatures is public key certification, that is, 
certifying that a public key belongs to a specific entity. Public key certification is 
used in many popular secure networking protocols, including IPsec and TLS.

To gain insight into this problem, let’s consider an Internet-commerce version of 
the classic “pizza prank.” Alice is in the pizza delivery business and accepts orders 
over the Internet. Bob, a pizza lover, sends Alice a plaintext message that includes 
his home address and the type of pizza he wants. In this message, Bob also includes 
a digital signature (that is, a signed hash of the original plaintext message) to prove to 
Alice that he is the true source of the message. To verify the signature, Alice obtains 
Bob’s public key (perhaps from a public key server or from the e-mail message) 
and checks the digital signature. In this manner she makes sure that Bob, rather than 
some adolescent prankster, placed the order.

This all sounds fine until clever Trudy comes along. As shown in Figure 8.13, 
Trudy is indulging in a prank. She sends a message to Alice in which she says she is 
Bob, gives Bob’s home address, and orders a pizza. In this message she also includes 
her (Trudy’s) public key, although Alice naturally assumes it is Bob’s public key. 
Trudy also attaches a digital signature, which was created with her own (Trudy’s) 
private key. After receiving the message, Alice applies Trudy’s public key (thinking 
that it is Bob’s) to the digital signature and concludes that the plaintext message was 
indeed created by Bob. Bob will be very surprised when the delivery person brings a 
pizza with pepperoni and anchovies to his home!

We see from this example that for public key cryptography to be useful, you 
need to be able to verify that you have the actual public key of the entity (person, 
router, browser, and so on) with whom you want to communicate. For example, 
when Alice wants to communicate with Bob using public key cryptography, she 
needs to verify that the public key that is supposed to be Bob’s is indeed Bob’s.

Binding a public key to a particular entity is typically done by a Certification 
Authority (CA), whose job is to validate identities and issue certificates. A CA has 
the following roles:

 1. A CA verifies that an entity (a person, a router, and so on) is who it says it is. 
There are no mandated procedures for how certification is done. When dealing 
with a CA, one must trust the CA to have performed a suitably rigorous identity 
verification. For example, if Trudy were able to walk into the Fly-by-Night CA 
and simply announce “I am Alice” and receive certificates associated with the 
identity of Alice, then one shouldn’t put much faith in public keys certified by 
the Fly-by-Night CA. On the other hand, one might (or might not!) be more 
willing to trust a CA that is part of a federal or state program. You can trust the 
identity associated with a public key only to the extent to which you can trust a 
CA and its identity verification techniques. What a tangled web of trust we spin!

 2. Once the CA verifies the identity of the entity, the CA creates a certificate 
that binds the public key of the entity to the identity. The certificate contains 
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Figure 8.13 ♦ Trudy masquerades as Bob using public key cryptography
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the public key and globally unique identifying information about the owner of 
the public key (for example, a human name or an IP address). The certificate is 
digitally signed by the CA. These steps are shown in Figure 8.14.

Let us now see how certificates can be used to combat pizza-ordering prank-
sters, like Trudy, and other undesirables. When Bob places his order he also sends his 
CA-signed certificate. Alice uses the CA’s public key to check the validity of Bob’s 
certificate and extract Bob’s public key.

Both the International Telecommunication Union (ITU) and the IETF have 
developed standards for CAs. ITU X.509 [ITU 2005a] specifies an authentication 
service as well as a specific syntax for certificates. [RFC 1422] describes CA-
based key management for use with secure Internet e-mail. It is compatible with 
X.509 but goes beyond X.509 by establishing procedures and conventions for a 
key management architecture. Table 8.4 describes some of the important fields in 
a certificate.
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Table 8.4 ♦ Selected fields in an X.509 and RFC 1422 public key

Field Name Description

Version Version number of X.509 specification
Serial number CA-issued unique identifier for a certificate
Signature Specifies the algorithm used by CA to sign this certificate
Issuer name Identity of CA issuing this certificate, in distinguished name (DN) [RFC 4514] format
Validity period Start and end of period of validity for certificate
Subject name Identity of entity whose public key is associated with this certificate, in DN format
Subject public key The subject’s public key as well indication of the public key algorithm (and algorithm 

parameters) to be used with this key

8.4 End-Point Authentication

End-point authentication is the process of one entity proving its identity to another 
entity over a computer network, for example, a user proving its identity to an e-mail 
server. As humans, we authenticate each other in many ways: We recognize each 
 other’s faces when we meet, we recognize each other’s voices on the telephone, we are 
authenticated by the customs official who checks us against the picture on our passport.

Figure 8.14 ♦ Bob has his public key certified by the CA
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In this section, we consider how one party can authenticate another party when 
the two are communicating over a network. We focus here on authenticating a “live” 
party, at the point in time when communication is actually occurring. A concrete 
example is a user authenticating him or herself to an e-mail server. This is a subtly 
different problem from proving that a message received at some point in the past did 
indeed come from that claimed sender, as studied in Section 8.3.

When performing authentication over the network, the communicating parties 
cannot rely on biometric information, such as a visual appearance or a voiceprint. 
Indeed, we will see in our later case studies that it is often network elements such as 
routers and client/server processes that must authenticate each other. Here, authen-
tication must be done solely on the basis of messages and data exchanged as part of 
an authentication protocol. Typically, an authentication protocol would run before 
the two communicating parties run some other protocol (for example, a reliable data 
transfer protocol, a routing information exchange protocol, or an e-mail protocol). 
The authentication protocol first establishes the identities of the parties to each  other’s 
satisfaction; only after authentication do the parties get down to the work at hand.

As in the case of our development of a reliable data transfer (rdt) protocol in 
Chapter 3, we will find it instructive here to develop various versions of an authentica-
tion protocol, which we will call ap (authentication protocol), and poke holes in each 
version as we proceed. (If you enjoy this stepwise evolution of a design, you might also 
enjoy [Bryant 1988], which recounts a fictitious narrative between designers of an open- 
network authentication system, and their discovery of the many subtle issues involved.)

Let’s assume that Alice needs to authenticate herself to Bob.
Perhaps the simplest authentication protocol we can imagine is one where 

Alice simply sends a message to Bob saying she is Alice. This protocol is shown in 
Figure 8.15. The flaw here is obvious—there is no way for Bob actually to know that 
the person sending the message “I am Alice” is indeed Alice. For example, Trudy 
(the intruder) could just as well send such a message.

Figure 8.15 ♦ Protocol ap1.0 and a failure scenario
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Authentication Protocol ap2.0

If Alice has a well-known network address (e.g., an IP address) from which she 
always communicates, Bob could attempt to authenticate Alice by verifying that 
the source address on the IP datagram carrying the authentication message matches 
Alice’s well-known address. In this case, Alice would be authenticated. This might 
stop a very network-naive intruder from impersonating Alice, but it wouldn’t stop 
the determined student studying this book, or many others!

From our study of the network and data link layers, we know that it is not that 
hard (for example, if one had access to the operating system code and could build 
one’s own operating system kernel, as is the case with Linux and several other 
freely available operating systems) to create an IP datagram, put whatever IP source 
address we want (for example, Alice’s well-known IP address) into the IP datagram, 
and send the datagram over the link-layer protocol to the first-hop router. From then 
on, the incorrectly source-addressed datagram would be dutifully forwarded to Bob. 
This approach, shown in Figure 8.16, is a form of IP spoofing. IP spoofing can be 
avoided if Trudy’s first-hop router is configured to forward only datagrams con-
taining Trudy’s IP source address [RFC 2827]. However, this capability is not uni-
versally deployed or enforced. Bob would thus be foolish to assume that Trudy’s 
network manager (who might be Trudy herself) had configured Trudy’s first-hop 
router to forward only appropriately addressed datagrams.

Authentication Protocol ap3.0

One classic approach to authentication is to use a secret password. The password is 
a shared secret between the authenticator and the person being authenticated. Gmail, 
Facebook, telnet, FTP, and many other services use password authentication. In pro-
tocol ap3.0, Alice thus sends her secret password to Bob, as shown in Figure 8.17.

Figure 8.16 ♦ Protocol ap2.0 and a failure scenario
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Since passwords are so widely used, we might suspect that protocol ap3.0 is 
fairly secure. If so, we’d be wrong! The security flaw here is clear. If Trudy eaves-
drops on Alice’s communication, then she can learn Alice’s password. Lest you think 
this is unlikely, consider the fact that when you Telnet to another machine and log  
in, the login password is sent unencrypted to the Telnet server. Someone connected 
to the Telnet client or server’s LAN can possibly sniff (read and store) all packets 
transmitted on the LAN and thus steal the login password. In fact, this is a well-
known approach for stealing passwords (see, for example, [Jimenez 1997]). Such a 
threat is obviously very real, so ap3.0 clearly won’t do.

Authentication Protocol ap3.1

Our next idea for fixing ap3.0 is naturally to encrypt the password. By encrypting 
the password, we can prevent Trudy from learning Alice’s password. If we assume 
that Alice and Bob share a symmetric secret key, KA-B, then Alice can encrypt the 
password and send her identification message, “I am Alice,” and her encrypted 
password to Bob. Bob then decrypts the password and, assuming the password is cor-
rect, authenticates Alice. Bob feels comfortable in authenticating Alice since Alice 
not only knows the password, but also knows the shared secret key value needed to 
encrypt the password. Let’s call this protocol ap3.1.

While it is true that ap3.1 prevents Trudy from learning Alice’s password, the 
use of cryptography here does not solve the authentication problem. Bob is subject 

Figure 8.17 ♦ Protocol ap3.0 and a failure scenario
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to a playback attack: Trudy need only eavesdrop on Alice’s communication, record 
the encrypted version of the password, and play back the encrypted version of the 
password to Bob to pretend that she is Alice. The use of an encrypted password in 
ap3.1 doesn’t make the situation manifestly different from that of protocol ap3.0 in 
Figure 8.17.

Authentication Protocol ap4.0

The failure scenario in Figure 8.17 resulted from the fact that Bob could not distin-
guish between the original authentication of Alice and the later playback of Alice’s 
original authentication. That is, Bob could not tell if Alice was live (that is, was 
currently really on the other end of the connection) or whether the messages he was 
receiving were a recorded playback of a previous authentication of Alice. The very 
(very) observant reader will recall that the three-way TCP handshake protocol needed 
to address the same problem—the server side of a TCP connection did not want to 
accept a connection if the received SYN segment was an old copy (retransmission) 
of a SYN segment from an earlier connection. How did the TCP server side solve 
the problem of determining whether the client was really live? It chose an initial 
sequence number that had not been used in a very long time, sent that number to the 
client, and then waited for the client to respond with an ACK segment containing that 
number. We can adopt the same idea here for authentication purposes.

A nonce is a number that a protocol will use only once in a lifetime. That is, 
once a protocol uses a nonce, it will never use that number again. Our ap4.0 protocol 
uses a nonce as follows:

 1. Alice sends the message “I am Alice” to Bob.
 2. Bob chooses a nonce, R, and sends it to Alice.
 3. Alice encrypts the nonce using Alice and Bob’s symmetric secret key, KA-B, and 

sends the encrypted nonce, KA-B (R), back to Bob. As in protocol ap3.1, it is the 
fact that Alice knows KA-B and uses it to encrypt a value that lets Bob know that the 
message he receives was generated by Alice. The nonce is used to ensure that 
Alice is live.

 4. Bob decrypts the received message. If the decrypted nonce equals the nonce he 
sent Alice, then Alice is authenticated.

Protocol ap4.0 is illustrated in Figure 8.18. By using the once-in-a-lifetime 
value, R, and then checking the returned value, KA-B (R), Bob can be sure that Alice 
is both who she says she is (since she knows the secret key value needed to encrypt 
R) and live (since she has encrypted the nonce, R, that Bob just created).

The use of a nonce and symmetric key cryptography forms the basis of ap4.0. A 
natural question is whether we can use a nonce and public key cryptography (rather 
than symmetric key cryptography) to solve the authentication problem. This issue is 
explored in the problems at the end of the chapter.
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8.5 Securing E-Mail

In previous sections, we examined fundamental issues in network security, including 
symmetric key and public key cryptography, end-point authentication, key distribu-
tion, message integrity, and digital signatures. We are now going to examine how 
these tools are being used to provide security in the Internet.

Interestingly, it is possible to provide security services in any of the top four 
layers of the Internet protocol stack. When security is provided for a specific applica-
tion-layer protocol, the application using the protocol will enjoy one or more security 
services, such as confidentiality, authentication, or integrity. When security is pro-
vided for a transport-layer protocol, all applications that use that protocol enjoy the 
security services of the transport protocol. When security is provided at the network 
layer on a host-to-host basis, all transport-layer segments (and hence all application-
layer data) enjoy the security services of the network layer. When security is pro-
vided on a link basis, then the data in all frames traveling over the link receive the 
security services of the link.

In Sections 8.5 through 8.8, we examine how security tools are being used in 
the application, transport, network, and link layers. Being consistent with the general 
structure of this book, we begin at the top of the protocol stack and discuss security at 
the application layer. Our approach is to use a specific application, e-mail, as a case 
study for application-layer security. We then move down the protocol stack. We’ll 
examine the TLS protocol (which provides security at the transport layer), IPsec 
(which provides security at the network layer), and the security of the IEEE 802.11 
wireless LAN protocol.

You might be wondering why security functionality is being provided at more 
than one layer in the Internet. Wouldn’t it suffice simply to provide the security 
functionality at the network layer and be done with it? There are two answers to this 
question. First, although security at the network layer can offer “blanket coverage” 
by encrypting all the data in the datagrams (that is, all the transport-layer segments) 

Figure 8.18 ♦ Protocol ap4.0 and a failure scenario
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and by authenticating all the source IP addresses, it can’t provide user-level secu-
rity. For example, a commerce site cannot rely on IP-layer security to authenticate 
a customer who is purchasing goods at the commerce site. Thus, there is a need 
for security functionality at higher layers as well as blanket coverage at lower lay-
ers. Second, it is generally easier to deploy new Internet services, including security 
services, at the higher layers of the protocol stack. While waiting for security to be 
broadly deployed at the network layer, which is probably still many years in the 
future, many application developers “just do it” and introduce security functional-
ity into their favorite applications. A classic example is Pretty Good Privacy (PGP), 
which provides secure e-mail (discussed later in this section). Requiring only client 
and server application code, PGP was one of the first security technologies to be 
broadly used in the Internet.

8.5.1 Secure E-Mail
We now use the cryptographic principles of Sections 8.2 through 8.3 to create a 
secure e-mail system. We create this high-level design in an incremental manner, 
at each step introducing new security services. When designing a secure e-mail sys-
tem, let us keep in mind the racy example introduced in Section 8.1—the love affair 
between Alice and Bob. Imagine that Alice wants to send an e-mail message to Bob, 
and Trudy wants to intrude.

Before plowing ahead and designing a secure e-mail system for Alice and Bob, 
we should consider which security features would be most desirable for them. First 
and foremost is confidentiality. As discussed in Section 8.1, neither Alice nor Bob 
wants Trudy to read Alice’s e-mail message. The second feature that Alice and Bob 
would most likely want to see in the secure e-mail system is sender authentication. 
In particular, when Bob receives the message “I don’t love you anymore. 
I never want to see you again. Formerly yours, Alice,” 
he would naturally want to be sure that the message came from Alice and not from 
Trudy. Another feature that the two lovers would appreciate is message integrity, 
that is, assurance that the message Alice sends is not modified while en route to 
Bob. Finally, the e-mail system should provide receiver authentication; that is, Alice 
wants to make sure that she is indeed sending the letter to Bob and not to someone 
else (for example, Trudy) who is impersonating Bob.

So let’s begin by addressing the foremost concern, confidentiality. The most 
straightforward way to provide confidentiality is for Alice to encrypt the message 
with symmetric key technology (such as DES or AES) and for Bob to decrypt the 
message on receipt. As discussed in Section 8.2, if the symmetric key is long enough, 
and if only Alice and Bob have the key, then it is extremely difficult for anyone else 
(including Trudy) to read the message. Although this approach is straightforward, it 
has the fundamental difficulty that we discussed in Section 8.2—distributing a sym-
metric key so that only Alice and Bob have copies of it. So we naturally consider an 
alternative approach—public key cryptography (using, for example, RSA). In the 
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public key approach, Bob makes his public key publicly available (e.g., in a public 
key server or on his personal Web page), Alice encrypts her message with Bob’s 
public key, and she sends the encrypted message to Bob’s e-mail address. When Bob 
receives the message, he simply decrypts it with his private key. Assuming that Alice 
knows for sure that the public key is Bob’s public key, this approach is an excellent 
means to provide the desired confidentiality. One problem, however, is that public 
key encryption is relatively inefficient, particularly for long messages.

To overcome the efficiency problem, let’s make use of a session key (discussed 
in Section 8.2.2). In particular, Alice (1) selects a random symmetric session key, KS,  
(2) encrypts her message, m, with the symmetric key, (3) encrypts the symmetric 
key with Bob’s public key, KB +, (4) concatenates the encrypted message and the 
encrypted symmetric key to form a “package,” and (5) sends the package to Bob’s 
e-mail address. The steps are illustrated in Figure 8.19. (In this and the subsequent 
figures, the circled “+” represents concatenation and the circled “-” represents 
deconcatenation.) When Bob receives the package, he (1) uses his private key, K-

B,  
to obtain the symmetric key, KS, and (2) uses the symmetric key KS to decrypt the mes-
sage m.

Having designed a secure e-mail system that provides confidentiality, let’s now 
design another system that provides both sender authentication and message integ-
rity. We’ll suppose, for the moment, that Alice and Bob are no longer concerned with 
confidentiality (they want to share their feelings with everyone!), and are concerned 
only about sender authentication and message integrity. To accomplish this task, we      
use digital signatures and message digests, as described in Section 8.3. Specifically, 
Alice (1) applies a hash function, H (e.g., MD5), to her message, m, to obtain a 
message digest, (2) signs the result of the hash function with her private key, K-

A, to 
create a digital signature, (3) concatenates the original (unencrypted) message with 
the signature to create a package, and (4) sends the package to Bob’s e-mail address. 
When Bob receives the package, he (1) applies Alice’s public key, K+

A, to the signed 

Figure 8.19 ♦  Alice used a symmetric session key, KS, to send a secret 
e-mail to Bob
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message digest and (2) compares the result of this operation with his own hash, H, 
of the message. The steps are illustrated in Figure 8.20. As discussed in Section 8.3, 
if the two results are the same, Bob can be pretty confident that the message came 
from Alice and is unaltered.

Now let’s consider designing an e-mail system that provides confidentiality, 
sender authentication, and message integrity. This can be done by combining the 
procedures in Figures 8.19 and 8.20. Alice first creates a preliminary package, 
exactly as in Figure 8.20, that consists of her original message along with a digitally 
signed hash of the message. She then treats this preliminary package as a message in 
itself and sends this new message through the sender steps in Figure 8.19, creating a 
new package that is sent to Bob. The steps applied by Alice are shown in Figure 8.21. 
When Bob receives the package, he first applies his side of Figure 8.19 and then his 

Figure 8.20 ♦  Using hash functions and digital signatures to provide 
 sender authentication and message integrity
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side of Figure 8.20. It should be clear that this design achieves the goal of provid-
ing confidentiality, sender authentication, and message integrity. Note that, in this 
scheme, Alice uses public key cryptography twice: once with her own private key 
and once with Bob’s public key. Similarly, Bob also uses public key cryptography 
twice—once with his private key and once with Alice’s public key.

The secure e-mail design outlined in Figure 8.21 probably provides satisfactory  
security for most e-mail users for most occasions. However, there is still one important 
issue that remains to be addressed. The design in Figure 8.21 requires Alice to obtain 
Bob’s public key, and requires Bob to obtain Alice’s public key. The distribution  
of these public keys is a nontrivial problem. For example, Trudy might masquerade 
as Bob and give Alice her own public key while saying that it is Bob’s public key, 
enabling her to receive the message meant for Bob. As we learned in Section 8.3, a 
popular approach for securely distributing public keys is to certify the public keys 
using a CA.

8.5.2 PGP
Written by Phil Zimmermann in 1991, Pretty Good Privacy (PGP) is a nice exam-
ple of an e-mail encryption scheme [PGP 2020]. The PGP design is, in essence, the 
same as the design shown in Figure 8.21. Depending on the version, the PGP soft-
ware uses MD5 or SHA for calculating the message digest; CAST, triple-DES, or 
IDEA for symmetric key encryption; and RSA for the public key encryption.

When PGP is installed, the software creates a public key pair for the user. The 
public key can be posted on the user’s Web site or placed in a public key server. The 
private key is protected by the use of a password. The password has to be entered 
every time the user accesses the private key. PGP gives the user the option of dig-
itally signing the message, encrypting the message, or both digitally signing and 
encrypting. Figure 8.22 shows a PGP signed message. This message appears after  
the MIME header. The encoded data in the message is K-

A (H(m)), that is, the digi-
tally signed message digest. As we discussed above, in order for Bob to verify the 
integrity of the message, he needs to have access to Alice’s public key.

Figure 8.22 ♦ A PGP signed message

-----BEGIN PGP SIGNED MESSAGE-----
Hash:  SHA1
Bob:
Can I see you tonight?
Passionately yours, Alice
-----BEGIN PGP SIGNATURE-----
Version: PGP for Personal Privacy 5.0
Charset: noconv
yhHJRHhGJGhgg/12EpJ+lo8gE4vB3mqJhFEvZP9t6n7G6m5Gw2
-----END PGP SIGNATURE-----
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Figure 8.23 shows a secret PGP message. This message also appears after the 
MIME header. Of course, the plaintext message is not included within the secret e-mail 
message. When a sender (such as Alice) wants both confidentiality and integrity, PGP 
contains a message like that of Figure 8.23 within the message of Figure 8.22.

PGP also provides a mechanism for public key certification, but the mechanism 
is quite different from the more conventional CA. PGP public keys are certified by 
a web of trust. Alice herself can certify any key/username pair when she believes 
the pair really belong together. In addition, PGP permits Alice to say that she trusts 
another user to vouch for the authenticity of more keys. Some PGP users sign each 
other’s keys by holding key-signing parties. Users physically gather, exchange 
 public keys, and certify each other’s keys by signing them with their private keys.

8.6 Securing TCP Connections: TLS

In the previous section, we saw how cryptographic techniques can provide confiden-
tiality, data integrity, and end-point authentication to a specific application, namely, 
e-mail. In this section, we’ll drop down a layer in the protocol stack and examine how 
cryptography can enhance TCP with security services, including confidentiality, data 
integrity, and end-point authentication. This enhanced version of TCP is commonly 
known as Transport Layer Security (TLS), which has been standardized by the 
IETF [RFC 4346]. An earlier and similar version of this protocol is SSL version 3.

The SSL protocol was originally designed by Netscape, but the basic ideas 
behind securing TCP had predated Netscape’s work (for example, see Woo [Woo 
1994]). Since its inception, SSL and its successor TLS have enjoyed broad deploy-
ment. TLS is supported by all popular Web browsers and Web servers, and it is used 
by Gmail and essentially all Internet commerce sites (including Amazon, eBay, and 
TaoBao). Hundreds of billions of dollars are spent over TLS every year. In fact, if you 
have ever purchased anything over the Internet with your credit card, the communica-
tion between your browser and the server for this purchase almost certainly went over 
TLS. (You can identify that TLS is being used by your browser when the URL begins 
with https: rather than http.)

Figure 8.23 ♦ A secret PGP message

-----BEGIN PGP MESSAGE-----
Version: PGP for Personal Privacy 5.0
u2R4d+/jKmn8Bc5+hgDsqAewsDfrGdszX68liKm5F6Gc4sDfcXyt
RfdS10juHgbcfDssWe7/K=lKhnMikLo0+1/BvcX4t==Ujk9PbcD4
Thdf2awQfgHbnmKlok8iy6gThlp
-----END PGP MESSAGE
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To understand the need for TLS, let’s walk through a typical Internet commerce 
scenario. Bob is surfing the Web and arrives at the Alice Incorporated site, which is 
selling perfume. The Alice Incorporated site displays a form in which Bob is sup-
posed to enter the type of perfume and quantity desired, his address, and his pay-
ment card number. Bob enters this information, clicks on Submit, and expects to 
receive (via ordinary postal mail) the purchased perfumes; he also expects to receive 
a charge for his order in his next payment card statement. This all sounds good, but 
if no security measures are taken, Bob could be in for a few surprises.

• If no confidentiality (encryption) is used, an intruder could intercept Bob’s order 
and obtain his payment card information. The intruder could then make purchases 
at Bob’s expense.

• If no data integrity is used, an intruder could modify Bob’s order, having him 
purchase ten times more bottles of perfume than desired.

• Finally, if no server authentication is used, a server could display Alice Incor-
porated’s famous logo when in actuality the site maintained by Trudy, who is 
masquerading as Alice Incorporated. After receiving Bob’s order, Trudy could 
take Bob’s money and run. Or Trudy could carry out an identity theft by collect-
ing Bob’s name, address, and credit card number.

TLS addresses these issues by enhancing TCP with confidentiality, data integrity, 
server authentication, and client authentication.

TLS is often used to provide security to transactions that take place over HTTP. 
However, because TLS secures TCP, it can be employed by any application that 
runs over TCP. TLS provides a simple Application Programmer Interface (API) with 
sockets, which is similar and analogous to TCP’s API. When an application wants to 
employ TLS, the application includes SSL classes/libraries. As shown in Figure 8.24, 
although TLS technically resides in the application layer, from the developer’s 
 perspective it is a transport protocol that provides TCP’s services enhanced with 
security services.

Figure 8.24 ♦  Although TLS technically resides in the application layer, 
from the developer’s perspective it is a transport-layer 
 protocol
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8.6.1 The Big Picture
We begin by describing a simplified version of TLS, one that will allow us to get a 
big-picture understanding of the why and how of TLS. We will refer to this simpli-
fied version of TLS as “almost-TLS.” After describing almost-TLS, in the next sub-
section we’ll then describe the real TLS, filling in the details. Almost-TLS (and TLS) 
has three phases: handshake, key derivation, and data transfer. We now describe 
these three phases for a communication session between a client (Bob) and a server 
(Alice), with Alice having a private/public key pair and a certificate that binds her 
identity to her public key.

Handshake

During the handshake phase, Bob needs to (a) establish a TCP connection with Alice, 
(b) verify that Alice is really Alice, and (c) send Alice a master secret key, which 
will be used by both Alice and Bob to generate all the symmetric keys they need for 
the TLS session. These three steps are shown in Figure 8.25. Note that once the TCP 
connection is established, Bob sends Alice a hello message. Alice then responds with 
her certificate, which contains her public key. As discussed in Section 8.3, because 
the certificate has been certified by a CA, Bob knows for sure that the public key in 
the certificate belongs to Alice. Bob then generates a Master Secret (MS) (which will 
only be used for this TLS session), encrypts the MS with Alice’s public key to create 

Figure 8.25 ♦  The almost-TLS handshake, beginning with a TCP 
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the Encrypted Master Secret (EMS), and sends the EMS to Alice. Alice decrypts the 
EMS with her private key to get the MS. After this phase, both Bob and Alice (and 
no one else) know the master secret for this TLS session.

Key Derivation

In principle, the MS, now shared by Bob and Alice, could be used as the symmetric 
session key for all subsequent encryption and data integrity checking. It is, however, 
generally considered safer for Alice and Bob to each use different cryptographic 
keys, and also to use different keys for encryption and integrity checking. Thus, both 
Alice and Bob use the MS to generate four keys:

• EB = session encryption key for data sent from Bob to Alice

• MB = session HMAC key for data sent from Bob to Alice, where HMAC [RFC 
2104] is a standardized hashed  message authentication code (MAC) that we 
encountered in section 8.3.2

• EA = session encryption key for data sent from Alice to Bob

• MA = session HMAC key for data sent from Alice to Bob

Alice and Bob each generate the four keys from the MS. This could be done by sim-
ply slicing the MS into four keys. (But in reality TLS it is a little more complicated, 
as we’ll see.) At the end of the key derivation phase, both Alice and Bob have all four 
keys. The two encryption keys will be used to encrypt data; the two HMAC keys will 
be used to verify the integrity of the data.

Data Transfer

Now that Alice and Bob share the same four session keys (EB, MB, EA, and MA), 
they can start to send secured data to each other over the TCP connection. Since TCP 
is a byte-stream protocol, a natural approach would be for TLS to encrypt application 
data on the fly and then pass the encrypted data on the fly to TCP. But if we were to 
do this, where would we put the HMAC for the integrity check? We certainly do not 
want to wait until the end of the TCP session to verify the integrity of all of Bob’s 
data that was sent over the entire session! To address this issue, TLS breaks the data 
stream into records, appends an HMAC to each record for integrity checking, and 
then encrypts the record+HMAC. To create the HMAC, Bob inputs the record data 
along with the key MB into a hash function, as discussed in Section 8.3. To encrypt 
the package record+HMAC, Bob uses his session encryption key EB. This encrypted 
package is then passed to TCP for transport over the Internet.

Although this approach goes a long way, it still isn’t bullet-proof when it comes 
to providing data integrity for the entire message stream. In particular, suppose 
Trudy is a woman-in-the-middle and has the ability to insert, delete, and replace 
segments in the stream of TCP segments sent between Alice and Bob. Trudy, for 
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example, could capture two segments sent by Bob, reverse the order of the seg-
ments, adjust the TCP sequence numbers (which are not encrypted), and then send 
the two reverse-ordered segments to Alice. Assuming that each TCP segment 
encapsulates exactly one record, let’s now take a look at how Alice would process 
these segments.

 1. TCP running in Alice would think everything is fine and pass the two records 
to the TLS sublayer.

 2. TLS in Alice would decrypt the two records.
 3. TLS in Alice would use the HMAC in each record to verify the data integrity 

of the two records.
 4. TLS would then pass the decrypted byte streams of the two records to the 

application layer; but the complete byte stream received by Alice would not be 
in the correct order due to reversal of the records!

You are encouraged to walk through similar scenarios for when Trudy removes seg-
ments or when Trudy replays segments.

The solution to this problem, as you probably guessed, is to use sequence num-
bers. TLS does this as follows. Bob maintains a sequence number counter, which 
begins at zero and is incremented for each TLS record he sends. Bob doesn’t actually 
include a sequence number in the record itself, but when he calculates the HMAC, 
he includes the sequence number in the HMAC calculation. Thus, the HMAC is now 
a hash of the data plus the HMAC key MB plus the current sequence number. Alice 
tracks Bob’s sequence numbers, allowing her to verify the data integrity of a record 
by including the appropriate sequence number in the HMAC calculation. This use 
of TLS sequence numbers prevents Trudy from carrying out a woman-in-the-middle 
attack, such as reordering or replaying segments. (Why?)

TLS Record

The TLS record (as well as the almost-TLS record) is shown in Figure 8.26. The 
record consists of a type field, version field, length field, data field, and HMAC field. 
Note that the first three fields are not encrypted. The type field indicates whether the 
record is a handshake message or a message that contains application data. It is also 
used to close the TLS connection, as discussed below. TLS at the receiving end uses 
the length field to extract the TLS records out of the incoming TCP byte stream. The 
version field is self-explanatory.

Figure 8.26 ♦ Record format for TLS

Version LengthType Data HMAC

Encrypted with EB

M08_KURO1557_08_SE_C08.indd   648 11/02/20   5:17 PM



8.6  •  SECURING TCP CONNECTIONS: TLS     649

8.6.2 A More Complete Picture
The previous subsection covered the almost-TLS protocol; it served to give us a 
basic understanding of the why and how of TLS. Now that we have a basic under-
standing, we can dig a little deeper and examine the essentials of the actual TLS pro-
tocol. In parallel to reading this description of the TLS protocol, you are encouraged 
to complete the Wireshark TLS lab, available at the textbook’s Web site.

TLS Handshake

SSL does not mandate that Alice and Bob use a specific symmetric key algorithm or 
a specific public-key algorithm. Instead, TLS allows Alice and Bob to agree on the 
cryptographic algorithms at the beginning of the TLS session, during the handshake 
phase. Additionally, during the handshake phase, Alice and Bob send nonces to each 
other, which are used in the creation of the session keys (EB, MB, EA, and MA). The 
steps of the real TLS handshake are as follows:

 1. The client sends a list of cryptographic algorithms it supports, along with a 
 client nonce.

 2. From the list, the server chooses a symmetric algorithm (for example, AES) 
and a public key algorithm (for example, RSA with a specific key length), and 
HMAC algorithm (MD5 or SHA-1) along with the HMAC keys. It sends back 
to the client its choices, as well as a certificate and a server nonce.

 3. The client verifies the certificate, extracts the server’s public key, generates a 
Pre-Master Secret (PMS), encrypts the PMS with the server’s public key, and 
sends the encrypted PMS to the server.

 4. Using the same key derivation function (as specified by the TLS standard), 
the client and server independently compute the Master Secret (MS) from the 
PMS and nonces. The MS is then sliced up to generate the two encryption and 
two HMAC keys. Furthermore, when the chosen symmetric cipher employs 
CBC (such as 3DES or AES), then two Initialization Vectors (IVs)—one for 
each side of the connection—are also obtained from the MS. Henceforth, all 
 messages sent between client and server are encrypted and authenticated (with 
the HMAC).

 5. The client sends the HMAC of all the handshake messages.
 6. The server sends the HMAC of all the handshake messages.

The last two steps protect the handshake from tampering. To see this, observe 
that in step 1, the client typically offers a list of algorithms—some strong, some 
weak. This list of algorithms is sent in cleartext, since the encryption algorithms and 
keys have not yet been agreed upon. Trudy, as a woman-in-the-middle, could delete 
the stronger algorithms from the list, forcing the client to select a weak algorithm. To 
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prevent such a tampering attack, in step 5, the client sends the HMAC of the concat-
enation of all the handshake messages it sent and received. The server can compare 
this HMAC with the HMAC of the handshake messages it received and sent. If there 
is an inconsistency, the server can terminate the connection. Similarly, the server 
sends the HMAC of the handshake messages it has seen, allowing the client to check 
for inconsistencies.

You may be wondering why there are nonces in steps 1 and 2. Don’t sequence 
numbers suffice for preventing the segment replay attack? The answer is yes, but 
they don’t alone prevent the “connection replay attack.” Consider the following 
connection replay attack. Suppose Trudy sniffs all messages between Alice and 
Bob. The next day, Trudy masquerades as Bob and sends to Alice exactly the same 
sequence of messages that Bob sent to Alice on the previous day. If Alice doesn’t 
use nonces, she will respond with exactly the same sequence of messages she sent 
the previous day. Alice will not suspect any funny business, as each message she 
receives will pass the integrity check. If Alice is an e-commerce server, she will 
think that Bob is placing a second order (for exactly the same thing). On the other 
hand, by including a nonce in the protocol, Alice will send different nonces for each 
TCP session, causing the encryption keys to be different on the two days. Therefore, 
when Alice receives played-back TLS records from Trudy, the records will fail the 
integrity checks, and the bogus e-commerce transaction will not succeed. In sum-
mary, in TLS, nonces are used to defend against the “connection replay attack” and 
sequence numbers are used to defend against replaying individual packets during an 
ongoing session.

Connection Closure

At some point, either Bob or Alice will want to end the TLS session. One approach 
would be to let Bob end the TLS session by simply terminating the underlying TCP 
connection—that is, by having Bob send a TCP FIN segment to Alice. But such a 
naive design sets the stage for the truncation attack whereby Trudy once again gets 
in the middle of an ongoing TLS session and ends the session early with a TCP 
FIN. If Trudy were to do this, Alice would think she received all of Bob’s data 
when  actuality she only received a portion of it. The solution to this problem is to 
indicate in the type field whether the record serves to terminate the TLS session. 
(Although the TLS type is sent in the clear, it is authenticated at the receiver using 
the record’s HMAC.) By including such a field, if Alice were to receive a TCP FIN 
before  receiving a closure TLS record, she would know that something funny was 
going on.

This completes our introduction to TLS. We’ve seen that it uses many of the 
cryptography principles discussed in Sections 8.2 and 8.3. Readers who want to 
explore TLS on yet a deeper level can read Rescorla’s highly readable book on SSL/
TLS [Rescorla 2001].
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8.7 Network-Layer Security: IPsec and Virtual 
Private Networks

The IP security protocol, more commonly known as IPsec, provides security at the 
network layer. IPsec secures IP datagrams between any two network-layer entities, 
including hosts and routers. As we will soon describe, many institutions (corpora-
tions, government branches, non-profit organizations, and so on) use IPsec to create 
virtual private networks (VPNs) that run over the public Internet.

Before getting into the specifics of IPsec, let’s step back and consider what 
it means to provide confidentiality at the network layer. With network-layer con-
fidentiality between a pair of network entities (for example, between two routers, 
between two hosts, or between a router and a host), the sending entity encrypts the 
payloads of all the datagrams it sends to the receiving entity. The encrypted payload 
could be a TCP segment, a UDP segment, an ICMP message, and so on. If such 
a network-layer service were in place, all data sent from one entity to the other—
including e-mail, Web pages, TCP handshake messages, and management mes-
sages (such as ICMP and SNMP)—would be hidden from any third party that might 
be sniffing the network. For this reason, network-layer security is said to provide  
“blanket coverage.”

In addition to confidentiality, a network-layer security protocol could potentially 
provide other security services. For example, it could provide source authentication, 
so that the receiving entity can verify the source of the secured datagram. A network-
layer security protocol could provide data integrity, so that the receiving entity can 
check for any tampering of the datagram that may have occurred while the datagram 
was in transit. A network-layer security service could also provide replay-attack pre-
vention, meaning that Bob could detect any duplicate datagrams that an attacker 
might insert. We will soon see that IPsec indeed provides mechanisms for all these 
security services, that is, for confidentiality, source authentication, data  integrity, and 
replay-attack prevention.

8.7.1 IPsec and Virtual Private Networks (VPNs)
An institution that extends over multiple geographical regions often desires its own 
IP network, so that its hosts and servers can send data to each other in a secure and 
confidential manner. To achieve this goal, the institution could actually deploy a 
stand-alone physical network—including routers, links, and a DNS  infrastructure—
that is completely separate from the public Internet. Such a disjoint network, dedi-
cated to a particular institution, is called a private network. Not surprisingly, a 
private network can be very costly, as the institution needs to purchase, install, and 
maintain its own physical network infrastructure.

Instead of deploying and maintaining a private network, many institutions 
today create VPNs over the existing public Internet. With a VPN, the institution’s 
inter-office traffic is sent over the public Internet rather than over a physically 
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independent network. But to provide confidentiality, the inter-office traffic is 
encrypted before it enters the public Internet. A simple example of a VPN is shown 
in Figure 8.27. Here the institution consists of a headquarters, a branch office, and 
traveling salespersons that typically access the Internet from their hotel rooms. 
(There is only one salesperson shown in the figure.) In this VPN, whenever two 
hosts within headquarters send IP datagrams to each other or whenever two hosts 
within the branch office want to communicate, they use good-old vanilla IPv4 (that 
is, without IPsec services). However, when two of the institution’s hosts commu-
nicate over a path that traverses the public Internet, the traffic is encrypted before 
it enters the Internet.

To get a feel for how a VPN works, let’s walk through a simple example in the 
context of Figure 8.27. When a host in headquarters sends an IP datagram to a sales-
person in a hotel, the gateway router in headquarters converts the vanilla IPv4 data-
gram into an IPsec datagram and then forwards this IPsec datagram into the Internet. 
This IPsec datagram actually has a traditional IPv4 header, so that the routers in the 
public Internet process the datagram as if it were an ordinary IPv4 datagram—to 
them, the datagram is a perfectly ordinary datagram. But, as shown Figure 8.27, 
the payload of the IPsec datagram includes an IPsec header, which is used for IPsec 
processing; furthermore, the payload of the IPsec datagram is encrypted. When the 

Figure 8.27 ♦ Virtual private network (VPN)
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IPsec datagram arrives at the salesperson’s laptop, the OS in the laptop decrypts the 
payload (and provides other security services, such as verifying data integrity) and 
passes the unencrypted payload to the upper-layer protocol (for example, to TCP  
or UDP).

We have just given a high-level overview of how an institution can employ 
IPsec to create a VPN. To see the forest through the trees, we have brushed aside 
many important details. Let’s now take a closer look.

8.7.2 The AH and ESP Protocols
IPsec is a rather complex animal—it is defined in more than a dozen RFCs. Two 
important RFCs are RFC 4301, which describes the overall IP security architecture, 
and RFC 6071, which provides an overview of the IPsec protocol suite. Our goal in 
this textbook, as usual, is not simply to re-hash the dry and arcane RFCs, but instead 
take a more operational and pedagogic approach to describing the protocols.

In the IPsec protocol suite, there are two principal protocols: the Authentication 
Header (AH) protocol and the Encapsulation Security Payload (ESP) protocol. 
When a source IPsec entity (typically a host or a router) sends secure datagrams to a 
destination entity (also a host or a router), it does so with either the AH protocol or 
the ESP protocol. The AH protocol provides source authentication and data integrity 
but does not provide confidentiality. The ESP protocol provides source authentica-
tion, data integrity, and confidentiality. Because confidentiality is often critical for 
VPNs and other IPsec applications, the ESP protocol is much more widely used than 
the AH protocol. In order to de-mystify IPsec and avoid much of its complication, we 
will henceforth focus exclusively on the ESP protocol. Readers wanting to learn also 
about the AH protocol are encouraged to explore the RFCs and other online resources.

8.7.3 Security Associations
IPsec datagrams are sent between pairs of network entities, such as between two hosts, 
between two routers, or between a host and router. Before sending IPsec datagrams 
from source entity to destination entity, the source and destination entities create a 
network-layer logical connection. This logical connection is called a security asso-
ciation (SA). An SA is a simplex logical connection; that is, it is unidirectional from 
source to destination. If both entities want to send secure datagrams to each other, then 
two SAs (that is, two logical connections) need to be established, one in each direction.

For example, consider once again the institutional VPN in Figure 8.27. This 
institution consists of a headquarters office, a branch office and, say, n traveling 
salespersons. For the sake of example, let’s suppose that there is bi-directional IPsec 
traffic between headquarters and the branch office and bi-directional IPsec traffic 
between headquarters and the salespersons. In this VPN, how many SAs are there? 
To answer this question, note that there are two SAs between the headquarters gate-
way router and the branch-office gateway router (one in each direction); for each 
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salesperson’s laptop, there are two SAs between the headquarters gateway router 
and the laptop (again, one in each direction). So, in total, there are (2 +  2n) SAs. Keep 
in mind, however, that not all traffic sent into the Internet by the gateway routers or 
by the laptops will be IPsec secured. For example, a host in headquarters may want 
to access a Web server (such as Amazon or Google) in the public Internet. Thus, 
the gateway router (and the laptops) will emit into the Internet both vanilla IPv4 
 datagrams and secured IPsec datagrams.

Let’s now take a look “inside” an SA. To make the discussion tangible and 
 concrete, let’s do this in the context of an SA from router R1 to router R2 in 
 Figure 8.28. (You can think of Router R1 as the headquarters gateway router and 
Router R2 as the branch office gateway router from Figure 8.27.) Router R1 will 
maintain state information about this SA, which will include:

• A 32-bit identifier for the SA, called the Security Parameter Index (SPI)
• The origin interface of the SA (in this case 200.168.1.100) and the destination 

interface of the SA (in this case 193.68.2.23)

• The type of encryption to be used (for example, 3DES with CBC)

• The encryption key

• The type of integrity check (for example, HMAC with MD5)

• The authentication key

Whenever router R1 needs to construct an IPsec datagram for forwarding over 
this SA, it accesses this state information to determine how it should authenticate 
and encrypt the datagram. Similarly, router R2 will maintain the same state informa-
tion for this SA and will use this information to authenticate and decrypt any IPsec 
datagram that arrives from the SA.

An IPsec entity (router or host) often maintains state information for many SAs. 
For example, in the VPN example in Figure 8.27 with n salespersons, the headquar-
ters gateway router maintains state information for (2 +  2n) SAs. An IPsec entity 
stores the state information for all of its SAs in its Security Association Database 
(SAD), which is a data structure in the entity’s OS kernel.

Figure 8.28 ♦ Security association (SA) from R1 to R2
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8.7.4 The IPsec Datagram
Having now described SAs, we can now describe the actual IPsec datagram. IPsec 
has two different packet forms, one for the so-called tunnel mode and the other for 
the so-called transport mode. The tunnel mode, being more appropriate for VPNs, 
is more widely deployed than the transport mode. In order to further de-mystify 
IPsec and avoid much of its complication, we henceforth focus exclusively on the 
tunnel mode. Once you have a solid grip on the tunnel mode, you should be able to 
easily learn about the transport mode on your own.

The packet format of the IPsec datagram is shown in Figure 8.29. You might 
think that packet formats are boring and insipid, but we will soon see that the IPsec 
datagram actually looks and tastes like a popular Tex-Mex delicacy! Let’s examine 
the IPsec fields in the context of Figure 8.28. Suppose router R1 receives an ordinary 
IPv4 datagram from host 172.16.1.17 (in the headquarters network) which is destined 
to host 172.16.2.48 (in the branch-office network). Router R1 uses the  following 
recipe to convert this “original IPv4 datagram” into an IPsec datagram:

• Appends to the back of the original IPv4 datagram (which includes the original 
header fields!) an “ESP trailer” field

• Encrypts the result using the algorithm and key specified by the SA

• Appends to the front of this encrypted quantity a field called “ESP header”; the 
resulting package is called the “enchilada”

• Creates an authentication MAC over the whole enchilada using the algorithm and 
key specified in the SA

• Appends the MAC to the back of the enchilada forming the payload

• Finally, creates a brand new IP header with all the classic IPv4 header fields 
(together normally 20 bytes long), which it appends before the payload

Note that the resulting IPsec datagram is a bona fide IPv4 datagram, with the 
traditional IPv4 header fields followed by a payload. But in this case, the payload 

Figure 8.29 ♦ IPsec datagram format
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contains an ESP header, the original IP datagram, an ESP trailer, and an ESP authen-
tication field (with the original datagram and ESP trailer encrypted). The original IP 
datagram has 172.16.1.17 for the source IP address and 172.16.2.48 for the destina-
tion IP address. Because the IPsec datagram includes the original IP datagram, these 
addresses are included (and encrypted) as part of the payload of the IPsec packet. But 
what about the source and destination IP addresses that are in the new IP header, that 
is, in the left-most header of the IPsec datagram? As you might expect, they are set 
to the source and destination router interfaces at the two ends of the tunnels, namely, 
200.168.1.100 and 193.68.2.23. Also, the protocol number in this new IPv4 header 
field is not set to that of TCP, UDP, or SMTP, but instead to 50, designating that this 
is an IPsec datagram using the ESP protocol.

After R1 sends the IPsec datagram into the public Internet, it will pass through 
many routers before reaching R2. Each of these routers will process the datagram as if it 
were an ordinary datagram—they are completely oblivious to the fact that the datagram 
is carrying IPsec-encrypted data. For these public Internet routers, because the destina-
tion IP address in the outer header is R2, the ultimate destination of the datagram is R2.

Having walked through an example of how an IPsec datagram is constructed, 
let’s now take a closer look at the ingredients in the enchilada. We see in Figure 8.29 
that the ESP trailer consists of three fields: padding; pad length; and next header. 
Recall that block ciphers require the message to be encrypted to be an integer mul-
tiple of the block length. Padding (consisting of meaningless bytes) is used so that 
when added to the original datagram (along with the pad length and next header 
fields), the resulting “message” is an integer number of blocks. The pad-length field 
indicates to the receiving entity how much padding was inserted (and thus needs to 
be removed). The next header identifies the type (e.g., UDP) of data contained in the 
payload-data field. The payload data (typically the original IP datagram) and the ESP 
trailer are concatenated and then encrypted.

Appended to the front of this encrypted unit is the ESP header, which is sent in 
the clear and consists of two fields: the SPI and the sequence number field. The SPI 
indicates to the receiving entity the SA to which the datagram belongs; the receiving 
entity can then index its SAD with the SPI to determine the appropriate authentica-
tion/decryption algorithms and keys. The sequence number field is used to defend 
against replay attacks.

The sending entity also appends an authentication MAC. As stated earlier, the 
sending entity calculates a MAC over the whole enchilada (consisting of the ESP 
header, the original IP datagram, and the ESP trailer—with the datagram and trailer 
being encrypted). Recall that to calculate a MAC, the sender appends a secret MAC 
key to the enchilada and then calculates a fixed-length hash of the result.

When R2 receives the IPsec datagram, R2 observes that the destination IP 
address of the datagram is R2 itself. R2 therefore processes the datagram. Because 
the protocol field (in the left-most IP header) is 50, R2 sees that it should apply 
IPsec ESP processing to the datagram. First, peering into the enchilada, R2 uses the 
SPI to determine to which SA the datagram belongs. Second, it calculates the MAC 
of the enchilada and verifies that the MAC is consistent with the value in the ESP 
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MAC field. If it is, it knows that the enchilada comes from R1 and has not been tam-
pered with. Third, it checks the sequence-number field to verify that the datagram is 
fresh (and not a replayed datagram). Fourth, it decrypts the encrypted unit using the 
decryption algorithm and key associated with the SA. Fifth, it removes padding and 
extracts the original, vanilla IP datagram. And finally, sixth, it forwards the original 
datagram into the branch office network toward its ultimate destination. Whew, what 
a complicated recipe, huh? Well no one ever said that preparing and unraveling an 
enchilada was easy!

There is actually another important subtlety that needs to be addressed. It centers 
on the following question: When R1 receives an (unsecured) datagram from a host 
in the headquarters network, and that datagram is destined to some destination IP 
address outside of headquarters, how does R1 know whether it should be converted to 
an IPsec datagram? And if it is to be processed by IPsec, how does R1 know which SA 
(of many SAs in its SAD) should be used to construct the IPsec datagram? The prob-
lem is solved as follows. Along with a SAD, the IPsec entity also maintains another 
data structure called the Security Policy Database (SPD). The SPD indicates what 
types of datagrams (as a function of source IP address, destination IP address, and 
protocol type) are to be IPsec processed; and for those that are to be IPsec processed, 
which SA should be used. In a sense, the information in a SPD indicates “what” to 
do with an arriving datagram; the information in the SAD indicates “how” to do it.

Summary of IPsec Services

So what services does IPsec provide, exactly? Let us examine these services from 
the perspective of an attacker, say Trudy, who is a woman-in-the-middle, sitting 
somewhere on the path between R1 and R2 in Figure 8.28. Assume throughout this 
 discussion that Trudy does not know the authentication and encryption keys used 
by the SA. What can and cannot Trudy do? First, Trudy cannot see the original 
datagram. If fact, not only is the data in the original datagram hidden from Trudy, 
but so is the protocol number, the source IP address, and the destination IP address. 
For datagrams sent over the SA, Trudy only knows that the datagram originated 
from 200.168.1.100 and is destined to 193.68.2.23. She does not know if it is carry-
ing TCP, UDP, or ICMP data; she does not know if it is carrying HTTP, SMTP, or 
some other type of application data. This confidentiality thus goes a lot farther than 
SSL. Second, suppose Trudy tries to tamper with a datagram in the SA by flipping 
some of its bits. When this tampered datagram arrives at R2, it will fail the integ-
rity check (using the MAC), thwarting Trudy’s vicious attempts once again. Third, 
suppose Trudy tries to masquerade as R1, creating a IPsec datagram with source 
200.168.1.100 and destination 193.68.2.23. Trudy’s attack will be futile, as this 
datagram will again fail the integrity check at R2. Finally, because IPsec includes 
sequence numbers, Trudy will not be able create a successful replay attack. In sum-
mary, as claimed at the beginning of this section, IPsec provides—between any pair 
of devices that process packets through the network layer—confidentiality, source 
authentication, data integrity, and replay-attack prevention.
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8.7.5 IKE: Key Management in IPsec
When a VPN has a small number of end points (for example, just two routers as 
in Figure 8.28), the network administrator can manually enter the SA information 
(encryption/authentication algorithms and keys, and the SPIs) into the SADs of the 
endpoints. Such “manual keying” is clearly impractical for a large VPN, which 
may consist of hundreds or even thousands of IPsec routers and hosts. Large, geo-
graphically distributed deployments require an automated mechanism for creating 
the SAs. IPsec does this with the Internet Key Exchange (IKE) protocol, specified 
in RFC 5996.

IKE has some similarities with the handshake in SSL (see Section 8.6). Each 
IPsec entity has a certificate, which includes the entity’s public key. As with SSL, 
the IKE protocol has the two entities exchange certificates, negotiate authentication 
and encryption algorithms, and securely exchange key material for creating session 
keys in the IPsec SAs. Unlike SSL, IKE employs two phases to carry out these tasks.

Let’s investigate these two phases in the context of two routers, R1 and R2,  
in Figure 8.28. The first phase consists of two exchanges of message pairs between 
R1 and R2:

• During the first exchange of messages, the two sides use Diffie-Hellman (see 
Homework Problems) to create a bi-directional IKE SA between the routers. To 
keep us all confused, this bi-directional IKE SA is entirely different from the 
IPsec SAs discussed in Sections 8.6.3 and 8.6.4. The IKE SA provides an authen-
ticated and encrypted channel between the two routers. During this first message-
pair exchange, keys are established for encryption and authentication for the IKE 
SA. Also established is a master secret that will be used to compute IPSec SA 
keys later in phase 2. Observe that during this first step, RSA public and private 
keys are not used. In particular, neither R1 nor R2 reveals its identity by signing 
a message with its private key.

• During the second exchange of messages, both sides reveal their identity to each 
other by signing their messages. However, the identities are not revealed to a pas-
sive sniffer, since the messages are sent over the secured IKE SA channel. Also 
during this phase, the two sides negotiate the IPsec encryption and authentication 
algorithms to be employed by the IPsec SAs.

In phase 2 of IKE, the two sides create an SA in each direction. At the end of 
phase 2, the encryption and authentication session keys are established on both sides 
for the two SAs. The two sides can then use the SAs to send secured datagrams, as 
described in Sections 8.7.3 and 8.7.4. The primary motivation for having two phases 
in IKE is computational cost—since the second phase doesn’t involve any public-
key cryptography, IKE can generate a large number of SAs between the two IPsec 
entities with relatively little computational cost.
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8.8 Securing Wireless LANs and 4G/5G  
Cellular Networks

Security is a particularly important concern in wireless networks, where the attacker 
can sniff frames by simply positioning a receiving device anywhere within the trans-
mission range of the sender. This is true in both 802.11 wireless LANs, as well as in 
4G/5G cellular networks. In both settings, we’ll see extensive use of the fundamental 
security techniques that we studied earlier in this chapter, including the use of nonces 
for authentication, cryptographic hashing for message integrity, derivation of shared 
symmetric keys for encrypting user-session data, and the extensive use of the AES 
encryption standard. We will also see, as is also the case in wired Internet settings, 
that wireless security protocols have undergone constant evolution, as researchers 
and hackers discover weaknesses and flaws in existing security protocols.

In this section, we present a brief introduction to wireless security in both 
802.11(WiFi) and 4G/5G settings. For a more in-depth treatment, see the highly read-
able 802.11 security books [Edney 2003; Wright 2015], the excellent coverage of 
3G/4G/5G security in [Sauter 2014], and recent surveys [Zou 2016; Kohlios 2018].

8.8.1  Authentication and Key Agreement in 802.11 
 Wireless LANs

Let’s start our discussion of 802.11 security by identifying two (of many [Zou 2016]) 
critical security concerns that we’ll want an 802.11 network to handle:

• Mutual authentication. Before a mobile device is allowed to fully attach to an 
access point and send datagrams to remote hosts, the network will typically want 
to first authenticate the device—to verify the identity of the mobile device attach-
ing to the network, and to check that device’s access privileges. Similarly, the 
mobile device will want to authenticate the network to which it is attaching—to 
make sure that the network it is joining is truly the network to which it wants to 
attach. This two-way authentication is known as mutual authentication.

• Encryption. Since 802.11 frames will be exchanged over a wireless channel that 
can be sniffed and manipulated by potential ne’er do-wells, it will be important to 
encrypt link-level frames carrying user-level data exchanged between the mobile 
device and the access point (AP). Symmetric key encryption is used in practice, 
since encryption and decryption must be performed at high speeds. The mobile 
device and AP will need to derive the symmetric encryption and decryption keys 
to be used.

Figure 8.30 illustrates the scenario of a mobile device wishing to attach to 
an 802.11 network. We see the two usual network components that we encountered 
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in our earlier study of 802.11 networks in Section 7.3—the mobile device and the 
AP. We also see a new architectural component, the authentication server (AS) that 
will be responsible for authenticating the mobile device. The authentication server 
might be co-located in the AP, but more typically and as shown in Figure 8.30, it is 
implemented as a separate server that provides authentication services. For authen-
tication, the AP serves as a pass-through device, relaying authentication and key 
derivation messages between the mobile device and the authentication server. Such 
an authentication server would typically provide authentication services for all APs 
within its network.

We can identify four distinct phases to the process of mutual authentication and 
encryption-key derivation and use in Figure 8.30:

 1. Discovery. In the discovery phase, the AP advertises its presence and the forms 
of authentication and encryption that can be provided to the mobile device. The 
mobile device then requests the specific forms of authentication and encryption 
that it desires. Although the device and AP are already exchanging messages, 
the device has not yet been authenticated nor does it have an encryption key 
for frame transmission over the wireless link, and so several more steps will be 
required before the device can communicate securely through the AP.

 2. Mutual authentication and shared symmetric key derivation. This is the most 
critical step in “securing” the 802.11 channel. As we will see, this step is 

Mobile device
AP:

access point

Wired
network

AS:
authentication

server

1
Discovery of
security capabilities

4
Encrypted communication between
mobile device and a remote host via AP 

Shared symmetric session key
distribution

2

3

Mutual authentication and shared symmetric key derivation 

Figure 8.30 ♦  Mutual authentication and encryption-key derivation 
in WPA
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greatly facilitated by assuming (which is true in practice in both 802.11 and 
4G/5G networks) that the authentication server and the mobile device already 
have a shared common secret before starting mutual authentication. In this 
step, the device and the authentication server will use this shared secret along 
with nonces (to prevent relay attacks) and cryptographic hashing (to ensure 
message integrity) in authenticating each other. They will also derive the 
shared session key to be used by the mobile device and the AP to encrypt 
frames transmitted over the 802.11 wireless link.

 3. Shared symmetric session key distribution. Since the symmetric encryption key 
is derived at the mobile device and the authentication server, a protocol will be 
needed for the authentication server to inform the AP of the shared symmetric 
session key. While this is rather straightforward, it still is a necessary step.

 4. Encrypted communication between mobile device and a remote host via the 
AP. This communication happens as we saw earlier in Section 7.3.2, with the 
link-layer frames sent between the mobile device and the AP being encrypted 
using the shared session key created and distributed by Steps 2 and 3. AES 
symmetric key cryptography, which we covered earlier in Section 8.2.1, is 
typically used in practice for encrypting/decrypting 802.11 frame data.

Mutual Authentication and Shared Symmetric Session Key Derivation

The topics of mutual authentication and shared symmetric session key derivation are the 
central components of 802.11 security. Since it is here that security flaws in various ear-
lier versions of 802.11 security have been discovered, let’s tackle these  challenges first.

The issue of 802.11security has attracted considerable attention in both technical 
circles and in the media. While there has been considerable discussion, there has been 
little debate—there is universal agreement that the original 802.11security specifica-
tion known collectively as Wired Equivalent Privacy (WEP) contained a number 
of serious security flaws [Fluhrer 2001; Stubblefield 2002]. Once these flaws were 
discovered, public domain software was soon available exploiting these holes, mak-
ing users of WEP-secured 802.11 WLANs as open to security attacks as users who 
used no security features at all. Readers interested in learning about WEP can consult 
the references, as well as earlier editions of this textbook, which covered WEP. As 
always, retired material from this book is available on the Companion Website.

WiFi Protected Access (WPA1) was developed in 2003 by the WiFi Alli-
ance [WiFi 2020] to overcome WEP’s security flaws. The initial version of WPA1 
improved on WEP by introducing message integrity checks, and avoiding attacks 
that allowed a user to infer encryption keys after observing the stream of encrypted 
messages for a period of time. WPA1 soon gave way to WPA2, which mandated the 
use of AES symmetric key encryption.

At the heart of WPA is a four-way handshake protocol that performs both 
mutual authentication and shared symmetric session-key derivation. The handshake 
protocol is shown in Figure 8.31 in simplified form. Note that both the mobile device 
(M) and the authentication server (AS) begin knowing a shared secret key KAS-M 
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(e.g., a password). One of their tasks will be to derive a shared symmetric session-
key, KM-AP, which will be used to encrypt/decrypt frames that are later transmitted 
between the mobile device (M) and the AP.

Mutual authentication and shared symmetric session-key derivation are 
 accomplished in the first two steps, a and b, of the four-way handshake shown in 
Figure 8.31. Steps c and d are used to derive a second key used for group communi-
cation; see [Kohlios 2018; Zou 2016] for details.

 a. In this first step, the authentication server (AS) generates a nonce, NonceAS, 
and sends it to the mobile device. Recall from Section 8.4 that nonces are  
used to avoid playback attacks and prove the “liveness” of the other side  
being authenticated.

 b. The mobile device, M, receives the nonce, NonceAS, from the AS and gener-
ates its own nonce, NonceM. The mobile device then generates the symmetric 
shared session key, KM-AP, using NonceAS, NonceM, the initial shared secret 
key KAS-M, its MAC address, and the MAC address of the AS. It then sends 
its nonce, NonceM, and an HMAC-signed (see Figure 8.9) value that encodes 
NonceAS and the original shared secret. 

  The AS receives this message from M. By looking at the HMAC-signed ver-
sion of the nonce it had just recently sent, NonceAS, the authentication server 
knows the mobile device is live; because the mobile device was able to encrypt 
using the shared secret key, KAS-M, the AS also knows that the mobile device 
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Figure 8.31 ♦ The WPA2 four-way handshake
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is indeed who it claims to be (i.e., a device that knows the shared initial 
secret). The AS has thus authenticated the mobile device! The AS can also 
now perform the exact same computation as the mobile device to derive the 
shared symmetric session-key, KM-AP, using the NonceM it received, NonceAS, 
the initial shared secret key KAS-M, its MAC address and the MAC address of 
the mobile device. At this point both the mobile device and the authentication 
server have computed the same shared symmetric key, KM-AP, which will be 
used to encrypt/decrypt frames transmitted between the mobile device and the 
AP. The AS informs the AP of this key value in Step 3 in Figure 8.30.

WPA3 was released in June 2018 as an update to WPA2. The update addresses an 
attack on the four-way handshake protocol that could induce the reuse of previously 
used nonces [Vanhoef 2017] but still permits the use of the four-way handshake as a 
legacy protocol and includes longer key lengths, among other changes [WiFi 2019].

802.11 Security Messaging Protocols

Figure 8.32 shows the protocols used to implement the 802.11 security framework 
discussed above. The Extensible Authentication Protocol (EAP) [RFC 3748] defines 
the end-to-end message formats used in a simple request/response mode of interaction 
between the mobile device and authentication server, and are certified under WPA2. 
As shown in Figure 8.32, EAP messages are encapsulated using EAPoL (EAP over 
LAN) and sent over the 802.11 wireless link. These EAP messages are then decap-
sulated at the access point, and then re-encapsulated using the RADIUS protocol for 
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Figure 8.32 ♦  EAP is an end-to-end protocol. EAP messages are  
encapsulated using EAPoL over the wireless link  
between the mobile device and the access point,  
and using RADIUS over UDP/IP between the access  
point and the authentication server
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transmission over UDP/IP to the authentication server. While the RADIUS server 
and protocol [RFC 2865] are not required, they are de facto standard components. 
The recently standardized DIAMETER protocol [RFC 3588] is projected to eventu-
ally replace RADIUS in the future.

8.8.2  Authentication and Key Agreement in  
4G/5G Cellular Networks

In this section, we describe mutual authentication and key-generation mechanisms 
in 4G/5G networks. Many of the approaches we’ll encounter here parallel those 
that we just studied in 802.11 networks, with the notable exception that in 4G/5G 
 networks, mobile devices may be attached to their home network (i.e., the cellular 
carrier  network to which they are subscribed), or may be roaming on a visited net-
work. In this latter case, the visited and home networks will need to interact when 
authenticating a mobile device and generating encryption keys. Before continuing, 
you may want to re-familiarize yourself with 4G/5G network architecture by re-
reading Sections 7.4 and 7.7.1.

The goals of mutual authentication and key generation are the same in the 4G/5G 
setting as in the 802.11 setting. In order to encrypt the contents of frames being 
transmitted over the wireless channel, the mobile device and base station will need 
to derive a shared symmetric encryption key. In addition, the network to which the 
mobile device is attaching will need to authenticate the device’s identity and check 
its access privileges. Similarly, the mobile device will also want to authenticate the 
network to which it is attaching. While the network’s need to authenticate a mobile 
device may be obvious, the need for authentication in the reverse direction may not 
be so clear. However, there are documented cases of ne’er-do-wells operating rogue 
cellular base stations that entice unsuspecting mobile devices to attach to the rogue 
network, exposing a device to a number of attacks [Li 2017]. So, as in the case of 
802.11 WLANs, a mobile device should exercise abundant caution when attaching 
to a cellular network!

Figure 8.33 illustrates the scenario of mobile device attaching to a 4G cellu-
lar network. At the top of Figure 8.33, we see many of the 4G components that we 
encountered earlier in Section 7.4—the mobile device (M), the base station (BS), the 
mobility management entity (MME) in the network to which the mobile device wants 
to attach, and the home subscriber service (HSS) in the mobile device’s home net-
work. A comparison of Figures 8.30 and 8.33 shows the similarities and differences 
between the 802.11 and 4G security settings. We again see a mobile device and a 
base station; the user session-key derived during network attachment, KBS-M, will be 
used to encrypt/decrypt frames transmitted over their wireless link. The 4G MME and 
HSS together will play a role similar to that of the authentication server in the 802.11 
setting. Note that the HSS and the mobile device also share a common secret, KHSS-M, 
known to both entities before authentication begins. This key is stored in the mobile 
device’s SIM card, and in the HSS database in the mobile device’s home network.
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The 4G Authentication and Key Agreement (AKA) protocol consists of the fol-
lowing steps:

 a. Authentication request to HSS. When the mobile device first requests, via a 
base station, to attach to the network, it sends an attach message containing its 
international mobile subscriber identity (IMSI) that is relayed to the Mobility 
Management Entity (MME). The MME will then send the IMSI and informa-
tion about the visited network (shown as “VN info” in Figure 8.33) to the 
Home Subscriber Service (HSS) in the device’s home network. In Section 7.4, 
we described how the MME is able to communicate with the HSS through the 
all-IP global network of interconnected cellular networks.

 b. Authentication response from HSS. The HSS performs cryptographic 
 operations using the shared-in-advance secret key, KHSS-M, to derive an 
 authentication token, auth_token, and an expected authentication response 
token, xresHSS. auth_token contains information encrypted by the HSS  
using KHSS-M that will allow the mobile device to know that whoever 
computed auth_token knows the secret key. For example, suppose the 
HSS  computes KHSS-M(IMSI), that is, encrypts the device’s IMSI using KHSS-M 
and sends that value as auth_token. When the mobile device receives that 
encrypted value and uses its secret key to decrypt this value, that is, to  compute 
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Figure 8.33 ♦  Mutual authentication and key agreement in a 4G LTE 
cellular network
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KHSS-M(KHSS-M(IMSI)) 5 IMSI, it knows that the HSS that generated auth_
token knows its secret key. The mobile device can thus authenticate the HSS.

  The expected authentication response token, xresHSS, contains a value that the 
mobile device will need to be able to compute (using KHSS-M) and return to the 
MME to prove that it (the mobile device) knows the secret key, thus authenti-
cating the mobile device to the MME.

  Note that the MME only plays a middleman role here, receiving the authenti-
cation response message, keeping xresHSS for later use, extracting the authen-
tication token and forwarding it to the mobile device. In particular it need not 
know, and will not learn, the secret key, KHSS-M.

 c. Authentication response from mobile device. The mobile device receives 
auth_token and computes KHSS-M(KHSS-M(IMSI)) 5 IMSI, thus authenticating 
the HSS. The mobile device then computes a value resM—using its secret key 
to make the exact same cryptographic calculation that the HSS had made to 
compute xresHSS—and sends this value to the MME.

 d. Mobile device authentication. The MMS compares the mobile-computed value 
of resM with the HSS-computed value of xresHSS. If they match, the mobile 
device is authenticated, since the mobile has proven to the MME that it and the 
HSS both know the common secret key. The MMS informs the base station 
and mobile device that mutual authentication is complete, and sends the base 
station keys that will be used in step e.

 e. Data plane and control plane key derivation. The mobile device and the base 
station will each determine the keys used for encrypting/decrypting their frame 
transmissions over the wireless channel. Separate keys will be derived for data 
plane and control plane frame transmissions. The AES encryption algorithm 
that we saw in use in 802.11 networks is also used in 4G/5G networks.

Our discussion above has focused on authentication and key agreement in 4G 
networks. Although much of the 4G security is being carried forward into 5G, there 
are some important changes:

• First, note that in our discussion above that it is the MME in the visited network 
that makes the authentication decision. A significant change underway in 5G 
network security is to allow authentication services to be provided by the home 
network, with the visited network playing an even smaller middleman role. While 
the visited network may still reject an authentication from a mobile device, it is up 
to the home network to accept the authentication request in this new 5G scenario.

• 5G networks will support the Authentication and Key Agreement (AKA) proto-
col described above, as well as two new additional protocols for authentication 
and key agreement. One of these, known as AKA¿, is closely related to the 4G 
AKA protocol. It also uses the shared-in-advance secret key, KHSS-M. However, 
since it uses the EAP protocol that we encountered earlier in Figure 8.33 in the 
context of 802.11 authentication, 5G AKA¿ has different message flows than that 
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of 4G AKA. The second new 5G protocol is meant for an IoT environment, and 
does not require a shared-in-advance secret key.

• An additional change in 5G is to use public key cryptography techniques to 
encrypt a device’s permanent identity (i.e., its IMSI) so that it is never transmit-
ted in cleartext.

In this section, we have only briefly overviewed mutual authentication and key 
agreement in 4G /5G networks. As we have seen, they make extensive use of the 
security techniques that we studied earlier in this chapter. More details on 4G/5G 
security can be found in [3GPP SAE 2019; Cable Labs 2019; Cichonski 2017].

8.9 Operational Security: Firewalls and Intrusion 
Detection Systems

We’ve seen throughout this chapter that the Internet is not a very safe place—bad 
guys are out there, wreaking all sorts of havoc. Given the hostile nature of the Inter-
net, let’s now consider an organization’s network and the network administrator who 
administers it. From a network administrator’s point of view, the world divides quite 
neatly into two camps—the good guys (who belong to the organization’s network, 
and who should be able to access resources inside the organization’s network in a 
relatively unconstrained manner) and the bad guys (everyone else, whose access to 
network resources must be carefully scrutinized). In many organizations, ranging 
from medieval castles to modern corporate office buildings, there is a single point of 
entry/exit where both good guys and bad guys entering and leaving the organization 
are security-checked. In a castle, this was done at a gate at one end of the drawbridge; 
in a corporate building, this is done at the security desk. In a computer network, 
when traffic entering/leaving a network is security-checked, logged, dropped, or for-
warded, it is done by operational devices known as firewalls, intrusion detection 
systems (IDSs), and intrusion prevention systems (IPSs).

8.9.1 Firewalls
A firewall is a combination of hardware and software that isolates an organization’s 
internal network from the Internet at large, allowing some packets to pass and block-
ing others. A firewall allows a network administrator to control access between the 
outside world and resources within the administered network by managing the traffic 
flow to and from these resources. A firewall has three goals:

• All traffic from outside to inside, and vice versa, passes through the firewall. 
Figure 8.34 shows a firewall, sitting squarely at the boundary between the admin-
istered network and the rest of the Internet. While large organizations may use 
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multiple levels of firewalls or distributed firewalls [Skoudis 2006], locating a 
firewall at a single access point to the network, as shown in Figure 8.34, makes it 
easier to manage and enforce a security-access policy.

• Only authorized traffic, as defined by the local security policy, will be allowed 
to pass. With all traffic entering and leaving the institutional network passing 
through the firewall, the firewall can restrict access to authorized traffic.

• The firewall itself is immune to penetration. The firewall itself is a device con-
nected to the network. If not designed or installed properly, it can be compro-
mised, in which case it provides only a false sense of security (which is worse 
than no firewall at all!).

Cisco and Check Point are two of the leading firewall vendors today. You can also easily 
create a firewall (packet filter) from a Linux box using iptables (public-domain software 
that is normally shipped with Linux). Furthermore, as discussed in Chapters 4 and 5, fire-
walls are now frequently implemented in routers and controlled remotely using SDNs.

Firewalls can be classified in three categories: traditional packet filters, state-
ful filters, and application gateways. We’ll cover each of these in turn in the fol-
lowing subsections.

Figure 8.34 ♦  Firewall placement between the administered network and 
the outside world
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Traditional Packet Filters

As shown in Figure 8.34, an organization typically has a gateway router connecting 
its internal network to its ISP (and hence to the larger public Internet). All traffic leav-
ing and entering the internal network passes through this router, and it is at this router 
where packet filtering occurs. A packet filter examines each datagram in isolation, 
determining whether the datagram should be allowed to pass or should be dropped 
based on administrator-specific rules. Filtering decisions are typically based on:

• IP source or destination address

• Protocol type in IP datagram field: TCP, UDP, ICMP, OSPF, and so on

• TCP or UDP source and destination port

• TCP flag bits: SYN, ACK, and so on

• ICMP message type

• Different rules for datagrams leaving and entering the network

• Different rules for the different router interfaces

A network administrator configures the firewall based on the policy of the organ-
ization. The policy may take user productivity and bandwidth usage into account as 
well as the security concerns of an organization. Table 8.5 lists a number of possible 
polices an organization may have, and how they would be addressed with a packet 
filter. For example, if the organization doesn’t want any incoming TCP connections 
except those for its public Web server, it can block all incoming TCP SYN segments 
except TCP SYN segments with destination port 80 and the destination IP address 
corresponding to the Web server. If the organization doesn’t want its users to monop-
olize access bandwidth with Internet radio applications, it can block all not-critical 

Table 8.5 ♦  Policies and corresponding filtering rules for an organization’s 
network 130.207/16 with Web server at 130.207.244.203

Policy Firewall Setting

No outside Web access. Drop all outgoing packets to any IP address, port 80.
No incoming TCP connections, except those  
for organization’s public Web server only.

Drop all incoming TCP SYN packets to any IP except 
130.207.244.203, port 80.

Prevent Web-radios from eating up the  
available bandwidth.

Drop all incoming UDP packets—except DNS packets.

Prevent your network from being used for a  
smurf DoS attack.

Drop all ICMP ping packets going to a “broadcast” 
address (eg 130.207.255.255).

Prevent your network from being tracerouted. Drop all outgoing ICMP TTL expired traffic.
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UDP traffic (since Internet radio is often sent over UDP). If the organization doesn’t 
want its internal network to be mapped (tracerouted) by an outsider, it can block all 
ICMP TTL expired messages leaving the organization’s network.

A filtering policy can be based on a combination of addresses and port numbers. 
For example, a filtering router could forward all Telnet datagrams (those with a port 
number of 23) except those going to and coming from a list of specific IP addresses. 
This policy permits Telnet connections to and from hosts on the allowed list. Unfor-
tunately, basing the policy on external addresses provides no protection against data-
grams that have had their source addresses spoofed.

Filtering can also be based on whether or not the TCP ACK bit is set. This trick 
is quite useful if an organization wants to let its internal clients connect to external 
servers but wants to prevent external clients from connecting to internal servers. 
Recall from Section 3.5 that the first segment in every TCP connection has the ACK 
bit set to 0, whereas all the other segments in the connection have the ACK bit set to 1.  
Thus, if an organization wants to prevent external clients from initiating connections 
to internal servers, it simply filters all incoming segments with the ACK bit set to 0. 
This policy kills all TCP connections originating from the outside, but permits con-
nections originating internally.

Firewall rules are implemented in routers with access control lists, with each 
router interface having its own list. An example of an access control list for an organ-
ization 222.22/16 is shown in Table 8.6. This access control list is for an interface 
that connects the router to the organization’s external ISPs. Rules are applied to each 
datagram that passes through the interface from top to bottom. The first two rules 
together allow internal users to surf the Web: The first rule allows any TCP packet 
with destination port 80 to leave the organization’s network; the second rule allows 
any TCP packet with source port 80 and the ACK bit set to enter the organization’s 
network. Note that if an external source attempts to establish a TCP connection with 

Table 8.6 ♦ An access control list for a router interface

action source address dest address protocol source port dest port flag bit

allow 222.22/16 outside of 
222.22/16

TCP > 1023 80 any

allow outside of 
222.22/16

222.22/16 TCP 80 > 1023 ACK

allow 222.22/16 outside of 
222.22/16

UDP > 1023 53 —

allow outside of 
222.22/16

222.22/16 UDP 53 > 1023 —

deny all all all all all all
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an internal host, the connection will be blocked, even if the source or destination 
port is 80. The second two rules together allow DNS packets to enter and leave the 
organization’s network. In summary, this rather restrictive access control list blocks 
all traffic except Web traffic initiated from within the organization and DNS traffic. 
[CERT Filtering 2012] provides a list of recommended port/protocol packet filterings 
to avoid a number of well-known security holes in existing network applications.

Readers with sharp memories may recall we encountered access control lists 
similar to Table 8.6 when we studied generalized forwarding in Section 4.4.3 of 
Chapter 4. Indeed, we provided an example there of how generalized forwarding 
rules can be used to build a packet-filtering firewall.

Stateful Packet Filters

In a traditional packet filter, filtering decisions are made on each packet in isola-
tion. Stateful filters actually track TCP connections, and use this knowledge to make 
 filtering decisions.

To understand stateful filters, let’s reexamine the access control list in 
Table 8.6. Although rather restrictive, the access control list in Table 8.6 neverthe-
less allows any packet arriving from the outside with ACK = 1 and source port 80 
to get through the filter. Such packets could be used by attackers in attempts to 
crash internal systems with malformed packets, carry out denial-of-service attacks, 
or map the internal network. The naive solution is to block TCP ACK packets as 
well, but such an approach would prevent the organization’s internal users from 
surfing the Web.

Stateful filters solve this problem by tracking all ongoing TCP connections in 
a connection table. This is possible because the firewall can observe the beginning 
of a new connection by observing a three-way handshake (SYN, SYNACK, and 
ACK); and it can observe the end of a connection when it sees a FIN packet for 
the connection. The firewall can also (conservatively) assume that the connection 
is over when it hasn’t seen any activity over the connection for, say, 60 seconds. 
An example connection table for a firewall is shown in Table 8.7. This connec-
tion table indicates that there are currently three ongoing TCP connections, all of 
which have been initiated from within the organization. Additionally, the stateful 
filter includes a new column, “check connection,” in its access control list, as 

Table 8.7 ♦ Connection table for stateful filter

source address dest address source port dest port

222.22.1.7 37.96.87.123 12699 80
222.22.93.2 199.1.205.23 37654 80
222.22.65.143 203.77.240.43 48712 80
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shown in Table 8.8. Note that Table 8.8 is identical to the access control list in 
Table 8.6, except now it indicates that the connection should be checked for two 
of the rules.

Let’s walk through some examples to see how the connection table and the 
extended access control list work hand-in-hand. Suppose an attacker attempts 
to send a malformed packet into the organization’s network by sending a data-
gram with TCP source port 80 and with the ACK flag set. Further suppose that 
this packet has source port number 12543 and source IP address 150.23.23.155. 
When this packet reaches the firewall, the firewall checks the access control list in 
Table 8.7, which indicates that the connection table must also be checked before 
permitting this packet to enter the organization’s network. The firewall duly 
checks the connection table, sees that this packet is not part of an ongoing TCP 
connection, and rejects the packet. As a second example, suppose that an internal 
user wants to surf an external Web site. Because this user first sends a TCP SYN 
segment, the user’s TCP connection gets recorded in the connection table. When 
the Web server sends back packets (with the ACK bit necessarily set), the fire-
wall checks the table and sees that a corresponding connection is in progress. The 
firewall will thus let these packets pass, thereby not interfering with the internal 
user’s Web surfing activity.

Application Gateway

In the examples above, we have seen that packet-level filtering allows an organiza-
tion to perform coarse-grain filtering on the basis of the contents of IP and TCP/UDP 
headers, including IP addresses, port numbers, and acknowledgment bits. But what if 
an organization wants to provide a Telnet service to a restricted set of internal users 

Table 8.8 ♦ Access control list for stateful filter

action source  
address

dest  
address

protocol source port dest port flag bit check 
conxion

allow 222.22/16 outside of 
222.22/16

TCP > 1023 80 any

allow outside of 
222.22/16

222.22/16 TCP 80 > 1023 ACK X

allow 222.22/16 outside of 
222.22/16

UDP > 1023 53 —

allow outside of 
222.22/16

222.22/16 UDP 53 > 1023 — X

deny all all all all all all
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(as opposed to IP addresses)? And what if the organization wants such privileged 
users to authenticate themselves first before being allowed to create Telnet sessions 
to the outside world? Such tasks are beyond the capabilities of traditional and stateful 
filters. Indeed, information about the identity of the internal users is application-layer 
data and is not included in the IP/TCP/UDP headers.

To have finer-level security, firewalls must combine packet filters with appli-
cation gateways. Application gateways look beyond the IP/TCP/UDP headers and 
make policy decisions based on application data. An application gateway is an 
application-specific server through which all application data (inbound and out-
bound) must pass. Multiple application gateways can run on the same host, but each 
gateway is a separate server with its own processes.

To get some insight into application gateways, let’s design a firewall that allows 
only a restricted set of internal users to Telnet outside and prevents all external clients 
from Telneting inside. Such a policy can be accomplished by implementing a com-
bination of a packet filter (in a router) and a Telnet application gateway, as shown in 
Figure 8.35. The router’s filter is configured to block all Telnet connections except 
those that originate from the IP address of the application gateway. Such a filter 
configuration forces all outbound Telnet connections to pass through the application 
gateway. Consider now an internal user who wants to Telnet to the outside world. 
The user must first set up a Telnet session with the application gateway. An applica-
tion running in the gateway, which listens for incoming Telnet sessions, prompts the 

Figure 8.35 ♦ Firewall consisting of an application gateway and a filter
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user for a user ID and password. When the user supplies this information, the appli-
cation gateway checks to see if the user has permission to Telnet to the outside world. 
If not, the Telnet connection from the internal user to the gateway is terminated by 
the gateway. If the user has permission, then the gateway (1) prompts the user for the 
host name of the external host to which the user wants to connect, (2) sets up a Telnet 
session between the gateway and the external host, and (3) relays to the external host 
all data arriving from the user, and relays to the user all data arriving from the exter-
nal host. Thus, the Telnet application gateway not only performs user authorization 
but also acts as a Telnet server and a Telnet client, relaying information between the 
user and the remote Telnet server. Note that the filter will permit step 2 because the 
gateway initiates the Telnet connection to the outside world.

ANONYMITY AND PRIVACY

Suppose you want to visit a controversial Web site (for example, a political activist 
site) and you (1) don’t want to reveal your IP address to the Web site, (2) don’t want 
your local ISP (which may be your home or office ISP) to know that you are visiting 
the site, and (3) don’t want your local ISP to see the data you are exchanging with 
the site. If you use the traditional approach of connecting directly to the Web site 
without any encryption, you fail on all three counts. Even if you use SSL, you fail 
on the first two counts: Your source IP address is presented to the Web site in every 
datagram you send; and the destination address of every packet you send can easily 
be sniffed by your local ISP.

To obtain privacy and anonymity, you can instead use a combination of a trusted 
proxy server and SSL, as shown in Figure 8.36. With this approach, you first make 
an SSL connection to the trusted proxy. You then send, into this SSL connection, 

CASE HISTORY

Figure 8.36 ♦ Providing anonymity and privacy with a proxy
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an HTTP request for a page at the desired site. When the proxy receives the SSL-
encrypted HTTP request, it decrypts the request and forwards the cleartext HTTP 
request to the Web site. The Web site then responds to the proxy, which in turn for-
wards the response to you over SSL. Because the Web site only sees the IP address 
of the proxy, and not of your client’s address, you are indeed obtaining anony-
mous access to the Web site. And because all traffic between you and the proxy is 
encrypted, your local ISP cannot invade your privacy by logging the site you visited 
or recording the data you are exchanging. Many companies today (such as proxify 
.com) make available such proxy services.

Of course, in this solution, your proxy knows everything: It knows your IP address 
and the IP address of the site you’re surfing; and it can see all the traffic in  cleartext 
exchanged between you and the Web site. Such a solution, therefore, is only as 
good as the trustworthiness of the proxy. A more robust approach, taken by the 
TOR anonymizing and privacy service, is to route your traffic through a series of 
non- colluding proxy servers [TOR 2020]. In particular, TOR allows independent 
 individuals to contribute proxies to its proxy pool. When a user connects to a server 
using TOR, TOR randomly chooses (from its proxy pool) a chain of three proxies and 
routes all traffic between client and server over the chain. In this manner, assuming 
the proxies do not collude, no one knows that communication took place between 
your IP address and the target Web site. Furthermore, although cleartext is sent 
between the last proxy and the server, the last proxy doesn’t know what IP address  
is sending and receiving the cleartext.

Internal networks often have multiple application gateways, for example, gate-
ways for Telnet, HTTP, FTP, and e-mail. In fact, an organization’s mail server  
(see Section 2.3) and Web cache are application gateways.

Application gateways do not come without their disadvantages. First, a different 
application gateway is needed for each application. Second, there is a performance 
penalty to be paid, since all data will be relayed via the gateway. This becomes a 
concern particularly when multiple users or applications are using the same gateway 
machine. Finally, the client software must know how to contact the gateway when 
the user makes a request, and must know how to tell the application gateway what 
external server to connect to.

8.9.2 Intrusion Detection Systems
We’ve just seen that a packet filter (traditional and stateful) inspects IP, TCP, UDP, 
and ICMP header fields when deciding which packets to let pass through the firewall. 
However, to detect many attack types, we need to perform deep packet inspection, 
that is, look beyond the header fields and into the actual application data that the 
packets carry. As we saw in Section 8.9.1, application gateways often do deep packet 
inspection. But an application gateway only does this for a specific application.
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Clearly, there is a niche for yet another device—a device that not only examines 
the headers of all packets passing through it (like a packet filter), but also  performs 
deep packet inspection (unlike a packet filter). When such a device observes a 
 suspicious packet, or a suspicious series of packets, it could prevent those packets 
from entering the organizational network. Or, because the activity is only deemed 
as suspicious, the device could let the packets pass, but send alerts to a network 
administrator, who can then take a closer look at the traffic and take appropriate 
actions. A device that generates alerts when it observes potentially malicious traffic 
is called an intrusion detection system (IDS). A device that filters out suspicious 
traffic is called an intrusion prevention system (IPS). In this section we study 
both  systems—IDS and IPS—together, since the most interesting technical aspect 
of these systems is how they detect suspicious traffic (and not whether they send 
alerts or drop packets). We will henceforth collectively refer to IDS systems and 
IPS systems as IDS systems.

An IDS can be used to detect a wide range of attacks, including network map-
ping (emanating, for example, from nmap), port scans, TCP stack scans, DoS band-
width-flooding attacks, worms and viruses, OS vulnerability attacks, and application 
vulnerability attacks. (See Section 1.6 for a survey of network attacks.) Today, 
thousands of organizations employ IDS systems. Many of these deployed systems 
are proprietary, marketed by Cisco, Check Point, and other security equipment ven-
dors. But many of the deployed IDS systems are public-domain systems, such as the 
immensely popular Snort IDS system (which we’ll discuss shortly).

An organization may deploy one or more IDS sensors in its organizational net-
work. Figure 8.37 shows an organization that has three IDS sensors. When multi-
ple sensors are deployed, they typically work in concert, sending information about 
suspicious traffic activity to a central IDS processor, which collects and integrates 
the information and sends alarms to network administrators when deemed appropri-
ate. In Figure 8.37, the organization has partitioned its network into two regions: a 
high-security region, protected by a packet filter and an application gateway and 
monitored by IDS sensors; and a lower-security region—referred to as the demilita-
rized zone (DMZ)—which is protected only by the packet filter, but also monitored 
by IDS sensors. Note that the DMZ includes the organization’s servers that need to 
communicate with the outside world, such as its public Web server and its authorita-
tive DNS server.

You may be wondering at this stage, why multiple IDS sensors? Why not just 
place one IDS sensor just behind the packet filter (or even integrated with the packet 
filter) in Figure 8.37? We will soon see that an IDS not only needs to do deep packet 
inspection, but must also compare each passing packet with tens of thousands of 
“signatures”; this can be a significant amount of processing, particularly if the organ-
ization receives gigabits/sec of traffic from the Internet. By placing the IDS sensors 
further downstream, each sensor sees only a fraction of the organization’s traffic, 
and can more easily keep up. Nevertheless, high-performance IDS and IPS systems 
are available today, and many organizations can actually get by with just one sensor 
located near its access router.
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IDS systems are broadly classified as either signature-based systems or  anomaly- 
based systems. A signature-based IDS maintains an extensive database of attack 
signatures. Each signature is a set of rules pertaining to an intrusion activity. A 
signature may simply be a list of characteristics about a single packet (e.g., source 
and destination port numbers, protocol type, and a specific string of bits in the 
packet payload), or may relate to a series of packets. The signatures are normally 
created by skilled network security engineers who research known attacks. An 
organization’s network administrator can customize the signatures or add its own 
to the database.

Operationally, a signature-based IDS sniffs every packet passing by it, com-
paring each sniffed packet with the signatures in its database. If a packet (or 
series of packets) matches a signature in the database, the IDS generates an 
alert. The alert could be sent to the network administrator in an e-mail message, 
could be sent to the network management system, or could simply be logged for 
future inspection.

Figure 8.37 ♦  An organization deploying a filter, an application gateway, 
and IDS sensors
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Signature-based IDS systems, although widely deployed, have a number of limi-
tations. Most importantly, they require previous knowledge of the attack to generate 
an accurate signature. In other words, a signature-based IDS is completely blind to 
new attacks that have yet to be recorded. Another disadvantage is that even if a sig-
nature is matched, it may not be the result of an attack, so that a false alarm is gener-
ated. Finally, because every packet must be compared with an extensive collection 
of signatures, the IDS can become overwhelmed with processing and actually fail to 
detect many malicious packets.

An anomaly-based IDS creates a traffic profile as it observes traffic in normal 
operation. It then looks for packet streams that are statistically unusual, for exam-
ple, an inordinate percentage of ICMP packets or a sudden exponential growth in 
port scans and ping sweeps. The great thing about anomaly-based IDS systems is 
that they don’t rely on previous knowledge about existing attacks—that is, they can 
potentially detect new, undocumented attacks. On the other hand, it is an extremely 
challenging problem to distinguish between normal traffic and statistically unusual 
traffic. To date, most IDS deployments are primarily signature-based, although some 
include some anomaly-based features.

Snort

Snort is a public-domain, open source IDS with hundreds of thousands of existing 
deployments [Snort 2012; Koziol 2003]. It can run on Linux, UNIX, and Windows 
platforms. It uses the generic sniffing interface libpcap, which is also used by Wire-
shark and many other packet sniffers. It can easily handle 100 Mbps of traffic; for 
installations with gibabit/sec traffic rates, multiple Snort sensors may be needed.

To gain some insight into Snort, let’s take a look at an example of a Snort 
signature:

alert icmp $EXTERNAL_NET any -> $HOME_NET any 
(msg:”ICMP PING NMAP”; dsize: 0; itype: 8;)

This signature is matched by any ICMP packet that enters the organization’s network 
($HOME_NET) from the outside ($EXTERNAL_NET), is of type 8 (ICMP ping), and 
has an empty payload (dsize = 0). Since nmap (see Section 1.6) generates ping pack-
ets with these specific characteristics, this signature is designed to detect nmap ping 
sweeps. When a packet matches this signature, Snort generates an alert that includes 
the message “ICMP PING NMAP”.

Perhaps what is most impressive about Snort is the vast community of users and 
security experts that maintain its signature database. Typically within a few hours 
of a new attack, the Snort community writes and releases an attack signature, which 
is then downloaded by the hundreds of thousands of Snort deployments distributed 
around the world. Moreover, using the Snort signature syntax, network administra-
tors can tailor the signatures to their own organization’s needs by either modifying 
existing signatures or creating entirely new ones.
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8.10 Summary

In this chapter, we’ve examined the various mechanisms that our secret lovers, Bob 
and Alice, can use to communicate securely. We’ve seen that Bob and Alice are 
interested in confidentiality (so they alone are able to understand the contents of a 
transmitted message), end-point authentication (so they are sure that they are talking 
with each other), and message integrity (so they are sure that their messages are not 
altered in transit). Of course, the need for secure communication is not confined to 
secret lovers. Indeed, we saw in Sections 8.5 through 8.8 that security can be used in 
various layers in a network architecture to protect against bad guys who have a large 
arsenal of possible attacks at hand.

The first part of this chapter presented various principles underlying secure 
communication. In Section 8.2, we covered cryptographic techniques for encrypting 
and decrypting data, including symmetric key cryptography and public key cryp-
tography. DES and RSA were examined as specific case studies of these two major 
classes of cryptographic techniques in use in today’s networks.

In Section 8.3, we examined two approaches for providing message integ-
rity: message authentication codes (MACs) and digital signatures. The two 
approaches have a number of parallels. Both use cryptographic hash functions 
and both techniques enable us to verify the source of the message as well as the 
integrity of the message itself. One important difference is that MACs do not 
rely on encryption whereas digital signatures require a public key infrastruc-
ture. Both techniques are extensively used in practice, as we saw in Sections 8.5 
through 8.8. Furthermore, digital signatures are used to create digital certificates, 
which are important for verifying the validity of public keys. In Section 8.4, we 
 examined endpoint authentication and introduced nonces to defend against the 
replay attack.

In Sections 8.5 through 8.8 we examined several security networking protocols 
that enjoy extensive use in practice. We saw that symmetric key cryptography is at 
the core of PGP, SSL, IPsec, and wireless security. We saw that public key cryptog-
raphy is crucial for both PGP and TLS. We saw that PGP uses digital signatures for 
message integrity, whereas TLS and IPsec use MACs. We also explored security in 
wireless networks, including WiFi networks and 4G/5G cellular networks. Having 
now an understanding of the basic principles of cryptography, and having studied 
how these principles are actually used, you are now in position to design your own 
secure network protocols!

Armed with the techniques covered in Sections 8.2 through 8.8, Bob and 
Alice can communicate securely. But confidentiality is only a small part of the 
network security picture. As we learned in Section 8.9, increasingly, the focus in 
network security has been on securing the network infrastructure against a poten-
tial onslaught by the bad guys. In the latter part of this chapter, we thus covered 
firewalls and IDS systems which inspect packets entering and leaving an organiza-
tion’s network.
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Homework Problems and Questions

Chapter 8 Review Problems
SECTION 8.1
   R1. What are the differences between message confidentiality and message integ-

rity? Can you have confidentiality without integrity? Can you have integrity 
without confidentiality? Justify your answer.

   R2. Internet entities (routers, switches, DNS servers, Web servers, user end 
systems, and so on) often need to communicate securely. Give three  
specific example pairs of Internet entities that may want secure  
communication.

SECTION 8.2
   R3. From a service perspective, what is an important difference between a 

symmetric-key system and a public-key system?

   R4. Suppose that an intruder has an encrypted message as well as the decrypted 
version of that message. Can the intruder mount a ciphertext-only attack, a 
known-plaintext attack, or a chosen-plaintext attack?

   R5. Consider an 8-bit block cipher. How many possible input blocks does  
this cipher have? How many possible mappings are there? If we view  
each mapping as a key, then how many possible keys does this  
cipher have?

   R6. Suppose N people want to communicate with each of N - 1 other peo-
ple using symmetric key encryption. All communication between any two 
people, i and j, is visible to all other people in this group of N, and no other 
person in this group should be able to decode their communication. How 
many keys are required in the system as a whole? Now suppose that public 
key encryption is used. How many keys are required in this case?

   R7. Suppose n =  10,000, a =  10,023, and b =  10,004. Use an identity of modu-
lar arithmetic to calculate in your head (a # b) mod n.

   R8. Suppose you want to encrypt the message 10101111 by encrypting the 
decimal number that corresponds to the message. What is the decimal 
number?

SECTIONS 8.3–8.4 
   R9. In what way does a hash provide a better message integrity check than a 

checksum (such as the Internet checksum)?

 R10. Can you “decrypt” a hash of a message to get the original message? Explain 
your answer.
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 R11. Consider a variation of the MAC algorithm (Figure 8.9) where the sender 
sends (m, H(m) +  s), where H(m) +  s is the concatenation of H(m) and s. Is 
this variation flawed? Why or why not?

 R12. What does it mean for a signed document to be verifiable and nonforgeable?

 R13. In what way does the public-key encrypted message hash provide a better 
digital signature than the public-key encrypted message?

 R14. Suppose certifier.com creates a certificate for foo.com. Typically, the 
entire certificate would be encrypted with certifier.com’s public key.  
True or false?

 R15. Suppose Alice has a message that she is ready to send to anyone who asks. 
Thousands of people want to obtain Alice’s message, but each wants to be 
sure of the integrity of the message. In this context, do you think a MAC-
based or a digital-signature-based integrity scheme is more suitable? Why?

 R16. What is the purpose of a nonce in an end-point authentication protocol?

 R17. What does it mean to say that a nonce is a once-in-a-lifetime value? In whose 
lifetime?

 R18. Is the message integrity scheme based on HMAC susceptible to playback 
attacks? If so, how can a nonce be incorporated into the scheme to remove 
this susceptibility?

SECTIONS 8.5–8.8
 R19. Suppose that Bob receives a PGP message from Alice. How does Bob know 

for sure that Alice created the message (rather than, say, Trudy)? Does PGP 
use a MAC for message integrity?

 R20. In the TLS record, there is a field for TLS sequence numbers. True or false?

 R21. What is the purpose of the random nonces in the TLS handshake?

 R22. Suppose an TLS session employs a block cipher with CBC. True or false: 
The server sends to the client the IV in the clear.

 R23. Suppose Bob initiates a TCP connection to Trudy who is pretending to be 
Alice. During the handshake, Trudy sends Bob Alice’s certificate. In what 
step of the TLS handshake algorithm will Bob discover that he is not com-
municating with Alice?

 R24. Consider sending a stream of packets from Host A to Host B using IPsec. 
Typically, a new SA will be established for each packet sent in the stream. 
True or false?

 R25. Suppose that TCP is being run over IPsec between headquarters and the 
branch office in Figure 8.28. If TCP retransmits the same packet, then the 
two corresponding packets sent by R1 packets will have the same sequence 
number in the ESP header. True or false?

HOMEWORK PROBLEMS AND QUESTIONS     681
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 R26. An IKE SA and an IPsec SA are the same thing. True or false?

 R27. Consider WEP for 802.11. Suppose that the data is 10101100 and the key-
stream is 1111000. What is the resulting ciphertext?

SECTION 8.9
 R28. Stateful packet filters maintain two data structures. Name them and briefly 

describe what they do.

 R29. Consider a traditional (stateless) packet filter. This packet filter may filter 
packets based on TCP flag bits as well as other header fields. True or false?

 R30. In a traditional packet filter, each interface can have its own access control 
list. True or false?

 R31. Why must an application gateway work in conjunction with a router filter to 
be effective?

 R32. Signature-based IDSs and IPSs inspect into the payloads of TCP and UDP 
segments. True or false?

Problems

 P1. Using the monoalphabetic cipher in Figure 8.3, encode the message “This is 
an easy problem.” Decode the message “rmij’u uamu xyj.”

 P2. Show that Trudy’s known-plaintext attack, in which she knows the (cipher-
text, plaintext) translation pairs for seven letters, reduces the number of 
possible substitutions to be checked in the example in Section 8.2.1 by 
approximately 109.

 P3. Consider the polyalphabetic system shown in Figure 8.4. Will a chosen-
plaintext attack that is able to get the plaintext encoding of the message “The 
quick brown fox jumps over the lazy dog.” be sufficient to decode all mes-
sages? Why or why not?

 P4. Consider the block cipher in Figure 8.5. Suppose that each block cipher 
Ti simply reverses the order of the eight input bits (so that, for example, 
11110000 becomes 00001111). Further suppose that the 64-bit scrambler 
does not modify any bits (so that the output value of the mth bit is equal to 
the input value of the mth bit). (a) With n = 3 and the original 64-bit input 
equal to 10100000 repeated eight times, what is the value of the output?  
(b) Repeat part (a) but now change the last bit of the original 64-bit input 
from a 0 to a 1. (c) Repeat parts (a) and (b) but now suppose that the 64-bit 
scrambler inverses the order of the 64 bits.

 P5. Consider the block cipher in Figure 8.5. For a given “key” Alice and Bob would 
need to keep eight tables, each 8 bits by 8 bits. For Alice (or Bob) to store all 
eight tables, how many bits of storage are necessary? How does this number 
compare with the number of bits required for a full-table 64-bit block cipher?

M08_KURO1557_08_SE_C08.indd   682 11/02/20   5:17 PM



 P6. Consider the 3-bit block cipher in Table 8.1. Suppose the plaintext is 
100100100. (a) Initially assume that CBC is not used. What is the resulting 
ciphertext? (b) Suppose Trudy sniffs the ciphertext. Assuming she knows that 
a 3-bit block cipher without CBC is being employed (but doesn’t know the 
specific cipher), what can she surmise? (c) Now suppose that CBC is used 
with IV =  111. What is the resulting ciphertext?

 P7. (a) Using RSA, choose p = 3 and q = 11, and encode the word “dog” by 
encrypting each letter separately. Apply the decryption algorithm to the 
encrypted version to recover the original plaintext message. (b) Repeat part 
(a) but now encrypt “dog” as one message m.

 P8. Consider RSA with p = 5 and q = 11.

a. What are n and z?

b. Let e be 3. Why is this an acceptable choice for e?

c. Find d such that de =  1 (mod z) and d 6 160.

d. Encrypt the message m =  8 using the key (n, e). Let c denote the corresponding 
ciphertext. Show all work. Hint: To simplify the calculations, use the fact:

 [(a mod n) # (b mod n)] mod n =  (a # b) mod n

 P9. In this problem, we explore the Diffie-Hellman (DH) public-key encryption 
algorithm, which allows two entities to agree on a shared key. The DH algo-
rithm makes use of a large prime number p and another large number g less 
than p. Both p and g are made public (so that an attacker would know them). 
In DH, Alice and Bob each independently choose secret keys, SA and SB, 
respectively. Alice then computes her public key, TA, by raising g to SA and 
then taking mod p. Bob similarly computes his own public key TB by raising 
g to SB and then taking mod p. Alice and Bob then exchange their public keys 
over the Internet. Alice then calculates the shared secret key S by raising TB 
to SA and then taking mod p. Similarly, Bob calculates the shared key S′ by 
raising TA to SB and then taking mod p.

a. Prove that, in general, Alice and Bob obtain the same symmetric key, that 
is, prove S = S′.

b. With p = 11 and g = 2, suppose Alice and Bob choose private keys SA = 5 
and SB = 12, respectively. Calculate Alice’s and Bob’s public keys, TA 
and TB. Show all work.

c. Following up on part (b), now calculate S as the shared symmetric key. 
Show all work.

d. Provide a timing diagram that shows how Diffie-Hellman can be attacked 
by a man-in-the-middle. The timing diagram should have three vertical 
lines, one for Alice, one for Bob, and one for the attacker Trudy.

PROBLEMS     683
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 P10. Suppose Alice wants to communicate with Bob using symmetric key cryp-
tography using a session key KS. In Section 8.2, we learned how public-key 
cryptography can be used to distribute the session key from Alice to Bob.  
In this problem, we explore how the session key can be distributed—without 
public key cryptography—using a key distribution center (KDC). The KDC 
is a server that shares a unique secret symmetric key with each registered 
user. For Alice and Bob, denote these keys by KA@KDC and KB@KDC. Design a 
scheme that uses the KDC to distribute KS to Alice and Bob. Your scheme 
should use three messages to distribute the session key: a message from Alice 
to the KDC; a message from the KDC to Alice; and finally a message from 
Alice to Bob. The first message is KA@KDC (A, B). Using the notation, KA@KDC, 
KB@KDC, S, A, and B answer the following questions.

a. What is the second message?

b. What is the third message?

 P11. Compute a third message, different from the two messages in Figure 8.8, that 
has the same checksum as the messages in Figure 8.8.

 P12. Suppose Alice and Bob share two secret keys: an authentication key S1 and a 
symmetric encryption key S2. Augment Figure 8.9 so that both integrity and 
confidentiality are provided.

 P13. In the BitTorrent P2P file distribution protocol (see Chapter 2), the seed 
breaks the file into blocks, and the peers redistribute the blocks to each other. 
Without any protection, an attacker can easily wreak havoc in a torrent by 
masquerading as a benevolent peer and sending bogus blocks to a small 
subset of peers in the torrent. These unsuspecting peers then redistribute the 
bogus blocks to other peers, which in turn redistribute the bogus blocks to 
even more peers. Thus, it is critical for BitTorrent to have a mechanism that 
allows a peer to verify the integrity of a block, so that it doesn’t redistrib-
ute bogus blocks. Assume that when a peer joins a torrent, it initially gets a 
.torrent file from a fully trusted source. Describe a simple scheme that 
allows peers to verify the integrity of blocks.

 P14. The OSPF routing protocol uses a MAC rather than digital signatures to provide 
message integrity. Why do you think a MAC was chosen over digital signatures?

 P15. Consider our authentication protocol in Figure 8.18 in which Alice authen-
ticates herself to Bob, which we saw works well (i.e., we found no flaws in 
it). Now suppose that while Alice is authenticating herself to Bob, Bob must 
authenticate himself to Alice. Give a scenario by which Trudy, pretending to 
be Alice, can now authenticate herself to Bob as Alice. (Hint: Consider that 
the sequence of operations of the protocol, one with Trudy initiating and one 
with Bob initiating, can be arbitrarily interleaved. Pay particular attention to 
the fact that both Bob and Alice will use a nonce, and that if care is not taken, 
the same nonce can be used maliciously.)
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 P16. A natural question is whether we can use a nonce and public key cryptography to 
solve the end-point authentication problem in Section 8.4. Consider the following 
natural protocol: (1) Alice sends the message “I am Alice” to Bob. (2) Bob 
chooses a nonce, R, and sends it to Alice. (3) Alice uses her private key to encrypt 
the nonce and sends the resulting value to Bob. (4) Bob applies Alice’s public key 
to the received message. Thus, Bob computes R and authenticates Alice.

a. Diagram this protocol, using the notation for public and private keys 
employed in the textbook.

b. Suppose that certificates are not used. Describe how Trudy can become  
a “woman-in-the-middle” by intercepting Alice’s messages and then 
 pretending to be Alice to Bob.

 P17. Figure 8.21 shows the operations that Alice must perform with PGP to pro-
vide confidentiality, authentication, and integrity. Diagram the corresponding 
operations that Bob must perform on the package received from Alice.

 P18. Suppose Alice wants to send an e-mail to Bob. Bob has a public-private key  
pair (K  B

+, K  B
-), and Alice has Bob’s certificate. But Alice does not have a public, 

private key pair. Alice and Bob (and the entire world) share the same hash 
function H( #).
a. In this situation, is it possible to design a scheme so that Bob can verify 

that Alice created the message? If so, show how with a block diagram for 
Alice and Bob.

b. Is it possible to design a scheme that provides confidentiality for sending 
the message from Alice to Bob? If so, show how with a block diagram for 
Alice and Bob.

 P19. Consider the Wireshark output below for a portion of an SSL session.

a. Is Wireshark packet 112 sent by the client or server?

b. What is the server’s IP address and port number?

c. Assuming no loss and no retransmissions, what will be the sequence num-
ber of the next TCP segment sent by the client?

d. How many SSL records does Wireshark packet 112 contain?

e. Does packet 112 contain a Master Secret or an Encrypted Master Secret or 
neither?

f. Assuming that the handshake type field is 1 byte and each length field is 
3 bytes, what are the values of the first and last bytes of the Master Secret 
(or Encrypted Master Secret)?

g. The client encrypted handshake message takes into account how many 
SSL records?

h. The server encrypted handshake message takes into account how many 
SSL records?
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 P20. In Section 8.6.1, it is shown that without sequence numbers, Trudy (a woman-
in-the middle) can wreak havoc in a TLS session by interchanging TCP 
segments. Can Trudy do something similar by deleting a TCP segment? What 
does she need to do to succeed at the deletion attack? What effect will it have?

(Wireshark screenshot reprinted by permission of the Wireshark Foundation.)

 P21. Suppose Alice and Bob are communicating over a TLS session. Suppose an 
attacker, who does not have any of the shared keys, inserts a bogus TCP segment 
into a packet stream with correct TCP checksum and sequence numbers (and 
correct IP addresses and port numbers). Will TLS at the receiving side accept the 
bogus packet and pass the payload to the receiving application? Why or why not?

 P22. The following true/false questions pertain to Figure 8.28.

a. When a host in 172.16.1/24 sends a datagram to an Amazon.com server, 
the router R1 will encrypt the datagram using IPsec.
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b. When a host in 172.16.1/24 sends a datagram to a host in 172.16.2/24, the 
router R1 will change the source and destination address of the IP datagram.

c. Suppose a host in 172.16.1/24 initiates a TCP connection to a Web server 
in 172.16.2/24. As part of this connection, all datagrams sent by R1 will 
have protocol number 50 in the left-most IPv4 header field.

d. Consider sending a TCP segment from a host in 172.16.1/24 to a host in 
172.16.2/24. Suppose the acknowledgment for this segment gets lost, so 
that TCP resends the segment. Because IPsec uses sequence numbers, R1 
will not resend the TCP segment.

 P23. Consider the example in Figure 8.28. Suppose Trudy is a woman-in-the-
middle, who can insert datagrams into the stream of datagrams going from 
R1 and R2. As part of a replay attack, Trudy sends a duplicate copy of one 
of the datagrams sent from R1 to R2. Will R2 decrypt the duplicate datagram 
and forward it into the branch-office network? If not, describe in detail how 
R2 detects the duplicate datagram.

 P24. Provide a filter table and a connection table for a stateful firewall that is as 
restrictive as possible but accomplishes the following:

a. Allows all internal users to establish Telnet sessions with external hosts.

b. Allows external users to surf the company Web site at 222.22.0.12.

c. But otherwise blocks all inbound and outbound traffic.

  The internal network is 222.22/16. In your solution, suppose that the connec-
tion table is currently caching three connections, all from inside to outside. 
You’ll need to invent appropriate IP addresses and port numbers.

 P25. Suppose Alice wants to visit the Web site activist.com using a TOR-like 
 service. This service uses two non-colluding proxy servers, Proxy1 and 
Proxy2. Alice first obtains the certificates (each containing a public key)  
for Proxy1 and Proxy2 from some central server. Denote K1

+( ), K2
+( ), K1

-( ), 
and K2

-( ) for the encryption/decryption with public and private RSA keys.

a. Using a timing diagram, provide a protocol (as simple as possible) that 
enables Alice to establish a shared session key S1 with Proxy1. Denote 
S1(m) for encryption/decryption of data m with the shared key S1.

b. Using a timing diagram, provide a protocol (as simple as possible) that 
allows Alice to establish a shared session key S2 with Proxy2 without 
revealing her IP address to Proxy2.

c. Assume now that shared keys S1 and S2 are now established. Using a 
timing diagram, provide a protocol (as simple as possible and not using 
public-key cryptography) that allows Alice to request an html page from 
activist.com without revealing her IP address to Proxy2 and without 
revealing to Proxy1 which site she is visiting. Your diagram should end 
with an HTTP request arriving at activist.com.
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Wireshark Lab: SSL

In this lab (available from the book Web site), we investigate the Secure Sockets 
Layer (SSL) protocol. Recall from Section 8.6 that SSL is used for securing a TCP 
connection, and that it is extensively used in practice for secure Internet transactions. 
In this lab, we will focus on the SSL records sent over the TCP connection. We will 
attempt to delineate and classify each of the records, with a goal of understanding the 
why and how for each record. We investigate the various SSL record types as well 
as the fields in the SSL messages. We do so by analyzing a trace of the SSL records 
sent between your host and an e-commerce server.

IPsec Lab

In this lab (available from the book Web site), we will explore how to create IPsec 
SAs between linux boxes. You can do the first part of the lab with two ordinary linux 
boxes, each with one Ethernet adapter. But for the second part of the lab, you will 
need four linux boxes, two of which having two Ethernet adapters. In the second half 
of the lab, you will create IPsec SAs using the ESP protocol in the tunnel mode. You 
will do this by first manually creating the SAs, and then by having IKE create the SAs.
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What led you to specialize in the networking security area?
This is going to sound odd, but the answer is simple: It was fun. My background was in 
 systems programming and systems administration, which leads fairly naturally to security. 
And I’ve always been interested in communications, ranging back to part-time systems 
 programming jobs when I was in college.

My work on security continues to be motivated by two things—a desire to keep com-
puters useful, which means that their function can’t be corrupted by attackers, and a desire 
to protect privacy.

What was your vision for Usenet at the time that you were developing it? And now?
We originally viewed it as a way to talk about computer science and computer program-
ming around the country, with a lot of local use for administrative matters, for-sale ads, and 
so on. In fact, my original prediction was one to two messages per day, from 50 to 100 sites 
at the most—ever. However, the real growth was in people-related topics, including—but not  
limited to—human interactions with computers. My favorite newsgroups, over the years, 
have been things like rec.woodworking, as well as sci.crypt.

To some extent, netnews has been displaced by the Web. Were I to start designing it 
today, it would look very different. But it still excels as a way to reach a very broad audi-
ence that is interested in the topic, without having to rely on particular Web sites.

Has anyone inspired you professionally? In what ways?
Professor Fred Brooks—the founder and original chair of the computer science department 
at the University of North Carolina at Chapel Hill, the manager of the team that developed 
the IBM S/360 and OS/360, and the author of The Mythical Man-Month—was a tremendous 
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influence on my career. More than anything else, he taught outlook and trade-offs—how to 
look at problems in the context of the real world (and how much messier the real world is 
than a theorist would like), and how to balance competing interests in designing a solution. 
Most computer work is engineering—the art of making the right trade-offs to satisfy many 
contradictory objectives.

What is your vision for the future of networking and security?
Thus far, much of the security we have has come from isolation. A firewall, for example, 
works by cutting off access to certain machines and services. But we’re in an era of increas-
ing connectivity—it’s gotten harder to isolate things. Worse yet, our production systems 
require far more separate pieces, interconnected by networks. Securing all that is one of our 
biggest challenges.

What would you say have been the greatest advances in security? How much further do 
we have to go?
At least scientifically, we know how to do cryptography. That’s been a big help. But most 
security problems are due to buggy code, and that’s a much harder problem. In fact, it’s 
the oldest unsolved problem in computer science, and I think it will remain that way. The 
challenge is figuring out how to secure systems when we have to build them out of insecure 
components. We can already do that for reliability in the face of hardware failures; can we 
do the same for security?

Do you have any advice for students about the Internet and networking security?
Learning the mechanisms is the easy part. Learning how to “think paranoid” is harder. You 
have to remember that probability distributions don’t apply—the attackers can and will find 
improbable conditions. And the details matter—a lot.
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acknowledgment number field, 230
ACK received events, 239, 240
active optical networks (AONs), 16
active queue management (AQM), 

322
active scanning, 546
adapters

802.11, 533
ARP query and, 482
CSMA/CD operation and, 485
datagram transmission and, 486
error detection in, 452
Ethernet frames and, 494
frames, 464
jabbering, 494
MAC addresses, 478
monitors, 472
motherboard chipset, 453
network, 453
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adaptive congestion  
control, 197

additive-increase, multiplicative-
decrease (AIMD), 271

fairness of, 276–279
address aggregation, 338
addresses. See also IP addresses; 

MAC addresses
anycast, 348
broadcast, 480
care-of, 593, 594
foreign, 593
IEEE 802.11 wireless LAN,  

554–556
IP broadcast, 340, 342–343
LAN, 478
MAC, 544
mobile node, 593
obtaining with DHCP, 341–344
permanent, 130
physical, 478
realm with private, 344
SIP, 93
temporary IP, 341

addressing, 333–344
classful, 337–338
IP, 186
IPv4, 333–344
link-layer, 453, 478–484
mobility management and, 566
subnet, 336

address lease time, 343
Address Resolution Protocol (ARP), 

480
MAC address, 478–483
packet, 482
table, 482

Address Supporting Organization of 
ICANN, 340–341

ad hoc networks, 534

mobile, 535
vehicular, 535

Adleman, Leonard, 620
administrative autonomy, 396
Advanced Research Projects Agency 

(ARPA), 59, 375
AES (Advanced Encryption 

Standard), 615
agent discovery, 594
aging time, 493
AH protocol. See Authentication 

Header protocol
AIMD. See additive-increase,  

multiplicative-decrease
Akamai, 112, 125
aliasing

host, 124
mail server, 124

Alibaba Cloud, 64
ALOHAnet, 59, 61, 470
ALOHA protocol, 468

carrier sense multiple access 
(CSMA), 469–471

carrier sense multiple access with 
collision detection (CSMA/CD), 
471–474

efficiency, 467
pure, 521
slotted, 466–468
successful slot, 467

alternating-bit protocol, 211, 212
Alto computers, 488
Amazon, 63

cloud services, 505, 506
DNS vulnerabilities, 135
video streaming, 143

Andreessen, Marc, 62
Android devices, 18
anomaly-based systems, 677
anonymity, 674–675
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anycast address, 348
AONs. See active optical  

networks
Apache Web server, 193
API. See Application Programming 

Interface
application architecture, 84
application delay, 43
application gateways, 668
application layer, 50, 81
application-layer message, 53
application-layer  

protocols, 94
DNS, 50
FTP, 50
HTTP, 50
Skype, 94
SMTP, 50

application-level transport reliability, 
197–198

Application Programming Interface 
(API), 87

application protocols, well-known, 
188–189

applications. See also multimedia 
applications; network  
applications

bandwidth-sensitive, 89
control, 414–416
delays, 43
distributed, 5
elastic, 90
loss-tolerant, 89
multimedia, 196
network, 82–95
network-service, 420
SDN control, 414–416

APs. See access points
AQM. See active queue  

management

architectural evolution from 2G to 3G 
to 4G, 568–569

ARP. See Address Resolution 
Protocol

ARPA. See Advanced Research 
Projects Agency

ARPAnet, 228
ALOHAnet connection to, 59
Cerf on, 375
development of, 59–62
routing algorithms,  

383, 390
ARP packet, 553
ARP protocol, 515
ARP query, 515
ARP reply, 515
ARP table, 482
ARQ (Automatic Repeat reQuest) 

protocols, 204
ASN. See autonomous system  

number
AS numbers. See autonomous system 

number
AS-PATH, 403, 405
ASs. See autonomous systems
associate, 503
associations

IEEE 802.11 wireless LAN,  
545–548

security, 653–655
Atheros AR5006, 453
ATM

congestion control, 262
delay and bandwidth guarantees, 

310
frame-relay and, 502
SDN and, 419

ATM Available Bite Rate  
(ABR), 262

congestion control, 262
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AT&T, 32, 380, 446
authentication, 398

end-point, 57–58, 609
4G/5G cellular networks,  

664–667
4G LTE cellular networks, 566, 

664–667
MD5, 398
mutual, 660
in OSPF, 398
sender, 609
shared common secret, 661
simple, 398
wireless LANs, 660

Authentication and Key Agreement 
(AKA) protocol

4G, 665
Authentication Header (AH)  

protocol, 653
authentication key, 627
authentication protocol, 

 636–639
authentication server (AS), 660
authoritative DNS servers,  

127, 516
autonomous system number  

(ASN), 396
autonomous systems (ASs), 396

in BGP route advertisement, 
400–402

hierarchy within, 398–399
iBGP connections within, 401
routing between, 395–399,  

409, 420
availability zones, 512
average throughput, 44
Azure, 64

B
B4, 380, 417
backbone providers, 408

backoff
binary exponential, 473
random, 550

bandwidth, 28–29
ATM guarantees, 310
best-effort service and, 310
channel, 573
congestion control and, 265
DoS, 676
downstream, 572
fairness and, 276–279
flooding, 55
FM radio, 28
guaranteed minimal, 309–310
memory, 317
probing, 265, 271
wireless, 546

Baran, Paul, 59
base HTML file, 96
base station, 533, 563, 564
basic service set (BSS), 544
BBN, 59
BBR. See TCP BBR
beacon frames, 546
beam forming, 577
Bellman-Ford equation,  

388–389
Bellovin, Steven M., 689
BER. See bit error rate
Berners-Lee, Tim, 62
best-effort delivery  

services, 186
best-effort services, 310
BGP, 516. See also Border Gateway 

Protocol
bidirectional data  

transfer, 202
binary exponential backoff algorithm, 

473
bind(), 189
bit error rate (BER), 537
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bit errors
data transfer over channel with, 

203–208
data transfer over lossy channel 

with, 208–211
bit-level error detection and  

correction, 454
BITNET, 61
BitTorrent

chunks, 140
DHT, 143
file distribution with, 141
optimistically unchoked, 142
rarest first, 142
torrent, defined, 140
tracker, 141
unchoked, 142

blades, 505
block ciphers

3-bit, 615
full-table, 615
k-bit block, 614

Bluetooth
as cable replacement technology, 560
neighbor discovery problem, 562
paging, 562
piconet, 561
self-organizing, 562
standards, transmission rates, and 

range, 534
Boggs, David, 485
Border Gateway Protocol (BGP), 377, 

383, 390, 399–411, 516
attributes, 402–403
connection, 401
determining best routes, 402–406
in Google SDN, 417
hot potato routing, 404–405
internal BGP, 401–402
IP-anycast implementation with, 

406–407

outside-AS destinations, 404
role of, 399–400
route attributes, 403
route information advertisement, 

400–402
route-selection algorithm,  

405–406
routing policy, 407–410
routing tables, 405–406

border routers, 398–399, 506
botnets, 55
bottleneck link, 45

TCP fairness and,  
276–278

bounded delay, 309
bright line rules, 328
broadband Internet, 63
broadcast

in ALOHA, 61
Ethernet as, 489
forwarding to, 357
link, 461
link-state, 383, 395
MAC address, 480
multiple access protocols, 462
in OSPF, 397–398
packet sniffing and, 57

broadcast address, 480
IP, 340, 342–343
MAC, 480

broadcast link, 461
broadcast media, 301
broadcast storms, 496
Brooks, Fred, 689
browsers, 62, 96
BS. See base station
bufferbloat, 324
buffered distributors, 490
buffering, 323–324
buffer overflows, congestion  

causing, 260–261
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buffers
finite, 258
infinite, 256
output, 24
receive, 229, 247, 248
send, 229
sizing for routers, 323
TCP, 100

Bush, Vannevar, 62
bus, switching via, 318

C
CA. See Certification Authority
cable Internet access, 14–15, 63
cable modem termination system 

(CMTS), 15
caching, 301

DNS, 130
pull, 151
push, 152
Web, 105, 108

Caesar cipher, 612, 614
canonical hostname, 124
care-of address (COA), 593, 594
carrier sense multiple access (CSMA), 

469–471
carrier sense multiple access with 

collision detection (CSMA/CD), 
471–474

efficiency, 474
carrier sensing, 469
CBC. See Cipher Block Chaining
CDMA. See code division multiple 

access
CDNs. See Content Distribution 

Networks
cell location tracking, 567
cells, 563
cellular networks

3G, 18
4G, 18

5G, 18
4G/5G, transmission rates and 

range, 534
LTE, 18

cellular telephony, 18
centralized routing algorithm, 382

in LS algorithm, 384
central office (CO), 13–14
Cerf, Vinton, 61, 228, 375–376
certificate, 632
Certification Authority (CA), 632
channel partitioning protocols, 463

CDMA, 465
FDM, 463–464
TDM, 463–464

channel propagation delay, 471
channels

with bit errors, 203–210
IEEE 802.11 wireless LAN,  

545–548
lossy, 208–211
perfectly reliable, 202–203
satellite radio, 21
terrestrial radio, 21

channel utilization, 213
checksum field, 230
checksumming methods, 458
checksums

corrupted ACK and NAK packet 
detection, 206

IPv4 headers, 332–333
UDP, 198–200

China Telecom, 380
China Unicom, 380
chipping rate, 539
choke packets, 262
chosen-plaintext attack, 613
chunks, 140
CIDR. See Classless Interdomain 

Routing
Cipher Block Chaining (CBC), 617
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ciphertext, 611
ciphertext-only attack, 613
circuit, 27
circuit switching, 27–31

packet switching versus, 30–31
Cisco, 4, 63
Cisco Catalyst 6500 Series, 316

switching bus, 318
Cisco Catalyst 7600 Series, 316

switching fabric, 319
Cisco Catalyst 8500 Series, switching 

fabric, 318
Cisco CRS, switching strategy, 319
Cisco 12000 series, switching fabric, 

318–319
Clark, Jim, 62
classful addressing, 337–338
Classless Interdomain Routing 

(CIDR), 336–337, 514
“class” of traffic, 328
cleartext, 611
Clear to Send (CTS) control frame, 

551
client process, 227
clients, 11, 86
client-server architecture, 84
cloud computing, 11, 64, 505
cloud services, response time of, 269
cluster selection strategy, 149
CMTS. See cable modem termination 

system
CO. See central office
COA. See care-of address
coaxial cable, 20
code division multiple access 

(CDMA), 465, 532, 539–542
collide, 462
collisions

detection, 469
elimination of, 494

3Com, 488

COMCAST, 380
Command Line Interface (CLI), 

427–428
communication

secure, 608
communication layer, SDN, 414
communication links, 4
Compound TCP (CTPC), 276
computational complexity, of LS 

algorithm, 386
computer networks, 2

graph model of, 380–381
history of, 58–64
throughput in, 43–46

conditional GET, 112
confidentiality, 608, 640
configuration data, 426
congestion

buffer overflows from, 260–261
causes and costs of, 255–261
delays from, 257
lost segments and, 265
multihop paths and, 259–261
retransmission and, 258–259
routers and, 256–261
throughput and, 256–261

congestion avoidance, 267–268
congestion control, 186, 247

ABR, 197
adaptive, 197
AIMD, 271
approaches to, 262–263
bandwidth and, 265
end-to-end, 262
network-assisted, 262, 263
principles of, 255–263
TCP, 263–279

congestion window, 264, 270
Congestion Window Reduced  

(CWR) bit, 274
connection flooding, 55
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connectionless demultiplexing, 
189–190

connectionless multiplexing, 189–190
connectionless transport, 194–200
connection management, TCP,  

249–253, 255
connection-oriented and secure, 

280–281
connection-oriented demultiplexing, 

190–193
connection-oriented multiplexing, 

190–193
connection-oriented transport,  

227–255
connection requests, 191
connection state, 196
Content Distribution Networks 

(CDNs), 112, 145
bring home, 146
cluster selection strategies, 149
DNS redirects user’s request  

to, 148
enter deep, 146
geographically closest, 149
Google, 147
IP-anycast and, 406–407
Netflix, 150–152
operation, 146
private, 146
real-time measurements, 149
third-party, 146
uploading versions to, 150
YouTube, 152

content ingestion, 150
content processing, 150
content provider networks, 34
control packets, 312
control plane, 303, 313, 377

SDN, 411–420
convergence, routing algorithm speed 

of, 395

cookies, 105–108
SYN, 254

cost reduction, 509–510
countdown timer, 210
CRC. See cyclic redundancy check
crossbar switches, 318–319
cryptographic hash function, 625–626
cryptography

components, 611
principles of, 610–624
public-key, 619

CSMA. See carrier sense multiple 
access

CSMA with collision avoidance,  
548

CSNET, 61
CTS. See Clear to Send
CUBIC. See TCP CUBIC
cumulative acknowledgment, 218, 232
customer, 32
cwnd, 264, 266–271
Cyclades, 60
cyclic redundancy check (CRC), 

459–461
codes, 459, 487
error-detection techniques,  

459–461
IEEE 802.11 wireless LAN,  

553–554

D
DARPA. See Defense Advanced 

Research Projects Agency
DASH. See Dynamic Adaptive 

Streaming over HTTP
data, 426
data center, 84

cost reduction, 509–510
hardware modularity and  

customization, 511–512
physical constraints, 511
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SDN control and management, 510
virtualization, 510–511

data center network design, 506
data center networking

data center architectures, 505–509
trends in, 509–512

data center networks, 505
Data Center Quantized Congestion 

Notification (DCQCN), 275
data centers, 11
Data Center TCP (DCTCP), 274, 279
Data Encryption Standard (DES), 615
Datagram Congestion Control 

Protocol (DCCP), 274
datagrams, 51, 185

indirect routing of, 594
inspecting, 346
IPv4 format, 331–333
IPv6 format, 348–350
NAT and, 346
network-layer, 53
reassembly of, 350
transmission, 486

data-over-cable service interface  
specifications (DOCSIS), 475–477

data plane, 303, 364
4G, 584
generalized forwarding and SDN, 

353–360
IP, 330–353
routers, 311–330
SDN and, 412, 418–419

data received events, 239, 240
Davies, Donald, 59
DCCP. See Datagram Congestion 

Control Protocol
DCTCP. See Data Center TCP
DDoS. See distributed DoS
decentralized routing algorithm, 

382–383
decryption, 623

decryption algorithm, 611
deep packet inspection (DPI), 360, 

609, 675
Defense Advanced Research Projects 

Agency (DARPA), 60, 61, 375
delayed-based congestion control, 

275–276
delays

application, 43
bounded, 309
in end systems, 43
end-to-end, 41–43
network congestion and, 257
nodal, 36
nodal processing, 35
in packet-switched networks,  

35–46
processing, 36
propagation, 35, 37–39
queuing, 24–25, 35, 36,  

39–41, 257
in shared medium, 43
total nodal, 35
transmission, 35–39
types of, 35–39

deletion, message content, 610
demilitarized zone (DMZ), 676
demultiplexing, 187–194, 514

connectionless, 189–190
connection-oriented, 190–193
transport-layer, 186

denial-of-service (DoS)
attacks, 55–56
distributed, 56, 57
SYN floods for, 254

destination-based forwarding,  
313–316

destination port number, 230
destination port number field, 188
Deutsche Telecom, 380
device statistics, 426
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DHCP. See Dynamic Host 
Configuration Protocol

DHCP ACK message, 344, 514
DHCP discover message, 342
DHCP offer message, 342–343
DHCP request message, 344, 513
DHT. See Distributed Hast Table
Diffie-Hellman algorithm, 624
DIFS. See Distributed Inter-frame 

Space
Digital Attack Map, 55
digital ethernet, 488
digital signatures, 628–631
digital subscriber line (DSL),  

13–14, 63
digital subscriber line access  

multiplexer (DSLAM), 13–14
Dijkstra’s algorithm, 383, 390

in OSPF, 396
direct routing, 585
distance-vector algorithm  

(DV algorithm), 388–395
decentralization, 390
link-cost changes and link failure, 

392–394
LS compared with, 394–395
message complexity, 394–395
poisoned reverse, 394
robustness, 395
speed of convergence, 395

distant centralized database, 126
distributed applications, 5
distributed DoS (DDoS), 56
Distributed Hast Table (DHT), 143
Distributed Inter-frame Space  

(DIFS), 550
distribution time, 138
DMZ. See demilitarized zone
DNS. See domain name system
DNS protocol, 515
DNS query message, 515

DNS reply message, 516
DNS resource record, 516
DOCSIS. See Data-Over-Cable 

Service Interface Specifications
DOCSIS 2.0, 15
domain names, 410
domain name system (DNS),  

50, 123
additional section, 134
answer section, 134
and ARP, 514–515
authoritative servers, 127
authority section, 134
caching, 130
distant centralized database, 126
distributed, hierarchical database, 

126–130
header section, 133
hierarchy, 127
interaction, 129
Internet presence and, 410–411
intra-domain routing, 515–516
IP-anycast in, 406–407
iterative queries, 130
local server, 128
maintenance, 126
messages, 133
operation of, 125–131
peer-to-peer file distribution, 

136–143
question section, 133
records insertion, 134
recursive queries, 130
resource records (RRs), 131
root servers, 127
servers, 123
servers in 2020, 128
services provided by, 123–125
single point of failure, 126
top-level domain (TLD),  

126, 127
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traffic volume, 126
UDP usage by, 195
vulnerabilities, 135

dotted-decimal notation, 334
DPI. See deep packet inspection
drop, packet, 41
dropping

OpenFlow, 357
packets, strategies for, 322

drop-tail, 322
DSL. See digital subscriber line
DSLAM. See digital subscriber line 

access multiplexer
duplicate ACKs, 208, 243
duplicate data packets, 210
duplicate packets, 206
DV algorithm. See distance-vector 

algorithm
Dynamic Adaptive Streaming over 

HTTP (DASH), 144
Dynamic Host Configuration Protocol 

(DHCP), 341–344
address obtainment with,  

341–344
messages, 342–343
mobile nodes and, 344
NAT and, 344

dynamic routing algorithms, 383

E
EAP. See Extensible Authentication 

Protocol
eavesdropping, 610
e-Bay, 63
eBGP. See external BGP
EC2, 64
ECE. See Explicit Congestion 

Notification Echo
echo request, 423
ECN. See Explicit Congestion 

Notification

edge routers, 312
efficiency

ALOHA protocol, 467
CSMA/CD, 474

802.11. See IEEE 802.11
EIGRP protocol, 396
elastic applications, 90
e-mail

components, 116
high-level view of, 117
in internet, 116
mail access protocols,  

121–122
mail message formats, 121
PGP, 643–644
protocols, 122
secure, 640–643
SMTP, 50, 117–120

encapsulation, 52–54
Encapsulation Security Payload (ESP) 

protocol, 653
encrypted, 608
encryption

public key, 612, 618–624
symmetric key, 612–618

encryption algorithm, 611
end-end principle, 199
end-point authentication, 57–58, 609, 

634–636
end systems, 2, 4, 9–11

delay in, 43
end-to-end argument, 363
end-to-end congestion control, 262
end-to-end connection, 27
end-to-end delay, 41–43
enhanced mobile broadband  

(eMBB), 576
eNode-B, 565
entity body, 103
Equal Cost Multi Path  

(ECMP), 509
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error checking, UDP checksums and, 
198–200

error-correction techniques, 452,  
454, 455

error detection, 204
error-detection techniques, 452,  

454, 455
checksumming methods, 458
cyclic redundancy check (CRC), 

459–461
parity checks, 456–458

ESP. See Encapsulation Security 
Payload

EstimatedRTT, 236
Estrin, Deborah, 603
Ethane project, 419–420
Ethernet, 5, 16–17, 362

buffered distributors, 490
challenges, 484
development of, 61
frame, 513
frame structure, 486–488
gigabit, 490
installations, 485
MTU, 229
packet sniffing, 57
standards, 489
technologies, 488–491

event-based programming, 219
EWMA. See exponential weighted 

moving average
Explicit Congestion Notification 

(ECN), 274–275
Explicit Congestion Notification Echo 

(ECE), 275
exponential weighted moving average 

(EWMA), 236
extended FSM, 218
extensible authentication protocol 

(EAP), 663–664
external BGP (eBGP), 401

F
Facebook, 636
Facetime, video conferencing, 81
fading, 539
fairness

of AIMD, 276–279
parallel TCP connections and, 279
TCP and, 276–279
UDP and, 278–279

fast recovery, 268–270
fast retransmit, 243–245
FCFS. See first-come-first-served
FDM. See frequency-division  

multiplexing
FEC. See forward error correction
Feynman, Richard, 302
FHSS. See frequency-hopping spread 

spectrum
fiber optics, 63

in cable systems, 14–15
physical media, 20

fiber to the home (FTTH),  
15–16, 63

FIFO. See first-in-first-out
5G, 18
5G cellular networks, 16
5G fixed wireless, 16
filtering, 491

link-layer switches, 491–492
filters

stateful, 668
traditional packet, 668

FIN bit, 231
finite-state machine (FSM), 202

for data transfer over channel with 
bit errors, 204–210

for data transfer over lossy  
channel with bit errors,  
210–211

for data transfer over perfectly  
reliable channel, 202–203
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extended, 218
for GBN protocol, 216–218
TCP congestion control, 267, 268

firewalls, 347, 353
application gateways, 668
stateful filters, 668
traditional packet filters, 668

first-come-first-served (FCFS), 325
first-in-first-out (FIFO), 325–326
5G cellular networks, 575

core network, 577–578
eMBB, 576
FR2 frequencies, 576
millimeter wave frequencies, 576
and millimeter wave frequencies, 

576–577
mMTC, 576
standards, 576
URLLC, 576

5G Core network, 577
flag days, 351
flag field, 230
flow, 348
flow-based forwarding, 411–412
flow-control service, 246
flow control, TCP, 246–248
flow table, 354

match-plus-action, 419
SDN, 414
wildcards in, 356

forward error correction  
(FEC), 458

forwarding, 30, 304, 311, 491
to broadcast, 357
destination-based, 313–316
flow-based, 411–412
generalized, 313, 353–360
link-layer switches, 491–492
longest prefix matching rule,  

315, 338
OpenFlow, 357

packets, 306
SDN, 411–412

forwarding plane, 312–313
forwarding tables, 25–26, 306, 307

in input processing, 315–316
line cards, 315
in LS algorithm, 385–386
match-plus-action, 354
prefixes, 315
routers, 306, 307
in SDN, 312, 314

4G LTE cellular networks
authentication, 566
base station, 564–565
cell location tracking, 567
elements of, 565
functions, 567
home subscriber server (HSS), 565
mobile device, 564
mobility management entity 

(MME), 566
network attachment, 572–573
network of networks, 574–575
packet data network gateway, 565
path setup, 566
power management, 573–574
protocols stacks, 570–571
radio access network, 571–572
serving gateway, 565

4G, 18
fragmentation, 350
frames, 52

ACK, 552
beacon, 546
CTS, 551
Ethernet, 513
IEEE 802.11 wireless LAN,  

553–556
link-layer, 53
time, 464
VLANs, 500
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framing, 452
frequency-division multiplexing 

(FDM), 28–29, 463–464
frequency-hopping spread spectrum 

(FHSS), 561
FSM. See finite-state machine
FTP protocol, 50
FTTH. See fiber to the home
full-duplex service, 227
fully connected topology, 511

G
gateway router, 400
gateways, 313
GBN protocol. See Go-Back-N (GBN) 

protocol
GE Information Services, 60
generalized forwarding, 313,  

353–360
action, 356–357
match, 355–356
match-plus-action, 357–360

generator, 459
geostationary satellites, 21
4G/5G cellular networks

authentication and key agreement, 
664–667

security, 659
Gigabit Ethernet, 490
Github, 135
Global Positioning System  

(GPS), 558
Go-Back-N (GBN) protocol,  

215–220
events, 218
TCP as, 246

Google, 11, 63, 276, 280
CDN infrastructure, 147
private network, 34, 64, 380

SDN use by, 380, 417
video streaming, 143

Google Chrome browser
QUIC protocol, 196

graph, 380
graph algorithms, 383
Greenberg, Albert, 528
guaranteed delivery, 309
guaranteed delivery with bounded 

delay, 309
guaranteed minimal bandwidth, 

309–310
guided media, 19

H
Handley, Mark, 603
handoff, 534
handover, 534, 579
handover management, 590
handshaking

TCP three-way, 228, 250–251
TLS, 646

hash functions
checksum, 625–626
cryptographic, 625–626
digital signatures using, 630
MD5, 626
SHA-1, 626

header length field, 230
header lines, 101, 103
headers, 332–333

AH protocol, 653
DNS, 133
IPv4, 331–332

head-of-the-line blocking  
(HOL blocking), 114, 320

HELLO message, 398
Heterogeneous links, 494
HFC. See hybrid fiber coax
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hidden terminal problem, 539
hierarchical architectures,  

507–509
within ASs, 398–399

high-speed wireless Internet  
access, 63

HMAC, 628
HOL blocking. See head-of-the-line 

blocking
home agent

in mobile IP, 593
registration with, 594

home network, 574, 580
Home Subscriber Server (HSS), 565, 

579
hop limit, 350
Host

aliasing, 124
host addresses, obtaining with DHCP, 

341–344
host aliasing, 124
hostname, 123
hosts, 2, 10, 11
hot potato routing, 404–405
hourglass, Internet Protocol, 362–363
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