

COMPUTER NETWORKING

JAMES F. KUROSE

University of Massachusetts, Amherst

KEITH W. ROSS
Polytechnic Institute of NYU

PEARSON

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Brietf Contents

Computer Networks and the Internet 1
Application Layer 81
Transport Layer 181
The Network Layer: Data Plane 303
The Network Layer: Control Plane 377
The Link Layer and LANs 449
Wireless and Mobile Networks 531
Security in Computer Networks 607
References 691
Index 731

Xix

Chapter 1 Computer Networks and the Internet

1.1

1.2

1.3

1.4

1.5

1.6
1.7

1.8

What Is the Internet?

1.1.1 A Nuts-and-Bolts Description

1.1.2 A Services Description

1.1.3 What Is a Protocol?

The Network Edge

1.2.1 Access Networks

1.2.2 Physical Media

The Network Core

1.3.1 Packet Switching

1.3.2 Circuit Switching

1.3.3 A Network of Networks

Delay, Loss, and Throughput in Packet-Switched Networks
1.4.1 Overview of Delay in Packet-Switched Networks
1.4.2 Queuing Delay and Packet Loss

1.43 End-to-End Delay

1.4.4 Throughput in Computer Networks

Protocol Layers and Their Service Models

1.5.1 Layered Architecture

1.5.2 Encapsulation

Networks Under Attack

History of Computer Networking and the Internet

1.7.1 The Development of Packet Switching: 1961-1972

1.7.2 Proprietary Networks and Internetworking: 1972-1980

1.7.3 A Proliferation of Networks: 1980-1990
1.7.4 The Internet Explosion: The 1990s

1.7.5 The New Millennium

Summary

Homework Problems and Questions
Wireshark Lab
Interview: Leonard Kleinrock

Table of Contents

—_
[NSEN-REN IRV BN SR R

18
22
23
27
31
35
35
39
41
43
47
47
52
54
58
58
59
61
62
63
64
66
76
78

xxi

xxii TABLE OF CONTENTS

Chapter 2 Application Layer

2.1

22

23

24

2.5
2.6

2.7

2.8

Principles of Network Applications

2.1.1 Network Application Architectures

2.1.2 Processes Communicating

2.1.3 Transport Services Available to Applications
2.1.4 Transport Services Provided by the Internet
2.1.5 Application-Layer Protocols

2.1.6 Network Applications Covered in This Book
The Web and HTTP

2.2.1 Overview of HTTP

2.2.2 Non-Persistent and Persistent Connections
2.2.3 HTTP Message Format

2.2.4 User-Server Interaction: Cookies

2.2.5 Web Caching

2.2.6 HTTP/2
Electronic Mail in the Internet
23.1 SMTP

2.3.2 Mail Message Formats

2.3.3 Mail Access Protocols

DNS—The Internet’s Directory Service

2.4.1 Services Provided by DNS

2.4.2 Overview of How DNS Works

2.4.3 DNS Records and Messages

Peer-to-Peer File Distribution

Video Streaming and Content Distribution Networks
2.6.1 Internet Video

2.6.2 HTTP Streaming and DASH

2.6.3 Content Distribution Networks

2.6.4 Case Studies: Netflix and YouTube

Socket Programming: Creating Network Applications
2.7.1 Socket Programming with UDP

2.7.2 Socket Programming with TCP

Summary

Homework Problems and Questions
Socket Programming Assignments
Wireshark Labs: HTTP, DNS
Interview: Tim Berners-Lee

81
82
84
85
88
90
94
95
95
96
98

101

105

108

113

116

118

121

121

122

123

125

131

136

143

143

144

145

149

152

154

159

165

166

175

177

178

TABLE OF CONTENTS

Chapter 3 Transport Layer

Chapter 4

3.1

3.2
33

34

35

3.6

3.7

3.8
39

Introduction and Transport-Layer Services

3.1.1 Relationship Between Transport and Network Layers

3.1.2 Overview of the Transport Layer in the Internet

Multiplexing and Demultiplexing

Connectionless Transport: UDP

3.3.1 UDP Segment Structure

3.3.2 UDP Checksum

Principles of Reliable Data Transfer

3.4.1 Building a Reliable Data Transfer Protocol

3.4.2 Pipelined Reliable Data Transfer Protocols

3.4.3 Go-Back-N (GBN)

3.4.4 Selective Repeat (SR)

Connection-Oriented Transport: TCP

3.5.1 The TCP Connection

3.5.2 TCP Segment Structure

3.5.3 Round-Trip Time Estimation and Timeout

3.5.4 Reliable Data Transfer

3.5.5 Flow Control

3.5.6 TCP Connection Management

Principles of Congestion Control

3.6.1 The Causes and the Costs of Congestion

3.6.2 Approaches to Congestion Control

TCP Congestion Control

3.7.1 Classic TCP Congestion Control

3.7.2 Network-Assisted Explicit Congestion Notification and
Delayed-based Congestion Control

3.7.3 Fairness

Evolution of Transport-Layer Functionality

Summary

Homework Problems and Questions
Programming Assignments

Wireshark Labs: Exploring TCP, UDP
Interview: Van Jacobson

The Network Layer: Data Plane

4.1

4.2

Overview of Network Layer

4.1.1 Forwarding and Routing: The Data and Control Planes
4.1.2 Network Service Model

What’s Inside a Router?

4.2.1 Input Port Processing and Destination-Based Forwarding
4.2.2 Switching

xxiii

181
182
182
185
187
194
198
198
200
202
211
215
220
227
227
230
235
238
246
249
255
255
262
263
263

274
276
279
282
284
300
300
301

303

304
304
309
311
314
317

XXiv TABLE OF CONTENTS

Chapter 5

43

4.4

4.5
4.6

4.2.3 Output Port Processing

4.2.4 Where Does Queuing Occur?

4.2.5 Packet Scheduling

The Internet Protocol (IP): IPv4, Addressing, IPv6, and More
4.3.1 IPv4 Datagram Format

4.3.2 IPv4 Addressing

4.3.3 Network Address Translation (NAT)

434 IPv6

Generalized Forwarding and SDN
4.4.1 Match

4.4.2 Action

4.43 OpenFlow Examples of Match-plus-action in Action
Middleboxes
Summary

Homework Problems and Questions
Wireshark Lab: IP
Interview: Vinton G. Cerf

The Network Layer: Control Plane

5.1
5.2

53
54

5.5

5.6
5.7

5.8

Introduction
Routing Algorithms
5.2.1 The Link-State (LS) Routing Algorithm
5.2.2 The Distance-Vector (DV) Routing Algorithm
Intra-AS Routing in the Internet: OSPF
Routing Among the ISPs: BGP
5.4.1 The Role of BGP
5.4.2 Advertising BGP Route Information
5.4.3 Determining the Best Routes
5.4.4 IP-Anycast
5.4.5 Routing Policy
5.4.6 Putting the Pieces Together: Obtaining Internet Presence
The SDN Control Plane
5.5.1 The SDN Control Plane: SDN Controller and
SDN Network-control Applications
5.5.2 OpenFlow Protocol
5.5.3 Data and Control Plane Interaction: An Example
5.5.4 SDN: Past and Future
ICMP: The Internet Control Message Protocol
Network Management and SNMP, NETCONF/YANG
5.7.1 The Network Management Framework
5.7.2 The Simple Network Management Protocol (SNMP)
and the Management Information Base (MIB)
5.7.3 The Network Configuration Protocol (NETCONF) and YANG
Summary

319
319
325
330
331
333
344
347
353
355
356
357
360
364
364
374
375

377

378
380
383
388
395
399
399
400
402
406
407
410
411

414
416
418
419
423
425
426

428
432
436

TABLE OF CONTENTS XXV

Homework Problems and Questions 437
Socket Programming Assignment 5: ICMP Ping 443
Programming Assignment: Routing 444
Wireshark Lab: ICMP 445
Interview: Jennifer Rexford 446
Chapter 6 The Link Layer and LANs 449
6.1 Introduction to the Link Layer 450
6.1.1 The Services Provided by the Link Layer 452

6.1.2 Where Is the Link Layer Implemented? 453

6.2 Error-Detection and -Correction Techniques 454
6.2.1 Parity Checks 456

6.2.2 Checksumming Methods 458

6.2.3 Cyclic Redundancy Check (CRC) 459

6.3 Multiple Access Links and Protocols 461
6.3.1 Channel Partitioning Protocols 463

6.3.2 Random Access Protocols 465

6.3.3 Taking-Turns Protocols 474

6.3.4 DOCSIS: The Link-Layer Protocol for Cable Internet Access 475

6.4 Switched Local Area Networks 477
6.4.1 Link-Layer Addressing and ARP 478

6.4.2 Ethernet 484

6.4.3 Link-Layer Switches 491

6.4.4 Virtual Local Area Networks (VLANSs) 497

6.5 Link Virtualization: A Network as a Link Layer 501
6.5.1 Multiprotocol Label Switching (MPLS) 502

6.6 Data Center Networking 505
6.6.1 Data Center Architectures 505

6.6.2 Trends in Data Center Networking 509

6.7 Retrospective: A Day in the Life of a Web Page Request 512
6.7.1 Getting Started: DHCP, UDP, IP, and Ethernet 512

6.7.2 Still Getting Started: DNS and ARP 514

6.7.3 Still Getting Started: Intra-Domain Routing to the DNS Server 515

6.7.4 Web Client-Server Interaction: TCP and HTTP 516

6.8 Summary 518
Homework Problems and Questions 519
Wireshark Labs: 802.11 Ethernet 527
Interview: Albert Greenberg 528
Chapter 7 Wireless and Mobile Networks 531
7.1 Introduction 532
7.2 Wireless Links and Network Characteristics 536

7.2.1 CDMA 539

XXVi TABLE OF CONTENTS

Chapter 8

7.3

7.4

1.5

7.6

1.7
7.8

WiFi: 802.11 Wireless LANs

7.3.1 The 802.11 Wireless LAN Architecture

7.3.2 The 802.11 MAC Protocol

7.3.3 The IEEE 802.11 Frame

7.3.4 Mobility in the Same IP Subnet

7.3.5 Advanced Features in 802.11

7.3.6 Personal Area Networks: Bluetooth

Cellular Networks: 4G and 5G

7.4.1 4G LTE Cellular Networks: Architecture and Elements

7.4.2 LTE Protocols Stacks

7.4.3 LTE Radio Access Network

7.4.4 Additional LTE Functions: Network Attachment and
Power Management

7.4.5 The Global Cellular Network: A Network of Networks

7.4.6 5G Cellular Networks

Mobility Management: Principles

7.5.1 Device Mobility: a Network-layer Perspective

7.5.2 Home Networks and Roaming on Visited Networks

7.5.3 Direct and Indirect Routing to/from a Mobile Device

Mobility Management in Practice

7.6.1 Mobility Management in 4G/5G Networks

7.6.2 Mobile IP

Wireless and Mobility: Impact on Higher-Layer Protocols

Summary

Homework Problems and Questions
Wireshark Lab: WiFi
Interview: Deborah Estrin

Security in Computer Networks

8.1
8.2

8.3

8.4
8.5

What Is Network Security?

Principles of Cryptography

8.2.1 Symmetric Key Cryptography
8.2.2 Public Key Encryption
Message Integrity and Digital Signatures
8.3.1 Cryptographic Hash Functions
8.3.2 Message Authentication Code
8.3.3 Digital Signatures

End-Point Authentication

Securing E-Mail

8.5.1 Secure E-Mail

852 PGP

542
544
548
553
556
559
560
563
564
570
571

572
574
575
578
578
579
580
587
587
592
594
596
597
602
603

607

608
610
612
618
624
625
626
628
634
639
640
643

8.6

8.7

8.8

8.9

TABLE OF CONTENTS

Securing TCP Connections: TLS

8.6.1 The Big Picture

8.6.2 A More Complete Picture

Network-Layer Security: IPsec and Virtual Private Networks

8.7.1 IPsec and Virtual Private Networks (VPNs)

8.7.2 The AH and ESP Protocols

8.7.3 Security Associations

8.7.4 The IPsec Datagram

8.7.5 IKE: Key Management in IPsec

Securing Wireless LANs and 4G/5G Cellular Networks

8.8.1 Authentication and Key Agreement in 802.11 Wireless LANs
8.8.2 Authentication and Key Agreement in 4G/5G Cellular Networks
Operational Security: Firewalls and Intrusion Detection Systems

8.9.1 Firewalls

8.9.2 Intrusion Detection Systems

8.10 Summary

Homework Problems and Questions
Wireshark Lab: SSL

IPsec Lab

Interview: Steven M. Bellovin

References
Index

xXxXvii

644
646
649
651
651
653
653
655
658
659
659
664
667
667
675
679
680
688
688
689

691
731

Computer
Networks and
the Internet

Today’s Internet is arguably the largest engineered system ever created by mankind,
with hundreds of millions of connected computers, communication links, and
switches; with billions of users who connect via laptops, tablets, and smartphones;
and with an array of new Internet-connected “things” including game consoles, sur-
veillance systems, watches, eye glasses, thermostats, and cars. Given that the Inter-
net is so large and has so many diverse components and uses, is there any hope of
understanding how it works? Are there guiding principles and structure that can
provide a foundation for understanding such an amazingly large and complex sys-
tem? And if so, is it possible that it actually could be both interesting and fun to
learn about computer networks? Fortunately, the answer to all of these questions is
a resounding YES! Indeed, it’s our aim in this book to provide you with a modern
introduction to the dynamic field of computer networking, giving you the princi-
ples and practical insights you’ll need to understand not only today’s networks, but
tomorrow’s as well.

This first chapter presents a broad overview of computer networking and the
Internet. Our goal here is to paint a broad picture and set the context for the rest
of this book, to see the forest through the trees. We’ll cover a lot of ground in this
introductory chapter and discuss a lot of the pieces of a computer network, without
losing sight of the big picture.

We’ll structure our overview of computer networks in this chapter as follows.
After introducing some basic terminology and concepts, we’ll first examine the basic
hardware and software components that make up a network. We’ll begin at the net-
work’s edge and look at the end systems and network applications running in the
network. We’ll then explore the core of a computer network, examining the links

2

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

and the switches that transport data, as well as the access networks and physical
media that connect end systems to the network core. We’ll learn that the Internet is
a network of networks, and we’ll learn how these networks connect with each other.

After having completed this overview of the edge and core of a computer net-
work, we’ll take the broader and more abstract view in the second half of this chap-
ter. We’ll examine delay, loss, and throughput of data in a computer network and
provide simple quantitative models for end-to-end throughput and delay: models
that take into account transmission, propagation, and queuing delays. We’ll then
introduce some of the key architectural principles in computer networking, namely,
protocol layering and service models. We’ll also learn that computer networks are
vulnerable to many different types of attacks; we’ll survey some of these attacks and
consider how computer networks can be made more secure. Finally, we’ll close this
chapter with a brief history of computer networking.

1.1 What Is the Internet?

In this book, we’ll use the public Internet, a specific computer network, as our prin-
cipal vehicle for discussing computer networks and their protocols. But what is the
Internet? There are a couple of ways to answer this question. First, we can describe
the nuts and bolts of the Internet, that is, the basic hardware and software components
that make up the Internet. Second, we can describe the Internet in terms of a network-
ing infrastructure that provides services to distributed applications. Let’s begin with
the nuts-and-bolts description, using Figure 1.1 to illustrate our discussion.

1.1.1 A Nuts-and-Bolts Description

The Internet is a computer network that interconnects billions of computing devices
throughout the world. Not too long ago, these computing devices were primarily
traditional desktop computers, Linux workstations, and so-called servers that store
and transmit information such as Web pages and e-mail messages. Increasingly,
however, users connect to the Internet with smartphones and tablets—today, close
to half of the world’s population are active mobile Internet users with the percentage
expected to increase to 75% by 2025 [Statista 2019]. Furthermore, nontraditional
Internet “things” such as TVs, gaming consoles, thermostats, home security systems,
home appliances, watches, eye glasses, cars, traffic control systems, and more are
being connected to the Internet. Indeed, the term computer network is beginning to
sound a bit dated, given the many nontraditional devices that are being hooked up to
the Internet. In Internet jargon, all of these devices are called hosts or end systems.
By some estimates, there were about 18 billion devices connected to the Internet in
2017, and the number will reach 28.5 billion by 2022 [Cisco VNI 2020].

1.1 o WHAT IS THE INTERNET?

National or
Global ISP

o

\
\
SO ¢,‘¢

Datacenter Network

— % L A

s ¢ Local or

1
[
[
N

Mobile Network

|l
o
-

1l

¢

7O DI Regional ISP Content Provider Network
|4
= >< >><

=

=
= &=

L

Enterprise Network

Host Server Mobile Router Link-layer ~ Base Smartphone Cell phone
(= end system) Computer switch station or tablet tower

B s ;¢ €

Datacenter Workstation Traffic light Thermostat Fridge

/Fﬂ
s

Figure 1.1 + Some pieces of the Internet

4

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

End systems are connected together by a network of communication links and
packet switches. We’ll see in Section 1.2 that there are many types of communica-
tion links, which are made up of different types of physical media, including coaxial
cable, copper wire, optical fiber, and radio spectrum. Different links can transmit
data at different rates, with the transmission rate of a link measured in bits/second.
When one end system has data to send to another end system, the sending end system
segments the data and adds header bytes to each segment. The resulting packages
of information, known as packets in the jargon of computer networks, are then sent
through the network to the destination end system, where they are reassembled into
the original data.

A packet switch takes a packet arriving on one of its incoming communication
links and forwards that packet on one of its outgoing communication links. Packet
switches come in many shapes and flavors, but the two most prominent types in
today’s Internet are routers and link-layer switches. Both types of switches forward
packets toward their ultimate destinations. Link-layer switches are typically used in
access networks, while routers are typically used in the network core. The sequence
of communication links and packet switches traversed by a packet from the send-
ing end system to the receiving end system is known as a route or path through
the network. Cisco predicts annual global IP traffic will reach nearly five zettabytes
(10*! bytes) by 2022 [Cisco VNI 2020].

Packet-switched networks (which transport packets) are in many ways
similar to transportation networks of highways, roads, and intersections (which
transport vehicles). Consider, for example, a factory that needs to move a large
amount of cargo to some destination warehouse located thousands of kilometers
away. At the factory, the cargo is segmented and loaded into a fleet of trucks.
Each of the trucks then independently travels through the network of highways,
roads, and intersections to the destination warehouse. At the destination ware-
house, the cargo is unloaded and grouped with the rest of the cargo arriving
from the same shipment. Thus, in many ways, packets are analogous to trucks,
communication links are analogous to highways and roads, packet switches are
analogous to intersections, and end systems are analogous to buildings. Just as
a truck takes a path through the transportation network, a packet takes a path
through a computer network.

End systems access the Internet through Internet Service Providers (ISPs),
including residential ISPs such as local cable or telephone companies; corpo-
rate ISPs; university ISPs; ISPs that provide WiFi access in airports, hotels, cof-
fee shops, and other public places; and cellular data ISPs, providing mobile access
to our smartphones and other devices. Each ISP is in itself a network of packet
switches and communication links. ISPs provide a variety of types of network access
to the end systems, including residential broadband access such as cable modem
or DSL, high-speed local area network access, and mobile wireless access. ISPs
also provide Internet access to content providers, connecting servers directly to
the Internet. The Internet is all about connecting end systems to each other, so the

1.1 o WHAT IS THE INTERNET?

ISPs that provide access to end systems must also be interconnected. These lower-
tier ISPs are thus interconnected through national and international upper-tier ISPs
and these upper-tier ISPs are connected directly to each other. An upper-tier ISP
consists of high-speed routers interconnected with high-speed fiber-optic links. Each
ISP network, whether upper-tier or lower-tier, is managed independently, runs the
IP protocol (see below), and conforms to certain naming and address conventions.
We’ll examine ISPs and their interconnection more closely in Section 1.3.

End systems, packet switches, and other pieces of the Internet run protocols that
control the sending and receiving of information within the Internet. The Transmission
Control Protocol (TCP) and the Internet Protocol (IP) are two of the most impor-
tant protocols in the Internet. The IP protocol specifies the format of the packets
that are sent and received among routers and end systems. The Internet’s principal
protocols are collectively known as TCP/IP. We’ll begin looking into protocols in
this introductory chapter. But that’s just a start—much of this book is concerned with
networking protocols!

Given the importance of protocols to the Internet, it’s important that everyone
agree on what each and every protocol does, so that people can create systems and
products that interoperate. This is where standards come into play. Internet standards
are developed by the Internet Engineering Task Force IETF) [IETF 2020]. The IETF
standards documents are called requests for comments (RFCs). RFCs started out
as general requests for comments (hence the name) to resolve network and protocol
design problems that faced the precursor to the Internet [Allman 2011]. RFCs tend
to be quite technical and detailed. They define protocols such as TCP, IP, HTTP (for
the Web), and SMTP (for e-mail). There are currently nearly 9000 RFCs. Other bod-
ies also specify standards for network components, most notably for network links.
The IEEE 802 LAN Standards Committee [IEEE 802 2020], for example, specifies
the Ethernet and wireless WiFi standards.

1.1.2 A Services Description

Our discussion above has identified many of the pieces that make up the Internet.
But we can also describe the Internet from an entirely different angle—namely, as
an infrastructure that provides services to applications. In addition to traditional
applications such as e-mail and Web surfing, Internet applications include mobile
smartphone and tablet applications, including Internet messaging, mapping with
real-time road-traffic information, music streaming movie and television streaming,
online social media, video conferencing, multi-person games, and location-based
recommendation systems. The applications are said to be distributed applications,
since they involve multiple end systems that exchange data with each other. Impor-
tantly, Internet applications run on end systems—they do not run in the packet
switches in the network core. Although packet switches facilitate the exchange of
data among end systems, they are not concerned with the application that is the
source or sink of data.

5

6

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

Let’s explore a little more what we mean by an infrastructure that provides
services to applications. To this end, suppose you have an exciting new idea for a dis-
tributed Internet application, one that may greatly benefit humanity or one that may
simply make you rich and famous. How might you go about transforming this idea
into an actual Internet application? Because applications run on end systems, you are
going to need to write programs that run on the end systems. You might, for example,
write your programs in Java, C, or Python. Now, because you are developing a dis-
tributed Internet application, the programs running on the different end systems will
need to send data to each other. And here we get to a central issue—one that leads
to the alternative way of describing the Internet as a platform for applications. How
does one program running on one end system instruct the Internet to deliver data to
another program running on another end system?

End systems attached to the Internet provide a socket interface that speci-
fies how a program running on one end system asks the Internet infrastructure to
deliver data to a specific destination program running on another end system. This
Internet socket interface is a set of rules that the sending program must follow so
that the Internet can deliver the data to the destination program. We’ll discuss the
Internet socket interface in detail in Chapter 2. For now, let’s draw upon a simple
analogy, one that we will frequently use in this book. Suppose Alice wants to send
a letter to Bob using the postal service. Alice, of course, can’t just write the letter
(the data) and drop the letter out her window. Instead, the postal service requires
that Alice put the letter in an envelope; write Bob’s full name, address, and zip
code in the center of the envelope; seal the envelope; put a stamp in the upper-
right-hand corner of the envelope; and finally, drop the envelope into an official
postal service mailbox. Thus, the postal service has its own “postal service inter-
face,” or set of rules, that Alice must follow to have the postal service deliver her
letter to Bob. In a similar manner, the Internet has a socket interface that the pro-
gram sending data must follow to have the Internet deliver the data to the program
that will receive the data.

The postal service, of course, provides more than one service to its custom-
ers. It provides express delivery, reception confirmation, ordinary use, and many
more services. In a similar manner, the Internet provides multiple services to its
applications. When you develop an Internet application, you too must choose one
of the Internet’s services for your application. We’ll describe the Internet’s ser-
vices in Chapter 2.

We have just given two descriptions of the Internet; one in terms of its hardware
and software components, the other in terms of an infrastructure for providing ser-
vices to distributed applications. But perhaps you are still confused as to what the
Internet is. What are packet switching and TCP/IP? What are routers? What kinds of
communication links are present in the Internet? What is a distributed application?
How can a thermostat or body scale be attached to the Internet? If you feel a bit over-
whelmed by all of this now, don’t worry—the purpose of this book is to introduce
you to both the nuts and bolts of the Internet and the principles that govern how and

1.1 o WHAT IS THE INTERNET?

why it works. We’ll explain these important terms and questions in the following
sections and chapters.

1.1.3 What Is a Protocol?

Now that we’ve got a bit of a feel for what the Internet is, let’s consider another
important buzzword in computer networking: protocol. What is a protocol? What
does a protocol do?

A Human Analogy

It is probably easiest to understand the notion of a computer network protocol by
first considering some human analogies, since we humans execute protocols all of
the time. Consider what you do when you want to ask someone for the time of day.
A typical exchange is shown in Figure 1.2. Human protocol (or good manners, at

Time Time Time Time

Figure 1.2 ¢ A human protocol and a computer network protocol

8

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

least) dictates that one first offer a greeting (the first “Hi” in Figure 1.2) to initiate
communication with someone else. The typical response to a “Hi” is a returned
“Hi” message. Implicitly, one then takes a cordial “Hi” response as an indication
that one can proceed and ask for the time of day. A different response to the initial
“Hi” (such as “Don’t bother me!” or “I don’t speak English,” or some unprintable
reply) might indicate an unwillingness or inability to communicate. In this case,
the human protocol would be not to ask for the time of day. Sometimes one gets no
response at all to a question, in which case one typically gives up asking that person
for the time. Note that in our human protocol, there are specific messages we send,
and specific actions we take in response to the received reply messages or other
events (such as no reply within some given amount of time). Clearly, transmitted
and received messages, and actions taken when these messages are sent or received
or other events occur, play a central role in a human protocol. If people run differ-
ent protocols (for example, if one person has manners but the other does not, or if
one understands the concept of time and the other does not) the protocols do not
interoperate and no useful work can be accomplished. The same is true in network-
ing—it takes two (or more) communicating entities running the same protocol in
order to accomplish a task.

Let’s consider a second human analogy. Suppose you’re in a college class (a
computer networking class, for example!). The teacher is droning on about protocols
and you’re confused. The teacher stops to ask, “Are there any questions?”” (a message
that is transmitted to, and received by, all students who are not sleeping). You raise
your hand (transmitting an implicit message to the teacher). Your teacher acknowl-
edges you with a smile, saying “Yes . . .” (a transmitted message encouraging you
to ask your question—teachers love to be asked questions), and you then ask your
question (that is, transmit your message to your teacher). Your teacher hears your
question (receives your question message) and answers (transmits a reply to you).
Once again, we see that the transmission and receipt of messages, and a set of con-
ventional actions taken when these messages are sent and received, are at the heart
of this question-and-answer protocol.

Network Protocols

A network protocol is similar to a human protocol, except that the entities exchang-
ing messages and taking actions are hardware or software components of some
device (for example, computer, smartphone, tablet, router, or other network-capable
device). All activity in the Internet that involves two or more communicating remote
entities is governed by a protocol. For example, hardware-implemented protocols in
two physically connected computers control the flow of bits on the “wire” between
the two network interface cards; congestion-control protocols in end systems control
the rate at which packets are transmitted between sender and receiver; protocols in
routers determine a packet’s path from source to destination. Protocols are running

1.2 o THE NETWORK EDGE

everywhere in the Internet, and consequently much of this book is about computer
network protocols.

As an example of a computer network protocol with which you are probably
familiar, consider what happens when you make a request to a Web server, that
is, when you type the URL of a Web page into your Web browser. The scenario is
illustrated in the right half of Figure 1.2. First, your computer will send a connec-
tion request message to the Web server and wait for a reply. The Web server will
eventually receive your connection request message and return a connection reply
message. Knowing that it is now OK to request the Web document, your computer
then sends the name of the Web page it wants to fetch from that Web server in a
GET message. Finally, the Web server returns the Web page (file) to your computer.

Given the human and networking examples above, the exchange of messages
and the actions taken when these messages are sent and received are the key defining
elements of a protocol:

A protocol defines the format and the order of messages exchanged between two
or more communicating entities, as well as the actions taken on the transmission
and/or receipt of a message or other event.

The Internet, and computer networks in general, make extensive use of pro-
tocols. Different protocols are used to accomplish different communication tasks.
As you read through this book, you will learn that some protocols are simple and
straightforward, while others are complex and intellectually deep. Mastering the
field of computer networking is equivalent to understanding the what, why, and how
of networking protocols.

1.2 The Network Edge

In the previous section, we presented a high-level overview of the Internet and
networking protocols. We are now going to delve a bit more deeply into the com-
ponents of the Internet. We begin in this section at the edge of the network and
look at the components with which we are most familiar—namely, the computers,
smartphones and other devices that we use on a daily basis. In the next section, we’ll
move from the network edge to the network core and examine switching and routing
in computer networks.

Recall from the previous section that in computer networking jargon, the com-
puters and other devices connected to the Internet are often referred to as end sys-
tems. They are referred to as end systems because they sit at the edge of the Internet,
as shown in Figure 1.3. The Internet’s end systems include desktop computers

9

10

CHAPTER T o COMPUTER NETWORKS AND THE INTERNET

National or
Global ISP

>
Nz

Datacenter Network

o)
2
=S

Mobile Network

p Datacenter Network
eP S it

Content Profider Network

=
s ¢ Local or i

Home Network Regional ISP

=

== > >

= =0, %
EE wi®

Figure 1.3 ¢ End-system interaction

(e.g., desktop PCs, Macs, and Linux boxes), servers (e.g., Web and e-mail servers),
and mobile devices (e.g., laptops, smartphones, and tablets). Furthermore, an
increasing number of non-traditional “things” are being attached to the Internet as
end systems (see the Case History feature).

End systems are also referred to as hosts because they host (that is, run) appli-
cation programs such as a Web browser program, a Web server program, an e-mail

1.2 o THE NETWORK EDGE

CASE HISTORY

DATA CENTERS AND CLOUD COMPUTING

Internet companies such as Google, Microsoft, Amazon, and Alibaba have built
massive data centers, each housing fens fo hundreds of thousands of hosts. These
data centers are not only connected to the Internet, as shown in Figure 1.1, but also
internally include complex computer networks that interconnect the datacenter’s hosts.
The data centers are the engines behind the Internet applications that we use on a
daily basis.

Broadly speaking, data centers serve three purposes, which we describe here in
the context of Amazon for concreteness. First, they serve Amazon e-commerce pages
to users, for example, pages describing products and purchase information. Second,
they serve as massively parallel computing infrastructures for Amazon-specific data
processing tasks. Third, they provide cloud computing to other companies. Indeed,
today a major trend in computing is for companies to use a cloud provider such as
Amazon to handle essentially all of their IT needs. For example, Airbnb and many
other Internetbased companies do not own and manage their own data centers but
instead run their entire Web-based services in the Amazon cloud, called Amazon
Web Services (AWS).

The worker bees in a data center are the hosts. They serve content (e.g., Web
pages and videos), store e-mails and documents, and collectively perform massively
distributed computations. The hosts in data centers, called blades and resembling
pizza boxes, are generally commodity hosts that include CPU, memory, and disk
storage. The hosts are stacked in racks, with each rack typically having 20 to
40 blades. The racks are then interconnected using sophisticated and evolving data
center network designs. Data center networks are discussed in greater detail in
Chapter 6.

client program, or an e-mail server program. Throughout this book we will use the
terms hosts and end systems interchangeably; that is, host = end system. Hosts
are sometimes further divided into two categories: clients and servers. Infor-
mally, clients tend to be desktops, laptops, smartphones, and so on, whereas
servers tend to be more powerful machines that store and distribute Web pages,
stream video, relay e-mail, and so on. Today, most of the servers from which we
receive search results, e-mail, Web pages, videos and mobile app content reside
in large data centers. For example, as of 2020, Google has 19 data centers on four
continents, collectively containing several million servers. Figure 1.3 includes
two such data centers, and the Case History sidebar describes data centers in
more detail.

12

CHAPTER T o COMPUTER NETWORKS AND THE INTERNET

1.2.1 Access Networks

Having considered the applications and end systems at the “edge of the network,”
let’s next consider the access network—the network that physically connects an end

system to the first router (also known as the “edge router”) on a path from the end
system to any other distant end system. Figure 1.4 shows several types of access

\ i s e National or
= ©@» Global ISP
! @ T
Datacenter Network

=\

<)
<» E
<D @' ‘ ' Datacenter Network

— Local or
Home Network Regional ISP

>
A~ [] {8

TEE ot

Enterprise Network

Content Provider Network

Figure 1.4 ¢ Access networks

1.2 o THE NETWORK EDGE

networks with thick, shaded lines and the settings (home, enterprise, and wide-area
mobile wireless) in which they are used.

Home Access: DSL, Cable, FTTH, and 5G Fixed Wireless

As of 2020, more than 80% of the households in Europe and the USA have Internet
access [Statista 2019]. Given this widespread use of home access networks let’s begin
our overview of access networks by considering how homes connect to the Internet.

Today, the two most prevalent types of broadband residential access are
digital subscriber line (DSL) and cable. A residence typically obtains DSL
Internet access from the same local telephone company (telco) that provides its
wired local phone access. Thus, when DSL is used, a customer’s telco is also
its ISP. As shown in Figure 1.5, each customer’s DSL modem uses the existing
telephone line exchange data with a digital subscriber line access multiplexer
(DSLAM) located in the telco’s local central office (CO). The home’s DSL
modem takes digital data and translates it to high-frequency tones for transmis-
sion over telephone wires to the CO; the analog signals from many such houses
are translated back into digital format at the DSLAM.

The residential telephone line carries both data and traditional telephone signals
simultaneously, which are encoded at different frequencies:

* A high-speed downstream channel, in the 50 kHz to 1 MHz band
* A medium-speed upstream channel, in the 4 kHz to 50 kHz band
* An ordinary two-way telephone channel, in the O to 4 kHz band

This approach makes the single DSL link appear as if there were three separate
links, so that a telephone call and an Internet connection can share the DSL link at

Home
Internet

Existing phone line:
0-4KHz phone; 4-50KHz

upstream data; 50KHz— ?
1MHz downstream data DSLAM

Splitter Telephone

Central
office

Home PC

Figure 1.5 ¢ DSL Internet access

13

14

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

the same time. (We’ll describe this technique of frequency-division multiplexing
in Section 1.3.1.) On the customer side, a splitter separates the data and telephone
signals arriving to the home and forwards the data signal to the DSL. modem. On the
telco side, in the CO, the DSLAM separates the data and phone signals and sends
the data into the Internet. Hundreds or even thousands of households connect to a
single DSLAM.

The DSL standards define multiple transmission rates, including downstream
transmission rates of 24 Mbs and 52 Mbs, and upstream rates of 3.5 Mbps and
16 Mbps; the newest standard provides for aggregate upstream plus downstream
rates of 1 Gbps [ITU 2014]. Because the downstream and upstream rates are dif-
ferent, the access is said to be asymmetric. The actual downstream and upstream
transmission rates achieved may be less than the rates noted above, as the DSL
provider may purposefully limit a residential rate when tiered service (different
rates, available at different prices) are offered. The maximum rate is also limited
by the distance between the home and the CO, the gauge of the twisted-pair line
and the degree of electrical interference. Engineers have expressly designed DSL
for short distances between the home and the CO; generally, if the residence is not
located within 5 to 10 miles of the CO, the residence must resort to an alternative
form of Internet access.

While DSL makes use of the telco’s existing local telephone infrastructure,
cable Internet access makes use of the cable television company’s existing cable
television infrastructure. A residence obtains cable Internet access from the same
company that provides its cable television. As illustrated in Figure 1.6, fiber optics

Coaxial cable

Hundreds
of homes

Hundreds

‘ Fiber Internet

of homes

™o

Fiber
node

Cable head end

Figure 1.6 + A hybrid fibercoaxial access network

1.2 o THE NETWORK EDGE

connect the cable head end to neighborhood-level junctions, from which tradi-
tional coaxial cable is then used to reach individual houses and apartments. Each
neighborhood junction typically supports 500 to 5,000 homes. Because both fiber
and coaxial cable are employed in this system, it is often referred to as hybrid fiber
coax (HFC).

Cable internet access requires special modems, called cable modems. As
with a DSL modem, the cable modem is typically an external device and con-
nects to the home PC through an Ethernet port. (We will discuss Ethernet in
great detail in Chapter 6.) At the cable head end, the cable modem termination
system (CMTS) serves a similar function as the DSL network’s DSLAM—
turning the analog signal sent from the cable modems in many downstream
homes back into digital format. Cable modems divide the HFC network into two
channels, a downstream and an upstream channel. As with DSL, access is typi-
cally asymmetric, with the downstream channel typically allocated a higher
transmission rate than the upstream channel. The DOCSIS 2.0 and 3.0 standards
define downstream bitrates of 40 Mbps and 1.2 Gbps, and upstream rates
of 30 Mbps and 100 Mbps, respectively. As in the case of DSL networks, the
maximum achievable rate may not be realized due to lower contracted data rates
or media impairments.

One important characteristic of cable Internet access is that it is a shared broad-
cast medium. In particular, every packet sent by the head end travels downstream on
every link to every home and every packet sent by a home travels on the upstream
channel to the head end. For this reason, if several users are simultaneously down-
loading a video file on the downstream channel, the actual rate at which each user
receives its video file will be significantly lower than the aggregate cable down-
stream rate. On the other hand, if there are only a few active users and they are all
Web surfing, then each of the users may actually receive Web pages at the full cable
downstream rate, because the users will rarely request a Web page at exactly the
same time. Because the upstream channel is also shared, a distributed multiple access
protocol is needed to coordinate transmissions and avoid collisions. (We’ll discuss
this collision issue in some detail in Chapter 6.)

Although DSL and cable networks currently represent the majority of residential
broadband access in the United States, an up-and-coming technology that provides
even higher speeds is fiber to the home (FTTH) [Fiber Broadband 2020]. As the
name suggests, the FTTH concept is simple—provide an optical fiber path from
the CO directly to the home. FTTH can potentially provide Internet access rates in
the gigabits per second range.

There are several competing technologies for optical distribution from the CO
to the homes. The simplest optical distribution network is called direct fiber, with
one fiber leaving the CO for each home. More commonly, each fiber leaving the
central office is actually shared by many homes; it is not until the fiber gets rela-
tively close to the homes that it is split into individual customer-specific fibers.
There are two competing optical-distribution network architectures that perform

15

16

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

Internet

Central offlce\

Optical
splitter

ONT

Optical
fibers

ONT

Figure 1.7 ¢ FTTH Infernet access

this splitting: active optical networks (AONs) and passive optical networks (PONs).
AON is essentially switched Ethernet, which is discussed in Chapter 6.

Here, we briefly discuss PON, which is used in Verizon’s FiOS service.
Figure 1.7 shows FTTH using the PON distribution architecture. Each home has
an optical network terminator (ONT), which is connected by dedicated optical
fiber to a neighborhood splitter. The splitter combines a number of homes (typi-
cally less than 100) onto a single, shared optical fiber, which connects to an optical
line terminator (OLT) in the telco’s CO. The OLT, providing conversion between
optical and electrical signals, connects to the Internet via a telco router. At home,
users connect a home router (typically a wireless router) to the ONT and access the
Internet via this home router. In the PON architecture, all packets sent from OLT to
the splitter are replicated at the splitter (similar to a cable head end).

In addition to DSL, Cable, and FTTH, 5G fixed wireless is beginning to be
deployed. 5G fixed wireless not only promises high-speed residential access, but
will do so without installing costly and failure-prone cabling from the telco’s
CO to the home. With 5G fixed wireless, using beam-forming technology, data
is sent wirelessly from a provider’s base station to the a modem in the home.
A WiFi wireless router is connected to the modem (possibly bundled together),
similar to how a WiFi wireless router is connected to a cable or DSL modem.
5G cellular networks are covered in Chapter 7.

Access in the Enterprise (and the Home): Ethernet and WiFi

On corporate and university campuses, and increasingly in home settings, a local
area network (LAN) is used to connect an end system to the edge router. Although
there are many types of LAN technologies, Ethernet is by far the most preva-
lent access technology in corporate, university, and home networks. As shown in

1.2 o THE NETWORK EDGE

Ethernet Institutional
1 Gbps switch router

To Institution’s
ISP

Server

Figure 1.8 ¢ Ethernet Internet access

Figure 1.8, Ethernet users use twisted-pair copper wire to connect to an Ethernet
switch, a technology discussed in detail in Chapter 6. The Ethernet switch, or a
network of such interconnected switches, is then in turn connected into the larger
Internet. With Ethernet access, users typically have 100 Mbps to tens of Gbps
access to the Ethernet switch, whereas servers may have 1 Gbps 10 Gbps access.

Increasingly, however, people are accessing the Internet wirelessly from lap-
tops, smartphones, tablets, and other “things”. In a wireless LAN setting, wireless
users transmit/receive packets to/from an access point that is connected into the
enterprise’s network (most likely using wired Ethernet), which in turn is connected
to the wired Internet. A wireless LAN user must typically be within a few tens of
meters of the access point. Wireless LAN access based on IEEE 802.11 technol-
ogy, more colloquially known as WiFi, is now just about everywhere—universities,
business offices, cafes, airports, homes, and even in airplanes. As discussed in detail
in Chapter 7, 802.11 today provides a shared transmission rate of up to more than
100 Mbps.

Even though Ethernet and WiFi access networks were initially deployed in
enterprise (corporate, university) settings, they are also common components of
home networks. Many homes combine broadband residential access (that is, cable
modems or DSL) with these inexpensive wireless LAN technologies to create pow-
erful home networks Figure 1.9 shows a typical home network. This home network
consists of a roaming laptop, multiple Internet-connected home appliances, as well
as a wired PC; a base station (the wireless access point), which communicates with
the wireless PC and other wireless devices in the home; and a home router that con-
nects the wireless access point, and any other wired home devices, to the Internet.
This network allows household members to have broadband access to the Internet
with one member roaming from the kitchen to the backyard to the bedrooms.

17

18 CHAPTER T o COMPUTER NETWORKS AND THE INTERNET

ul'y

L= —)
TR Cable D
<, head end Internet

Home Network

Figure 1.9 + A typical home network

Wide-Area Wireless Access: 3G and LTE 4G and 5G

Mobile devices such as iPhones and Android devices are being used to message, share
photos in social networks, make mobile payments, watch movies, stream music, and
much more while on the run. These devices employ the same wireless infrastructure
used for cellular telephony to send/receive packets through a base station that is oper-
ated by the cellular network provider. Unlike WiFi, a user need only be within a few
tens of kilometers (as opposed to a few tens of meters) of the base station.

Telecommunications companies have made enormous investments in so-called
fourth-generation (4G) wireless, which provides real-world download speeds of up to
60 Mbps. But even higher-speed wide-area access technologies—a fifth-generation
(5G) of wide-area wireless networks—are already being deployed. We’ll cover the
basic principles of wireless networks and mobility, as well as WiFi, 4G and 5G tech-
nologies (and more!) in Chapter 7.

1.2.2 Physical Media

In the previous subsection, we gave an overview of some of the most important
network access technologies in the Internet. As we described these technologies,
we also indicated the physical media used. For example, we said that HFC uses a
combination of fiber cable and coaxial cable. We said that DSL and Ethernet use
copper wire. And we said that mobile access networks use the radio spectrum. In this
subsection, we provide a brief overview of these and other transmission media that
are commonly used in the Internet.

In order to define what is meant by a physical medium, let us reflect on the
brief life of a bit. Consider a bit traveling from one end system, through a series
of links and routers, to another end system. This poor bit gets kicked around
and transmitted many, many times! The source end system first transmits the

1.2 o THE NETWORK EDGE

bit, and shortly thereafter the first router in the series receives the bit; the first
router then transmits the bit, and shortly thereafter the second router receives the
bit; and so on. Thus our bit, when traveling from source to destination, passes
through a series of transmitter-receiver pairs. For each transmitter-receiver pair,
the bit is sent by propagating electromagnetic waves or optical pulses across a
physical medium. The physical medium can take many shapes and forms and
does not have to be of the same type for each transmitter-receiver pair along
the path. Examples of physical media include twisted-pair copper wire, coaxial
cable, multimode fiber-optic cable, terrestrial radio spectrum, and satellite radio
spectrum. Physical media fall into two categories: guided media and unguided
media. With guided media, the waves are guided along a solid medium, such as
a fiber-optic cable, a twisted-pair copper wire, or a coaxial cable. With unguided
media, the waves propagate in the atmosphere and in outer space, such as in a
wireless LAN or a digital satellite channel.

But before we get into the characteristics of the various media types, let us say a
few words about their costs. The actual cost of the physical link (copper wire, fiber-
optic cable, and so on) is often relatively minor compared with other networking
costs. In particular, the labor cost associated with the installation of the physical link
can be orders of magnitude higher than the cost of the material. For this reason, many
builders install twisted pair, optical fiber, and coaxial cable in every room in a build-
ing. Even if only one medium is initially used, there is a good chance that another
medium could be used in the near future, and so money is saved by not having to lay
additional wires in the future.

Twisted-Pair Copper Wire

The least expensive and most commonly used guided transmission medium is
twisted-pair copper wire. For over a hundred years it has been used by telephone
networks. In fact, more than 99 percent of the wired connections from the telephone
handset to the local telephone switch use twisted-pair copper wire. Most of us have
seen twisted pair in our homes (or those of our parents or grandparents!) and work
environments. Twisted pair consists of two insulated copper wires, each about 1 mm
thick, arranged in a regular spiral pattern. The wires are twisted together to reduce the
electrical interference from similar pairs close by. Typically, a number of pairs are
bundled together in a cable by wrapping the pairs in a protective shield. A wire pair
constitutes a single communication link. Unshielded twisted pair (UTP) is com-
monly used for computer networks within a building, that is, for LANs. Data rates
for LANs using twisted pair today range from 10 Mbps to 10 Gbps. The data rates
that can be achieved depend on the thickness of the wire and the distance between
transmitter and receiver.

When fiber-optic technology emerged in the 1980s, many people dispar-
aged twisted pair because of its relatively low bit rates. Some people even felt

19

20

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

that fiber-optic technology would completely replace twisted pair. But twisted
pair did not give up so easily. Modern twisted-pair technology, such as category
6a cable, can achieve data rates of 10 Gbps for distances up to a hundred meters.
In the end, twisted pair has emerged as the dominant solution for high-speed
LAN networking.

As discussed earlier, twisted pair is also commonly used for residential Inter-
net access. We saw that dial-up modem technology enables access at rates of up to
56 kbps over twisted pair. We also saw that DSL (digital subscriber line) technology
has enabled residential users to access the Internet at tens of Mbps over twisted pair
(when users live close to the ISP’s central office).

Coaxial Cable

Like twisted pair, coaxial cable consists of two copper conductors, but the two con-
ductors are concentric rather than parallel. With this construction and special insula-
tion and shielding, coaxial cable can achieve high data transmission rates. Coaxial
cable is quite common in cable television systems. As we saw earlier, cable televi-
sion systems have recently been coupled with cable modems to provide residential
users with Internet access at rates of hundreds of Mbps. In cable television and cable
Internet access, the transmitter shifts the digital signal to a specific frequency band,
and the resulting analog signal is sent from the transmitter to one or more receivers.
Coaxial cable can be used as a guided shared medium. Specifically, a number of
end systems can be connected directly to the cable, with each of the end systems
receiving whatever is sent by the other end systems.

Fiber Optics

An optical fiber is a thin, flexible medium that conducts pulses of light, with each
pulse representing a bit. A single optical fiber can support tremendous bit rates, up
to tens or even hundreds of gigabits per second. They are immune to electromagnetic
interference, have very low signal attenuation up to 100 kilometers, and are very hard
to tap. These characteristics have made fiber optics the preferred long-haul guided
transmission media, particularly for overseas links. Many of the long-distance tele-
phone networks in the United States and elsewhere now use fiber optics exclusively.
Fiber optics is also prevalent in the backbone of the Internet. However, the high cost
of optical devices—such as transmitters, receivers, and switches—has hindered their
deployment for short-haul transport, such as in a LAN or into the home in a resi-
dential access network. The Optical Carrier (OC) standard link speeds range from
51.8 Mbps to 39.8 Gbps; these specifications are often referred to as OC-n, where
the link speed equals n X 51.8 Mbps. Standards in use today include OC-1, OC-3,
0OC-12, OC-24, OC-48, OC-96, OC-192, OC-768.

1.2 o THE NETWORK EDGE

Terrestrial Radio Channels

Radio channels carry signals in the electromagnetic spectrum. They are an attrac-
tive medium because they require no physical wire to be installed, can penetrate
walls, provide connectivity to a mobile user, and can potentially carry a signal
for long distances. The characteristics of a radio channel depend significantly
on the propagation environment and the distance over which a signal is to be
carried. Environmental considerations determine path loss and shadow fad-
ing (which decrease the signal strength as the signal travels over a distance and
around/through obstructing objects), multipath fading (due to signal reflection off
of interfering objects), and interference (due to other transmissions and electro-
magnetic signals).

Terrestrial radio channels can be broadly classified into three groups: those that
operate over very short distance (e.g., with one or two meters); those that operate in
local areas, typically spanning from ten to a few hundred meters; and those that oper-
ate in the wide area, spanning tens of kilometers. Personal devices such as wireless
headsets, keyboards, and medical devices operate over short distances; the wireless
LAN technologies described in Section 1.2.1 use local-area radio channels; the cel-
lular access technologies use wide-area radio channels. We’ll discuss radio channels
in detail in Chapter 7.

Satellite Radio Channels

A communication satellite links two or more Earth-based microwave transmitter/
receivers, known as ground stations. The satellite receives transmissions on
one frequency band, regenerates the signal using a repeater (discussed below),
and transmits the signal on another frequency. Two types of satellites are used
in communications: geostationary satellites and low-earth orbiting (LEO)
satellites.

Geostationary satellites permanently remain above the same spot on Earth.
This stationary presence is achieved by placing the satellite in orbit at 36,000 kilo-
meters above Earth’s surface. This huge distance from ground station through
satellite back to ground station introduces a substantial signal propagation delay
of 280 milliseconds. Nevertheless, satellite links, which can operate at speeds of
hundreds of Mbps, are often used in areas without access to DSL or cable-based
Internet access.

LEO satellites are placed much closer to Earth and do not remain permanently
above one spot on Earth. They rotate around Earth (just as the Moon does) and may
communicate with each other, as well as with ground stations. To provide continuous
coverage to an area, many satellites need to be placed in orbit. There are currently
many low-altitude communication systems in development. LEO satellite technology
may be used for Internet access sometime in the future.

21

22 CHAPTER T o COMPUTER NETWORKS AND THE INTERNET

1.3 The Network Core

Having examined the Internet’s edge, let us now delve more deeply inside the
network core—the mesh of packet switches and links that interconnects the
Internet’s end systems. Figure 1.10 highlights the network core with thick,
shaded lines.

@ National or
Global ISP

s F Local or
e e Regional ISP Content Provider Network
B = _

_ =
E all, =
EE u
i

Figure 1.10 ¢ The network core

1.3 e THE NETWORK CORE

1.3.1 Packet Switching

In a network application, end systems exchange messages with each other. Mes-
sages can contain anything the application designer wants. Messages may perform
a control function (for example, the “Hi” messages in our handshaking example in
Figure 1.2) or can contain data, such as an e-mail message, a JPEG image, or an
MP3 audio file. To send a message from a source end system to a destination end
system, the source breaks long messages into smaller chunks of data known as pack-
ets. Between source and destination, each packet travels through communication
links and packet switches (for which there are two predominant types, routers and
link-layer switches). Packets are transmitted over each communication link at a rate
equal to the full transmission rate of the link. So, if a source end system or a packet
switch is sending a packet of L bits over a link with transmission rate R bits/sec, then
the time to transmit the packet is L/R seconds.

Store-and-Forward Transmission

Most packet switches use store-and-forward transmission at the inputs to the
links. Store-and-forward transmission means that the packet switch must receive
the entire packet before it can begin to transmit the first bit of the packet onto the
outbound link. To explore store-and-forward transmission in more detail, consider
a simple network consisting of two end systems connected by a single router, as
shown in Figure 1.11. A router will typically have many incident links, since its
job is to switch an incoming packet onto an outgoing link; in this simple example,
the router has the rather simple task of transferring a packet from one (input) link
to the only other attached link. In this example, the source has three packets, each
consisting of L bits, to send to the destination. At the snapshot of time shown in
Figure 1.11, the source has transmitted some of packet 1, and the front of packet 1
has already arrived at the router. Because the router employs store-and-forwarding,
at this instant of time, the router cannot transmit the bits it has received; instead it
must first buffer (i.e., “store”) the packet’s bits. Only after the router has received
all of the packet’s bits can it begin to transmit (i.e., “forward”) the packet onto the
outbound link. To gain some insight into store-and-forward transmission, let’s now
calculate the amount of time that elapses from when the source begins to send the
packet until the destination has received the entire packet. (Here we will ignore
propagation delay—the time it takes for the bits to travel across the wire at near
the speed of light—which will be discussed in Section 1.4.) The source begins to
transmit at time 0; at time L/R seconds, the source has transmitted the entire packet,
and the entire packet has been received and stored at the router (since there is no
propagation delay). At time L/R seconds, since the router has just received the entire
packet, it can begin to transmit the packet onto the outbound link towards the des-
tination; at time 2L/R, the router has transmitted the entire packet, and the entire
packet has been received by the destination. Thus, the total delay is 2L/R. If the

23

24 CHAPTER T o COMPUTER NETWORKS AND THE INTERNET

321 ==
_ I i E J —_—
R bps E
Source Front of packet 1 Destination

stored in router,
awaiting remaining
bits before forwarding

Figure 1.11 ¢ Store-and-forward packet switching

switch instead forwarded bits as soon as they arrive (without first receiving the entire
packet), then the total delay would be L/R since bits are not held up at the router.
But, as we will discuss in Section 1.4, routers need to receive, store, and process the
entire packet before forwarding.

Now let’s calculate the amount of time that elapses from when the source begins
to send the first packet until the destination has received all three packets. As before,
at time L/R, the router begins to forward the first packet. But also at time L/R the
source will begin to send the second packet, since it has just finished sending the
entire first packet. Thus, at time 2L/R, the destination has received the first packet
and the router has received the second packet. Similarly, at time 3L/R, the destina-
tion has received the first two packets and the router has received the third packet.
Finally, at time 4L/R the destination has received all three packets!

Let’s now consider the general case of sending one packet from source to des-
tination over a path consisting of N links each of rate R (thus, there are N-1 routers
between source and destination). Applying the same logic as above, we see that the
end-to-end delay is:

L
d = N— 1.1
end-to-end R ()

You may now want to try to determine what the delay would be for P packets sent
over a series of N links.

Queuing Delays and Packet Loss

Each packet switch has multiple links attached to it. For each attached link, the
packet switch has an output buffer (also called an output queue), which stores
packets that the router is about to send into that link. The output buffers play a key
role in packet switching. If an arriving packet needs to be transmitted onto a link but
finds the link busy with the transmission of another packet, the arriving packet must
wait in the output buffer. Thus, in addition to the store-and-forward delays, packets
suffer output buffer queuing delays. These delays are variable and depend on the

1.3 e THE NETWORK CORE

100 Mbps Ethernet

LR hL K

—
— 15 Mbps
/
Queue of
packets waiting
‘é for output link
B

Key: D E

\ ‘ Packets

Figure 1.12 ¢ Packet switching

level of congestion in the network. Since the amount of buffer space is finite, an
arriving packet may find that the buffer is completely full with other packets waiting
for transmission. In this case, packet loss will occur—either the arriving packet or
one of the already-queued packets will be dropped.

Figure 1.12 illustrates a simple packet-switched network. As in Figure 1.11,
packets are represented by three-dimensional slabs. The width of a slab represents
the number of bits in the packet. In this figure, all packets have the same width and
hence the same length. Suppose Hosts A and B are sending packets to Host E. Hosts
A and B first send their packets along 100 Mbps Ethernet links to the first router.
The router then directs these packets to the 15 Mbps link. If, during a short interval
of time, the arrival rate of packets to the router (when converted to bits per second)
exceeds 15 Mbps, congestion will occur at the router as packets queue in the link’s
output buffer before being transmitted onto the link. For example, if Host A and B
each send a burst of five packets back-to-back at the same time, then most of these
packets will spend some time waiting in the queue. The situation is, in fact, entirely
analogous to many common-day situations—for example, when we wait in line for a
bank teller or wait in front of a tollbooth. We’ll examine this queuing delay in more
detail in Section 1.4.

Forwarding Tables and Routing Protocols

Earlier, we said that a router takes a packet arriving on one of its attached com-
munication links and forwards that packet onto another one of its attached
communication links. But how does the router determine which link it should

25

26

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

forward the packet onto? Packet forwarding is actually done in different ways in
different types of computer networks. Here, we briefly describe how it is done
in the Internet.

In the Internet, every end system has an address called an IP address. When
a source end system wants to send a packet to a destination end system, the
source includes the destination’s IP address in the packet’s header. As with postal
addresses, this address has a hierarchical structure. When a packet arrives at a router
in the network, the router examines a portion of the packet’s destination address
and forwards the packet to an adjacent router. More specifically, each router has
a forwarding table that maps destination addresses (or portions of the destination
addresses) to that router’s outbound links. When a packet arrives at a router, the
router examines the address and searches its forwarding table, using this destination
address, to find the appropriate outbound link. The router then directs the packet to
this outbound link.

The end-to-end routing process is analogous to a car driver who does not
use maps but instead prefers to ask for directions. For example, suppose Joe is
driving from Philadelphia to 156 Lakeside Drive in Orlando, Florida. Joe first
drives to his neighborhood gas station and asks how to get to 156 Lakeside Drive
in Orlando, Florida. The gas station attendant extracts the Florida portion of the
address and tells Joe that he needs to get onto the interstate highway I-95 South,
which has an entrance just next to the gas station. He also tells Joe that once he
enters Florida, he should ask someone else there. Joe then takes I-95 South until he
gets to Jacksonville, Florida, at which point he asks another gas station attendant
for directions. The attendant extracts the Orlando portion of the address and tells
Joe that he should continue on I-95 to Daytona Beach and then ask someone else.
In Daytona Beach, another gas station attendant also extracts the Orlando portion
of the address and tells Joe that he should take I-4 directly to Orlando. Joe takes
[-4 and gets off at the Orlando exit. Joe goes to another gas station attendant, and
this time the attendant extracts the Lakeside Drive portion of the address and tells
Joe the road he must follow to get to Lakeside Drive. Once Joe reaches Lakeside
Drive, he asks a kid on a bicycle how to get to his destination. The kid extracts the
156 portion of the address and points to the house. Joe finally reaches his ultimate
destination. In the above analogy, the gas station attendants and kids on bicycles
are analogous to routers.

We just learned that a router uses a packet’s destination address to index a for-
warding table and determine the appropriate outbound link. But this statement begs
yet another question: How do forwarding tables get set? Are they configured by hand
in each and every router, or does the Internet use a more automated procedure? This
issue will be studied in depth in Chapter 5. But to whet your appetite here, we’ll note
now that the Internet has a number of special routing protocols that are used to auto-
matically set the forwarding tables. A routing protocol may, for example, determine
the shortest path from each router to each destination and use the shortest path results
to configure the forwarding tables in the routers.

1.3 e THE NETWORK CORE

1.3.2 Circuit Switching

There are two fundamental approaches to moving data through a network of links
and switches: circuit switching and packet switching. Having covered packet-
switched networks in the previous subsection, we now turn our attention to circuit-
switched networks.

In circuit-switched networks, the resources needed along a path (buffers, link
transmission rate) to provide for communication between the end systems are
reserved for the duration of the communication session between the end systems.
In packet-switched networks, these resources are not reserved; a session’s messages
use the resources on demand and, as a consequence, may have to wait (that is, queue)
for access to a communication link. As a simple analogy, consider two restaurants,
one that requires reservations and another that neither requires reservations nor
accepts them. For the restaurant that requires reservations, we have to go through
the hassle of calling before we leave home. But when we arrive at the restaurant we
can, in principle, immediately be seated and order our meal. For the restaurant that
does not require reservations, we don’t need to bother to reserve a table. But when
we arrive at the restaurant, we may have to wait for a table before we can be seated.

Traditional telephone networks are examples of circuit-switched networks.
Consider what happens when one person wants to send information (voice or facsimile)
to another over a telephone network. Before the sender can send the information,
the network must establish a connection between the sender and the receiver. This
is a bona fide connection for which the switches on the path between the sender and
receiver maintain connection state for that connection. In the jargon of telephony,
this connection is called a circuit. When the network establishes the circuit, it also
reserves a constant transmission rate in the network’s links (representing a fraction
of each link’s transmission capacity) for the duration of the connection. Since a given
transmission rate has been reserved for this sender-to-receiver connection, the sender
can transfer the data to the receiver at the guaranteed constant rate.

Figure 1.13 illustrates a circuit-switched network. In this network, the four
circuit switches are interconnected by four links. Each of these links has four cir-
cuits, so that each link can support four simultaneous connections. The hosts (for
example, PCs and workstations) are each directly connected to one of the switches.
When two hosts want to communicate, the network establishes a dedicated end-
to-end connection between the two hosts. Thus, in order for Host A to communi-
cate with Host B, the network must first reserve one circuit on each of two links.
In this example, the dedicated end-to-end connection uses the second circuit in
the first link and the fourth circuit in the second link. Because each link has four
circuits, for each link used by the end-to-end connection, the connection gets one
fourth of the link’s total transmission capacity for the duration of the connection.
Thus, for example, if each link between adjacent switches has a transmission rate of
1 Mbps, then each end-to-end circuit-switch connection gets 250 kbps of dedicated
transmission rate.

27

28

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

Figure 1.13 ¢ A simple circuit-switched network consisting of four switches
and four links

In contrast, consider what happens when one host wants to send a packet to
another host over a packet-switched network, such as the Internet. As with circuit
switching, the packet is transmitted over a series of communication links. But dif-
ferent from circuit switching, the packet is sent into the network without reserving
any link resources whatsoever. If one of the links is congested because other packets
need to be transmitted over the link at the same time, then the packet will have to
wait in a buffer at the sending side of the transmission link and suffer a delay. The
Internet makes its best effort to deliver packets in a timely manner, but it does not
make any guarantees.

Multiplexing in Circuit-Switched Networks

A circuit in a link is implemented with either frequency-division multiplexing
(FDM) or time-division multiplexing (TDM). With FDM, the frequency spectrum
of a link is divided up among the connections established across the link. Specifi-
cally, the link dedicates a frequency band to each connection for the duration of the
connection. In telephone networks, this frequency band typically has a width of
4 kHz (that is, 4,000 hertz or 4,000 cycles per second). The width of the band is
called, not surprisingly, the bandwidth. FM radio stations also use FDM to share
the frequency spectrum between 88 MHz and 108 MHz, with each station being
allocated a specific frequency band.

For a TDM link, time is divided into frames of fixed duration, and each frame is
divided into a fixed number of time slots. When the network establishes a connection
across a link, the network dedicates one time slot in every frame to this connection.
These slots are dedicated for the sole use of that connection, with one time slot avail-
able for use (in every frame) to transmit the connection’s data.

1.3 e THE NETWORK CORE

FDM
4KHZ{
—Link : Frequency
4KHZ{
TDM
E.3 41I3 4 1I3 41I3 4
- |
Slot Frame
Time
Key:

Al slots labeled “2" are dedicated
to a specific sender-receiver pair.

Figure 1.14 + With FDM, each circuit continuously gets a fraction of the
bandwidth. With TDM, each circuit gets all of the bandwidth
periodically during brief intervals of time (that is, during slots)

Figure 1.14 illustrates FDM and TDM for a specific network link supporting
up to four circuits. For FDM, the frequency domain is segmented into four bands,
each of bandwidth 4 kHz. For TDM, the time domain is segmented into frames, with
four time slots in each frame; each circuit is assigned the same dedicated slot in the
revolving TDM frames. For TDM, the transmission rate of a circuit is equal to the
frame rate multiplied by the number of bits in a slot. For example, if the link trans-
mits 8,000 frames per second and each slot consists of 8 bits, then the transmission
rate of each circuit is 64 kbps.

Proponents of packet switching have always argued that circuit switching is waste-
ful because the dedicated circuits are idle during silent periods. For example, when one
person in a telephone call stops talking, the idle network resources (frequency bands or
time slots in the links along the connection’s route) cannot be used by other ongoing
connections. As another example of how these resources can be underutilized, consider
aradiologist who uses a circuit-switched network to remotely access a series of x-rays.
The radiologist sets up a connection, requests an image, contemplates the image, and
then requests a new image. Network resources are allocated to the connection but are
not used (i.e., are wasted) during the radiologist’s contemplation periods. Proponents
of packet switching also enjoy pointing out that establishing end-to-end circuits and
reserving end-to-end transmission capacity is complicated and requires complex sign-
aling software to coordinate the operation of the switches along the end-to-end path.

29

30

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

Before we finish our discussion of circuit switching, let’s work through a numer-
ical example that should shed further insight on the topic. Let us consider how long
it takes to send a file of 640,000 bits from Host A to Host B over a circuit-switched
network. Suppose that all links in the network use TDM with 24 slots and have a bit
rate of 1.536 Mbps. Also suppose that it takes 500 msec to establish an end-to-end
circuit before Host A can begin to transmit the file. How long does it take to send
the file? Each circuit has a transmission rate of (1.536 Mbps)/24 = 64 kbps, so it
takes (640,000 bits)/(64 kbps) = 10 seconds to transmit the file. To this 10 seconds
we add the circuit establishment time, giving 10.5 seconds to send the file. Note
that the transmission time is independent of the number of links: The transmission
time would be 10 seconds if the end-to-end circuit passed through one link or a
hundred links. (The actual end-to-end delay also includes a propagation delay; see
Section 1.4.)

Packet Switching Versus Circuit Switching

Having described circuit switching and packet switching, let us compare the two.
Critics of packet switching have often argued that packet switching is not suita-
ble for real-time services (for example, telephone calls and video conference calls)
because of its variable and unpredictable end-to-end delays (due primarily to vari-
able and unpredictable queuing delays). Proponents of packet switching argue that
(1) it offers better sharing of transmission capacity than circuit switching and (2) it
is simpler, more efficient, and less costly to implement than circuit switching. An
interesting discussion of packet switching versus circuit switching is [Molinero-
Fernandez 2002]. Generally speaking, people who do not like to hassle with restaurant
reservations prefer packet switching to circuit switching.

Why is packet switching more efficient? Let’s look at a simple example. Sup-
pose users share a 1 Mbps link. Also suppose that each user alternates between peri-
ods of activity, when a user generates data at a constant rate of 100 kbps, and periods
of inactivity, when a user generates no data. Suppose further that a user is active only
10 percent of the time (and is idly drinking coffee during the remaining 90 percent
of the time). With circuit switching, 100 kbps must be reserved for each user at all
times. For example, with circuit-switched TDM, if a one-second frame is divided
into 10 time slots of 100 ms each, then each user would be allocated one time slot
per frame.

Thus, the circuit-switched link can support only 10 (= 1 Mbps/100 kbps) simul-
taneous users. With packet switching, the probability that a specific user is active
is 0.1 (that is, 10 percent). If there are 35 users, the probability that there are 11 or
more simultaneously active users is approximately 0.0004. (Homework Problem P8
outlines how this probability is obtained.) When there are 10 or fewer simultane-
ously active users (which happens with probability 0.9996), the aggregate arrival
rate of data is less than or equal to 1 Mbps, the output rate of the link. Thus, when
there are 10 or fewer active users, users’ packets flow through the link essentially

1.3 e THE NETWORK CORE

without delay, as is the case with circuit switching. When there are more than 10
simultaneously active users, then the aggregate arrival rate of packets exceeds the
output capacity of the link, and the output queue will begin to grow. (It continues to
grow until the aggregate input rate falls back below 1 Mbps, at which point the queue
will begin to diminish in length.) Because the probability of having more than 10
simultaneously active users is minuscule in this example, packet switching provides
essentially the same performance as circuit switching, but does so while allowing for
more than three times the number of users.

Let’s now consider a second simple example. Suppose there are 10 users and
that one user suddenly generates one thousand 1,000-bit packets, while other users
remain quiescent and do not generate packets. Under TDM circuit switching with 10
slots per frame and each slot consisting of 1,000 bits, the active user can only use its
one time slot per frame to transmit data, while the remaining nine time slots in each
frame remain idle. It will be 10 seconds before all of the active user’s one million
bits of data has been transmitted. In the case of packet switching, the active user can
continuously send its packets at the full link rate of 1 Mbps, since there are no other
users generating packets that need to be multiplexed with the active user’s packets.
In this case, all of the active user’s data will be transmitted within 1 second.

The above examples illustrate two ways in which the performance of packet
switching can be superior to that of circuit switching. They also highlight the cru-
cial difference between the two forms of sharing a link’s transmission rate among
multiple data streams. Circuit switching pre-allocates use of the transmission link
regardless of demand, with allocated but unneeded link time going unused. Packet
switching on the other hand allocates link use on demand. Link transmission capacity
will be shared on a packet-by-packet basis only among those users who have packets
that need to be transmitted over the link.

Although packet switching and circuit switching are both prevalent in today’s
telecommunication networks, the trend has certainly been in the direction of packet
switching. Even many of today’s circuit-switched telephone networks are slowly
migrating toward packet switching. In particular, telephone networks often use
packet switching for the expensive overseas portion of a telephone call.

1.3.3 A Network of Networks

We saw earlier that end systems (PCs, smartphones, Web servers, mail servers, and
so on) connect into the Internet via an access ISP. The access ISP can provide either
wired or wireless connectivity, using an array of access technologies including DSL,
cable, FTTH, Wi-Fi, and cellular. Note that the access ISP does not have to be a
telco or a cable company; instead it can be, for example, a university (providing
Internet access to students, staff, and faculty), or a company (providing access for
its employees). But connecting end users and content providers into an access ISP is
only a small piece of solving the puzzle of connecting the billions of end systems that
make up the Internet. To complete this puzzle, the access ISPs themselves must be

31

32

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

interconnected. This is done by creating a network of networks—understanding this
phrase is the key to understanding the Internet.

Over the years, the network of networks that forms the Internet has evolved into
a very complex structure. Much of this evolution is driven by economics and national
policy, rather than by performance considerations. In order to understand today’s
Internet network structure, let’s incrementally build a series of network structures,
with each new structure being a better approximation of the complex Internet that we
have today. Recall that the overarching goal is to interconnect the access ISPs so that
all end systems can send packets to each other. One naive approach would be to have
each access ISP directly connect with every other access ISP. Such a mesh design is,
of course, much too costly for the access ISPs, as it would require each access ISP
to have a separate communication link to each of the hundreds of thousands of other
access ISPs all over the world.

Our first network structure, Network Structure 1, interconnects all of the access
ISPs with a single global transit ISP. Our (imaginary) global transit ISP is a network
of routers and communication links that not only spans the globe, but also has at least
one router near each of the hundreds of thousands of access ISPs. Of course, it would
be very costly for the global ISP to build such an extensive network. To be profitable,
it would naturally charge each of the access ISPs for connectivity, with the pricing
reflecting (but not necessarily directly proportional to) the amount of traffic an access
ISP exchanges with the global ISP. Since the access ISP pays the global transit ISP, the
access ISP is said to be a customer and the global transit ISP is said to be a provider.

Now if some company builds and operates a global transit ISP that is profit-
able, then it is natural for other companies to build their own global transit ISPs
and compete with the original global transit ISP. This leads to Network Structure 2,
which consists of the hundreds of thousands of access ISPs and multiple global
transit ISPs. The access ISPs certainly prefer Network Structure 2 over Network
Structure 1 since they can now choose among the competing global transit providers
as a function of their pricing and services. Note, however, that the global transit ISPs
themselves must interconnect: Otherwise access ISPs connected to one of the global
transit providers would not be able to communicate with access ISPs connected to the
other global transit providers.

Network Structure 2, just described, is a two-tier hierarchy with global transit
providers residing at the top tier and access ISPs at the bottom tier. This assumes
that global transit ISPs are not only capable of getting close to each and every access
ISP, but also find it economically desirable to do so. In reality, although some ISPs
do have impressive global coverage and do directly connect with many access ISPs,
no ISP has presence in each and every city in the world. Instead, in any given region,
there may be a regional ISP to which the access ISPs in the region connect. Each
regional ISP then connects to tier-1 ISPs. Tier-1 ISPs are similar to our (imaginary)
global transit ISP; but tier-1 ISPs, which actually do exist, do not have a presence
in every city in the world. There are approximately a dozen tier-1 ISPs, including
Level 3 Communications, AT&T, Sprint, and NTT. Interestingly, no group officially

1.3 e THE NETWORK CORE

sanctions tier-1 status; as the saying goes—if you have to ask if you’re a member of
a group, you’re probably not.

Returning to this network of networks, not only are there multiple competing
tier-1 ISPs, there may be multiple competing regional ISPs in a region. In such a
hierarchy, each access ISP pays the regional ISP to which it connects, and each
regional ISP pays the tier-1 ISP to which it connects. (An access ISP can also connect
directly to a tier-1 ISP, in which case it pays the tier-1 ISP). Thus, there is customer-
provider relationship at each level of the hierarchy. Note that the tier-1 ISPs do not
pay anyone as they are at the top of the hierarchy. To further complicate matters, in
some regions, there may be a larger regional ISP (possibly spanning an entire coun-
try) to which the smaller regional ISPs in that region connect; the larger regional
ISP then connects to a tier-1 ISP. For example, in China, there are access ISPs in
each city, which connect to provincial ISPs, which in turn connect to national ISPs,
which finally connect to tier-1 ISPs [Tian 2012]. We refer to this multi-tier hierarchy,
which is still only a crude approximation of today’s Internet, as Network Structure 3.

To build a network that more closely resembles today’s Internet, we must add
points of presence (PoPs), multi-homing, peering, and Internet exchange points
(IXPs) to the hierarchical Network Structure 3. PoPs exist in all levels of the hier-
archy, except for the bottom (access ISP) level. A PoP is simply a group of one or
more routers (at the same location) in the provider’s network where customer ISPs
can connect into the provider ISP. For a customer network to connect to a provider’s
PoP, it can lease a high-speed link from a third-party telecommunications provider
to directly connect one of its routers to a router at the PoP. Any ISP (except for tier-1
ISPs) may choose to multi-home, that is, to connect to two or more provider ISPs. So,
for example, an access ISP may multi-home with two regional ISPs, or it may multi-
home with two regional ISPs and also with a tier-1 ISP. Similarly, a regional ISP may
multi-home with multiple tier-1 ISPs. When an ISP multi-homes, it can continue to
send and receive packets into the Internet even if one of its providers has a failure.

As we just learned, customer ISPs pay their provider ISPs to obtain global Inter-
net interconnectivity. The amount that a customer ISP pays a provider ISP reflects
the amount of traffic it exchanges with the provider. To reduce these costs, a pair
of nearby ISPs at the same level of the hierarchy can peer, that is, they can directly
connect their networks together so that all the traffic between them passes over the
direct connection rather than through upstream intermediaries. When two ISPs peer,
it is typically settlement-free, that is, neither ISP pays the other. As noted earlier,
tier-1 ISPs also peer with one another, settlement-free. For a readable discussion of
peering and customer-provider relationships, see [Van der Berg 2008]. Along these
same lines, a third-party company can create an Internet Exchange Point (IXP),
which is a meeting point where multiple ISPs can peer together. An IXP is typically
in a stand-alone building with its own switches [Ager 2012]. There are over 600 IXPs
in the Internet today [PeeringDB 2020]. We refer to this ecosystem—consisting of
access ISPs, regional ISPs, tier-1 ISPs, PoPs, multi-homing, peering, and IXPs—as
Network Structure 4.

33

34

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

We now finally arrive at Network Structure 5, which describes today’s Internet.
Network Structure 5, illustrated in Figure 1.15, builds on top of Network Structure 4
by adding content-provider networks. Google is currently one of the leading exam-
ples of such a content-provider network. As of this writing, it Google has 19 major data
centers distributed across North America, Europe, Asia, South America, and Australia
with each data center having tens or hundreds of thousands of servers. Additionally,
Google has smaller data centers, each with a few hundred servers; these smaller data
centers are often located within IXPs. The Google data centers are all interconnected
via Google’s private TCP/IP network, which spans the entire globe but is neverthe-
less separate from the public Internet. Importantly, the Google private network only
carries traffic to/from Google servers. As shown in Figure 1.15, the Google private
network attempts to “bypass” the upper tiers of the Internet by peering (settlement
free) with lower-tier ISPs, either by directly connecting with them or by connecting
with them at IXPs [Labovitz 2010]. However, because many access ISPs can still only
be reached by transiting through tier-1 networks, the Google network also connects
to tier-1 ISPs, and pays those ISPs for the traffic it exchanges with them. By creating
its own network, a content provider not only reduces its payments to upper-tier ISPs,
but also has greater control of how its services are ultimately delivered to end users.
Google’s network infrastructure is described in greater detail in Section 2.6.

In summary, today’s Internet—a network of networks—is complex, consisting
of a dozen or so tier-1 ISPs and hundreds of thousands of lower-tier ISPs. The ISPs
are diverse in their coverage, with some spanning multiple continents and oceans,
and others limited to narrow geographic regions. The lower-tier ISPs connect to the
higher-tier ISPs, and the higher-tier ISPs interconnect with one another. Users and
content providers are customers of lower-tier ISPs, and lower-tier ISPs are customers
of higher-tier ISPs. In recent years, major content providers have also created their
own networks and connect directly into lower-tier ISPs where possible.

//\

Tier 1 Tier 1 Content provider
ISP ISP (e.g., Google)
N \
IXP IXP
Regional Regional
ISP ISP
access access access access access access access access
ISP ISP ISP ISP ISP ISP ISP ISP

Figure 1.15 + Inferconnection of ISPs

1.4 o DELAY, LOSS, AND THROUGHPUT IN PACKET-SWITCHED NETWORKS

1.4 Delay, Loss, and Throughput
in Packet-Switched Networks

Back in Section 1.1 we said that the Internet can be viewed as an infrastructure that
provides services to distributed applications running on end systems. Ideally, we
would like Internet services to be able to move as much data as we want between any
two end systems, instantaneously, without any loss of data. Alas, this is a lofty goal,
one that is unachievable in reality. Instead, computer networks necessarily constrain
throughput (the amount of data per second that can be transferred) between end sys-
tems, introduce delays between end systems, and can actually lose packets. On one
hand, it is unfortunate that the physical laws of reality introduce delay and loss as
well as constrain throughput. On the other hand, because computer networks have
these problems, there are many fascinating issues surrounding how to deal with the
problems—more than enough issues to fill a course on computer networking and to
motivate thousands of PhD theses! In this section, we’ll begin to examine and quan-
tify delay, loss, and throughput in computer networks.

1.4.1 Overview of Delay in Packet-Switched Networks

Recall that a packet starts in a host (the source), passes through a series of routers,
and ends its journey in another host (the destination). As a packet travels from one
node (host or router) to the subsequent node (host or router) along this path, the
packet suffers from several types of delays at each node along the path. The most
important of these delays are the nodal processing delay, queuing delay, transmis-
sion delay, and propagation delay; together, these delays accumulate to give a total
nodal delay. The performance of many Internet applications—such as search, Web
browsing, e-mail, maps, instant messaging, and voice-over-IP—are greatly affected
by network delays. In order to acquire a deep understanding of packet switching and
computer networks, we must understand the nature and importance of these delays.

Types of Delay

Let’s explore these delays in the context of Figure 1.16. As part of its end-to-end
route between source and destination, a packet is sent from the upstream node
through router A to router B. Our goal is to characterize the nodal delay at router A.
Note that router A has an outbound link leading to router B. This link is preceded
by a queue (also known as a buffer). When the packet arrives at router A from the
upstream node, router A examines the packet’s header to determine the appropriate
outbound link for the packet and then directs the packet to this link. In this exam-
ple, the outbound link for the packet is the one that leads to router B. A packet can
be transmitted on a link only if there is no other packet currently being transmitted
on the link and if there are no other packets preceding it in the queue; if the link is

35

36 CHAPTER T o COMPUTER NETWORKS AND THE INTERNET

\
Propagation

Nodal Queueing Transmission
processing (waiting for
transmission)

Figure 1.16 ¢ The nodal delay at router A

currently busy or if there are other packets already queued for the link, the newly
arriving packet will then join the queue.

Processing Delay

The time required to examine the packet’s header and determine where to direct
the packet is part of the processing delay. The processing delay can also include
other factors, such as the time needed to check for bit-level errors in the packet
that occurred in transmitting the packet’s bits from the upstream node to router A.
Processing delays in high-speed routers are typically on the order of microseconds
or less. After this nodal processing, the router directs the packet to the queue that
precedes the link to router B. (In Chapter 4 we’ll study the details of how a router
operates.)

Queuing Delay

At the queue, the packet experiences a queuing delay as it waits to be transmitted
onto the link. The length of the queuing delay of a specific packet will depend on the
number of earlier-arriving packets that are queued and waiting for transmission onto
the link. If the queue is empty and no other packet is currently being transmitted, then
our packet’s queuing delay will be zero. On the other hand, if the traffic is heavy and
many other packets are also waiting to be transmitted, the queuing delay will be long.
We will see shortly that the number of packets that an arriving packet might expect
to find is a function of the intensity and nature of the traffic arriving at the queue.
Queuing delays can be on the order of microseconds to milliseconds in practice.

Transmission Delay

Assuming that packets are transmitted in a first-come-first-served manner, as is com-
mon in packet-switched networks, our packet can be transmitted only after all the
packets that have arrived before it have been transmitted. Denote the length of the

1.4 o DELAY, LOSS, AND THROUGHPUT IN PACKET-SWITCHED NETWORKS 37

packet by L bits, and denote the transmission rate of the link from router A to router
B by R bits/sec. For example, for a 10 Mbps Ethernet link, the rate is R = 10 Mbps;
for a 100 Mbps Ethernet link, the rate is R = 100 Mbps. The transmission delay is
L/R. This is the amount of time required to push (that is, transmit) all of the packet’s
bits into the link. Transmission delays are typically on the order of microseconds to
milliseconds in practice.

Propagation Delay

Once a bit is pushed into the link, it needs to propagate to router B. The time required
to propagate from the beginning of the link to router B is the propagation delay. The
bit propagates at the propagation speed of the link. The propagation speed depends
on the physical medium of the link (that is, fiber optics, twisted-pair copper wire, and
so on) and is in the range of

2 - 10% meters/sec to 3 - 10® meters/sec

which is equal to, or a little less than, the speed of light. The propagation delay is the
distance between two routers divided by the propagation speed. That is, the propaga-
tion delay is d/s, where d is the distance between router A and router B and s is the
propagation speed of the link. Once the last bit of the packet propagates to node B,
it and all the preceding bits of the packet are stored in router B. The whole process
then continues with router B now performing the forwarding. In wide-area networks,
propagation delays are on the order of milliseconds.

Comparing Transmission and Propagation Delay

Newcomers to the field of computer networking sometimes have difficulty under-
standing the difference between transmission delay and propagation delay. The dif-
ference is subtle but important. The transmission delay is the amount of time required
for the router to push out the packet; it is a function of the packet’s length and the
transmission rate of the link, but has nothing to do with the distance between the two
routers. The propagation delay, on the other hand, is the time it takes a bit to propa-
gate from one router to the next; it is a function of the distance between the two rout-
ers, but has nothing to do with the packet’s length or the transmission rate of the link.

An analogy might clarify the notions of transmission and propagation delay.
Consider a highway that has a tollbooth every 100 kilometers, as shown in Fig-
ure 1.17. You can think of the highway segments between tollbooths as links and
the tollbooths as routers. Suppose that cars travel (that is, propagate) on the highway
at a rate of 100 km/hour (that is, when a car leaves a tollbooth, it instantaneously
accelerates to 100 km/hour and maintains that speed between tollbooths). Suppose
next that 10 cars, traveling together as a caravan, follow each other in a fixed order.
You can think of each car as a bit and the caravan as a packet. Also suppose that each

VideoNote

Exploring propagation
delay and transmission
delay

38

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

<+«——100 km —» <+—100 km ---

T
Ten-car Toll Toll
caravan booth booth

Figure 1.17 + Caravan analogy

tollbooth services (that is, transmits) a car at a rate of one car per 12 seconds, and that
it is late at night so that the caravan’s cars are the only cars on the highway. Finally,
suppose that whenever the first car of the caravan arrives at a tollbooth, it waits at
the entrance until the other nine cars have arrived and lined up behind it. (Thus, the
entire caravan must be stored at the tollbooth before it can begin to be forwarded.)
The time required for the tollbooth to push the entire caravan onto the highway is
(10 cars)/(5 cars/minute) = 2 minutes. This time is analogous to the transmission
delay in a router. The time required for a car to travel from the exit of one tollbooth
to the next tollbooth is 100 km/(100 km/hour) = 1 hour. This time is analogous to
propagation delay. Therefore, the time from when the caravan is stored in front of a
tollbooth until the caravan is stored in front of the next tollbooth is the sum of trans-
mission delay and propagation delay—in this example, 62 minutes.

Let’s explore this analogy a bit more. What would happen if the tollbooth ser-
vice time for a caravan were greater than the time for a car to travel between toll-
booths? For example, suppose now that the cars travel at the rate of 1,000 km/hour
and the tollbooth services cars at the rate of one car per minute. Then the traveling
delay between two tollbooths is 6 minutes and the time to serve a caravan is 10 min-
utes. In this case, the first few cars in the caravan will arrive at the second tollbooth
before the last cars in the caravan leave the first tollbooth. This situation also arises
in packet-switched networks—the first bits in a packet can arrive at a router while
many of the remaining bits in the packet are still waiting to be transmitted by the
preceding router.

If a picture speaks a thousand words, then an animation must speak a million
words. The Web site for this textbook provides an interactive animation that nicely
illustrates and contrasts transmission delay and propagation delay. The reader is
highly encouraged to visit that animation. [Smith 2009] also provides a very read-
able discussion of propagation, queueing, and transmission delays.

If we let dyrocs dqueues dirans> and dpyrop denote the processing, queuing, transmis-

prop
sion, and propagation delays, then the total nodal delay is given by

dnodal = dpmc + dqueue + dtrans + dpr()p

The contribution of these delay components can vary significantly. For example,
dprop can be negligible (for example, a couple of microseconds) for a link connecting
is hundreds of millisec-

two routers on the same university campus; however, dp,
onds for two routers interconnected by a geostationary satellite link, and can be the

1.4 o DELAY, LOSS, AND THROUGHPUT IN PACKET-SWITCHED NETWORKS

dominant term in d,,q,. Similarly, d,.,,, can range from negligible to significant. Its
contribution is typically negligible for transmission rates of 10 Mbps and higher (for
example, for LANs); however, it can be hundreds of milliseconds for large Internet
packets sent over low-speed dial-up modem links. The processing delay, droc, is
often negligible; however, it strongly influences a router’s maximum throughput,
which is the maximum rate at which a router can forward packets.

1.4.2 Queuing Delay and Packet Loss

The most complicated and interesting component of nodal delay is the queuing delay,
dgueue- In fact, queuing delay is so important and interesting in computer networking
that thousands of papers and numerous books have been written about it [Bertsekas
1991; Kleinrock 1975, Kleinrock 1976]. We give only a high-level, intuitive discus-
sion of queuing delay here; the more curious reader may want to browse through
some of the books (or even eventually write a PhD thesis on the subject!). Unlike the
other three delays (namely, dyroc; diranss and dyop), the queuing delay can vary from
packet to packet. For example, if 10 packets arrive at an empty queue at the same
time, the first packet transmitted will suffer no queuing delay, while the last packet
transmitted will suffer a relatively large queuing delay (while it waits for the other
nine packets to be transmitted). Therefore, when characterizing queuing delay, one
typically uses statistical measures, such as average queuing delay, variance of queu-
ing delay, and the probability that the queuing delay exceeds some specified value.

When is the queuing delay large and when is it insignificant? The answer to this
question depends on the rate at which traffic arrives at the queue, the transmission
rate of the link, and the nature of the arriving traffic, that is, whether the traffic arrives
periodically or arrives in bursts. To gain some insight here, let a denote the average
rate at which packets arrive at the queue (a is in units of packets/sec). Recall that R
is the transmission rate; that is, it is the rate (in bits/sec) at which bits are pushed out
of the queue. Also suppose, for simplicity, that all packets consist of L bits. Then the
average rate at which bits arrive at the queue is La bits/sec. Finally, assume that the
queue is very big, so that it can hold essentially an infinite number of bits. The ratio
La/R, called the traffic intensity, often plays an important role in estimating the
extent of the queuing delay. If La/R > 1, then the average rate at which bits arrive at
the queue exceeds the rate at which the bits can be transmitted from the queue. In this
unfortunate situation, the queue will tend to increase without bound and the queuing
delay will approach infinity! Therefore, one of the golden rules in traffic engineering
is: Design your system so that the traffic intensity is no greater than 1.

Now consider the case La/R = 1. Here, the nature of the arriving traffic impacts
the queuing delay. For example, if packets arrive periodically—that is, one packet
arrives every L/R seconds—then every packet will arrive at an empty queue and
there will be no queuing delay. On the other hand, if packets arrive in bursts but
periodically, there can be a significant average queuing delay. For example, sup-
pose N packets arrive simultaneously every (L/R)N seconds. Then the first packet
transmitted has no queuing delay; the second packet transmitted has a queuing delay

39

40

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

of L/R seconds; and more generally, the nth packet transmitted has a queuing delay
of (n — 1)L/R seconds. We leave it as an exercise for you to calculate the average
queuing delay in this example.

The two examples of periodic arrivals described above are a bit academic. Typically,
the arrival process to a queue is random; that is, the arrivals do not follow any pattern
and the packets are spaced apart by random amounts of time. In this more realistic case,
the quantity La/R is not usually sufficient to fully characterize the queuing delay statis-
tics. Nonetheless, it is useful in gaining an intuitive understanding of the extent of the
queuing delay. In particular, if the traffic intensity is close to zero, then packet arrivals
are few and far between and it is unlikely that an arriving packet will find another packet
in the queue. Hence, the average queuing delay will be close to zero. On the other hand,
when the traffic intensity is close to 1, there will be intervals of time when the arrival
rate exceeds the transmission capacity (due to variations in packet arrival rate), and
a queue will form during these periods of time; when the arrival rate is less than the
transmission capacity, the length of the queue will shrink. Nonetheless, as the traffic
intensity approaches 1, the average queue length gets larger and larger. The qualitative
dependence of average queuing delay on the traffic intensity is shown in Figure 1.18.

One important aspect of Figure 1.18 is the fact that as the traffic intensity
approaches 1, the average queuing delay increases rapidly. A small percentage
increase in the intensity will result in a much larger percentage-wise increase in
delay. Perhaps you have experienced this phenomenon on the highway. If you regu-
larly drive on a road that is typically congested, the fact that the road is typically
congested means that its traffic intensity is close to 1. If some event causes an even
slightly larger-than-usual amount of traffic, the delays you experience can be huge.

To really get a good feel for what queuing delays are about, you are encouraged
once again to visit the textbook Web site, which provides an interactive animation
for a queue. If you set the packet arrival rate high enough so that the traffic intensity
exceeds 1, you will see the queue slowly build up over time.

Average queuing delay

N e e e e e

A 4

La/R

Figure 1.18 ¢ Dependence of average queuing delay on traffic intensity

1.4 o DELAY, LOSS, AND THROUGHPUT IN PACKET-SWITCHED NETWORKS 41

Packet Loss

In our discussions above, we have assumed that the queue is capable of holding an
infinite number of packets. In reality a queue preceding a link has finite capacity,
although the queuing capacity greatly depends on the router design and cost. Because
the queue capacity is finite, packet delays do not really approach infinity as the traf-
fic intensity approaches 1. Instead, a packet can arrive to find a full queue. With no
place to store such a packet, a router will drop that packet; that is, the packet will be
lost. This overflow at a queue can again be seen in the interactive animation when
the traffic intensity is greater than 1.

From an end-system viewpoint, a packet loss will look like a packet having
been transmitted into the network core but never emerging from the network at the
destination. The fraction of lost packets increases as the traffic intensity increases.
Therefore, performance at a node is often measured not only in terms of delay, but
also in terms of the probability of packet loss. As we’ll discuss in the subsequent
chapters, a lost packet may be retransmitted on an end-to-end basis in order to ensure
that all data are eventually transferred from source to destination.

1.4.3 End-to-End Delay

Our discussion up to this point has focused on the nodal delay, that is, the delay at a
single router. Let’s now consider the total delay from source to destination. To get a
handle on this concept, suppose there are N — 1 routers between the source host and
the destination host. Let’s also suppose for the moment that the network is uncon-
gested (so that queuing delays are negligible), the processing delay at each router
and at the source host is djy,, the transmission rate out of each router and out of the

source host is R bits/sec, and the propagation on each link is d,,,,. The nodal delays
accumulate and give an end-to-end delay,
dend*end =N (dproc + dtrans + dprop) (12)

where, once again, d,.,,, = L/R, where L is the packet size. Note that Equation 1.2 is a
generalization of Equation 1.1, which did not take into account processing and propaga-
tion delays. We leave it to you to generalize Equation 1.2 to the case of heterogeneous
delays at the nodes and to the presence of an average queuing delay at each node.

Traceroute

To get a hands-on feel for end-to-end delay in a computer network, we can make use
of the Traceroute program. Traceroute is a simple program that can run in any Inter-
net host. When the user specifies a destination hostname, the program in the source
host sends multiple, special packets toward that destination. As these packets work
their way toward the destination, they pass through a series of routers. When a router
receives one of these special packets, it sends back to the source a short message that
contains the name and address of the router.

VideoNote

Using Traceroute to
discover network
paths and measure
network delay

42

ol

W O ~J O

11
12
13
14

CHAPTER T o COMPUTER NETWORKS AND THE INTERNET

More specifically, suppose there are N — 1 routers between the source and the
destination. Then the source will send N special packets into the network, with each
packet addressed to the ultimate destination. These N special packets are marked /
through N, with the first packet marked / and the last packet marked N. When the
nth router receives the nth packet marked n, the router does not forward the packet
toward its destination, but instead sends a message back to the source. When the
destination host receives the Nth packet, it too returns a message back to the source.
The source records the time that elapses between when it sends a packet and when it
receives the corresponding return message; it also records the name and address of
the router (or the destination host) that returns the message. In this manner, the source
can reconstruct the route taken by packets flowing from source to destination, and the
source can determine the round-trip delays to all the intervening routers. Traceroute
actually repeats the experiment just described three times, so the source actually
sends 3 ¢ N packets to the destination. RFC 1393 describes Traceroute in detail.

Here is an example of the output of the Traceroute program, where the route was
being traced from the source host gaia.cs.umass.edu (at the University of Massachusetts)
to a host in the computer science department at the University of Sorbonne in Paris
(formerly the university was known as UPMC). The output has six columns: the first
column is the n value described above, that is, the number of the router along the route;
the second column is the name of the router; the third column is the address of the router
(of the form xxx.xxx.xxX.xxX); the last three columns are the round-trip delays for three
experiments. If the source receives fewer than three messages from any given router
(due to packet loss in the network), Traceroute places an asterisk just after the router
number and reports fewer than three round-trip times for that router.

gw-vlan-2451.cs.umass.edu (128.119.245.1) 1.899 ms 3.266 ms 3.280 ms
j-cs-gw-int-10-240.cs.umass.edu (10.119.240.254) 1.296 ms 1.276 ms
1.245 ms

nS5-rt-1-1-xe-2-1-0.gw.umass.edu (128.119.3.33) 2.237 ms 2.217 ms
2.187 ms

corel-rt-et-5-2-0.gw.umass.edu (128.119.0.9) 0.351 ms 0.392 ms 0.380 ms
borderl-rt-et-5-0-0.gw.umass.edu (192.80.83.102) 0.345 ms 0.345 ms
0.344 ms

nox300gwl-umass-re.nox.org (192.5.89.101) 3.260 ms 0.416 ms 3.127 ms
nox300gwl-umass-re.nox.org (192.5.89.101) 3.165 ms 7.326 ms 7.311 ms
198.71.45.237 (198.71.45.237) 77.826 ms 77.246 ms 77.744 ms
renater-1bl-gw.mxl.par.fr.geant.net (62.40.124.70) 79.357 ms 77.729
79.152 ms

193.51.180.109 (193.51.180.109) 78.379 ms 79.936 80.042 ms
*193.51.180.109 (193.51.180.109) 80.640 ms *

*195.221.127.182 (195.221.127.182) 78.408 ms *

195.221.127.182 (195.221.127.182) 80.686 ms 80.796 ms 78.434 ms
r-upmcl.reseau.jussieu.fr (134.157.254.10) 78.399 ms * 81.353 ms

1.4 o DELAY, LOSS, AND THROUGHPUT IN PACKET-SWITCHED NETWORKS

In the trace above, there are 14 routers between the source and the destination. Most
of these routers have a name, and all of them have addresses. For example, the
name of Router 4 is corel-rt-et-5-2-0.gw.umass.edu and its address is
128.119.0.9. Looking at the data provided for this same router, we see that in
the first of the three trials the round-trip delay between the source and the router
was 0.351 msec. The round-trip delays for the subsequent two trials were 0.392
and 0.380 msec. These round-trip delays include all of the delays just discussed,
including transmission delays, propagation delays, router processing delays, and
queuing delay.

Because the queuing delay is varying with time, the round-trip delay of
packet n sent to a router n can sometimes be longer than the round-trip delay of
packet n+1 sent to router n+1. Indeed, we observe this phenomenon in the above
example: the delay to Router 12 is smaller than the delay to Router 11! Also note
the big increase in the round-trip delay when going from router 7 to router 8. This
is due to a transatlantic fiber-optic link between routers 7 and 8, giving rise to a
relatively large propagation delay. There are a number of free software programs
that provide a graphical interface to Traceroute; one of our favorites is PingPlotter
[PingPlotter 2020].

End System, Application, and Other Delays

In addition to processing, transmission, and propagation delays, there can be addi-
tional significant delays in the end systems. For example, an end system wanting
to transmit a packet into a shared medium (e.g., as in a WiFi or cable modem sce-
nario) may purposefully delay its transmission as part of its protocol for sharing the
medium with other end systems; we’ll consider such protocols in detail in Chapter 6.
Another important delay is media packetization delay, which is present in Voice-
over-IP (VoIP) applications. In VoIP, the sending side must first fill a packet with
encoded digitized speech before passing the packet to the Internet. This time to fill a
packet—called the packetization delay—can be significant and can impact the user-
perceived quality of a VoIP call. This issue will be further explored in a homework
problem at the end of this chapter.

1.4.4 Throughput in Computer Networks

In addition to delay and packet loss, another critical performance measure in com-
puter networks is end-to-end throughput. To define throughput, consider transferring
a large file from Host A to Host B across a computer network. This transfer might
be, for example, a large video clip from one computer to another. The instantaneous
throughput at any instant of time is the rate (in bits/sec) at which Host B is receiving
the file. (Many applications display the instantaneous throughput during downloads
in the user interface—perhaps you have observed this before! You might like to try

43

44

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

measuring the end-to-end delay and download throughput between your and servers
around the Internet using the speedtest application [Speedtest 2020].) If the file con-
sists of F bits and the transfer takes 7 seconds for Host B to receive all F bits, then
the average throughput of the file transfer is F/T bits/sec. For some applications,
such as Internet telephony, it is desirable to have a low delay and an instantaneous
throughput consistently above some threshold (for example, over 24 kbps for some
Internet telephony applications and over 256 kbps for some real-time video applica-
tions). For other applications, including those involving file transfers, delay is not
critical, but it is desirable to have the highest possible throughput.

To gain further insight into the important concept of throughput, let’s consider
a few examples. Figure 1.19(a) shows two end systems, a server and a client, con-
nected by two communication links and a router. Consider the throughput for a file
transfer from the server to the client. Let R, denote the rate of the link between the
server and the router; and R. denote the rate of the link between the router and
the client. Suppose that the only bits being sent in the entire network are those
from the server to the client. We now ask, in this ideal scenario, what is the server-
to-client throughput? To answer this question, we may think of bits as fluid and com-
munication links as pipes. Clearly, the server cannot pump bits through its link at a
rate faster than R, bps; and the router cannot forward bits at a rate faster than R. bps.
If R, < R, then the bits pumped by the server will “flow” right through the router
and arrive at the client at a rate of R, bps, giving a throughput of R, bps. If, on the
other hand, R. < R,, then the router will not be able to forward bits as quickly as it
receives them. In this case, bits will only leave the router at rate R., giving an end-
to-end throughput of R... (Note also that if bits continue to arrive at the router at rate
R,, and continue to leave the router at R, the backlog of bits at the router waiting
for transmission to the client will grow and grow—a most undesirable situation!)

<y
a.
==y R ==]
Server Client

b.

Figure 1.19 ¢ Throughput for a file transfer from server to client

1.4 o DELAY, LOSS, AND THROUGHPUT IN PACKET-SWITCHED NETWORKS

Thus, for this simple two-link network, the throughput is min{R., R, }, that is, it is the
transmission rate of the bottleneck link. Having determined the throughput, we can
now approximate the time it takes to transfer a large file of F bits from server to cli-
ent as F/min{R,, R.}. For a specific example, suppose that you are downloading an
MP3 file of F = 32 million bits, the server has a transmission rate of R, = 2 Mbps,
and you have an access link of R. = 1 Mbps. The time needed to transfer the file is
then 32 seconds. Of course, these expressions for throughput and transfer time are
only approximations, as they do not account for store-and-forward and processing
delays as well as protocol issues.

Figure 1.19(b) now shows a network with N links between the server and the
client, with the transmission rates of the N links being Ry, R,, . . ., Ry. Applying
the same analysis as for the two-link network, we find that the throughput for a file
transfer from server to client is min{R;, R,, . . ., Ry}, which is once again the trans-
mission rate of the bottleneck link along the path between server and client.

Now consider another example motivated by today’s Internet. Figure 1.20(a)
shows two end systems, a server and a client, connected to a computer network.
Consider the throughput for a file transfer from the server to the client. The server is
connected to the network with an access link of rate R, and the client is connected to
the network with an access link of rate R.. Now suppose that all the links in the core
of the communication network have very high transmission rates, much higher than
R, and R,. Indeed, today, the core of the Internet is over-provisioned with high speed
links that experience little congestion. Also suppose that the only bits being sent in
the entire network are those from the server to the client. Because the core of the
computer network is like a wide pipe in this example, the rate at which bits can flow
from source to destination is again the minimum of R, and R,, that is, throughput =
min{R,, R.}. Therefore, the constraining factor for throughput in today’s Internet is
typically the access network.

For a final example, consider Figure 1.20(b) in which there are 10 servers and
10 clients connected to the core of the computer network. In this example, there are
10 simultaneous downloads taking place, involving 10 client-server pairs. Suppose
that these 10 downloads are the only traffic in the network at the current time. As
shown in the figure, there is a link in the core that is traversed by all 10 downloads.
Denote R for the transmission rate of this link R. Let’s suppose that all server access
links have the same rate R,, all client access links have the same rate R., and the
transmission rates of all the links in the core—except the one common link of rate
R—are much larger than R, R., and R. Now we ask, what are the throughputs of
the downloads? Clearly, if the rate of the common link, R, is large—say a hundred
times larger than both R, and R.—then the throughput for each download will once
again be min{R,, R.}. But what if the rate of the common link is of the same order
as R, and R.? What will the throughput be in this case? Let’s take a look at a spe-
cific example. Suppose R, = 2 Mbps, R. = 1 Mbps, R = 5 Mbps, and the com-
mon link divides its transmission rate equally among the 10 downloads. Then the

45

46 CHAPTER T o COMPUTER NETWORKS AND THE INTERNET

Server 10 Servers

I

Bottleneck
link of
capacity R

— o
== —=
Client 10 Clients
a. b.

Figure 1.20 ¢ End-to-end throughput: (a) Client downloads a file from
server; (b) 10 clients downloading with 10 servers

bottleneck for each download is no longer in the access network, but is now instead
the shared link in the core, which only provides each download with 500 kbps of
throughput. Thus, the end-to-end throughput for each download is now reduced to
500 kbps.

The examples in Figure 1.19 and Figure 1.20(a) show that throughput depends
on the transmission rates of the links over which the data flows. We saw that when
there is no other intervening traffic, the throughput can simply be approximated as
the minimum transmission rate along the path between source and destination. The
example in Figure 1.20(b) shows that more generally the throughput depends not
only on the transmission rates of the links along the path, but also on the interven-
ing traffic. In particular, a link with a high transmission rate may nonetheless be the
bottleneck link for a file transfer if many other data flows are also passing through
that link. We will examine throughput in computer networks more closely in the
homework problems and in the subsequent chapters.

1.5 e PROTOCOL LAYERS AND THEIR SERVICE MODELS

1.5 Protocol Layers and Their Service Models

From our discussion thus far, it is apparent that the Internet is an extremely com-
plicated system. We have seen that there are many pieces to the Internet: numerous
applications and protocols, various types of end systems, packet switches, and vari-
ous types of link-level media. Given this enormous complexity, is there any hope of
organizing a network architecture, or at least our discussion of network architecture?
Fortunately, the answer to both questions is yes.

1.5.1 Layered Architecture

Before attempting to organize our thoughts on Internet architecture, let’s look
for a human analogy. Actually, we deal with complex systems all the time in our
everyday life. Imagine if someone asked you to describe, for example, the air-
line system. How would you find the structure to describe this complex system
that has ticketing agents, baggage checkers, gate personnel, pilots, airplanes,
air traffic control, and a worldwide system for routing airplanes? One way to
describe this system might be to describe the series of actions you take (or oth-
ers take for you) when you fly on an airline. You purchase your ticket, check
your bags, go to the gate, and eventually get loaded onto the plane. The plane
takes off and is routed to its destination. After your plane lands, you deplane at
the gate and claim your bags. If the trip was bad, you complain about the flight
to the ticket agent (getting nothing for your effort). This scenario is shown in
Figure 1.21.

A

Ticket (purchase) Ticket/(complain)
Baggage (check) Baggage (claim)
Gates (load) Gates (unload)
Runway takeoff Runway landing
Airplane routing Airplane routing

Airplane routing

Figure 1.21 ¢ Taking an airplane trip: actions

47

48

CHAPTER T o

Ticket (purchase)

Baggage (check)

Gates (load)

Runway takeoff

COMPUTER NETWORKS AND THE INTERNET

o

Ticket (complain)

Baggage (claim)

Gates (unload)

Runway landing

Airplane routing

Airplane routing

Airplane routing

Airplane routing

Ticket

Baggage

Gate
Takeoff/Landing

Airplane routing

Departure airport

Intermediate air-traffic
control centers

Arrival airport

Figure 1.22 ¢ Horizontal layering of airline functionality

Already, we can see some analogies here with computer networking: You are
being shipped from source to destination by the airline; a packet is shipped from
source host to destination host in the Internet. But this is not quite the analogy we
are after. We are looking for some structure in Figure 1.21. Looking at Figure 1.21,
we note that there is a ticketing function at each end; there is also a baggage func-
tion for already-ticketed passengers, and a gate function for already-ticketed and
already-baggage-checked passengers. For passengers who have made it through the
gate (that is, passengers who are already ticketed, baggage-checked, and through the
gate), there is a takeoff and landing function, and while in flight, there is an airplane-
routing function. This suggests that we can look at the functionality in Figure 1.21 in
a horizontal manner, as shown in Figure 1.22.

Figure 1.22 has divided the airline functionality into layers, providing a frame-
work in which we can discuss airline travel. Note that each layer, combined with the
layers below it, implements some functionality, some service. At the ticketing layer
and below, airline-counter-to-airline-counter transfer of a person is accomplished. At
the baggage layer and below, baggage-check-to-baggage-claim transfer of a person
and bags is accomplished. Note that the baggage layer provides this service only to an
already-ticketed person. At the gate layer, departure-gate-to-arrival-gate transfer of
a person and bags is accomplished. At the takeoff/landing layer, runway-to-runway
transfer of people and their bags is accomplished. Each layer provides its service
by (1) performing certain actions within that layer (for example, at the gate layer,
loading and unloading people from an airplane) and by (2) using the services of the
layer directly below it (for example, in the gate layer, using the runway-to-runway
passenger transfer service of the takeoff/landing layer).

A layered architecture allows us to discuss a well-defined, specific part of a
large and complex system. This simplification itself is of considerable value by
providing modularity, making it much easier to change the implementation of the
service provided by the layer. As long as the layer provides the same service to the
layer above it, and uses the same services from the layer below it, the remainder of
the system remains unchanged when a layer’s implementation is changed. (Note

1.5 e PROTOCOL LAYERS AND THEIR SERVICE MODELS

that changing the implementation of a service is very different from changing the
service itself!) For example, if the gate functions were changed (for instance, to have
people board and disembark by height), the remainder of the airline system would
remain unchanged since the gate layer still provides the same function (loading and
unloading people); it simply implements that function in a different manner after the
change. For large and complex systems that are constantly being updated, the ability
to change the implementation of a service without affecting other components of the
system is another important advantage of layering.

Protocol Layering

But enough about airlines. Let’s now turn our attention to network protocols. To
provide structure to the design of network protocols, network designers organize
protocols—and the network hardware and software that implement the protocols—
in layers. Each protocol belongs to one of the layers, just as each function in the
airline architecture in Figure 1.22 belonged to a layer. We are again interested in
the services that a layer offers to the layer above—the so-called service model of
a layer. Just as in the case of our airline example, each layer provides its service by
(1) performing certain actions within that layer and by (2) using the services of the
layer directly below it. For example, the services provided by layer n may include
reliable delivery of messages from one edge of the network to the other. This might
be implemented by using an unreliable edge-to-edge message delivery service of
layer n — 1, and adding layer n functionality to detect and retransmit lost messages.

A protocol layer can be implemented in software, in hardware, or in a combina-
tion of the two. Application-layer protocols—such as HTTP and SMTP—are almost
always implemented in software in the end systems; so are transport-layer protocols.
Because the physical layer and data link layers are responsible for handling commu-
nication over a specific link, they are typically implemented in a network interface
card (for example, Ethernet or WiFi interface cards) associated with a given link. The
network layer is often a mixed implementation of hardware and software. Also note
that just as the functions in the layered airline architecture were distributed among
the various airports and flight control centers that make up the system, so too is a
layer n protocol distributed among the end systems, packet switches, and other com-
ponents that make up the network. That is, there’s often a piece of a layer n protocol
in each of these network components.

Protocol layering has conceptual and structural advantages [RFC 3439]. As
we have seen, layering provides a structured way to discuss system components.
Modularity makes it easier to update system components. We mention, however,
that some researchers and networking engineers are vehemently opposed to layering
[Wakeman 1992]. One potential drawback of layering is that one layer may duplicate
lower-layer functionality. For example, many protocol stacks provide error recovery
on both a per-link basis and an end-to-end basis. A second potential drawback is that
functionality at one layer may need information (for example, a timestamp value)
that is present only in another layer; this violates the goal of separation of layers.

49

50 CHAPTER T o COMPUTER NETWORKS AND THE INTERNET

Application

Transport

Network

Link

Physical

Five-layer
Internet
protocol stack

Figure 1.23 ¢ The Internet protocol stack

When taken together, the protocols of the various layers are called the protocol
stack. The Internet protocol stack consists of five layers: the physical, link, network,
transport, and application layers, as shown in Figure 1.23. If you examine the Table
of Contents, you will see that we have roughly organized this book using the lay-
ers of the Internet protocol stack. We take a top-down approach, first covering the
application layer and then proceeding downward.

Application Layer

The application layer is where network applications and their application-layer pro-
tocols reside. The Internet’s application layer includes many protocols, such as the
HTTP protocol (which provides for Web document request and transfer), SMTP
(which provides for the transfer of e-mail messages), and FTP (which provides for
the transfer of files between two end systems). We’ll see that certain network func-
tions, such as the translation of human-friendly names for Internet end systems like
www.ietf.org to a 32-bit network address, are also done with the help of a specific appli-
cation-layer protocol, namely, the domain name system (DNS). We’ll see in Chap-
ter 2 that it is very easy to create and deploy our own new application-layer protocols.

An application-layer protocol is distributed over multiple end systems, with the
application in one end system using the protocol to exchange packets of information
with the application in another end system. We’ll refer to this packet of information
at the application layer as a message.

Transport Layer

The Internet’s transport layer transports application-layer messages between application
endpoints. In the Internet, there are two transport protocols, TCP and UDP, either of
which can transport application-layer messages. TCP provides a connection-oriented
service to its applications. This service includes guaranteed delivery of application-layer

1.5 e PROTOCOL LAYERS AND THEIR SERVICE MODELS

messages to the destination and flow control (that is, sender/receiver speed matching).
TCP also breaks long messages into shorter segments and provides a congestion-control
mechanism, so that a source throttles its transmission rate when the network is con-
gested. The UDP protocol provides a connectionless service to its applications. This is a
no-frills service that provides no reliability, no flow control, and no congestion control.
In this book, we’ll refer to a transport-layer packet as a segment.

Network Layer

The Internet’s network layer is responsible for moving network-layer packets known
as datagrams from one host to another. The Internet transport-layer protocol (TCP
or UDP) in a source host passes a transport-layer segment and a destination address
to the network layer, just as you would give the postal service a letter with a destina-
tion address. The network layer then provides the service of delivering the segment
to the transport layer in the destination host.

The Internet’s network layer includes the celebrated IP protocol, which defines
the fields in the datagram as well as how the end systems and routers act on these
fields. There is only one IP protocol, and all Internet components that have a network
layer must run the IP protocol. The Internet’s network layer also contains routing
protocols that determine the routes that datagrams take between sources and destina-
tions. The Internet has many routing protocols. As we saw in Section 1.3, the Internet
is a network of networks, and within a network, the network administrator can run
any routing protocol desired. Although the network layer contains both the IP pro-
tocol and numerous routing protocols, it is often simply referred to as the IP layer,
reflecting the fact that IP is the glue that binds the Internet together.

Link Layer

The Internet’s network layer routes a datagram through a series of routers between
the source and destination. To move a packet from one node (host or router) to the
next node in the route, the network layer relies on the services of the link layer. In
particular, at each node, the network layer passes the datagram down to the link
layer, which delivers the datagram to the next node along the route. At this next node,
the link layer passes the datagram up to the network layer.

The services provided by the link layer depend on the specific link-layer protocol
that is employed over the link. For example, some link-layer protocols provide reli-
able delivery, from transmitting node, over one link, to receiving node. Note that this
reliable delivery service is different from the reliable delivery service of TCP, which
provides reliable delivery from one end system to another. Examples of link-layer pro-
tocols include Ethernet, WiFi, and the cable access network’s DOCSIS protocol. As
datagrams typically need to traverse several links to travel from source to destination,
a datagram may be handled by different link-layer protocols at different links along its
route. For example, a datagram may be handled by Ethernet on one link and by PPP on

51

52

CHAPTER 1

Message

Segment Hy

Datagram H, H

Frame

H

H

Hn Ht

H¢
Hn Hg
Hn He

£ 2= £

COMPUTER NETWORKS AND THE INTERNET

the next link. The network layer will receive a different service from each of the dif-
ferent link-layer protocols. In this book, we’ll refer to the link-layer packets as frames.

Physical Layer

While the job of the link layer is to move entire frames from one network element to
an adjacent network element, the job of the physical layer is to move the individual
bits within the frame from one node to the next. The protocols in this layer are again
link dependent and further depend on the actual transmission medium of the link (for
example, twisted-pair copper wire, single-mode fiber optics). For example, Ether-
net has many physical-layer protocols: one for twisted-pair copper wire, another for
coaxial cable, another for fiber, and so on. In each case, a bit is moved across the link
in a different way.

1.5.2 Encapsulation

Figure 1.24 shows the physical path that data takes down a sending end system’s
protocol stack, up and down the protocol stacks of an intervening link-layer switch

Source

Application

Transport

Network
Link
Physical

Hi Hn He M [[Link Hy H, Hy M
Physical

Link-layer switch

Destination‘ \ Router

Application

Transport Hn Hy M Network Hn Hy M
Network H Hnp Hy M Link H H, Hi M
Link Physical

Physical \. o’

Figure 1.24 + Hosts, routers, and linklayer switches; each contains a
different set of layers, reflecting their differences in functionality

1.5 e PROTOCOL LAYERS AND THEIR SERVICE MODELS

and router, and then up the protocol stack at the receiving end system. As we dis-
cuss later in this book, routers and link-layer switches are both packet switches.
Similar to end systems, routers and link-layer switches organize their network-
ing hardware and software into layers. But routers and link-layer switches do not
implement all of the layers in the protocol stack; they typically implement only
the bottom layers. As shown in Figure 1.24, link-layer switches implement lay-
ers 1 and 2; routers implement layers 1 through 3. This means, for example, that
Internet routers are capable of implementing the IP protocol (a layer 3 protocol),
while link-layer switches are not. We’ll see later that while link-layer switches do
not recognize IP addresses, they are capable of recognizing layer 2 addresses, such
as Ethernet addresses. Note that hosts implement all five layers; this is consistent
with the view that the Internet architecture puts much of its complexity at the edges
of the network.

Figure 1.24 also illustrates the important concept of encapsulation. At the
sending host, an application-layer message (M in Figure 1.24) is passed to the
transport layer. In the simplest case, the transport layer takes the message and
appends additional information (so-called transport-layer header information, H,
in Figure 1.24) that will be used by the receiver-side transport layer. The appli-
cation-layer message and the transport-layer header information together consti-
tute the transport-layer segment. The transport-layer segment thus encapsulates
the application-layer message. The added information might include information
allowing the receiver-side transport layer to deliver the message up to the appro-
priate application, and error-detection bits that allow the receiver to determine
whether bits in the message have been changed in route. The transport layer then
passes the segment to the network layer, which adds network-layer header infor-
mation (H, in Figure 1.24) such as source and destination end system addresses,
creating a network-layer datagram. The datagram is then passed to the link
layer, which (of course!) will add its own link-layer header information and cre-
ate a link-layer frame. Thus, we see that at each layer, a packet has two types of
fields: header fields and a payload field. The payload is typically a packet from
the layer above.

A useful analogy here is the sending of an interoffice memo from one corpo-
rate branch office to another via the public postal service. Suppose Alice, who is in
one branch office, wants to send a memo to Bob, who is in another branch office.
The memo is analogous to the application-layer message. Alice puts the memo
in an interoffice envelope with Bob’s name and department written on the front
of the envelope. The interoffice envelope is analogous to a transport-layer seg-
ment—it contains header information (Bob’s name and department number) and it
encapsulates the application-layer message (the memo). When the sending branch-
office mailroom receives the interoffice envelope, it puts the interoffice enve-
lope inside yet another envelope, which is suitable for sending through the public
postal service. The sending mailroom also writes the postal address of the sending
and receiving branch offices on the postal envelope. Here, the postal envelope

53

54

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

is analogous to the datagram—it encapsulates the transport-layer segment (the
interoffice envelope), which encapsulates the original message (the memo). The
postal service delivers the postal envelope to the receiving branch-office mail-
room. There, the process of de-encapsulation is begun. The mailroom extracts the
interoffice memo and forwards it to Bob. Finally, Bob opens the envelope and
removes the memo.

The process of encapsulation can be more complex than that described above.
For example, a large message may be divided into multiple transport-layer segments
(which might themselves each be divided into multiple network-layer datagrams).
At the receiving end, such a segment must then be reconstructed from its constituent
datagrams.

1.6 Networks Under Attack

The Internet has become mission critical for many institutions today, including large
and small companies, universities, and government agencies. Many individuals also
rely on the Internet for many of their professional, social, and personal activities.
Billions of “things,” including wearables and home devices, are currently being con-
nected to the Internet. But behind all this utility and excitement, there is a dark side,
a side where “bad guys” attempt to wreak havoc in our daily lives by damaging our
Internet-connected computers, violating our privacy, and rendering inoperable the
Internet services on which we depend.

The field of network security is about how the bad guys can attack computer
networks and about how we, soon-to-be experts in computer networking, can
defend networks against those attacks, or better yet, design new architectures
that are immune to such attacks in the first place. Given the frequency and vari-
ety of existing attacks as well as the threat of new and more destructive future
attacks, network security has become a central topic in the field of computer
networking. One of the features of this textbook is that it brings network security
issues to the forefront.

Since we don’t yet have expertise in computer networking and Internet pro-
tocols, we’ll begin here by surveying some of today’s more prevalent security-
related problems. This will whet our appetite for more substantial discussions in the
upcoming chapters. So we begin here by simply asking, what can go wrong? How
are computer networks vulnerable? What are some of the more prevalent types of
attacks today?

The Bad Guys Can Put Malware into Your Host Via the Internet

We attach devices to the Internet because we want to receive/send data from/to the
Internet. This includes all kinds of good stuff, including Instagram posts, Internet

1.6 * NETWORKS UNDER ATTACK

search results, streaming music, video conference calls, streaming movies, and
so on. But, unfortunately, along with all that good stuff comes malicious stuff—
collectively known as malware—that can also enter and infect our devices. Once
malware infects our device it can do all kinds of devious things, including delet-
ing our files and installing spyware that collects our private information, such
as social security numbers, passwords, and keystrokes, and then sends this (over
the Internet, of course!) back to the bad guys. Our compromised host may also
be enrolled in a network of thousands of similarly compromised devices, col-
lectively known as a botnet, which the bad guys control and leverage for spam
e-mail distribution or distributed denial-of-service attacks (soon to be discussed)
against targeted hosts.

Much of the malware out there today is self-replicating: once it infects one host,
from that host it seeks entry into other hosts over the Internet, and from the newly
infected hosts, it seeks entry into yet more hosts. In this manner, self-replicating mal-
ware can spread exponentially fast.

The Bad Guys Can Attack Servers and Network Infrastructure

Another broad class of security threats are known as denial-of-service (DoS)
attacks. As the name suggests, a DoS attack renders a network, host, or other piece
of infrastructure unusable by legitimate users. Web servers, e-mail servers, DNS
servers (discussed in Chapter 2), and institutional networks can all be subject to DoS
attacks. The site Digital Attack Map allows use to visualize the top daily DoS attacks
worldwide [DAM 2020]. Most Internet DoS attacks fall into one of three categories:

e Vulnerability attack. — This involves sending a few well-crafted messages to a
vulnerable application or operating system running on a targeted host. If the right
sequence of packets is sent to a vulnerable application or operating system, the
service can stop or, worse, the host can crash.

* Bandwidth flooding. The attacker sends a deluge of packets to the targeted
host—so many packets that the target’s access link becomes clogged, preventing
legitimate packets from reaching the server.

e Connection flooding. The attacker establishes a large number of half-open or
fully open TCP connections (TCP connections are discussed in Chapter 3) at the
target host. The host can become so bogged down with these bogus connections
that it stops accepting legitimate connections.

Let’s now explore the bandwidth-flooding attack in more detail. Recalling our
delay and loss analysis discussion in Section 1.4.2, it’s evident that if the server
has an access rate of R bps, then the attacker will need to send traffic at a rate of
approximately R bps to cause damage. If R is very large, a single attack source
may not be able to generate enough traffic to harm the server. Furthermore, if all

55

56

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

E —
zombie

e \\: %

/

“start Victim
attack” zombie
y— =
!é
Attacker ij
E -
e zombie
zombie

Figure 1.25 + A distributed denial-of-service attack

the traffic emanates from a single source, an upstream router may be able to detect
the attack and block all traffic from that source before the traffic gets near the
server. In a distributed DoS (DDoS) attack, illustrated in Figure 1.25, the attacker
controls multiple sources and has each source blast traffic at the target. With this
approach, the aggregate traffic rate across all the controlled sources needs to be
approximately R to cripple the service. DDoS attacks leveraging botnets with thou-
sands of comprised hosts are a common occurrence today [DAM 2020]. DDos
attacks are much harder to detect and defend against than a DoS attack from a
single host.

We encourage you to consider the following question as you work your way
through this book: What can computer network designers do to defend against
DoS attacks? We will see that different defenses are needed for the three types of
DoS attacks.

The Bad Guys Can Sniff Packets

Many users today access the Internet via wireless devices, such as WiFi-connected
laptops or handheld devices with cellular Internet connections (covered in Chapter 7).
While ubiquitous Internet access is extremely convenient and enables marvelous
new applications for mobile users, it also creates a major security vulnerability—by
placing a passive receiver in the vicinity of the wireless transmitter, that receiver

1.6 * NETWORKS UNDER ATTACK

can obtain a copy of every packet that is transmitted! These packets can contain all
kinds of sensitive information, including passwords, social security numbers, trade
secrets, and private personal messages. A passive receiver that records a copy of
every packet that flies by is called a packet sniffer.

Sniffers can be deployed in wired environments as well. In wired broadcast
environments, as in many Ethernet LANs, a packet sniffer can obtain copies of
broadcast packets sent over the LAN. As described in Section 1.2, cable access
technologies also broadcast packets and are thus vulnerable to sniffing. Further-
more, a bad guy who gains access to an institution’s access router or access link
to the Internet may be able to plant a sniffer that makes a copy of every packet
going to/from the organization. Sniffed packets can then be analyzed offline for
sensitive information.

Packet-sniffing software is freely available at various Web sites and as commer-
cial products. Professors teaching a networking course have been known to assign
lab exercises that involve writing a packet-sniffing and application-layer data recon-
struction program. Indeed, the Wireshark [Wireshark 2020] labs associated with this
text (see the introductory Wireshark lab at the end of this chapter) use exactly such
a packet sniffer!

Because packet sniffers are passive—that is, they do not inject packets into the
channel—they are difficult to detect. So, when we send packets into a wireless chan-
nel, we must accept the possibility that some bad guy may be recording copies of our
packets. As you may have guessed, some of the best defenses against packet sniffing
involve cryptography. We will examine cryptography as it applies to network secu-
rity in Chapter 8.

The Bad Guys Can Masquerade as Someone You Trust

It is surprisingly easy (you will have the knowledge to do so shortly as you proceed
through this text!) to create a packet with an arbitrary source address, packet content,
and destination address and then transmit this hand-crafted packet into the Internet,
which will dutifully forward the packet to its destination. Imagine the unsuspecting
receiver (say an Internet router) who receives such a packet, takes the (false) source
address as being truthful, and then performs some command embedded in the pack-
et’s contents (say modifies its forwarding table). The ability to inject packets into the
Internet with a false source address is known as IP spoofing, and is but one of many
ways in which one user can masquerade as another user.

To solve this problem, we will need end-point authentication, that is, a mech-
anism that will allow us to determine with certainty if a message originates from
where we think it does. Once again, we encourage you to think about how this
can be done for network applications and protocols as you progress through the
chapters of this book. We will explore mechanisms for end-point authentication
in Chapter 8.

57

58

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

In closing this section, it’s worth considering how the Internet got to be such
an insecure place in the first place. The answer, in essence, is that the Internet was
originally designed to be that way, based on the model of “a group of mutually trust-
ing users attached to a transparent network™ [Blumenthal 2001]—a model in which
(by definition) there is no need for security. Many aspects of the original Internet
architecture deeply reflect this notion of mutual trust. For example, the ability for
one user to send a packet to any other user is the default rather than a requested/
granted capability, and user identity is taken at declared face value, rather than being
authenticated by default.

But today’s Internet certainly does not involve “mutually trusting users.” None-
theless, today’s users still need to communicate when they don’t necessarily trust
each other, may wish to communicate anonymously, may communicate indirectly
through third parties (e.g., Web caches, which we’ll study in Chapter 2, or mobility-
assisting agents, which we’ll study in Chapter 7), and may distrust the hardware,
software, and even the air through which they communicate. We now have many
security-related challenges before us as we progress through this book: We should
seek defenses against sniffing, end-point masquerading, man-in-the-middle attacks,
DDoS attacks, malware, and more. We should keep in mind that communication
among mutually trusted users is the exception rather than the rule. Welcome to the
world of modern computer networking!

1.7 History of Computer Networking and
the Internet

Sections 1.1 through 1.6 presented an overview of the technology of computer net-
working and the Internet. You should know enough now to impress your family and
friends! However, if you really want to be a big hit at the next cocktail party, you
should sprinkle your discourse with tidbits about the fascinating history of the Inter-
net [Segaller 1998].

1.7.1 The Development of Packet Switching: 1961-1972

The field of computer networking and today’s Internet trace their beginnings
back to the early 1960s, when the telephone network was the world’s dominant
communication network. Recall from Section 1.3 that the telephone network uses
circuit switching to transmit information from a sender to a receiver—an appro-
priate choice given that voice is transmitted at a constant rate between sender
and receiver. Given the increasing importance of computers in the early 1960s
and the advent of timeshared computers, it was perhaps natural to consider how
to hook computers together so that they could be shared among geographically

1.7 e HISTORY OF COMPUTER NETWORKING AND THE INTERNET

distributed users. The traffic generated by such users was likely to be bursty—
intervals of activity, such as the sending of a command to a remote computer,
followed by periods of inactivity while waiting for a reply or while contemplat-
ing the received response.

Three research groups around the world, each unaware of the others’ work
[Leiner 1998], began inventing packet switching as an efficient and robust alterna-
tive to circuit switching. The first published work on packet-switching techniques
was that of Leonard Kleinrock [Kleinrock 1961; Kleinrock 1964], then a graduate
student at MIT. Using queuing theory, Kleinrock’s work elegantly demonstrated the
effectiveness of the packet-switching approach for bursty traffic sources. In 1964,
Paul Baran [Baran 1964] at the Rand Institute had begun investigating the use of
packet switching for secure voice over military networks, and at the National Physi-
cal Laboratory in England, Donald Davies and Roger Scantlebury were also devel-
oping their ideas on packet switching.

The work at MIT, Rand, and the NPL laid the foundations for today’s Inter-
net. But the Internet also has a long history of a let’s-build-it-and-demonstrate-it
attitude that also dates back to the 1960s. J. C. R. Licklider [DEC 1990] and
Lawrence Roberts, both colleagues of Kleinrock’s at MIT, went on to lead the
computer science program at the Advanced Research Projects Agency (ARPA)
in the United States. Roberts published an overall plan for the ARPAnet [Roberts
1967], the first packet-switched computer network and a direct ancestor of today’s
public Internet. On Labor Day in 1969, the first packet switch was installed at
UCLA under Kleinrock’s supervision, and three additional packet switches were
installed shortly thereafter at the Stanford Research Institute (SRI), UC Santa
Barbara, and the University of Utah (Figure 1.26). The fledgling precursor to the
Internet was four nodes large by the end of 1969. Kleinrock recalls the very first
use of the network to perform a remote login from UCLA to SRI, crashing the
system [Kleinrock 2004].

By 1972, ARPAnet had grown to approximately 15 nodes and was given its
first public demonstration by Robert Kahn. The first host-to-host protocol between
ARPAnet end systems, known as the network-control protocol (NCP), was com-
pleted [RFC 001]. With an end-to-end protocol available, applications could now be
written. Ray Tomlinson wrote the first e-mail program in 1972.

1.7.2 Proprietary Networks and Internetworking:
1972-1980

The initial ARPAnet was a single, closed network. In order to communicate with an
ARPAnet host, one had to be actually attached to another ARPAnet IMP. In the early
to mid-1970s, additional stand-alone packet-switching networks besides ARPAnet
came into being: ALOHANet, a microwave network linking universities on the
Hawaiian islands [Abramson 1970], as well as DARPA’s packet-satellite [RFC 829]
and packet-radio networks [Kahn 1978]; Telenet, a BBN commercial packet-switching

59

60

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

Mark J. Terrill /AP Photo

Figure 1.26 + An early packet switch

network based on ARPAnet technology; Cyclades, a French packet-switching net-
work pioneered by Louis Pouzin [Think 2012]; Time-sharing networks such as
Tymnet and the GE Information Services network, among others, in the late 1960s
and early 1970s [Schwartz 1977]; IBM’s SNA (1969-1974), which paralleled the
ARPAnet work [Schwartz 1977].

The number of networks was growing. With perfect hindsight we can see that the
time was ripe for developing an encompassing architecture for connecting networks
together. Pioneering work on interconnecting networks (under the sponsorship of
the Defense Advanced Research Projects Agency (DARPA)), in essence creating

1.7 e HISTORY OF COMPUTER NETWORKING AND THE INTERNET

a network of networks, was done by Vinton Cerf and Robert Kahn [Cerf 1974]; the
term internetting was coined to describe this work.

These architectural principles were embodied in TCP. The early versions of
TCP, however, were quite different from today’s TCP. The early versions of TCP
combined a reliable in-sequence delivery of data via end-system retransmission (still
part of today’s TCP) with forwarding functions (which today are performed by IP).
Early experimentation with TCP, combined with the recognition of the importance
of an unreliable, non-flow-controlled, end-to-end transport service for applications
such as packetized voice, led to the separation of IP out of TCP and the development
of the UDP protocol. The three key Internet protocols that we see today—TCP, UDP,
and IP—were conceptually in place by the end of the 1970s.

In addition to the DARPA Internet-related research, many other important net-
working activities were underway. In Hawaii, Norman Abramson was developing
ALOHAnet, a packet-based radio network that allowed multiple remote sites
on the Hawaiian Islands to communicate with each other. The ALOHA protocol
[Abramson 1970] was the first multiple-access protocol, allowing geographically
distributed users to share a single broadcast communication medium (a radio
frequency). Metcalfe and Boggs built on Abramson’s multiple-access protocol work
when they developed the Ethernet protocol [Metcalfe 1976] for wire-based shared
broadcast networks. Interestingly, Metcalfe and Boggs’ Ethernet protocol was moti-
vated by the need to connect multiple PCs, printers, and shared disks [Perkins 1994].
Twenty-five years ago, well before the PC revolution and the explosion of networks,
Metcalfe and Boggs were laying the foundation for today’s PC LANs.

1.7.3 A Proliferation of Networks: 1980-1990

By the end of the 1970s, approximately two hundred hosts were connected to the
ARPAnet. By the end of the 1980s the number of hosts connected to the public
Internet, a confederation of networks looking much like today’s Internet, would
reach a hundred thousand. The 1980s would be a time of tremendous growth.

Much of that growth resulted from several distinct efforts to create computer
networks linking universities together. BITNET provided e-mail and file transfers
among several universities in the Northeast. CSNET (computer science network)
was formed to link university researchers who did not have access to ARPAnet. In
1986, NSFNET was created to provide access to NSF-sponsored supercomputing
centers. Starting with an initial backbone speed of 56 kbps, NSFNET’s backbone
would be running at 1.5 Mbps by the end of the decade and would serve as a primary
backbone linking regional networks.

In the ARPAnet community, many of the final pieces of today’s Internet archi-
tecture were falling into place. January 1, 1983 saw the official deployment of
TCP/IP as the new standard host protocol for ARPAnet (replacing the NCP pro-
tocol). The transition [RFC 801] from NCP to TCP/IP was a flag day event—all
hosts were required to transfer over to TCP/IP as of that day. In the late 1980s,

61

62

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

important extensions were made to TCP to implement host-based congestion con-
trol [Jacobson 1988]. The DNS, used to map between a human-readable Internet
name (for example, gaia.cs.umass.edu) and its 32-bit IP address, was also developed
[RFC 1034].

Paralleling this development of the ARPAnet (which was for the most part a
US effort), in the early 1980s the French launched the Minitel project, an ambitious
plan to bring data networking into everyone’s home. Sponsored by the French gov-
ernment, the Minitel system consisted of a public packet-switched network (based
on the X.25 protocol suite), Minitel servers, and inexpensive terminals with built-in
low-speed modems. The Minitel became a huge success in 1984 when the French
government gave away a free Minitel terminal to each French household that wanted
one. Minitel sites included free sites—such as a telephone directory site—as well as
private sites, which collected a usage-based fee from each user. At its peak in the
mid 1990s, it offered more than 20,000 services, ranging from home banking to spe-
cialized research databases. The Minitel was in a large proportion of French homes
10 years before most Americans had ever heard of the Internet.

1.7.4 The Internet Explosion: The 1990s

The 1990s were ushered in with a number of events that symbolized the continued
evolution and the soon-to-arrive commercialization of the Internet. ARPAnet, the
progenitor of the Internet, ceased to exist. In 1991, NSENET lifted its restrictions on
the use of NSFNET for commercial purposes. NSFNET itself would be decommis-
sioned in 1995, with Internet backbone traffic being carried by commercial Internet
Service Providers.

The main event of the 1990s was to be the emergence of the World Wide Web
application, which brought the Internet into the homes and businesses of millions
of people worldwide. The Web served as a platform for enabling and deploying
hundreds of new applications that we take for granted today, including search (e.g.,
Google and Bing) Internet commerce (e.g., Amazon and eBay) and social networks
(e.g., Facebook).

The Web was invented at CERN by Tim Berners-Lee between 1989 and 1991
[Berners-Lee 1989], based on ideas originating in earlier work on hypertext from the
1940s by Vannevar Bush [Bush 1945] and since the 1960s by Ted Nelson [Xanadu
2012]. Berners-Lee and his associates developed initial versions of HTML, HTTP,
a Web server, and a browser—the four key components of the Web. Around the end
of 1993 there were about two hundred Web servers in operation, this collection of
servers being just a harbinger of what was about to come. At about this time sev-
eral researchers were developing Web browsers with GUI interfaces, including Marc
Andreessen, who along with Jim Clark, formed Mosaic Communications, which
later became Netscape Communications Corporation [Cusumano 1998; Quittner
1998]. By 1995, university students were using Netscape browsers to surf the Web
on a daily basis. At about this time companies—big and small—began to operate

1.7 e HISTORY OF COMPUTER NETWORKING AND THE INTERNET 63

Web servers and transact commerce over the Web. In 1996, Microsoft started to
make browsers, which started the browser war between Netscape and Microsoft,
which Microsoft won a few years later [Cusumano 1998].

The second half of the 1990s was a period of tremendous growth and innovation
for the Internet, with major corporations and thousands of startups creating Internet
products and services. By the end of the millennium the Internet was supporting
hundreds of popular applications, including four killer applications:

* E-mail, including attachments and Web-accessible e-mail
* The Web, including Web browsing and Internet commerce
» Instant messaging, with contact lists

* Peer-to-peer file sharing of MP3s, pioneered by Napster

Interestingly, the first two killer applications came from the research community,
whereas the last two were created by a few young entrepreneurs.

The period from 1995 to 2001 was a roller-coaster ride for the Internet in the
financial markets. Before they were even profitable, hundreds of Internet startups
made initial public offerings and started to be traded in a stock market. Many com-
panies were valued in the billions of dollars without having any significant revenue
streams. The Internet stocks collapsed in 2000-2001, and many startups shut down.
Nevertheless, a number of companies emerged as big winners in the Internet space,
including Microsoft, Cisco, Yahoo, eBay, Google, and Amazon.

1.7.5 The New Millennium

In the first two decades of the 21st century, perhaps no other technology has trans-
formed society more than the Internet along with Internet-connected smartphones.
And innovation in computer networking continues at a rapid pace. Advances are
being made on all fronts, including deployments of faster routers and higher trans-
mission speeds in both access networks and in network backbones. But the following
developments merit special attention:

e Since the beginning of the millennium, we have been seeing aggressive deploy-
ment of broadband Internet access to homes—not only cable modems and DSL
but also fiber to the home, and now 5G fixed wireless as discussed in Section 1.2.
This high-speed Internet access has set the stage for a wealth of video applica-
tions, including the distribution of user-generated video (for example, YouTube),
on-demand streaming of movies and television shows (e.g., Netflix), and multi-
person video conference (e.g., Skype, Facetime, and Google Hangouts).

* The increasing ubiquity of high-speed wireless Internet access is not only making
it possible to remain constantly connected while on the move, but also enabling
new location-specific applications such as Yelp, Tinder, and Waz. The number of
wireless devices connecting to the Internet surpassed the number of wired devices

64

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

in 2011. This high-speed wireless access has set the stage for the rapid emergence
of hand-held computers (iPhones, Androids, iPads, and so on), which enjoy con-
stant and untethered access to the Internet.

* Online social networks—such as Facebook, Instagram, Twitter, and WeChat
(hugely popular in China)—have created massive people networks on top of the
Internet. Many of these social networks are extensively used for messaging as
well as photo sharing. Many Internet users today “live” primarily within one or
more social networks. Through their APIs, the online social networks create plat-
forms for new networked applications, including mobile payments and distrib-
uted games.

* As discussed in Section 1.3.3, online service providers, such as Google and
Microsoft, have deployed their own extensive private networks, which not only
connect together their globally distributed data centers, but are used to bypass the
Internet as much as possible by peering directly with lower-tier ISPs. As a result,
Google provides search results and e-mail access almost instantaneously, as if
their data centers were running within one’s own computer.

* Many Internet commerce companies are now running their applications in the
“cloud”—such as in Amazon’s EC2, in Microsoft’s Azure, or in the Alibaba
Cloud. Many companies and universities have also migrated their Internet
applications (e.g., e-mail and Web hosting) to the cloud. Cloud companies not
only provide applications scalable computing and storage environments, but
also provide the applications implicit access to their high-performance private
networks.

1.8 Summary

In this chapter, we’ve covered a tremendous amount of material! We’ve looked at
the various pieces of hardware and software that make up the Internet in particular
and computer networks in general. We started at the edge of the network, look-
ing at end systems and applications, and at the transport service provided to the
applications running on the end systems. We also looked at the link-layer tech-
nologies and physical media typically found in the access network. We then dove
deeper inside the network, into the network core, identifying packet switching and
circuit switching as the two basic approaches for transporting data through a tel-
ecommunication network, and we examined the strengths and weaknesses of each
approach. We also examined the structure of the global Internet, learning that the
Internet is a network of networks. We saw that the Internet’s hierarchical structure,
consisting of higher- and lower-tier ISPs, has allowed it to scale to include thou-
sands of networks.

1.8

In the second part of this introductory chapter, we examined several topics cen-
tral to the field of computer networking. We first examined the causes of delay,
throughput and packet loss in a packet-switched network. We developed simple
quantitative models for transmission, propagation, and queuing delays as well as
for throughput; we’ll make extensive use of these delay models in the homework
problems throughout this book. Next we examined protocol layering and service
models, key architectural principles in networking that we will also refer back to
throughout this book. We also surveyed some of the more prevalent security attacks
in the Internet day. We finished our introduction to networking with a brief history
of computer networking. The first chapter in itself constitutes a mini-course in com-
puter networking.

So, we have indeed covered a tremendous amount of ground in this first chapter!
If you’re a bit overwhelmed, don’t worry. In the following chapters, we’ll revisit all
of these ideas, covering them in much more detail (that’s a promise, not a threat!).
At this point, we hope you leave this chapter with a still-developing intuition for the
pieces that make up a network, a still-developing command of the vocabulary of
networking (don’t be shy about referring back to this chapter), and an ever-growing
desire to learn more about networking. That’s the task ahead of us for the rest of this
book.

Road-Mapping This Book

Before starting any trip, you should always glance at a road map in order to
become familiar with the major roads and junctures that lie ahead. For the trip
we are about to embark on, the ultimate destination is a deep understanding of
the how, what, and why of computer networks. Our road map is the sequence of
chapters of this book:

Computer Networks and the Internet
Application Layer

Transport Layer

Network Layer: Data Plane
Network Layer: Control Plane

The Link Layer and LANs

Wireless and Mobile Networks
Security in Computer Networks

NN R LD =

Chapters 2 through 6 are the five core chapters of this book. You should notice
that these chapters are organized around the top four layers of the five-layer Internet
protocol. Further note that our journey will begin at the top of the Internet protocol
stack, namely, the application layer, and will work its way downward. The rationale
behind this top-down journey is that once we understand the applications, we can

SUMMARY

65

66

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

understand the network services needed to support these applications. We can then,
in turn, examine the various ways in which such services might be implemented by
a network architecture. Covering applications early thus provides motivation for the
remainder of the text.

The second half of the book—Chapters 7 and 8—zooms in on two enor-
mously important (and somewhat independent) topics in modern computer net-
working. In Chapter 7, we examine wireless and mobile networks, including
wireless LANs (including WiFi and Bluetooth), Cellular networks (including
4G and 5G), and mobility. Chapter 8, which addresses security in computer net-
works, first looks at the underpinnings of encryption and network security, and
then we examine how the basic theory is being applied in a broad range of Inter-
net contexts.

Homework Problems and Questions

Chapter 1 Review Questions
SECTION 1.1

R1. What is the difference between a host and an end system? List several differ-
ent types of end systems. Is a Web server an end system?

R2. The word protocol is often used to describe diplomatic relations. How does
Wikipedia describe diplomatic protocol?

R3. Why are standards important for protocols?

SECTION 1.2
R4. List four access technologies. Classify each one as home access, enterprise
access, or wide-area wireless access.
RS5. Is HFC transmission rate dedicated or shared among users? Are collisions
possible in a downstream HFC channel? Why or why not?

R6. List the available residential access technologies in your city. For each
type of access, provide the advertised downstream rate, upstream rate, and
monthly price.

R7. What is the transmission rate of Ethernet LANs?
R8. What are some of the physical media that Ethernet can run over?

R9. HFC, DSL, and FTTH are all used for residential access. For each of
these access technologies, provide a range of transmission rates and
comment on whether the transmission rate is shared or dedicated.

R10. Describe the most popular wireless Internet access technologies today.
Compare and contrast them.

HOMEWORK PROBLEMS AND QUESTIONS

SECTION 1.3

R11.

R12.

R13.

R14.

R15.

Suppose there is exactly one packet switch between a sending host and a
receiving host. The transmission rates between the sending host and the
switch and between the switch and the receiving host are R; and R,, respec-
tively. Assuming that the switch uses store-and-forward packet switching,
what is the total end-to-end delay to send a packet of length L? (Ignore queu-
ing, propagation delay, and processing delay.)

What advantage does a circuit-switched network have over a packet-switched net-
work? What advantages does TDM have over FDM in a circuit-switched network?

Suppose users share a 2 Mbps link. Also suppose each user transmits contin-
uously at 1 Mbps when transmitting, but each user transmits only 20 percent
of the time. (See the discussion of statistical multiplexing in Section 1.3.)

a. When circuit switching is used, how many users can be supported?

b. For the remainder of this problem, suppose packet switching is used. Why
will there be essentially no queuing delay before the link if two or fewer
users transmit at the same time? Why will there be a queuing delay if
three users transmit at the same time?

c. Find the probability that a given user is transmitting.

d. Suppose now there are three users. Find the probability that at any given
time, all three users are transmitting simultaneously. Find the fraction of
time during which the queue grows.

Why will two ISPs at the same level of the hierarchy often peer with each
other? How does an IXP earn money?

Some content providers have created their own networks. Describe Google’s
network. What motivates content providers to create these networks?

SECTION 1.4

R16.

R17.

R18.

Consider sending a packet from a source host to a destination host over a
fixed route. List the delay components in the end-to-end delay. Which of
these delays are constant and which are variable?

Visit the Transmission Versus Propagation Delay interactive animation at

the companion Web site. Among the rates, propagation delay, and packet
sizes available, find a combination for which the sender finishes transmitting
before the first bit of the packet reaches the receiver. Find another combina-
tion for which the first bit of the packet reaches the receiver before the sender
finishes transmitting.

How long does it take a packet of length 1,000 bytes to propagate over a
link of distance 2,500 km, propagation speed 2.5 + 10® m/s, and transmission
rate 2 Mbps? More generally, how long does it take a packet of length L to
propagate over a link of distance d, propagation speed s, and transmission

67

68

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

R109.

R20.

R21.

rate R bps? Does this delay depend on packet length? Does this delay depend
on transmission rate?

Suppose Host A wants to send a large file to Host B. The path from Host A to Host
B has three links, of rates R; = 500 kbps, R, = 2 Mbps, and R; = 1 Mbps.

a. Assuming no other traffic in the network, what is the throughput for the
file transfer?

b. Suppose the file is 4 million bytes. Dividing the file size by the through-
put, roughly how long will it take to transfer the file to Host B?

c. Repeat (a) and (b), but now with R, reduced to 100 kbps.

Suppose end system A wants to send a large file to end system B. At a very
high level, describe how end system A creates packets from the file. When
one of these packets arrives to a router, what information in the packet does
the router use to determine the link onto which the packet is forwarded?
Why is packet switching in the Internet analogous to driving from one city to
another and asking directions along the way?

Visit the Queuing and Loss interactive animation at the companion Web site.
What is the maximum emission rate and the minimum transmission rate?
With those rates, what is the traffic intensity? Run the interactive animation
with these rates and determine how long it takes for packet loss to occur.
Then repeat the experiment a second time and determine again how long it
takes for packet loss to occur. Are the values different? Why or why not?

SECTION 1.5

R22.

R23.

R24.

R25.

List five tasks that a layer can perform. Is it possible that one (or more) of
these tasks could be performed by two (or more) layers?

What are the five layers in the Internet protocol stack? What are the principal
responsibilities of each of these layers?

What is an application-layer message? A transport-layer segment? A net-
work-layer datagram? A link-layer frame?

Which layers in the Internet protocol stack does a router process? Which lay-
ers does a link-layer switch process? Which layers does a host process?

SECTION 1.6

R26.
R27.
R28.

What is self-replicating malware?
Describe how a botnet can be created and how it can be used for a DDoS attack.

Suppose Alice and Bob are sending packets to each other over a computer
network. Suppose Trudy positions herself in the network so that she can
capture all the packets sent by Alice and send whatever she wants to Bob; she
can also capture all the packets sent by Bob and send whatever she wants to
Alice. List some of the malicious things Trudy can do from this position.

PROBLEMS

Problems

PI1.

P2.

P3.

P4.

Design and describe an application-level protocol to be used between an
automatic teller machine and a bank’s centralized computer. Your protocol
should allow a user’s card and password to be verified, the account bal-

ance (which is maintained at the centralized computer) to be queried, and an
account withdrawal to be made (that is, money disbursed to the user). Your
protocol entities should be able to handle the all-too-common case in which
there is not enough money in the account to cover the withdrawal. Specify
your protocol by listing the messages exchanged and the action taken by the
automatic teller machine or the bank’s centralized computer on transmission
and receipt of messages. Sketch the operation of your protocol for the case of
a simple withdrawal with no errors, using a diagram similar to that in Figure 1.2.
Explicitly state the assumptions made by your protocol about the underlying
end-to-end transport service.

Equation 1.1 gives a formula for the end-to-end delay of sending one packet
of length L over N links of transmission rate R. Generalize this formula for
sending P such packets back-to-back over the N links.

Consider an application that transmits data at a steady rate (for example, the
sender generates an N-bit unit of data every k time units, where k is small
and fixed). Also, when such an application starts, it will continue running
for a relatively long period of time. Answer the following questions, briefly
justifying your answer:

a. Would a packet-switched network or a circuit-switched network be more
appropriate for this application? Why?

b. Suppose that a packet-switched network is used and the only traffic in
this network comes from such applications as described above. Further-
more, assume that the sum of the application data rates is less than the
capacities of each and every link. Is some form of congestion control
needed? Why?

Consider the circuit-switched network in Figure 1.13. Recall that there are
four circuits on each link. Label the four switches A, B, C, and D, going in
the clockwise direction.

a. What is the maximum number of simultaneous connections that can be in
progress at any one time in this network?

b. Suppose that all connections are between switches A and C. What is the
maximum number of simultaneous connections that can be in progress?

c. Suppose we want to make four connections between switches A and C,
and another four connections between switches B and D. Can we
route these calls through the four links to accommodate all eight
connections?

69

70 CHAPTER T o COMPUTER NETWORKS AND THE INTERNET

P5. Review the car-caravan analogy in Section 1.4. Assume a propagation speed
of 100 km/hour.

a. Suppose the caravan travels 175 km, beginning in front of one tollbooth,
passing through a second tollbooth, and finishing just after a third toll-
booth. What is the end-to-end delay?

b. Repeat (a), now assuming that there are eight cars in the caravan instead
of ten.

u P6. This elementary problem begins to explore propagation delay and transmis-
‘ sion delay, two central concepts in data networking. Consider two hosts, A
Exoloring mropagation and B, connected by a single link of rate R bps. Suppose that the two hosts
:e:av and transmission are separated by m meters, and suppose the propagation speed along the link
lela!

Y is s meters/sec. Host A is to send a packet of size L bits to Host B.

a. Express the propagation delay, dy,, in terms of m and s.
b. Determine the transmission time of the packet, di;,,, in terms of L and R.

c. Ignoring processing and queuing delays, obtain an expression for the end-
to-end delay.

d. Suppose Host A begins to transmit the packet at time t = 0. At time t =
dirans» Where is the last bit of the packet?

€. Suppose dyp is greater than diyyys. At time ¢ = dypng, Where is the first
bit of the packet?

f. Suppose dyyop is less than dyng. At time 1 = diyyys, Where is the first bit of
the packet?

g. Suppose s = 2.5-10%, L = 1500 bytes, and R = 10 Mbps. Find the

distance m so that dyyy,,, equals dyap.

P7. In this problem, we consider sending real-time voice from Host A to Host B
over a packet-switched network (VoIP). Host A converts analog voice to a
digital 64 kbps bit stream on the fly. Host A then groups the bits into 56-byte
packets. There is one link between Hosts A and B; its transmission rate is
10 Mbps and its propagation delay is 10 msec. As soon as Host A gathers a
packet, it sends it to Host B. As soon as Host B receives an entire packet, it
converts the packet’s bits to an analog signal. How much time elapses from
the time a bit is created (from the original analog signal at Host A) until the
bit is decoded (as part of the analog signal at Host B)?

P8. Suppose users share a 10 Mbps link. Also suppose each user requires 200 kbps
when transmitting, but each user transmits only 10 percent of the time. (See
the discussion of packet switching versus circuit switching in Section 1.3.)

a. When circuit switching is used, how many users can be supported?

b. For the remainder of this problem, suppose packet switching is used. Find
the probability that a given user is transmitting.

PO.

P10.

P11.

P12.

P13.

PROBLEMS

c. Suppose there are 120 users. Find the probability that at any given time,
exactly n users are transmitting simultaneously. (Hint: Use the binomial
distribution.)

d. Find the probability that there are 51 or more users transmitting
simultaneously.

Consider the discussion in Section 1.3 of packet switching versus circuit switch-
ing in which an example is provided with a 1 Mbps link. Users are generating
data at a rate of 100 kbps when busy, but are busy generating data only with
probability p = 0.1. Suppose that the 1 Mbps link is replaced by a 1 Gbps link.

a. What is N, the maximum number of users that can be supported simulta-
neously under circuit switching?

b. Now consider packet switching and a user population of M users. Give a
formula (in terms of p, M, N) for the probability that more than N users
are sending data.

Consider a packet of length L that begins at end system A and travels over
three links to a destination end system. These three links are connected by
two packet switches. Let d;, s;, and R; denote the length, propagation speed,
and the transmission rate of link i, for i = 1, 2, 3. The packet switch delays
each packet by dj,.. Assuming no queuing delays, in terms of &, s;, R;,

(i = 1,2, 3), and L, what is the total end-to-end delay for the packet? Sup-
pose now the packet is 1,500 bytes, the propagation speed on all three links is
2.5 - 10%m/s, the transmission rates of all three links are 2.5 Mbps, the packet
switch processing delay is 3 msec, the length of the first link is 5,000 km, the
length of the second link is 4,000 km, and the length of the last link is 1,000
km. For these values, what is the end-to-end delay?

In the above problem, suppose R} = R, = R; = R and dj,, = 0. Further
suppose that the packet switch does not store-and-forward packets but instead
immediately transmits each bit it receives before waiting for the entire packet
to arrive. What is the end-to-end delay?

A packet switch receives a packet and determines the outbound link to which
the packet should be forwarded. When the packet arrives, one other packet is
halfway done being transmitted on this outbound link and four other packets are
waiting to be transmitted. Packets are transmitted in order of arrival. Suppose
all packets are 1,500 bytes and the link rate is 2.5 Mbps. What is the queuing
delay for the packet? More generally, what is the queuing delay when all packets
have length L, the transmission rate is R, x bits of the currently-being-transmitted
packet have been transmitted, and n packets are already in the queue?

(a) Suppose N packets arrive simultaneously to a link at which no packets
are currently being transmitted or queued. Each packet is of length L and
the link has transmission rate R. What is the average queuing delay for
the N packets?

71

72 CHAPTER 1

VideoNote

Using Traceroute to
discover network
paths and measure
network delay

e COMPUTER NETWORKS AND THE INTERNET

P14.

PI15.

P16.

P17.

P18.

(b) Now suppose that N such packets arrive to the link every LN/R seconds.
What is the average queuing delay of a packet?

Consider the queuing delay in a router buffer. Let I denote traffic intensity;
that is, I = La/R. Suppose that the queuing delay takes the form IL/R (1 — I)
for I < 1.

a. Provide a formula for the total delay, that is, the queuing delay plus the
transmission delay.

b. Plot the total delay as a function of L/R.

Let a denote the rate of packets arriving at a link in packets/sec, and let u
denote the link’s transmission rate in packets/sec. Based on the formula for
the total delay (i.e., the queuing delay plus the transmission delay) derived
in the previous problem, derive a formula for the total delay in terms of a
and u.

Consider a router buffer preceding an outbound link. In this problem, you
will use Little’s formula, a famous formula from queuing theory. Let N
denote the average number of packets in the buffer plus the packet being
transmitted. Let a denote the rate of packets arriving at the link. Let d denote
the average total delay (i.e., the queuing delay plus the transmission delay)
experienced by a packet. Little’s formula is N = a - d. Suppose that on
average, the buffer contains 100 packets, and the average packet queuing
delay is 20 msec. The link’s transmission rate is 100 packets/sec. Using
Little’s formula, what is the average packet arrival rate, assuming there is

no packet loss?

a. Generalize Equation 1.2 in Section 1.4.3 for heterogeneous processing
rates, transmission rates, and propagation delays.

b. Repeat (a), but now also suppose that there is an average queuing delay of

dqueue at €ach node.

Perform a Traceroute between source and destination on the same continent
at three different hours of the day.

a. Find the average and standard deviation of the round-trip delays at each of
the three hours.

b. Find the number of routers in the path at each of the three hours. Did the
paths change during any of the hours?

c. Try to identify the number of ISP networks that the Traceroute packets
pass through from source to destination. Routers with similar names and/
or similar IP addresses should be considered as part of the same ISP. In
your experiments, do the largest delays occur at the peering interfaces
between adjacent ISPs?

d. Repeat the above for a source and destination on different continents.
Compare the intra-continent and inter-continent results.

P19.

P20.

P21.

P22.

P23.

P24.

PROBLEMS

Metcalfe’s law states the value of a computer network is proportional to

the square of the number of connected users of the system. Let n denote the
number of users in a computer network. Assuming each user sends one mes-
sage to each of the other users, how many messages will be sent? Does your
answer support Metcalfe’s law?

Consider the throughput example corresponding to Figure 1.20(b). Now
suppose that there are M client-server pairs rather than 10. Denote R, R,
and R for the rates of the server links, client links, and network link. Assume
all other links have abundant capacity and that there is no other traffic in the
network besides the traffic generated by the M client-server pairs. Derive a
general expression for throughput in terms of R, R., R, and M.

Consider Figure 1.19(b). Now suppose that there are M paths between the
server and the client. No two paths share any link. Pathk (k = 1, ..., M)
consists of N links with transmission rates R’]‘, RS, ..., R’,‘\,. If the server can
only use one path to send data to the client, what is the maximum throughput
that the server can achieve? If the server can use all M paths to send data,
what is the maximum throughput that the server can achieve?

Consider Figure 1.19(b). Suppose that each link between the server and the
client has a packet loss probability p, and the packet loss probabilities for
these links are independent. What is the probability that a packet (sent by the
server) is successfully received by the receiver? If a packet is lost in the path
from the server to the client, then the server will re-transmit the packet. On
average, how many times will the server re-transmit the packet in order for
the client to successfully receive the packet?

Consider Figure 1.19(a). Assume that we know the bottleneck link along the
path from the server to the client is the first link with rate R; bits/sec. Suppose
we send a pair of packets back to back from the server to the client, and there
is no other traffic on this path. Assume each packet of size L bits, and both

links have the same propagation delay dy;,.

a. What is the packet inter-arrival time at the destination? That is, how much
time elapses from when the last bit of the first packet arrives until the last
bit of the second packet arrives?

b. Now assume that the second link is the bottleneck link (i.e., R. < Ry).Is
it possible that the second packet queues at the input queue of the second
link? Explain. Now suppose that the server sends the second packet T
seconds after sending the first packet. How large must 7 be to ensure no
queuing before the second link? Explain.

Suppose you would like to urgently deliver 50 terabytes data from Boston to
Los Angeles. You have available a 100 Mbps dedicated link for data transfer.
Would you prefer to transmit the data via this link or instead use FedEx over-
night delivery? Explain.

73

74 CHAPTER T o COMPUTER NETWORKS AND THE INTERNET

P25.

P26.

P27.

P28.

P29.

Suppose two hosts, A and B, are separated by 20,000 kilometers and are con-
nected by a direct link of R = 5 Mbps. Suppose the propagation speed over
the link is 2.5 « 10® meters/sec.

a. Calculate the bandwidth-delay product, R * dpop.
b. Consider sending a file of 800,000 bits from Host A to Host B. Suppose
the file is sent continuously as one large message. What is the maximum

number of bits that will be in the link at any given time?
c. Provide an interpretation of the bandwidth-delay product.

d. What is the width (in meters) of a bit in the link? Is it longer than a
football field?

e. Derive a general expression for the width of a bit in terms of the
propagation speed s, the transmission rate R, and the length of the
link m.

Referring to problem P24, suppose we can modify R. For what value of R is
the width of a bit as long as the length of the link?

Consider problem P24 but now with a link of R = 500 Mbps.

a. Calculate the bandwidth-delay product, R * dpqp.
b. Consider sending a file of 800,000 bits from Host A to Host B. Suppose
the file is sent continuously as one big message. What is the maximum

number of bits that will be in the link at any given time?
c. What is the width (in meters) of a bit in the link?
Refer again to problem P24.
a. How long does it take to send the file, assuming it is sent continuously?

b. Suppose now the file is broken up into 20 packets with each packet
containing 40,000 bits. Suppose that each packet is acknowledged by
the receiver and the transmission time of an acknowledgment packet is
negligible. Finally, assume that the sender cannot send a packet until the
preceding one is acknowledged. How long does it take to send the file?

c. Compare the results from (a) and (b).

Suppose there is a 10 Mbps microwave link between a geostationary
satellite and its base station on Earth. Every minute the satellite takes a digi-
tal photo and sends it to the base station. Assume a propagation speed

of 2.4 - 10® meters/sec.

a. What is the propagation delay of the link?

b. What is the bandwidth-delay product, R * d,,?

c. Let x denote the size of the photo. What is the minimum value of x for the
microwave link to be continuously transmitting?

P30. Consider the airline travel analogy in our discussion of layering in Section 1.5,
and the addition of headers to protocol data units as they flow down the proto-
col stack. Is there an equivalent notion of header information that is added to
passengers and baggage as they move down the airline protocol stack?

P31. Inmodern packet-switched networks, including the Internet, the source host seg-
ments long, application-layer messages (for example, an image or a music file)
into smaller packets and sends the packets into the network. The receiver then
reassembles the packets back into the original message. We refer to this process as
message segmentation. Figure 1.27 illustrates the end-to-end transport of a message
with and without message segmentation. Consider a message that is 10° bits
long that is to be sent from source to destination in Figure 1.27. Suppose each
link in the figure is 5 Mbps. Ignore propagation, queuing, and processing delays.

a. Consider sending the message from source to destination without message
segmentation. How long does it take to move the message from the source
host to the first packet switch? Keeping in mind that each switch uses
store-and-forward packet switching, what is the total time to move the
message from source host to destination host?

b. Now suppose that the message is segmented into 100 packets, with each
packet being 10,000 bits long. How long does it take to move the first
packet from source host to the first switch? When the first packet is being
sent from the first switch to the second switch, the second packet is being
sent from the source host to the first switch. At what time will the second
packet be fully received at the first switch?

c. How long does it take to move the file from source host to destination
host when message segmentation is used? Compare this result with your
answer in part (a) and comment.

== Message (=<3

= \ Sy .t =
a. Source Packet switch Packet switch Destination
Packet
% ‘ | | ‘ ‘ _—’?
b. Source Packet switch Packet switch Destination

Figure 1.27 ¢+ End+o-end message transport: (a) without message
segmentation; (b) with message segmentation

PROBLEMS

75

76 CHAPTER T o COMPUTER NETWORKS AND THE INTERNET

d. In addition to reducing delay, what are reasons to use message
segmentation?

e. Discuss the drawbacks of message segmentation.

P32. Experiment with the Message Segmentation interactive animation at the book’s
Web site. Do the delays in the interactive animation correspond to the delays
in the previous problem? How do link propagation delays affect the overall
end-to-end delay for packet switching (with message segmentation) and for
message switching?

P33. Consider sending a large file of F bits from Host A to Host B. There are three
links (and two switches) between A and B, and the links are uncongested
(that is, no queuing delays). Host A segments the file into segments of S bits
each and adds 80 bits of header to each segment, forming packets of L = 80 +
S bits. Each link has a transmission rate of R bps. Find the value of S that
minimizes the delay of moving the file from Host A to Host B. Disregard
propagation delay.

P34. Skype offers a service that allows you to make a phone call from a PC to an
ordinary phone. This means that the voice call must pass through both the
Internet and through a telephone network. Discuss how this might be done.

Wireshark Lab

“Tell me and I forget. Show me and I remember. Involve me and I understand.”
Chinese proverb

One’s understanding of network protocols can often be greatly deepened by seeing
them in action and by playing around with them—observing the sequence of mes-
sages exchanged between two protocol entities, delving into the details of protocol
operation, causing protocols to perform certain actions, and observing these actions
and their consequences. This can be done in simulated scenarios or in a real network
environment such as the Internet. The interactive animations at the textbook Web site
take the first approach. In the Wireshark labs, we’ll take the latter approach. You’ll
run network applications in various scenarios using a computer on your desk, at
home, or in a lab. You’ll observe the network protocols in your computer, interacting
and exchanging messages with protocol entities executing elsewhere in the Inter-
net. Thus, you and your computer will be an integral part of these live labs. You’ll
observe—and you’ll learn—by doing.

The basic tool for observing the messages exchanged between executing pro-
tocol entities is called a packet sniffer. As the name suggests, a packet sniffer pas-
sively copies (sniffs) messages being sent from and received by your computer; it
also displays the contents of the various protocol fields of these captured messages.
A screenshot of the Wireshark packet sniffer is shown in Figure 1.28. Wireshark is a

WIRESHARK LAB 77

Command
menus

Listing of
captured —
packets

Details of
selected
packet
header

Packet
contents in
hexadecimal
and ASCII

Figure 1.28 ¢ A Wireshark screenshot (Wireshark screenshot reprinted
by permission of the Wireshark Foundation.)

free packet sniffer that runs on Windows, Linux/Unix, and Mac computers. Through-
out the textbook, you will find Wireshark labs that allow you to explore a number
of the protocols studied in the chapter. In this first Wireshark lab, you’ll obtain and
install a copy of Wireshark, access a Web site, and capture and examine the protocol
messages being exchanged between your Web browser and the Web server.

You can find full details about this first Wireshark lab (including instructions
about how to obtain and install Wireshark) at the Web site www.pearson.com/
cs-resources.

AN INTERVIEW WITH...

Leonard Kleinrock

Lleonard Kleinrock is a professor of computer science at the University
of California, Los Angeles. In 1969, his computer at UCLA became
the first node of the Internet. His creation of the mathematical theory
of packetswifching principles in 1961 became the technology behind
the Infemet. He received his B.E.E. from the City College of New York

(CCNY) and his masters and PhD in electrical engineering from MIT.

What made you decide to specialize in networking/Internet technology?

As a PhD student at MIT in 1959, I looked around and found that most of my classmates
were doing research in the area of information theory and coding theory that had been
established by the great researcher, Claude Shannon. I judged that he had solved most of
the important problems already. The research problems that were left were hard and seemed
to me to be of lesser consequence. So I decided to launch out in a new area that no one
else had yet conceived of. Happily, at MIT I was surrounded by many computers, and it
was clear to me that, sooner or later, these machines would need to communicate with each
other. At the time, there was no effective way for them to do so and that the solution to this
important problem would have impact. I had an approach to this problem and so, for my
PhD research, I decided to create a mathematical theory to model, evaluate, design and
optimize efficient and reliable data networks.

What was your first job in the computer industry? What did it entail?

I went to the evening session at CCNY from 1951 to 1957 for my bachelor’s degree

in electrical engineering. During the day, I worked first as a technician and then as an
electrical engineer at a small, industrial electronics firm called Photobell. While there, 1
introduced digital technology to their product line. Essentially, we were using photoelec-
tric devices to detect the presence of certain items (boxes, people, etc.) and the use of a
circuit known then as a bistable multivibrator was just what we needed to bring digital
processing into this field of detection. These circuits happen to be the building blocks for
computers, and have come to be known as flip-flops or switches in today’s vernacular.

What was going through your mind when you sent the first host-to-host message (from
UCLA to the Stanford Research Institute)?

Frankly, we had no idea of the importance of that event. We had not prepared a special
message of historic significance, as did so many inventors of the past (Samuel Morse with
“What hath God wrought.” or Alexander Graham Bell with “Watson, come here! I want you.”
or Neal Armstrong with “That’s one small step for a man, one giant leap for mankind.”)
Those guys were smart! They understood media and public relations. All we wanted to do
was to demonstrate our ability to remotely login to the SRI computer. So we typed the “L”,

Courtesy of Leonard Kleinrock

which was correctly received, we typed the “0” which was correctly received, and then we
typed the “g” which caused the SRI host computer to crash! So, it turned out that our mes-
sage was the shortest and perhaps the most prophetic message ever, namely “Lo!” as in
“Lo and behold!”

Earlier that year, I was quoted in a UCLA press release saying that once the network
was up and running, it would be possible to gain access to computer utilities from our
homes and offices as easily as we gain access to electricity and telephone connectivity. So
my vision at that time was that the Internet would be ubiquitous, always on, always avail-
able, anyone with any device could connect from any location, and it would be invisible.
However, I never anticipated that my 99-year-old mother would use the Internet at the same
time that my 5 year-old granddaughter was—and indeed she did!

What is your vision for the future of networking?

The easy part of the vision is to predict the infrastructure itself. I anticipate that we will see
considerable deployment of wireless and mobile devices in smart spaces to produce what
I like to refer to as the Invisible Internet. This step will enable us to move out from the
netherworld of cyberspace to the physical world of smart spaces. Our environments (desks,
walls, vehicles, watches, belts, fingernails, bodies and so on) will come alive with technol-
ogy, through actuators, sensors, logic, processing, storage, cameras, microphones, speak-
ers, displays, and communication. This embedded technology will allow our environment
to provide the IP services wherever and whenever we want. When I walk into a room, the
room will know I entered. I will be able to communicate with my environment naturally,
as in spoken English, haptics, gestures, and eventually through brain-Internet interfaces;
my requests will generate replies that present Web pages to me from wall displays, through
my eyeglasses, as speech, holograms, and so forth. Looking a bit further out, I see a net-
working future that includes the following additional key components. I see customized
intelligent software agents deployed across the network whose function it is to mine data,
act on that data, observe trends, and carry out tasks dynamically and adaptively. I see the
deployment of blockchain technology that provides irrefutable, immutable distributed
ledgers coupled with reputation systems that provide credibility to the contents and func-
tionality. I see considerably more network traffic generated not so much by humans, but
by the embedded devices, the intelligent software agents and the distributed ledgers. I see
large collections of self-organizing systems controlling this vast, fast network. I see huge
amounts of information flashing across this network instantaneously with this information
undergoing enormous processing and filtering. The Invisible Internet will essentially be
a pervasive global nervous system . I see all these things and more as we move headlong
through the twenty-first century.

The harder part of the vision is to predict the applications and services, which have
consistently surprised us in dramatic ways (e-mail, search technologies, the World Wide
Web, blogs, peer-to-peer networks, social networks, user generated content, sharing of

79

music, photos, and videos, etc.). These applications have “come of the blue”, sudden,
unanticipated and explosive. What a wonderful world for the next generation to explore!

What people have inspired you professionally?

By far, it was Claude Shannon from MIT, a brilliant researcher who had the ability to relate
his mathematical ideas to the physical world in highly intuitive ways. He was a superb
member of my PhD thesis committee.

Do you have any advice for students entering the networking/Internet field?

The Internet and all that it enables is a vast new frontier, continuously full of amazing
challenges. There is room for great innovation. Don’t be constrained by today’s technology.
Reach out and imagine what could be and then make it happen.

CHAPTER

Application
Layer

Network applications are the raisons d’étre of a computer network—if we couldn’t
conceive of any useful applications, there wouldn’t be any need for networking infra-
structure and protocols to support them. Since the Internet’s inception, numerous useful
and entertaining applications have indeed been created. These applications have been the
driving force behind the Internet’s success, motivating people in homes, schools, govern-
ments, and businesses to make the Internet an integral part of their daily activities.
Internet applications include the classic text-based applications that became pop-
ular in the 1970s and 1980s: text e-mail, remote access to computers, file transfers, and
newsgroups. They include the killer application of the mid-1990s, the World Wide
Web, encompassing Web surfing, search, and electronic commerce. Since the begin-
ning of new millennium, new and highly compelling applications continue to emerge,
including voice over IP and video conferencing such as Skype, Facetime, and Google
Hangouts; user generated video such as YouTube and movies on demand such as
Netflix; and multiplayer online games such as Second Life and World of Warcraft.
During this same period, we have seen the emergence of a new generation of social
networking applications—such as Facebook, Instagram, and Twitter—which have
created human networks on top of the Internet’s network or routers and communi-
cation links. And most recently, along with the arrival of the smartphone and the
ubiquity of 4G/5G wireless Internet access, there has been a profusion of location
based mobile apps, including popular check-in, dating, and road-traffic forecasting
apps (such as Yelp, Tinder, and Waz), mobile payment apps (such as WeChat and
Apple Pay) and messaging apps (such as WeChat and WhatsApp). Clearly, there has
been no slowing down of new and exciting Internet applications. Perhaps some of
the readers of this text will create the next generation of killer Internet applications!

81

82

CHAPTER 2

APPLICATION LAYER

In this chapter, we study the conceptual and implementation aspects of network
applications. We begin by defining key application-layer concepts, including net-
work services required by applications, clients and servers, processes, and trans-
port-layer interfaces. We examine several network applications in detail, including the
Web, e-mail, DNS, peer-to-peer (P2P) file distribution, and video streaming. We then
cover network application development, over both TCP and UDP. In particular, we
study the socket interface and walk through some simple client-server applications
in Python. We also provide several fun and interesting socket programming assign-
ments at the end of the chapter.

The application layer is a particularly good place to start our study of protocols.
It’s familiar ground. We’re acquainted with many of the applications that rely on
the protocols we’ll study. It will give us a good feel for what protocols are all about
and will introduce us to many of the same issues that we’ll see again when we study
transport, network, and link layer protocols.

2.1 Principles of Network Applications

Suppose you have an idea for a new network application. Perhaps this application
will be a great service to humanity, or will please your professor, or will bring you
great wealth, or will simply be fun to develop. Whatever the motivation may be, let’s
now examine how you transform the idea into a real-world network application.

At the core of network application development is writing programs that run on
different end systems and communicate with each other over the network. For exam-
ple, in the Web application there are two distinct programs that communicate with
each other: the browser program running in the user’s host (desktop, laptop, tablet,
smartphone, and so on); and the Web server program running in the Web server host.
As another example, in a Video on Demand application such as Netflix (see Sec-
tion 2.6), there is a Netflix-provided program running on the user’s smartphone, tablet,
or computer; and a Netflix server program running on the Netflix server host. Servers
often (but certainly not always) are housed in a data center, as shown in Figure 2.1.

Thus, when developing your new application, you need to write software that
will run on multiple end systems. This software could be written, for example, in
C, Java, or Python. Importantly, you do not need to write software that runs on net-
work-core devices, such as routers or link-layer switches. Even if you wanted to
write application software for these network-core devices, you wouldn’t be able to
do so. As we learned in Chapter 1, and as shown earlier in Figure 1.24, network-core
devices do not function at the application layer but instead function at lower layers—
specifically at the network layer and below. This basic design—namely, confining
application software to the end systems—as shown in Figure 2.1, has facilitated the
rapid development and deployment of a vast array of network applications.

g™

Application

Transport

Network

Data Link

Physical

2.1 e PRINCIPLES OF NETWORK APPLICATIONS 83

Application
Transport
Network
Data Link
Physical
g ™ @ Nagetale, Application
— Transport

R

q P

9 4
Q’ < Network
Data Link

Mobile Network

B
/
/

Physical

Datacenter Network

' il

<

Datacenter Network

\
/

s
o -~ <N

-~
>< -

Local or
R Regional ISP Content Provider Network
><
= >< ><
><

" 0 &
E g
~= nm ¢

Enterpri

Figure 2.1 ¢+ Communication for a network application takes place

between end systems at the application layer

84

CHAPTER 2

APPLICATION LAYER

2.1.1 Network Application Architectures

Before diving into software coding, you should have a broad architectural plan for
your application. Keep in mind that an application’s architecture is distinctly differ-
ent from the network architecture (e.g., the five-layer Internet architecture discussed
in Chapter 1). From the application developer’s perspective, the network architec-
ture is fixed and provides a specific set of services to applications. The application
architecture, on the other hand, is designed by the application developer and dic-
tates how the application is structured over the various end systems. In choosing
the application architecture, an application developer will likely draw on one of the
two predominant architectural paradigms used in modern network applications: the
client-server architecture or the peer-to-peer (P2P) architecture.

In a client-server architecture, there is an always-on host, called the server,
which services requests from many other hosts, called clients. A classic example
is the Web application for which an always-on Web server services requests from
browsers running on client hosts. When a Web server receives a request for an object
from a client host, it responds by sending the requested object to the client host. Note
that with the client-server architecture, clients do not directly communicate with each
other; for example, in the Web application, two browsers do not directly communi-
cate. Another characteristic of the client-server architecture is that the server has a
fixed, well-known address, called an IP address (which we’ll discuss soon). Because
the server has a fixed, well-known address, and because the server is always on, a cli-
ent can always contact the server by sending a packet to the server’s IP address. Some
of the better-known applications with a client-server architecture include the Web,
FTP, Telnet, and e-mail. The client-server architecture is shown in Figure 2.2(a).

Often in a client-server application, a single-server host is incapable of keep-
ing up with all the requests from clients. For example, a popular social-networking
site can quickly become overwhelmed if it has only one server handling all of its
requests. For this reason, a data center, housing a large number of hosts, is often
used to create a powerful virtual server. The most popular Internet services—such
as search engines (e.g., Google, Bing, Baidu), Internet commerce (e.g., Amazon,
eBay, Alibaba), Web-based e-mail (e.g., Gmail and Yahoo Mail), social media (e.g.,
Facebook, Instagram, Twitter, and WeChat)—run in one or more data centers. As
discussed in Section 1.3.3, Google has 19 data centers distributed around the world,
which collectively handle search, YouTube, Gmail, and other services. A data center
can have hundreds of thousands of servers, which must be powered and maintained.
Additionally, the service providers must pay recurring interconnection and band-
width costs for sending data from their data centers.

In a P2P architecture, there is minimal (or no) reliance on dedicated servers in
data centers. Instead the application exploits direct communication between pairs of
intermittently connected hosts, called peers. The peers are not owned by the service
provider, but are instead desktops and laptops controlled by users, with most of the
peers residing in homes, universities, and offices. Because the peers communicate

2.1 e PRINCIPLES OF NETWORK APPLICATIONS 85

a. Client-server architecture b. Peer-to-peer architecture

Figure 2.2 + (a) Clientserver architecture; (b) P2P architecture

without passing through a dedicated server, the architecture is called peer-to-peer.
An example of a popular P2P application is the file-sharing application BitTorrent.

One of the most compelling features of P2P architectures is their self-
scalability. For example, in a P2P file-sharing application, although each peer
generates workload by requesting files, each peer also adds service capacity to the
system by distributing files to other peers. P2P architectures are also cost effective,
since they normally don’t require significant server infrastructure and server band-
width (in contrast with clients-server designs with datacenters). However, P2P appli-
cations face challenges of security, performance, and reliability due to their highly
decentralized structure.

2.1.2 Processes Communicating

Before building your network application, you also need a basic understanding of
how the programs, running in multiple end systems, communicate with each other.
In the jargon of operating systems, it is not actually programs but processes that

86

CHAPTER 2

APPLICATION LAYER

communicate. A process can be thought of as a program that is running within an end
system. When processes are running on the same end system, they can communicate
with each other with interprocess communication, using rules that are governed by
the end system’s operating system. But in this book, we are not particularly interested
in how processes in the same host communicate, but instead in how processes run-
ning on different hosts (with potentially different operating systems) communicate.

Processes on two different end systems communicate with each other by
exchanging messages across the computer network. A sending process creates and
sends messages into the network; a receiving process receives these messages and
possibly responds by sending messages back. Figure 2.1 illustrates that processes
communicating with each other reside in the application layer of the five-layer pro-
tocol stack.

Client and Server Processes

A network application consists of pairs of processes that send messages to each
other over a network. For example, in the Web application a client browser process
exchanges messages with a Web server process. In a P2P file-sharing system, a file
is transferred from a process in one peer to a process in another peer. For each pair of
communicating processes, we typically label one of the two processes as the client
and the other process as the server. With the Web, a browser is a client process and
a Web server is a server process. With P2P file sharing, the peer that is downloading
the file is labeled as the client, and the peer that is uploading the file is labeled as
the server.

You may have observed that in some applications, such as in P2P file sharing,
a process can be both a client and a server. Indeed, a process in a P2P file-sharing
system can both upload and download files. Nevertheless, in the context of any given
communication session between a pair of processes, we can still label one process
as the client and the other process as the server. We define the client and server pro-
cesses as follows:

In the context of a communication session between a pair of processes, the pro-
cess that initiates the communication (that is, initially contacts the other process
at the beginning of the session) is labeled as the client. The process that waits to
be contacted to begin the session is the server.

In the Web, a browser process initializes contact with a Web server process;
hence the browser process is the client and the Web server process is the server. In
P2P file sharing, when Peer A asks Peer B to send a specific file, Peer A is the cli-
ent and Peer B is the server in the context of this specific communication session.
When there’s no confusion, we’ll sometimes also use the terminology “client side
and server side of an application.” At the end of this chapter, we’ll step through sim-
ple code for both the client and server sides of network applications.

2.1 e PRINCIPLES OF NETWORK APPLICATIONS

The Interface Between the Process and the Computer Network

As noted above, most applications consist of pairs of communicating processes, with
the two processes in each pair sending messages to each other. Any message sent
from one process to another must go through the underlying network. A process
sends messages into, and receives messages from, the network through a software
interface called a socket. Let’s consider an analogy to help us understand processes
and sockets. A process is analogous to a house and its socket is analogous to its door.
When a process wants to send a message to another process on another host, it shoves
the message out its door (socket). This sending process assumes that there is a trans-
portation infrastructure on the other side of its door that will transport the message to
the door of the destination process. Once the message arrives at the destination host,
the message passes through the receiving process’s door (socket), and the receiving
process then acts on the message.

Figure 2.3 illustrates socket communication between two processes that com-
municate over the Internet. (Figure 2.3 assumes that the underlying transport protocol
used by the processes is the Internet’s TCP protocol.) As shown in this figure, a socket
is the interface between the application layer and the transport layer within a host. It
is also referred to as the Application Programming Interface (API) between the
application and the network, since the socket is the programming interface with which
network applications are built. The application developer has control of everything on
the application-layer side of the socket but has little control of the transport-layer side
of the socket. The only control that the application developer has on the transport-
layer side is (1) the choice of transport protocol and (2) perhaps the ability to fix a few

Host or
server

e

Controlled

by application

developer

Controllec.i TCP with TCP with
by operating buffers, < > buffers,
system variables IRiErme variables

Figure 2.3 + Application processes, sockets, and underlying transport protocol

Controlled
by application
developer

Controlled
by operating
system

87

88

CHAPTER 2

APPLICATION LAYER

transport-layer parameters such as maximum buffer and maximum segment sizes (to
be covered in Chapter 3). Once the application developer chooses a transport protocol
(if a choice is available), the application is built using the transport-layer services
provided by that protocol. We’ll explore sockets in some detail in Section 2.7.

Addressing Processes

In order to send postal mail to a particular destination, the destination needs to have
an address. Similarly, in order for a process running on one host to send packets to
a process running on another host, the receiving process needs to have an address.
To identify the receiving process, two pieces of information need to be specified:
(1) the address of the host and (2) an identifier that specifies the receiving process in
the destination host.

In the Internet, the host is identified by its IP address. We’ll discuss IP addresses
in great detail in Chapter 4. For now, all we need to know is that an IP address is a 32-bit
quantity that we can think of as uniquely identifying the host. In addition to know-
ing the address of the host to which a message is destined, the sending process must
also identify the receiving process (more specifically, the receiving socket) running in
the host. This information is needed because in general a host could be running many
network applications. A destination port number serves this purpose. Popular applica-
tions have been assigned specific port numbers. For example, a Web server is identified
by port number 80. A mail server process (using the SMTP protocol) is identified by
port number 25. A list of well-known port numbers for all Internet standard protocols
can be found at www.iana.org. We’ll examine port numbers in detail in Chapter 3.

2.1.3 Transport Services Available to Applications

Recall that a socket is the interface between the application process and the trans-
port-layer protocol. The application at the sending side pushes messages through the
socket. At the other side of the socket, the transport-layer protocol has the responsi-
bility of getting the messages to the socket of the receiving process.

Many networks, including the Internet, provide more than one transport-layer
protocol. When you develop an application, you must choose one of the available
transport-layer protocols. How do you make this choice? Most likely, you would
study the services provided by the available transport-layer protocols, and then pick
the protocol with the services that best match your application’s needs. The situation
is similar to choosing either train or airplane transport for travel between two cities.
You have to choose one or the other, and each transportation mode offers different
services. (For example, the train offers downtown pickup and drop-off, whereas the
plane offers shorter travel time.)

What are the services that a transport-layer protocol can offer to applications
invoking it? We can broadly classify the possible services along four dimensions:
reliable data transfer, throughput, timing, and security.

2.1 e PRINCIPLES OF NETWORK APPLICATIONS

Reliable Data Transfer

As discussed in Chapter 1, packets can get lost within a computer network. For exam-
ple, a packet can overflow a buffer in a router, or can be discarded by a host or router
after having some of its bits corrupted. For many applications—such as electronic
mail, file transfer, remote host access, Web document transfers, and financial appli-
cations—data loss can have devastating consequences (in the latter case, for either
the bank or the customer!). Thus, to support these applications, something has to be
done to guarantee that the data sent by one end of the application is delivered cor-
rectly and completely to the other end of the application. If a protocol provides such
a guaranteed data delivery service, it is said to provide reliable data transfer. One
important service that a transport-layer protocol can potentially provide to an applica-
tion is process-to-process reliable data transfer. When a transport protocol provides
this service, the sending process can just pass its data into the socket and know with
complete confidence that the data will arrive without errors at the receiving process.

When a transport-layer protocol doesn’t provide reliable data transfer, some of
the data sent by the sending process may never arrive at the receiving process. This
may be acceptable for loss-tolerant applications, most notably multimedia applica-
tions such as conversational audio/video that can tolerate some amount of data loss.
In these multimedia applications, lost data might result in a small glitch in the audio/
video—not a crucial impairment.

Throughput

In Chapter 1, we introduced the concept of available throughput, which, in the
context of a communication session between two processes along a network path,
is the rate at which the sending process can deliver bits to the receiving process.
Because other sessions will be sharing the bandwidth along the network path, and
because these other sessions will be coming and going, the available throughput
can fluctuate with time. These observations lead to another natural service that a
transport-layer protocol could provide, namely, guaranteed available throughput at
some specified rate. With such a service, the application could request a guaranteed
throughput of r bits/sec, and the transport protocol would then ensure that the avail-
able throughput is always at least r bits/sec. Such a guaranteed throughput service
would appeal to many applications. For example, if an Internet telephony applica-
tion encodes voice at 32 kbps, it needs to send data into the network and have data
delivered to the receiving application at this rate. If the transport protocol cannot
provide this throughput, the application would need to encode at a lower rate (and
receive enough throughput to sustain this lower coding rate) or may have to give
up, since receiving, say, half of the needed throughput is of little or no use to this
Internet telephony application. Applications that have throughput requirements are
said to be bandwidth-sensitive applications. Many current multimedia applications
are bandwidth sensitive, although some multimedia applications may use adaptive

89

90

CHAPTER 2

APPLICATION LAYER

coding techniques to encode digitized voice or video at a rate that matches the cur-
rently available throughput.

While bandwidth-sensitive applications have specific throughput requirements,
elastic applications can make use of as much, or as little, throughput as happens to
be available. Electronic mail, file transfer, and Web transfers are all elastic applica-
tions. Of course, the more throughput, the better. There’s an adage that says that one
cannot be too rich, too thin, or have too much throughput!

Timing

A transport-layer protocol can also provide timing guarantees. As with throughput
guarantees, timing guarantees can come in many shapes and forms. An example
guarantee might be that every bit that the sender pumps into the socket arrives
at the receiver’s socket no more than 100 msec later. Such a service would be
appealing to interactive real-time applications, such as Internet telephony, virtual
environments, teleconferencing, and multiplayer games, all of which require tight
timing constraints on data delivery in order to be effective, see [Gauthier 1999;
Ramjee 1994]. Long delays in Internet telephony, for example, tend to result in
unnatural pauses in the conversation; in a multiplayer game or virtual interactive
environment, a long delay between taking an action and seeing the response from
the environment (for example, from another player at the end of an end-to-end con-
nection) makes the application feel less realistic. For non-real-time applications,
lower delay is always preferable to higher delay, but no tight constraint is placed
on the end-to-end delays.

Security

Finally, a transport protocol can provide an application with one or more security
services. For example, in the sending host, a transport protocol can encrypt all data
transmitted by the sending process, and in the receiving host, the transport-layer pro-
tocol can decrypt the data before delivering the data to the receiving process. Such a
service would provide confidentiality between the two processes, even if the data is
somehow observed between sending and receiving processes. A transport protocol
can also provide other security services in addition to confidentiality, including data
integrity and end-point authentication, topics that we’ll cover in detail in Chapter 8.

2.1.4 Transport Services Provided by the Internet

Up until this point, we have been considering transport services that a computer net-
work could provide in general. Let’s now get more specific and examine the type of
transport services provided by the Internet. The Internet (and, more generally, TCP/
IP networks) makes two transport protocols available to applications, UDP and TCP.
When you (as an application developer) create a new network application for the

2.1 e PRINCIPLES OF NETWORK APPLICATIONS

Application Data Loss Throughput Time-Sensitive
File transfer/download No loss Hlastic No

E-moil No loss Elastic No

Web documents No loss Hlastic (few Kbps) No

Internet telephony/ Loss-tolerant Audio: few kbps—1 Mbps Yes: 100s of msec
Video conferencing Video: 10 kbps—5 Mbps

Streaming stored Loss-tolerant Same as above Yes: few seconds
audio//video

Interactive gomes Loss-tolerant Few kbps—10 kbps Yes: 100s of msec
Smartphone messaging No loss Elastic Yes and no

Figure 2.4 + Requirements of selected network applications

Internet, one of the first decisions you have to make is whether to use UDP or TCP.
Each of these protocols offers a different set of services to the invoking applications.
Figure 2.4 shows the service requirements for some selected applications.

TCP Services

The TCP service model includes a connection-oriented service and a reliable data
transfer service. When an application invokes TCP as its transport protocol, the
application receives both of these services from TCP.

Connection-oriented service. TCP has the client and server exchange transport-
layer control information with each other before the application-level mes-
sages begin to flow. This so-called handshaking procedure alerts the client
and server, allowing them to prepare for an onslaught of packets. After the
handshaking phase, a TCP connection is said to exist between the sockets
of the two processes. The connection is a full-duplex connection in that the two
processes can send messages to each other over the connection at the same time.
When the application finishes sending messages, it must tear down the connec-
tion. In Chapter 3, we’ll discuss connection-oriented service in detail and examine
how it is implemented.

Reliable data transfer service. The communicating processes can rely on TCP to
deliver all data sent without error and in the proper order. When one side of the
application passes a stream of bytes into a socket, it can count on TCP to deliver the
same stream of bytes to the receiving socket, with no missing or duplicate bytes.

91

92

CHAPTER 2

APPLICATION LAYER

TCP also includes a congestion-control mechanism, a service for the general
welfare of the Internet rather than for the direct benefit of the communicating pro-
cesses. The TCP congestion-control mechanism throttles a sending process (client or
server) when the network is congested between sender and receiver. As we will see
in Chapter 3, TCP congestion control also attempts to limit each TCP connection to
its fair share of network bandwidth.

UDP Services

UDP is a no-frills, lightweight transport protocol, providing minimal services. UDP
is connectionless, so there is no handshaking before the two processes start to com-
municate. UDP provides an unreliable data transfer service—that is, when a process
sends a message into a UDP socket, UDP provides no guarantee that the message
will ever reach the receiving process. Furthermore, messages that do arrive at the
receiving process may arrive out of order.

FOCUS ON SECURITY

SECURING TCP

Neither TCP nor UDP provides any encryption—the data that the sending process
passes info its socket is the same data that travels over the network to the destina-
tion process. So, for example, if the sending process sends a password in cleartext
(i.e., unencrypted) into its socket, the cleartext password will travel over all the links
between sender and receiver, potentially getting sniffed and discovered at any of the
intervening links. Because privacy and other security issues have become critical for
many applications, the Internet community has developed an enhancement for TCP,
called Transport Layer Security (TLS) [RFC 5246]. TCP-enhanced-with-TLS not
only does everything that traditional TCP does but also provides critical process-to-
process security services, including encryption, data integrity, and end-point authenti-
cation. We emphasize that TLS is not a third Internet transport protocol, on the same
level as TCP and UDP, but instead is an enhancement of TCP, with the enhancements
being implemented in the application layer. In particular, if an application wants to
use the services of TLS, it needs to include TLS code (existing, highly optimized librar-
ies and classes) in both the client and server sides of the application. TLS has its own
socket API that is similar to the traditional TCP socket API. When an application uses
TLS, the sending process passes cleartext data to the TLS socket; TLS in the sending
host then encrypts the data and passes the encrypted data to the TCP socket. The
encrypted data travels over the Internet to the TCP socket in the receiving process.
The receiving socket passes the encrypted data to TLS, which decrypts the data.
Finally, TLS passes the cleartext data through its TLS socket to the receiving process.
We'll cover TLS in some detail in Chapter 8.

2.1 e PRINCIPLES OF NETWORK APPLICATIONS

UDP does not include a congestion-control mechanism, so the sending side of
UDP can pump data into the layer below (the network layer) at any rate it pleases.
(Note, however, that the actual end-to-end throughput may be less than this rate due
to the limited transmission capacity of intervening links or due to congestion).

Services Not Provided by Internet Transport Protocols

We have organized transport protocol services along four dimensions: reliable data
transfer, throughput, timing, and security. Which of these services are provided by
TCP and UDP? We have already noted that TCP provides reliable end-to-end data
transfer. And we also know that TCP can be easily enhanced at the application
layer with TLS to provide security services. But in our brief description of TCP and
UDP, conspicuously missing was any mention of throughput or timing guarantees—
services not provided by today’s Internet transport protocols. Does this mean that time-
sensitive applications such as Internet telephony cannot run in today’s Internet? The
answer is clearly no—the Internet has been hosting time-sensitive applications for
many years. These applications often work fairly well because they have been designed
to cope, to the greatest extent possible, with this lack of guarantee. Nevertheless, clever
design has its limitations when delay is excessive, or the end-to-end throughput is
limited. In summary, today’s Internet can often provide satisfactory service to time-
sensitive applications, but it cannot provide any timing or throughput guarantees.
Figure 2.5 indicates the transport protocols used by some popular Internet appli-
cations. We see that e-mail, remote terminal access, the Web, and file transfer all use
TCP. These applications have chosen TCP primarily because TCP provides reliable
data transfer, guaranteeing that all data will eventually get to its destination. Because
Internet telephony applications (such as Skype) can often tolerate some loss but
require a minimal rate to be effective, developers of Internet telephony applications

Application Application-Layer Profocol Underlying Transport Protocol
Electronic mail SMTP [RFC 5321] TCP

Remote terminal access Telnet [RFC 854] 1CP

Web HTTP 1.1 [RFC 7230] TCP

File transfer FTP [RFC 959] TCP

Streaming multimedia HTTP (e.g., YouTube), DASH TCP

Internet telephony SIP [RFC 3261], RTP [RFC 35501, or proprietary UDP or TCP

(e.g., Skype)

Figure 2.5 + Popular Internet applications, their application-layer
protocols, and their underlying transport protocols

93

94

CHAPTER 2

APPLICATION LAYER

usually prefer to run their applications over UDP, thereby circumventing TCP’s
congestion control mechanism and packet overheads. But because many firewalls
are configured to block (most types of) UDP traffic, Internet telephony applications
often are designed to use TCP as a backup if UDP communication fails.

2.1.5 Application-Layer Protocols

We have just learned that network processes communicate with each other by sending
messages into sockets. But how are these messages structured? What are the meanings
of the various fields in the messages? When do the processes send the messages? These
questions bring us into the realm of application-layer protocols. An application-layer
protocol defines how an application’s processes, running on different end systems,
pass messages to each other. In particular, an application-layer protocol defines:

* The types of messages exchanged, for example, request messages and response
messages

* The syntax of the various message types, such as the fields in the message and
how the fields are delineated

* The semantics of the fields, that is, the meaning of the information in the fields

* Rules for determining when and how a process sends messages and responds to
messages

Some application-layer protocols are specified in RFCs and are therefore in the
public domain. For example, the Web’s application-layer protocol, HTTP (the
HyperText Transfer Protocol [RFC 7230]), is available as an RFC. If a browser
developer follows the rules of the HTTP RFC, the browser will be able to retrieve
Web pages from any Web server that has also followed the rules of the HTTP RFC.
Many other application-layer protocols are proprietary and intentionally not avail-
able in the public domain. For example, Skype uses proprietary application-layer
protocols.

It is important to distinguish between network applications and application-layer
protocols. An application-layer protocol is only one piece of a network application
(albeit, a very important piece of the application from our point of view!). Let’s look
at a couple of examples. The Web is a client-server application that allows users to
obtain documents from Web servers on demand. The Web application consists of
many components, including a standard for document formats (that is, HTML), Web
browsers (for example, Chrome and Microsoft Internet Explorer), Web servers
(for example, Apache and Microsoft servers), and an application-layer protocol.
The Web’s application-layer protocol, HTTP, defines the format and sequence
of messages exchanged between browser and Web server. Thus, HTTP is only
one piece (albeit, an important piece) of the Web application. As another example,
we’ll see in Section 2.6 that Netflix’s video service also has many components,

2.2 o THE WEB AND HTTP

including servers that store and transmit videos, other servers that manage billing
and other client functions, clients (e.g., the Netflix app on your smartphone, tablet, or
computer), and an application-level DASH protocol defines the format and sequence
of messages exchanged between a Netflix server and client. Thus, DASH is only one
piece (albeit, an important piece) of the Netflix application.

2.1.6 Network Applications Covered in This Book

New applications are being developed every day. Rather than covering a large
number of Internet applications in an encyclopedic manner, we have chosen to
focus on a small number of applications that are both pervasive and important.
In this chapter, we discuss five important applications: the Web, electronic mail,
directory service, video streaming, and P2P applications. We first discuss the
Web, not only because it is an enormously popular application, but also because
its application-layer protocol, HTTP, is straightforward and easy to understand.
We then discuss electronic mail, the Internet’s first killer application. E-mail is
more complex than the Web in the sense that it makes use of not one but sev-
eral application-layer protocols. After e-mail, we cover DNS, which provides a
directory service for the Internet. Most users do not interact with DNS directly;
instead, users invoke DNS indirectly through other applications (including the
Web, file transfer, and electronic mail). DNS illustrates nicely how a piece of
core network functionality (network-name to network-address translation) can
be implemented at the application layer in the Internet. We then discuss P2P file
sharing applications, and complete our application study by discussing video
streaming on demand, including distributing stored video over content distribu-
tion networks.

2.2 The Web and HTTP

Until the early 1990s, the Internet was used primarily by researchers, academics,
and university students to log in to remote hosts, to transfer files from local hosts to
remote hosts and vice versa, to receive and send news, and to receive and send elec-
tronic mail. Although these applications were (and continue to be) extremely useful,
the Internet was essentially unknown outside of the academic and research commu-
nities. Then, in the early 1990s, a major new application arrived on the scene—the
World Wide Web [Berners-Lee 1994]. The Web was the first Internet application
that caught the general public’s eye. It dramatically changed how people interact
inside and outside their work environments. It elevated the Internet from just one of
many data networks to essentially the one and only data network.

Perhaps what appeals the most to users is that the Web operates on demand.
Users receive what they want, when they want it. This is unlike traditional broadcast

95

96

CHAPTER 2

APPLICATION LAYER

radio and television, which force users to tune in when the content provider makes
the content available. In addition to being available on demand, the Web has many
other wonderful features that people love and cherish. It is enormously easy for any
individual to make information available over the Web—everyone can become a
publisher at extremely low cost. Hyperlinks and search engines help us navigate
through an ocean of information. Photos and videos stimulate our senses. Forms,
JavaScript, video, and many other devices enable us to interact with pages and sites.
And the Web and its protocols serve as a platform for YouTube, Web-based e-mail
(such as Gmail), and most mobile Internet applications, including Instagram and
Google Maps.

2.2.1 Overview of HTTP

The HyperText Transfer Protocol (HTTP), the Web’s application-layer protocol,
is at the heart of the Web. It is defined in [RFC 1945], [RFC 7230] and [RFC 7540].
HTTP is implemented in two programs: a client program and a server program. The
client program and server program, executing on different end systems, talk to each
other by exchanging HTTP messages. HTTP defines the structure of these messages
and how the client and server exchange the messages. Before explaining HTTP in
detail, we should review some Web terminology.

A Web page (also called a document) consists of objects. An object is
simply a file—such as an HTML file, a JPEG image, a Javascrpt file, a CCS
style sheet file, or a video clip—that is addressable by a single URL. Most Web
pages consist of a base HTML file and several referenced objects. For example,
if a Web page contains HTML text and five JPEG images, then the Web page has
six objects: the base HTML file plus the five images. The base HTML file refer-
ences the other objects in the page with the objects” URLs. Each URL has two
components: the hostname of the server that houses the object and the object’s
path name. For example, the URL

http://www.someSchool.edu/someDepartment/picture.gif

has www . someSchool . edu for a hostname and /someDepartment/picture.
gif for a path name. Because Web browsers (such as Internet Explorer and Chrome)
implement the client side of HTTP, in the context of the Web, we will use the words
browser and client interchangeably. Web servers, which implement the server side
of HTTP, house Web objects, each addressable by a URL. Popular Web servers
include Apache and Microsoft Internet Information Server.

HTTP defines how Web clients request Web pages from Web servers and how
servers transfer Web pages to clients. We discuss the interaction between client
and server in detail later, but the general idea is illustrated in Figure 2.6. When a
user requests a Web page (for example, clicks on a hyperlink), the browser sends

2.2 o THE WEB AND HTTP

Server running
Apache Web server

PC running Android smartphone
Internet Explorer running Google Chrome

Figure 2.6 + HTTP requestresponse behavior

HTTP request messages for the objects in the page to the server. The server receives
the requests and responds with HTTP response messages that contain the objects.

HTTP uses TCP as its underlying transport protocol (rather than running on top
of UDP). The HTTP client first initiates a TCP connection with the server. Once the
connection is established, the browser and the server processes access TCP through
their socket interfaces. As described in Section 2.1, on the client side the socket inter-
face is the door between the client process and the TCP connection; on the server side
it is the door between the server process and the TCP connection. The client sends
HTTP request messages into its socket interface and receives HTTP response mes-
sages from its socket interface. Similarly, the HTTP server receives request messages
from its socket interface and sends response messages into its socket interface. Once
the client sends a message into its socket interface, the message is out of the client’s
hands and is “in the hands” of TCP. Recall from Section 2.1 that TCP provides a
reliable data transfer service to HTTP. This implies that each HTTP request message
sent by a client process eventually arrives intact at the server; similarly, each HTTP
response message sent by the server process eventually arrives intact at the client.
Here we see one of the great advantages of a layered architecture—HTTP need not
worry about lost data or the details of how TCP recovers from loss or reordering of
data within the network. That is the job of TCP and the protocols in the lower layers
of the protocol stack.

It is important to note that the server sends requested files to clients without
storing any state information about the client. If a particular client asks for the same
object twice in a period of a few seconds, the server does not respond by saying
that it just served the object to the client; instead, the server resends the object, as
it has completely forgotten what it did earlier. Because an HTTP server maintains

97

98

CHAPTER 2

APPLICATION LAYER

no information about the clients, HTTP is said to be a stateless protocol. We also
remark that the Web uses the client-server application architecture, as described in
Section 2.1. A Web server is always on, with a fixed IP address, and it services
requests from potentially millions of different browsers.

The original version of HTTP is called HTTP/1.0 and dates back to the early
1990’s [RFC 1945]. As of 2020, the majority of HTTP transactions take place over
HTTP/1.1 [RFEC 7230]. However, increasingly browsers and Web servers also sup-
port a new version of HTTP called HTTP/2 [RFC 7540]. At the end of this section,
we’ll provide an introduction to HTTP/2.

2.2.2 Non-Persistent and Persistent Connections

In many Internet applications, the client and server communicate for an extended
period of time, with the client making a series of requests and the server respond-
ing to each of the requests. Depending on the application and on how the
application is being used, the series of requests may be made back-to-back, peri-
odically at regular intervals, or intermittently. When this client-server interaction
is taking place over TCP, the application developer needs to make an important
decision—should each request/response pair be sent over a separate TCP connec-
tion, or should all of the requests and their corresponding responses be sent over
the same TCP connection? In the former approach, the application is said to use
non-persistent connections; and in the latter approach, persistent connections. To
gain a deep understanding of this design issue, let’s examine the advantages and dis-
advantages of persistent connections in the context of a specific application, namely,
HTTP, which can use both non-persistent connections and persistent connections.
Although HTTP uses persistent connections in its default mode, HTTP clients and
servers can be configured to use non-persistent connections instead.

HTTP with Non-Persistent Connections

Let’s walk through the steps of transferring a Web page from server to client for the
case of non-persistent connections. Let’s suppose the page consists of a base HTML
file and 10 JPEG images, and that all 11 of these objects reside on the same server.
Further suppose the URL for the base HTML file is

http://www.someSchool.edu/someDepartment/home.index
Here is what happens:
1. The HTTP client process initiates a TCP connection to the server
www . someSchool . edu on port number 80, which is the default port number

for HTTP. Associated with the TCP connection, there will be a socket at the
client and a socket at the server.

2.2 o THE WEB AND HTTP

2. The HTTP client sends an HTTP request message to the server via its socket.
The request message includes the path name /someDepartment/home
. index. (We will discuss HTTP messages in some detail below.)

3. The HTTP server process receives the request message via its socket, retrieves
the object /someDepartment/home.index from its storage (RAM or
disk), encapsulates the object in an HTTP response message, and sends the
response message to the client via its socket.

4. The HTTP server process tells TCP to close the TCP connection. (But TCP
doesn’t actually terminate the connection until it knows for sure that the client
has received the response message intact.)

5. The HTTP client receives the response message. The TCP connection termi-
nates. The message indicates that the encapsulated object is an HTML file. The
client extracts the file from the response message, examines the HTML file, and
finds references to the 10 JPEG objects.

6. The first four steps are then repeated for each of the referenced JPEG objects.

As the browser receives the Web page, it displays the page to the user. Two
different browsers may interpret (that is, display to the user) a Web page in some-
what different ways. HTTP has nothing to do with how a Web page is interpreted
by a client. The HTTP specifications ([RFC 1945] and [RFC 7540]) define only the
communication protocol between the client HTTP program and the server HTTP
program.

The steps above illustrate the use of non-persistent connections, where each
TCP connection is closed after the server sends the object—the connection does not
persist for other objects. HTTP/1.0 employes non-persistent TCP connections. Note
that each non-persistent TCP connection transports exactly one request message and
one response message. Thus, in this example, when a user requests the Web page, 11
TCP connections are generated.

In the steps described above, we were intentionally vague about whether the
client obtains the 10 JPEGs over 10 serial TCP connections, or whether some of the
JPEGs are obtained over parallel TCP connections. Indeed, users can configure some
browsers to control the degree of parallelism. Browsers may open multiple TCP con-
nections and request different parts of the Web page over the multiple connections. As
we’ll see in the next chapter, the use of parallel connections shortens the response time.

Before continuing, let’s do a back-of-the-envelope calculation to estimate the
amount of time that elapses from when a client requests the base HTML file until
the entire file is received by the client. To this end, we define the round-trip time
(RTT), which is the time it takes for a small packet to travel from client to server
and then back to the client. The RTT includes packet-propagation delays, packet-
queuing delays in intermediate routers and switches, and packet-processing delays.
(These delays were discussed in Section 1.4.) Now consider what happens when
a user clicks on a hyperlink. As shown in Figure 2.7, this causes the browser to
initiate a TCP connection between the browser and the Web server; this involves

99

100

CHAPTER 2

e APPLICATION LAYER

E

Initiate TCP =

\n

connection ——— \
RTT /
Request file ——= \
RTT
}Time to transmit file
Entire file received{

Time Time
at client at server

Figure 2.7 + Back-ofthe-envelope calculation for the time needed
to request and receive an HTML file

a “three-way handshake”—the client sends a small TCP segment to the server, the
server acknowledges and responds with a small TCP segment, and, finally, the cli-
ent acknowledges back to the server. The first two parts of the three-way handshake
take one RTT. After completing the first two parts of the handshake, the client sends
the HTTP request message combined with the third part of the three-way handshake
(the acknowledgment) into the TCP connection. Once the request message arrives at
the server, the server sends the HTML file into the TCP connection. This HTTP
request/response eats up another RTT. Thus, roughly, the total response time is two
RTTs plus the transmission time at the server of the HTML file.

HTTP with Persistent Connections

Non-persistent connections have some shortcomings. First, a brand-new connection
must be established and maintained for each requested object. For each of these
connections, TCP buffers must be allocated and TCP variables must be kept in both
the client and server. This can place a significant burden on the Web server, which
may be serving requests from hundreds of different clients simultaneously. Second,

2.2 e THE WEB AND HTTP

as we just described, each object suffers a delivery delay of two RTTs—one RTT to
establish the TCP connection and one RTT to request and receive an object.

With HTTP/1.1 persistent connections, the server leaves the TCP connection
open after sending a response. Subsequent requests and responses between the same
client and server can be sent over the same connection. In particular, an entire Web
page (in the example above, the base HTML file and the 10 images) can be sent over
a single persistent TCP connection. Moreover, multiple Web pages residing on the
same server can be sent from the server to the same client over a single persistent
TCP connection. These requests for objects can be made back-to-back, without wait-
ing for replies to pending requests (pipelining). Typically, the HTTP server closes
a connection when it isn’t used for a certain time (a configurable timeout interval).
When the server receives the back-to-back requests, it sends the objects back-to-
back. The default mode of HTTP uses persistent connections with pipelining. We’ll
quantitatively compare the performance of non-persistent and persistent connections
in the homework problems of Chapters 2 and 3. You are also encouraged to see
[Heidemann 1997; Nielsen 1997; RFC 7540].

2.2.3 HTTP Message Format

The HTTP specifications [RFC 1945; RFC 7230; RFC 7540] include the definitions
of the HTTP message formats. There are two types of HTTP messages, request mes-
sages and response messages, both of which are discussed below.

HTTP Request Message

Below we provide a typical HTTP request message:

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
Connection: close

User-agent: Mozilla/5.0
Accept-language: fr

We can learn a lot by taking a close look at this simple request message. First of
all, we see that the message is written in ordinary ASCII text, so that your ordinary
computer-literate human being can read it. Second, we see that the message consists
of five lines, each followed by a carriage return and a line feed. The last line is fol-
lowed by an additional carriage return and line feed. Although this particular request
message has five lines, a request message can have many more lines or as few as
one line. The first line of an HTTP request message is called the request line; the
subsequent lines are called the header lines. The request line has three fields: the
method field, the URL field, and the HTTP version field. The method field can take
on several different values, including GET, POST, HEAD, PUT, and DELETE.

101

102

CHAPTER 2

e APPLICATION LAYER

The great majority of HTTP request messages use the GET method. The GET method
is used when the browser requests an object, with the requested object identified in
the URL field. In this example, the browser is requesting the object /somedir/
page.html. The version is self-explanatory; in this example, the browser imple-
ments version HTTP/1.1.

Now let’s look at the header lines in the example. The header line Host:
www . someschool . edu specifies the host on which the object resides. You might
think that this header line is unnecessary, as there is already a TCP connection in
place to the host. But, as we’ll see in Section 2.2.5, the information provided by the
host header line is required by Web proxy caches. By including the Connection:
close header line, the browser is telling the server that it doesn’t want to bother
with persistent connections; it wants the server to close the connection after sending
the requested object. The User-agent: header line specifies the user agent, that
is, the browser type that is making the request to the server. Here the user agent is
Mozilla/5.0, a Firefox browser. This header line is useful because the server can actu-
ally send different versions of the same object to different types of user agents. (Each
of the versions is addressed by the same URL.) Finally, the Accept-language:
header indicates that the user prefers to receive a French version of the object, if such
an object exists on the server; otherwise, the server should send its default version.
The Accept-language: header is just one of many content negotiation headers
available in HTTP.

Having looked at an example, let’s now look at the general format of a request
message, as shown in Figure 2.8. We see that the general format closely follows our
earlier example. You may have noticed, however, that after the header lines (and the
additional carriage return and line feed) there is an “entity body.” The entity body

Request line method |sp URL sp| Version |cr|If
header field name: |sp| value |cr| If
Header lines T 2
header field name: |sp| value |cr| If
Blank line———— cr | If
Entity body 1 J
T

Figure 2.8 + General format of an HTTP request message

2.2 e THE WEB AND HTTP

is empty with the GET method, but is used with the POST method. An HTTP client
often uses the POST method when the user fills out a form—for example, when a
user provides search words to a search engine. With a POST message, the user is still
requesting a Web page from the server, but the specific contents of the Web page
depend on what the user entered into the form fields. If the value of the method field
is POST, then the entity body contains what the user entered into the form fields.

We would be remiss if we didn’t mention that a request generated with a form
does not necessarily have to use the POST method. Instead, HTML forms often use
the GET method and include the inputted data (in the form fields) in the requested
URL. For example, if a form uses the GET method, has two fields, and the inputs to
the two fields are monkeys and bananas, then the URL will have the structure
www.somesite.com/animalsearch?monkeysé&bananas. In your day-to-
day Web surfing, you have probably noticed extended URLS of this sort.

The HEAD method is similar to the GET method. When a server receives a
request with the HEAD method, it responds with an HTTP message but it leaves out
the requested object. Application developers often use the HEAD method for debug-
ging. The PUT method is often used in conjunction with Web publishing tools. It
allows a user to upload an object to a specific path (directory) on a specific Web
server. The PUT method is also used by applications that need to upload objects
to Web servers. The DELETE method allows a user, or an application, to delete an
object on a Web server.

HTTP Response Message

Below we provide a typical HTTP response message. This response message could
be the response to the example request message just discussed.

HTTP/1.1 200 OK

Connection: close

Date: Tue, 18 Aug 2015 15:44:04 GMT

Server: Apache/2.2.3 (Cent0S)

Last-Modified: Tue, 18 Aug 2015 15:11:03 GMT
Content-Length: 6821

Content-Type: text/html

(data data data data data ...)

Let’s take a careful look at this response message. It has three sections: an initial
status line, six header lines, and then the entity body. The entity body is the meat
of the message—it contains the requested object itself (represented by data data
data data data ...). The status line has three fields: the protocol version
field, a status code, and a corresponding status message. In this example, the status
line indicates that the server is using HTTP/1.1 and that everything is OK (that is, the
server has found, and is sending, the requested object).

103

104

CHAPTER 2

e APPLICATION LAYER

Now let’s look at the header lines. The server uses the Connection: close
header line to tell the client that it is going to close the TCP connection after sending
the message. The Date: header line indicates the time and date when the HTTP
response was created and sent by the server. Note that this is not the time when
the object was created or last modified; it is the time when the server retrieves the
object from its file system, inserts the object into the response message, and sends the
response message. The Server: header line indicates that the message was gener-
ated by an Apache Web server; it is analogous to the User-agent : header line in
the HTTP request message. The Last-Modified: header line indicates the time
and date when the object was created or last modified. The Last-Modified:
header, which we will soon cover in more detail, is critical for object caching, both
in the local client and in network cache servers (also known as proxy servers). The
Content-Length: header line indicates the number of bytes in the object being
sent. The Content-Type: header line indicates that the object in the entity body
is HTML text. (The object type is officially indicated by the Content-Type:
header and not by the file extension.)

Having looked at an example, let’s now examine the general format of a response
message, which is shown in Figure 2.9. This general format of the response message
matches the previous example of a response message. Let’s say a few additional words
about status codes and their phrases. The status code and associated phrase indicate
the result of the request. Some common status codes and associated phrases include:

* 200 OK: Request succeeded and the information is returned in the response.

°* 301 Moved Permanently: Requested object has been permanently moved;
the new URL is specified in Location: header of the response message. The
client software will automatically retrieve the new URL.

Status line———— version |sp| statuscode |sp| phrase |cr| If
header field name: [sp| value |cr| If
Header lines T r
header field name: [sp| value |cr| If
Blank line ——— cr | If
Entity body] J
T i

Figure 2.9 + General format of an HTTP response message

2.2 e THE WEB AND HTTP 105

e 400 Bad Request: This is a generic error code indicating that the request
could not be understood by the server.

° 404 Not Found: The requested document does not exist on this server.

e 505 HTTP Version Not Supported: The requested HTTP protocol ver-
sion is not supported by the server.

How would you like to see a real HTTP response message? This is highly rec-
ommended and very easy to do! First Telnet into your favorite Web server. Then
type in a one-line request message for some object that is housed on the server. For
example, if you have access to a command prompt, type:

telnet gaia.cs.umass.edu 80

GET /kurose_ross/interactive/index.php HTTP/1.1
Host: gaia.cs.umass.edu

(Press the carriage return twice after typing the last line.) This opens a TCP con-
nection to port 80 of the host gaia.cs.umass.edu and then sends the HTTP
request message. You should see a response message that includes the base HTML
file for the interactive homework problems for this textbook. If you’d rather just see
the HTTP message lines and not receive the object itself, replace GET with HEAD.

In this section, we discussed a number of header lines that can be used within
HTTP request and response messages. The HTTP specification defines many,
many more header lines that can be inserted by browsers, Web servers, and net-
work cache servers. We have covered only a small number of the totality of header
lines. We’ll cover a few more below and another small number when we discuss
network Web caching in Section 2.2.5. A highly readable and comprehensive dis-
cussion of the HTTP protocol, including its headers and status codes, is given in
[Krishnamurthy 2001].

How does a browser decide which header lines to include in a request message?
How does a Web server decide which header lines to include in a response mes-
sage? A browser will generate header lines as a function of the browser type and
version, the user configuration of the browser and whether the browser currently
has a cached, but possibly out-of-date, version of the object. Web servers behave
similarly: There are different products, versions, and configurations, all of which
influence which header lines are included in response messages.

2.2.4 User-Server Interaction: Cookies

We mentioned above that an HTTP server is stateless. This simplifies server design
and has permitted engineers to develop high-performance Web servers that can han-
dle thousands of simultaneous TCP connections. However, it is often desirable for
a Web site to identify users, either because the server wishes to restrict user access

VideoNote

Using Wireshark to
investigate the HTTP
protocol

106

CHAPTER 2 e APPLICATION LAYER

or because it wants to serve content as a function of the user identity. For these pur-
poses, HTTP uses cookies. Cookies, defined in [RFC 6265], allow sites to keep track
of users. Most major commercial Web sites use cookies today.

As shown in Figure 2.10, cookie technology has four components: (1) a cookie
header line in the HTTP response message; (2) a cookie header line in the HTTP
request message; (3) a cookie file kept on the user’s end system and managed by
the user’s browser; and (4) a back-end database at the Web site. Using Figure 2.10,
let’s walk through an example of how cookies work. Suppose Susan, who always

Client host Server host

j

ebay: 8734

—— Server creates
ID 1678 for user
entry in backend

8 database
amazon: 1678
ebay: 8734 access
—— Cookie-specific ¢——»
action
One week later
access

amazon: 1678

—— Cookie-specific
action

ebay: 8734

Time Time

Key:

8 Cookie file

Figure 2.10 ¢ Keeping user state with cookies

2.2 e THE WEB AND HTTP

accesses the Web using Internet Explorer from her home PC, contacts Amazon.com
for the first time. Let us suppose that in the past she has already visited the eBay site.
When the request comes into the Amazon Web server, the server creates a unique
identification number and creates an entry in its back-end database that is indexed
by the identification number. The Amazon Web server then responds to Susan’s
browser, including in the HTTP response a Set-cookie: header, which contains
the identification number. For example, the header line might be:

Set-cookie: 1678

When Susan’s browser receives the HTTP response message, it sees the
Set-cookie: header. The browser then appends a line to the special cookie file
that it manages. This line includes the hostname of the server and the identification
number in the Set-cookie: header. Note that the cookie file already has an entry
for eBay, since Susan has visited that site in the past. As Susan continues to browse
the Amazon site, each time she requests a Web page, her browser consults her cookie
file, extracts her identification number for this site, and puts a cookie header line that
includes the identification number in the HTTP request. Specifically, each of her
HTTP requests to the Amazon server includes the header line:

Cookie: 1678

In this manner, the Amazon server is able to track Susan’s activity at the Amazon
site. Although the Amazon Web site does not necessarily know Susan’s name, it
knows exactly which pages user 1678 visited, in which order, and at what times!
Amazon uses cookies to provide its shopping cart service—Amazon can maintain a
list of all of Susan’s intended purchases, so that she can pay for them collectively at
the end of the session.

If Susan returns to Amazon’s site, say, one week later, her browser will con-
tinue to put the header line Cookie: 1678 in the request messages. Amazon also
recommends products to Susan based on Web pages she has visited at Amazon in
the past. If Susan also registers herself with Amazon—providing full name, e-mail
address, postal address, and credit card information—Amazon can then include this
information in its database, thereby associating Susan’s name with her identifica-
tion number (and all of the pages she has visited at the site in the past!). This is how
Amazon and other e-commerce sites provide “one-click shopping”—when Susan
chooses to purchase an item during a subsequent visit, she doesn’t need to re-enter
her name, credit card number, or address.

From this discussion, we see that cookies can be used to identify a user. The first
time a user visits a site, the user can provide a user identification (possibly his or her
name). During the subsequent sessions, the browser passes a cookie header to the
server, thereby identifying the user to the server. Cookies can thus be used to create
a user session layer on top of stateless HTTP. For example, when a user logs in to

107

108

CHAPTER 2

e APPLICATION LAYER

a Web-based e-mail application (such as Hotmail), the browser sends cookie infor-
mation to the server, permitting the server to identify the user throughout the user’s
session with the application.

Although cookies often simplify the Internet shopping experience for the user,
they are controversial because they can also be considered as an invasion of privacy.
As we just saw, using a combination of cookies and user-supplied account informa-
tion, a Web site can learn a lot about a user and potentially sell this information to a
third party.

2.2.5 Web Caching

A Web cache—also called a proxy server—is a network entity that satisfies HTTP
requests on the behalf of an origin Web server. The Web cache has its own disk
storage and keeps copies of recently requested objects in this storage. As shown in
Figure 2.11, auser’s browser can be configured so that all of the user’s HTTP requests
are first directed to the Web cache [RFC 7234]. Once a browser is configured, each
browser request for an object is first directed to the Web cache. As an example,
suppose a browser is requesting the object http://www.someschool.edu/
campus . gif. Here is what happens:

1. The browser establishes a TCP connection to the Web cache and sends an HTTP
request for the object to the Web cache.

2. The Web cache checks to see if it has a copy of the object stored locally. If it
does, the Web cache returns the object within an HTTP response message to the
client browser.

3. If the Web cache does not have the object, the Web cache opens a TCP connec-
tion to the origin server, that is, to www . someschool.edu. The Web cache

/~/7>pr Proxy yé" :u“'-i
Q, <
o server Q
Client /YN o« o0 _
re ey Origin
o nse \'\6? server
oL
Q(eo‘\)e /\/77;0 e,
\8 o 9y,
o Q
\)‘6? 9300,7 :-I'HW
= * Y=
Client Origin

Figure 2.11 ¢ Clients requesting objects through a Web cache

2.2 e THE WEB AND HTTP

then sends an HTTP request for the object into the cache-to-server TCP connec-
tion. After receiving this request, the origin server sends the object within an
HTTP response to the Web cache.

4. When the Web cache receives the object, it stores a copy in its local storage and
sends a copy, within an HTTP response message, to the client browser (over the
existing TCP connection between the client browser and the Web cache).

Note that a cache is both a server and a client at the same time. When it receives
requests from and sends responses to a browser, it is a server. When it sends requests
to and receives responses from an origin server, it is a client.

Typically a Web cache is purchased and installed by an ISP. For example, a uni-
versity might install a cache on its campus network and configure all of the campus
browsers to point to the cache. Or a major residential ISP (such as Comcast) might
install one or more caches in its network and preconfigure its shipped browsers to
point to the installed caches.

Web caching has seen deployment in the Internet for two reasons. First, a Web
cache can substantially reduce the response time for a client request, particularly if
the bottleneck bandwidth between the client and the origin server is much less than
the bottleneck bandwidth between the client and the cache. If there is a high-speed
connection between the client and the cache, as there often is, and if the cache has
the requested object, then the cache will be able to deliver the object rapidly to the
client. Second, as we will soon illustrate with an example, Web caches can sub-
stantially reduce traffic on an institution’s access link to the Internet. By reducing
traffic, the institution (for example, a company or a university) does not have to
upgrade bandwidth as quickly, thereby reducing costs. Furthermore, Web caches
can substantially reduce Web traffic in the Internet as a whole, thereby improving
performance for all applications.

To gain a deeper understanding of the benefits of caches, let’s consider an exam-
ple in the context of Figure 2.12. This figure shows two networks—the institutional
network and the rest of the public Internet. The institutional network is a high-speed
LAN. A router in the institutional network and a router in the Internet are connected
by a 15 Mbps link. The origin servers are attached to the Internet but are located all
over the globe. Suppose that the average object size is 1 Mbits and that the average
request rate from the institution’s browsers to the origin servers is 15 requests per
second. Suppose that the HTTP request messages are negligibly small and thus cre-
ate no traffic in the networks or in the access link (from institutional router to Internet
router). Also suppose that the amount of time it takes from when the router on the
Internet side of the access link in Figure 2.12 forwards an HTTP request (within an
IP datagram) until it receives the response (typically within many IP datagrams) is
two seconds on average. Informally, we refer to this last delay as the “Internet delay.”

The total response time—that is, the time from the browser’s request of an
object until its receipt of the object—is the sum of the LAN delay, the access delay
(that is, the delay between the two routers), and the Internet delay. Let’s now do

109

110

CHAPTER 2

e APPLICATION LAYER

Origin servers

Public Internet

15 Mbps access link

Institutional network

Figure 2.12 ¢ Bottleneck between an institutional network and the Internet

a very crude calculation to estimate this delay. The traffic intensity on the LAN
(see Section 1.4.2) is

(15 requests/sec) * (1 Mbits/request)/(100 Mbps) = 0.15

whereas the traffic intensity on the access link (from the Internet router to institution
router) is

(15 requests/sec) * (1 Mbits/request)/(15 Mbps) = 1

A traffic intensity of 0.15 on a LAN typically results in, at most, tens of millisec-
onds of delay; hence, we can neglect the LAN delay. However, as discussed in
Section 1.4.2, as the traffic intensity approaches 1 (as is the case of the access link
in Figure 2.12), the delay on a link becomes very large and grows without bound.
Thus, the average response time to satisfy requests is going to be on the order of
minutes, if not more, which is unacceptable for the institution’s users. Clearly
something must be done.

2.2 e THE WEB AND HTTP

One possible solution is to increase the access rate from 15 Mbps to, say, 100 Mbps.
This will lower the traffic intensity on the access link to 0.15, which translates to neg-
ligible delays between the two routers. In this case, the total response time will roughly
be two seconds, that is, the Internet delay. But this solution also means that the institu-
tion must upgrade its access link from 15 Mbps to 100 Mbps, a costly proposition.

Now consider the alternative solution of not upgrading the access link but
instead installing a Web cache in the institutional network. This solution is illustrated
in Figure 2.13. Hit rates—the fraction of requests that are satisfied by a cache—
typically range from 0.2 to 0.7 in practice. For illustrative purposes, let’s suppose
that the cache provides a hit rate of 0.4 for this institution. Because the clients and
the cache are connected to the same high-speed LAN, 40 percent of the requests will
be satisfied almost immediately, say, within 10 milliseconds, by the cache. Neverthe-
less, the remaining 60 percent of the requests still need to be satisfied by the origin
servers. But with only 60 percent of the requested objects passing through the access
link, the traffic intensity on the access link is reduced from 1.0 to 0.6. Typically, a

Origin servers

Public Internet

15 Mbps access link

Institutional
Institutional network cache

Figure 2.13 ¢ Adding a cache to the institutional network

112

CHAPTER 2

e APPLICATION LAYER

traffic intensity less than 0.8 corresponds to a small delay, say, tens of milliseconds,
on a 15 Mbps link. This delay is negligible compared with the two-second Internet
delay. Given these considerations, average delay therefore is

0.4 -(0.01 seconds) + 0.6-(2.01 seconds)

which is just slightly greater than 1.2 seconds. Thus, this second solution provides an
even lower response time than the first solution, and it doesn’t require the institution
to upgrade its link to the Internet. The institution does, of course, have to purchase
and install a Web cache. But this cost is low—many caches use public-domain soft-
ware that runs on inexpensive PCs.

Through the use of Content Distribution Networks (CDNs), Web caches are
increasingly playing an important role in the Internet. A CDN company installs many
geographically distributed caches throughout the Internet, thereby localizing much of
the traffic. There are shared CDNs (such as Akamai and Limelight) and dedicated CDNs
(such as Google and Netflix). We will discuss CDNs in more detail in Section 2.6.

The Conditional GET

Although caching can reduce user-perceived response times, it introduces a new
problem—the copy of an object residing in the cache may be stale. In other words,
the object housed in the Web server may have been modified since the copy was
cached at the client. Fortunately, HTTP has a mechanism that allows a cache to
verify that its objects are up to date. This mechanism is called the conditional GET
[RFC 7232]. An HTTP request message is a so-called conditional GET message if
(1) the request message uses the GET method and (2) the request message includes an
If-Modified-Since: header line.

To illustrate how the conditional GET operates, let’s walk through an example.
First, on the behalf of a requesting browser, a proxy cache sends a request message
to a Web server:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com

Second, the Web server sends a response message with the requested object to the
cache:

HTTP/1.1 200 OK

Date: Sat, 3 Oct 2015 15:39:29

Server: Apache/1.3.0 (Unix)
Last-Modified: Wed, 9 Sep 2015 09:23:24
Content-Type: image/gif

(data data data data data ...)

2.2 e THE WEB AND HTTP

The cache forwards the object to the requesting browser but also caches the object
locally. Importantly, the cache also stores the last-modified date along with the
object. Third, one week later, another browser requests the same object via the cache,
and the object is still in the cache. Since this object may have been modified at the
Web server in the past week, the cache performs an up-to-date check by issuing a
conditional GET. Specifically, the cache sends:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com
If-modified-since: Wed, 9 Sep 2015 09:23:24

Note that the value of the Tf-modified-since: header line is exactly equal
to the value of the Last-Modified: header line that was sent by the server one
week ago. This conditional GET is telling the server to send the object only if the
object has been modified since the specified date. Suppose the object has not been
modified since 9 Sep 2015 09:23:24. Then, fourth, the Web server sends a response
message to the cache:

HTTP/1.1 304 Not Modified
Date: Sat, 10 Oct 2015 15:39:29
Server: Apache/1.3.0 (Unix)

(empty entity body)

We see that in response to the conditional GET, the Web server still sends a
response message but does not include the requested object in the response message.
Including the requested object would only waste bandwidth and increase user-
perceived response time, particularly if the object is large. Note that this last response
message has 304 Not Modified in the status line, which tells the cache that it
can go ahead and forward its (the proxy cache’s) cached copy of the object to the
requesting browser.

2.2.6 HTTP/2

HTTP/2 [REC 7540], standardized in 2015, was the first new version of HTTP since
HTTP/1.1, which was standardized in 1997. Since standardization, HTTP/2 has
taken off, with over 40% of the top 10 million websites supporting HTTP/2 in 2020
[W3Techs]. Most browsers—including Google Chrome, Internet Explorer, Safari,
Opera, and Firefox—also support HTTP/2.

The primary goals for HTTP/2 are to reduce perceived latency by enabling request
and response multiplexing over a single TCP connection, provide request prioritization
and server push, and provide efficient compression of HTTP header fields. HTTP/2
does not change HTTP methods, status codes, URLSs, or header fields. Instead, HTTP/2
changes how the data is formatted and transported between the client and server.

113

114

CHAPTER 2

e APPLICATION LAYER

To motivate the need for HTTP/2, recall that HTTP/1.1 uses persistent TCP
connections, allowing a Web page to be sent from server to client over a single TCP
connection. By having only one TCP connection per Web page, the number of sock-
ets at the server is reduced and each transported Web page gets a fair share of the
network bandwidth (as discussed below). But developers of Web browsers quickly
discovered that sending all the objects in a Web page over a single TCP connec-
tion has a Head of Line (HOL) blocking problem. To understand HOL blocking,
consider a Web page that includes an HTML base page, a large video clip near the
top of Web page, and many small objects below the video. Further suppose there is
a low-to-medium speed bottleneck link (for example, a low-speed wireless link) on
the path between server and client. Using a single TCP connection, the video clip
will take a long time to pass through the bottleneck link, while the small objects are
delayed as they wait behind the video clip; that is, the video clip at the head of the
line blocks the small objects behind it. HTTP/1.1 browsers typically work around this
problem by opening multiple parallel TCP connections, thereby having objects in the
same web page sent in parallel to the browser. This way, the small objects can arrive
at and be rendered in the browser much faster, thereby reducing user-perceived delay.

TCP congestion control, discussed in detail in Chapter 3, also provides brows-
ers an unintended incentive to use multiple parallel TCP connections rather than a
single persistent connection. Very roughly speaking, TCP congestion control aims to
give each TCP connection sharing a bottleneck link an equal share of the available
bandwidth of that link; so if there are n TCP connections operating over a bottleneck
link, then each connection approximately gets //nth of the bandwidth. By opening
multiple parallel TCP connections to transport a single Web page, the browser can
“cheat” and grab a larger portion of the link bandwidth. Many HTTP/1.1 browsers
open up to six parallel TCP connections not only to circumvent HOL blocking but
also to obtain more bandwidth.

One of the primary goals of HTTP/2 is to get rid of (or at least reduce the num-
ber of) parallel TCP connections for transporting a single Web page. This not only
reduces the number of sockets that need to be open and maintained at servers, but
also allows TCP congestion control to operate as intended. But with only one TCP
connection to transport a Web page, HTTP/2 requires carefully designed mecha-
nisms to avoid HOL blocking.

HTTP/2 Framing

The HTTP/2 solution for HOL blocking is to break each message into small frames, and
interleave the request and response messages on the same TCP connection. To under-
stand this, consider again the example of a Web page consisting of one large video clip
and, say, 8 smaller objects. Thus the server will receive 9 concurrent requests from any
browser wanting to see this Web page. For each of these requests, the server needs to
send 9 competing HTTP response messages to the browser. Suppose all frames are of

2.2 e THE WEB AND HTTP

fixed length, the video clip consists of 1000 frames, and each of the smaller objects
consists of two frames. With frame interleaving, after sending one frame from the
video clip, the first frames of each of the small objects are sent. Then after sending the
second frame of the video clip, the last frames of each of the small objects are sent.
Thus, all of the smaller objects are sent after sending a total of 18 frames. If interleav-
ing were not used, the smaller objects would be sent only after sending 1016 frames.
Thus the HTTP/2 framing mechanism can significantly decrease user-perceived delay.

The ability to break down an HTTP message into independent frames, inter-
leave them, and then reassemble them on the other end is the single most important
enhancement of HTTP/2. The framing is done by the framing sub-layer of the
HTTP/2 protocol. When a server wants to send an HTTP response, the response
is processed by the framing sub-layer, where it is broken down into frames. The
header field of the response becomes one frame, and the body of the message is
broken down into one for more additional frames. The frames of the response are
then interleaved by the framing sub-layer in the server with the frames of other
responses and sent over the single persistent TCP connection. As the frames arrive
at the client, they are first reassembled into the original response messages at the
framing sub-layer and then processed by the browser as usual. Similarly, a client’s
HTTP requests are broken into frames and interleaved.

In addition to breaking down each HTTP message into independent frames, the
framing sublayer also binary encodes the frames. Binary protocols are more efficient
to parse, lead to slightly smaller frames, and are less error-prone.

Response Message Prioritization and Server Pushing

Message prioritization allows developers to customize the relative priority of
requests to better optimize application performance. As we just learned, the fram-
ing sub-layer organizes messages into parallel streams of data destined to the same
requestor. When a client sends concurrent requests to a server, it can prioritize the
responses it is requesting by assigning a weight between 1 and 256 to each message.
The higher number indicates higher priority. Using these weights, the server can
send first the frames for the responses with the highest priority. In addition to this,
the client also states each message’s dependency on other messages by specifying
the ID of the message on which it depends.

Another feature of HTTP/2 is the ability for a server to send multiple responses
for a single client request. That is, in addition to the response to the original request,
the server can push additional objects to the client, without the client having to
request each one. This is possible since the HTML base page indicates the objects
that will be needed to fully render the Web page. So instead of waiting for the
HTTP requests for these objects, the server can analyze the HTML page, identify
the objects that are needed, and send them to the client before receiving explicit
requests for these objects. Server push eliminates the extra latency due to waiting
for the requests.

115

116

CHAPTER 2

e APPLICATION LAYER

HTTP/3

QUIC, discussed in Chapter 3, is a new “transport” protocol that is implemented in
the application layer over the bare-bones UDP protocol. QUIC has several features
that are desirable for HTTP, such as message multiplexing (interleaving), per-stream
flow control, and low-latency connection establishment. HTTP/3 is yet a new HTTP
protocol that is designed to operate over QUIC. As of 2020, HTTP/3 is described
in Internet drafts and has not yet been fully standardized. Many of the HTTP/2 fea-
tures (such as message interleaving) are subsumed by QUIC, allowing for a simpler,
streamlined design for HTTP/3.

2.3 Electronic Mail in the Internet

Electronic mail has been around since the beginning of the Internet. It was the most
popular application when the Internet was in its infancy [Segaller 1998], and has
become more elaborate and powerful over the years. It remains one of the Internet’s
most important and utilized applications.

As with ordinary postal mail, e-mail is an asynchronous communication
medium—people send and read messages when it is convenient for them, without
having to coordinate with other people’s schedules. In contrast with postal mail,
electronic mail is fast, easy to distribute, and inexpensive. Modern e-mail has
many powerful features, including messages with attachments, hyperlinks, HTML-
formatted text, and embedded photos.

In this section, we examine the application-layer protocols that are at the heart
of Internet e-mail. But before we jump into an in-depth discussion of these protocols,
let’s take a high-level view of the Internet mail system and its key components.

Figure 2.14 presents a high-level view of the Internet mail system. We see from
this diagram that it has three major components: user agents, mail servers, and the
Simple Mail Transfer Protocol (SMTP). We now describe each of these compo-
nents in the context of a sender, Alice, sending an e-mail message to a recipient,
Bob. User agents allow users to read, reply to, forward, save, and compose messages.
Examples of user agents for e-mail include Microsoft Outlook, Apple Mail, Web-
based Gmail, the Gmail App running in a smartphone, and so on. When Alice is
finished composing her message, her user agent sends the message to her mail server,
where the message is placed in the mail server’s outgoing message queue. When Bob
wants to read a message, his user agent retrieves the message from his mailbox in his
mail server.

Mail servers form the core of the e-mail infrastructure. Each recipient, such
as Bob, has a mailbox located in one of the mail servers. Bob’s mailbox manages
and maintains the messages that have been sent to him. A typical message starts its
journey in the sender’s user agent, then travels to the sender’s mail server, and then

2.3 o ELECTRONIC MAIL IN THE INTERNET

@ Mail server
ser agent W‘

Mail server

=

SMTP
(V)
k
<

Mail server

N\

=

User agent

[]

m

User agent

User agent

Key:
AL ecioge ece User maibox

Figure 2.14 + A high-level view of the Internet e-mail system

travels to the recipient’s mail server, where it is deposited in the recipient’s mailbox.
When Bob wants to access the messages in his mailbox, the mail server containing
his mailbox authenticates Bob (with his username and password). Alice’s mail server
must also deal with failures in Bob’s mail server. If Alice’s server cannot deliver
mail to Bob’s server, Alice’s server holds the message in a message queue and
attempts to transfer the message later. Reattempts are often done every 30 minutes
or so; if there is no success after several days, the server removes the message and
notifies the sender (Alice) with an e-mail message.

SMTP is the principal application-layer protocol for Internet electronic mail. It
uses the reliable data transfer service of TCP to transfer mail from the sender’s mail
server to the recipient’s mail server. As with most application-layer protocols, SMTP
has two sides: a client side, which executes on the sender’s mail server, and a server
side, which executes on the recipient’s mail server. Both the client and server sides of

W‘ User agent

User agent

117

118

CHAPTER 2

e APPLICATION LAYER

SMTP run on every mail server. When a mail server sends mail to other mail servers,
it acts as an SMTP client. When a mail server receives mail from other mail servers,
it acts as an SMTP server.

2.3.1 SMTP

SMTP, defined in RFC 5321, is at the heart of Internet electronic mail. As men-
tioned above, SMTP transfers messages from senders’ mail servers to the recipients’
mail servers. SMTP is much older than HTTP. (The original SMTP RFC dates back
to 1982, and SMTP was around long before that.) Although SMTP has numerous
wonderful qualities, as evidenced by its ubiquity in the Internet, it is nevertheless
a legacy technology that possesses certain archaic characteristics. For example, it
restricts the body (not just the headers) of all mail messages to simple 7-bit ASCII.
This restriction made sense in the early 1980s when transmission capacity was scarce
and no one was e-mailing large attachments or large image, audio, or video files. But
today, in the multimedia era, the 7-bit ASCII restriction is a bit of a pain—it requires
binary multimedia data to be encoded to ASCII before being sent over SMTP; and it
requires the corresponding ASCII message to be decoded back to binary after SMTP
transport. Recall from Section 2.2 that HTTP does not require multimedia data to be
ASCII encoded before transfer.

To illustrate the basic operation of SMTP, let’s walk through a common sce-
nario. Suppose Alice wants to send Bob a simple ASCII message.

1. Alice invokes her user agent for e-mail, provides Bob’s e-mail address (for
example, bob@someschool.edu), composes a message, and instructs the
user agent to send the message.

2. Alice’s user agent sends the message to her mail server, where it is placed in a
message queue.

3. The client side of SMTP, running on Alice’s mail server, sees the message in the
message queue. It opens a TCP connection to an SMTP server, running on Bob’s
mail server.

4. After some initial SMTP handshaking, the SMTP client sends Alice’s message
into the TCP connection.

5. At Bob’s mail server, the server side of SMTP receives the message. Bob’s mail
server then places the message in Bob’s mailbox.

6. Bob invokes his user agent to read the message at his convenience.

The scenario is summarized in Figure 2.15.

It is important to observe that SMTP does not normally use intermediate mail serv-
ers for sending mail, even when the two mail servers are located at opposite ends of
the world. If Alice’s server is in Hong Kong and Bob’s server is in St. Louis, the TCP
connection is a direct connection between the Hong Kong and St. Louis servers. In

2.3 o ELECTRONIC MAIL IN THE INTERNET

Alice’s Bob's
mail server mail server

wom | IR S
M

Alice’s
agent

Key:
DL Message aueue User mailbox

Figure 2.15 ¢ Alice sends a message to Bob

particular, if Bob’s mail server is down, the message remains in Alice’s mail server and
waits for a new attempt—the message does not get placed in some intermediate mail
server.

Let’s now take a closer look at how SMTP transfers a message from a send-
ing mail server to a receiving mail server. We will see that the SMTP proto-
col has many similarities with protocols that are used for face-to-face human
interaction. First, the client SMTP (running on the sending mail server host) has
TCP establish a connection to port 25 at the server SMTP (running on the receiv-
ing mail server host). If the server is down, the client tries again later. Once
this connection is established, the server and client perform some application-
layer handshaking—just as humans often introduce themselves before trans-
ferring information from one to another, SMTP clients and servers introduce
themselves before transferring information. During this SMTP handshaking phase,
the SMTP client indicates the e-mail address of the sender (the person who gener-
ated the message) and the e-mail address of the recipient. Once the SMTP client and
server have introduced themselves to each other, the client sends the message. SMTP
can count on the reliable data transfer service of TCP to get the message to the server
without errors. The client then repeats this process over the same TCP connection if
it has other messages to send to the server; otherwise, it instructs TCP to close the
connection.

Let’s next take a look at an example transcript of messages exchanged between an
SMTP client (C) and an SMTP server (S). The hostname of the clientis crepes. fr
and the hostname of the server is hamburger . edu. The ASCII text lines prefaced
with C: are exactly the lines the client sends into its TCP socket, and the ASCII text
lines prefaced with S : are exactly the lines the server sends into its TCP socket. The
following transcript begins as soon as the TCP connection is established.

S: 220 hamburger.edu
C: HELO crepes.fr

119

120

CHAPTER 2

e APPLICATION LAYER

250 Hello crepes.fr, pleased to meet you
MAIL FROM: <alice@crepes.fr>

250 alicelcrepes.fr ... Sender ok

RCPT TO: <bob@hamburger.edu>

250 bob@hamburger.edu ... Recipient ok
DATA

354 Enter mail, end with ”.” on a line by itself
Do you like ketchup?
How about pickles?

250 Message accepted for delivery
QUIT
221 hamburger.edu closing connection

N OQOnNnOOOOQOnOnQnOn

In the example above, the client sends a message (“Do you like ketchup?
How about pickles?”) from mail server crepes.fr to mail server
hamburger.edu. As part of the dialogue, the client issued five commands:
HELO (an abbreviation for HELLO), MAIL FROM, RCPT TO, DATA, and QUIT.
These commands are self-explanatory. The client also sends a line consisting of a
single period, which indicates the end of the message to the server. (In ASCII jar-
gon, each message ends with CRLF . CRLF, where CR and LF stand for carriage
return and line feed, respectively.) The server issues replies to each command,
with each reply having a reply code and some (optional) English-language expla-
nation. We mention here that SMTP uses persistent connections: If the sending
mail server has several messages to send to the same receiving mail server, it can
send all of the messages over the same TCP connection. For each message, the
client begins the process with anew MAIL FROM: crepes. fr, designates the
end of message with an isolated period, and issues QUIT only after all messages
have been sent.

It is highly recommended that you use Telnet to carry out a direct dialogue with
an SMTP server. To do this, issue

telnet serverName 25

where serverName is the name of a local mail server. When you do this, you are
simply establishing a TCP connection between your local host and the mail server.
After typing this line, you should immediately receive the 220 reply from the
server. Then issue the SMTP commands HELO, MAIL FROM, RCPT TO, DATA,
CRLF.CRLF, and QUIT at the appropriate times. It is also highly recommended
that you do Programming Assignment 3 at the end of this chapter. In that assign-
ment, you’ll build a simple user agent that implements the client side of SMTP. It
will allow you to send an e-mail message to an arbitrary recipient via a local mail
server.

2.3 o ELECTRONIC MAIL IN THE INTERNET

2.3.2 Mail Message Formats

When Alice writes an ordinary snail-mail letter to Bob, she may include all kinds
of peripheral header information at the top of the letter, such as Bob’s address, her
own return address, and the date. Similarly, when an e-mail message is sent from
one person to another, a header containing peripheral information precedes the
body of the message itself. This peripheral information is contained in a series of
header lines, which are defined in RFC 5322. The header lines and the body of the
message are separated by a blank line (that is, by CRLF). RFC 5322 specifies the
exact format for mail header lines as well as their semantic interpretations. As with
HTTP, each header line contains readable text, consisting of a keyword followed
by a colon followed by a value. Some of the keywords are required and others are
optional. Every header must have a From: header line and a To: header line;
a header may include a Subject: header line as well as other optional header
lines. It is important to note that these header lines are different from the SMTP
commands we studied in Section 2.3.1 (even though they contain some common
words such as “from” and “t0”). The commands in that section were part of the
SMTP handshaking protocol; the header lines examined in this section are part of
the mail message itself.
A typical message header looks like this:

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Searching for the meaning of life.

After the message header, a blank line follows; then the message body (in ASCII)
follows. You should use Telnet to send a message to a mail server that contains
some header lines, including the Subject: header line. To do this, issue telnet
serverName 25, as discussed in Section 2.3.1.

2.3.3 Mail Access Protocols

Once SMTP delivers the message from Alice’s mail server to Bob’s mail server, the
message is placed in Bob’s mailbox. Given that Bob (the recipient) executes his user
agent on his local host (e.g., smartphone or PC), it is natural to consider placing a mail
server on his local host as well. With this approach, Alice’s mail server would dia-
logue directly with Bob’s PC. There is a problem with this approach, however. Recall
that a mail server manages mailboxes and runs the client and server sides of SMTP.
If Bob’s mail server were to reside on his local host, then Bob’s host would have to
remain always on, and connected to the Internet, in order to receive new mail, which
can arrive at any time. This is impractical for many Internet users. Instead, a typical
user runs a user agent on the local host but accesses its mailbox stored on an always-
on shared mail server. This mail server is shared with other users.

121

122

CHAPTER 2

Alice’s
agent

e APPLICATION LAYER

Alice's
mail server

N
Sl\g;l'P SMTP H'Io"rI'P

HTTP IMAP

T
T

Bob's @
mail server

y

DN | T sobs

agent

v

v

Figure 2.16 ¢ E-mail protocols and their communicating entities

Now let’s consider the path an e-mail message takes when it is sent from Alice
to Bob. We just learned that at some point along the path the e-mail message needs to
be deposited in Bob’s mail server. This could be done simply by having Alice’s user
agent send the message directly to Bob’s mail server. However, typically the send-
er’s user agent does not dialogue directly with the recipient’s mail server. Instead, as
shown in Figure 2.16, Alice’s user agent uses SMTP or HTTP to deliver the e-mail
message into her mail server, then Alice’s mail server uses SMTP (as an SMTP cli-
ent) to relay the e-mail message to Bob’s mail server. Why the two-step procedure?
Primarily because without relaying through Alice’s mail server, Alice’s user agent
doesn’t have any recourse to an unreachable destination mail server. By having Alice
first deposit the e-mail in her own mail server, Alice’s mail server can repeatedly try
to send the message to Bob’s mail server, say every 30 minutes, until Bob’s mail
server becomes operational. (And if Alice’s mail server is down, then she has the
recourse of complaining to her system administrator!)

But there is still one missing piece to the puzzle! How does a recipient like Bob,
running a user agent on his local host , obtain his messages, which are sitting in a mail
server? Note that Bob’s user agent can’t use SMTP to obtain the messages because
obtaining the messages is a pull operation, whereas SMTP is a push protocol.

Today, there are two common ways for Bob to retrieve his e-mail from a mail
server. If Bob is using Web-based e-mail or a smartphone app (such as Gmail), then
the user agent will use HTTP to retrieve Bob’s e-mail. This case requires Bob’s mail
server to have an HTTP interface as well as an SMTP interface (to communicate with
Alice’s mail server). The alternative method, typically used with mail clients such
as Microsoft Outlook, is to use the Internet Mail Access Protocol (IMAP) defined
in RFC 3501. Both the HTTP and IMAP approaches allow Bob to manage folders,
maintained in Bob’s mail server. Bob can move messages into the folders he creates,
delete messages, mark messages as important, and so on.

2.4 DNS—The Internet’s Directory Service

We human beings can be identified in many ways. For example, we can be iden-
tified by the names that appear on our birth certificates. We can be identified by
our social security numbers. We can be identified by our driver’s license numbers.

2.4 o DNS—THE INTERNET'S DIRECTORY SERVICE

Although each can be used to identify people, within a given context one identifier
may be more appropriate than another. For example, the computers at the IRS (the
infamous tax-collecting agency in the United States) prefer to use fixed-length social
security numbers rather than birth certificate names. On the other hand, ordinary
people prefer the more mnemonic birth certificate names rather than social security
numbers. (Indeed, can you imagine saying, “Hi. My name is 132-67-9875. Please
meet my husband, 178-87-1146.”)

Just as humans can be identified in many ways, so too can Internet hosts. One
identifier for a host is its hostname. Hostnames—such as www . facebook.com,
www.google.com, gaia.cs.umass.edu—are mnemonic and are therefore
appreciated by humans. However, hostnames provide little, if any, information about
the location within the Internet of the host. (A hostname such as www.eurecom.
fr, which ends with the country code . fr, tells us that the host is probably in
France, but doesn’t say much more.) Furthermore, because hostnames can consist of
variable-length alphanumeric characters, they would be difficult to process by rout-
ers. For these reasons, hosts are also identified by so-called IP addresses.

We discuss IP addresses in some detail in Chapter 4, but it is useful to say a
few brief words about them now. An IP address consists of four bytes and has a
rigid hierarchical structure. An IP address looks like 121.7.106. 83, where each
period separates one of the bytes expressed in decimal notation from 0 to 255. An IP
address is hierarchical because as we scan the address from left to right, we obtain
more and more specific information about where the host is located in the Internet
(that is, within which network, in the network of networks). Similarly, when we scan
a postal address from bottom to top, we obtain more and more specific information
about where the addressee is located.

2.4.1 Services Provided by DNS

We have just seen that there are two ways to identify a host—by a hostname and
by an IP address. People prefer the more mnemonic hostname identifier, while
routers prefer fixed-length, hierarchically structured IP addresses. In order to rec-
oncile these preferences, we need a directory service that translates hostnames to
IP addresses. This is the main task of the Internet’s domain name system (DNS).
The DNS is (1) a distributed database implemented in a hierarchy of DNS servers,
and (2) an application-layer protocol that allows hosts to query the distributed
database. The DNS servers are often UNIX machines running the Berkeley Inter-
net Name Domain (BIND) software [BIND 2020]. The DNS protocol runs over
UDP and uses port 53.

DNS is commonly employed by other application-layer protocols, including
HTTP and SMTP, to translate user-supplied hostnames to IP addresses. As an exam-
ple, consider what happens when a browser (that is, an HTTP client), running on
some user’s host, requests the URL www. someschool.edu/index.html. In
order for the user’s host to be able to send an HTTP request message to the Web

123

124 CHAPTER 2 o

APPLICATION LAYER

server www . someschool . edu, the user’s host must first obtain the IP address of
www . someschool .edu. This is done as follows.

b

The same user machine runs the client side of the DNS application.

The browser extracts the hostname, www . someschool . edu, from the URL
and passes the hostname to the client side of the DNS application.

The DNS client sends a query containing the hostname to a DNS server.

The DNS client eventually receives a reply, which includes the IP address for
the hostname.

Once the browser receives the IP address from DNS, it can initiate a TCP con-
nection to the HTTP server process located at port 80 at that IP address.

We see from this example that DNS adds an additional delay—sometimes
substantial—to the Internet applications that use it. Fortunately, as we discuss below,
the desired IP address is often cached in a “nearby” DNS server, which helps to
reduce DNS network traffic as well as the average DNS delay.

DNS provides a few other important services in addition to translating host-

names to IP addresses:

Host aliasing. A host with a complicated hostname can have one or more
alias names. For example, a hostname such as relayl.west-coast
.enterprise.com could have, say, two aliases such as enterprise.com
and www.enterprise.com. In this case, the hostname relayl
.wWwest-coast.enterprise.comissaid to be a canonical hostname. Alias
hostnames, when present, are typically more mnemonic than canonical host-
names. DNS can be invoked by an application to obtain the canonical hostname
for a supplied alias hostname as well as the IP address of the host.

Mail server aliasing. For obvious reasons, it is highly desirable that e-mail
addresses be mnemonic. For example, if Bob has an account with Yahoo Mail,
Bob’s e-mail address might be as simple as bob@yahoo.com. However, the
hostname of the Yahoo mail server is more complicated and much less mnemonic
than simply yahoo . com (for example, the canonical hostname might be some-
thing like relayl.west-coast.yahoo.com). DNS can be invoked by a
mail application to obtain the canonical hostname for a supplied alias hostname
as well as the IP address of the host. In fact, the MX record (see below) permits a
company’s mail server and Web server to have identical (aliased) hostnames; for
example, a company’s Web server and mail server can both be called enter-
prise.com.

Load distribution. DNS is also used to perform load distribution among repli-
cated servers, such as replicated Web servers. Busy sites, such as cnn . com, are
replicated over multiple servers, with each server running on a different end sys-
tem and each having a different IP address. For replicated Web servers, a set of IP

2.4 o DNS—THE INTERNET'S DIRECTORY SERVICE

PRINCIPLES IN PRACTICE

DNS: CRITICAL NETWORK FUNCTIONS VIA THE CLIENT-SERVER PARADIGM

Like HTTP, FTP, and SMTP, the DNS protocol is an application-layer protocol since it

(1) runs between communicating end systems using the clientserver paradigm and

(2) relies on an underlying end-to-end transport protocol to transfer DNS messages between
communicating end systems. In another sense, however, the role of the DNS is quite differ-
ent from Web, file transfer, and e-mail applications. Unlike these applications, the DNS is
not an application with which a user directly interacts. Instead, the DNS provides a core
Internet function—namely, translating hostnames to their underlying IP addresses, for user
applications and other software in the Internet. We noted in Section 1.2 that much of the
complexity in the Internet architecture is located at the “edges” of the network. The DNS,
which implements the critical name-to-address translation process using clients and servers
located at the edge of the network, is yet another example of that design philosophy.

addresses is thus associated with one alias hostname. The DNS database contains
this set of IP addresses. When clients make a DNS query for a name mapped to a
set of addresses, the server responds with the entire set of IP addresses, but rotates
the ordering of the addresses within each reply. Because a client typically sends
its HTTP request message to the IP address that is listed first in the set, DNS rota-
tion distributes the traffic among the replicated servers. DNS rotation is also used
for e-mail so that multiple mail servers can have the same alias name. Also, con-
tent distribution companies such as Akamai have used DNS in more sophisticated
ways [Dilley 2002] to provide Web content distribution (see Section 2.6.3).

The DNS is specified in RFC 1034 and RFC 1035, and updated in several addi-
tional RFCs. It is a complex system, and we only touch upon key aspects of its
operation here. The interested reader is referred to these RFCs and the book by Albitz
and Liu [Albitz 1993]; see also the retrospective paper [Mockapetris 1988], which
provides a nice description of the what and why of DNS, and [Mockapetris 2005].

2.4.2 Overview of How DNS Works

We now present a high-level overview of how DNS works. Our discussion will focus
on the hostname-to-IP-address translation service.

Suppose that some application (such as a Web browser or a mail client) running
in a user’s host needs to translate a hostname to an IP address. The application will
invoke the client side of DNS, specifying the hostname that needs to be translated.
(On many UNIX-based machines, gethostbyname () is the function call that
an application calls in order to perform the translation.) DNS in the user’s host then

125

126

CHAPTER 2

e APPLICATION LAYER

takes over, sending a query message into the network. All DNS query and reply mes-
sages are sent within UDP datagrams to port 53. After a delay, ranging from millisec-
onds to seconds, DNS in the user’s host receives a DNS reply message that provides
the desired mapping. This mapping is then passed to the invoking application. Thus,
from the perspective of the invoking application in the user’s host, DNS is a black
box providing a simple, straightforward translation service. But in fact, the black box
that implements the service is complex, consisting of a large number of DNS servers
distributed around the globe, as well as an application-layer protocol that specifies
how the DNS servers and querying hosts communicate.

A simple design for DNS would have one DNS server that contains all the map-
pings. In this centralized design, clients simply direct all queries to the single DNS
server, and the DNS server responds directly to the querying clients. Although the
simplicity of this design is attractive, it is inappropriate for today’s Internet, with its
vast (and growing) number of hosts. The problems with a centralized design include:

* A single point of failure. If the DNS server crashes, so does the entire Internet!

* Traffic volume. A single DNS server would have to handle all DNS queries (for
all the HTTP requests and e-mail messages generated from hundreds of millions
of hosts).

* Distant centralized database. A single DNS server cannot be “close to” all the
querying clients. If we put the single DNS server in New York City, then all que-
ries from Australia must travel to the other side of the globe, perhaps over slow
and congested links. This can lead to significant delays.

* Maintenance. The single DNS server would have to keep records for all Internet
hosts. Not only would this centralized database be huge, but it would have to be
updated frequently to account for every new host.

In summary, a centralized database in a single DNS server simply doesn’t scale.
Consequently, the DNS is distributed by design. In fact, the DNS is a wonderful
example of how a distributed database can be implemented in the Internet.

A Distributed, Hierarchical Database

In order to deal with the issue of scale, the DNS uses a large number of servers,
organized in a hierarchical fashion and distributed around the world. No single DNS
server has all of the mappings for all of the hosts in the Internet. Instead, the map-
pings are distributed across the DNS servers. To a first approximation, there are three
classes of DNS servers—root DNS servers, top-level domain (TLD) DNS servers,
and authoritative DNS servers—organized in a hierarchy as shown in Figure 2.17.
To understand how these three classes of servers interact, suppose a DNS client
wants to determine the IP address for the hostname www . amazon . com. To a first
approximation, the following events will take place. The client first contacts one of

2.4 o DNS—THE INTERNET'S DIRECTORY SERVICE

Root DNS servers

com DNS servers org DNS servers edu DNS servers
facebook.com amazon.com pbs.org nyu.edu umass.edu
DNS servers DNS servers DNS servers DNS servers DNS servers

Figure 2.17 + Portion of the hierarchy of DNS servers

the root servers, which returns IP addresses for TLD servers for the top-level domain
com. The client then contacts one of these TLD servers, which returns the IP address
of an authoritative server for amazon . com. Finally, the client contacts one of the
authoritative servers for amazon . com, which returns the IP address for the host-
name www . amazon.com. We’ll soon examine this DNS lookup process in more
detail. But let’s first take a closer look at these three classes of DNS servers:

* Root DNS servers. There are more than 1000 root servers instances scattered all
over the world, as shown in Figure 2.18. These root servers are copies of 13 dif-
ferent root servers, managed by 12 different organizations, and coordinated
through the Internet Assigned Numbers Authority [TANA 2020]. The full list
of root name servers, along with the organizations that manage them and their
IP addresses can be found at [Root Servers 2020]. Root name servers provide
the IP addresses of the TLD servers.

e Top-level domain (TLD) servers. For each of the top-level domains—top-level
domains such as com, org, net, edu, and gov, and all of the country top-level
domains such as uk, fr, ca, and jp—there is TLD server (or server cluster). The
company Verisign Global Registry Services maintains the TLD servers for the
com top-level domain, and the company Educause maintains the TLD servers for
the edu top-level domain. The network infrastructure supporting a TLD can be
large and complex; see [Osterweil 2012] for a nice overview of the Verisign net-
work. See [TLD list 2020] for a list of all top-level domains. TLD servers provide
the IP addresses for authoritative DNS servers.

* Authoritative DNS servers. Every organization with publicly accessible hosts
(such as Web servers and mail servers) on the Internet must provide publicly
accessible DNS records that map the names of those hosts to IP addresses. An
organization’s authoritative DNS server houses these DNS records. An organi-
zation can choose to implement its own authoritative DNS server to hold these
records; alternatively, the organization can pay to have these records stored in an

127

128

CHAPTER 2

[] 0 Servers
[]1-10 Servers
[11-20 Servers
B 21+ Servers

e APPLICATION LAYER

Figure 2.18 ¢ DNS root servers in 2020

authoritative DNS server of some service provider. Most universities and large
companies implement and maintain their own primary and secondary (backup)
authoritative DNS server.

The root, TLD, and authoritative DNS servers all belong to the hierarchy of
DNS servers, as shown in Figure 2.17. There is another important type of DNS
server called the local DNS server. A local DNS server does not strictly belong to
the hierarchy of servers but is nevertheless central to the DNS architecture. Each
ISP—such as a residential ISP or an institutional ISP—has a local DNS server (also
called a default name server). When a host connects to an ISP, the ISP provides
the host with the IP addresses of one or more of its local DNS servers (typically
through DHCP, which is discussed in Chapter 4). You can easily determine the IP
address of your local DNS server by accessing network status windows in Win-
dows or UNIX. A host’s local DNS server is typically “close to” the host. For an
institutional ISP, the local DNS server may be on the same LAN as the host; for a
residential ISP, it is typically separated from the host by no more than a few rout-
ers. When a host makes a DNS query, the query is sent to the local DNS server,
which acts a proxy, forwarding the query into the DNS server hierarchy, as we’ll
discuss in more detail below.

Let’s take a look at a simple example. Suppose the host cse . nyu. edu desires
the IP address of gaia.cs.umass.edu. Also suppose that NYU’s local DNS
server for cse.nyu.edu is called dns.nyu.edu and that an authoritative DNS
server for gaia.cs.umass.edu is called dns.umass.edu. As shown in

2.4 o DNS—THE INTERNET'S DIRECTORY SERVICE

Root DNS server

»

0

()

A

LR

——
Local DNS server TLD DNS server
dns.nyu.edu

i N
v

a

Authoritative DNS server

‘_‘é dns.umass.edu

B

Requesting host
cse.nyu.edu

gaia.cs.umass.edu

Figure 2.19 + Interaction of the various DNS servers

Figure 2.19, the host cse.nyu.edu first sends a DNS query message to its local
DNS server, dns.nyu.edu. The query message contains the hostname to be trans-
lated, namely, gaia.cs.umass.edu. The local DNS server forwards the query
message to a root DNS server. The root DNS server takes note of the edu suffix and
returns to the local DNS server a list of IP addresses for TLD servers responsible
for edu. The local DNS server then resends the query message to one of these TLD
servers. The TLD server takes note of the umass.edu suffix and responds with
the IP address of the authoritative DNS server for the University of Massachusetts,
namely, dns.umass.edu. Finally, the local DNS server resends the query mes-
sage directly to dns.umass.edu, which responds with the IP address of gaia
.cs.umass.edu. Note that in this example, in order to obtain the mapping for one
hostname, eight DNS messages were sent: four query messages and four reply mes-
sages! We’ll soon see how DNS caching reduces this query traffic.

Our previous example assumed that the TLD server knows the authoritative DNS
server for the hostname. In general, this is not always true. Instead, the TLD server

129

130

CHAPTER 2

e APPLICATION LAYER

may know only of an intermediate DNS server, which in turn knows the authorita-
tive DNS server for the hostname. For example, suppose again that the University of
Massachusetts has a DNS server for the university, called dns.umass.edu. Also
suppose that each of the departments at the University of Massachusetts has its own
DNS server, and that each departmental DNS server is authoritative for all hosts in
the department. In this case, when the intermediate DNS server, dns .umass . edu,
receives a query for a host with a hostname ending with cs . umass . edu, it returns
to dns.nyu.edu the IP address of dns. cs.umass.edu, which is authoritative
for all hostnames ending with cs.umass.edu. The local DNS server dns.nyu
. edu then sends the query to the authoritative DNS server, which returns the desired
mapping to the local DNS server, which in turn returns the mapping to the requesting
host. In this case, a total of 10 DNS messages are sent!

The example shown in Figure 2.19 makes use of both recursive queries and
iterative queries. The query sent from cse.nyu.edu to dns.nyu.edu is a
recursive query, since the query asks dns.nyu.edu to obtain the mapping on its
behalf. However, the subsequent three queries are iterative since all of the replies
are directly returned to dns.nyu.edu. In theory, any DNS query can be itera-
tive or recursive. For example, Figure 2.20 shows a DNS query chain for which all
of the queries are recursive. In practice, the queries typically follow the pattern in
Figure 2.19: The query from the requesting host to the local DNS server is recursive,
and the remaining queries are iterative.

DNS Caching

Our discussion thus far has ignored DNS caching, a critically important feature
of the DNS system. In truth, DNS extensively exploits DNS caching in order to
improve the delay performance and to reduce the number of DNS messages
ricocheting around the Internet. The idea behind DNS caching is very simple. In a
query chain, when a DNS server receives a DNS reply (containing, for example, a
mapping from a hostname to an IP address), it can cache the mapping in its local
memory. For example, in Figure 2.19, each time the local DNS server dns.nyu.edu
receives a reply from some DNS server, it can cache any of the information contained
in the reply. If a hostname/IP address pair is cached in a DNS server and another
query arrives to the DNS server for the same hostname, the DNS server can provide
the desired IP address, even if it is not authoritative for the hostname. Because hosts
and mappings between hostnames and IP addresses are by no means permanent,
DNS servers discard cached information after a period of time (often set to two days).

As an example, suppose that a host apricot.nyu.edu queries dns.nyu.edu
for the IP address for the hostname cnn . com. Furthermore, suppose that a few hours
later, another NYU host, say, kiwi.nyu.edu, also queries dns.nyu.edu
with the same hostname. Because of caching, the local DNS server will be able
to immediately return the IP address of cnn.com to this second requesting
host without having to query any other DNS servers. A local DNS server can

2.4 o DNS—THE INTERNET'S DIRECTORY SERVICE 131

Root DNS server

-
A

- E
- -
Local DNS server TLD DNS server

dns.nyu.edu

= =

Authoritative DNS server
dns.umass.edu

B

gaia.cs.umass.edu

Requesting host
cse.nyu.edu

Figure 2.20 ¢ Recursive queries in DNS

also cache the IP addresses of TLD servers, thereby allowing the local DNS server
to bypass the root DNS servers in a query chain. In fact, because of caching, root
servers are bypassed for all but a very small fraction of DNS queries.

2.4.3 DNS Records and Messages

The DNS servers that together implement the DNS distributed database store
resource records (RRs), including RRs that provide hostname-to-IP address map-
pings. Each DNS reply message carries one or more resource records. In this and
the following subsection, we provide a brief overview of DNS resource records and
messages; more details can be found in [Albitz 1993] or in the DNS RFCs [RFC
1034; RFC 1035].

132

CHAPTER 2

e APPLICATION LAYER

A resource record is a four-tuple that contains the following fields:
(Name, Value, Type, TTL)

TTL is the time to live of the resource record; it determines when a resource should
be removed from a cache. In the example records given below, we ignore the TTL
field. The meaning of Name and Value depend on Type:

e If Type=A, then Name is a hostname and Value is the IP address for the host-
name. Thus, a Type A record provides the standard hostname-to-IP address map-
ping. As an example, (relayl.bar.foo.com, 145.37.93.126, A)is
a Type A record.

e If Type=NS, then Name is a domain (such as foo. com) and Value is the host-
name of an authoritative DNS server that knows how to obtain the IP addresses
for hosts in the domain. This record is used to route DNS queries further along in
the query chain. As an example, (foo.com, dns.foo.com, NS) isaType
NS record.

* If Type=CNAME, then Value is a canonical hostname for the alias hostname
Name. This record can provide querying hosts the canonical name for a host-
name. As an example, (foo.com, relayl.bar.foo.com, CNAME) isa
CNAME record.

* If Type=MX, then Value is the canonical name of a mail server that has an alias
hostname Name. As an example, (foo.com, mail.bar.foo.com, MX)
is an MX record. MX records allow the hostnames of mail servers to have simple
aliases. Note that by using the MX record, a company can have the same aliased
name for its mail server and for one of its other servers (such as its Web server).
To obtain the canonical name for the mail server, a DNS client would query for
an MX record; to obtain the canonical name for the other server, the DNS client
would query for the CNAME record.

If a DNS server is authoritative for a particular hostname, then the DNS server
will contain a Type A record for the hostname. (Even if the DNS server is not author-
itative, it may contain a Type A record in its cache.) If a server is not authoritative
for a hostname, then the server will contain a Type NS record for the domain that
includes the hostname; it will also contain a Type A record that provides the IP address
of the DNS server in the Value field of the NS record. As an example, suppose an
edu TLD server is not authoritative for the host gaia.cs.umass.edu. Then this
server will contain a record for a domain that includes the host gaia.cs.umass
.edu, for example, (umass.edu, dns.umass.edu, NS). The edu
TLD server would also contain a Type A record, which maps the DNS server
dns.umass.edu to an IP address, for example, (dns.umass.edu,
128.119.40.111, A).

2.4 o DNS—THE INTERNET'S DIRECTORY SERVICE

DNS Messages

Earlier in this section, we referred to DNS query and reply messages. These are the
only two kinds of DNS messages. Furthermore, both query and reply messages have
the same format, as shown in Figure 2.21.The semantics of the various fields in a
DNS message are as follows:

e The first 12 bytes is the header section, which has a number of fields. The first
field is a 16-bit number that identifies the query. This identifier is copied into the
reply message to a query, allowing the client to match received replies with sent
queries. There are a number of flags in the flag field. A 1-bit query/reply flag indi-
cates whether the message is a query (0) or a reply (1). A 1-bit authoritative flag is
set in a reply message when a DNS server is an authoritative server for a queried
name. A 1-bit recursion-desired flag is set when a client (host or DNS server)
desires that the DNS server perform recursion when it doesn’t have the record. A
1-bit recursion-available field is set in a reply if the DNS server supports recur-
sion. In the header, there are also four number-of fields. These fields indicate the
number of occurrences of the four types of data sections that follow the header.

* The question section contains information about the query that is being made.
This section includes (1) a name field that contains the name that is being que-
ried, and (2) a type field that indicates the type of question being asked about the
name—for example, a host address associated with a name (Type A) or the mail
server for a name (Type MX).

Identification Flags
Number of questions Number of answer RRs 12 bytes
Number of authority RRs Number of additional RRs
Questions |

(variable number of questions) ~Name, type fields for
a query
Answers

. —RRs in response to quer
(variable number of resource records) P query

: Authority I-Records for
(variable number of resource records)] authoritative servers
Additional information |_Additional “helpful”

(variable number of resource records) info that may be used

Figure 2.21 ¢ DNS message format

133

134

CHAPTER 2

e APPLICATION LAYER

* In a reply from a DNS server, the answer section contains the resource records for
the name that was originally queried. Recall that in each resource record there is the
Type (for example, A, NS, CNAME, and MX), the Value, and the TTL. A reply can
return multiple RRs in the answer, since a hostname can have multiple IP addresses
(for example, for replicated Web servers, as discussed earlier in this section).

* The authority section contains records of other authoritative servers.

* The additional section contains other helpful records. For example, the answer
field in a reply to an MX query contains a resource record providing the canoni-
cal hostname of a mail server. The additional section contains a Type A record
providing the IP address for the canonical hostname of the mail server.

How would you like to send a DNS query message directly from the host you’re
working on to some DNS server? This can easily be done with the nslookup program,
which is available from most Windows and UNIX platforms. For example, from a Win-
dows host, open the Command Prompt and invoke the nslookup program by simply typ-
ing “nslookup.” After invoking nslookup, you can send a DNS query to any DNS server
(root, TLD, or authoritative). After receiving the reply message from the DNS server,
nslookup will display the records included in the reply (in a human-readable format). As
an alternative to running nslookup from your own host, you can visit one of many Web
sites that allow you to remotely employ nslookup. (Just type “nslookup” into a search
engine and you’ll be brought to one of these sites.) The DNS Wireshark lab at the end of
this chapter will allow you to explore the DNS in much more detail.

Inserting Records into the DNS Database

The discussion above focused on how records are retrieved from the DNS database.
You might be wondering how records get into the database in the first place. Let’s look
at how this is done in the context of a specific example. Suppose you have just created
an exciting new startup company called Network Utopia. The first thing you’ll surely
want to do is register the domain name networkutopia . com at a registrar. A reg-
istrar is a commercial entity that verifies the uniqueness of the domain name, enters
the domain name into the DNS database (as discussed below), and collects a small fee
from you for its services. Prior to 1999, a single registrar, Network Solutions, had a
monopoly on domain name registration for com, net, and org domains. But now
there are many registrars competing for customers, and the Internet Corporation for
Assigned Names and Numbers (ICANN) accredits the various registrars. A complete
list of accredited registrars is available at http: //www.internic.net.

When you register the domain name networkutopia.com with some reg-
istrar, you also need to provide the registrar with the names and IP addresses of
your primary and secondary authoritative DNS servers. Suppose the names and IP
addresses are dnsl.networkutopia.com, dns2.networkutopia.com,
212.2.212.1,and 212.212.212.2. For each of these two authoritative DNS

2.4 o DNS—THE INTERNET'S DIRECTORY SERVICE

FOCUS ON SECURITY

DNS VULNERABILITIES

We have seen that DNS is a critical component of the Internet infrastructure, with
many important services—including the Web and e-mail—simply incapable of func-
tioning without it. We therefore naturally ask, how can DNS be attacked? Is DNS a
sitting duck, waiting to be knocked out of service, while taking most Internet applica-
tions down with it2

The first type of attack that comes to mind is a DDoS bandwidth-flooding attack
(see Section 1.6) against DNS servers. For example, an attacker could attempt to
send to each DNS root server a deluge of packets, so many that the majority of
legitimate DNS queries never get answered. Such a large-scale DDoS attack against
DNS root servers actually took place on October 21, 2002. In this attack, the attack-
ers leveraged a botnet to send truck loads of ICMP ping messages to each of the
13 DNS root IP addresses. (ICMP messages are discussed in Section 5.6. For now,
it suffices to know that ICMP packets are special types of IP datagrams.) Fortunately,
this large-scale attack caused minimal damage, having litlle or no impact on users'’
Internet experience. The attackers did succeed at directing a deluge of packets at the
root servers. But many of the DNS root servers were protected by packet filters, con-
figured to always block all ICMP ping messages directed at the root servers. These
protected servers were thus spared and functioned as normal. Furthermore, most local
DNS servers cache the IP addresses of top-level-domain servers, allowing the query
process to often bypass the DNS root servers.

A potentially more effective DDoS attack against DNS is send a deluge of DNS
queries to fop-level-domain servers, for example, to top-level-domain servers that
handle the .com domain. It is harder to filter DNS queries directed to DNS servers;
and top-level-domain servers are not as easily bypassed as are root servers. Such an
attack took place against the top-level-domain service provider Dyn on October 21,
2016. This DDo$S attack was accomplished through a large number of DNS lookup
requests from a botnet consisting of about one hundred thousand loT devices such as
printers, IP cameras, residential gateways and baby monitors that had been infected
with Mirai malware. For almost a full day, Amazon, Twitter, Netflix, Github and
Spotify were disturbed.

DNS could potentially be attacked in other ways. In a man-in-the-middle attack,
the attacker intercepts queries from hosts and returns bogus replies. In the DNS poi-
soning attack, the attacker sends bogus replies to a DNS server, tricking the server
info accepting bogus records info its cache. Either of these attacks could be used,
for example, to redirect an unsuspecting Web user to the attacker’s Web site. The
DNS Security Extensions (DNSSEC [Gieben 2004; RFC 4033] have been designed
and deployed to protect against such exploits. DNSSEC, a secured version of DNS,
addresses many of these possible attacks and is gaining popularity in the Internet.

135

136

CHAPTER 2

e APPLICATION LAYER

servers, the registrar would then make sure that a Type NS and a Type A record are
entered into the TLD com servers. Specifically, for the primary authoritative server
for networkutopia.com, the registrar would insert the following two resource
records into the DNS system:

(networkutopia.com, dnsl.networkutopia.com, NS)
(dnsl.networkutopia.com, 212.212.212.1, A)

You’ll also have to make sure that the Type A resource record for your Web server
www.networkutopia.com and the Type MX resource record for your mail
server mail.networkutopia.com are entered into your authoritative DNS
servers. (Until recently, the contents of each DNS server were configured statically,
for example, from a configuration file created by a system manager. More recently,
an UPDATE option has been added to the DNS protocol to allow data to be dynami-
cally added or deleted from the database via DNS messages. [RFC 2136] and [RFC
3007] specify DNS dynamic updates.)

Once all of these steps are completed, people will be able to visit your Web site
and send e-mail to the employees at your company. Let’s conclude our discussion of
DNS by verifying that this statement is true. This verification also helps to solidify
what we have learned about DNS. Suppose Alice in Australia wants to view the Web
page www.networkutopia.com. As discussed earlier, her host will first send a
DNS query to her local DNS server. The local DNS server will then contact a TLD
com server. (The local DNS server will also have to contact a root DNS server if the
address of a TLD com server is not cached.) This TLD server contains the Type NS
and Type A resource records listed above, because the registrar had these resource
records inserted into all of the TLD com servers. The TLD com server sends a reply
to Alice’s local DNS server, with the reply containing the two resource records. The
local DNS server then sends a DNS query to 212.212.212. 1, asking for the Type
A record corresponding to www . networkutopia.com. This record provides the
IP address of the desired Web server, say, 212.212.71 .4, which the local DNS
server passes back to Alice’s host. Alice’s browser can now initiate a TCP connec-
tion to the host 212.212.71.4 and send an HTTP request over the connection.
Whew! There’s a lot more going on than what meets the eye when one surfs the Web!

2.5 Peer-to-Peer File Distribution

The applications described in this chapter thus far—including the Web, e-mail, and
DNS—all employ client-server architectures with significant reliance on always-on
infrastructure servers. Recall from Section 2.1.1 that with a P2P architecture, there
is minimal (or no) reliance on always-on infrastructure servers. Instead, pairs of
intermittently connected hosts, called peers, communicate directly with each other.
The peers are not owned by a service provider, but are instead PCs, laptops, and
smartpones controlled by users.

2.5 e PEER-TO-PEER FILE DISTRIBUTION 137

In this section, we consider a very natural P2P application, namely, distributing a
large file from a single server to a large number of hosts (called peers). The file might
be a new version of the Linux operating system, a software patch for an existing
operating system or an MPEG video file. In client-server file distribution, the server
must send a copy of the file to each of the peers—placing an enormous burden on the
server and consuming a large amount of server bandwidth. In P2P file distribution,
each peer can redistribute any portion of the file it has received to any other peers,
thereby assisting the server in the distribution process. As of 2020, the most popular
P2P file distribution protocol is BitTorrent. Originally developed by Bram Cohen,
there are now many different independent BitTorrent clients conforming to the Bit-
Torrent protocol, just as there are a number of Web browser clients that conform to
the HTTP protocol. In this subsection, we first examine the self-scalability of P2P
architectures in the context of file distribution. We then describe BitTorrent in some
detail, highlighting its most important characteristics and features.

Scalability of P2P Architectures

To compare client-server architectures with peer-to-peer architectures, and illustrate
the inherent self-scalability of P2P, we now consider a simple quantitative model
for distributing a file to a fixed set of peers for both architecture types. As shown
in Figure 2.22, the server and the peers are connected to the Internet with access

.. B B
5§ & //!-

d %
«N
@ — > Internet

Figure 2.22 ¢ An illustrative file distribution problem

138

CHAPTER 2

e APPLICATION LAYER

links. Denote the upload rate of the server’s access link by u,, the upload rate of the
ith peer’s access link by u;, and the download rate of the ith peer’s access link by
d;. Also denote the size of the file to be distributed (in bits) by F and the number of
peers that want to obtain a copy of the file by N. The distribution time is the time it
takes to get a copy of the file to all N peers. In our analysis of the distribution time
below, for both client-server and P2P architectures, we make the simplifying (and
generally accurate [Akella 2003]) assumption that the Internet core has abundant
bandwidth, implying that all of the bottlenecks are in access networks. We also sup-
pose that the server and clients are not participating in any other network applica-
tions, so that all of their upload and download access bandwidth can be fully devoted
to distributing this file.

Let’s first determine the distribution time for the client-server architecture,
which we denote by D,,. In the client-server architecture, none of the peers aids in
distributing the file. We make the following observations:

* The server must transmit one copy of the file to each of the N peers. Thus, the
server must transmit NF bits. Since the server’s upload rate is u,, the time to dis-
tribute the file must be at least NF/u,.

* Let d,;, denote the download rate of the peer with the lowest download rate, that
is, dyyin = min{d,, d,, . . ., dy}. The peer with the lowest download rate cannot
obtain all F bits of the file in less than F/d,;, seconds. Thus, the minimum distri-
bution time is at least F/d,;,.

Putting these two observations together, we obtain

{NF F}
D., = max - .

b
Uy dmin

This provides a lower bound on the minimum distribution time for the client-server
architecture. In the homework problems, you will be asked to show that the server
can schedule its transmissions so that the lower bound is actually achieved. So let’s
take this lower bound provided above as the actual distribution time, that is,

NE F} 2.1)

9
Uy dmin

D, = max{

We see from Equation 2.1 that for N large enough, the client-server distribution time
is given by NF/u,. Thus, the distribution time increases linearly with the number of
peers N. So, for example, if the number of peers from one week to the next increases
a thousand-fold from a thousand to a million, the time required to distribute the file
to all peers increases by 1,000.

2.5 e PEER-TO-PEER FILE DISTRIBUTION

Let’s now go through a similar analysis for the P2P architecture, where each peer
can assist the server in distributing the file. In particular, when a peer receives some
file data, it can use its own upload capacity to redistribute the data to other peers. Cal-
culating the distribution time for the P2P architecture is somewhat more complicated
than for the client-server architecture, since the distribution time depends on how
each peer distributes portions of the file to the other peers. Nevertheless, a simple
expression for the minimal distribution time can be obtained [Kumar 2006]. To this
end, we first make the following observations:

* At the beginning of the distribution, only the server has the file. To get this file
into the community of peers, the server must send each bit of the file at least once
into its access link. Thus, the minimum distribution time is at least F/u,. (Unlike
the client-server scheme, a bit sent once by the server may not have to be sent by
the server again, as the peers may redistribute the bit among themselves.)

* As with the client-server architecture, the peer with the lowest download rate
cannot obtain all F bits of the file in less than F/d,;, seconds. Thus, the minimum
distribution time is at least F/d,,.

» Finally, observe that the total upload capacity of the system as a whole is equal
to the upload rate of the server plus the upload rates of each of the individual
peers, that is, u, = U, + u; + - - - + uy. The system must deliver (upload) F
bits to each of the N peers, thus delivering a total of NF bits. This cannot be done
at a rate faster than u,. Thus, the minimum distribution time is also at least
NF/(ug + uy; + -+ + uy).

Putting these three observations together, we obtain the minimum distribution
time for P2P, denoted by Dy,

FF_NF
Dpyp = max § Uy dpiy’ N (2.2)

Equation 2.2 provides a lower bound for the minimum distribution time for the P2P
architecture. It turns out that if we imagine that each peer can redistribute a bit as
soon as it receives the bit, then there is a redistribution scheme that actually achieves
this lower bound [Kumar 2006]. (We will prove a special case of this result in the
homework.) In reality, where chunks of the file are redistributed rather than indi-
vidual bits, Equation 2.2 serves as a good approximation of the actual minimum
distribution time. Thus, let’s take the lower bound provided by Equation 2.2 as the
actual minimum distribution time, that is,

F F _NF
Dpyp = max Uy dyin’ X (2.3)

139

140

CHAPTER 2

e APPLICATION LAYER

3.5+

3.0+

Client-Server

2.5
2.0
1.5

1.0

Minimum distribution time

0.5

0 5 10 15 20 25 30 35

Figure 2.23 + Distribution time for P2P and client-server architectures

Figure 2.23 compares the minimum distribution time for the client-server and
P2P architectures assuming that all peers have the same upload rate u. In Figure 2.23,
we have set F/u = 1 hour, u;, = 10u, and d,;, = u,. Thus, a peer can transmit the
entire file in one hour, the server transmission rate is 10 times the peer upload rate,
and (for simplicity) the peer download rates are set large enough so as not to have
an effect. We see from Figure 2.23 that for the client-server architecture, the distri-
bution time increases linearly and without bound as the number of peers increases.
However, for the P2P architecture, the minimal distribution time is not only always
less than the distribution time of the client-server architecture; it is also less than one
hour for any number of peers N. Thus, applications with the P2P architecture can be
self-scaling. This scalability is a direct consequence of peers being redistributors as
well as consumers of bits.

BitTorrent

BitTorrent is a popular P2P protocol for file distribution [Chao 2011]. In BitTorrent
lingo, the collection of all peers participating in the distribution of a particular file is
called a torrent. Peers in a torrent download equal-size chunks of the file from one
another, with a typical chunk size of 256 KBytes. When a peer first joins a torrent, it
has no chunks. Over time it accumulates more and more chunks. While it downloads
chunks it also uploads chunks to other peers. Once a peer has acquired the entire
file, it may (selfishly) leave the torrent, or (altruistically) remain in the torrent and
continue to upload chunks to other peers. Also, any peer may leave the torrent at any
time with only a subset of chunks, and later rejoin the torrent.

2.5 e PEER-TO-PEER FILE DISTRIBUTION

Tracker Peer

™
™

Obtain
list of
peers

B

Figure 2.24 + File distribution with BifTorrent

Let’s now take a closer look at how BitTorrent operates. Since BitTorrent is
a rather complicated protocol and system, we’ll only describe its most important
mechanisms, sweeping some of the details under the rug; this will allow us to see
the forest through the trees. Each torrent has an infrastructure node called a tracker.
When a peer joins a torrent, it registers itself with the tracker and periodically informs
the tracker that it is still in the torrent. In this manner, the tracker keeps track of the
peers that are participating in the torrent. A given torrent may have fewer than ten or
more than a thousand peers participating at any instant of time.

As shown in Figure 2.24, when a new peer, Alice, joins the torrent, the tracker
randomly selects a subset of peers (for concreteness, say 50) from the set of partici-
pating peers, and sends the IP addresses of these 50 peers to Alice. Possessing this
list of peers, Alice attempts to establish concurrent TCP connections with all the
peers on this list. Let’s call all the peers with which Alice succeeds in establishing a
TCP connection “neighboring peers.” (In Figure 2.24, Alice is shown to have only
three neighboring peers. Normally, she would have many more.) As time evolves,
some of these peers may leave and other peers (outside the initial 50) may attempt to
establish TCP connections with Alice. So a peer’s neighboring peers will fluctuate
over time.

141

142

CHAPTER 2

e APPLICATION LAYER

At any given time, each peer will have a subset of chunks from the file, with dif-
ferent peers having different subsets. Periodically, Alice will ask each of her neigh-
boring peers (over the TCP connections) for the list of the chunks they have. If Alice
has L different neighbors, she will obtain L lists of chunks. With this knowledge,
Alice will issue requests (again over the TCP connections) for chunks she currently
does not have.

So at any given instant of time, Alice will have a subset of chunks and will know
which chunks her neighbors have. With this information, Alice will have two impor-
tant decisions to make. First, which chunks should she request first from her neigh-
bors? And second, to which of her neighbors should she send requested chunks? In
deciding which chunks to request, Alice uses a technique called rarest first. The
idea is to determine, from among the chunks she does not have, the chunks that are
the rarest among her neighbors (that is, the chunks that have the fewest repeated cop-
ies among her neighbors) and then request those rarest chunks first. In this manner,
the rarest chunks get more quickly redistributed, aiming to (roughly) equalize the
numbers of copies of each chunk in the torrent.

To determine which requests she responds to, BitTorrent uses a clever trading
algorithm. The basic idea is that Alice gives priority to the neighbors that are cur-
rently supplying her data at the highest rate. Specifically, for each of her neighbors,
Alice continually measures the rate at which she receives bits and determines the four
peers that are feeding her bits at the highest rate. She then reciprocates by sending
chunks to these same four peers. Every 10 seconds, she recalculates the rates and pos-
sibly modifies the set of four peers. In BitTorrent lingo, these four peers are said to be
unchoked. Importantly, every 30 seconds, she also picks one additional neighbor at
random and sends it chunks. Let’s call the randomly chosen peer Bob. In BitTorrent
lingo, Bob is said to be optimistically unchoked. Because Alice is sending data to
Bob, she may become one of Bob’s top four uploaders, in which case Bob would start
to send data to Alice. If the rate at which Bob sends data to Alice is high enough, Bob
could then, in turn, become one of Alice’s top four uploaders. In other words, every
30 seconds, Alice will randomly choose a new trading partner and initiate trading
with that partner. If the two peers are satisfied with the trading, they will put each
other in their top four lists and continue trading with each other until one of the peers
finds a better partner. The effect is that peers capable of uploading at compatible
rates tend to find each other. The random neighbor selection also allows new peers
to get chunks, so that they can have something to trade. All other neighboring peers
besides these five peers (four “top” peers and one probing peer) are “choked,” that
is, they do not receive any chunks from Alice. BitTorrent has a number of interesting
mechanisms that are not discussed here, including pieces (mini-chunks), pipelining,
random first selection, endgame mode, and anti-snubbing [Cohen 2003].

The incentive mechanism for trading just described is often referred to as tit-for-
tat [Cohen 2003]. It has been shown that this incentive scheme can be circumvented
[Liogkas 2006; Locher 2006; Piatek 2008]. Nevertheless, the BitTorrent ecosystem
is wildly successful, with millions of simultaneous peers actively sharing files in

2.6 o VIDEO STREAMING AND CONTENT DISTRIBUTION NETWORKS 143

hundreds of thousands of torrents. If BitTorrent had been designed without tit-for-tat
(or a variant), but otherwise exactly the same, BitTorrent would likely not even exist
now, as the majority of the users would have been freeriders [Saroiu 2002].

We close our discussion on P2P by briefly mentioning another application of P2P,
namely, Distributed Hast Table (DHT). A distributed hash table is a simple database,
with the database records being distributed over the peers in a P2P system. DHTs have
been widely implemented (e.g., in BitTorrent) and have been the subject of extensive
research. An overview is provided in a Video Note in the companion website.

2.6 Video Streaming and Content Distribution
Networks

By many estimates, streaming video—including Netflix, YouTube and Amazon
Prime—account for about 80% of Internet traffic in 2020 [Cisco 2020]. This section
we will provide an overview of how popular video streaming services are imple-
mented in today’s Internet. We will see they are implemented using application-level
protocols and servers that function in some ways like a cache.

2.6.1 Internet Video

In streaming stored video applications, the underlying medium is prerecorded video,
such as a movie, a television show, a prerecorded sporting event, or a prerecorded
user-generated video (such as those commonly seen on YouTube). These prere-
corded videos are placed on servers, and users send requests to the servers to view
the videos on demand. Many Internet companies today provide streaming video,
including, Netflix, YouTube (Google), Amazon, and TikTok.

But before launching into a discussion of video streaming, we should first get
a quick feel for the video medium itself. A video is a sequence of images, typi-
cally being displayed at a constant rate, for example, at 24 or 30 images per second.
An uncompressed, digitally encoded image consists of an array of pixels, with each
pixel encoded into a number of bits to represent luminance and color. An important
characteristic of video is that it can be compressed, thereby trading off video quality
with bit rate. Today’s off-the-shelf compression algorithms can compress a video to
essentially any bit rate desired. Of course, the higher the bit rate, the better the image
quality and the better the overall user viewing experience.

From a networking perspective, perhaps the most salient characteristic of video
is its high bit rate. Compressed Internet video typically ranges from 100 kbps for
low-quality video to over 4 Mbps for streaming high-definition movies; 4K stream-
ing envisions a bitrate of more than 10 Mbps. This can translate to huge amount of
traffic and storage, particularly for high-end video. For example, a single 2 Mbps

VideoNote
Walking though
distributed hash tables

144

CHAPTER 2

e APPLICATION LAYER

video with a duration of 67 minutes will consume 1 gigabyte of storage and traffic.
By far, the most important performance measure for streaming video is average end-
to-end throughput. In order to provide continuous playout, the network must provide
an average throughput to the streaming application that is at least as large as the bit
rate of the compressed video.

We can also use compression to create multiple versions of the same video, each
at a different quality level. For example, we can use compression to create, say, three
versions of the same video, at rates of 300 kbps, 1 Mbps, and 3 Mbps. Users can then
decide which version they want to watch as a function of their current available band-
width. Users with high-speed Internet connections might choose the 3 Mbps version;
users watching the video over 3G with a smartphone might choose the 300 kbps version.

2.6.2 HTTP Streaming and DASH

In HTTP streaming, the video is simply stored at an HTTP server as an ordinary
file with a specific URL. When a user wants to see the video, the client establishes
a TCP connection with the server and issues an HTTP GET request for that URL.
The server then sends the video file, within an HTTP response message, as quickly
as the underlying network protocols and traffic conditions will allow. On the client
side, the bytes are collected in a client application buffer. Once the number of bytes
in this buffer exceeds a predetermined threshold, the client application begins play-
back—specifically, the streaming video application periodically grabs video frames
from the client application buffer, decompresses the frames, and displays them on
the user’s screen. Thus, the video streaming application is displaying video as it is
receiving and buffering frames corresponding to latter parts of the video.

Although HTTP streaming, as described in the previous paragraph, has been
extensively deployed in practice (for example, by YouTube since its inception), it has
a major shortcoming: All clients receive the same encoding of the video, despite the
large variations in the amount of bandwidth available to a client, both across different
clients and also over time for the same client. This has led to the development of a new
type of HTTP-based streaming, often referred to as Dynamic Adaptive Streaming
over HTTP (DASH). In DASH, the video is encoded into several different versions,
with each version having a different bit rate and, correspondingly, a different quality
level. The client dynamically requests chunks of video segments of a few seconds in
length. When the amount of available bandwidth is high, the client naturally selects
chunks from a high-rate version; and when the available bandwidth is low, it naturally
selects from a low-rate version. The client selects different chunks one at a time with
HTTP GET request messages [Akhshabi 2011].

DASH allows clients with different Internet access rates to stream in video at
different encoding rates. Clients with low-speed 3G connections can receive a low
bit-rate (and low-quality) version, and clients with fiber connections can receive a
high-quality version. DASH also allows a client to adapt to the available bandwidth
if the available end-to-end bandwidth changes during the session. This feature is

2.6 o VIDEO STREAMING AND CONTENT DISTRIBUTION NETWORKS 145

particularly important for mobile users, who typically see their bandwidth availabil-
ity fluctuate as they move with respect to the base stations.

With DASH, each video version is stored in the HTTP server, each with a differ-
ent URL. The HTTP server also has a manifest file, which provides a URL for each
version along with its bit rate. The client first requests the manifest file and learns
about the various versions. The client then selects one chunk at a time by specifying a
URL and a byte range in an HTTP GET request message for each chunk. While down-
loading chunks, the client also measures the received bandwidth and runs a rate deter-
mination algorithm to select the chunk to request next. Naturally, if the client has a lot
of video buffered and if the measured receive bandwidth is high, it will choose a chunk
from a high-bitrate version. And naturally if the client has little video buffered and the
measured received bandwidth is low, it will choose a chunk from a low-bitrate version.
DASH therefore allows the client to freely switch among different quality levels.

2.6.3 Content Distribution Networks

Today, many Internet video companies are distributing on-demand multi-Mbps
streams to millions of users on a daily basis. YouTube, for example, with a library
of hundreds of millions of videos, distributes hundreds of millions of video streams
to users around the world every day. Streaming all this traffic to locations all over
the world while providing continuous playout and high interactivity is clearly a chal-
lenging task.

For an Internet video company, perhaps the most straightforward approach to
providing streaming video service is to build a single massive data center, store all
of its videos in the data center, and stream the videos directly from the data center
to clients worldwide. But there are three major problems with this approach. First, if
the client is far from the data center, server-to-client packets will cross many com-
munication links and likely pass through many ISPs, with some of the ISPs possibly
located on different continents. If one of these links provides a throughput that is less
than the video consumption rate, the end-to-end throughput will also be below the
consumption rate, resulting in annoying freezing delays for the user. (Recall from
Chapter 1 that the end-to-end throughput of a stream is governed by the throughput
at the bottleneck link.) The likelihood of this happening increases as the number of
links in the end-to-end path increases. A second drawback is that a popular video will
likely be sent many times over the same communication links. Not only does this
waste network bandwidth, but the Internet video company itself will be paying its
provider ISP (connected to the data center) for sending the same bytes into the Inter-
net over and over again. A third problem with this solution is that a single data center
represents a single point of failure—if the data center or its links to the Internet goes
down, it would not be able to distribute any video streams.

In order to meet the challenge of distributing massive amounts of video data
to users distributed around the world, almost all major video-streaming companies
make use of Content Distribution Networks (CDNs). A CDN manages servers in

146

CHAPTER 2

e APPLICATION LAYER

multiple geographically distributed locations, stores copies of the videos (and other
types of Web content, including documents, images, and audio) in its servers, and
attempts to direct each user request to a CDN location that will provide the best user
experience. The CDN may be a private CDN, that is, owned by the content provider
itself; for example, Google’s CDN distributes YouTube videos and other types of
content. The CDN may alternatively be a third-party CDN that distributes content
on behalf of multiple content providers; Akamai, Limelight and Level-3 all operate
third-party CDNs. A very readable overview of modern CDNs is [Leighton 2009;
Nygren 2010].

CDNs typically adopt one of two different server placement philosophies
[Huang 2008]:

* Enter Deep. One philosophy, pioneered by Akamai, is to enter deep into the
access networks of Internet Service Providers, by deploying server clusters in
access ISPs all over the world. (Access networks are described in Section 1.3.)
Akamai takes this approach with clusters in thousands of locations. The goal is
to get close to end users, thereby improving user-perceived delay and throughput
by decreasing the number of links and routers between the end user and the CDN
server from which it receives content. Because of this highly distributed design,
the task of maintaining and managing the clusters becomes challenging.

* Bring Home. A second design philosophy, taken by Limelight and many
other CDN companies, is to bring the ISPs home by building large clusters
at a smaller number (for example, tens) of sites. Instead of getting inside the
access ISPs, these CDNSs typically place their clusters in Internet Exchange
Points (IXPs) (see Section 1.3). Compared with the enter-deep design phi-
losophy, the bring-home design typically results in lower maintenance and
management overhead, possibly at the expense of higher delay and lower
throughput to end users.

Once its clusters are in place, the CDN replicates content across its clusters. The
CDN may not want to place a copy of every video in each cluster, since some videos
are rarely viewed or are only popular in some countries. In fact, many CDNs do not
push videos to their clusters but instead use a simple pull strategy: If a client requests
a video from a cluster that is not storing the video, then the cluster retrieves the
video (from a central repository or from another cluster) and stores a copy locally
while streaming the video to the client at the same time. Similar Web caching (see
Section 2.2.5), when a cluster’s storage becomes full, it removes videos that are not
frequently requested.

CDN Operation

Having identified the two major approaches toward deploying a CDN, let’s now dive
down into the nuts and bolts of how a CDN operates. When a browser in a user’s

2.6 o VIDEO STREAMING AND CONTENT DISTRIBUTION NETWORKS

CASE STUDY

GOOGLE’S NETWORK INFRASTRUCTURE

To support its vast array of services—including search, Gmail, calendar, YouTube
video, maps, documents, and social networks—Google has deployed an extensive
private network and CDN infrastructure. Google’s CDN infrastructure has three tiers
of server clusters:

* Nineteen “mega data centers” in North America, Europe, and Asia [Google
Locations 2020], with each data center having on the order of 100,000 servers.
These mega data centers are responsible for serving dynamic (and often personal-
ized) content, including search results and Gmail messages.

* With about 90 clusters in IXPs scattered throughout the world, with each cluster
consisting of hundreds of servers servers [Adhikari 201 1a] [Google CDN 2020].
These clusters are responsible for serving static content, including YouTube videos.

* Many hundreds of “enter-deep” clusters located within an access ISP. Here a cluster
typically consists of tens of servers within a single rack. These enter-deep servers
perform TCP splitting (see Section 3.7) and serve static content [Chen 2011],
including the static portions of Web pages that embody search results.

All of these data centers and cluster locations are networked together with
Google's own private network. When a user makes a search query, often the query
is first sent over the local ISP to a nearby enter-deep cache, from where the static
content is refrieved; while providing the static content to the client, the nearby cache
also forwards the query over Google's private network to one of the mega data cent-
ers, from where the personalized search results are retrieved. For a YouTube video,
the video itself may come from one of the bring-home caches, whereas portions of
the Web page surrounding the video may come from the nearby enter-deep cache,
and the advertisements surrounding the video come from the data centers. In sum-
mary, except for the local ISPs, the Google cloud services are largely provided by a
network infrastructure that is independent of the public Internet.

host is instructed to retrieve a specific video (identified by a URL), the CDN must
intercept the request so that it can (1) determine a suitable CDN server cluster for that
client at that time, and (2) redirect the client’s request to a server in that cluster. We’ll
shortly discuss how a CDN can determine a suitable cluster. But first let’s examine
the mechanics behind intercepting and redirecting a request.

Most CDN s take advantage of DNS to intercept and redirect requests; an inter-
esting discussion of such a use of the DNS is [Vixie 2009]. Let’s consider a simple

147

148

CHAPTER 2

e APPLICATION LAYER

example to illustrate how the DNS is typically involved. Suppose a content provider,
NetCinema, employs the third-party CDN company, KingCDN, to distribute its vid-
eos to its customers. On the NetCinema Web pages, each of its videos is assigned a
URL that includes the string “video” and a unique identifier for the video itself; for
example, Transformers 7 might be assigned http://video.netcinema.com/6Y7B23V.
Six steps then occur, as shown in Figure 2.25:

1. The user visits the Web page at NetCinema.

2. When the user clicks on the link http://video.netcinema.com/6Y7B23V, the
user’s host sends a DNS query for video.netcinema.com.

3. Theuser’s Local DNS Server (LDNS) relays the DNS query to an authoritative
DNS server for NetCinema, which observes the string “video” in the host-
name video.netcinema.com. To “hand over” the DNS query to KingCDN,
instead of returning an IP address, the NetCinema authoritative DNS server
returns to the LDNS a hostname in the KingCDN’s domain, for example,
al105.kingedn.com.

4. From this point on, the DNS query enters into KingCDN’s private DNS infra-
structure. The user’s LDNS then sends a second query, now for al 105.kingcdn.
com, and KingCDN’s DNS system eventually returns the IP addresses of a
KingCDN content server to the LDNS. It is thus here, within the KingCDN’s
DNS system, that the CDN server from which the client will receive its content
is specified.

L

/'

@ www.NetCinema.com

ol

—L_ ¢ (:) NetCinema authoritative

Local @ DNS server
DNS server

~

i

KingCDN authoritative
server

A

KingCDN content
distribution server

Figure 2.25 + DNS redirects a user’s request to a CDN server

2.6 o VIDEO STREAMING AND CONTENT DISTRIBUTION NETWORKS

5. The LDNS forwards the IP address of the content-serving CDN node to the
user’s host.

6. Once the client receives the IP address for a KingCDN content server, it estab-
lishes a direct TCP connection with the server at that IP address and issues an
HTTP GET request for the video. If DASH is used, the server will first send to
the client a manifest file with a list of URLSs, one for each version of the video,
and the client will dynamically select chunks from the different versions.

Cluster Selection Strategies

At the core of any CDN deployment is a cluster selection strategy, that is, a mecha-
nism for dynamically directing clients to a server cluster or a data center within the
CDN. As we just saw, the CDN learns the IP address of the client’s LDNS server
via the client’s DNS lookup. After learning this IP address, the CDN needs to select
an appropriate cluster based on this IP address. CDNs generally employ proprietary
cluster selection strategies. We now briefly survey a few approaches, each of which
has its own advantages and disadvantages.

One simple strategy is to assign the client to the cluster that is geographically clos-
est. Using commercial geo-location databases (such as Quova [Quova 2020] and Max-
Mind [MaxMind 2020]), each LDNS IP address is mapped to a geographic location.
When a DNS request is received from a particular LDNS, the CDN chooses the geo-
graphically closest cluster, that is, the cluster that is the fewest kilometers from the LDNS
“as the bird flies.” Such a solution can work reasonably well for a large fraction of the cli-
ents [Agarwal 2009]. However, for some clients, the solution may perform poorly, since
the geographically closest cluster may not be the closest cluster in terms of the length
or number of hops of the network path. Furthermore, a problem inherent with all DNS-
based approaches is that some end-users are configured to use remotely located LDNSs
[Shaikh 2001; Mao 2002], in which case the LDNS location may be far from the client’s
location. Moreover, this simple strategy ignores the variation in delay and available band-
width over time of Internet paths, always assigning the same cluster to a particular client.

In order to determine the best cluster for a client based on the current traffic
conditions, CDNs can instead perform periodic real-time measurements of delay
and loss performance between their clusters and clients. For instance, a CDN can
have each of its clusters periodically send probes (for example, ping messages or
DNS queries) to all of the LDNSs around the world. One drawback of this approach
is that many LDNSs are configured to not respond to such probes.

2.6.4 Case Studies: Netflix and YouTube

We conclude our discussion of streaming stored video by taking a look at two highly
successful large-scale deployments: Netflix and YouTube. We’ll see that each of
these systems take a very different approach, yet employ many of the underlying
principles discussed in this section.

149

150

CHAPTER 2

e APPLICATION LAYER

Netflix

As of 2020, Netflix is the leading service provider for online movies and TV series in
North America. As we discuss below, Netflix video distribution has two major compo-
nents: the Amazon cloud and its own private CDN infrastructure.

Netflix has a Web site that handles numerous functions, including user registra-
tion and login, billing, movie catalogue for browsing and searching, and a movie
recommendation system. As shown in Figure 2.26, this Web site (and its associated
backend databases) run entirely on Amazon servers in the Amazon cloud. Addition-
ally, the Amazon cloud handles the following critical functions:

* Content ingestion. Before Netflix can distribute a movie to its customers, it must
first ingest and process the movie. Netflix receives studio master versions of
movies and uploads them to hosts in the Amazon cloud.

* Content processing. The machines in the Amazon cloud create many different
formats for each movie, suitable for a diverse array of client video players run-
ning on desktop computers, smartphones, and game consoles connected to televi-
sions. A different version is created for each of these formats and at multiple bit
rates, allowing for adaptive streaming over HTTP using DASH.

e Uploading versions to its CDN. Once all of the versions of a movie have been
created, the hosts in the Amazon cloud upload the versions to its CDN.

Amazon Cloud Upload
= versions
i to CDNs
- | = & \= o
- - -
\\fDN server
Manifest i
file = =
pd -
: CDN server CDN server
Video
chunks
(DASH)
—
—
Client

Figure 2.26 ¢+ Nefflix video streaming platform

2.6 ¢ VIDEO STREAMING AND CONTENT DISTRIBUTION NETWORKS 151

When Netflix first rolled out its video streaming service in 2007, it employed
three third-party CDN companies to distribute its video content. Netflix has since
created its own private CDN, from which it now streams all of its videos. To create
its own CDN, Netflix has installed server racks both in IXPs and within residen-
tial ISPs themselves. Netflix currently has server racks in over 200 IXP locations;
see [Bottger 2018] [Netflix Open Connect 2020] for a current list of IXPs housing
Netflix racks. There are also hundreds of ISP locations housing Netflix racks; also
see [Netflix Open Connect 2020], where Netflix provides to potential ISP partners
instructions about installing a (free) Netflix rack for their networks. Each server in
the rack has several 10 Gbps Ethernet ports and over 100 terabytes of storage. The
number of servers in a rack varies: IXP installations often have tens of servers and
contain the entire Netflix streaming video library, including multiple versions of the
videos to support DASH. Netflix does not use pull-caching (Section 2.2.5) to popu-
late its CDN servers in the IXPs and ISPs. Instead, Netflix distributes by pushing the
videos to its CDN servers during off-peak hours. For those locations that cannot hold
the entire library, Netflix pushes only the most popular videos, which are determined
on a day-to-day basis. The Netflix CDN design is described in some detail in the
YouTube videos [Netflix Video 1] and [Netflix Video 2]; see also [Bottger 2018].

Having described the components of the Netflix architecture, let’s take a closer
look at the interaction between the client and the various servers that are involved in
movie delivery. As indicated earlier, the Web pages for browsing the Netflix video
library are served from servers in the Amazon cloud. When a user selects a movie to
play, the Netflix software, running in the Amazon cloud, first determines which of
its CDN servers have copies of the movie. Among the servers that have the movie,
the software then determines the “best” server for that client request. If the client is
using a residential ISP that has a Netflix CDN server rack installed in that ISP, and
this rack has a copy of the requested movie, then a server in this rack is typically
selected. If not, a server at a nearby IXP is typically selected.

Once Netflix determines the CDN server that is to deliver the content, it sends
the client the IP address of the specific server as well as a manifest file, which has
the URLSs for the different versions of the requested movie. The client and that CDN
server then directly interact using a proprietary version of DASH. Specifically,
as described in Section 2.6.2, the client uses the byte-range header in HTTP GET
request messages, to request chunks from the different versions of the movie. Netflix
uses chunks that are approximately four-seconds long [Adhikari 2012]. While the
chunks are being downloaded, the client measures the received throughput and runs
a rate-determination algorithm to determine the quality of the next chunk to request.

Netflix embodies many of the key principles discussed earlier in this section,
including adaptive streaming and CDN distribution. However, because Netflix uses
its own private CDN, which distributes only video (and not Web pages), Netflix has
been able to simplify and tailor its CDN design. In particular, Netflix does not need to
employ DNS redirect, as discussed in Section 2.6.3, to connect a particular client to a
CDN server; instead, the Netflix software (running in the Amazon cloud) directly tells

152

CHAPTER 2

e APPLICATION LAYER

the client to use a particular CDN server. Furthermore, the Netflix CDN uses push
caching rather than pull caching (Section 2.2.5): content is pushed into the servers at
scheduled times at off-peak hours, rather than dynamically during cache misses.

YouTube

With hundreds of hours of video uploaded to YouTube every minute and several
billion video views per day, YouTube is indisputably the world’s largest video-
sharing site. YouTube began its service in April 2005 and was acquired by Google
in November 2006. Although the Google/YouTube design and protocols are pro-
prietary, through several independent measurement efforts we can gain a basic
understanding about how YouTube operates [Zink 2009; Torres 2011; Adhikari
2011a]. As with Netflix, YouTube makes extensive use of CDN technology to dis-
tribute its videos [Torres 2011]. Similar to Netflix, Google uses its own private CDN
to distribute YouTube videos, and has installed server clusters in many hundreds
of different IXP and ISP locations. From these locations and directly from its huge
data centers, Google distributes YouTube videos [Adhikari 2011a]. Unlike Netflix,
however, Google uses pull caching, as described in Section 2.2.5, and DNS redirect,
as described in Section 2.6.3. Most of the time, Google’s cluster-selection strategy
directs the client to the cluster for which the RTT between client and cluster is the
lowest; however, in order to balance the load across clusters, sometimes the client is
directed (via DNS) to a more distant cluster [Torres 2011].

YouTube employs HTTP streaming, often making a small number of differ-
ent versions available for a video, each with a different bit rate and corresponding
quality level. YouTube does not employ adaptive streaming (such as DASH), but
instead requires the user to manually select a version. In order to save bandwidth
and server resources that would be wasted by repositioning or early termination,
YouTube uses the HTTP byte range request to limit the flow of transmitted data after
a target amount of video is prefetched.

Several million videos are uploaded to YouTube every day. Not only are You-
Tube videos streamed from server to client over HTTP, but YouTube uploaders also
upload their videos from client to server over HTTP. YouTube processes each video
it receives, converting it to a YouTube video format and creating multiple versions
at different bit rates. This processing takes place entirely within Google data centers.
(See the case study on Google’s network infrastructure in Section 2.6.3.)

2.7 Socket Programming: Creating Network
Applications

Now that we’ve looked at a number of important network applications, let’s explore
how network application programs are actually created. Recall from Section 2.1 that
a typical network application consists of a pair of programs—a client program and

2.7 * SOCKET PROGRAMMING: CREATING NETWORK APPLICATIONS 153

a server program—rtesiding in two different end systems. When these two programs
are executed, a client process and a server process are created, and these processes
communicate with each other by reading from, and writing to, sockets. When creat-
ing a network application, the developer’s main task is therefore to write the code for
both the client and server programs.

There are two types of network applications. One type is an implementation
whose operation is specified in a protocol standard, such as an RFC or some other
standards document; such an application is sometimes referred to as “open,” since
the rules specifying its operation are known to all. For such an implementation, the
client and server programs must conform to the rules dictated by the RFC. For exam-
ple, the client program could be an implementation of the client side of the HTTP
protocol, described in Section 2.2 and precisely defined in RFC 2616; similarly,
the server program could be an implementation of the HTTP server protocol, also
precisely defined in RFC 2616. If one developer writes code for the client program
and another developer writes code for the server program, and both developers care-
fully follow the rules of the RFC, then the two programs will be able to interoper-
ate. Indeed, many of today’s network applications involve communication between
client and server programs that have been created by independent developers—for
example, a Google Chrome browser communicating with an Apache Web server, or
a BitTorrent client communicating with BitTorrent tracker.

The other type of network application is a proprietary network application. In
this case, the client and server programs employ an application-layer protocol that has
not been openly published in an RFC or elsewhere. A single developer (or develop-
ment team) creates both the client and server programs, and the developer has com-
plete control over what goes in the code. But because the code does not implement
an open protocol, other independent developers will not be able to develop code that
interoperates with the application.

In this section, we’ll examine the key issues in developing a client-server appli-
cation, and we’ll “get our hands dirty” by looking at code that implements a very sim-
ple client-server application. During the development phase, one of the first decisions
the developer must make is whether the application is to run over TCP or over UDP.
Recall that TCP is connection oriented and provides a reliable byte-stream channel
through which data flows between two end systems. UDP is connectionless and sends
independent packets of data from one end system to the other, without any guarantees
about delivery. Recall also that when a client or server program implements a proto-
col defined by an RFC, it should use the well-known port number associated with the
protocol; conversely, when developing a proprietary application, the developer must
be careful to avoid using such well-known port numbers. (Port numbers were briefly
discussed in Section 2.1. They are covered in more detail in Chapter 3.)

We introduce UDP and TCP socket programming by way of a simple UDP
application and a simple TCP application. We present the simple UDP and TCP
applications in Python 3. We could have written the code in Java, C, or C++, but we
chose Python mostly because Python clearly exposes the key socket concepts. With

154

CHAPTER 2

e APPLICATION LAYER

Python there are fewer lines of code, and each line can be explained to the novice
programmer without difficulty. But there’s no need to be frightened if you are not
familiar with Python. You should be able to easily follow the code if you have expe-
rience programming in Java, C, or C++.

If you are interested in client-server programming with Java, you are encour-
aged to see the Companion Website for this textbook; in fact, you can find there
all the examples in this section (and associated labs) in Java. For readers who are
interested in client-server programming in C, there are several good references avail-
able [Donahoo 2001; Stevens 1997; Frost 1994]; our Python examples below have a
similar look and feel to C.

2.7.1 Socket Programming with UDP

In this subsection, we’ll write simple client-server programs that use UDP; in the
following section, we’ll write similar programs that use TCP.

Recall from Section 2.1 that processes running on different machines communi-
cate with each other by sending messages into sockets. We said that each process is
analogous to a house and the process’s socket is analogous to a door. The application
resides on one side of the door in the house; the transport-layer protocol resides on
the other side of the door in the outside world. The application developer has control
of everything on the application-layer side of the socket; however, it has little control
of the transport-layer side.

Now let’s take a closer look at the interaction between two communicating pro-
cesses that use UDP sockets. Before the sending process can push a packet of data
out the socket door, when using UDP, it must first attach a destination address to
the packet. After the packet passes through the sender’s socket, the Internet will use
this destination address to route the packet through the Internet to the socket in the
receiving process. When the packet arrives at the receiving socket, the receiving
process will retrieve the packet through the socket, and then inspect the packet’s
contents and take appropriate action.

So you may be now wondering, what goes into the destination address that
is attached to the packet? As you might expect, the destination host’s IP address
is part of the destination address. By including the destination IP address in the
packet, the routers in the Internet will be able to route the packet through the
Internet to the destination host. But because a host may be running many net-
work application processes, each with one or more sockets, it is also necessary
to identify the particular socket in the destination host. When a socket is created,
an identifier, called a port number, is assigned to it. So, as you might expect,
the packet’s destination address also includes the socket’s port number. In sum-
mary, the sending process attaches to the packet a destination address, which con-
sists of the destination host’s IP address and the destination socket’s port number.
Moreover, as we shall soon see, the sender’s source address—consisting of the

2.7 * SOCKET PROGRAMMING: CREATING NETWORK APPLICATIONS

IP address of the source host and the port number of the source socket—are also
attached to the packet. However, attaching the source address to the packet is typi-
cally not done by the UDP application code; instead it is automatically done by the
underlying operating system.

We’ll use the following simple client-server application to demonstrate socket

programming for both UDP and TCP:

2.
3.
4,

The client reads a line of characters (data) from its keyboard and sends the data
to the server.

The server receives the data and converts the characters to uppercase.

The server sends the modified data to the client.

The client receives the modified data and displays the line on its screen.

Figure 2.27 highlights the main socket-related activity of the client and server that
communicate over the UDP transport service.

Server Client
(Running on serverlP)

Create socket, port=x: Create socket:
serverSocket = clientSocket =
socket (AF_INET, SOCK_DGRAM) socket (AF_INET, SOCK_DGRAM)

l Create datagram with serverIP

Read UDP segment from — and port=x;

send datagram via

serverSocket clientSocket

!

Write reply to
serverSocket

specifying client address, \ Read datagram from

port number clientSocket

|

Close
clientSocket

Figure 2.27 + The client-server application using UDP

155

156

CHAPTER 2

e APPLICATION LAYER

Now let’s get our hands dirty and take a look at the client-server program pair
for a UDP implementation of this simple application. We also provide a detailed,
line-by-line analysis after each program. We’ll begin with the UDP client, which will
send a simple application-level message to the server. In order for the server to be
able to receive and reply to the client’s message, it must be ready and running—that
is, it must be running as a process before the client sends its message.

The client program is called UDPClient.py, and the server program is called
UDPServer.py. In order to emphasize the key issues, we intentionally provide code
that is minimal. “Good code” would certainly have a few more auxiliary lines, in
particular for handling error cases. For this application, we have arbitrarily chosen
12000 for the server port number.

UDPClient.py

Here is the code for the client side of the application:

from socket import *

serverName = ’'hostname’

serverPort = 12000

clientSocket = socket (AF_INET, SOCK_DGRAM)

message = input(’Input lowercase sentence:’)
clientSocket.sendto (message.encode (), (serverName, serverPort))
modifiedMessage, serverAddress = clientSocket.recvfrom(2048)
print (modifiedMessage.decode ())

clientSocket.close ()

Now let’s take a look at the various lines of code in UDPClient.py.
from socket import *

The socket module forms the basis of all network communications in Python. By
including this line, we will be able to create sockets within our program.

serverName "hostname’
serverPort = 12000

The first line sets the variable serverName to the string ‘hostname’. Here, we pro-
vide a string containing either the IP address of the server (e.g., “128.138.32.126”)
or the hostname of the server (e.g., “cis.poly.edu”). If we use the hostname, then a
DNS lookup will automatically be performed to get the IP address.) The second line
sets the integer variable serverPort to 12000.

clientSocket = socket (AF_INET, SOCK_DGRAM)

2.7 * SOCKET PROGRAMMING: CREATING NETWORK APPLICATIONS 157

This line creates the client’s socket, called clientSocket. The first param-
eter indicates the address family; in particular, AF_INET indicates that the
underlying network is using IPv4. (Do not worry about this now—we will dis-
cuss IPv4 in Chapter 4.) The second parameter indicates that the socket is of
type SOCK_DGRAM, which means it is a UDP socket (rather than a TCP socket).
Note that we are not specifying the port number of the client socket when we
create it; we are instead letting the operating system do this for us. Now that the
client process’s door has been created, we will want to create a message to send
through the door.

message = input(’Input lowercase sentence:’)

input () is a built-in function in Python. When this command is executed, the user
at the client is prompted with the words “Input lowercase sentence:” The user then
uses her keyboard to input a line, which is put into the variable message. Now that
we have a socket and a message, we will want to send the message through the socket
to the destination host.

clientSocket.sendto(message.encode (), (serverName, serverPort))

In the above line, we first convert the message from string type to byte type, as we
need to send bytes into a socket; this is done with the encode () method. The
method sendto () attaches the destination address (serverName, serverPort)
to the message and sends the resulting packet into the process’s socket,
clientSocket. (As mentioned earlier, the source address is also attached to
the packet, although this is done automatically rather than explicitly by the code.)
Sending a client-to-server message via a UDP socket is that simple! After sending
the packet, the client waits to receive data from the server.

modifiedMessage, serverAddress = clientSocket.recvfrom(2048)

With the above line, when a packet arrives from the Internet at the client’s socket, the
packet’s data is put into the variable modi fiedMessage and the packet’s source
address is put into the variable serverAddress. The variable serverAddress
contains both the server’s IP address and the server’s port number. The program
UDPClient doesn’t actually need this server address information, since it already
knows the server address from the outset; but this line of Python provides the server
address nevertheless. The method recvfrom also takes the buffer size 2048 as
input. (This buffer size works for most purposes.)

print (modifiedMessage.decode())

158

CHAPTER 2

e APPLICATION LAYER

This line prints out modifiedMessage on the user’s display, after converting the mes-
sage from bytes to string. It should be the original line that the user typed, but now
capitalized.

clientSocket.close ()

This line closes the socket. The process then terminates.

UDPServer.py

Let’s now take a look at the server side of the application:

from socket import *

serverPort = 12000

serverSocket = socket (AF_INET, SOCK_DGRAM)

serverSocket.bind ((’’, serverPort))

print (“The server is ready to receive”)

while True:
message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.decode () .upper ()
serverSocket.sendto (modifiedMessage.encode (),

clientAddress)

Note that the beginning of UDPServer is similar to UDPClient. It also imports the
socket module, also sets the integer variable serverPort to 12000, and also
creates a socket of type SOCK_DGRAM (a UDP socket). The first line of code that is
significantly different from UDPClient is:

serverSocket.bind ((’’, serverPort))

The above line binds (that is, assigns) the port number 12000 to the server’s socket.
Thus, in UDPServer, the code (written by the application developer) is explicitly
assigning a port number to the socket. In this manner, when anyone sends a packet to
port 12000 at the IP address of the server, that packet will be directed to this socket.
UDPServer then enters a while loop; the while loop will allow UDPServer to receive
and process packets from clients indefinitely. In the while loop, UDPServer waits for
a packet to arrive.

message, clientAddress = serverSocket.recvfrom(2048)

This line of code is similar to what we saw in UDPClient. When a packet arrives
at the server’s socket, the packet’s data is put into the variable message and the

2.7 * SOCKET PROGRAMMING: CREATING NETWORK APPLICATIONS 159

packet’s source address is put into the variable clientAddress. The variable
clientAddress contains both the client’s IP address and the client’s port number.
Here, UDPServer will make use of this address information, as it provides a return
address, similar to the return address with ordinary postal mail. With this source
address information, the server now knows to where it should direct its reply.

modifiedMessage = message.decode () .upper ()

This line is the heart of our simple application. It takes the line sent by the client and,
after converting the message to a string, uses the method upper () to capitalize it.

serverSocket.sendto (modifiedMessage.encode (), clientAddress)

This last line attaches the client’s address (IP address and port number) to the capital-
ized message (after converting the string to bytes), and sends the resulting packet into
the server’s socket. (As mentioned earlier, the server address is also attached to the
packet, although this is done automatically rather than explicitly by the code.) The
Internet will then deliver the packet to this client address. After the server sends
the packet, it remains in the while loop, waiting for another UDP packet to arrive
(from any client running on any host).

To test the pair of programs, you run UDPClient.py on one host and UDPS-
erver.py on another host. Be sure to include the proper hostname or IP address of
the server in UDPClient.py. Next, you execute UDPServer.py, the compiled server
program, in the server host. This creates a process in the server that idles until it
is contacted by some client. Then you execute UDPClient.py, the compiled client
program, in the client. This creates a process in the client. Finally, to use the appli-
cation at the client, you type a sentence followed by a carriage return.

To develop your own UDP client-server application, you can begin by
slightly modifying the client or server programs. For example, instead of convert-
ing all the letters to uppercase, the server could count the number of times the
letter s appears and return this number. Or you can modify the client so that after
receiving a capitalized sentence, the user can continue to send more sentences to
the server.

2.7.2 Socket Programming with TCP

Unlike UDP, TCP is a connection-oriented protocol. This means that before the cli-
ent and server can start to send data to each other, they first need to handshake and
establish a TCP connection. One end of the TCP connection is attached to the client
socket and the other end is attached to a server socket. When creating the TCP con-
nection, we associate with it the client socket address (IP address and port number)
and the server socket address (IP address and port number). With the TCP connec-
tion established, when one side wants to send data to the other side, it just drops the

160

CHAPTER 2

e APPLICATION LAYER

data into the TCP connection via its socket. This is different from UDP, for which
the server must attach a destination address to the packet before dropping it into the
socket.

Now let’s take a closer look at the interaction of client and server programs
in TCP. The client has the job of initiating contact with the server. In order for the
server to be able to react to the client’s initial contact, the server has to be ready. This
implies two things. First, as in the case of UDP, the TCP server must be running as
a process before the client attempts to initiate contact. Second, the server program
must have a special door—more precisely, a special socket—that welcomes some
initial contact from a client process running on an arbitrary host. Using our house/
door analogy for a process/socket, we will sometimes refer to the client’s initial con-
tact as “knocking on the welcoming door.”

With the server process running, the client process can initiate a TCP connection
to the server. This is done in the client program by creating a TCP socket. When the
client creates its TCP socket, it specifies the address of the welcoming socket in the
server, namely, the IP address of the server host and the port number of the socket.
After creating its socket, the client initiates a three-way handshake and establishes a
TCP connection with the server. The three-way handshake, which takes place within
the transport layer, is completely invisible to the client and server programs.

During the three-way handshake, the client process knocks on the welcom-
ing door of the server process. When the server “hears” the knocking, it creates a
new door—more precisely, a new socket that is dedicated to that particular client.
In our example below, the welcoming door is a TCP socket object that we call
serverSocket; the newly created socket dedicated to the client making the con-
nection is called connectionSocket. Students who are encountering TCP sock-
ets for the first time sometimes confuse the welcoming socket (which is the initial
point of contact for all clients wanting to communicate with the server), and each
newly created server-side connection socket that is subsequently created for com-
municating with each client.

From the application’s perspective, the client’s socket and the server’s con-
nection socket are directly connected by a pipe. As shown in Figure 2.28, the cli-
ent process can send arbitrary bytes into its socket, and TCP guarantees that the
server process will receive (through the connection socket) each byte in the order
sent. TCP thus provides a reliable service between the client and server processes.
Furthermore, just as people can go in and out the same door, the client process
not only sends bytes into but also receives bytes from its socket; similarly, the
server process not only receives bytes from but also sends bytes into its connec-
tion socket.

We use the same simple client-server application to demonstrate socket pro-
gramming with TCP: The client sends one line of data to the server, the server
capitalizes the line and sends it back to the client. Figure 2.29 highlights the main
socket-related activity of the client and server that communicate over the TCP trans-
port service.

2.7 * SOCKET PROGRAMMING: CREATING NETWORK APPLICATIONS

"é =

Client process Server process

Welcoming
socket

Client | Connection
socket ‘ socket

Figure 2.28 ¢+ The TCPServer process has two sockets

TCPClient.py

Here is the code for the client side of the application:

from socket import *

serverName = ’'servername’

serverPort 12000

clientSocket = socket (AF_INET, SOCK_STREAM)
clientSocket.connect ((serverName, serverPort))

sentence = input(’Input lowercase sentence:’)
clientSocket.send(sentence.encode())
modifiedSentence = clientSocket.recv (1024)

print (' From Server: ', modifiedSentence.decode())
clientSocket.close ()

Let’s now take a look at the various lines in the code that differ significantly from the
UDP implementation. The first such line is the creation of the client socket.

clientSocket = socket (AF_INET, SOCK_STREAM)

This line creates the client’s socket, called clientSocket. The first parameter
again indicates that the underlying network is using IPv4. The second parameter

161

162

CHAPTER 2

e APPLICATION LAYER

Server Client
(Running on serverlP)

Create socket, port=x,
for incoming request:
serverSocket =
socket ()

|

Wait for i . TCP
aittor incoming connection setup
connection request: e ——————

connectionSocket = clientSocket =
serverSocket.accept () socket ()

! !

Send request using
clientSocket

Create socket, connect
to serverlP, port=x:

Read request from —
connectionSocket

i |

Write reply to

— Read reply from

connectionSocket > AT e
Close a
— ose
connectionSocket
clientSocket

Figure 2.29 ¢ The client-server application using TCP

indicates that the socket is of type SOCK_STREAM, which means it is a TCP socket
(rather than a UDP socket). Note that we are again not specifying the port number of
the client socket when we create it; we are instead letting the operating system do this
for us. Now the next line of code is very different from what we saw in UDPClient:

clientSocket.connect ((serverName, serverPort))

Recall that before the client can send data to the server (or vice versa) using a TCP
socket, a TCP connection must first be established between the client and server. The

2.7 * SOCKET PROGRAMMING: CREATING NETWORK APPLICATIONS 163

above line initiates the TCP connection between the client and server. The parameter
of the connect () method is the address of the server side of the connection. After
this line of code is executed, the three-way handshake is performed and a TCP con-
nection is established between the client and server.

sentence = input (’Input lowercase sentence:’)

As with UDPClient, the above obtains a sentence from the user. The string
sentence continues to gather characters until the user ends the line by typing a
carriage return. The next line of code is also very different from UDPClient:

clientSocket.send(sentence.encode ())

The above line sends the sentence through the client’s socket and into the TCP
connection. Note that the program does not explicitly create a packet and attach the
destination address to the packet, as was the case with UDP sockets. Instead the cli-
ent program simply drops the bytes in the string sentence into the TCP connec-
tion. The client then waits to receive bytes from the server.

modifiedSentence = clientSocket.recv (2048)

When characters arrive from the server, they get placed into the string
modifiedSentence. Characters continue to accumulate in modifiedSen-
tence until the line ends with a carriage return character. After printing the capital-
ized sentence, we close the client’s socket:

clientSocket.close ()

This last line closes the socket and, hence, closes the TCP connection between the
client and the server. It causes TCP in the client to send a TCP message to TCP in
the server (see Section 3.5).

TCPServer.py

Now let’s take a look at the server program.

from socket import *

serverPort = 12000

serverSocket = socket (AF_INET, SOCK_STREAM)
serverSocket.bind((’’,serverPort))
serverSocket.listen (1)

print (' The server 1s ready to receive’)

164

CHAPTER 2

e APPLICATION LAYER

while True:

connectionSocket, addr = serverSocket.accept/()
sentence = connectionSocket.recv (1024) .decode ()
capitalizedSentence = sentence.upper()

connectionSocket.send (capitalizedSentence.encode())
connectionSocket.close ()

Let’s now take a look at the lines that differ significantly from UDPServer and TCP-
Client. As with TCPClient, the server creates a TCP socket with:

serverSocket=socket (AF_INET, SOCK_STREAM)

Similar to UDPServer, we associate the server port number, serverPort, with
this socket:

serverSocket.bind((’’, serverPort))

But with TCP, serverSocket will be our welcoming socket. After establish-
ing this welcoming door, we will wait and listen for some client to knock on the
door:

serverSocket.listen (1)

This line has the server listen for TCP connection requests from the client. The
parameter specifies the maximum number of queued connections (at least 1).

connectionSocket, addr = serverSocket.accept()

When a client knocks on this door, the program invokes the accept () method for
serverSocket, which creates anew socket in the server, called connectionSocket,
dedicated to this particular client. The client and server then complete the hand-
shaking, creating a TCP connection between the client’s clientSocket and the
server’s connectionSocket. With the TCP connection established, the client
and server can now send bytes to each other over the connection. With TCP, all bytes
sent from one side are only guaranteed to arrive at the other side but also guaranteed
to arrive in order.

connectionSocket.close ()
In this program, after sending the modified sentence to the client, we close the con-

nection socket. But since serverSocket remains open, another client can now
knock on the door and send the server a sentence to modify.

2.8 o

This completes our discussion of socket programming in TCP. You are encour-
aged to run the two programs in two separate hosts, and also to modify them to
achieve slightly different goals. You should compare the UDP program pair with the
TCP program pair and see how they differ. You should also do many of the socket
programming assignments described at the ends of Chapter 2, 4, and 9. Finally, we
hope someday, after mastering these and more advanced socket programs, you will
write your own popular network application, become very rich and famous, and
remember the authors of this textbook!

2.8 Summary

In this chapter, we’ve studied the conceptual and the implementation aspects of
network applications. We’ve learned about the ubiquitous client-server architec-
ture adopted by many Internet applications and seen its use in the HTTP, SMTP,
and DNS protocols. We’ve studied these important application-level protocols,
and their corresponding associated applications (the Web, file transfer, e-mail, and
DNS) in some detail. We’ve learned about the P2P architecture and contrasted it
with the client-server architecture. We’ve also learned about streaming video, and
how modern video distribution systems leverage CDNs. We’ve examined how the
socket API can be used to build network applications. We’ve walked through the
use of sockets for connection-oriented (TCP) and connectionless (UDP) end-to-end
transport services. The first step in our journey down the layered network architec-
ture is now complete!

At the very beginning of this book, in Section 1.1, we gave a rather vague, bare-
bones definition of a protocol: “the format and the order of messages exchanged
between two or more communicating entities, as well as the actions taken on the
transmission and/or receipt of a message or other event.” The material in this chapter,
and in particular our detailed study of the HTTP, SMTP, and DNS protocols, has
now added considerable substance to this definition. Protocols are a key concept in
networking; our study of application protocols has now given us the opportunity to
develop a more intuitive feel for what protocols are all about.

In Section 2.1, we described the service models that TCP and UDP offer to
applications that invoke them. We took an even closer look at these service models
when we developed simple applications that run over TCP and UDP in Section 2.7.
However, we have said little about how TCP and UDP provide these service models.
For example, we know that TCP provides a reliable data service, but we haven’t said
yet how it does so. In the next chapter, we’ll take a careful look at not only the what,
but also the how and why of transport protocols.

Equipped with knowledge about Internet application structure and application-
level protocols, we’re now ready to head further down the protocol stack and exam-
ine the transport layer in Chapter 3.

SUMMARY

165

166

CHAPTER 2

e APPLICATION LAYER

Homework Problems and Questions

Chapter 2 Review Questions
SECTION 2.1

R1.

R2.
R3.

R4.

RS.

R6.

R7.

R8.

RO.

List five nonproprietary Internet applications and the application-layer proto-
cols that they use.

What is the difference between network architecture and application architecture?

For a communication session between a pair of processes, which process is
the client and which is the server?

For a P2P file-sharing application, do you agree with the statement, “There is no
notion of client and server sides of a communication session”’? Why or why not?

What information is used by a process running on one host to identify a pro-
cess running on another host?

Suppose you wanted to do a transaction from a remote client to a server as
fast as possible. Would you use UDP or TCP? Why?

Referring to Figure 2.4, we see that none of the applications listed in Figure
2.4 requires both no data loss and timing. Can you conceive of an application
that requires no data loss and that is also highly time-sensitive?

List the four broad classes of services that a transport protocol can provide.
For each of the service classes, indicate if either UDP or TCP (or both) pro-
vides such a service.

Recall that TCP can be enhanced with TLS to provide process-to-process
security services, including encryption. Does TLS operate at the transport
layer or the application layer? If the application developer wants TCP to be
enhanced with TLS, what does the developer have to do?

SECTIONS 2.2-2.5

R10.
RI11.
R12.

R13.

R14.

R15.

What is meant by a handshaking protocol?

Why do HTTP, SMTP, and IMAP run on top of TCP rather than on UDP?
Consider an e-commerce site that wants to keep a purchase record for each of
its customers. Describe how this can be done with cookies.

Describe how Web caching can reduce the delay in receiving a requested
object. Will Web caching reduce the delay for all objects requested by a user
or for only some of the objects? Why?

Telnet into a Web server and send a multiline request message. Include in
the request message the Tf-modified-since: header line to force a
response message with the 304 Not Modified status code.

List several popular messaging apps. Do they use the same protocols as SMS?

HOMEWORK PROBLEMS AND QUESTIONS

R16. Suppose Alice, with a Web-based e-mail account (such as Hotmail or Gmail),
sends a message to Bob, who accesses his mail from his mail server using
IMAP. Discuss how the message gets from Alice’s host to Bob’s host. Be
sure to list the series of application-layer protocols that are used to move the
message between the two hosts.

R17. Print out the header of an e-mail message you have recently received. How
many Received: header lines are there? Analyze each of the header lines
in the message.

R18. What is the HOL blocking issue in HTTP/1.1? How does HTTP/2 attempt to
solve it?

R19. Is it possible for an organization’s Web server and mail server to have
exactly the same alias for a hostname (for example, foo . com)? What would
be the type for the RR that contains the hostname of the mail server?

R20. Look over your received e-mails, and examine the header of a message sent
from a user with a .edu e-mail address. Is it possible to determine from the
header the IP address of the host from which the message was sent? Do the
same for a message sent from a Gmail account.

SECTION 2.5

R21. In BitTorrent, suppose Alice provides chunks to Bob throughout a 30-second
interval. Will Bob necessarily return the favor and provide chunks to Alice in
this same interval? Why or why not?

R22. Consider a new peer Alice that joins BitTorrent without possessing any chunks.
Without any chunks, she cannot become a top-four uploader for any of the other
peers, since she has nothing to upload. How then will Alice get her first chunk?

R23. What is an overlay network? Does it include routers? What are the edges in
the overlay network?

SECTION 2.6

R24. CDNs typically adopt one of two different server placement philosophies.
Name and briefly describe them.

R25. Besides network-related considerations such as delay, loss, and bandwidth
performance, there are other important factors that go into designing a CDN
server selection strategy. What are they?

SECTION 2.7

R26. In Section 2.7, the UDP server described needed only one socket, whereas
the TCP server needed two sockets. Why? If the TCP server were to support
n simultaneous connections, each from a different client host, how many
sockets would the TCP server need?

167

168

CHAPTER 2

APPLICATION LAYER

R27. For the client-server application over TCP described in Section 2.7, why

must the server program be executed before the client program? For the
client-server application over UDP, why may the client program be executed
before the server program?

Problems

PI1.

P2.

P3.

P4.

True or false?

a. A user requests a Web page that consists of some text and three images.
For this page, the client will send one request message and receive four
response messages.

b. Two distinct Web pages (for example, www.mit.edu/research
.html and www.mit.edu/students.html) can be sent over the
same persistent connection.

c. With nonpersistent connections between browser and origin server, it is
possible for a single TCP segment to carry two distinct HTTP request
messages.

d. The Date: header in the HTTP response message indicates when the
object in the response was last modified.

e. HTTP response messages never have an empty message body.

SMS, iMessage, Wechat, and WhatsApp are all smartphone real-time mes-
saging systems. After doing some research on the Internet, for each of these
systems write one paragraph about the protocols they use. Then write a para-
graph explaining how they differ.

Consider an HTTP client that wants to retrieve a Web document at a given
URL. The IP address of the HTTP server is initially unknown. What transport
and application-layer protocols besides HTTP are needed in this scenario?

Consider the following string of ASCII characters that were captured by
Wireshark when the browser sent an HTTP GET message (i.e., this is the
actual content of an HTTP GET message). The characters <cr><If> are
carriage return and line-feed characters (that is, the italized character string
<cr> in the text below represents the single carriage-return character that was
contained at that point in the HTTP header). Answer the following questions,
indicating where in the HTTP GET message below you find the answer.

GET /cs453/index.html HTTP/1.1l<cr><lf>Host: gai
a.cs.umass.edu<cr><Ilf>User-Agent: Mozilla/5.0 (
Windows;U; Windows NT 5.1; en-US; rv:1.7.2) Gec
ko/20040804 Netscape/7.2 (ax) <cr><Ilf>Accept:ex
t/xml, application/xml, application/xhtml+xml, text
/html;g=0.9, text/plain;g=0.8,image/png,*/*;qg=0.5

PROBLEMS

<cr><lf>Accept-Language: en-us,en;g=0.5<cr><lf>Accept-
Encoding: zip,deflate<cr><lf>Accept-Charset: ISO
-8859-1,utf-8;g=0.7, *;g=0.7<cr><1f>Keep-Alive: 300<cr>
<lf>Connection:keep-alive<cr><lf><cr><Ilf>

What is the URL of the document requested by the browser?

What version of HTTP is the browser running?

Does the browser request a non-persistent or a persistent connection?
What is the IP address of the host on which the browser is running?

© a0 o p

What type of browser initiates this message? Why is the browser type
needed in an HTTP request message?

P5. The text below shows the reply sent from the server in response to the HTTP
GET message in the question above. Answer the following questions, indicat-
ing where in the message below you find the answer.

HTTP/1.1 200 OK<cr><lf>Date: Tue, 07 Mar 2008
12:39:45GMT<cr><l1f>Server: Apache/2.0.52 (Fedora)
<cr><lf>Last-Modified: Sat, 10 Dec2005 18:27:46
GMT<cr><lf>ETag: "526c3-f22-a88a4c80”"<cr><lf>Accept-
Ranges: bytes<cr><lf>Content-Length: 3874<cr><Iift>
Keep-Alive: timeout=max=100<cr><lf>Connection:
Keep-Alive<cr><lf>Content-Type: text/html; charset=
IS0-8859-1<cr><lf><cr><lf><!doctype html public ”-
//w3c//dtd html 4.0transitional//en”><lf><html><If>
<head><1f> <meta http-equiv="Content-Type”
content="text/html; charset=1s0-8859-1"><1f> <meta
name="GENERATOR” content="Mozilla/4.79 [en] (Windows NT
5.0; U) Netscape]”><l1f> <title>CMPSCI 453 / 591 /
NTU-ST550ASpring 2005 homepage</title><1f></head><l1f>
<much more document text following here (not shown)>

a. Was the server able to successfully find the document or not? What time
was the document reply provided?

b. When was the document last modified?
c. How many bytes are there in the document being returned?

d. What are the first 5 bytes of the document being returned? Did the server
agree to a persistent connection?

P6. Obtain the HTTP/1.1 specification (RFC 2616). Answer the following
questions:
a. Explain the mechanism used for signaling between the client and server
to indicate that a persistent connection is being closed. Can the client, the
server, or both signal the close of a connection?

169

170

CHAPTER 2

P7.

P8.

PO.

P10.

APPLICATION LAYER

b. What encryption services are provided by HTTP?

c. Can a client open three or more simultaneous connections with a given
server?

d. Either a server or a client may close a transport connection between them
if either one detects the connection has been idle for some time. Is it
possible that one side starts closing a connection while the other side is
transmitting data via this connection? Explain.

Suppose within your Web browser you click on a link to obtain a Web page.
The IP address for the associated URL is not cached in your local host, so

a DNS lookup is necessary to obtain the IP address. Suppose that n DNS
servers are visited before your host receives the IP address from DNS; the
successive visits incur an RTT of RTTj, . . ., RTT,. Further suppose that the
Web page associated with the link contains exactly one object, consisting of
a small amount of HTML text. Let RTT, denote the RTT between the local
host and the server containing the object. Assuming zero transmission time
of the object, how much time elapses from when the client clicks on the link
until the client receives the object?

Referring to Problem P7, suppose the HTML file references eight very small
objects on the same server. Neglecting transmission times, how much time
elapses with

a. Non-persistent HTTP with no parallel TCP connections?

b. Non-persistent HTTP with the browser configured for 6 parallel
connections?

c. Persistent HTTP?

Consider Figure 2.12, for which there is an institutional network connected to
the Internet. Suppose that the average object size is 1,000,000 bits and that the
average request rate from the institution’s browsers to the origin servers is 16
requests per second. Also suppose that the amount of time it takes from when
the router on the Internet side of the access link forwards an HTTP request until
it receives the response is three seconds on average (see Section 2.2.5). Model
the total average response time as the sum of the average access delay (that

is, the delay from Internet router to institution router) and the average Internet
delay. For the average access delay, use A/(1 — AB), where A is the average
time required to send an object over the access link and S is the arrival rate of
objects to the access link.

a. Find the total average response time.

b. Now suppose a cache is installed in the institutional LAN. Suppose the
miss rate is 0.4. Find the total response time.

Consider a short, 10-meter link, over which a sender can transmit at a rate
of 150 bits/sec in both directions. Suppose that packets containing data
are 100,000 bits long, and packets containing only control (e.g., ACK or

P11.

P12.

P13.

P14.

P15.

P16.

PROBLEMS

handshaking) are 200 bits long. Assume that N parallel connections each

get 1/N of the link bandwidth. Now consider the HTTP protocol, and suppose
that each downloaded object is 100 Kbits long, and that the initial downloaded
object contains 10 referenced objects from the same sender. Would parallel
downloads via parallel instances of non-persistent HTTP make sense in this
case? Now consider persistent HTTP. Do you expect significant gains over
the non-persistent case? Justify and explain your answer.

Consider the scenario introduced in the previous problem. Now suppose that
the link is shared by Bob with four other users. Bob uses parallel instances
of non-persistent HTTP, and the other four users use non-persistent HTTP
without parallel downloads.

a. Do Bob’s parallel connections help him get Web pages more quickly?
Why or why not?

b. If all five users open five parallel instances of non-persistent HTTP, then
would Bob’s parallel connections still be beneficial? Why or why not?

Write a simple TCP program for a server that accepts lines of input from a cli-
ent and prints the lines onto the server’s standard output. (You can do this by
modifying the TCPServer.py program in the text.) Compile and execute your
program. On any other machine that contains a Web browser, set the proxy
server in the browser to the host that is running your server program; also con-
figure the port number appropriately. Your browser should now send its GET
request messages to your server, and your server should display the messages
on its standard output. Use this platform to determine whether your browser
generates conditional GET messages for objects that are locally cached.

Consider sending over HTTP/2 a Web page that consists of one video clip,
and five images. Suppose that the video clip is transported as 2000 frames,
and each image has three frames.

a. If all the video frames are sent first without interleaving, how many
“frame times” are needed until all five images are sent?

b. If frames are interleaved, how many frame times are needed until all five
images are sent.

Consider the Web page in problem 13. Now HTTP/2 prioritization is
employed. Suppose all the images are given priority over the video clip, and
that the first image is given priority over the second image, the second image
over the third image, and so on. How many frame times will be needed until
the second image is sent?

What is the difference between MATIL FROM: in SMTP and From: in the
mail message itself?

How does SMTP mark the end of a message body? How about HTTP? Can
HTTP use the same method as SMTP to mark the end of a message body?
Explain.

171

172

CHAPTER 2

e APPLICATION LAYER

P17. Read RFC 5321 for SMTP. What does MTA stand for? Consider the follow-
ing received spam e-mail (modified from a real spam e-mail). Assuming only
the originator of this spam e-mail is malicious and all other hosts are honest,
identify the malacious host that has generated this spam e-mail.

From - Fri Nov 07 13:41:30 2008

Return-Path: <tennis5@pp33head.com>

Received: from barmail.cs.umass.edu (barmail.cs.umass.
edu

[128.119.240.3]) by cs.umass.edu (8.13.1/8.12.6) for
<hg@cs.umass.edu>; Fri, 7 Nov 2008 13:27:10 -0500
Received: from asusus-4b96 (localhost [127.0.0.1]1) by
barmail.cs.umass.edu (Spam Firewall) for <hg@cs.umass.
edu>; Fri, 7

Nov 2008 13:27:07 -0500 (EST)

Received: from asusus-4b96 ([58.88.21.177]) by barmail.
cs.umass.edu

for <hg@cs.umass.edu>; Fri, 07 Nov 2008 13:27:07 -0500
(EST)

Received: from [58.88.21.177] by inbnd55.exchangeddd.
com; Sat, 8

Nov 2008 01:27:07 +0700

From: ”Jonny” <tennis5@pp33head.com>

To: <hg@cs.umass.edu>

Subject: How to secure your savings

P18. a. What is a whois database?

b. Use various whois databases on the Internet to obtain the names of two
DNS servers. Indicate which whois databases you used.

c. Use nslookup on your local host to send DNS queries to three DNS
servers: your local DNS server and the two DNS servers you found in
part (b). Try querying for Type A, NS, and MX reports. Summarize your
findings.

d. Use nslookup to find a Web server that has multiple IP addresses. Does
the Web server of your institution (school or company) have multiple IP
addresses?

e. Use the ARIN whois database to determine the IP address range used by
your university.

f. Describe how an attacker can use whois databases and the nslookup tool
to perform reconnaissance on an institution before launching an attack.

g. Discuss why whois databases should be publicly available.

P19.

P20.

P21.

P22.

pP23.

P24.

PROBLEMS

In this problem, we use the useful dig tool available on Unix and Linux hosts to
explore the hierarchy of DNS servers. Recall that in Figure 2.19, a DNS server
in the DNS hierarchy delegates a DNS query to a DNS server lower in the
hierarchy, by sending back to the DNS client the name of that lower-level DNS
server. First read the man page for dig, and then answer the following questions.

a. Starting with a root DNS server (from one of the root servers [a-m].
root-servers.net), initiate a sequence of queries for the IP address for your
department’s Web server by using dig. Show the list of the names of DNS
servers in the delegation chain in answering your query.

b. Repeat part (a) for several popular Web sites, such as google.com, yahoo
.com, Or amazon.com.

Suppose you can access the caches in the local DNS servers of your depart-
ment. Can you propose a way to roughly determine the Web servers (outside
your department) that are most popular among the users in your department?
Explain.

Suppose that your department has a local DNS server for all computers in the
department. You are an ordinary user (i.e., not a network/system administra-
tor). Can you determine if an external Web site was likely accessed from a
computer in your department a couple of seconds ago? Explain.

Consider distributing a file of F = 20 Gbits to N peers. The server has

an upload rate of u;, = 30 Mbps, and each peer has a download rate of

d; = 2 Mbps and an upload rate of u. For N = 10, 100, and 1,000 and

u = 300 Kbps, 700 Kbps, and 2 Mbps, prepare a chart giving the minimum
distribution time for each of the combinations of N and u for both client-
server distribution and P2P distribution.

Consider distributing a file of F bits to N peers using a client-server archi-
tecture. Assume a fluid model where the server can simultaneously transmit
to multiple peers, transmitting to each peer at different rates, as long as the
combined rate does not exceed .

a. Suppose that u/N = d,,;,. Specify a distribution scheme that has a distri-
bution time of NF/u.

b. Suppose that u/N = d,;,. Specify a distribution scheme that has a distri-
bution time of F/d,;,.

c. Conclude that the minimum distribution time is in general given by
max { NF/ug, Fld,;, } .

Consider distributing a file of F bits to N peers using a P2P architecture.
Assume a fluid model. For simplicity assume that d_. is very large, so that
peer download bandwidth is never a bottleneck.

a. Suppose that u, = (4, + u; + ... + uy)/N. Specify a distribution
scheme that has a distribution time of F/u.

173

174

CHAPTER 2

e APPLICATION LAYER

P25.

P26.

pP27.

P28.

P29.

b. Suppose that u;, = (4, + u; + ... + uy)/N. Specify a distribution
scheme that has a distribution time of NF/(u; + u; + ... + uy).

c. Conclude that the minimum distribution time is in general given by
max { Flug, NF/(ug + uy + ... + uy) }.

Consider an overlay network with N active peers, with each pair of peers hav-
ing an active TCP connection. Additionally, suppose that the TCP connec-
tions pass through a total of M routers. How many nodes and edges are there
in the corresponding overlay network?

Suppose Bob joins a BitTorrent torrent, but he does not want to upload any
data to any other peers (so called free-riding).

a. Bob claims that he can receive a complete copy of the file that is shared
by the swarm. Is Bob’s claim possible? Why or why not?

b. Bob further claims that he can further make his “free-riding”” more
efficient by using a collection of multiple computers (with distinct IP
addresses) in the computer lab in his department. How can he do that?

Consider a DASH system for which there are N video versions (at N different
rates and qualities) and N audio versions (at N different rates and qualities).
Suppose we want to allow the player to choose at any time any of the N video
versions and any of the N audio versions.

a. If we create files so that the audio is mixed in with the video, so server
sends only one media stream at given time, how many files will the server
need to store (each a different URL)?

b. If the server instead sends the audio and video streams separately and has
the client synchronize the streams, how many files will the server need to
store?

Install and compile the Python programs TCPClient and UDPClient on one

host and TCPServer and UDPServer on another host.

a. Suppose you run TCPClient before you run TCPServer. What happens?
Why?

b. Suppose you run UDPClient before you run UDPServer. What happens?
Why?

c. What happens if you use different port numbers for the client and server
sides?

Suppose that in UDPClient.py, after we create the socket, we add the line:

clientSocket.bind ((’", 5432))

Will it become necessary to change UDPServer.py? What are the port num-
bers for the sockets in UDPClient and UDPServer? What were they before
making this change?

SOCKET PROGRAMMING ASSIGNMENTS

P30. Can you configure your browser to open multiple simultaneous connections
to a Web site? What are the advantages and disadvantages of having a large
number of simultaneous TCP connections?

P31. We have seen that Internet TCP sockets treat the data being sent as a byte
stream but UDP sockets recognize message boundaries. What are one
advantage and one disadvantage of byte-oriented API versus having the API
explicitly recognize and preserve application-defined message boundaries?

P32. What is the Apache Web server? How much does it cost? What functional-
ity does it currently have? You may want to look at Wikipedia to answer this
question.

Socket Programming Assignments

The Companion Website includes six socket programming assignments. The first
four assignments are summarized below. The fifth assignment makes use of the
ICMP protocol and is summarized at the end of Chapter 5. It is highly recommended
that students complete several, if not all, of these assignments. Students can find full
details of these assignments, as well as important snippets of the Python code, at the
Web site www.pearsonhighered.com/cs-resources.

Assignment 1: Web Server

In this assignment, you will develop a simple Web server in Python that is capable of
processing only one request. Specifically, your Web server will (i) create a connection
socket when contacted by a client (browser); (ii) receive the HTTP request from this
connection; (iii) parse the request to determine the specific file being requested; (iv) get
the requested file from the server’s file system; (v) create an HTTP response message
consisting of the requested file preceded by header lines; and (vi) send the response
over the TCP connection to the requesting browser. If a browser requests a file that is
not present in your server, your server should return a “404 Not Found” error message.

In the Companion Website, we provide the skeleton code for your server. Your
job is to complete the code, run your server, and then test your server by sending
requests from browsers running on different hosts. If you run your server on a host
that already has a Web server running on it, then you should use a different port than
port 80 for your Web server.

Assignment 2: UDP Pinger

In this programming assignment, you will write a client ping program in Python.
Your client will send a simple ping message to a server, receive a corresponding
pong message back from the server, and determine the delay between when the client

175

176

CHAPTER 2

e APPLICATION LAYER

sent the ping message and received the pong message. This delay is called the Round
Trip Time (RTT). The functionality provided by the client and server is similar to the
functionality provided by standard ping program available in modern operating sys-
tems. However, standard ping programs use the Internet Control Message Protocol
(ICMP) (which we will study in Chapter 5). Here we will create a nonstandard (but
simple!) UDP-based ping program.

Your ping program is to send 10 ping messages to the target server over UDP.
For each message, your client is to determine and print the RTT when the corre-
sponding pong message is returned. Because UDP is an unreliable protocol, a packet
sent by the client or server may be lost. For this reason, the client cannot wait indefi-
nitely for a reply to a ping message. You should have the client wait up to one second
for a reply from the server; if no reply is received, the client should assume that the
packet was lost and print a message accordingly.

In this assignment, you will be given the complete code for the server (available
in the Companion Website). Your job is to write the client code, which will be very
similar to the server code. It is recommended that you first study carefully the server
code. You can then write your client code, liberally cutting and pasting lines from
the server code.

Assignment 3: Mail Client

The goal of this programming assignment is to create a simple mail client that sends
e-mail to any recipient. Your client will need to establish a TCP connection with
a mail server (e.g., a Google mail server), dialogue with the mail server using the
SMTP protocol, send an e-mail message to a recipient (e.g., your friend) via the mail
server, and finally close the TCP connection with the mail server.

For this assignment, the Companion Website provides the skeleton code for
your client. Your job is to complete the code and test your client by sending e-mail
to different user accounts. You may also try sending through different servers (for
example, through a Google mail server and through your university mail server).

Assignment 4: Web Proxy

In this assignment, you will develop a Web proxy. When your proxy receives an
HTTP request for an object from a browser, it generates a new HTTP request for
the same object and sends it to the origin server. When the proxy receives the cor-
responding HTTP response with the object from the origin server, it creates a new
HTTP response, including the object, and sends it to the client.

For this assignment, the Companion Website provides the skeleton code for the
proxy server. Your job is to complete the code, and then test it by having different
browsers request Web objects via your proxy.

WIRESHARK LAB: DNS

Wireshark Lab: HTTP

Having gotten our feet wet with the Wireshark packet sniffer in Lab 1, we’re now
ready to use Wireshark to investigate protocols in operation. In this lab, we’ll explore
several aspects of the HTTP protocol: the basic GET/reply interaction, HTTP message
formats, retrieving large HTML files, retrieving HTML files with embedded URLs,
persistent and non-persistent connections, and HTTP authentication and security.

As is the case with all Wireshark labs, the full description of this lab is available
at this book’s Web site, www.pearsonhighered.com/cs-resources.

Wireshark Lab: DNS

In this lab, we take a closer look at the client side of the DNS, the protocol that
translates Internet hostnames to IP addresses. Recall from Section 2.5 that the cli-
ent’s role in the DNS is relatively simple—a client sends a query to its local DNS
server and receives a response back. Much can go on under the covers, invisible to
the DNS clients, as the hierarchical DNS servers communicate with each other to
either recursively or iteratively resolve the client’s DNS query. From the DNS cli-
ent’s standpoint, however, the protocol is quite simple—a query is formulated to the
local DNS server and a response is received from that server. We observe DNS in
action in this lab.

As is the case with all Wireshark labs, the full description of this lab is available
at this book’s Web site, www.pearsonhighered.com/cs-resources.

177

178

AN INTERVIEW WITH...

Tim Berners-Lee

Sir Tim Bernerslee is known as the inventor of the World Wide
Web. In 1989, while working as a fellow af CERN, he proposed
an Internetbased distributed information management system includ-
ing the original version of the HTTP profocol. In the same year he
successfully implemented his design on a client and server. He
received the 2016 Turing award for “inventing the World Wide
Web, the first Web browser, and the fundamental profocols and

algorithms allowing the Web to scale.” He is the Co-Founder of the
World Wide Web Foundation, and currently is a Professorial Fellow
of Computer Science at the University of Oxford and a professor af

CSAIL at MIT.

You originally studied physics. How is networking similar to physics?

When you study physics, you imagine what rules of behavior on the very small scale could
possibly give rise to the large-scale world as we see it. When you design a global system
like the Web, you try to invent rules of behavior of Web pages and links and things that
could in the large create a large-scale world as we would like it. One is analysis and the
other synthesis, but they are very similar.

What influenced you to specialize in networking?

After my physics degree, the telecommunications research companies seemed to be the
most interesting places. The microprocessor had just come out, and telecommunications
was switching very fast from hardwired logic to microprocessor-based systems. It was
very exciting.

What is the most challenging part of your job?

When two groups disagree strongly about something, but want in the end to achieve a com-
mon goal, finding exactly what they each mean and where the misunderstandings are can be
very demanding. The chair of any working group knows that. However, this is what it takes
to make progress toward consensus on a large scale.

Courtesy of Tim Berners-lee

What people have inspired you professionally?

My parents, who were involved in the early days of computing, gave me a fascination with
the whole subject. Mike Sendall and Peggie Rimmer, for whom I worked at various times
at CERN are among the people who taught me and encouraged me. I later learned to admire
the people, including Vanevar Bush, Doug Englebart, and Ted Nelson, who had had similar
dreams in their time but had not had the benefit of the existence for PCs and the Internet to
be able to realize it.

179

CHAPTER

Transport
Layer

Residing between the application and network layers, the transport layer is a central
piece of the layered network architecture. It has the critical role of providing com-
munication services directly to the application processes running on different hosts.
The pedagogic approach we take in this chapter is to alternate between discussions of
transport-layer principles and discussions of how these principles are implemented
in existing protocols; as usual, particular emphasis will be given to Internet proto-
cols, in particular the TCP and UDP transport-layer protocols.

We’ll begin by discussing the relationship between the transport and network
layers. This sets the stage for examining the first critical function of the transport
layer—extending the network layer’s delivery service between two end systems to
a delivery service between two application-layer processes running on the end sys-
tems. We’ll illustrate this function in our coverage of the Internet’s connectionless
transport protocol, UDP.

We’ll then return to principles and confront one of the most fundamental prob-
lems in computer networking—how two entities can communicate reliably over a
medium that may lose and corrupt data. Through a series of increasingly complicated
(and realistic!) scenarios, we’ll build up an array of techniques that transport proto-
cols use to solve this problem. We’ll then show how these principles are embodied
in TCP, the Internet’s connection-oriented transport protocol.

We’ll next move on to a second fundamentally important problem in
networking—controlling the transmission rate of transport-layer entities in order to
avoid, or recover from, congestion within the network. We’ll consider the causes
and consequences of congestion, as well as commonly used congestion-control

181

182

CHAPTER 3

e TRANSPORT LAYER

techniques. After obtaining a solid understanding of the issues behind congestion
control, we’ll study TCP’s approach to congestion control.

3.1 Introduction and Transport-Layer Services

In the previous two chapters, we touched on the role of the transport layer and the
services that it provides. Let’s quickly review what we have already learned about
the transport layer.

A transport-layer protocol provides for logical communication between
application processes running on different hosts. By logical communication, we
mean that from an application’s perspective, it is as if the hosts running the pro-
cesses were directly connected; in reality, the hosts may be on opposite sides of the
planet, connected via numerous routers and a wide range of link types. Application
processes use the logical communication provided by the transport layer to send
messages to each other, free from the worry of the details of the physical infra-
structure used to carry these messages. Figure 3.1 illustrates the notion of logical
communication.

As shown in Figure 3.1, transport-layer protocols are implemented in the end
systems but not in network routers. On the sending side, the transport layer converts
the application-layer messages it receives from a sending application process into
transport-layer packets, known as transport-layer segments in Internet terminology.
This is done by (possibly) breaking the application messages into smaller chunks
and adding a transport-layer header to each chunk to create the transport-layer seg-
ment. The transport layer then passes the segment to the network layer at the send-
ing end system, where the segment is encapsulated within a network-layer packet (a
datagram) and sent to the destination. It’s important to note that network routers act
only on the network-layer fields of the datagram; that is, they do not examine the
fields of the transport-layer segment encapsulated with the datagram. On the receiv-
ing side, the network layer extracts the transport-layer segment from the datagram
and passes the segment up to the transport layer. The transport layer then processes
the received segment, making the data in the segment available to the receiving
application.

More than one transport-layer protocol may be available to network applications.
For example, the Internet has two protocols—TCP and UDP. Each of these protocols
provides a different set of transport-layer services to the invoking application.

3.1.1 Relationship Between Transport and Network Layers

Recall that the transport layer lies just above the network layer in the protocol
stack. Whereas a transport-layer protocol provides logical communication between

3.1

]
\

b

e INTRODUCTION AND TRANSPORT-LAYER SERVICES

National or
Global ISP

-~

o~

~

T T
Mobile Network . —
><
Datacenter Network
E
Application @Eg @
Transport T >< %
Network
Network < =
Link Link ><
n Network .
Physical 2 \Rhysical/
sica £ :
Y |) Link Datacenter Network
\ Physical
><
3 ><
=< >< _ E
ocal or
QRS Network jonal ISP Content Provider Network
Network Network (99
Link Link LY =< Network
,)
Physical Physical %, Link
. S -
—_— >< A < Physical
2] OGS
/?x
ﬂ ﬂ :
@ @ Application
Enterprise Network Transport
Network
Link
Physical

Figure 3.1 ¢ The transport layer provides logical rather than physical
communication between application processes

183

184

CHAPTER 3

e TRANSPORT LAYER

processes running on different hosts, a network-layer protocol provides logical-
communication between hosts. This distinction is subtle but important. Let’s exam-
ine this distinction with the aid of a household analogy.

Consider two houses, one on the East Coast and the other on the West Coast,
with each house being home to a dozen kids. The kids in the East Coast household
are cousins of the kids in the West Coast household. The kids in the two households
love to write to each other—each kid writes each cousin every week, with each letter
delivered by the traditional postal service in a separate envelope. Thus, each house-
hold sends 144 letters to the other household every week. (These kids would save a lot
of money if they had e-mail!) In each of the households, there is one kid—Ann in the
West Coast house and Bill in the East Coast house—responsible for mail collection
and mail distribution. Each week Ann visits all her brothers and sisters, collects the
mail, and gives the mail to a postal-service mail carrier, who makes daily visits to
the house. When letters arrive at the West Coast house, Ann also has the job of dis-
tributing the mail to her brothers and sisters. Bill has a similar job on the East Coast.

In this example, the postal service provides logical communication between the
two houses—the postal service moves mail from house to house, not from person to
person. On the other hand, Ann and Bill provide logical communication among the
cousins—Ann and Bill pick up mail from, and deliver mail to, their brothers and sis-
ters. Note that from the cousins’ perspective, Ann and Bill are the mail service, even
though Ann and Bill are only a part (the end-system part) of the end-to-end delivery
process. This household example serves as a nice analogy for explaining how the
transport layer relates to the network layer:

application messages = letters in envelopes

processes = cousins

hosts (also called end systems) = houses

transport-layer protocol = Ann and Bill

network-layer protocol = postal service (including mail carriers)

Continuing with this analogy, note that Ann and Bill do all their work within
their respective homes; they are not involved, for example, in sorting mail in
any intermediate mail center or in moving mail from one mail center to another.
Similarly, transport-layer protocols live in the end systems. Within an end system, a
transport protocol moves messages from application processes to the network edge
(that is, the network layer) and vice versa, but it doesn’t have any say about how the
messages are moved within the network core. In fact, as illustrated in Figure 3.1,
intermediate routers neither act on, nor recognize, any information that the transport
layer may have added to the application messages.

Continuing with our family saga, suppose now that when Ann and Bill go on
vacation, another cousin pair—say, Susan and Harvey—substitute for them and pro-
vide the household-internal collection and delivery of mail. Unfortunately for the
two families, Susan and Harvey do not do the collection and delivery in exactly

3.1 ¢ INTRODUCTION AND TRANSPORT-LAYER SERVICES

the same way as Ann and Bill. Being younger kids, Susan and Harvey pick up and
drop off the mail less frequently and occasionally lose letters (which are sometimes
chewed up by the family dog). Thus, the cousin-pair Susan and Harvey do not pro-
vide the same set of services (that is, the same service model) as Ann and Bill. In
an analogous manner, a computer network may make available multiple transport
protocols, with each protocol offering a different service model to applications.

The possible services that Ann and Bill can provide are clearly constrained by
the possible services that the postal service provides. For example, if the postal ser-
vice doesn’t provide a maximum bound on how long it can take to deliver mail
between the two houses (for example, three days), then there is no way that Ann and
Bill can guarantee a maximum delay for mail delivery between any of the cousin
pairs. In a similar manner, the services that a transport protocol can provide are often
constrained by the service model of the underlying network-layer protocol. If the
network-layer protocol cannot provide delay or bandwidth guarantees for transport-
layer segments sent between hosts, then the transport-layer protocol cannot provide
delay or bandwidth guarantees for application messages sent between processes.

Nevertheless, certain services can be offered by a transport protocol even when
the underlying network protocol doesn’t offer the corresponding service at the net-
work layer. For example, as we’ll see in this chapter, a transport protocol can offer
reliable data transfer service to an application even when the underlying network
protocol is unreliable, that is, even when the network protocol loses, garbles, or
duplicates packets. As another example (which we’ll explore in Chapter 8 when we
discuss network security), a transport protocol can use encryption to guarantee that
application messages are not read by intruders, even when the network layer cannot
guarantee the confidentiality of transport-layer segments.

3.1.2 Overview of the Transport Layer in the Internet

Recall that the Internet makes two distinct transport-layer protocols available to the
application layer. One of these protocols is UDP (User Datagram Protocol), which
provides an unreliable, connectionless service to the invoking application. The sec-
ond of these protocols is TCP (Transmission Control Protocol), which provides a
reliable, connection-oriented service to the invoking application. When designing a
network application, the application developer must specify one of these two trans-
port protocols. As we saw in Section 2.7, the application developer selects between
UDP and TCP when creating sockets.

To simplify terminology, we refer to the transport-layer packet as a segment. We
mention, however, that the Internet literature (for example, the RFCs) also refers to the
transport-layer packet for TCP as a segment but often refers to the packet for UDP as
a datagram. However, this same Internet literature also uses the term datagram for the
network-layer packet! For an introductory book on computer networking such as this,
we believe that it is less confusing to refer to both TCP and UDP packets as segments,
and reserve the term datagram for the network-layer packet.

185

186

CHAPTER 3

e TRANSPORT LAYER

Before proceeding with our brief introduction of UDP and TCP, it will be useful
to say a few words about the Internet’s network layer. (We’ll learn about the network
layer in detail in Chapters 4 and 5.) The Internet’s network-layer protocol has a
name—IP, for Internet Protocol. IP provides logical communication between hosts.
The IP service model is a best-effort delivery service. This means that IP makes
its “best effort” to deliver segments between communicating hosts, but it makes no
guarantees. In particular, it does not guarantee segment delivery, it does not guaran-
tee orderly delivery of segments, and it does not guarantee the integrity of the data
in the segments. For these reasons, IP is said to be an unreliable service. We also
mention here that every host has at least one network-layer address, a so-called IP
address. We’ll examine IP addressing in detail in Chapter 4; for this chapter we need
only keep in mind that each host has an IP address.

Having taken a glimpse at the IP service model, let’s now summarize the service
models provided by UDP and TCP. The most fundamental responsibility of UDP
and TCP is to extend IP’s delivery service between two end systems to a delivery
service between two processes running on the end systems. Extending host-to-host
delivery to process-to-process delivery is called transport-layer multiplexing and
demultiplexing. We’ll discuss transport-layer multiplexing and demultiplexing in
the next section. UDP and TCP also provide integrity checking by including error-
detection fields in their segments’ headers. These two minimal transport-layer
services—process-to-process data delivery and error checking—are the only two
services that UDP provides! In particular, like IP, UDP is an unreliable service—it
does not guarantee that data sent by one process will arrive intact (or at all!) to the
destination process. UDP is discussed in detail in Section 3.3.

TCP, on the other hand, offers several additional services to applications. First
and foremost, it provides reliable data transfer. Using flow control, sequence
numbers, acknowledgments, and timers (techniques we’ll explore in detail in this
chapter), TCP ensures that data is delivered from sending process to receiving pro-
cess, correctly and in order. TCP thus converts IP’s unreliable service between end
systems into a reliable data transport service between processes. TCP also provides
congestion control. Congestion control is not so much a service provided to the
invoking application as it is a service for the Internet as a whole, a service for the
general good. Loosely speaking, TCP congestion control prevents any one TCP con-
nection from swamping the links and routers between communicating hosts with
an excessive amount of traffic. TCP strives to give each connection traversing a
congested link an equal share of the link bandwidth. This is done by regulating the
rate at which the sending sides of TCP connections can send traffic into the network.
UDP traffic, on the other hand, is unregulated. An application using UDP transport
can send at any rate it pleases, for as long as it pleases.

A protocol that provides reliable data transfer and congestion control is neces-
sarily complex. We’ll need several sections to cover the principles of reliable data
transfer and congestion control, and additional sections to cover the TCP protocol
itself. These topics are investigated in Sections 3.4 through 3.7. The approach taken

3.2 e MULTIPLEXING AND DEMULTIPLEXING

in this chapter is to alternate between basic principles and the TCP protocol. For
example, we’ll first discuss reliable data transfer in a general setting and then discuss
how TCP specifically provides reliable data transfer. Similarly, we’ll first discuss
congestion control in a general setting and then discuss how TCP performs conges-
tion control. But before getting into all this good stuff, let’s first look at transport-
layer multiplexing and demultiplexing.

3.2 Multiplexing and Demultiplexing

In this section, we discuss transport-layer multiplexing and demultiplexing, that
is, extending the host-to-host delivery service provided by the network layer to a
process-to-process delivery service for applications running on the hosts. In order to
keep the discussion concrete, we’ll discuss this basic transport-layer service in the
context of the Internet. We emphasize, however, that a multiplexing/demultiplexing
service is needed for all computer networks.

At the destination host, the transport layer receives segments from the network
layer just below. The transport layer has the responsibility of delivering the data in
these segments to the appropriate application process running in the host. Let’s take
a look at an example. Suppose you are sitting in front of your computer, and you are
downloading Web pages while running one FTP session and two Telnet sessions.
You therefore have four network application processes running—two Telnet pro-
cesses, one FTP process, and one HTTP process. When the transport layer in your
computer receives data from the network layer below, it needs to direct the received
data to one of these four processes. Let’s now examine how this is done.

First recall from Section 2.7 that a process (as part of a network application)
can have one or more sockets, doors through which data passes from the network to
the process and through which data passes from the process to the network. Thus,
as shown in Figure 3.2, the transport layer in the receiving host does not actually
deliver data directly to a process, but instead to an intermediary socket. Because at
any given time there can be more than one socket in the receiving host, each socket
has a unique identifier. The format of the identifier depends on whether the socket is
a UDP or a TCP socket, as we’ll discuss shortly.

Now let’s consider how a receiving host directs an incoming transport-layer
segment to the appropriate socket. Each transport-layer segment has a set of fields in
the segment for this purpose. At the receiving end, the transport layer examines these
fields to identify the receiving socket and then directs the segment to that socket.
This job of delivering the data in a transport-layer segment to the correct socket is
called demultiplexing. The job of gathering data chunks at the source host from
different sockets, encapsulating each data chunk with header information (that will
later be used in demultiplexing) to create segments, and passing the segments to the
network layer is called multiplexing. Note that the transport layer in the middle host

187

188

CHAPTER 3 e TRANSPORT LAYER

Application Py P, Application P, P, Application
Transport Transport Transport
Network Network Network

—
Data link = Data link Data link
Physical Physical Physical

Key:
O Process - Socket

Figure 3.2 + Transportlayer multiplexing and demultiplexing

in Figure 3.2 must demultiplex segments arriving from the network layer below to
either process P, or P, above; this is done by directing the arriving segment’s data
to the corresponding process’s socket. The transport layer in the middle host must
also gather outgoing data from these sockets, form transport-layer segments, and
pass these segments down to the network layer. Although we have introduced mul-
tiplexing and demultiplexing in the context of the Internet transport protocols, it’s
important to realize that they are concerns whenever a single protocol at one layer (at
the transport layer or elsewhere) is used by multiple protocols at the next higher layer.

To illustrate the demultiplexing job, recall the household analogy in the previous
section. Each of the kids is identified by his or her name. When Bill receives a batch
of mail from the mail carrier, he performs a demultiplexing operation by observing
to whom the letters are addressed and then hand delivering the mail to his brothers
and sisters. Ann performs a multiplexing operation when she collects letters from her
brothers and sisters and gives the collected mail to the mail person.

Now that we understand the roles of transport-layer multiplexing and demulti-
plexing, let us examine how it is actually done in a host. From the discussion above,
we know that transport-layer multiplexing requires (1) that sockets have unique
identifiers, and (2) that each segment have special fields that indicate the socket to
which the segment is to be delivered. These special fields, illustrated in Figure 3.3,
are the source port number field and the destination port number field. (The UDP
and TCP segments have other fields as well, as discussed in the subsequent sections
of this chapter.) Each port number is a 16-bit number, ranging from 0 to 65535.
The port numbers ranging from 0 to 1023 are called well-known port numbers
and are restricted, which means that they are reserved for use by well-known

3.2 e MULTIPLEXING AND DEMULTIPLEXING

32 bits
|

Source port # Dest. port #

Other header fields

Application
data
(message)

Figure 3.3 + Source and destination port-number fields in a transport-layer
segment

application protocols such as HTTP (which uses port number 80) and FTP (which
uses port number 21). The list of well-known port numbers is given in RFC 1700
and is updated at http://www.iana.org [RFC 3232]. When we develop a new appli-
cation (such as the simple application developed in Section 2.7), we must assign the
application a port number.

It should now be clear how the transport layer could implement the demultiplex-
ing service: Each socket in the host could be assigned a port number, and when
a segment arrives at the host, the transport layer examines the destination port
number in the segment and directs the segment to the corresponding socket. The
segment’s data then passes through the socket into the attached process. As we’ll
see, this is basically how UDP does it. However, we’ll also see that multiplexing/
demultiplexing in TCP is yet more subtle.

Connectionless Multiplexing and Demultiplexing

Recall from Section 2.7.1 that the Python program running in a host can create a
UDP socket with the line

clientSocket = socket (AF_INET, SOCK_DGRAM)

When a UDP socket is created in this manner, the transport layer automatically
assigns a port number to the socket. In particular, the transport layer assigns a port
number in the range 1024 to 65535 that is currently not being used by any other UDP
port in the host. Alternatively, we can add a line into our Python program after we
create the socket to associate a specific port number (say, 19157) to this UDP socket
via the socket bind() method:

clientSocket.bind (("", 19157))

189

190

CHAPTER 3

e TRANSPORT LAYER

If the application developer writing the code were implementing the server side of
a “well-known protocol,” then the developer would have to assign the correspond-
ing well-known port number. Typically, the client side of the application lets the
transport layer automatically (and transparently) assign the port number, whereas the
server side of the application assigns a specific port number.

With port numbers assigned to UDP sockets, we can now precisely describe
UDP multiplexing/demultiplexing. Suppose a process in Host A, with UDP port
19157, wants to send a chunk of application data to a process with UDP port 46428 in
Host B. The transport layer in Host A creates a transport-layer segment that includes
the application data, the source port number (19157), the destination port number
(46428), and two other values (which will be discussed later, but are unimportant for
the current discussion). The transport layer then passes the resulting segment to the
network layer. The network layer encapsulates the segment in an IP datagram and
makes a best-effort attempt to deliver the segment to the receiving host. If the seg-
ment arrives at the receiving Host B, the transport layer at the receiving host exam-
ines the destination port number in the segment (46428) and delivers the segment
to its socket identified by port 46428. Note that Host B could be running multiple
processes, each with its own UDP socket and associated port number. As UDP seg-
ments arrive from the network, Host B directs (demultiplexes) each segment to the
appropriate socket by examining the segment’s destination port number.

It is important to note that a UDP socket is fully identified by a two-tuple consist-
ing of a destination IP address and a destination port number. As a consequence, if
two UDP segments have different source IP addresses and/or source port numbers, but
have the same destination 1P address and destination port number, then the two seg-
ments will be directed to the same destination process via the same destination socket.

You may be wondering now, what is the purpose of the source port number?
As shown in Figure 3.4, in the A-to-B segment the source port number serves as
part of a “return address”—when B wants to send a segment back to A, the destina-
tion port in the B-to-A segment will take its value from the source port value of the
A-to-B segment. (The complete return address is A’s IP address and the source port
number.) As an example, recall the UDP server program studied in Section 2.7. In
UDPServer.py, the server uses the recvfrom () method to extract the client-
side (source) port number from the segment it receives from the client; it then sends
a new segment to the client, with the extracted source port number serving as the
destination port number in this new segment.

Connection-Oriented Multiplexing and Demultiplexing

In order to understand TCP demultiplexing, we have to take a close look at TCP
sockets and TCP connection establishment. One subtle difference between a
TCP socket and a UDP socket is that a TCP socket is identified by a four-tuple:
(source IP address, source port number, destination IP address, destination port
number). Thus, when a TCP segment arrives from the network to a host, the host
uses all four values to direct (demultiplex) the segment to the appropriate socket.

3.2 e MULTIPLEXING AND DEMULTIPLEXING

Client process

L —Socket
Host A Server B
source port: dest. port:
19157 46428
—

L \N—
“—N

source port: dest. port:
46428 19157

LR

Figure 3.4 + The inversion of source and destination port numbers

In particular, and in contrast with UDP, two arriving TCP segments with differ-
ent source IP addresses or source port numbers will (with the exception of a TCP
segment carrying the original connection-establishment request) be directed to two
different sockets. To gain further insight, let’s reconsider the TCP client-server pro-
gramming example in Section 2.7.2:

* The TCP server application has a “welcoming socket,” that waits for connection-
establishment requests from TCP clients (see Figure 2.29) on port number 12000.

* The TCP client creates a socket and sends a connection establishment request
segment with the lines:

clientSocket = socket (AF_INET, SOCK_STREAM)
clientSocket.connect ((serverName, 12000))

* A connection-establishment request is nothing more than a TCP segment with
destination port number 12000 and a special connection-establishment bit set in
the TCP header (discussed in Section 3.5). The segment also includes a source
port number that was chosen by the client.

° When the host operating system of the computer running the server process
receives the incoming connection-request segment with destination port 12000,
it locates the server process that is waiting to accept a connection on port number
12000. The server process then creates a new socket:

connectionSocket, addr = serverSocket.accept()

191

192

CHAPTER 3

TRANSPORT LAYER

Also, the transport layer at the server notes the following four values in the con-
nection-request segment: (1) the source port number in the segment, (2) the IP
address of the source host, (3) the destination port number in the segment, and
(4) its own IP address. The newly created connection socket is identified by these
four values; all subsequently arriving segments whose source port, source IP
address, destination port, and destination IP address match these four values will
be demultiplexed to this socket. With the TCP connection now in place, the client
and server can now send data to each other.

The server host may support many simultaneous TCP connection sockets, with

each socket attached to a process, and with each socket identified by its own four-
tuple. When a TCP segment arrives at the host, all four fields (source IP address,
source port, destination IP address, destination port) are used to direct (demultiplex)
the segment to the appropriate socket.

FOCUS ON SECURITY

PORT SCANNING

We've seen that a server process waits patiently on an open port for contact by a
remote client. Some ports are reserved for well-known applications (e.g., Web, FTP,
DNS, and SMTP servers); other ports are used by convention by popular applications
(e.g., the Microsoft Windows SQL server listens for requests on UDP port 1434). Thus,
if we determine that a port is open on a host, we may be able to map that port to @
specific application running on the host. This is very useful for system administrators,
who are often interested in knowing which network applications are running on the
hosts in their networks. But attackers, in order to “case the joint,” also want to know
which ports are open on target hosts. If a host is found to be running an application
with a known security flaw (e.g., a SQL server listening on port 1434 was subject to
a buffer overflow, allowing a remote user to execute arbitrary code on the vulnerable
host, a flaw exploited by the Slammer worm [CERT 2003-04]), then that host is ripe
for attack.

Determining which applications are listening on which ports is a relatively easy
task. Indeed there are a number of public domain programs, called port scanners,
that do just that. Perhaps the most widely used of these is nmap, freely available at
http://nmap.org and included in most Linux distributions. For TCP, nmap sequentially
scans ports, looking for ports that are accepting TCP connections. For UDP, nmap
again sequentially scans ports, looking for UDP ports that respond to transmitted UDP
segments. In both cases, nmap returns a list of open, closed, or unreachable ports.
A host running nmap can attempt to scan any target host anywhere in the Internet.
We'll revisit nmap in Section 3.5.6, when we discuss TCP connection management.

3.2 e MULTIPLEXING AND DEMULTIPLEXING 193

Web client Web Per-connection
host C server B HTTP
processes
B
Jro
| — Transport-
source port: dest. port: source port: dest. port: layer
7532 80 26145 80 demultiplexing
source IP: dest. IP: source IP: dest. IP:
C B NN c B
Web client \ y
host A k J

v,
L —

source port: dest. port:

26145 80
source IP: dest. IP:
A B

Figure 3.5 ¢ Two clients, using the same destination port number (80) to
communicate with the same Web server application

The situation is illustrated in Figure 3.5, in which Host C initiates two HTTP
sessions to server B, and Host A initiates one HTTP session to B. Hosts A and C
and server B each have their own unique IP address—A, C, and B, respectively.
Host C assigns two different source port numbers (26145 and 7532) to its two HTTP
connections. Because Host A is choosing source port numbers independently of C,
it might also assign a source port of 26145 to its HTTP connection. But this is not
a problem—server B will still be able to correctly demultiplex the two connections
having the same source port number, since the two connections have different source
IP addresses.

Web Servers and TCP

Before closing this discussion, it’s instructive to say a few additional words about
Web servers and how they use port numbers. Consider a host running a Web server,
such as an Apache Web server, on port 80. When clients (for example, browsers)
send segments to the server, all segments will have destination port 80. In particular,
both the initial connection-establishment segments and the segments carrying HTTP

194

CHAPTER 3

e TRANSPORT LAYER

request messages will have destination port 80. As we have just described, the server
distinguishes the segments from the different clients using source IP addresses and
source port numbers.

Figure 3.5 shows a Web server that spawns a new process for each connec-
tion. As shown in Figure 3.5, each of these processes has its own connection socket
through which HTTP requests arrive and HTTP responses are sent. We mention,
however, that there is not always a one-to-one correspondence between connection
sockets and processes. In fact, today’s high-performing Web servers often use only
one process, and create a new thread with a new connection socket for each new
client connection. (A thread can be viewed as a lightweight subprocess.) If you did
the first programming assignment in Chapter 2, you built a Web server that does just
this. For such a server, at any given time there may be many connection sockets (with
different identifiers) attached to the same process.

If the client and server are using persistent HTTP, then throughout the duration
of the persistent connection the client and server exchange HTTP messages via the
same server socket. However, if the client and server use non-persistent HTTP, then
a new TCP connection is created and closed for every request/response, and hence
a new socket is created and later closed for every request/response. This frequent
creating and closing of sockets can severely impact the performance of a busy Web
server (although a number of operating system tricks can be used to mitigate the
problem). Readers interested in the operating system issues surrounding persistent
and non-persistent HTTP are encouraged to see [Nielsen 1997; Nahum 2002].

Now that we’ve discussed transport-layer multiplexing and demultiplexing, let’s
move on and discuss one of the Internet’s transport protocols, UDP. In the next sec-
tion, we’ll see that UDP adds little more to the network-layer protocol than a multi-
plexing/demultiplexing service.

3.3 Connectionless Transport: UDP

In this section, we’ll take a close look at UDP, how it works, and what it does.
We encourage you to refer back to Section 2.1, which includes an overview of the
UDP service model, and to Section 2.7.1, which discusses socket programming using
UDP.

To motivate our discussion about UDP, suppose you were interested in design-
ing a no-frills, bare-bones transport protocol. How might you go about doing this?
You might first consider using a vacuous transport protocol. In particular, on the
sending side, you might consider taking the messages from the application process
and passing them directly to the network layer; and on the receiving side, you might
consider taking the messages arriving from the network layer and passing them
directly to the application process. But as we learned in the previous section, we have

3.3 * CONNECTIONLESS TRANSPORT: UDP

to do a little more than nothing! At the very least, the transport layer has to provide a
multiplexing/demultiplexing service in order to pass data between the network layer
and the correct application-level process.

UDP, defined in [RFC 768], does just about as little as a transport protocol can do.
Aside from the multiplexing/demultiplexing function and some light error checking, it
adds nothing to IP. In fact, if the application developer chooses UDP instead of TCP,
then the application is almost directly talking with IP. UDP takes messages from the
application process, attaches source and destination port number fields for the multi-
plexing/demultiplexing service, adds two other small fields, and passes the resulting
segment to the network layer. The network layer encapsulates the transport-layer seg-
ment into an IP datagram and then makes a best-effort attempt to deliver the segment
to the receiving host. If the segment arrives at the receiving host, UDP uses the destina-
tion port number to deliver the segment’s data to the correct application process. Note
that with UDP there is no handshaking between sending and receiving transport-layer
entities before sending a segment. For this reason, UDP is said to be connectionless.

DNS is an example of an application-layer protocol that typically uses UDP.
When the DNS application in a host wants to make a query, it constructs a DNS query
message and passes the message to UDP. Without performing any handshaking with
the UDP entity running on the destination end system, the host-side UDP adds header
fields to the message and passes the resulting segment to the network layer. The net-
work layer encapsulates the UDP segment into a datagram and sends the datagram to
a name server. The DNS application at the querying host then waits for a reply to its
query. If it doesn’t receive a reply (possibly because the underlying network lost the
query or the reply), it might try resending the query, try sending the query to another
name server, or inform the invoking application that it can’t get a reply.

Now you might be wondering why an application developer would ever choose
to build an application over UDP rather than over TCP. Isn’t TCP always preferable,
since TCP provides a reliable data transfer service, while UDP does not? The answer
is no, as some applications are better suited for UDP for the following reasons:

e Finer application-level control over what data is sent, and when. Under UDP, as
soon as an application process passes data to UDP, UDP will package the data
inside a UDP segment and immediately pass the segment to the network layer.
TCP, on the other hand, has a congestion-control mechanism that throttles the
transport-layer TCP sender when one or more links between the source and des-
tination hosts become excessively congested. TCP will also continue to resend a
segment until the receipt of the segment has been acknowledged by the destina-
tion, regardless of how long reliable delivery takes. Since real-time applications
often require a minimum sending rate, do not want to overly delay segment trans-
mission, and can tolerate some data loss, TCP’s service model is not particularly
well matched to these applications’ needs. As discussed below, these applications
can use UDP and implement, as part of the application, any additional functional-
ity that is needed beyond UDP’s no-frills segment-delivery service.

195

196

CHAPTER 3

e TRANSPORT LAYER

* No connection establishment. As we’ll discuss later, TCP uses a three-way hand-
shake before it starts to transfer data. UDP just blasts away without any formal
preliminaries. Thus UDP does not introduce any delay to establish a connection.
This is probably the principal reason why DNS runs over UDP rather than TCP—
DNS would be much slower if it ran over TCP. HTTP uses TCP rather than UDP,
since reliability is critical for Web pages with text. But, as we briefly discussed
in Section 2.2, the TCP connection-establishment delay in HTTP is an important
contributor to the delays associated with downloading Web documents. Indeed,
the QUIC protocol (Quick UDP Internet Connection, [IETF QUIC 2020]), used
in Google’s Chrome browser, uses UDP as its underlying transport protocol and
implements reliability in an application-layer protocol on top of UDP. We’ll take
a closer look at QUIC in Section 3.8.

* No connection state. TCP maintains connection state in the end systems. This
connection state includes receive and send buffers, congestion-control param-
eters, and sequence and acknowledgment number parameters. We will see in
Section 3.5 that this state information is needed to implement TCP’s reliable data
transfer service and to provide congestion control. UDP, on the other hand, does
not maintain connection state and does not track any of these parameters. For this
reason, a server devoted to a particular application can typically support many
more active clients when the application runs over UDP rather than TCP.

o Small packet header overhead. The TCP segment has 20 bytes of header over-
head in every segment, whereas UDP has only 8 bytes of overhead.

Figure 3.6 lists popular Internet applications and the transport protocols that
they use. As we expect, e-mail, remote terminal access, and file transfer run over
TCP—all these applications need the reliable data transfer service of TCP. We
learned in Chapter 2 that early versions of HTTP ran over TCP but that more recent
versions of HTTP run over UDP, providing their own error control and congestion
control (among other services) at the application layer. Nevertheless, many important
applications run over UDP rather than TCP. For example, UDP is used to carry network
management (SNMP; see Section 5.7) data. UDP is preferred to TCP in this case,
since network management applications must often run when the network is in a
stressed state—precisely when reliable, congestion-controlled data transfer is diffi-
cult to achieve. Also, as we mentioned earlier, DNS runs over UDP, thereby avoiding
TCP’s connection-establishment delays.

As shown in Figure 3.6, both UDP and TCP are sometimes used today with
multimedia applications, such as Internet phone, real-time video conferencing, and
streaming of stored audio and video. We just mention now that all of these applica-
tions can tolerate a small amount of packet loss, so that reliable data transfer is not
absolutely critical for the application’s success. Furthermore, real-time applications,
like Internet phone and video conferencing, react very poorly to TCP’s congestion
control. For these reasons, developers of multimedia applications may choose to run
their applications over UDP instead of TCP. When packet loss rates are low, and

3.3 * CONNECTIONLESS TRANSPORT: UDP

Application-Layer Underlying Transport
Application Protocol Protocol
Electronic mail SMTP TCP
Remote terminal access Telnet TCP
Secure remote terminal access SSH TCP
Web HTTP, HTTP/3 TCP (for HTTP), UDP (for HTTP/3)
File transfer F1P TCP
Remote file server NFS Typically UDP
Streaming mulfimedia DASH TCP
Internet telephony typically proprietary UDP or TCP
Network management SNMP Typically UDP
Name translafion DNS Typically UDP

Figure 3.6 + Popular Internet applications and their underlying transport
protocols

with some organizations blocking UDP traffic for security reasons (see Chapter 8),
TCP becomes an increasingly attractive protocol for streaming media transport.

Although commonly done today, running multimedia applications over UDP
needs to be done with care. As we mentioned above, UDP has no congestion control.
But congestion control is needed to prevent the network from entering a congested
state in which very little useful work is done. If everyone were to start streaming
high-bit-rate video without using any congestion control, there would be so much
packet overflow at routers that very few UDP packets would successfully traverse the
source-to-destination path. Moreover, the high loss rates induced by the uncontrolled
UDP senders would cause the TCP senders (which, as we’ll see, do decrease their
sending rates in the face of congestion) to dramatically decrease their rates. Thus, the
lack of congestion control in UDP can result in high loss rates between a UDP sender
and receiver, and the crowding out of TCP sessions. Many researchers have proposed
new mechanisms to force all sources, including UDP sources, to perform adaptive
congestion control [Mahdavi 1997; Floyd 2000; Kohler 2006: RFC 4340].

Before discussing the UDP segment structure, we mention that it is possible
for an application to have reliable data transfer when using UDP. This can be done
if reliability is built into the application itself (for example, by adding acknowl-
edgment and retransmission mechanisms, such as those we’ll study in the next
section). We mentioned earlier that the QUIC protocol implements reliability
in an application-layer protocol on top of UDP. But this is a nontrivial task that
would keep an application developer busy debugging for a long time. Neverthe-
less, building reliability directly into the application allows the application to “have

197

198

CHAPTER 3

e TRANSPORT LAYER

its cake and eat it too.” That is, application processes can communicate reliably
without being subjected to the transmission-rate constraints imposed by TCP’s
congestion-control mechanism.

3.3.1 UDP Segment Structure

The UDP segment structure, shown in Figure 3.7, is defined in RFC 768. The applica-
tion data occupies the data field of the UDP segment. For example, for DNS, the data
field contains either a query message or a response message. For a streaming audio
application, audio samples fill the data field. The UDP header has only four fields,
each consisting of two bytes. As discussed in the previous section, the port numbers
allow the destination host to pass the application data to the correct process run-
ning on the destination end system (that is, to perform the demultiplexing function).
The length field specifies the number of bytes in the UDP segment (header plus
data). An explicit length value is needed since the size of the data field may differ
from one UDP segment to the next. The checksum is used by the receiving host to
check whether errors have been introduced into the segment. In truth, the check-
sum is also calculated over a few of the fields in the IP header in addition to the
UDP segment. But we ignore this detail in order to see the forest through the trees.
We’ll discuss the checksum calculation below. Basic principles of error detection are
described in Section 6.2. The length field specifies the length of the UDP segment,
including the header, in bytes.

3.3.2 UDP Checksum

The UDP checksum provides for error detection. That is, the checksum is used to
determine whether bits within the UDP segment have been altered (for example, by
noise in the links or while stored in a router) as it moved from source to destination.

32 bits
|

Source port # Dest. port #

Length Checksum

Application
data
(message)

Figure 3.7 ¢ UDP segment structure

3.3 * CONNECTIONLESS TRANSPORT: UDP

UDP at the sender side performs the 1s complement of the sum of all the 16-bit
words in the segment, with any overflow encountered during the sum being wrapped
around. This result is put in the checksum field of the UDP segment. Here we give
a simple example of the checksum calculation. You can find details about efficient
implementation of the calculation in RFC 1071 and performance over real data in
[Stone 1998; Stone 2000]. As an example, suppose that we have the following three
16-bit words:

0110011001100000
0101010101010101
1000111100001100

The sum of first two of these 16-bit words is

0110011001100000
0101010101010101
1011101110110101

Adding the third word to the above sum gives

1011101110110101
1000111100001100
0100101011000010

Note that this last addition had overflow, which was wrapped around. The 1s
complement is obtained by converting all the Os to 1s and converting all the 1s to
0Os. Thus, the 1s complement of the sum 0100101011000010 is 1011010100111101,
which becomes the checksum. At the receiver, all four 16-bit words are added,
including the checksum. If no errors are introduced into the packet, then clearly the
sum at the receiver willbe 1111111111111111. If one of the bits is a 0, then we know
that errors have been introduced into the packet.

You may wonder why UDP provides a checksum in the first place, as many
link-layer protocols (including the popular Ethernet protocol) also provide error
checking. The reason is that there is no guarantee that all the links between source
and destination provide error checking; that is, one of the links may use a link-layer
protocol that does not provide error checking. Furthermore, even if segments are
correctly transferred across a link, it’s possible that bit errors could be introduced
when a segment is stored in a router’s memory. Given that neither link-by-link reli-
ability nor in-memory error detection is guaranteed, UDP must provide error detec-
tion at the transport layer, on an end-end basis, if the end-end data transfer service
is to provide error detection. This is an example of the celebrated end-end principle
in system design [Saltzer 1984], which states that since certain functionality (error
detection, in this case) must be implemented on an end-end basis: “functions placed

199

200

CHAPTER 3

e TRANSPORT LAYER

at the lower levels may be redundant or of little value when compared to the cost of
providing them at the higher level.”

Because IP is supposed to run over just about any layer-2 protocol, it is useful
for the transport layer to provide error checking as a safety measure. Although UDP
provides error checking, it does not do anything to recover from an error. Some
implementations of UDP simply discard the damaged segment; others pass the dam-
aged segment to the application with a warning.

That wraps up our discussion of UDP. We will soon see that TCP offers reli-
able data transfer to its applications as well as other services that UDP doesn’t offer.
Naturally, TCP is also more complex than UDP. Before discussing TCP, however,
it will be useful to step back and first discuss the underlying principles of reliable
data transfer.

3.4 Principles of Reliable Data Transfer

In this section, we consider the problem of reliable data transfer in a general context.
This is appropriate since the problem of implementing reliable data transfer occurs
not only at the transport layer, but also at the link layer and the application layer
as well. The general problem is thus of central importance to networking. Indeed,
if one had to identify a “top-ten” list of fundamentally important problems in all
of networking, this would be a candidate to lead the list. In the next section, we’ll
examine TCP and show, in particular, that TCP exploits many of the principles that
we are about to describe.

Figure 3.8 illustrates the framework for our study of reliable data transfer. The
service abstraction provided to the upper-layer entities is that of a reliable channel
through which data can be transferred. With a reliable channel, no transferred data
bits are corrupted (flipped from O to 1, or vice versa) or lost, and all are delivered in
the order in which they were sent. This is precisely the service model offered by TCP
to the Internet applications that invoke it.

It is the responsibility of a reliable data transfer protocol to implement this
service abstraction. This task is made difficult by the fact that the layer below the
reliable data transfer protocol may be unreliable. For example, TCP is a reliable data
transfer protocol that is implemented on top of an unreliable (IP) end-to-end network
layer. More generally, the layer beneath the two reliably communicating end points
might consist of a single physical link (as in the case of a link-level data transfer
protocol) or a global internetwork (as in the case of a transport-level protocol). For
our purposes, however, we can view this lower layer simply as an unreliable point-
to-point channel.

In this section, we will incrementally develop the sender and receiver sides of
a reliable data transfer protocol, considering increasingly complex models of the
underlying channel. For example, we’ll consider what protocol mechanisms are

3.4 o PRINCIPLES OF RELIABLE DATA TRANSFER 201

Sending Receiver
Application process process

layer 'Y
] n
* r 3
.Yy e _____ | 4 _____
rdt_send () - deliver_data () -
v
Transport a Reliable data Reliable data
layer e — transfer protocol transfer protocol
Aemmmm— (sending side) (receiving side)
Reliable channel
A A *
udt_send () - rdt_rcv () -
o —————— .Yy vy_______
S } N
Network A
layer "

Unreliable channel

I I
a. Provided service b. Service implementation

Key:
@ Data - Packet

Figure 3.8 ¢+ Reliable data transfer: Service model and service
implementation

needed when the underlying channel can corrupt bits or lose entire packets. One
assumption we’ll adopt throughout our discussion here is that packets will be deliv-
ered in the order in which they were sent, with some packets possibly being lost;
that is, the underlying channel will not reorder packets. Figure 3.8(b) illustrates the
interfaces for our data transfer protocol. The sending side of the data transfer proto-
col will be invoked from above by a call to rdt_send () . It will pass the data to be
delivered to the upper layer at the receiving side. (Here rdt stands for reliable data
transfer protocol and _send indicates that the sending side of rdt is being called.
The first step in developing any protocol is to choose a good name!) On the receiving
side, rdt_rcv () will be called when a packet arrives from the receiving side of the
channel. When the rdt protocol wants to deliver data to the upper layer, it will do so
by calling deliver_data (). In the following, we use the terminology “packet”
rather than transport-layer “segment.” Because the theory developed in this section

202

CHAPTER 3

e TRANSPORT LAYER

applies to computer networks in general and not just to the Internet transport layer,
the generic term “packet” is perhaps more appropriate here.

In this section, we consider only the case of unidirectional data transfer, that is,
data transfer from the sending to the receiving side. The case of reliable bidirectional
(that is, full-duplex) data transfer is conceptually no more difficult but considerably
more tedious to explain. Although we consider only unidirectional data transfer, it is
important to note that the sending and receiving sides of our protocol will nonetheless
need to transmit packets in both directions, as indicated in Figure 3.8. We will see
shortly that, in addition to exchanging packets containing the data to be transferred,
the sending and receiving sides of rdt will also need to exchange control packets
back and forth. Both the send and receive sides of rdt send packets to the other side
by a call to udt_send () (where udt stands for unreliable data transfer).

3.4.1 Building a Reliable Data Transfer Protocol

We now step through a series of protocols, each one becoming more complex, arriv-
ing at a flawless, reliable data transfer protocol.

Reliable Data Transfer over a Perfectly Reliable Channel: rdt1.0

We first consider the simplest case, in which the underlying channel is completely
reliable. The protocol itself, which we’ll call rdtl.O0, is trivial. The finite-state
machine (FSM) definitions for the rdtl.0 sender and receiver are shown in
Figure 3.9. The FSM in Figure 3.9(a) defines the operation of the sender, while
the FSM in Figure 3.9(b) defines the operation of the receiver. It is important to
note that there are separate FSMs for the sender and for the receiver. The sender
and receiver FSMs in Figure 3.9 each have just one state. The arrows in the FSM
description indicate the transition of the protocol from one state to another. (Since
each FSM in Figure 3.9 has just one state, a transition is necessarily from the one
state back to itself; we’ll see more complicated state diagrams shortly.) The event
causing the transition is shown above the horizontal line labeling the transition, and
the actions taken when the event occurs are shown below the horizontal line. When
no action is taken on an event, or no event occurs and an action is taken, we’ll use
the symbol A below or above the horizontal, respectively, to explicitly denote the
lack of an action or event. The initial state of the FSM is indicated by the dashed
arrow. Although the FSMs in Figure 3.9 have but one state, the FSMs we will see
shortly have multiple states, so it will be important to identify the initial state of
each FSM.

The sending side of rdt simply accepts data from the upper layer via the
rdt_send (data) event, creates a packet containing the data (via the action
make_pkt (data)) and sends the packet into the channel. In practice, the
rdt_send (data) event would result from a procedure call (for example, to
rdt_send ()) by the upper-layer application.

3.4 o PRINCIPLES OF RELIABLE DATA TRANSFER

Wait for rdt_send (data)
call from packet=make_pkt (data)
above udt_send (packet)

a. rdt1.0: sending side

A
. k
Wait for rdt_rcv (packet)
call from extract (packet,data)
below deliver_data(data)

b. rdt1.0: receiving side

Figure 3.9 ¢ rdt1.0—A protocol for a completely reliable channel

On the receiving side, rdt receives a packet from the underlying channel via
the rdt_rcv (packet) event, removes the data from the packet (via the action
extract (packet, data)) and passes the data up to the upper layer (via
the action deliver_data (data)). In practice, the rdt_rcv (packet) event
would result from a procedure call (for example, to rdt_rcv ()) from the lower-
layer protocol.

In this simple protocol, there is no difference between a unit of data and a packet.
Also, all packet flow is from the sender to receiver; with a perfectly reliable chan-
nel there is no need for the receiver side to provide any feedback to the sender since
nothing can go wrong! Note that we have also assumed that the receiver is able to
receive data as fast as the sender happens to send data. Thus, there is no need for the
receiver to ask the sender to slow down!

Reliable Data Transfer over a Channel with Bit Errors: rdt2.0

A more realistic model of the underlying channel is one in which bits in a packet may
be corrupted. Such bit errors typically occur in the physical components of a network
as a packet is transmitted, propagates, or is buffered. We’ll continue to assume for
the moment that all transmitted packets are received (although their bits may be cor-
rupted) in the order in which they were sent.

Before developing a protocol for reliably communicating over such a channel,
first consider how people might deal with such a situation. Consider how you yourself

203

204

CHAPTER 3

e TRANSPORT LAYER

might dictate a long message over the phone. In a typical scenario, the message taker
might say “OK” after each sentence has been heard, understood, and recorded. If the
message taker hears a garbled sentence, you're asked to repeat the garbled sentence.
This message-dictation protocol uses both positive acknowledgments (“OK”) and
negative acknowledgments (“Please repeat that.””). These control messages allow
the receiver to let the sender know what has been received correctly, and what has
been received in error and thus requires repeating. In a computer network setting,
reliable data transfer protocols based on such retransmission are known as ARQ
(Automatic Repeat reQuest) protocols.

Fundamentally, three additional protocol capabilities are required in ARQ pro-
tocols to handle the presence of bit errors:

e Errordetection. First, a mechanism is needed to allow the receiver to detect when
bit errors have occurred. Recall from the previous section that UDP uses the Inter-
net checksum field for exactly this purpose. In Chapter 6, we’ll examine error-
detection and -correction techniques in greater detail; these techniques allow the
receiver to detect and possibly correct packet bit errors. For now, we need only
know that these techniques require that extra bits (beyond the bits of original data
to be transferred) be sent from the sender to the receiver; these bits will be gath-
ered into the packet checksum field of the rdt2 . 0 data packet.

* Receiver feedback. Since the sender and receiver are typically executing on dif-
ferent end systems, possibly separated by thousands of miles, the only way for
the sender to learn of the receiver’s view of the world (in this case, whether or not
a packet was received correctly) is for the receiver to provide explicit feedback
to the sender. The positive (ACK) and negative (NAK) acknowledgment replies
in the message-dictation scenario are examples of such feedback. Our rdt2.0
protocol will similarly send ACK and NAK packets back from the receiver to
the sender. In principle, these packets need only be one bit long; for example, a 0
value could indicate a NAK and a value of 1 could indicate an ACK.

* Retransmission. A packet that is received in error at the receiver will be retrans-
mitted by the sender.

Figure 3.10 shows the FSM representation of rdt2.0, a data transfer
protocol employing error detection, positive acknowledgments, and negative
acknowledgments.

The send side of rdt2.0 has two states. In the leftmost state, the send-side
protocol is waiting for data to be passed down from the upper layer. When the
rdt_send (data) event occurs, the sender will create a packet (sndpkt) con-
taining the data to be sent, along with a packet checksum (for example, as discussed
in Section 3.3.2 for the case of a UDP segment), and then send the packet via the
udt_send (sndpkt) operation. In the rightmost state, the sender protocol is wait-
ing for an ACK or a NAK packet from the receiver. If an ACK packet is received

3.4 o PRINCIPLES OF RELIABLE DATA TRANSFER

rdt_send (data)

sndpkt=make_pkt (data, checksum)
udt_send (sndpkt)

~
~
~

Wait for Wait for rdt_rcv (rcvpkt) && isNAK (rcvpkt)

call from ACK or udt_send (sndpkt)
above NAK

"~

rdt_rcv (rcvpkt) && isACK (rcvpkt)
A

a. rdt2.0: sending side

rdt_rcv (rcvpkt) && corrupt (rcvpkt)

sndpkt=make_pkt (NAK)
~
N udt_send (sndpkt)
~
~

Wait for
call from
below

U rdt_rcv (rcvpkt) && notcorrupt (rcvpkt)

extract (rcvpkt,data)
deliver_data(data)
sndpkt=make_pkt (ACK)
udt_send (sndpkt)

b. rdt2.0: receiving side

Figure 3.10 ¢ rdt2.0—A protocol for a channel with bit errors

(the notation rdt_rcv (rcvpkt) && 1isACK (rcvpkt) in Figure 3.10 cor-
responds to this event), the sender knows that the most recently transmitted packet
has been received correctly and thus the protocol returns to the state of waiting for
data from the upper layer. If a NAK is received, the protocol retransmits the last
packet and waits for an ACK or NAK to be returned by the receiver in response to
the retransmitted data packet. It is important to note that when the sender is in the
wait-for-ACK-or-NAK state, it cannot get more data from the upper layer; that is, the
rdt_send () event can not occur; that will happen only after the sender receives
an ACK and leaves this state. Thus, the sender will not send a new piece of data until
it is sure that the receiver has correctly received the current packet. Because of this
behavior, protocols such as rdt2 . 0 are known as stop-and-wait protocols.

205

206

CHAPTER 3

e TRANSPORT LAYER

The receiver-side FSM for rdt2 .0 still has a single state. On packet arrival,
the receiver replies with either an ACK or a NAK, depending on whether or not the
received packet is corrupted. In Figure 3.10, the notation rdt_rcv (rcvpkt) &&
corrupt (rcvpkt) corresponds to the event in which a packet is received and is
found to be in error.

Protocol rdt2 . 0 may look as if it works but, unfortunately, it has a fatal flaw.
In particular, we haven’t accounted for the possibility that the ACK or NAK packet
could be corrupted! (Before proceeding on, you should think about how this prob-
lem may be fixed.) Unfortunately, our slight oversight is not as innocuous as it may
seem. Minimally, we will need to add checksum bits to ACK/NAK packets in order
to detect such errors. The more difficult question is how the protocol should recover
from errors in ACK or NAK packets. The difficulty here is that if an ACK or NAK
is corrupted, the sender has no way of knowing whether or not the receiver has cor-
rectly received the last piece of transmitted data.

Consider three possibilities for handling corrupted ACKs or NAKSs:

* For the first possibility, consider what a human might do in the message-dictation
scenario. If the speaker didn’t understand the “OK” or “Please repeat that” reply
from the receiver, the speaker would probably ask, “What did you say?” (thus
introducing a new type of sender-to-receiver packet to our protocol). The receiver
would then repeat the reply. But what if the speaker’s “What did you say?” is cor-
rupted? The receiver, having no idea whether the garbled sentence was part of the
dictation or a request to repeat the last reply, would probably then respond with
“What did you say?”” And then, of course, that response might be garbled. Clearly,
we’re heading down a difficult path.

* A second alternative is to add enough checksum bits to allow the sender not only
to detect, but also to recover from, bit errors. This solves the immediate problem
for a channel that can corrupt packets but not lose them.

* A third approach is for the sender simply to resend the current data packet when
it receives a garbled ACK or NAK packet. This approach, however, introduces
duplicate packets into the sender-to-receiver channel. The fundamental diffi-
culty with duplicate packets is that the receiver doesn’t know whether the ACK
or NAK it last sent was received correctly at the sender. Thus, it cannot know a
priori whether an arriving packet contains new data or is a retransmission!

A simple solution to this new problem (and one adopted in almost all exist-
ing data transfer protocols, including TCP) is to add a new field to the data packet
and have the sender number its data packets by putting a sequence number into
this field. The receiver then need only check this sequence number to determine
whether or not the received packet is a retransmission. For this simple case of a
stop-and-wait protocol, a 1-bit sequence number will suffice, since it will allow the
receiver to know whether the sender is resending the previously transmitted packet

3.4 o PRINCIPLES OF RELIABLE DATA TRANSFER 207

(the sequence number of the received packet has the same sequence number as the
most recently received packet) or a new packet (the sequence number changes, mov-
ing “forward” in modulo-2 arithmetic). Since we are currently assuming a channel
that does not lose packets, ACK and NAK packets do not themselves need to indicate
the sequence number of the packet they are acknowledging. The sender knows that a
received ACK or NAK packet (whether garbled or not) was generated in response to
its most recently transmitted data packet.

Figures 3.11 and 3.12 show the FSM description for rdt2 . 1, our fixed version
of rdt2.0. The rdt2.1 sender and receiver FSMs each now have twice as many
states as before. This is because the protocol state must now reflect whether the
packet currently being sent (by the sender) or expected (at the receiver) should have a
sequence number of O or 1. Note that the actions in those states where a O-numbered
packet is being sent or expected are mirror images of those where a 1-numbered
packet is being sent or expected; the only differences have to do with the handling
of the sequence number.

Protocol rdt2 .1 uses both positive and negative acknowledgments from the
receiver to the sender. When an out-of-order packet is received, the receiver sends
a positive acknowledgment for the packet it has received. When a corrupted packet

rdt_send (data)

sndpkt=make_pkt (0,data, checksum)
udt_send (sndpkt)

rdt_rcv (rcvpkt) &&
~
So (corrupt (rcvpkt) | |
~

\\A 1sNAK (rcvpkt))
Wait for Wait for udt_send (sndpkt)
call 0 from ACK or
above NAK 0
rdt_rcv (rcvpkt) rdt_rcv (rcvpkt)
&& notcorrupt (rcvpkt) && notcorrupt (rcvpkt)
&& 1sACK (rcvpkt) && 1sACK (rcvpkt)
A A
Wait for Wait for
ACK or call 1 from
NAK 1 above
rdt_rcv (rcvpkt) &&
(corrupt (rcvpkt) ||
isNAK (rcvpkt))
udt_send (sndpkt) rdt_send(data)

sndpkt=make_pkt(1,data,checksum)
udt_send (sndpkt)

Figure 3.11 ¢ rdt2.1 sender

208 CHAPTER 3

e TRANSPORT LAYER

rdt_rcv (rcvpkt) && notcorrupt (rcvpkt)
&& has_seq0 (rcvpkt)

extract (rcvpkt,data)
deliver_data (data)
sndpkt=make_pkt (ACK, checksum)

rdt_rcv (revpkt) udt_send (sndpkt) rdt_rcv (rcvpkt) && corrupt (rcvpkt
\
&& corrupt (rcvpkt) \
\\ sndpkt=make_pkt (NAK, checksum)
sndpkt=make_pkt (NAK, checksum) \x udt_send (sndpkt)

udt_send (sndpkt)

: Wait for Wait for ;

0 from 1 from

rdt_rcv (rcvpkt) && notcorrupt below below
(rcvpkt) && has_seql (rcvpkt) rdt_rcv (rcvpkt) && notcorrupt
(rcvpkt) && has_seq0 (rcvpkt)

sndpkt=make_pkt (ACK, checksum)

udt_send (sndpkt)

sndpkt=make_pkt (ACK, checksum)
udt_send (sndpkt)

rdt_rcv (rcvpkt) && notcorrupt (rcvpkt
&& has_seql (rcvpkt)

extract (rcvpkt,data)
deliver_data (data)
sndpkt=make_pkt (ACK, checksum)
udt_send (sndpkt

Figure 3.12 ¢ rdt2.1 receiver

is received, the receiver sends a negative acknowledgment. We can accomplish the
same effect as a NAK if, instead of sending a NAK, we send an ACK for the last
correctly received packet. A sender that receives two ACKs for the same packet (that
is, receives duplicate ACKs) knows that the receiver did not correctly receive the
packet following the packet that is being ACKed twice. Our NAK-free reliable data
transfer protocol for a channel with bit errors is rdt2 . 2, shown in Figures 3.13 and
3.14. One subtle change between rtdt2.1 and rdt2. 2 is that the receiver must
now include the sequence number of the packet being acknowledged by an ACK
message (this is done by including the ACK, 0 or ACK, 1 argument in make_pkt ()
in the receiver FSM), and the sender must now check the sequence number of the
packet being acknowledged by a received ACK message (this is done by including
the 0 or 1 argument in 1sACK () in the sender FSM).

Reliable Data Transfer over a Lossy Channel with Bit Errors: rdt3.0

Suppose now that in addition to corrupting bits, the underlying channel can lose
packets as well, a not-uncommon event in today’s computer networks (including
the Internet). Two additional concerns must now be addressed by the protocol: how
to detect packet loss and what to do when packet loss occurs. The use of check-
summing, sequence numbers, ACK packets, and retransmissions—the techniques

3.4 o PRINCIPLES OF RELIABLE DATA TRANSFER 209

rdt_send (data)

sndpkt=make_pkt (0,data, checksum)
udt_send (sndpkt)

rdt_rcv (rcvpkt) &&
~
S (corrupt (rcvpkt) ||
~

~a 1sACK (rcvpkt, 1))
Wait for . dt d (sndpkt
call 0 from Wait for patsendlandpEt)
above ACK0
rdt_rcv (rcvpkt) rdt_rcv (rcvpkt)

&& notcorrupt (rcvpkt) && notcorrupt (rcvpkt)
&& 1sACK (rcvpkt, 1) && 1sACK (rcvpkt, 0)
A A

. Wait for
anc":(f?r call 1 from
above
rdt_rcv (rcvpkt) &&
(corrupt (rcvpkt) ||
isACK (rcvpkt,0))
udt_send (sndpkt) rdt_send(data)

sndpkt=make_pkt (1,data, checksum)
udt_send (sndpkt)

Figure 3.13 ¢ rdt2.2 sender

already developed in rdt2 . 2—will allow us to answer the latter concern. Handling
the first concern will require adding a new protocol mechanism.

There are many possible approaches toward dealing with packet loss (several
more of which are explored in the exercises at the end of the chapter). Here, we’ll
put the burden of detecting and recovering from lost packets on the sender. Suppose
that the sender transmits a data packet and either that packet, or the receiver’s ACK
of that packet, gets lost. In either case, no reply is forthcoming at the sender from the
receiver. If the sender is willing to wait long enough so that it is certain that a packet
has been lost, it can simply retransmit the data packet. You should convince yourself
that this protocol does indeed work.

But how long must the sender wait to be certain that something has been lost?
The sender must clearly wait at least as long as a round-trip delay between the sender
and receiver (which may include buffering at intermediate routers) plus whatever
amount of time is needed to process a packet at the receiver. In many networks, this
worst-case maximum delay is very difficult even to estimate, much less know with
certainty. Moreover, the protocol should ideally recover from packet loss as soon as
possible; waiting for a worst-case delay could mean a long wait until error recovery

210 CHAPTER 3

rdt_rcv (rcvpkt) &&
(corrupt (rcvpkt) | |
has_seql (rcvpkt))

e TRANSPORT LAYER

rdt_rcv (rcvpkt) && notcorrupt (rcvpkt)
&& has_seq0 (rcvpkt)

extract (rcvpkt,data)

deliver_data (data) rdt_rcv (rcvpkt) &&
sndpkt=make_pkt (ACK, 0, checksum) (corrupt (rcvpkt) | |
udt_send (sndpkt) has_seq0 (rcvpkt))

N
N
\\\ /\ sndpkt=make_pkt (ACK, 0, checksum)

A udt_send (sndpkt)
Wait for Wait for
0 from 1 from
below below

udt_send (sndpkt)

sndpkt=make_pkt (ACK, 1, checksum) \/

rdt_rcv (rcvpkt) && notcorrupt (rcvpkt)
&& has_seql (rcvpkt)

extract (rcvpkt,data)
deliver_data (data)
sndpkt=make_pkt (ACK, 1, checksum)
udt_send (sndpkt)

Figure 3.14 ¢ rdt2.2 receiver

is initiated. The approach thus adopted in practice is for the sender to judiciously
choose a time value such that packet loss is likely, although not guaranteed, to have
happened. If an ACK is not received within this time, the packet is retransmitted.
Note that if a packet experiences a particularly large delay, the sender may retrans-
mit the packet even though neither the data packet nor its ACK have been lost. This
introduces the possibility of duplicate data packets in the sender-to-receiver chan-
nel. Happily, protocol rdt2. 2 already has enough functionality (that is, sequence
numbers) to handle the case of duplicate packets.

From the sender’s viewpoint, retransmission is a panacea. The sender does not
know whether a data packet was lost, an ACK was lost, or if the packet or ACK was
simply overly delayed. In all cases, the action is the same: retransmit. Implement-
ing a time-based retransmission mechanism requires a countdown timer that can
interrupt the sender after a given amount of time has expired. The sender will thus
need to be able to (1) start the timer each time a packet (either a first-time packet or
aretransmission) is sent, (2) respond to a timer interrupt (taking appropriate actions),
and (3) stop the timer.

Figure 3.15 shows the sender FSM for rdt3. 0, a protocol that reliably transfers
data over a channel that can corrupt or lose packets; in the homework problems, you’ll
be asked to provide the receiver FSM for rdt3. 0. Figure 3.16 shows how the pro-
tocol operates with no lost or delayed packets and how it handles lost data packets. In
Figure 3.16, time moves forward from the top of the diagram toward the bottom of the

3.4 o PRINCIPLES OF RELIABLE DATA TRANSFER 211

rdt_send (data)

sndpkt=make_pkt (0,data, checksum)
udt_send (sndpkt) rdt_rcv (rcvpkt) &&
start_timer (corrupt (rcvpkt) | |

\\ isACK (rcvpkt, 1))
N
N A
rdt_rcv (rcvpkt) 'y
A (Wait for timeout
Wait for
call 0 from udt_send (sndpkt)

above L start_timer

rdt_rcv (rcvpkt)

&& notcorrupt (rcvpkt)

&& 1sACK (rcvpkt, 1) rdt_rcv (rcvpkt)

&& notcorrupt (rcvpkt)
&& 1sACK (rcvpkt, 0)

stop_timer

stop_timer

timeout Wait for
udt_send (sndpkt) ‘ V\féf(f1or call 1 from
start_timer above
rdt_rcv (rcvpkt)
rdt_rcv (rcvpkt) && A
(corrupt (rcvpkt) | |
1sACK (rcvpkt,0)) rdt_send (data)
A

sndpkt=make_pkt (1,data, checksum)
udt_send (sndpkt)
start_timer

Figure 3.15 ¢ rdt3.0 sender

diagram; note that a receive time for a packet is necessarily later than the send time for
a packet as a result of transmission and propagation delays. In Figures 3.16(b)—(d), the
send-side brackets indicate the times at which a timer is set and later times out. Sev-
eral of the more subtle aspects of this protocol are explored in the exercises at the end
of this chapter. Because packet sequence numbers alternate between 0 and 1, protocol
rdt3. 0 is sometimes known as the alternating-bit protocol.

We have now assembled the key elements of a data transfer protocol. Check-
sums, sequence numbers, timers, and positive and negative acknowledgment packets
each play a crucial and necessary role in the operation of the protocol. We now have
a working reliable data transfer protocol!

3.4.2 Pipelined Reliable Data Transfer Protocols

Protocol rdt3.0 is a functionally correct protocol, but it is unlikely that anyone
would be happy with its performance, particularly in today’s high-speed networks.
At the heart of rdt3.0’s performance problem is the fact that it is a stop-and-wait
protocol.

212 CHAPTER 3 o

Sender

send pktO Pkto

f

pS

\

rcv ACKO

send pktl Pkt

/

peC

\

rcv ACK1

send pktO Pkto

\

a. Operation with no loss

Sender
send pktO pkw\‘
A/d‘o
rcv ACKO Pkt7
send pktl -~“-.-‘
Iy
S
(Ioss)X/
timeout
resend pktl Pktq

/

pOS

\

rcv ACK1

send pkt0 Pkto

/

pC

\

¢. Lost ACK

TRANSPORT LAYER

Receiver

rcv pkt0
send ACKO

rcv pktl
send ACKL

rcv pkt0
send ACKO

Receiver

rcv pktO0
send ACKO

rcv pktl
send ACK1

rcv pktl
(detect
duplicate)
send ACK1l

rcv pkt0
send ACKO

Sender

send pktO0

rcv ACKO
send pktl

timeout
resend pktl

rcv ACK1
send pkt0

b. Lost packet

Sender

send pktO0

rcv ACKO

send pktl
timeout[

resend pktl

rcv ACK1
send pktO

rcv ACK1
do nothing

Pkto

/

p

//O
fs
fay

X (loss)

Pktq

/

oy

\7

Pkto

/

S

\

Pkto

\

bktq

>

/

t7 o

X

Pty _PS

e

.

d. Premature timeout

Receiver

rcv pkt0
send ACKO

rcv pktl
send ACKI1

rcv pkt0
send ACKO

Receiver

rcv pktO
send ACKO

rcv pktl
send ACK1l

rcv pkt 1
(detect duplicate)
send ACK1l

rcv pktO0
send ACKO

Figure 3.16 ¢ Operation of rdt3.0, the alternating-bit protocol

3.4 o PRINCIPLES OF RELIABLE DATA TRANSFER

Data packet Data packets

ACK packets i
W

)

a. A stop-and-wait protocol in operation b. A pipelined protocol in operation

Figure 3.17 ¢ Stop-and-wait versus pipelined protocol

To appreciate the performance impact of this stop-and-wait behavior, consider
an idealized case of two hosts, one located on the West Coast of the United States
and the other located on the East Coast, as shown in Figure 3.17. The speed-of-light
round-trip propagation delay between these two end systems, RTT, is approximately
30 milliseconds. Suppose that they are connected by a channel with a transmission
rate, R, of 1 Gbps (10° bits per second). With a packet size, L, of 1,000 bytes (8,000
bits) per packet, including both header fields and data, the time needed to actually
transmit the packet into the 1 Gbps link is

L 8000 bits .
dyans = 5, = T 9., = 8 microseconds
R 107 bits/sec

Figure 3.18(a) shows that with our stop-and-wait protocol, if the sender begins
sending the packet at + = 0, then at t = L/R = 8§ microseconds, the last bit enters
the channel at the sender side. The packet then makes its 15-msec cross-country jour-
ney, with the last bit of the packet emerging at the receiver at t = RTT/2 + L/R =
15.008 msec. Assuming for simplicity that ACK packets are extremely small (so that
we can ignore their transmission time) and that the receiver can send an ACK as soon
as the last bit of a data packet is received, the ACK emerges back at the sender at
t = RTT + L/R = 30.008 msec. At this point, the sender can now transmit the next
message. Thus, in 30.008 msec, the sender was sending for only 0.008 msec. If we
define the utilization of the sender (or the channel) as the fraction of time the sender
is actually busy sending bits into the channel, the analysis in Figure 3.18(a) shows
that the stop-and-wait protocol has a rather dismal sender utilization, Uy, ger, Of

oo L/R 008
sender ™ RTT + L/R ~ 30.008

= 0.00027

213

214 CHAPTER 3

First bit of first packet
transmitted, t=0

Last bit of first packet
transmitted, t = L/R

ACK arrives, send next packet,—=

t=RTT+L/IR

TRANSPORT LAYER

Sender

—

=

RTT

a. Stop-and-wait operation

First bit of first packet
transmitted, t=0

Last bit of first packet
transmitted, t = L/R

ACK arrives, send next packet, —

t=RTT +L/IR

b. Pipelined operation

Sender

E

——

RTT

Receiver

— First bit of first packet arrives
— Last bit of first packet arrives, send ACK

Receiver

— First bit of first packet arrives

— Last bit of first packet arrives, send ACK
— Last bit of 2nd packet arrives, send ACK
— Last bit of 3rd packet arrives, send ACK

Figure 3.18 ¢ Stop-and-wait and pipelined sending

3.4 o PRINCIPLES OF RELIABLE DATA TRANSFER

That is, the sender was busy only 2.7 hundredths of one percent of the time!
Viewed another way, the sender was able to send only 1,000 bytes in 30.008 mil-
liseconds, an effective throughput of only 267 kbps—even though a 1 Gbps link
was available! Imagine the unhappy network manager who just paid a fortune for
a gigabit capacity link but manages to get a throughput of only 267 kilobits per
second! This is a graphic example of how network protocols can limit the capabili-
ties provided by the underlying network hardware. Also, we have neglected lower-
layer protocol-processing times at the sender and receiver, as well as the process-
ing and queuing delays that would occur at any intermediate routers between the
sender and receiver. Including these effects would serve only to further increase the
delay and further accentuate the poor performance.

The solution to this particular performance problem is simple: Rather than oper-
ate in a stop-and-wait manner, the sender is allowed to send multiple packets with-
out waiting for acknowledgments, as illustrated in Figure 3.17(b). Figure 3.18(b)
shows that if the sender is allowed to transmit three packets before having to wait for
acknowledgments, the utilization of the sender is essentially tripled. Since the many
in-transit sender-to-receiver packets can be visualized as filling a pipeline, this tech-
nique is known as pipelining. Pipelining has the following consequences for reliable
data transfer protocols:

e The range of sequence numbers must be increased, since each in-transit packet
(not counting retransmissions) must have a unique sequence number and there
may be multiple, in-transit, unacknowledged packets.

* The sender and receiver sides of the protocols may have to buffer more than one
packet. Minimally, the sender will have to buffer packets that have been transmit-
ted but not yet acknowledged. Buffering of correctly received packets may also
be needed at the receiver, as discussed below.

e The range of sequence numbers needed and the buffering requirements will
depend on the manner in which a data transfer protocol responds to lost, cor-
rupted, and overly delayed packets. Two basic approaches toward pipelined error
recovery can be identified: Go-Back-N and selective repeat.

3.4.3 Go-Back-N (GBN)

In a Go-Back-N (GBN) protocol, the sender is allowed to transmit multiple packets
(when available) without waiting for an acknowledgment, but is constrained to have
no more than some maximum allowable number, N, of unacknowledged packets in
the pipeline. We describe the GBN protocol in some detail in this section. But before
reading on, you are encouraged to play with the GBN animation (an awesome inter-
active animation) at the companion Web site.

Figure 3.19 shows the sender’s view of the range of sequence numbers in a GBN
protocol. If we define ba se to be the sequence number of the oldest unacknowledged

215

216

CHAPTER 3

base

e TRANSPORT LAYER

nextsegnum
Key:

Sent, not

INIRNICO00000R0O000n0Inooonn -+ M s

) Not usable
Window size yet ACK'd

N

Figure 3.19 ¢ Sender’s view of sequence numbers in Go-Back-N

packet and nextseqgnum to be the smallest unused sequence number (that is, the
sequence number of the next packet to be sent), then four intervals in the range of
sequence numbers can be identified. Sequence numbers in the interval [0, base-1]
correspond to packets that have already been transmitted and acknowledged. The inter-
val [base, nextsegnum-1] corresponds to packets that have been sent but not
yet acknowledged. Sequence numbers in the interval [nextsegnum, base+N-1]
can be used for packets that can be sent immediately, should data arrive from the
upper layer. Finally, sequence numbers greater than or equal to base+N cannot
be used until an unacknowledged packet currently in the pipeline (specifically, the
packet with sequence number base) has been acknowledged.

As suggested by Figure 3.19, the range of permissible sequence numbers for
transmitted but not yet acknowledged packets can be viewed as a window of size N
over the range of sequence numbers. As the protocol operates, this window slides
forward over the sequence number space. For this reason, N is often referred to as the
window size and the GBN protocol itself as a sliding-window protocol. You might
be wondering why we would even limit the number of outstanding, unacknowledged
packets to a value of N in the first place. Why not allow an unlimited number of such
packets? We’ll see in Section 3.5 that flow control is one reason to impose a limit
on the sender. We’ll examine another reason to do so in Section 3.7, when we study
TCP congestion control.

In practice, a packet’s sequence number is carried in a fixed-length field in the
packet header. If k is the number of bits in the packet sequence number field, the
range of sequence numbers is thus [0,2¢ — 1]. With a finite range of sequence num-
bers, all arithmetic involving sequence numbers must then be done using modulo 2*
arithmetic. (That is, the sequence number space can be thought of as a ring of size
2k where sequence number 2¢ — 1 is immediately followed by sequence number 0.)
Recall that rdt3. 0 had a 1-bit sequence number and a range of sequence numbers
of [0,1]. Several of the problems at the end of this chapter explore the consequences
of a finite range of sequence numbers. We will see in Section 3.5 that TCP has a
32-bit sequence number field, where TCP sequence numbers count bytes in the byte
stream rather than packets.

Figures 3.20 and 3.21 give an extended FSM description of the sender and
receiver sides of an ACK-based, NAK-free, GBN protocol. We refer to this FSM

3.4 o PRINCIPLES OF RELIABLE DATA TRANSFER

rdt_send (data)

if (nextsegnum<base+N) {
sndpkt [nextseqgnum]=make_pkt (nextseqnum,data, checksum)
udt_send (sndpkt [nextsegnum])
if (base==nextseqnum)

~ start_timer
A T~ nextseqnum++

O~

base=1 Sso }

~
nextsegnum=1 SO else
\\\ refuse_data (data)
\\
~
~
~
> .
N m timeout
A

start_timer
Wait udt_send (sndpkt[base])
udt_send (sndpkt [base+1]
rdt_rcv (rcvpkt) && corrupt (rcvpkt)

N (, udt_send (sndpkt [nextsegnum-1]

rdt_rcv (rcvpkt) && notcorrupt (rcvpkt

base=getacknum (rcvpkt) +1
If (base==nextseqnum)
stop_timer
else
start_timer

Figure 3.20 ¢ Extended FSM description of the GBN sender

rdt_rcv (rcvpkt)
&& notcorrupt (rcvpkt)
&& hasseqgnum (rcvpkt, expectedsegnum)

extract (rcvpkt, data)

deliver_data (data)

sndpkt=make_pkt (expectedseqgnum, ACK, checksum)
udt_send (sndpkt

expectedsegnum++
. default
——————————————— > Wait _
A udt_send (sndpkt

expectedsegnum=1
sndpkt=make_pkt (0, ACK, checksum)

Figure 3.21 ¢ Extended FSM description of the GBN receiver

217

218

CHAPTER 3

e TRANSPORT LAYER

description as an extended FSM because we have added variables (similar to
programming-language variables) for base and nextseqgnum, and added opera-
tions on these variables and conditional actions involving these variables. Note that
the extended FSM specification is now beginning to look somewhat like a program-
ming-language specification. [Bochman 1984] provides an excellent survey of addi-
tional extensions to FSM techniques as well as other programming-language-based
techniques for specifying protocols.

The GBN sender must respond to three types of events:

e Invocation from above. When rdt_send () is called from above, the sender
first checks to see if the window is full, that is, whether there are N outstand-
ing, unacknowledged packets. If the window is not full, a packet is created and
sent, and variables are appropriately updated. If the window is full, the sender
simply returns the data back to the upper layer, an implicit indication that the
window is full. The upper layer would presumably then have to try again later.
In a real implementation, the sender would more likely have either buffered (but
not immediately sent) this data, or would have a synchronization mechanism
(for example, a semaphore or a flag) that would allow the upper layer to call
rdt_send () only when the window is not full.

* Receipt of an ACK. In our GBN protocol, an acknowledgment for a packet with
sequence number n will be taken to be a cumulative acknowledgment, indicat-
ing that all packets with a sequence number up to and including »n have been
correctly received at the receiver. We’ll come back to this issue shortly when we
examine the receiver side of GBN.

* A timeout event. The protocol’s name, “Go-Back-N,” is derived from the sender’s
behavior in the presence of lost or overly delayed packets. As in the stop-and-wait
protocol, a timer will again be used to recover from lost data or acknowledgment
packets. If a timeout occurs, the sender resends all packets that have been previ-
ously sent but that have not yet been acknowledged. Our sender in Figure 3.20
uses only a single timer, which can be thought of as a timer for the oldest trans-
mitted but not yet acknowledged packet. If an ACK is received but there are still
additional transmitted but not yet acknowledged packets, the timer is restarted. If
there are no outstanding, unacknowledged packets, the timer is stopped.

The receiver’s actions in GBN are also simple. If a packet with sequence number
n is received correctly and is in order (that is, the data last delivered to the upper layer
came from a packet with sequence number n — 1), the receiver sends an ACK for
packet n and delivers the data portion of the packet to the upper layer. In all other
cases, the receiver discards the packet and resends an ACK for the most recently
received in-order packet. Note that since packets are delivered one at a time to the
upper layer, if packet k has been received and delivered, then all packets with a

3.4 o PRINCIPLES OF RELIABLE DATA TRANSFER

sequence number lower than k have also been delivered. Thus, the use of cumulative
acknowledgments is a natural choice for GBN.

In our GBN protocol, the receiver discards out-of-order packets. Although
it may seem silly and wasteful to discard a correctly received (but out-of-order)
packet, there is some justification for doing so. Recall that the receiver must
deliver data in order to the upper layer. Suppose now that packet n is expected, but
packet n + 1 arrives. Because data must be delivered in order, the receiver could
buffer (save) packet n + 1 and then deliver this packet to the upper layer after it
had later received and delivered packet n. However, if packet n is lost, both it and
packet n + 1 will eventually be retransmitted as a result of the GBN retransmis-
sion rule at the sender. Thus, the receiver can simply discard packet n + 1. The
advantage of this approach is the simplicity of receiver buffering—the receiver
need not buffer any out-of-order packets. Thus, while the sender must maintain
the upper and lower bounds of its window and the position of nextsegnum
within this window, the only piece of information the receiver need maintain is
the sequence number of the next in-order packet. This value is held in the variable
expectedseqgnum, shown in the receiver FSM in Figure 3.21. Of course, the
disadvantage of throwing away a correctly received packet is that the subsequent
retransmission of that packet might be lost or garbled and thus even more retrans-
missions would be required.

Figure 3.22 shows the operation of the GBN protocol for the case of a window
size of four packets. Because of this window size limitation, the sender sends pack-
ets 0 through 3 but then must wait for one or more of these packets to be acknowl-
edged before proceeding. As each successive ACK (for example, ACKO and ACK1)
is received, the window slides forward and the sender can transmit one new packet
(pkt4 and pkt5, respectively). On the receiver side, packet 2 is lost and thus packets
3, 4, and 5 are found to be out of order and are discarded.

Before closing our discussion of GBN, it is worth noting that an implementa-
tion of this protocol in a protocol stack would likely have a structure similar to that
of the extended FSM in Figure 3.20. The implementation would also likely be in
the form of various procedures that implement the actions to be taken in response to
the various events that can occur. In such event-based programming, the various
procedures are called (invoked) either by other procedures in the protocol stack, or
as the result of an interrupt. In the sender, these events would be (1) a call from the
upper-layer entity to invoke rdt_send (), (2) a timer interrupt, and (3) a call from
the lower layer to invoke rdt_rcv () when a packet arrives. The programming
exercises at the end of this chapter will give you a chance to actually implement these
routines in a simulated, but realistic, network setting.

We note here that the GBN protocol incorporates almost all of the techniques
that we will encounter when we study the reliable data transfer components of TCP
in Section 3.5. These techniques include the use of sequence numbers, cumulative
acknowledgments, checksums, and a timeout/retransmit operation.

219

220

CHAPTER 3

e TRANSPORT LAYER

send ACK2
rcv pkt3, deliver
send ACK3

Sender Receiver
send pktO \
rcv pktO
send pktl send ACKO
rcv pktl
—— send pkt2 send ACK1
\ X
(loss)
send pkt3
(wait)
rcv pkt3, discard
/ send ACK1
rcv ACKO
send pkt4
rcv ACK1
send pkt)5 rcv pkt4, discard
/ send ACK1
— pkt2 timeout
send pkt2 rcv pkt5, discard
send pkt3 ‘/ send ACKL
send pkt4
send pkt5 \\\\\\\\\\\\\\\\\\\“/ rcv pkt2, deliver

Figure 3.22 ¢ Go-Back-N in operation

3.4.4 Selective Repeat (SR)

The GBN protocol allows the sender to potentially “fill the pipeline” in Figure 3.17
with packets, thus avoiding the channel utilization problems we noted with stop-
and-wait protocols. There are, however, scenarios in which GBN itself suffers from
performance problems. In particular, when the window size and bandwidth-delay
product are both large, many packets can be in the pipeline. A single packet error
can thus cause GBN to retransmit a large number of packets, many unnecessarily.
As the probability of channel errors increases, the pipeline can become filled with
these unnecessary retransmissions. Imagine, in our message-dictation scenario, that

3.4 o

if every time a word was garbled, the surrounding 1,000 words (for example, a win-
dow size of 1,000 words) had to be repeated. The dictation would be slowed by all
of the reiterated words.

As the name suggests, selective-repeat protocols avoid unnecessary retrans-
missions by having the sender retransmit only those packets that it suspects were
received in error (that is, were lost or corrupted) at the receiver. This individual,
as-needed, retransmission will require that the receiver individually acknowledge
correctly received packets. A window size of N will again be used to limit the num-
ber of outstanding, unacknowledged packets in the pipeline. However, unlike GBN,
the sender will have already received ACKs for some of the packets in the window.
Figure 3.23 shows the SR sender’s view of the sequence number space. Figure 3.24
details the various actions taken by the SR sender.

The SR receiver will acknowledge a correctly received packet whether or not it is
in order. Out-of-order packets are buffered until any missing packets (that is, packets
with lower sequence numbers) are received, at which point a batch of packets can be
delivered in order to the upper layer. Figure 3.25 itemizes the various actions taken by
the SR receiver. Figure 3.26 shows an example of SR operation in the presence of lost
packets. Note that in Figure 3.26, the receiver initially buffers packets 3, 4, and 5, and
delivers them together with packet 2 to the upper layer when packet 2 is finally received.

send_base nextsegnum

LT R ngit

w N
|
a. Sender view of sequence numbers
|
|
|
|
|
|
|
|
|
|
|
|

rcv_base Key:

DDUUDDHDEDIIIDDDDDDHUUDDDD bk,

] . Expected, not
Window size yet received

N
b. Receiver view of sequence numbers

Figure 3.23 ¢ Selective-repeat (SR) sender and receiver views
of sequence-number space

PRINCIPLES OF RELIABLE DATA TRANSFER

l
l

|

221

Usable,
not yet sent

Not usable

Acceptable
(within
window)

Not usable

222

CHAPTER 3

e TRANSPORT LAYER

1. Data received from above. When data is received from above, the SR sender
checks the next available sequence number for the packet. If the sequence
number is within the sender’s window, the data is packetized and sent; other-
wise it is either buffered or returned to the upper layer for later transmission,
as in GBN.

2. Timeout. Timers are again used to protect against lost packets. However, each
packet must now have its own logical timer, since only a single packet will
be transmitted on timeout. A single hardware timer can be used to mimic the
operation of multiple logical timers [Varghese 1997].

3. ACK received. If an ACK is received, the SR sender marks that packet as
having been received, provided it is in the window. If the packet’s sequence
number is equal to send_base, the window base is moved forward to the
unacknowledged packet with the smallest sequence number. If the window
moves and there are untransmitted packets with sequence numbers that now
fall within the window, these packets are transmitted.

Figure 3.24 + SR sender events and actions

1. Packet with sequence number in [rcv_base, rcv_base+N-1]is cor-
rectly received. In this case, the received packet falls within the receiver’s win-
dow and a selective ACK packet is returned to the sender. If the packet was not
previously received, it is buffered. If this packet has a sequence number equal to
the base of the receive window (rcv_base in Figure 3.22), then this packet,
and any previously buffered and consecutively numbered (beginning with
rcv_base) packets are delivered to the upper layer. The receive window is
then moved forward by the number of packets delivered to the upper layer. As
an example, consider Figure 3.26. When a packet with a sequence number of
rcv_base=2 is received, it and packets 3, 4, and 5 can be delivered to the
upper layer.

2. Packet with sequence number in [rcv_base-N, rcv_base-1]is cor-
rectly received. In this case, an ACK must be generated, even though this is a
packet that the receiver has previously acknowledged.

3. Otherwise. Ignore the packet.

Figure 3.25 ¢ SR receiver events and actions

It is important to note that in Step 2 in Figure 3.25, the receiver reacknowledges
(rather than ignores) already received packets with certain sequence numbers below
the current window base. You should convince yourself that this reacknowledgment
is indeed needed. Given the sender and receiver sequence number spaces in Fig-
ure 3.23, for example, if there is no ACK for packet send_base propagating from

3.4 o PRINCIPLES OF RELIABLE DATA TRANSFER 223

Sender Receiver

pkt0 sent
0123456789

/

pktl sent pkt0 rcvd, delivered, ACKO sent
0123456789 0123456789

pktl rcvd, delivered, ACKl sent

— pkt2 sent
012345678059 ~x 01234567829
(loss)
pkt3 sent, window full
01234567829
pkt3 rcvd, buffered, ACK3 sent
ACKO rcvd, pkt4 sent 012345¢6789
01234567829
ACK1 rcvd, pkth sent pktd4 rcvd, buffered, ACK4 sent
01234567829 0123456789
pktb rcvd; buffered, ACK5 sent
L pkt2 TIMEOUT, pkt2 0123456789

resent
0123456789

pkt2 rcvd, pkt2,pkt3,pktd,pktd
delivered, ACK2 sent

0123456789

ACK3 rcvd, nothing sent
012345¢6789

Figure 3.26 ¢ SR operation

the receiver to the sender, the sender will eventually retransmit packet send_base,
even though it is clear (to us, not the sender!) that the receiver has already received
that packet. If the receiver were not to acknowledge this packet, the sender’s win-
dow would never move forward! This example illustrates an important aspect of
SR protocols (and many other protocols as well). The sender and receiver will not
always have an identical view of what has been received correctly and what has not.
For SR protocols, this means that the sender and receiver windows will not always
coincide.

224

CHAPTER 3

e TRANSPORT LAYER

The lack of synchronization between sender and receiver windows has impor-
tant consequences when we are faced with the reality of a finite range of sequence
numbers. Consider what could happen, for example, with a finite range of four packet
sequence numbers, 0, 1, 2, 3, and a window size of three. Suppose packets O through
2 are transmitted and correctly received and acknowledged at the receiver. At this
point, the receiver’s window is over the fourth, fifth, and sixth packets, which have
sequence numbers 3, 0, and 1, respectively. Now consider two scenarios. In the first
scenario, shown in Figure 3.27(a), the ACKs for the first three packets are lost and
the sender retransmits these packets. The receiver thus next receives a packet with
sequence number O—a copy of the first packet sent.

In the second scenario, shown in Figure 3.27(b), the ACKs for the first three
packets are all delivered correctly. The sender thus moves its window forward and
sends the fourth, fifth, and sixth packets, with sequence numbers 3, 0, and 1, respec-
tively. The packet with sequence number 3 is lost, but the packet with sequence
number 0 arrives—a packet containing new data.

Now consider the receiver’s viewpoint in Figure 3.27, which has a figurative
curtain between the sender and the receiver, since the receiver cannot “see” the
actions taken by the sender. All the receiver observes is the sequence of messages
it receives from the channel and sends into the channel. As far as it is concerned,
the two scenarios in Figure 3.27 are identical. There is no way of distinguishing the
retransmission of the first packet from an original transmission of the fifth packet.
Clearly, a window size that is 1 less than the size of the sequence number space
won’t work. But how small must the window size be? A problem at the end of the
chapter asks you to show that the window size must be less than or equal to half the
size of the sequence number space for SR protocols.

At the companion Web site, you will find an animation that illustrates the opera-
tion of the SR protocol. Try performing the same experiments that you did with the
GBN animation. Do the results agree with what you expect?

This completes our discussion of reliable data transfer protocols. We’ve covered
a lot of ground and introduced numerous mechanisms that together provide for reli-
able data transfer. Table 3.1 summarizes these mechanisms. Now that we have seen
all of these mechanisms in operation and can see the “big picture,” we encourage you
to review this section again to see how these mechanisms were incrementally added
to cover increasingly complex (and realistic) models of the channel connecting the
sender and receiver, or to improve the performance of the protocols.

Let’s conclude our discussion of reliable data transfer protocols by consider-
ing one remaining assumption in our underlying channel model. Recall that we
have assumed that packets cannot be reordered within the channel between the
sender and receiver. This is generally a reasonable assumption when the sender and
receiver are connected by a single physical wire. However, when the “channel”
connecting the two is a network, packet reordering can occur. One manifestation of
packet reordering is that old copies of a packet with a sequence or acknowledgment

Sender window
(after receipt)

3.4 o PRINCIPLES OF RELIABLE DATA TRANSFER

Receiver window
(after receipt)

0123012 pkt0 .
ACKO 01230012

0123012 pktl 4
ACKI 0123012

0123012 pkt2 4 é
« /ACK2 0123012

A\

timeout
retransmit pktO
X
0123012 pkt0 »° receive packet
with seq number 0
a.
Sender window Receiver window
(after receipt) (after receipt)
01230012 pkt0
JOACKO 0123012
0123012 :pktl Pt
ACK1 0123012
0123012 pkt2 ::
ACK2 0123012
00123012 pkt3 /
X
0123012 pkt0

b.

T~ receive packet

with seqg number 0

Figure 3.27 ¢ SR receiver dilemma with too-large windows: A new packet

or a retransmission?

225

226

CHAPTER 3

e TRANSPORT LAYER

Mechanism Use, Comments
Checksum Used to detect bit errors in a transmitted packet.
Timer Used to timeout/refransmit a packet, possibly because the packet (or its ACK)

was lost within the channel. Because timeouts can occur when a packet is delayed
but not lost (premature fimeout), or when a packet has been received by the
receiver but the receiver-to-sender ACK has been lost, duplicate copies of a packet
may be received by a receiver.

Sequence number Used for sequential numbering of packets of data flowing from sender to receiver.
Gaps in the sequence numbers of received packets allow the receiver to detect a
lost packet. Packets with duplicate sequence numbers allow the receiver to detect
duplicate copies of a packet.

Acknowledgment Used by the receiver to tell the sender that a packet or set of packets has been
received correctly. Acknowledgments will typically carry the sequence number of
the packet or packets being acknowledged. Acknowledgments may be individual
or cumulative, depending on the protocol.

Negative acknowledgment Used by the receiver to tell the sender that a packet has not been received
correctly. Negative acknowledgments will typically carry the sequence number
of the packet that was not received correctly.

Window, pipelining The sender may be restricted to sending only packets with sequence numbers that
fall within a given range. By allowing multiple packets to be transmitted but not
yet acknowledged, sender ufilization can be increased over a stop-und-wait mode
of operation. We'll see shortly that the window size may be set on the basis of
the receiver’s ability fo receive and buffer messages, or the level of congestion in
the network, or both.

Table 3.1 ¢ Summary of reliable data transfer mechanisms and their use

number of x can appear, even though neither the sender’s nor the receiver’s win-
dow contains x. With packet reordering, the channel can be thought of as essen-
tially buffering packets and spontaneously emitting these packets at any point in
the future. Because sequence numbers may be reused, some care must be taken to
guard against such duplicate packets. The approach taken in practice is to ensure
that a sequence number is not reused until the sender is “sure” that any previously
sent packets with sequence number x are no longer in the network. This is done
by assuming that a packet cannot “live” in the network for longer than some fixed
maximum amount of time. A maximum packet lifetime of approximately three
minutes is assumed in the TCP extensions for high-speed networks [RFC 7323].
[Sunshine 1978] describes a method for using sequence numbers such that reorder-
ing problems can be completely avoided.

3.5 ¢ CONNECTION-ORIENTED TRANSPORT: TCP

3.5 Connection-Oriented Transport: TCP

Now that we have covered the underlying principles of reliable data transfer,
let’s turn to TCP—the Internet’s transport-layer, connection-oriented, reliable
transport protocol. In this section, we’ll see that in order to provide reliable
data transfer, TCP relies on many of the underlying principles discussed in
the previous section, including error detection, retransmissions, cumulative
acknowledgments, timers, and header fields for sequence and acknowledgment
numbers. TCP is defined in RFC 793, RFC 1122, RFC 2018, RFC 5681, and
RFC 7323.

3.5.1 The TCP Connection

TCP is said to be connection-oriented because before one application process can
begin to send data to another, the two processes must first “handshake” with each
other—that is, they must send some preliminary segments to each other to establish
the parameters of the ensuing data transfer. As part of TCP connection establish-
ment, both sides of the connection will initialize many TCP state variables (many of
which will be discussed in this section and in Section 3.7) associated with the TCP
connection.

The TCP “connection” is not an end-to-end TDM or FDM circuit as in a circuit-
switched network. Instead, the “connection” is a logical one, with common state
residing only in the TCPs in the two communicating end systems. Recall that because
the TCP protocol runs only in the end systems and not in the intermediate network
elements (routers and link-layer switches), the intermediate network elements do
not maintain TCP connection state. In fact, the intermediate routers are completely
oblivious to TCP connections; they see datagrams, not connections.

A TCP connection provides a full-duplex service: If there is a TCP con-
nection between Process A on one host and Process B on another host, then
application-layer data can flow from Process A to Process B at the same time
as application-layer data flows from Process B to Process A. A TCP connec-
tion is also always point-to-point, that is, between a single sender and a single
receiver. So-called “multicasting” (see the online supplementary materials for
this text)—the transfer of data from one sender to many receivers in a single
send operation—is not possible with TCP. With TCP, two hosts are company
and three are a crowd!

Let’s now take a look at how a TCP connection is established. Suppose a process
running in one host wants to initiate a connection with another process in another
host. Recall that the process that is initiating the connection is called the client
process, while the other process is called the server process. The client application
process first informs the client transport layer that it wants to establish a connection

227

228

CHAPTER 3

e TRANSPORT LAYER

CASE HISTORY

VINTON CERF, ROBERT KAHN, AND TCP/IP

In the early 1970s, packet-switched networks began to proliferate, with the
ARPAnet—the precursor of the Internet—being just one of many networks. Each of
these networks had its own protocol. Two researchers, Vinton Cerf and Robert Kahn,
recognized the importance of interconnecting these networks and invented a cross-
network protocol called TCP/IP, which stands for Transmission Control Protocol/
Internet Protocol. Although Cerf and Kahn began by seeing the protocol as a single
entity, it was later split info its two parts, TCP and IP, which operated separately.
Cerf and Kahn published a paper on TCP/IP in May 1974 in IEEE Transactions on
Communications Technology [Cerf 1974].

The TCP/IP protocol, which is the bread and butter of today’s Internet, was
devised before PCs, workstations, smartphones, and tablets, before the prolifera-
tion of Ethernet, cable, and DSL, WiFi, and other access network technologies, and
before the Web, social media, and streaming video. Cerf and Kahn saw the need
for a networking protocol that, on the one hand, provides broad support for yet-to-
be-defined applications and, on the other hand, allows arbitrary hosts and link-layer
protocols to interoperate.

In 2004, Cerf and Kahn received the ACM's Turing Award, considered the
“Nobel Prize of Computing” for “pioneering work on internetworking, including the
design and implementation of the Internet’s basic communications protocols, TCP/IP,
and for inspired leadership in networking.”

to a process in the server. Recall from Section 2.7.2, a Python client program does
this by issuing the command

clientSocket.connect ((serverName, serverPort))

where serverName is the name of the server and serverPort identifies the
process on the server. TCP in the client then proceeds to establish a TCP connec-
tion with TCP in the server. At the end of this section we discuss in some detail the
connection-establishment procedure. For now it suffices to know that the client first
sends a special TCP segment; the server responds with a second special TCP seg-
ment; and finally the client responds again with a third special segment. The first
two segments carry no payload, that is, no application-layer data; the third of these
segments may carry a payload. Because three segments are sent between the two
hosts, this connection-establishment procedure is often referred to as a three-way
handshake.

3.5 ¢ CONNECTION-ORIENTED TRANSPORT: TCP

Once a TCP connection is established, the two application processes can send
data to each other. Let’s consider the sending of data from the client process to the
server process. The client process passes a stream of data through the socket (the door
of the process), as described in Section 2.7. Once the data passes through the door,
the data is in the hands of TCP running in the client. As shown in Figure 3.28, TCP
directs this data to the connection’s send buffer, which is one of the buffers that is
set aside during the initial three-way handshake. From time to time, TCP will grab
chunks of data from the send buffer and pass the data to the network layer. Interest-
ingly, the TCP specification [RFC 793] is very laid back about specifying when TCP
should actually send buffered data, stating that TCP should “send that data in seg-
ments at its own convenience.” The maximum amount of data that can be grabbed
and placed in a segment is limited by the maximum segment size (MSS). The MSS
is typically set by first determining the length of the largest link-layer frame that
can be sent by the local sending host (the so-called maximum transmission unit,
MTU), and then setting the MSS to ensure that a TCP segment (when encapsulated
in an IP datagram) plus the TCP/IP header length (typically 40 bytes) will fit into a
single link-layer frame. Both Ethernet and PPP link-layer protocols have an MTU of
1,500 bytes. Thus, a typical value of MSS is 1460 bytes. Approaches have also been
proposed for discovering the path MTU—the largest link-layer frame that can be sent
on all links from source to destination [RFC 1191]—and setting the MSS based on
the path MTU value. Note that the MSS is the maximum amount of application-layer
data in the segment, not the maximum size of the TCP segment including headers.
(This terminology is confusing, but we have to live with it, as it is well entrenched.)

TCP pairs each chunk of client data with a TCP header, thereby forming TCP
segments. The segments are passed down to the network layer, where they are sepa-
rately encapsulated within network-layer IP datagrams. The IP datagrams are then
sent into the network. When TCP receives a segment at the other end, the segment’s
data is placed in the TCP connection’s receive buffer, as shown in Figure 3.28. The
application reads the stream of data from this buffer. Each side of the connection has

Process
reads data

Process
writes data

l Segment == l Segment == TCP

receive
buffer

Figure 3.28 ¢+ TCP send and receive buffers

229

230

CHAPTER 3

e TRANSPORT LAYER

its own send buffer and its own receive buffer. (You can see the online flow-control
interactive animation at http://www.awl.com/kurose-ross, which provides an anima-
tion of the send and receive buffers.)

We see from this discussion that a TCP connection consists of buffers, variables,
and a socket connection to a process in one host, and another set of buffers, vari-
ables, and a socket connection to a process in another host. As mentioned earlier, no
buffers or variables are allocated to the connection in the network elements (routers,
switches, and repeaters) between the hosts.

3.5.2 TCP Segment Structure

Having taken a brief look at the TCP connection, let’s examine the TCP segment
structure. The TCP segment consists of header fields and a data field. The data field
contains a chunk of application data. As mentioned above, the MSS limits the maxi-
mum size of a segment’s data field. When TCP sends a large file, such as an image as
part of a Web page, it typically breaks the file into chunks of size MSS (except for the
last chunk, which will often be less than the MSS). Interactive applications, however,
often transmit data chunks that are smaller than the MSS; for example, with remote
login applications such as Telnet and ssh, the data field in the TCP segment is often
only one byte. Because the TCP header is typically 20 bytes (12 bytes more than the
UDP header), segments sent by Telnet and ssh may be only 21 bytes in length.
Figure 3.29 shows the structure of the TCP segment. As with UDP, the header
includes source and destination port numbers, which are used for multiplexing/
demultiplexing data from/to upper-layer applications. Also, as with UDP, the header
includes a checksum field. A TCP segment header also contains the following fields:

e The 32-bit sequence number field and the 32-bit acknowledgment number
field are used by the TCP sender and receiver in implementing a reliable data
transfer service, as discussed below.

* The 16-bit receive window field is used for flow control. We will see shortly that
it is used to indicate the number of bytes that a receiver is willing to accept.

* The 4-bit header length field specifies the length of the TCP header in 32-bit
words. The TCP header can be of variable length due to the TCP options field.
(Typically, the options field is empty, so that the length of the typical TCP header
is 20 bytes.)

* The optional and variable-length options field is used when a sender and receiver
negotiate the maximum segment size (MSS) or as a window scaling factor for use
in high-speed networks. A time-stamping option is also defined. See RFC 854
and RFC 1323 for additional details.

e The flag field contains 6 bits. The ACK bit is used to indicate that the value
carried in the acknowledgment field is valid; that is, the segment contains an
acknowledgment for a segment that has been successfully received. The RST,

3.5 ¢ CONNECTION-ORIENTED TRANSPORT: TCP 231

32 bits
|

Source port # Dest port #

Sequence number

Acknowledgment number

Header

CwUNMTEZ=) .
Uy =
length Unused % A= Receive window
Internet checksum Urgent data pointer
Options
Data

Figure 3.29 ¢ TCP segment structure

SYN, and FIN bits are used for connection setup and teardown, as we will discuss
at the end of this section. The CWR and ECE bits are used in explicit congestion
notification, as discussed in Section 3.7.2. Setting the PSH bit indicates that the
receiver should pass the data to the upper layer immediately. Finally, the URG bit
is used to indicate that there is data in this segment that the sending-side upper-
layer entity has marked as “urgent.” The location of the last byte of this urgent
data is indicated by the 16-bit urgent data pointer field. TCP must inform the
receiving-side upper-layer entity when urgent data exists and pass it a pointer to
the end of the urgent data. (In practice, the PSH, URG, and the urgent data pointer
are not used. However, we mention these fields for completeness.)

Our experience as teachers is that our students sometimes find discussion of
packet formats rather dry and perhaps a bit boring. For a fun and fanciful look at
TCP header fields, particularly if you love Legos™ as we do, see [Pomeranz 2010].

Sequence Numbers and Acknowledgment Numbers

Two of the most important fields in the TCP segment header are the sequence number
field and the acknowledgment number field. These fields are a critical part of TCP’s
reliable data transfer service. But before discussing how these fields are used to pro-
vide reliable data transfer, let us first explain what exactly TCP puts in these fields.

232

CHAPTER 3

e TRANSPORT LAYER

File
\

Data for 1st segment Data for 2nd segment

| |
1/ I’II 17
0 1 1,000 1,999 499,999

/L i i
1/ 7/ 7/

Figure 3.30 + Dividing file data into TCP segments

TCP views data as an unstructured, but ordered, stream of bytes. TCP’s use of
sequence numbers reflects this view in that sequence numbers are over the stream
of transmitted bytes and not over the series of transmitted segments. The sequence
number for a segment is therefore the byte-stream number of the first byte in the
segment. Let’s look at an example. Suppose that a process in Host A wants to send a
stream of data to a process in Host B over a TCP connection. The TCP in Host A will
implicitly number each byte in the data stream. Suppose that the data stream consists
of a file consisting of 500,000 bytes, that the MSS is 1,000 bytes, and that the first
byte of the data stream is numbered 0. As shown in Figure 3.30, TCP constructs 500
segments out of the data stream. The first segment gets assigned sequence number
0, the second segment gets assigned sequence number 1,000, the third segment gets
assigned sequence number 2,000, and so on. Each sequence number is inserted in the
sequence number field in the header of the appropriate TCP segment.

Now let’s consider acknowledgment numbers. These are a little trickier than
sequence numbers. Recall that TCP is full-duplex, so that Host A may be receiving
data from Host B while it sends data to Host B (as part of the same TCP connection).
Each of the segments that arrive from Host B has a sequence number for the data
flowing from B to A. The acknowledgment number that Host A puts in its segment
is the sequence number of the next byte Host A is expecting from Host B. It is good
to look at a few examples to understand what is going on here. Suppose that Host A
has received all bytes numbered O through 535 from B and suppose that it is about
to send a segment to Host B. Host A is waiting for byte 536 and all the subsequent
bytes in Host B’s data stream. So Host A puts 536 in the acknowledgment number
field of the segment it sends to B.

As another example, suppose that Host A has received one segment from Host
B containing bytes 0 through 535 and another segment containing bytes 900 through
1,000. For some reason Host A has not yet received bytes 536 through 899. In this
example, Host A is still waiting for byte 536 (and beyond) in order to re-create B’s
data stream. Thus, A’s next segment to B will contain 536 in the acknowledgment
number field. Because TCP only acknowledges bytes up to the first missing byte in
the stream, TCP is said to provide cumulative acknowledgments.

3.5 ¢ CONNECTION-ORIENTED TRANSPORT: TCP

This last example also brings up an important but subtle issue. Host A received
the third segment (bytes 900 through 1,000) before receiving the second segment
(bytes 536 through 899). Thus, the third segment arrived out of order. The sub-
tle issue is: What does a host do when it receives out-of-order segments in a TCP
connection? Interestingly, the TCP RFCs do not impose any rules here and leave
the decision up to the programmers implementing a TCP implementation. There
are basically two choices: either (1) the receiver immediately discards out-of-order
segments (which, as we discussed earlier, can simplify receiver design), or (2) the
receiver keeps the out-of-order bytes and waits for the missing bytes to fill in the
gaps. Clearly, the latter choice is more efficient in terms of network bandwidth, and
is the approach taken in practice.

In Figure 3.30, we assumed that the initial sequence number was zero. In truth,
both sides of a TCP connection randomly choose an initial sequence number. This
is done to minimize the possibility that a segment that is still present in the network
from an earlier, already-terminated connection between two hosts is mistaken for a
valid segment in a later connection between these same two hosts (which also happen
to be using the same port numbers as the old connection) [Sunshine 1978].

Telnet: A Case Study for Sequence and Acknowledgment Numbers

Telnet, defined in RFC 854, is a popular application-layer protocol used for remote
login. It runs over TCP and is designed to work between any pair of hosts. Unlike the
bulk data transfer applications discussed in Chapter 2, Telnet is an interactive appli-
cation. We discuss a Telnet example here, as it nicely illustrates TCP sequence and
acknowledgment numbers. We note that many users now prefer to use the SSH proto-
col rather than Telnet, since data sent in a Telnet connection (including passwords!)
are not encrypted, making Telnet vulnerable to eavesdropping attacks (as discussed
in Section 8.7).

Suppose Host A initiates a Telnet session with Host B. Because Host A initiates
the session, it is labeled the client, and Host B is labeled the server. Each character
typed by the user (at the client) will be sent to the remote host; the remote host will
send back a copy of each character, which will be displayed on the Telnet user’s
screen. This “echo back” is used to ensure that characters seen by the Telnet user
have already been received and processed at the remote site. Each character thus
traverses the network twice between the time the user hits the key and the time the
character is displayed on the user’s monitor.

Now suppose the user types a single letter, ‘C,” and then grabs a coffee. Let’s
examine the TCP segments that are sent between the client and server. As shown
in Figure 3.31, we suppose the starting sequence numbers are 42 and 79 for the cli-
ent and server, respectively. Recall that the sequence number of a segment is the
sequence number of the first byte in the data field. Thus, the first segment sent from
the client will have sequence number 42; the first segment sent from the server will
have sequence number 79. Recall that the acknowledgment number is the sequence

233

234

CHAPTER 3

e TRANSPORT LAYER

Host A Host B
==)
User types
o
Host ACKs
receipt of 'C',
echoes back 'c'
Host ACKs
receipt of
echoed 'C'

Time Time

Figure 3.31 ¢ Sequence and acknowledgment numbers for a simple Telnet
application over TCP

number of the next byte of data that the host is waiting for. After the TCP connec-
tion is established but before any data is sent, the client is waiting for byte 79 and the
server is waiting for byte 42.

As shown in Figure 3.31, three segments are sent. The first segment is sent from
the client to the server, containing the 1-byte ASCII representation of the letter ‘C’ in
its data field. This first segment also has 42 in its sequence number field, as we just
described. Also, because the client has not yet received any data from the server, this
first segment will have 79 in its acknowledgment number field.

The second segment is sent from the server to the client. It serves a dual purpose.
First it provides an acknowledgment of the data the server has received. By putting
43 in the acknowledgment field, the server is telling the client that it has successfully
received everything up through byte 42 and is now waiting for bytes 43 onward. The
second purpose of this segment is to echo back the letter ‘C.” Thus, the second seg-
ment has the ASCII representation of ‘C’ in its data field. This second segment has
the sequence number 79, the initial sequence number of the server-to-client data flow
of this TCP connection, as this is the very first byte of data that the server is send-
ing. Note that the acknowledgment for client-to-server data is carried in a segment

3.5 ¢ CONNECTION-ORIENTED TRANSPORT: TCP

carrying server-to-client data; this acknowledgment is said to be piggybacked on the
server-to-client data segment.

The third segment is sent from the client to the server. Its sole purpose is to
acknowledge the data it has received from the server. (Recall that the second seg-
ment contained data—the letter ‘C’—from the server to the client.) This segment
has an empty data field (that is, the acknowledgment is not being piggybacked with
any client-to-server data). The segment has 80 in the acknowledgment number field
because the client has received the stream of bytes up through byte sequence number
79 and it is now waiting for bytes 80 onward. You might think it odd that this seg-
ment also has a sequence number since the segment contains no data. But because
TCP has a sequence number field, the segment needs to have some sequence number.

3.5.3 Round-Trip Time Estimation and Timeout

TCP, like our rdt protocol in Section 3.4, uses a timeout/retransmit mechanism to
recover from lost segments. Although this is conceptually simple, many subtle issues
arise when we implement a timeout/retransmit mechanism in an actual protocol such
as TCP. Perhaps the most obvious question is the length of the timeout intervals.
Clearly, the timeout should be larger than the connection’s round-trip time (RTT),
that is, the time from when a segment is sent until it is acknowledged. Otherwise,
unnecessary retransmissions would be sent. But how much larger? How should the
RTT be estimated in the first place? Should a timer be associated with each and
every unacknowledged segment? So many questions! Our discussion in this section
is based on the TCP work in [Jacobson 1988] and the current IETF recommendations
for managing TCP timers [RFC 6298].

Estimating the Round-Trip Time

Let’s begin our study of TCP timer management by considering how TCP estimates
the round-trip time between sender and receiver. This is accomplished as follows.
The sample RTT, denoted Samp1eRTT, for a segment is the amount of time between
when the segment is sent (that is, passed to IP) and when an acknowledgment for
the segment is received. Instead of measuring a SampleRTT for every transmitted
segment, most TCP implementations take only one SampleRTT measurement at
a time. That is, at any point in time, the SampleRTT is being estimated for only
one of the transmitted but currently unacknowledged segments, leading to a new
value of SampleRTT approximately once every RTT. Also, TCP never computes a
SampleRTT for a segment that has been retransmitted; it only measures
SampleRTT for segments that have been transmitted once [Karn 1987]. (A problem
at the end of the chapter asks you to consider why.)

Obviously, the Sampl1eRTT values will fluctuate from segment to segment due
to congestion in the routers and to the varying load on the end systems. Because of
this fluctuation, any given SampleRTT value may be atypical. In order to estimate

235

236

CHAPTER 3

e TRANSPORT LAYER

a typical RTT, it is therefore natural to take some sort of average of the SampleRTT
values. TCP maintains an average, called EstimatedRTT, of the SampleRTT
values. Upon obtaining a new SampleRTT, TCP updates EstimatedRTT accord-
ing to the following formula:

EstimatedRTT = (1 —a) *EstimatedRTT + a * SampleRTT

The formula above is written in the form of a programming-language state-
ment—the new value of EstimatedRTT is a weighted combination of the previous
value of EstimatedRTT and the new value for SampleRTT. The recommended
value of o is a = 0.125 (that is, 1/8) [RFC 6298], in which case the formula above
becomes:

EstimatedRTT =0.875+EstimatedRTT + 0.125 * SampleRTT

Note that EstimatedRTT is a weighted average of the SampleRTT values. As
discussed in a homework problem at the end of this chapter, this weighted average
puts more weight on recent samples than on old samples. This is natural, as the more
recent samples better reflect the current congestion in the network. In statistics, such
an average is called an exponential weighted moving average (EWMA). The word
“exponential” appears in EWMA because the weight of a given Sampl1eRTT decays
exponentially fast as the updates proceed. In the homework problems, you will be
asked to derive the exponential term in EstimatedRTT.

Figure 3.32 shows the SampleRTT values and EstimatedRTT for a value
of a = 1/8 for a TCP connection between gaia.cs.umass.edu (in Amherst,
Massachusetts) to fantasia.eurecom. fr (in the south of France). Clearly,
the variations in the SampleRTT are smoothed out in the computation of the
EstimatedRTT.

In addition to having an estimate of the RTT, it is also valuable to have a meas-
ure of the variability of the RTT. [RFC 6298] defines the RTT variation, DevRTT,
as an estimate of how much SampleRTT typically deviates from EstimatedRTT:

DevRTT = (1 —B) * DevRTT + B+ | SampleRTT -~ EstimatedRTT |

Note that DevRTT is an EWMA of the difference between SampleRTT and
EstimatedRTT. If the SampleRTT values have little fluctuation, then DevRTT
will be small; on the other hand, if there is a lot of fluctuation, DevRTT will be large.
The recommended value of 8 is 0.25.

Setting and Managing the Retransmission Timeout Interval

Given values of EstimatedRTT and DevRTT, what value should be used for
TCP’s timeout interval? Clearly, the interval should be greater than or equal to

3.5 ¢ CONNECTION-ORIENTED TRANSPORT: TCP

PRINCIPLES IN PRACTICE

TCP provides reliable data transfer by using positive acknowledgments and timers in much
the same way that we studied in Section 3.4. TCP acknowledges data that has been
received correctly, and it then refransmits segments when segments or their corresponding
acknowledgments are thought to be lost or corrupted. Certain versions of TCP also have
an implicit NAK mechanism—with TCP’s fast retransmit mechanism, the receipt of three
duplicate ACKs for a given segment serves as an implicit NAK for the following segment,
triggering retransmission of that segment before timeout. TCP uses sequences of numbers to
allow the receiver to identify lost or duplicate segments. Just as in the case of our reliable
data transfer protocol, rdt3.0, TCP cannot itself tell for certain if a segment, or its ACK, is
lost, corrupted, or overly delayed. At the sender, TCP’s response will be the same: retrans-
mit the segment in question.

TCP also uses pipelining, allowing the sender to have multiple transmitted but yet-to-
be-acknowledged segments outstanding at any given time. We saw earlier that pipelining
can greatly improve a session’s throughput when the ratio of the segment size to round-
trip delay is small. The specific number of outstanding, unacknowledged segments that @
sender can have is determined by TCP's flow-control and congestion-control mechanisms.
TCP flow control is discussed at the end of this section; TCP congestion control is discussed
in Section 3.7. For the time being, we must simply be aware that the TCP sender uses

pipelining.
I

EstimatedRTT, or unnecessary retransmissions would be sent. But the timeout
interval should not be too much larger than EstimatedRTT; otherwise, when a
segment is lost, TCP would not quickly retransmit the segment, leading to large
data transfer delays. It is therefore desirable to set the timeout equal to the
EstimatedRTT plus some margin. The margin should be large when there is a lot
of fluctuation in the SampleRTT values; it should be small when there is little fluc-
tuation. The value of DevRTT should thus come into play here. All of these consid-
erations are taken into account in TCP’s method for determining the retransmission
timeout interval:

TimeoutInterval = EstimatedRTT + 4 * DevRTT

An initial TimeoutInterval value of 1 second is recommended [RFC
6298]. Also, when a timeout occurs, the value of TimeoutInterval is doubled
to avoid a premature timeout occurring for a subsequent segment that will soon be
acknowledged. However, as soon as a segment is received and EstimatedRTT is
updated, the TimeoutInterval is again computed using the formula above.

237

238

RTT (milliseconds)

CHAPTER 3

350

300

250

200

150

100 ,

e TRANSPORT LAYER

Sample RTT

>/

Estimated RTT

I I I I I I I I I I I I I I
15 22 29 36 43 50 57 64 71 78 85 92 99 106

Time (seconds)

Figure 3.32 ¢ RTT samples and RTT estimates

3.5.4 Reliable Data Transfer

Recall that the Internet’s network-layer service (IP service) is unreliable. IP does
not guarantee datagram delivery, does not guarantee in-order delivery of datagrams,
and does not guarantee the integrity of the data in the datagrams. With IP service,
datagrams can overflow router buffers and never reach their destination, datagrams
can arrive out of order, and bits in the datagram can get corrupted (flipped from O to
1 and vice versa). Because transport-layer segments are carried across the network
by IP datagrams, transport-layer segments can suffer from these problems as well.

TCP creates a reliable data transfer service on top of IP’s unreliable best-
effort service. TCP’s reliable data transfer service ensures that the data stream that
a process reads out of its TCP receive buffer is uncorrupted, without gaps, with-
out duplication, and in sequence; that is, the byte stream is exactly the same byte
stream that was sent by the end system on the other side of the connection. How TCP
provides a reliable data transfer involves many of the principles that we studied in
Section 3.4.

In our earlier development of reliable data transfer techniques, it was conceptu-
ally easiest to assume that an individual timer is associated with each transmitted
but not yet acknowledged segment. While this is great in theory, timer management
can require considerable overhead. Thus, the recommended TCP timer management

3.5 ¢ CONNECTION-ORIENTED TRANSPORT: TCP

procedures [RFC 6298] use only a single retransmission timer, even if there are mul-
tiple transmitted but not yet acknowledged segments. The TCP protocol described in
this section follows this single-timer recommendation.

We will discuss how TCP provides reliable data transfer in two incremental
steps. We first present a highly simplified description of a TCP sender that uses only
timeouts to recover from lost segments; we then present a more complete description
that uses duplicate acknowledgments in addition to timeouts. In the ensuing discus-
sion, we suppose that data is being sent in only one direction, from Host A to Host B,
and that Host A is sending a large file.

Figure 3.33 presents a highly simplified description of a TCP sender. We see
that there are three major events related to data transmission and retransmission
in the TCP sender: data received from application above; timer timeout; and ACK

239

/* Assume sender 1s not constrained by TCP flow or congestion control, that data from above is less

than MSS in size, and that data transfer is in one direction only. */

NextSegNum=InitialSegNumber
SendBase=InitialSegNumber

loop (forever) {

switch (event)

event: data received from application above
create TCP segment with sequence number NextSegNum
if (timer currently not running)
start timer
pass segment to IP
NextSegNum=NextSegNum+length (data)
break;

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer
break;

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase=y
if (there are currently any not-yet-acknowledged segments)
start timer
}

break;

} /* end of loop forever */

Figure 3.33 ¢ Simplified TCP sender

240

CHAPTER 3

e TRANSPORT LAYER

receipt. Upon the occurrence of the first major event, TCP receives data from the
application, encapsulates the data in a segment, and passes the segment to IP. Note
that each segment includes a sequence number that is the byte-stream number of
the first data byte in the segment, as described in Section 3.5.2. Also note that if the
timer is already not running for some other segment, TCP starts the timer when the
segment is passed to IP. (It is helpful to think of the timer as being associated with
the oldest unacknowledged segment.) The expiration interval for this timer is the
TimeoutInterval, which is calculated from EstimatedRTT and DevRTT, as
described in Section 3.5.3.

The second major event is the timeout. TCP responds to the timeout event by
retransmitting the segment that caused the timeout. TCP then restarts the timer.

The third major event that must be handled by the TCP sender is the arrival of
an acknowledgment segment (ACK) from the receiver (more specifically, a segment
containing a valid ACK field value). On the occurrence of this event, TCP compares
the ACK value y with its variable SendBase. The TCP state variable SendBase
is the sequence number of the oldest unacknowledged byte. (Thus SendBase-1 is
the sequence number of the last byte that is known to have been received correctly
and in order at the receiver.) As indicated earlier, TCP uses cumulative acknowl-
edgments, so that y acknowledges the receipt of all bytes before byte number y. If
y > SendBase, then the ACK is acknowledging one or more previously unac-
knowledged segments. Thus the sender updates its SendBase variable; it also
restarts the timer if there currently are any not-yet-acknowledged segments.

A Few Interesting Scenarios

We have just described a highly simplified version of how TCP provides reliable data
transfer. But even this highly simplified version has many subtleties. To get a good
feeling for how this protocol works, let’s now walk through a few simple scenarios.
Figure 3.34 depicts the first scenario, in which Host A sends one segment to Host B.
Suppose that this segment has sequence number 92 and contains 8 bytes of data. After
sending this segment, Host A waits for a segment from B with acknowledgment num-
ber 100. Although the segment from A is received at B, the acknowledgment from B
to A gets lost. In this case, the timeout event occurs, and Host A retransmits the same
segment. Of course, when Host B receives the retransmission, it observes from the
sequence number that the segment contains data that has already been received. Thus,
TCP in Host B will discard the bytes in the retransmitted segment.

In a second scenario, shown in Figure 3.35, Host A sends two segments back to
back. The first segment has sequence number 92 and 8 bytes of data, and the second
segment has sequence number 100 and 20 bytes of data. Suppose that both segments
arrive intact at B, and B sends two separate acknowledgments for each of these seg-
ments. The first of these acknowledgments has acknowledgment number 100; the
second has acknowledgment number 120. Suppose now that neither of the acknowl-
edgments arrives at Host A before the timeout. When the timeout event occurs, Host

3.5 ¢ CONNECTION-ORIENTED TRANSPORT: TCP 241

Host A Host B
= =

Timeout — y
X

100

RCKZ

Time Time

Figure 3.34 ¢ Retransmission due to a lost acknowledgment

A resends the first segment with sequence number 92 and restarts the timer. As long
as the ACK for the second segment arrives before the new timeout, the second seg-
ment will not be retransmitted.

In a third and final scenario, suppose Host A sends the two segments, exactly
as in the second example. The acknowledgment of the first segment is lost in the
network, but just before the timeout event, Host A receives an acknowledgment with
acknowledgment number 120. Host A therefore knows that Host B has received
everything up through byte 119; so Host A does not resend either of the two
segments. This scenario is illustrated in Figure 3.36.

Doubling the Timeout Interval

We now discuss a few modifications that most TCP implementations employ. The
first concerns the length of the timeout interval after a timer expiration. In this modi-
fication, whenever the timeout event occurs, TCP retransmits the not-yet-acknowl-
edged segment with the smallest sequence number, as described above. But each
time TCP retransmits, it sets the next timeout interval to twice the previous value,

242

CHAPTER 3

e TRANSPORT LAYER

Host A Host B

segq=92 timeout interval —|

seg=92 timeout interval —

120

BCEZ

Time Time

Figure 3.35 ¢ Segment 100 not retransmitted

rather than deriving it from the last EstimatedRTT and DevRTT (as described
in Section 3.5.3). For example, suppose TimeoutInterval associated with
the oldest not yet acknowledged segment is .75 sec when the timer first expires.
TCP will then retransmit this segment and set the new expiration time to 1.5 sec. If
the timer expires again 1.5 sec later, TCP will again retransmit this segment, now
setting the expiration time to 3.0 sec. Thus, the intervals grow exponentially after
each retransmission. However, whenever the timer is started after either of the two
other events (that is, data received from application above, and ACK received), the
TimeoutInterval is derived from the most recent values of EstimatedRTT
and DevRTT.

This modification provides a limited form of congestion control. (More com-
prehensive forms of TCP congestion control will be studied in Section 3.7.) The
timer expiration is most likely caused by congestion in the network, that is, too many
packets arriving at one (or more) router queues in the path between the source and
destination, causing packets to be dropped and/or long queuing delays. In times of
congestion, if the sources continue to retransmit packets persistently, the congestion

3.5 ¢ CONNECTION-ORIENTED TRANSPORT: TCP 243

Host A Host B
; ;
— =

Seg=92 timeout interval —

Time Time

Figure 3.36 ¢ A cumulative acknowledgment avoids retransmission of the
first segment

may get worse. Instead, TCP acts more politely, with each sender retransmitting after
longer and longer intervals. We will see that a similar idea is used by Ethernet when
we study CSMA/CD in Chapter 6.

Fast Retransmit

One of the problems with timeout-triggered retransmissions is that the timeout period
can be relatively long. When a segment is lost, this long timeout period forces the
sender to delay resending the lost packet, thereby increasing the end-to-end delay.
Fortunately, the sender can often detect packet loss well before the timeout event
occurs by noting so-called duplicate ACKs. A duplicate ACK is an ACK that reac-
knowledges a segment for which the sender has already received an earlier acknowl-
edgment. To understand the sender’s response to a duplicate ACK, we must look at
why the receiver sends a duplicate ACK in the first place. Table 3.2 summarizes the
TCP receiver’s ACK generation policy [RFC 5681]. When a TCP receiver receives

244 CHAPTER 3

e TRANSPORT LAYER

Event

TCP Receiver Action

Arrival of in-order segment with expected sequence number. Al Delayed ACK. Wait up to 500 msec for arrival of another in-order segment.
data up to expected sequence number already acknowledged. If next in-order segment does not arrive in this interval, send an ACK.

Arrival of in-order segment with expected sequence number. One Immediately send single cumulative ACK, ACKing both in-order segments.
other in-order segment waiting for ACK transmission.

Arival of out-of-order segment with higher-than-expected sequence Immediately send duplicate ACK, indicating sequence number of next

number. Gap detected.

expected byte (which is the lower end of the gap).

Arrival of segment that partially or completely fills in gap in Immediately send ACK, provided that segment starts af the lower end

received data.

of gap.

Table 3.2 ¢+ TCP ACK Generation Recommendation [RFC 5681]

a segment with a sequence number that is larger than the next, expected, in-order
sequence number, it detects a gap in the data stream—that is, a missing segment.
This gap could be the result of lost or reordered segments within the network. Since
TCP does not use negative acknowledgments, the receiver cannot send an explicit
negative acknowledgment back to the sender. Instead, it simply reacknowledges
(that is, generates a duplicate ACK for) the last in-order byte of data it has received.
(Note that Table 3.2 allows for the case that the receiver does not discard out-of-
order segments.)

Because a sender often sends a large number of segments back to back, if one
segment is lost, there will likely be many back-to-back duplicate ACKs. If the TCP
sender receives three duplicate ACKs for the same data, it takes this as an indication
that the segment following the segment that has been ACKed three times has been
lost. (In the homework problems, we consider the question of why the sender waits
for three duplicate ACKs, rather than just a single duplicate ACK.) In the case that
three duplicate ACKs are received, the TCP sender performs a fast retransmit [RFC
5681], retransmitting the missing segment before that segment’s timer expires. This
is shown in Figure 3.37, where the second segment is lost, then retransmitted before
its timer expires. For TCP with fast retransmit, the following code snippet replaces
the ACK received event in Figure 3.33:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase=y
if (there are currently any not yet
acknowledged segments)
start timer

}

3.5 ¢ CONNECTION-ORIENTED TRANSPORT: TCP

Host A Host B

ack=100

ack=100
ack=100
ack=100

Timeout

Time Time
Figure 3.37 ¢ Fast retransmit: retransmitting the missing segment before
the segment’s timer expires

else {/* a duplicate ACK for already ACKed

segment */

increment number of duplicate ACKs
received for vy

if (number of duplicate ACKS received
for y==3)
/* TCP fast retransmit */
resend segment with sequence number vy

}

break;

We noted earlier that many subtle issues arise when a timeout/retransmit mech-
anism is implemented in an actual protocol such as TCP. The procedures above,

which have evolved as a result of more than 30 years of experience with TCP timers,
should convince you that this is indeed the case!

245

246

CHAPTER 3

e TRANSPORT LAYER

Go-Back-N or Selective Repeat?

Let us close our study of TCP’s error-recovery mechanism by considering the fol-
lowing question: Is TCP a GBN or an SR protocol? Recall that TCP acknowledg-
ments are cumulative and correctly received but out-of-order segments are not
individually ACKed by the receiver. Consequently, as shown in Figure 3.33 (see
also Figure 3.19), the TCP sender need only maintain the smallest sequence number
of a transmitted but unacknowledged byte (SendBase) and the sequence number
of the next byte to be sent (NextSegNum). In this sense, TCP looks a lot like a
GBN-style protocol. But there are some striking differences between TCP and Go-
Back-N. Many TCP implementations will buffer correctly received but out-of-order
segments [Stevens 1994]. Consider also what happens when the sender sends a
sequence of segments 1, 2, ..., N, and all of the segments arrive in order without
error at the receiver. Further suppose that the acknowledgment for packet n < N
gets lost, but the remaining N — 1 acknowledgments arrive at the sender before
their respective timeouts. In this example, GBN would retransmit not only packet n,
but also all of the subsequent packetsn + 1,n + 2, ..., N. TCP, on the other hand,
would retransmit at most one segment, namely, segment n. Moreover, TCP would
not even retransmit segment n if the acknowledgment for segment n + 1 arrived
before the timeout for segment n.

A proposed modification to TCP, the so-called selective acknowledgment
[RFC 2018], allows a TCP receiver to acknowledge out-of-order segments selectively
rather than just cumulatively acknowledging the last correctly received, in-order
segment. When combined with selective retransmission—skipping the retransmis-
sion of segments that have already been selectively acknowledged by the receiver—
TCP looks a lot like our generic SR protocol. Thus, TCP’s error-recovery mechanism
is probably best categorized as a hybrid of GBN and SR protocols.

3.5.5 Flow Control

Recall that the hosts on each side of a TCP connection set aside a receive buffer
for the connection. When the TCP connection receives bytes that are correct and in
sequence, it places the data in the receive buffer. The associated application process
will read data from this buffer, but not necessarily at the instant the data arrives.
Indeed, the receiving application may be busy with some other task and may not even
attempt to read the data until long after it has arrived. If the application is relatively
slow at reading the data, the sender can very easily overflow the connection’s receive
buffer by sending too much data too quickly.

TCP provides a flow-control service to its applications to eliminate the pos-
sibility of the sender overflowing the receiver’s buffer. Flow control is thus a speed-
matching service—matching the rate at which the sender is sending against the rate
at which the receiving application is reading. As noted earlier, a TCP sender can also
be throttled due to congestion within the IP network; this form of sender control is

3.5 ¢ CONNECTION-ORIENTED TRANSPORT: TCP

referred to as congestion control, a topic we will explore in detail in Sections 3.6
and 3.7. Even though the actions taken by flow and congestion control are similar
(the throttling of the sender), they are obviously taken for very different reasons.
Unfortunately, many authors use the terms interchangeably, and the savvy reader
would be wise to distinguish between them. Let’s now discuss how TCP provides its
flow-control service. In order to see the forest for the trees, we suppose throughout
this section that the TCP implementation is such that the TCP receiver discards out-
of-order segments.

TCP provides flow control by having the sender maintain a variable called
the receive window. Informally, the receive window is used to give the sender an
idea of how much free buffer space is available at the receiver. Because TCP is
full-duplex, the sender at each side of the connection maintains a distinct receive
window. Let’s investigate the receive window in the context of a file transfer. Sup-
pose that Host A is sending a large file to Host B over a TCP connection. Host B
allocates a receive buffer to this connection; denote its size by RcvBuf fer. From
time to time, the application process in Host B reads from the buffer. Define the
following variables:

° LastByteRead: the number of the last byte in the data stream read from the
buffer by the application process in B

° LastByteRcvd: the number of the last byte in the data stream that has arrived
from the network and has been placed in the receive buffer at B

Because TCP is not permitted to overflow the allocated buffer, we must have
LastByteRcvd - LastByteRead = RcvBuffer

The receive window, denoted rwnd is set to the amount of spare room in the buffer:
rwnd = RcvBuffer - [LastByteRcvd - LastByteRead]

Because the spare room changes with time, rwnd is dynamic. The variable rwnd is
illustrated in Figure 3.38.

How does the connection use the variable rwnd to provide the flow-control
service? Host B tells Host A how much spare room it has in the connection buffer
by placing its current value of rwnd in the receive window field of every segment it
sends to A. Initially, Host B sets rwnd = RcvBuffer. Note that to pull this off,
Host B must keep track of several connection-specific variables.

Host A in turn keeps track of two variables, LastByteSent and Last-
ByteAcked, which have obvious meanings. Note that the difference between these
two variables, LastByteSent - LastByteAcked, is the amount of unac-
knowledged data that A has sent into the connection. By keeping the amount of
unacknowledged data less than the value of rwnd, Host A is assured that it is not

247

248

CHAPTER 3

e TRANSPORT LAYER

RcvBuffer
rwnd
\
\
Data Application
from IP process
| — Spare room TCP data | —

in buffer

Figure 3.38 ¢ The receive window (rwnd) and the receive buffer
(RcvBuffer)

overflowing the receive buffer at Host B. Thus, Host A makes sure throughout the
connection’s life that

LastByteSent - LastByteAcked = rwnd

There is one minor technical problem with this scheme. To see this, suppose Host
B’s receive buffer becomes full so that rwnd = 0. After advertising rwnd = 0 to
Host A, also suppose that B has nothing to send to A. Now consider what happens.
As the application process at B empties the buffer, TCP does not send new seg-
ments with new rwnd values to Host A; indeed, TCP sends a segment to Host A
only if it has data to send or if it has an acknowledgment to send. Therefore, Host
A is never informed that some space has opened up in Host B’s receive buffer—
Host A is blocked and can transmit no more data! To solve this problem, the TCP
specification requires Host A to continue to send segments with one data byte when
B’s receive window is zero. These segments will be acknowledged by the receiver.
Eventually the buffer will begin to empty and the acknowledgments will contain a
nonzero rwnd value.

The online site at for this book provides an interactive animation that illustrates
the operation of the TCP receive window.

Having described TCP’s flow-control service, we briefly mention here that UDP
does not provide flow control and consequently, segments may be lost at the receiver
due to buffer overflow. For example, consider sending a series of UDP segments
from a process on Host A to a process on Host B. For a typical UDP implementation,
UDP will append the segments in a finite-sized buffer that “precedes” the corre-
sponding socket (that is, the door to the process). The process reads one entire seg-
ment at a time from the buffer. If the process does not read the segments fast enough
from the buffer, the buffer will overflow and segments will get dropped.

3.5 ¢ CONNECTION-ORIENTED TRANSPORT: TCP

3.5.6 TCP Connection Management

In this subsection, we take a closer look at how a TCP connection is established and
torn down. Although this topic may not seem particularly thrilling, it is important
because TCP connection establishment can significantly add to perceived delays (for
example, when surfing the Web). Furthermore, many of the most common network
attacks—including the incredibly popular SYN flood attack (see sidebar on the SYN
flood attack)—exploit vulnerabilities in TCP connection management. Let’s first
take a look at how a TCP connection is established. Suppose a process running in
one host (client) wants to initiate a connection with another process in another host
(server). The client application process first informs the client TCP that it wants to
establish a connection to a process in the server. The TCP in the client then proceeds
to establish a TCP connection with the TCP in the server in the following manner:

e Step 1. The client-side TCP first sends a special TCP segment to the server-side
TCP. This special segment contains no application-layer data. But one of the flag
bits in the segment’s header (see Figure 3.29), the SYN bit, is set to 1. For this
reason, this special segment is referred to as a SYN segment. In addition, the cli-
ent randomly chooses an initial sequence number (client_isn) and puts this
number in the sequence number field of the initial TCP SYN segment. This seg-
ment is encapsulated within an IP datagram and sent to the server. There has been
considerable interest in properly randomizing the choice of the client_isnin
order to avoid certain security attacks [CERT 2001-09; RFC 4987].

e Step 2. Once the IP datagram containing the TCP SYN segment arrives at the
server host (assuming it does arrive!), the server extracts the TCP SYN segment
from the datagram, allocates the TCP buffers and variables to the connection,
and sends a connection-granted segment to the client TCP. (We’ll see in Chapter
8 that the allocation of these buffers and variables before completing the third
step of the three-way handshake makes TCP vulnerable to a denial-of-service
attack known as SYN flooding.) This connection-granted segment also contains
no application-layer data. However, it does contain three important pieces of
information in the segment header. First, the SYN bit is set to 1. Second, the
acknowledgment field of the TCP segment header is set to client_isn+1.
Finally, the server chooses its own initial sequence number (server_1isn) and
puts this value in the sequence number field of the TCP segment header. This
connection-granted segment is saying, in effect, “I received your SYN packet to
start a connection with your initial sequence number, client_1isn. I agree to
establish this connection. My own initial sequence number is server_isn.”
The connection-granted segment is referred to as a SYNACK segment.

e Step 3. Upon receiving the SYNACK segment, the client also allocates buffers
and variables to the connection. The client host then sends the server yet another
segment; this last segment acknowledges the server’s connection-granted segment
(the client does so by putting the value server_isn+1 in the acknowledgment

249

250

CHAPTER 3

e TRANSPORT LAYER

field of the TCP segment header). The SYN bit is set to zero, since the connection
is established. This third stage of the three-way handshake may carry client-to-
server data in the segment payload.

Once these three steps have been completed, the client and server hosts can send
segments containing data to each other. In each of these future segments, the SYN
bit will be set to zero. Note that in order to establish the connection, three packets
are sent between the two hosts, as illustrated in Figure 3.39. For this reason, this
connection-establishment procedure is often referred to as a three-way handshake.
Several aspects of the TCP three-way handshake are explored in the homework prob-
lems (Why are initial sequence numbers needed? Why is a three-way handshake,
as opposed to a two-way handshake, needed?). It’s interesting to note that a rock
climber and a belayer (who is stationed below the rock climber and whose job it is
to handle the climber’s safety rope) use a three-way-handshake communication pro-
tocol that is identical to TCP’s to ensure that both sides are ready before the climber
begins ascent.

All good things must come to an end, and the same is true with a TCP connec-
tion. Either of the two processes participating in a TCP connection can end the con-
nection. When a connection ends, the “resources” (that is, the buffers and variables)

Client host Server host

C

==
Connection
request

—— Connection
granted
ACK——
Time Time

Figure 3.39 ¢ TCP three-way handshake: segment exchange

3.5 ¢ CONNECTION-ORIENTED TRANSPORT: TCP 251

Client Server

™
A

=
Close
FIN
ACK
Close
FIN
ACK
Timed wait
Closed
Time Time

Figure 3.40 ¢ Closing a TCP connection

in the hosts are deallocated. As an example, suppose the client decides to close the
connection, as shown in Figure 3.40. The client application process issues a close
command. This causes the client TCP to send a special TCP segment to the server
process. This special segment has a flag bit in the segment’s header, the FIN bit (see
Figure 3.29), set to 1. When the server receives this segment, it sends the client an
acknowledgment segment in return. The server then sends its own shutdown segment,
which has the FIN bit set to 1. Finally, the client acknowledges the server’s shutdown
segment. At this point, all the resources in the two hosts are now deallocated.
During the life of a TCP connection, the TCP protocol running in each host
makes transitions through various TCP states. Figure 3.41 illustrates a typical
sequence of TCP states that are visited by the client TCP. The client TCP begins
in the CLOSED state. The application on the client side initiates a new TCP con-
nection (by creating a Socket object in our Python examples from Chapter 2). This
causes TCP in the client to send a SYN segment to TCP in the server. After hav-
ing sent the SYN segment, the client TCP enters the SYN_SENT state. While in
the SYN_SENT state, the client TCP waits for a segment from the server TCP that
includes an acknowledgment for the client’s previous segment and has the SYN bit

252

CHAPTER 3

e TRANSPORT LAYER

Client application
initiates a TCP connection

CLOSED
Wait 30 seconds
Send SYN
TIME_WAIT —_—
Receive FIN, Receive SYN & ACK,
send ACK send ACK
LRI 2 ESTABLISHED
Send FIN
Receive ACK,
send nothing FIN_WAIT 1

Client application
initiates close connection

Figure 3.41 + A typical sequence of TCP states visited by a client TCP

set to 1. Having received such a segment, the client TCP enters the ESTABLISHED
state. While in the ESTABLISHED state, the TCP client can send and receive TCP
segments containing payload (that is, application-generated) data.

Suppose that the client application decides it wants to close the connection. (Note
that the server could also choose to close the connection.) This causes the client TCP
to send a TCP segment with the FIN bit set to 1 and to enter the FIN_WAIT _1 state.
While in the FIN_WAIT_1 state, the client TCP waits for a TCP segment from the
server with an acknowledgment. When it receives this segment, the client TCP enters
the FIN_WAIT_2 state. While in the FIN_WAIT _2 state, the client waits for another
segment from the server with the FIN bit set to 1; after receiving this segment, the client
TCP acknowledges the server’s segment and enters the TIME_WAIT state. The TIME_
WAIT state lets the TCP client resend the final acknowledgment in case the ACK is
lost. The time spent in the TIME_WAIT state is implementation-dependent, but typical
values are 30 seconds, 1 minute, and 2 minutes. After the wait, the connection formally
closes and all resources on the client side (including port numbers) are released.

Figure 3.42 illustrates the series of states typically visited by the server-side
TCP, assuming the client begins connection teardown. The transitions are self-
explanatory. In these two state-transition diagrams, we have only shown how a TCP
connection is normally established and shut down. We have not described what hap-
pens in certain pathological scenarios, for example, when both sides of a connection
want to initiate or shut down at the same time. If you are interested in learning about

3.5 ¢ CONNECTION-ORIENTED TRANSPORT: TCP 253

Server application

. creates a listen socket
Receive ACK, CLOSED

send nothing

LAST_ACK LISTEN
send FIN ?:nc; I;\?r\? ;'\}ACK
CLOSE_WAIT SYN_RCVD
Receive FIN, Receive ACK,
send ACK send nothing

ESTABLISHED

Figure 3.42 ¢+ A typical sequence of TCP states visited by a server-side TCP

this and other advanced issues concerning TCP, you are encouraged to see Stevens’
comprehensive book [Stevens 1994].

Our discussion above has assumed that both the client and server are prepared to
communicate, that is, that the server is listening on the port to which the client sends
its SYN segment. Let’s consider what happens when a host receives a TCP segment
whose port numbers or source IP address do not match with any of the ongoing sock-
ets in the host. For example, suppose a host receives a TCP SYN packet with desti-
nation port 80, but the host is not accepting connections on port 80 (that is, it is not
running a Web server on port 80). Then the host will send a special reset segment to
the source. This TCP segment has the RST flag bit (see Section 3.5.2) set to 1. Thus,
when a host sends a reset segment, it is telling the source “I don’t have a socket for
that segment. Please do not resend the segment.” When a host receives a UDP packet
whose destination port number doesn’t match with an ongoing UDP socket, the host
sends a special ICMP datagram, as discussed in Chapter 5.

Now that we have a good understanding of TCP connection management, let’s
revisit the nmap port-scanning tool and examine more closely how it works. To explore
a specific TCP port, say port 6789, on a target host, nmap will send a TCP SYN seg-
ment with destination port 6789 to that host. There are three possible outcomes:

e The source host receives a TCP SYNACK segment from the target host. Since this
means that an application is running with TCP port 6789 on the target post, nmap
returns “open.”

254 CHAPTER 3 e TRANSPORT LAYER

FOCUS ON SECURITY

THE SYN FLOOD ATTACK

We've seen in our discussion of TCP’s three-way handshake that a server allocates
and initializes connection variables and buffers in response to a received SYN. The
server then sends a SYNACK in response, and awaits an ACK segment from the cli-
ent. If the client does not send an ACK to complete the third step of this 3-way hand-
shake, eventually (often affer a minute or more) the server will terminate the half-open
connection and reclaim the allocated resources.

This TCP connection management protocol sets the stage for a classic Denial of
Service (DoS) attack known as the SYN flood attack. In this attack, the attacker(s) send
a large number of TCP SYN segments, without completing the third handshake step. With
this deluge of SYN segments, the server’s connection resources become exhausted as
they are allocated (but never used!) for half-open connections; legitimate clients are then
denied service. Such SYN flooding attacks were among the first documented Do$S attacks
[CERT SYN 1996]. Fortunately, an effective defense known as SYN cookies [RFC
4987] are now deployed in most major operating systems. SYN cookies work as follows:

® When the server receives a SYN segment, it does not know if the segment is
coming from a legitimate user or is part of a SYN flood attack. So, instead of
creating a half-open TCP connection for this SYN, the server creates an initial
TCP sequence number that is a complicated function (hash function) of source
and destination IP addresses and port numbers of the SYN segment, as well as
a secret number only known to the server. This carefully crafted initial sequence
number is the so-called “cookie.” The server then sends the client a SYNACK
packet with this special initial sequence number. Importantly, the server does not
remember the cookie or any other state information corresponding to the SYN.

e A legitimate client will return an ACK segment. When the server receives this
ACK, it must verify that the ACK corresponds to some SYN sent earlier. But how
is this done if the server maintains no memory about SYN segments2 As you may
have guessed, it is done with the cookie. Recall that for a legitimate ACK, the
value in the acknowledgment field is equal to the initial sequence number in the
SYNACK (the cookie value in this case) plus one (see Figure 3.39). The server
can then run the same hash function using the source and destination IP address
and port numbers in the SYNACK (which are the same as in the original SYN)
and the secret number. If the result of the function plus one is the same as the
acknowledgment (cookie) value in the client’s SYNACK, the server concludes that
the ACK corresponds to an earlier SYN segment and is hence valid. The server
then creates a fully open connection along with a socket.

e On the other hand, if the client does not return an ACK segment, then the origi-
nal SYN has done no harm at the server, since the server hasn't yet allocated
any resources in response fo the original bogus SYN.

3.6 * PRINCIPLES OF CONGESTION CONTROL

e The source host receives a TCP RST segment from the target host. This means
that the SYN segment reached the target host, but the target host is not running
an application with TCP port 6789. But the attacker at least knows that the seg-
ments destined to the host at port 6789 are not blocked by any firewall on the path
between source and target hosts. (Firewalls are discussed in Chapter 8.)

e The source receives nothing. This likely means that the SYN segment was blocked
by an intervening firewall and never reached the target host.

Nmap is a powerful tool that can “case the joint” not only for open TCP ports,
but also for open UDP ports, for firewalls and their configurations, and even for
the versions of applications and operating systems. Most of this is done by manip-
ulating TCP connection-management segments. You can download nmap from
WWW.nmap.org.

This completes our introduction to error control and flow control in TCP. In
Section 3.7, we’ll return to TCP and look at TCP congestion control in some depth.
Before doing so, however, we first step back and examine congestion-control issues
in a broader context.

3.6 Principles of Congestion Control

In the previous sections, we examined both the general principles and specific TCP
mechanisms used to provide for a reliable data transfer service in the face of packet
loss. We mentioned earlier that, in practice, such loss typically results from the over-
flowing of router buffers as the network becomes congested. Packet retransmission
thus treats a symptom of network congestion (the loss of a specific transport-layer
segment) but does not treat the cause of network congestion—too many sources
attempting to send data at too high a rate. To treat the cause of network congestion,
mechanisms are needed to throttle senders in the face of network congestion.

In this section, we consider the problem of congestion control in a general con-
text, seeking to understand why congestion is a bad thing, how network congestion
is manifested in the performance received by upper-layer applications, and various
approaches that can be taken to avoid, or react to, network congestion. This more
general study of congestion control is appropriate since, as with reliable data trans-
fer, it is high on our “top-ten” list of fundamentally important problems in network-
ing. The following section contains a detailed study of TCP’s congestion-control
algorithm.

3.6.1 The Causes and the Costs of Congestion

Let’s begin our general study of congestion control by examining three increas-
ingly complex scenarios in which congestion occurs. In each case, we’ll look at why

255

256

CHAPTER 3

e TRANSPORT LAYER

congestion occurs in the first place and at the cost of congestion (in terms of resources
not fully utilized and poor performance received by the end systems). We’ll not (yet)
focus on how to react to, or avoid, congestion but rather focus on the simpler issue of
understanding what happens as hosts increase their transmission rate and the network
becomes congested.

Scenario 1: Two Senders, a Router with Infinite Buffers

We begin by considering perhaps the simplest congestion scenario possible: Two
hosts (A and B) each have a connection that shares a single hop between source and
destination, as shown in Figure 3.43.

Let’s assume that the application in Host A is sending data into the connection
(for example, passing data to the transport-level protocol via a socket) at an average
rate of A;, bytes/sec. These data are original in the sense that each unit of data is sent
into the socket only once. The underlying transport-level protocol is a simple one.
Data is encapsulated and sent; no error recovery (e.g., retransmission), flow control,
or congestion control is performed. Ignoring the additional overhead due to adding
transport- and lower-layer header information, the rate at which Host A offers traffic
to the router in this first scenario is thus A, bytes/sec. Host B operates in a similar
manner, and we assume for simplicity that it too is sending at a rate of A;, bytes/sec.
Packets from Hosts A and B pass through a router and over a shared outgoing link
of capacity R. The router has buffers that allow it to store incoming packets when
the packet-arrival rate exceeds the outgoing link’s capacity. In this first scenario, we
assume that the router has an infinite amount of buffer space.

Figure 3.44 plots the performance of Host A’s connection under this first sce-
nario. The left graph plots the per-connection throughput (number of bytes per

\in: original data Nout
Host A / Host B Host C Host D
. A(-~

— == —
<~ <~
-

Unlimited shared
output link buffers

Figure 3.43 + Congestion scenario 1: Two connections sharing a single
hop with infinite buffers

3.6 * PRINCIPLES OF CONGESTION CONTROL

R/2—

}‘out
Delay

2 ___N
IN]
<
N

a. b.

Figure 3.44 + Congestion scenario 1: Throughput and delay as a function
of host sending rate

second at the receiver) as a function of the connection-sending rate. For a sending
rate between 0 and R/2, the throughput at the receiver equals the sender’s sending
rate—everything sent by the sender is received at the receiver with a finite delay.
When the sending rate is above R/2, however, the throughput is only R/2. This upper
limit on throughput is a consequence of the sharing of link capacity between two
connections. The link simply cannot deliver packets to a receiver at a steady-state
rate that exceeds R/2. No matter how high Hosts A and B set their sending rates, they
will each never see a throughput higher than R/2.

Achieving a per-connection throughput of R/2 might actually appear to be a good
thing, because the link is fully utilized in delivering packets to their destinations. The
right-hand graph in Figure 3.44, however, shows the consequence of operating near link
capacity. As the sending rate approaches R/2 (from the left), the average delay becomes
larger and larger. When the sending rate exceeds R/2, the average number of queued
packets in the router is unbounded, and the average delay between source and destina-
tion becomes infinite (assuming that the connections operate at these sending rates for
an infinite period of time and there is an infinite amount of buffering available). Thus,
while operating at an aggregate throughput of near R may be ideal from a throughput
standpoint, it is far from ideal from a delay standpoint. Even in this (extremely) ideal-
ized scenario, we’ve already found one cost of a congested network—large queuing
delays are experienced as the packet-arrival rate nears the link capacity.

Scenario 2: Two Senders and a Router with Finite Buffers

Let’s now slightly modify scenario 1 in the following two ways (see Figure 3.45).
First, the amount of router buffering is assumed to be finite. A consequence of this
real-world assumption is that packets will be dropped when arriving to an already-
full buffer. Second, we assume that each connection is reliable. If a packet containing

257

258

CHAPTER 3 o TRANSPORT LAYER
\in: Original data
N'in: original data, plus
retransmitted data Nout
Host A Host B Host C Host D
® [£ 4
! = e
y T—
= =
>\ >\
—==
——

Finite shared output
link buffers

Figure 3.45 ¢ Scenario 2: Two hosts (with retransmissions) and a router
with finite buffers

a transport-level segment is dropped at the router, the sender will eventually retrans-
mit it. Because packets can be retransmitted, we must now be more careful with our
use of the term sending rate. Specifically, let us again denote the rate at which the
application sends original data into the socket by A;, bytes/sec. The rate at which the
transport layer sends segments (containing original data and retransmitted data) into
the network will be denoted A}, bytes/sec. A}, is sometimes referred to as the offered
load to the network.

The performance realized under scenario 2 will now depend strongly on how
retransmission is performed. First, consider the unrealistic case that Host A is able
to somehow (magically!) determine whether or not a buffer is free in the router and
thus sends a packet only when a buffer is free. In this case, no loss would occur, A;,
would be equal to Aj,, and the throughput of the connection would be equal to Aj,.
This case is shown in Figure 3.46(a). From a throughput standpoint, performance
is ideal—everything that is sent is received. Note that the average host sending rate
cannot exceed R/2 under this scenario, since packet loss is assumed never to occur.

Consider next the slightly more realistic case that the sender retransmits only
when a packet is known for certain to be lost. (Again, this assumption is a bit of
a stretch. However, it is possible that the sending host might set its timeout large
enough to be virtually assured that a packet that has not been acknowledged has been
lost.) In this case, the performance might look something like that shown in Fig-
ure 3.46(b). To appreciate what is happening here, consider the case that the offered
load, A}, (the rate of original data transmission plus retransmissions), equals R/2.
According to Figure 3.46(b), at this value of the offered load, the rate at which data

3.6 e PRINCIPLES OF CONGESTION CONTROL 259
7/ 2 S R2-4f - - ; RI2-
| |
| |
| 7 2 '
5 | 5 | =
P ! P : B T .
:	
! :	
I I I
, RI2) RI2 RI2
A in A in
a. b. C.

Figure 3.46 ¢ Scenario 2 performance with finite buffers

are delivered to the receiver application is R/3. Thus, out of the 0.5R units of data
transmitted, 0.333R bytes/sec (on average) are original data and 0.166R bytes/sec (on
average) are retransmitted data. We see here another cost of a congested network—
the sender must perform retransmissions in order to compensate for dropped (lost)
packets due to buffer overflow.

Finally, let us consider the case that the sender may time out prematurely and
retransmit a packet that has been delayed in the queue but not yet lost. In this case,
both the original data packet and the retransmission may reach the receiver. Of
course, the receiver needs but one copy of this packet and will discard the retrans-
mission. In this case, the work done by the router in forwarding the retransmitted
copy of the original packet was wasted, as the receiver will have already received
the original copy of this packet. The router would have better used the link trans-
mission capacity to send a different packet instead. Here then is yet another cost of
a congested network—unneeded retransmissions by the sender in the face of large
delays may cause a router to use its link bandwidth to forward unneeded copies of a
packet. Figure 3.46 (c) shows the throughput versus offered load when each packet
is assumed to be forwarded (on average) twice by the router. Since each packet is
forwarded twice, the throughput will have an asymptotic value of R/4 as the offered
load approaches R/2.

Scenario 3: Four Senders, Routers with Finite Buffers, and
Multihop Paths

In our final congestion scenario, four hosts transmit packets, each over overlap-
ping two-hop paths, as shown in Figure 3.47. We again assume that each host uses
a timeout/retransmission mechanism to implement a reliable data transfer service,
that all hosts have the same value of A;,, and that all router links have capacity
R bytes/sec.

260 CHAPTER 3

Host D

e TRANSPORT LAYER

\in: Original data

N, original Nout
data, plus
retransmitted
data Host B
A ’
. @
p
o (=
R1
@ F) v
: S -~ :
Finite shared output H
link buffers ost C
) ==
o= NS s
R3

Figure 3.47 «+ Four senders, routers with finite buffers, and multihop paths

Let’s consider the connection from Host A to Host C, passing through routers
R1 and R2. The A—C connection shares router R1 with the D—B connection and
shares router R2 with the B-D connection. For extremely small values of A;,, buffer
overflows are rare (as in congestion scenarios 1 and 2), and the throughput approxi-
mately equals the offered load. For slightly larger values of A;,, the corresponding
throughput is also larger, since more original data is being transmitted into the net-
work and delivered to the destination, and overflows are still rare. Thus, for small
values of A;,, an increase in A;, results in an increase in A.

Having considered the case of extremely low traffic, let’s next examine the case
that A;, (and hence A},) is extremely large. Consider router R2. The A-C traffic
arriving to router R2 (which arrives at R2 after being forwarded from R1) can have
an arrival rate at R2 that is at most R, the capacity of the link from R1 to R2, regard-
less of the value of A;,. If Aj, is extremely large for all connections (including the

3.6 * PRINCIPLES OF CONGESTION CONTROL

R/2 —

)‘out

)\'in
Figure 3.48 ¢ Scenario 3 performance with finite buffers and multihop
paths

B-D connection), then the arrival rate of B-D traffic at R2 can be much larger than
that of the A—C traffic. Because the A—C and B-D traffic must compete at router
R2 for the limited amount of buffer space, the amount of A—C traffic that success-
fully gets through R2 (that is, is not lost due to buffer overflow) becomes smaller
and smaller as the offered load from B—D gets larger and larger. In the limit, as the
offered load approaches infinity, an empty buffer at R2 is immediately filled by a
B-D packet, and the throughput of the A—C connection at R2 goes to zero. This, in
turn, implies that the A—C end-to-end throughput goes to zero in the limit of heavy
traffic. These considerations give rise to the offered load versus throughput tradeoff
shown in Figure 3.48.

The reason for the eventual decrease in throughput with increasing offered
load is evident when one considers the amount of wasted work done by the net-
work. In the high-traffic scenario outlined above, whenever a packet is dropped at
a second-hop router, the work done by the first-hop router in forwarding a packet
to the second-hop router ends up being “wasted.” The network would have been
equally well off (more accurately, equally bad off) if the first router had simply
discarded that packet and remained idle. More to the point, the transmission capac-
ity used at the first router to forward the packet to the second router could have
been much more profitably used to transmit a different packet. (For example, when
selecting a packet for transmission, it might be better for a router to give priority
to packets that have already traversed some number of upstream routers.) So here
we see yet another cost of dropping a packet due to congestion—when a packet
is dropped along a path, the transmission capacity that was used at each of the
upstream links to forward that packet to the point at which it is dropped ends up
having been wasted.

261

262

CHAPTER 3

e TRANSPORT LAYER

3.6.2 Approaches to Congestion Control

In Section 3.7, we’ll examine TCP’s specific approach to congestion control in great
detail. Here, we identify the two broad approaches to congestion control that are
taken in practice and discuss specific network architectures and congestion-control
protocols embodying these approaches.

At the highest level, we can distinguish among congestion-control approaches
by whether the network layer provides explicit assistance to the transport layer for
congestion-control purposes:

* End-to-end congestion control. In an end-to-end approach to congestion control,
the network layer provides no explicit support to the transport layer for conges-
tion-control purposes. Even the presence of network congestion must be inferred
by the end systems based only on observed network behavior (for example, packet
loss and delay). We’ll see shortly in Section 3.7.1 that TCP takes this end-to-end
approach toward congestion control, since the IP layer is not required to provide
feedback to hosts regarding network congestion. TCP segment loss (as indicated
by a timeout or the receipt of three duplicate acknowledgments) is taken as an
indication of network congestion, and TCP decreases its window size accord-
ingly. We’ll also see a more recent proposal for TCP congestion control that
uses increasing round-trip segment delay as an indicator of increased network
congestion

* Network-assisted congestion control. With network-assisted congestion control,
routers provide explicit feedback to the sender and/or receiver regarding the con-
gestion state of the network. This feedback may be as simple as a single bit indi-
cating congestion at a link—an approach taken in the early IBM SNA [Schwartz
1982], DEC DECnet [Jain 1989; Ramakrishnan 1990] architectures, and ATM
[Black 1995] network architectures. More sophisticated feedback is also possible.
For example, in ATM Available Bite Rate (ABR) congestion control, a router
informs the sender of the maximum host sending rate it (the router) can support
on an outgoing link. As noted above, the Internet-default versions of IP and TCP
adopt an end-to-end approach towards congestion control. We’ll see, however,
in Section 3.7.2 that, more recently, IP and TCP may also optionally implement
network-assisted congestion control.

For network-assisted congestion control, congestion information is typically
fed back from the network to the sender in one of two ways, as shown in Fig-
ure 3.49. Direct feedback may be sent from a network router to the sender. This
form of notification typically takes the form of a choke packet (essentially say-
ing, “I’'m congested!”). The second and more common form of notification occurs
when a router marks/updates a field in a packet flowing from sender to receiver to
indicate congestion. Upon receipt of a marked packet, the receiver then notifies
the sender of the congestion indication. This latter form of notification takes a full
round-trip time.

3.7 o TCP CONGESTION CONTROL 263

Host A Host B

Network feedback via receiver § Q
r
=

Direct network
feedback

™

Nt

~
- -
= =

Figure 3.49 ¢+ Two feedback pathways for network-indicated congestion
information

3.7 TCP Congestion Control

In this section, we return to our study of TCP. As we learned in Section 3.5, TCP provides
areliable transport service between two processes running on different hosts. Another key
component of TCP is its congestion-control mechanism. As indicated in the previous sec-
tion, what we might refer to as “Classic” TCP—the version of TCP standardized in [RFC
2581] and most recently [RFC 5681]—uses end-to-end congestion control rather than
network-assisted congestion control, since the IP layer provides no explicit feedback to
the end systems regarding network congestion. We’ll first cover this “classic” version of
TCP in depth in Section 7.3.1. In Section 7.3.2, we’ll then look at newer flavors of TCP
that use an explicit congestion indication provided by the network layer, or differ a bit
from “classic” TCP in any of several different ways. We’ll then cover the challenge of
providing fairness among transport layer flows that must share a congested link.

3.7.1 Classic TCP Congestion Control

The approach taken by TCP is to have each sender limit the rate at which it sends traf-
fic into its connection as a function of perceived network congestion. If a TCP sender
perceives that there is little congestion on the path between itself and the destination,
then the TCP sender increases its send rate; if the sender perceives that there is conges-
tion along the path, then the sender reduces its send rate. But this approach raises three
questions. First, how does a TCP sender limit the rate at which it sends traffic into its
connection? Second, how does a TCP sender perceive that there is congestion on the
path between itself and the destination? And third, what algorithm should the sender
use to change its send rate as a function of perceived end-to-end congestion?

264

CHAPTER 3

e TRANSPORT LAYER

Let’s first examine how a TCP sender limits the rate at which it sends traffic into
its connection. In Section 3.5, we saw that each side of a TCP connection consists of
a receive buffer, a send buffer, and several variables (LastByteRead, rwnd, and
so on). The TCP congestion-control mechanism operating at the sender keeps track
of an additional variable, the congestion window. The congestion window, denoted
cwnd, imposes a constraint on the rate at which a TCP sender can send traffic into
the network. Specifically, the amount of unacknowledged data at a sender may not
exceed the minimum of cwnd and rwnd, that is:

LastByteSent - LastByteAcked = min{cwnd, rwnd}

In order to focus on congestion control (as opposed to flow control), let us henceforth
assume that the TCP receive buffer is so large that the receive-window constraint can
be ignored; thus, the amount of unacknowledged data at the sender is solely limited
by cwnd. We will also assume that the sender always has data to send, that is, that
all segments in the congestion window are sent.

The constraint above limits the amount of unacknowledged data at the sender and
therefore indirectly limits the sender’s send rate. To see this, consider a connection for
which loss and packet transmission delays are negligible. Then, roughly, at the begin-
ning of every RTT, the constraint permits the sender to send cwnd bytes of data into the
connection; at the end of the RTT the sender receives acknowledgments for the data.
Thus the sender’s send rate is roughly cwnd/RTT bytes/sec. By adjusting the value of
cwnd, the sender can therefore adjust the rate at which it sends data into its connection.

Let’s next consider how a TCP sender perceives that there is congestion on the
path between itself and the destination. Let us define a “loss event” at a TCP sender
as the occurrence of either a timeout or the receipt of three duplicate ACKs from the
receiver. (Recall our discussion in Section 3.5.4 of the timeout event in Figure 3.33
and the subsequent modification to include fast retransmit on receipt of three dupli-
cate ACKs.) When there is excessive congestion, then one (or more) router buffers
along the path overflows, causing a datagram (containing a TCP segment) to be
dropped. The dropped datagram, in turn, results in a loss event at the sender—either
a timeout or the receipt of three duplicate ACKs—which is taken by the sender to be
an indication of congestion on the sender-to-receiver path.

Having considered how congestion is detected, let’s next consider the more opti-
mistic case when the network is congestion-free, that is, when a loss event doesn’t
occur. In this case, acknowledgments for previously unacknowledged segments
will be received at the TCP sender. As we’ll see, TCP will take the arrival of these
acknowledgments as an indication that all is well—that segments being transmitted
into the network are being successfully delivered to the destination—and will use
acknowledgments to increase its congestion window size (and hence its transmis-
sion rate). Note that if acknowledgments arrive at a relatively slow rate (e.g., if the
end-end path has high delay or contains a low-bandwidth link), then the congestion
window will be increased at a relatively slow rate. On the other hand, if acknowl-
edgments arrive at a high rate, then the congestion window will be increased more

3.7 o TCP CONGESTION CONTROL

quickly. Because TCP uses acknowledgments to trigger (or clock) its increase in
congestion window size, TCP is said to be self-clocking.

Given the mechanism of adjusting the value of cwnd to control the sending rate,
the critical question remains: How should a TCP sender determine the rate at which it
should send? If TCP senders collectively send too fast, they can congest the network,
leading to the type of congestion collapse that we saw in Figure 3.48. Indeed, the ver-
sion of TCP that we’ll study shortly was developed in response to observed Internet
congestion collapse [Jacobson 1988] under earlier versions of TCP. However, if TCP
senders are too cautious and send too slowly, they could under utilize the bandwidth
in the network; that is, the TCP senders could send at a higher rate without congest-
ing the network. How then do the TCP senders determine their sending rates such
that they don’t congest the network but at the same time make use of all the avail-
able bandwidth? Are TCP senders explicitly coordinated, or is there a distributed
approach in which the TCP senders can set their sending rates based only on local
information? TCP answers these questions using the following guiding principles:

* A lost segment implies congestion, and hence, the TCP sender’s rate should be
decreased when a segment is lost. Recall from our discussion in Section 3.5.4,
that a timeout event or the receipt of four acknowledgments for a given segment
(one original ACK and then three duplicate ACKs) is interpreted as an implicit
“loss event” indication of the segment following the quadruply ACKed segment,
triggering a retransmission of the lost segment. From a congestion-control stand-
point, the question is how the TCP sender should decrease its congestion window
size, and hence its sending rate, in response to this inferred loss event.

* An acknowledged segment indicates that the network is delivering the sender’s
segments to the receiver, and hence, the sender’s rate can be increased when an
ACK arrives for a previously unacknowledged segment. The arrival of acknowl-
edgments is taken as an implicit indication that all is well—segments are being
successfully delivered from sender to receiver, and the network is thus not con-
gested. The congestion window size can thus be increased.

* Bandwidth probing. Given ACKs indicating a congestion-free source-to-destina-
tion path and loss events indicating a congested path, TCP’s strategy for adjusting
its transmission rate is to increase its rate in response to arriving ACKs until a loss
event occurs, at which point, the transmission rate is decreased. The TCP sender
thus increases its transmission rate to probe for the rate that at which congestion
onset begins, backs off from that rate, and then to begins probing again to see
if the congestion onset rate has changed. The TCP sender’s behavior is perhaps
analogous to the child who requests (and gets) more and more goodies until finally
he/she is finally told “No!”, backs off a bit, but then begins making requests again
shortly afterward. Note that there is no explicit signaling of congestion state by
the network—ACKSs and loss events serve as implicit signals—and that each TCP
sender acts on local information asynchronously from other TCP senders.

Given this overview of TCP congestion control, we’re now in a position to consider the
details of the celebrated TCP congestion-control algorithm, which was first described

265

266

CHAPTER 3

e TRANSPORT LAYER

in [Jacobson 1988] and is standardized in [RFC 5681]. The algorithm has three major
components: (1) slow start, (2) congestion avoidance, and (3) fast recovery. Slow start
and congestion avoidance are mandatory components of TCP, differing in how they
increase the size of cwnd in response to received ACKs. We’ll see shortly that slow
start increases the size of cwnd more rapidly (despite its name!) than congestion avoid-
ance. Fast recovery is recommended, but not required, for TCP senders.

Slow Start

When a TCP connection begins, the value of cwnd is typically initialized to a small
value of 1 MSS [RFC 3390], resulting in an initial sending rate of roughly MSS/
RTT. For example, if MSS = 500 bytes and RTT = 200 msec, the resulting initial
sending rate is only about 20 kbps. Since the available bandwidth to the TCP sender
may be much larger than MSS/RTT, the TCP sender would like to find the amount of
available bandwidth quickly. Thus, in the slow-start state, the value of cwnd begins
at 1 MSS and increases by 1 MSS every time a transmitted segment is first acknowl-
edged. In the example of Figure 3.50, TCP sends the first segment into the network

Host A Host B

Time Time

Figure 3.50 ¢ TCP slow start

3.7 o TCP CONGESTION CONTROL

and waits for an acknowledgment. When this acknowledgment arrives, the TCP
sender increases the congestion window by one MSS and sends out two maximum-
sized segments. These segments are then acknowledged, with the sender increasing
the congestion window by 1 MSS for each of the acknowledged segments, giving a
congestion window of 4 MSS, and so on. This process results in a doubling of the
sending rate every RTT. Thus, the TCP send rate starts slow but grows exponentially
during the slow start phase.

But when should this exponential growth end? Slow start provides several
answers to this question. First, if there is a loss event (i.e., congestion) indicated
by a timeout, the TCP sender sets the value of cwnd to 1 and begins the slow start
process anew. It also sets the value of a second state variable, ssthresh (short-
hand for “slow start threshold”) to cwnd/2—half of the value of the congestion
window value when congestion was detected. The second way in which slow start
may end is directly tied to the value of ssthresh. Since ssthresh is half the
value of cwnd when congestion was last detected, it might be a bit reckless to keep
doubling cwnd when it reaches or surpasses the value of ssthresh. Thus, when
the value of cwnd equals ssthresh, slow start ends and TCP transitions into con-
gestion avoidance mode. As we’ll see, TCP increases cwnd more cautiously when
in congestion-avoidance mode. The final way in which slow start can end is if three
duplicate ACKs are detected, in which case TCP performs a fast retransmit (see Sec-
tion 3.5.4) and enters the fast recovery state, as discussed below. TCP’s behavior in
slow start is summarized in the FSM description of TCP congestion control in Figure
3.51. The slow-start algorithm traces it roots to [Jacobson 1988]; an approach similar
to slow start was also proposed independently in [Jain 1986].

Congestion Avoidance

On entry to the congestion-avoidance state, the value of cwnd is approximately half
its value when congestion was last encountered—congestion could be just around
the corner! Thus, rather than doubling the value of cwnd every RTT, TCP adopts a
more conservative approach and increases the value of cwnd by just a single MSS
every RTT [RFC 5681]. This can be accomplished in several ways. A common
approach is for the TCP sender to increase cwnd by MSS bytes (MSS/cwnd) when-
ever a new acknowledgment arrives. For example, if MSS is 1,460 bytes and cwnd
is 14,600 bytes, then 10 segments are being sent within an RTT. Each arriving ACK
(assuming one ACK per segment) increases the congestion window size by 1/10
MSS, and thus, the value of the congestion window will have increased by one MSS
after ACKs when all 10 segments have been received.

But when should congestion avoidance’s linear increase (of 1 MSS per RTT)
end? TCP’s congestion-avoidance algorithm behaves the same when a timeout occurs
as in the case of slow start: The value of cwnd is set to 1 MSS, and the value of
ssthresh is updated to half the value of cwnd when the loss event occurred. Recall,
however, that a loss event also can be triggered by a triple duplicate ACK event.

267

268 CHAPTER 3

e TRANSPORT LAYER

new ACK new ACK
duplicate ACK cwnd=cwnd+MSS cwnd=cwnd+MSS -+ (MSS/cwnd)
dupACKcount++ dupACKcount=0 dupACKcount=0

transmit new segment(s), as allowed transmit new segment(s), as allowed

A

cwnd=1 MSS
ssthresh=64 KB
dupACKcount=0 ~

~

A

timeout

ssthresh=cwnd/2

cwnd=1 MSS
dupACKcount=0
retransmit missing segment

dupACKcount==3

ssthresh=cwnd/2
cwnd=ssthresh+3-MSS
retransmit missing segment

VideoNote
Examining the behavior
of TCP

cwnd =ssthresh
A
Slow » Congestion

start < avoidance
timeout

- duplicate ACK
ssthresh=cwnd/2 _—

cwnd=1 MSS
dupACKcount=0
retransmit missing segment

dupACKcount++

timeout

new ACK
ssthresh=cwnd/2

cwnd=1 cwnd=ssthresh
dupACKcount=0 dupACKcount=0
retransmit missing segment

dupACKcount==3

ssthresh=cwnd/2
cwnd=ssthresh+3-MSS
retransmit missing segment

Fast
recovery

duplicate ACK

cwnd=cwnd+MSS
transmit new segment(s), as allowed

Figure 3.51 ¢ FSM description of TCP congestion control

In this case, the network is continuing to deliver some segments from sender to receiver
(as indicated by the receipt of duplicate ACKs). So TCP’s behavior to this type of loss
event should be less drastic than with a timeout-indicated loss: TCP halves the value
of cwnd (adding in 3 MSS for good measure to account for the triple duplicate ACKs
received) and records the value of ssthresh to be half the value of cwnd when the
triple duplicate ACKs were received. The fast-recovery state is then entered.

Fast Recovery

In fast recovery, the value of cwnd is increased by 1 MSS for every duplicate
ACK received for the missing segment that caused TCP to enter the fast-recovery
state. Eventually, when an ACK arrives for the missing segment, TCP enters the

3.7 o TCP CONGESTION CONTROL

PRINCIPLES IN PRACTICE

TCP SPLITTING: OPTIMIZING THE PERFORMANCE OF CLOUD SERVICES

For cloud services such as search, e-mail, and social networks, it is desirable to provide a
high-level of responsiveness, ideally giving users the illusion that the services are running
within their own end systems (including their smartphones). This can be a major challenge,
as users are often located far away from the data centers responsible for serving the
dynamic content associated with the cloud services. Indeed, if the end system is far from

a data center, then the RTT will be large, potentially leading to poor response time perfor-
mance due to TCP slow start.

As a case study, consider the delay in receiving a response for a search query.
Typically, the server requires three TCP windows during slow start to deliver the response
[Pathak 2010]. Thus the time from when an end system initiates a TCP connection until the
time when it receives the last packet of the response is roughly 4 - RTT (one RTT to set up
the TCP connection plus three RTTs for the three windows of data) plus the processing time
in the data center. These RTT delays can lead to a noticeable delay in returning search
results for a significant fraction of queries. Moreover, there can be significant packet loss
in access networks, leading to TCP retransmissions and even larger delays.

One way to mitigate this problem and improve user-perceived performance is to
(1) deploy frontend servers closer to the users, and (2) utilize TCP splitting by break-
ing the TCP connection at the front-end server. With TCP splitting, the client establishes
a TCP connection to the nearby frontend, and the frontend maintains a persistent TCP
connection to the data center with a very large TCP congestion window [Tariq 2008,
Pathak 2010, Chen 2011]. With this approach, the response time roughly becomes
4-RTTee + RTTge + processing time, where RTTe is the round-rip time between client and
frontend server, and RTTae is the round-rip time between the frontend server and the data
center (back-end server). If the front-end server is close to client, then this response time
approximately becomes RTT plus processing time, since RTTee is negligibly small and RTTae
is approximately RTT. In summary, TCP splitting can reduce the networking delay roughly
from 4 -RTT to RTT, significantly improving user-perceived performance, particularly for
users who are far from the nearest data center. TCP splitting also helps reduce TCP
retransmission delays caused by losses in access networks. Google and Akamai have
made extensive use of their CDN servers in access networks (recall our discussion in
Section 2.6) to perform TCP splitting for the cloud services they support [Chen 2011].

congestion-avoidance state after deflating cwnd. If a timeout event occurs, fast
recovery transitions to the slow-start state after performing the same actions as in
slow start and congestion avoidance: The value of cwnd is set to 1 MSS, and the
value of ssthresh is set to half the value of cwnd when the loss event occurred.

269

270

CHAPTER 3

e TRANSPORT LAYER

-
[<)]
|

TCP Reno

ssthresh

ssthresh

(in segments)

-
A OO0 0 O N b
| | | | |

Congestion window

0 r-r—T 11 1T T 17T T T T T T T
01 2 3 456 7 8 91011121314 15

Transmission round

Figure 3.52 ¢ Evolution of TCP’s congestion window (Tahoe and Reno)

Fast recovery is a recommended, but not required, component of TCP [RFC
5681]. It is interesting that an early version of TCP, known as TCP Tahoe, uncon-
ditionally cut its congestion window to 1 MSS and entered the slow-start phase after
either a timeout-indicated or triple-duplicate-ACK-indicated loss event. The newer
version of TCP, TCP Reno, incorporated fast recovery.

Figure 3.52 illustrates the evolution of TCP’s congestion window for both Reno
and Tahoe. In this figure, the threshold is initially equal to 8 MSS. For the first
eight transmission rounds, Tahoe and Reno take identical actions. The congestion
window climbs exponentially fast during slow start and hits the threshold at the fourth
round of transmission. The congestion window then climbs linearly until a triple
duplicate- ACK event occurs, just after transmission round 8. Note that the congestion
window is 12 - MSS when this loss event occurs. The value of ssthresh is then set
to 0.5 + cwnd = 6 - MSS. Under TCP Reno, the congestion window is set to cwnd =
9 - MSS and then grows linearly. Under TCP Tahoe, the congestion window is set to
1 MSS and grows exponentially until it reaches the value of ssthresh, at which
point it grows linearly.

Figure 3.51 presents the complete FSM description of TCP’s congestion-control
algorithms—slow start, congestion avoidance, and fast recovery. The figure also
indicates where transmission of new segments or retransmitted segments can occur.
Although it is important to distinguish between TCP error control/retransmission and
TCP congestion control, it’s also important to appreciate how these two aspects of
TCP are inextricably linked.

TCP Congestion Control: Retrospective

Having delved into the details of slow start, congestion avoidance, and fast recovery,
it’s worthwhile to now step back and view the forest from the trees. Ignoring the

3.7 o TCP CONGESTION CONTROL

24 K

16 K

8 K

Congestion window

v

Time

Figure 3.53 ¢ Additive-increase, multiplicative-decrease congestion control

initial slow-start period when a connection begins and assuming that losses are indi-
cated by triple duplicate ACKs rather than timeouts, TCP’s congestion control con-
sists of linear (additive) increase in cwnd of 1 MSS per RTT and then a halving
(multiplicative decrease) of cwnd on a triple duplicate-ACK event. For this reason,
TCP congestion control is often referred to as an additive-increase, multiplicative-
decrease (AIMD) form of congestion control. AIMD congestion control gives rise
to the “saw tooth” behavior shown in Figure 3.53, which also nicely illustrates our
earlier intuition of TCP “probing” for bandwidth—TCP linearly increases its conges-
tion window size (and hence its transmission rate) until a triple duplicate-ACK event
occurs. It then decreases its congestion window size by a factor of two but then again
begins increasing it linearly, probing to see if there is additional available bandwidth.

TCP’s AIMD algorithm was developed based on a tremendous amount of
engineering insight and experimentation with congestion control in operational
networks. Ten years after TCP’s development, theoretical analyses showed that
TCP’s congestion-control algorithm serves as a distributed asynchronous-optimization
algorithm that results in several important aspects of user and network performance
being simultaneously optimized [Kelly 1998]. A rich theory of congestion control
has since been developed [Srikant 2012].

TCP Cubic

Given TCP Reno’s additive-increase, multiplicative-decrease approach to conges-
tion control, one might naturally wonder whether this is the best way to “probe” for a
packet sending rate that is just below the threshold of triggering packet loss. Indeed,
cutting the sending rate in half (or even worse, cutting the sending rate to one packet
per RTT as in an earlier version of TCP known as TCP Tahoe) and then increasing
rather slowly over time may be overly cautious. If the state of the congested link

271

272

CHAPTER 3

TRANSPORT LAYER

where packet loss occurred hasn’t changed much, then perhaps it’s better to more
quickly ramp up the sending rate to get close to the pre-loss sending rate and only
then probe cautiously for bandwidth. This insight lies at the heart of a flavor of TCP
known as TCP CUBIC [Ha 2008, RFC 8312].

TCP CUBIC differs only slightly from TCP Reno. Once again, the congestion

window is increased only on ACK receipt, and the slow start and fast recovery phases
remain the same. CUBIC only changes the congestion avoidance phase, as follows:

Let W be size of TCP’s congestion control window when loss was last detected,
and let K be the future point in time when TCP CUBIC’s window size will again reach
W, @ssuming no losses. Several tunable CUBIC parameters determine the value K,
that is, how quickly the protocol’s congestion window size would reach W_ .

CUBIC increases the congestion window as a function of cube of the distance
between the current time, ¢, and K. Thus, when 7 is further away from K, the
congestion window size increases are much larger than when ¢ is close to K. That
is, CUBIC quickly ramps up TCP’s sending rate to get close to the pre-loss rate,
W,,..x» @nd only then probes cautiously for bandwidth as it approaches W .

max’
When ¢ is greater than K, the cubic rule implies that CUBIC’s congestion window
increases are small when ¢ is still close to K (which is good if the congestion
level of the link causing loss hasn’t changed much) but then increases rapidly as
t exceeds K (which allows CUBIC to more quickly find a new operating point if
the congestion level of the link that caused loss has changed significantly).

Under these rules, the idealized performance of TCP Reno and TCP CUBIC are

compared in Figure 3.54, adapted from [Huston 2017]. We see the slow start phase

4 Key:
—— TCP Reno
— TCP CUBIC
Wmax ——————————————————————
TCP 7 / 7 F
sending
rate
to t 1 t3 t, i

Time

Figure 3.54 + TCP congestion avoidance sending rates: TCP Reno and

TCP CUBIC

3.7 o TCP CONGESTION CONTROL

ending at L Then, when congestion loss occurs at by and t;, CUBIC more quickly
ramps up close to W, (thereby enjoying more overall throughput than TCP Reno).
We can see graphically how TCP CUBIC attempts to maintain the flow for as long
as possible just below the (unknown to the sender) congestion threshold. Note that
at ¢, the congestion level has presumably decreased appreciably, allowing both TCP
Reno and TCP CUBIC to achieve sending rates higher than W_ ..

TCP CUBIC has recently gained wide deployment. While measurements
taken around 2000 on popular Web servers showed that nearly all were running
some version of TCP Reno [Padhye 2001], more recent measurements of the 5000
most popular Web servers shows that nearly 50% are running a version of TCP
CUBIC [Yang 2014], which is also the default version of TCP used in the Linux

operating system.

Macroscopic Description of TCP Reno Throughput

Given the saw-toothed behavior of TCP Reno, it’s natural to consider what the
average throughput (that is, the average rate) of a long-lived TCP Reno connec-
tion might be. In this analysis, we’ll ignore the slow-start phases that occur after
timeout events. (These phases are typically very short, since the sender grows out
of the phase exponentially fast.) During a particular round-trip interval, the rate at
which TCP sends data is a function of the congestion window and the current R77.
When the window size is w bytes and the current round-trip time is R77 seconds,
then TCP’s transmission rate is roughly w/RTT. TCP then probes for additional
bandwidth by increasing w by 1 MSS each RTT until a loss event occurs. Denote by
W the value of w when a loss event occurs. Assuming that R7T and W are approxi-
mately constant over the duration of the connection, the TCP transmission rate
ranges from W/(2 - RTT) to W/RTT.

These assumptions lead to a highly simplified macroscopic model for the steady-
state behavior of TCP. The network drops a packet from the connection when the rate
increases to W/RTT; the rate is then cut in half and then increases by MSS/RTT every
RTT until it again reaches W/RTT. This process repeats itself over and over again.
Because TCP’s throughput (that is, rate) increases linearly between the two extreme
values, we have

0.75-wW
RTT

average throughput of a connection =

Using this highly idealized model for the steady-state dynamics of TCP, we
can also derive an interesting expression that relates a connection’s loss rate to its
available bandwidth [Mathis 1997]. This derivation is outlined in the homework
problems. A more sophisticated model that has been found empirically to agree with
measured data is [Padhye 2000].

273

274

CHAPTER 3

e TRANSPORT LAYER

3.7.2 Network-Assisted Explicit Congestion Notification
and Delayed-based Congestion Control

Since the initial standardization of slow start and congestion avoidance in the late
1980’s [RFC 1122], TCP has implemented the form of end-end congestion control
that we studied in Section 3.7.1: a TCP sender receives no explicit congestion indica-
tions from the network layer, and instead infers congestion through observed packet
loss. More recently, extensions to both IP and TCP [RFC 3168] have been proposed,
implemented, and deployed that allow the network to explicitly signal congestion to
a TCP sender and receiver. In addition, a number of variations of TCP congestion
control protocols have been proposed that infer congestion using measured packet
delay. We’ll take a look at both network-assisted and delay-based congestion control
in this section.

Explicit Congestion Notification

Explicit Congestion Notification [RFC 3168] is the form of network-assisted con-
gestion control performed within the Internet. As shown in Figure 3.55, both TCP
and IP are involved. At the network layer, two bits (with four possible values,
overall) in the Type of Service field of the IP datagram header (which we’ll discuss
in Section 4.3) are used for ECN.

One setting of the ECN bits is used by a router to indicate that it (the router) is
experiencing congestion. This congestion indication is then carried in the marked
IP datagram to the destination host, which then informs the sending host, as shown
in Figure 3.55. RFC 3168 does not provide a definition of when a router is con-
gested; that decision is a configuration choice made possible by the router vendor,
and decided by the network operator. However, the intuition is that the congestion
indication bit can be set to signal the onset of congestion to the send before loss actu-
ally occurs. A second setting of the ECN bits is used by the sending host to inform
routers that the sender and receiver are ECN-capable, and thus capable of taking
action in response to ECN-indicated network congestion.

As shown in Figure 3.55, when the TCP in the receiving host receives an ECN
congestion indication via a received datagram, the TCP in the receiving host informs
the TCP in the sending host of the congestion indication by setting the ECE (Explicit
Congestion Notification Echo) bit (see Figure 3.29) in a receiver-to-sender TCP
ACK segment. The TCP sender, in turn, reacts to an ACK with a congestion indica-
tion by halving the congestion window, as it would react to a lost segment using fast
retransmit, and sets the CWR (Congestion Window Reduced) bit in the header of the
next transmitted TCP sender-to-receiver segment.

Other transport-layer protocols besides TCP may also make use of network-
layer-signaled ECN. The Datagram Congestion Control Protocol (DCCP) [RFC
4340] provides a low-overhead, congestion-controlled UDP-like unreliable service
that utilizes ECN. DCTCP (Data Center TCP) [Alizadeh 2010, RFC 8257] and

3.7 o TCP CONGESTION CONTROL 275

ECN Echo bit set in
receiver-to-sender
TCP ACK segment

/ Host B
B

- |ECN Echo =1 i

ECN bits set in IP
datagram header
at congested router

|
N s

"

Figure 3.55 ¢ Explicit Congestion Notification: network-assisted
congestion control

DCQCN (Data Center Quantized Congestion Notification) [Zhu 2015] designed
specifically for data center networks, also makes use of ECN. Recent Internet meas-
urements show increasing deployment of ECN capabilities in popular servers as well
as in routers along paths to those servers [Kiihlewind 2013].

Delay-based Congestion Control

Recall from our ECN discussion above that a congested router can set the congestion
indication bit to signal congestion onset to senders before full buffers cause packets
to be dropped at that router. This allows senders to decrease their sending rates
earlier, hopefully before packet loss, thus avoiding costly packet loss and retrans-
mission. A second congestion-avoidance approach takes a delay-based approach to
also proactively detect congestion onset before packet loss occurs.

In TCP Vegas [Brakmo 1995], the sender measures the RTT of the source-to-
destination path for all acknowledged packets. Let RTT, ; be the minimum of these
measurements at a sender; this occurs when the path is uncongested and packets
experience minimal queueing delay. If TCP Vegas’ congestion window size is cwnd,
then the uncongested throughput rate would be cwnd/RTT, ;. The intuition behind
TCP Vegas is that if the actual sender-measured throughput is close to this value, the
TCP sending rate can be increased since (by definition and by measurement) the path
is not yet congested. However, if the actual sender-measured throughput is signifi-
cantly less than the uncongested throughput rate, the path is congested and the Vegas
TCP sender will decrease its sending rate. Details can be found in [Brakmo 1995].

276

CHAPTER 3

e TRANSPORT LAYER

TCP Vegas operates under the intuition that TCP senders should “Keep the pipe
Jjust full, but no fuller” [Kleinrock 2018]. “Keeping the pipe full” means that links
(in particular the bottleneck link that is limiting a connection’s throughput) are kept
busy transmitting, doing useful work; “but no fuller” means that there is nothing to
gain (except increased delay!) if large queues are allowed to build up while the pipe
is kept full.

The BBR congestion control protocol [Cardwell 2017] builds on ideas in TCP
Vegas, and incorporates mechanisms that allows it compete fairly (see Section 3.7.3)
with TCP non-BBR senders. [Cardwell 2017] reports that in 2016, Google began
using BBR for all TCP traffic on its private B4 network [Jain 2013] that intercon-
nects Google data centers, replacing CUBIC. It is also being deployed on Google and
YouTube Web servers. Other delay-based TCP congestion control protocols include
TIMELY for data center networks [Mittal 2015], and Compound TCP (CTPC) [Tan
2006] and FAST [Wei 2006] for high-speed and long distance networks.

3.7.3 Fairness

Consider K TCP connections, each with a different end-to-end path, but all pass-
ing through a bottleneck link with transmission rate R bps. (By bottleneck link, we
mean that for each connection, all the other links along the connection’s path are not
congested and have abundant transmission capacity as compared with the transmis-
sion capacity of the bottleneck link.) Suppose each connection is transferring a large
file and there is no UDP traffic passing through the bottleneck link. A congestion-
control mechanism is said to be fair if the average transmission rate of each connec-
tion is approximately R/K; that is, each connection gets an equal share of the link
bandwidth.

Is TCP’s AIMD algorithm fair, particularly given that different TCP connec-
tions may start at different times and thus may have different window sizes at a given
point in time? [Chiu 1989] provides an elegant and intuitive explanation of why TCP
congestion control converges to provide an equal share of a bottleneck link’s band-
width among competing TCP connections.

Let’s consider the simple case of two TCP connections sharing a single link
with transmission rate R, as shown in Figure 3.55. Assume that the two connections
have the same MSS and RTT (so that if they have the same congestion window size,
then they have the same throughput), that they have a large amount of data to send,
and that no other TCP connections or UDP datagrams traverse this shared link. Also,
ignore the slow-start phase of TCP and assume the TCP connections are operating in
CA mode (AIMD) at all times.

Figure 3.56 plots the throughput realized by the two TCP connections. If TCP is
to share the link bandwidth equally between the two connections, then the realized
throughput should fall along the 45-degree arrow (equal bandwidth share) emanat-
ing from the origin. Ideally, the sum of the two throughputs should equal R. (Cer-
tainly, each connection receiving an equal, but zero, share of the link capacity is not

3.7 o TCP CONGESTION CONTROL

Bottleneck
router capacity R

TCP connection 1

Figure 3.56 ¢ Two TCP connections sharing a single bottleneck link

a desirable situation!) So the goal should be to have the achieved throughputs fall
somewhere near the intersection of the equal bandwidth share line and the full band-
width utilization line in Figure 3.56.

Suppose that the TCP window sizes are such that at a given point in time, con-
nections 1 and 2 realize throughputs indicated by point A in Figure 3.56. Because the
amount of link bandwidth jointly consumed by the two connections is less than R, no
loss will occur, and both connections will increase their window by 1 MSS per RTT
as a result of TCP’s congestion-avoidance algorithm. Thus, the joint throughput of
the two connections proceeds along a 45-degree line (equal increase for both connec-
tions) starting from point A. Eventually, the link bandwidth jointly consumed by the
two connections will be greater than R, and eventually packet loss will occur. Sup-
pose that connections 1 and 2 experience packet loss when they realize throughputs
indicated by point B. Connections 1 and 2 then decrease their windows by a factor of
two. The resulting throughputs realized are thus at point C, halfway along a vector
starting at B and ending at the origin. Because the joint bandwidth use is less than R
at point C, the two connections again increase their throughputs along a 45-degree
line starting from C. Eventually, loss will again occur, for example, at point D, and
the two connections again decrease their window sizes by a factor of two, and so on.
You should convince yourself that the bandwidth realized by the two connections
eventually fluctuates along the equal bandwidth share line. You should also convince
yourself that the two connections will converge to this behavior regardless of where
they are in the two-dimensional space! Although a number of idealized assumptions
lie behind this scenario, it still provides an intuitive feel for why TCP results in an
equal sharing of bandwidth among connections.

In our idealized scenario, we assumed that only TCP connections traverse the
bottleneck link, that the connections have the same RTT value, and that only a
single TCP connection is associated with a host-destination pair. In practice, these
conditions are typically not met, and client-server applications can thus obtain very
unequal portions of link bandwidth. In particular, it has been shown that when

277

278

CHAPTER 3

e TRANSPORT LAYER

A
R
Full bandwidth
utilization line
- Equal _
3 bandwidth
S share
>
o
s D
o
c B
°
o
Q
C
C
S C
A
L
R

Connection 1 throughput

Figure 3.57 ¢ Throughput realized by TCP connections 1 and 2

multiple connections share a common bottleneck, those sessions with a smaller RTT
are able to grab the available bandwidth at that link more quickly as it becomes free
(that is, open their congestion windows faster) and thus will enjoy higher throughput
than those connections with larger RTTs [Lakshman 1997].

Fairness and UDP

We have just seen how TCP congestion control regulates an application’s trans-
mission rate via the congestion window mechanism. Many multimedia applications,
such as Internet phone and video conferencing, often do not run over TCP for this
very reason—they do not want their transmission rate throttled, even if the network
is very congested. Instead, these applications prefer to run over UDP, which does
not have built-in congestion control. When running over UDP, applications can
pump their audio and video into the network at a constant rate and occasionally lose
packets, rather than reduce their rates to “fair” levels at times of congestion and not
lose any packets. From the perspective of TCP, the multimedia applications running
over UDP are not being fair—they do not cooperate with the other connections nor
adjust their transmission rates appropriately. Because TCP congestion control will
decrease its transmission rate in the face of increasing congestion (loss), while UDP
sources need not, it is possible for UDP sources to crowd out TCP traffic. A number

3.8 ¢ EVOLUTION OF TRANSPORT-LAYER FUNCTIONALITY

of congestion-control mechanisms have been proposed for the Internet that prevent
UDP traffic from bringing the Internet’s throughput to a grinding halt [Floyd 1999;
Floyd 2000; Kohler 2006; RFC 4340].

Fairness and Parallel TCP Connections

But even if we could force UDP traffic to behave fairly, the fairness problem would
still not be completely solved. This is because there is nothing to stop a TCP-based
application from using multiple parallel connections. For example, Web browsers
often use multiple parallel TCP connections to transfer the multiple objects within
a Web page. (The exact number of multiple connections is configurable in most
browsers.) When an application uses multiple parallel connections, it gets a larger
fraction of the bandwidth in a congested link. As an example, consider a link of rate
R supporting nine ongoing client-server applications, with each of the applications
using one TCP connection. If a new application comes along and also uses one TCP
connection, then each application gets approximately the same transmission rate of
R/10. But if this new application instead uses 11 parallel TCP connections, then the
new application gets an unfair allocation of more than R/2. Because Web traffic is so
pervasive in the Internet, multiple parallel connections are not uncommon.

3.8 Evolution of Transport-Layer Functionality

Our discussion of specific Internet transport protocols in this chapter has focused on
UDP and TCP—the two “work horses” of the Internet transport layer. However, as
we’ve seen, three decades of experience with these two protocols has identified cir-
cumstances in which neither is ideally suited, and so the design and implementation
of transport layer functionality has continued to evolve.

We’ve seen a rich evolution in the use of TCP over the past decade. In
Sections 3.7.1 and 3.7.2, we learned that in addition to “classic” versions of TCP
such as TCP Tahoe and Reno, there are now several newer versions of TCP that have
been developed, implemented, deployed, and are in significant use today. These
include TCP CUBIC, DCTCP, CTCP, BBR, and more. Indeed, measurements in
[Yang 2014] indicate that CUBIC (and its predecessor, BIC [Xu 2004]) and CTCP
are more widely deployed on Web servers than classic TCP Reno; we also saw that
BBR is being deployed in Google’s internal B4 network, as well as on many of
Google’s public-facing servers.

And there are many (many!) more versions of TCP! There are versions of TCP
specifically designed for use over wireless links, over high-bandwidth paths with
large RTTs, for paths with packet re-ordering, and for short paths strictly within data
centers. There are versions of TCP that implement different priorities among TCP

279

280

CHAPTER 3

e TRANSPORT LAYER

connections competing for bandwidth at a bottleneck link, and for TCP connections
whose segments are being sent over different source-destination paths in parallel.
There are also variations of TCP that deal with packet acknowledgment and TCP
session establishment/closure differently than we studied in Section 3.5.6. Indeed,
it’s probably not even correct anymore to refer to “the” TCP protocol; perhaps the
only common features of these protocols is that they use the TCP segment format that
we studied in Figure 3.29, and that they should compete “fairly” amongst themselves
in the face of network congestion! For a survey of the many flavors of TCP, see
[Afanasyev 2010] and [Narayan 2018].

QUIC: Quick UDP Internet Connections

If the transport services needed by an application don’t quite fit either the UDP
or TCP service models—perhaps an application needs more services than those
provided by UDP but does not want all of the particular functionality that comes
with TCP, or may want different services than those provided by TCP—applica-
tion designers can always “roll their own” protocol at the application layer. This
is the approach taken in the QUIC (Quick UDP Internet Connections) protocol
[Langley 2017, QUIC 2020]. Specifically, QUIC is a new application-layer pro-
tocol designed from the ground up to improve the performance of transport-layer
services for secure HTTP. QUIC has already been widely deployed, although is
still in the process of being standardized as an Internet RFC [QUIC 2020]. Google
has deployed QUIC on many of its public-facing Web servers, in its mobile video
streaming YouTube app, in its Chrome browser, and in Android’s Google Search
app. With more than 7% of Internet traffic today now being QUIC [Langley 2017],
we’ll want to take a closer look. Our study of QUIC will also serve as a nice culmi-
nation of our study of the transport layer, as QUIC uses many of the approaches for
reliable data transfer, congestion control, and connection management that we’ve
studied in this chapter.

As shown in Figure 3.58, QUIC is an application-layer protocol, using UDP as
its underlying transport-layer protocol, and is designed to interface above specifi-
cally to a simplified but evolved version of HTTP/2. In the near future, HTTP/3
will natively incorporate QUIC [HTTP/3 2020]. Some of QUIC’s major features
include:

¢ Connection-Oriented and Secure. Like TCP, QUIC is a connection-oriented
protocol between two endpoints. This requires a handshake between endpoints
to set up the QUIC connection state. Two pieces of connection state are the
source and destination connection ID. All QUIC packets are encrypted, and as
suggested in Figure 3.58, QUIC combines the handshakes needed to establish
connection state with those needed for authentication and encryption (transport
layer security topics that we’ll study in Chapter 8), thus providing faster estab-
lishment than the protocol stack in Figure 3.58(a), where multiple RTTs are

3.8 ¢ EVOLUTION OF TRANSPORT-LAYER FUNCTIONALITY 281

HTTP/2 HTTP/2 (slimmed)
Application HTTP/3
TLS QuIC
Transport TCP uDP
Network IP IP
a. b.

Figure 3.58 ¢ (o) traditional secure HTTP protocol stack, and the
(b) secure QUIC-based HTTP/3 protocol stack

required to first establish a TCP connection, and then establish a TLS connection
over the TCP connection.

e Streams. QUIC allows several different application-level “streams” to be mul-
tiplexed through a single QUIC connection, and once a QUIC connection is
established, new streams can be quickly added. A stream is an abstraction for the
reliable, in-order bi-directional delivery of data between two QUIC endpoints. In
the context of HTTP/3, there would be a different stream for each object in a Web
page. Each connection has a connection ID, and each stream within a connection
has a stream ID; both of these IDs are contained in a QUIC packet header (along
with other header information). Data from multiple streams may be contained
within a single QUIC segment, which is carried over UDP. The Stream Control
Transmission Protocol (SCTP) [RFC 4960, RFC 3286] is an earlier reliable, mes-
sage-oriented protocol that pioneered the notion of multiplexing multiple appli-
cation-level “streams” through a single SCTP connection. We’ll see in Chapter 7
that SCTP is used in control plane protocols in 4G/5G cellular wireless networks.

e Reliable, TCP-friendly congestion-controlled data transfer. As illustrated
in Figure 3.59(b), QUIC provides reliable data transfer to each QUIC stream
separately. Figure 3.59(a) shows the case of HTTP/1.1 sending multiple HTTP
requests, all over a single TCP connection. Since TCP provides reliable, in-order
byte delivery, this means that the multiple HTTP requests must be delivered in-
order at the destination HTTP server. Thus, if bytes from one HTTP request are
lost, the remaining HTTP requests can not be delivered until those lost bytes are
retransmitted and correctly received by TCP at the HTTP server—the so-called
HOL blocking problem that we encountered earlier in Section 2.2.5. Since QUIC
provides a reliable in-order delivery on a per-stream basis, a lost UDP segment
only impacts those streams whose data was carried in that segment; HTTP mes-
sages in other streams can continue to be received and delivered to the applica-
tion. QUIC provides reliable data transfer using acknowledgment mechanisms
similar to TCP’s, as specified in [RFC 5681].

282 CHAPTER 3 e TRANSPORT LAYER

HTTP

HTTP

c HTTP g HTTP request
o request
=1 request request
S et QUIC || QuIiC |[QuiC QUIC |[QuIC |[QuIC
% TP encryption ||encryption || encryption encryption || encryption || encryption
< request request | QUICRDT || QUICRDT || QUIC RDT | | QUICRDT || QUICRDT || QUICRDT |

| TLS encryption | | TLS encryption | | QUIC congestion control | | QUIC congestion control |
e T
g| 7Tcror | | TcPROT |
2 | UDP |€D| UDP |
5| TPcc |€p| TCcPcc |
'—
a. HTTP 1.1 b. HTTP/3

Figure 3.59 ¢ (a) HTTP/1.1: a single-connection client and server using application-level TLS
encryption over TCP’s reliable data transfer (RDT) and congestion control (CC)
(b) HTTP/3: a multi-stream client and server using QUIC's encryption, reliable
data transfer and congestion control over UDP’s unreliable datagram service

QUIC’s congestion control is based on TCP NewReno [RFC 6582], a slight
modification to the TCP Reno protocol that we studied in Section 3.7.1. QUIC’s
Draft specification [QUIC-recovery 2020] notes “Readers familiar with TCP’s
loss detection and congestion control will find algorithms here that parallel well-
known TCP ones.” Since we’ve carefully studied TCP’s congestion control in
Section 3.7.1, we’d be right at home reading the details of QUIC’s draft specifica-
tion of its congestion control algorithm!

In closing, it’s worth highlighting again that QUIC is an application-layer
protocol providing reliable, congestion-controlled data transfer between two
endpoints. The authors of QUIC [Langley 2017] stress that this means that changes
can be made to QUIC at “application-update timescales,” that is, much faster than
TCP or UDP update timescales.

3.9 Summary

We began this chapter by studying the services that a transport-layer protocol can
provide to network applications. At one extreme, the transport-layer protocol can be
very simple and offer a no-frills service to applications, providing only a multiplexing/
demultiplexing function for communicating processes. The Internet’s UDP protocol

3.9 o

is an example of such a no-frills transport-layer protocol. At the other extreme, a
transport-layer protocol can provide a variety of guarantees to applications, such as
reliable delivery of data, delay guarantees, and bandwidth guarantees. Nevertheless,
the services that a transport protocol can provide are often constrained by the service
model of the underlying network-layer protocol. If the network-layer protocol cannot
provide delay or bandwidth guarantees to transport-layer segments, then the transport-
layer protocol cannot provide delay or bandwidth guarantees for the messages sent
between processes.

We learned in Section 3.4 that a transport-layer protocol can provide reliable
data transfer even if the underlying network layer is unreliable. We saw that provid-
ing reliable data transfer has many subtle points, but that the task can be accom-
plished by carefully combining acknowledgments, timers, retransmissions, and
sequence numbers.

Although we covered reliable data transfer in this chapter, we should keep
in mind that reliable data transfer can be provided by link-, network-, transport-,
or application-layer protocols. Any of the upper four layers of the protocol
stack can implement acknowledgments, timers, retransmissions, and sequence
numbers and provide reliable data transfer to the layer above. In fact, over
the years, engineers and computer scientists have independently designed and
implemented link-, network-, transport-, and application-layer protocols that
provide reliable data transfer (although many of these protocols have quietly
disappeared).

In Section 3.5, we took a close look at TCP, the Internet’s connection-oriented
and reliable transport-layer protocol. We learned that TCP is complex, involving con-
nection management, flow control, and round-trip time estimation, as well as reli-
able data transfer. In fact, TCP is actually more complex than our description—we
intentionally did not discuss a variety of TCP patches, fixes, and improvements that
are widely implemented in various versions of TCP. All of this complexity, however,
is hidden from the network application. If a client on one host wants to send data
reliably to a server on another host, it simply opens a TCP socket to the server and
pumps data into that socket. The client-server application is blissfully unaware of
TCP’s complexity.

In Section 3.6, we examined congestion control from a broad perspective, and
in Section 3.7, we showed how TCP implements congestion control. We learned that
congestion control is imperative for the well-being of the network. Without conges-
tion control, a network can easily become gridlocked, with little or no data being
transported end-to-end. In Section 3.7, we learned that classic TCP implements an
end-to-end congestion-control mechanism that additively increases its transmission
rate when the TCP connection’s path is judged to be congestion-free, and multiplica-
tively decreases its transmission rate when loss occurs. This mechanism also strives
to give each TCP connection passing through a congested link an equal share of the
link bandwidth. We also studied several newer variations of TCP congestion control

SUMMARY

283

284

CHAPTER 3

e TRANSPORT LAYER

that try to determine TCP’s sending rate rate more quickly than classic TCP, use a
delay-based approach or explicit congestion notification from the network (rather
than a loss-based approach) to determine TCP’s sending rate. We also examined in
some depth the impact of TCP connection establishment and slow start on latency.
We observed that in many important scenarios, connection establishment and slow
start significantly contribute to end-to-end delay. We emphasize once more that
while TCP congestion control has evolved over the years, it remains an area of
intensive research and will likely continue to evolve in the upcoming years. To
wrap up this chapter, in Section 3.8, we studied recent developments in implement-
ing many of the transport layer’s functions—reliable data transfer, congestion con-
trol, connection establishment, and more—in the application layer using the QUIC
protocol.

In Chapter 1, we said that a computer network can be partitioned into the
“network edge” and the “network core.” The network edge covers everything
that happens in the end systems. Having now covered the application layer and
the transport layer, our discussion of the network edge is complete. It is time to
explore the network core! This journey begins in the next two chapters, where
we’ll study the network layer, and continues into Chapter 6, where we’ll study the
link layer.

Homework Problems and Questions

Chapter 3 Review Questions

SECTIONS 3.1-3.3

R1. Suppose the network layer provides the following service. The network
layer in the source host accepts a segment of maximum size 1,200 bytes and
a destination host address from the transport layer. The network layer then
guarantees to deliver the segment to the transport layer at the destination
host. Suppose many network application processes can be running at the
destination host.

a. Design the simplest possible transport-layer protocol that will get applica-
tion data to the desired process at the destination host. Assume the operat-
ing system in the destination host has assigned a 4-byte port number to
each running application process.

b. Modify this protocol so that it provides a “return address” to the destina-
tion process.

c. In your protocols, does the transport layer “have to do anything” in the
core of the computer network?

R2.

R3.

R4.

RS.

R6.

R7.

R8.

HOMEWORK PROBLEMS AND QUESTIONS

Consider a planet where everyone belongs to a family of six, every family
lives in its own house, each house has a unique address, and each person

in a given house has a unique name. Suppose this planet has a mail service
that delivers letters from source house to destination house. The mail service
requires that (1) the letter be in an envelope, and that (2) the address of the
destination house (and nothing more) be clearly written on the envelope. Sup-
pose each family has a delegate family member who collects and distributes
letters for the other family members. The letters do not necessarily provide
any indication of the recipients of the letters.

a. Using the solution to Problem R1 above as inspiration, describe a protocol
that the delegates can use to deliver letters from a sending family member
to a receiving family member.

b. In your protocol, does the mail service ever have to open the envelope and
examine the letter in order to provide its service?

Consider a TCP connection between Host A and Host B. Suppose that the
TCP segments traveling from Host A to Host B have source port number x
and destination port number y. What are the source and destination port num-
bers for the segments traveling from Host B to Host A?

Describe why an application developer might choose to run an application
over UDP rather than TCP.

Why is it that voice and video traffic is often sent over TCP rather than UDP
in today’s Internet? (Hint: The answer we are looking for has nothing to do
with TCP’s congestion-control mechanism.)

Is it possible for an application to enjoy reliable data transfer even when the
application runs over UDP? If so, how?

Suppose a process in Host C has a UDP socket with port number 6789.
Suppose both Host A and Host B each send a UDP segment to Host C with
destination port number 6789. Will both of these segments be directed to the
same socket at Host C? If so, how will the process at Host C know that these
two segments originated from two different hosts?

Suppose that a Web server runs in Host C on port 80. Suppose this Web
server uses persistent connections, and is currently receiving requests from
two different Hosts, A and B. Are all of the requests being sent through the
same socket at Host C? If they are being passed through different sockets, do
both of the sockets have port 80? Discuss and explain.

SECTION 3.4

RO.

In our rdt protocols, why did we need to introduce sequence numbers?

R10. In our rdt protocols, why did we need to introduce timers?

285

286

CHAPTER 3

e TRANSPORT LAYER

R11. Suppose that the roundtrip delay between sender and receiver is constant and
known to the sender. Would a timer still be necessary in protocol rdt 3.0,
assuming that packets can be lost? Explain.

R12. Visit the Go-Back-N interactive animation at the companion Web site.

a.

C.

Have the source send five packets, and then pause the animation before
any of the five packets reach the destination. Then kill the first packet and
resume the animation. Describe what happens.

Repeat the experiment, but now let the first packet reach the destination
and kill the first acknowledgment. Describe again what happens.

Finally, try sending six packets. What happens?

R13. Repeat R12, but now with the Selective Repeat interactive animation. How
are Selective Repeat and Go-Back-N different?

SECTION 3.5
R14. True or false?

a.

Host A is sending Host B a large file over a TCP connection. Assume Host
B has no data to send Host A. Host B will not send acknowledgments to
Host A because Host B cannot piggyback the acknowledgments on data.

The size of the TCP rwnd never changes throughout the duration of the
connection.

. Suppose Host A is sending Host B a large file over a TCP connection. The

number of unacknowledged bytes that A sends cannot exceed the size of
the receive buffer.

Suppose Host A is sending a large file to Host B over a TCP connection.
If the sequence number for a segment of this connection is m, then the
sequence number for the subsequent segment will necessarily be m + 1.

The TCP segment has a field in its header for rwnd.

Suppose that the last Samp1eRTT in a TCP connection is equal to 1 sec.
The current value of TimeoutInterval for the connection will neces-
sarily be = 1 sec.

Suppose Host A sends one segment with sequence number 38 and 4

bytes of data over a TCP connection to Host B. In this same segment, the
acknowledgment number is necessarily 42.

R15. Suppose Host A sends two TCP segments back to back to Host B over a
TCP connection. The first segment has sequence number 90; the second has
sequence number 110.

a.
b.

How much data is in the first segment?

Suppose that the first segment is lost but the second segment arrives at
B. In the acknowledgment that Host B sends to Host A, what will be the
acknowledgment number?

R16. Consider the Telnet example discussed in Section 3.5. A few seconds after
the user types the letter ‘C,’ the user types the letter ‘R.” After typing the let-
ter ‘R,” how many segments are sent, and what is put in the sequence number
and acknowledgment fields of the segments?

SECTION 3.7

R17. Suppose two TCP connections are present over some bottleneck link of rate R
bps. Both connections have a huge file to send (in the same direction over the
bottleneck link). The transmissions of the files start at the same time. What
transmission rate would TCP like to give to each of the connections?

R18. True or false? Consider congestion control in TCP. When the timer expires at
the sender, the value of ssthresh is set to one half of its previous value.
R19. In the discussion of TCP splitting in the sidebar in Section 3.7, it was
claimed that the response time with TCP splitting is approximately
4+ RTTgg + RTTgg + processing time. Justify this claim.

Problems

P1. Suppose Client A initiates a Telnet session with Server S. At about the same
time, Client B also initiates a Telnet session with Server S. Provide possible
source and destination port numbers for

a. The segments sent from A to S.
b. The segments sent from B to S.
c. The segments sent from S to A.
d. The segments sent from S to B.

e. If A and B are different hosts, is it possible that the source port number in
the segments from A to S is the same as that from B to S?

f. How about if they are the same host?

P2. Consider Figure 3.5. What are the source and destination port values in the
segments flowing from the server back to the clients’ processes? What are
the IP addresses in the network-layer datagrams carrying the transport-layer
segments?

P3. UDP and TCP use 1s complement for their checksums. Suppose you have
the following three 8-bit bytes: 01010011, 01100110, 01110100. What is the
1s complement of the sum of these 8-bit bytes? (Note that although UDP and
TCP use 16-bit words in computing the checksum, for this problem you are
being asked to consider 8-bit sums.) Show all work. Why is it that UDP takes
the 1s complement of the sum; that is, why not just use the sum? With the 1s
complement scheme, how does the receiver detect errors? Is it possible that a
1-bit error will go undetected? How about a 2-bit error?

287

288 CHAPTER 3 e TRANSPORT LAYER

P4. a. Suppose you have the following 2 bytes: 01011100 and 01100101. What
is the 1s complement of the sum of these 2 bytes?

b. Suppose you have the following 2 bytes: 11011010 and 01100101. What
is the 1s complement of the sum of these 2 bytes?

c. For the bytes in part (a), give an example where one bit is flipped in each
of the 2 bytes and yet the 1s complement doesn’t change.

P5. Suppose that the UDP receiver computes the Internet checksum for the
received UDP segment and finds that it matches the value carried in the
checksum field. Can the receiver be absolutely certain that no bit errors have
occurred? Explain.

P6. Consider our motivation for correcting protocol rdt2 . 1. Show that the
receiver, shown in Figure 3.60, when operating with the sender shown in
Figure 3.11, can lead the sender and receiver to enter into a deadlock state,
where each is waiting for an event that will never occur.

P7. In protocol rdt3. 0, the ACK packets flowing from the receiver to the
sender do not have sequence numbers (although they do have an ACK field
that contains the sequence number of the packet they are acknowledging).
Why is it that our ACK packets do not require sequence numbers?

rdt_rcv (rcvpkt) && notcorrupt (rcvpkt)
&& has_seq0 (rcvpkt)

extract (rcvpkt,data)
deliver_data (data)

compute chksum

make_pkt (sendpkt, ACK, chksum)
udt_send (sndpkt)

rdt_rcv (rcvpkt) &&
/—\ (corrupt(rcvpkt) I
has_seq0 (rcvpkt)))

compute chksum

Wait for Wait for
ait fo aitto make_pkt (sndpkt, NAK, chksum)
rdt_rcv (rcvpkt) && 0 from 1 from
udt_send (sndpkt)
(corrupt (rcvpkt) below below

Il
has_seql (rcvpkt)))

compute chksum
make_pkt (sndpkt, NAK, chksum)

udt_send (sndpkt) rdt_rcv (rcvpkt) && notcorrupt (rcvpkt)
&& has_seql (rcvpkt)

extract (rcvpkt,data)
deliver_data (data)

compute chksum

make_pkt (sendpkt,ACK, chksum)
udt_send (sndpkt)

Figure 3.60 ¢ An incorrect receiver for protocol rdt 2.1

P8.
PO.

P10.

P11.

P12.

P13.

P14.

PROBLEMS

Draw the FSM for the receiver side of protocol rdt3. 0.

Give a trace of the operation of protocol rdt3. 0 when data packets and
acknowledgment packets are garbled. Your trace should be similar to that
used in Figure 3.16.

Consider a channel that can lose packets but has a maximum delay that is
known. Modify protocol rdt2 .1 to include sender timeout and retransmit.
Informally argue why your protocol can communicate correctly over this
channel.

Consider the rdt2 . 2 receiver in Figure 3.14, and the creation of a new
packet in the self-transition (i.e., the transition from the state back to

itself) in the Wait-for-O-from-below and the Wait-for-1-from-below states:
sndpkt=make_pkt (ACK, 1, checksum) and sndpkt=make_

pkt (ACK, 0, checksum). Would the protocol work correctly if this action
were removed from the self-transition in the Wait-for-1-from-below state?
Justify your answer. What if this event were removed from the self-transition
in the Wait-for-O-from-below state? [Hint: In this latter case, consider what
would happen if the first sender-to-receiver packet were corrupted.]

The sender side of rdt3. 0 simply ignores (that is, takes no action on)

all received packets that are either in error or have the wrong value in the
acknum field of an acknowledgment packet. Suppose that in such circum-
stances, rdt3 .0 were simply to retransmit the current data packet. Would
the protocol still work? (Hint: Consider what would happen if there were
only bit errors; there are no packet losses but premature timeouts can occur.
Consider how many times the nth packet is sent, in the limit as n approaches
infinity.)

Consider the rdt 3.0 protocol. Draw a diagram showing that if the
network connection between the sender and receiver can reorder messages
(that is, that two messages propagating in the medium between the sender
and receiver can be reordered), then the alternating-bit protocol will not
work correctly (make sure you clearly identify the sense in which it will
not work correctly). Your diagram should have the sender on the left and
the receiver on the right, with the time axis running down the page, show-
ing data (D) and acknowledgment (A) message exchange. Make sure you
indicate the sequence number associated with any data or acknowledgment
segment.

Consider a reliable data transfer protocol that uses only negative acknowledg-
ments. Suppose the sender sends data only infrequently. Would a NAK-only
protocol be preferable to a protocol that uses ACKs? Why? Now suppose the
sender has a lot of data to send and the end-to-end connection experiences
few losses. In this second case, would a NAK-only protocol be preferable to
a protocol that uses ACKs? Why?

289

290

CHAPTER 3

e TRANSPORT LAYER

P15.

P16.

P17.

P18.

Consider the cross-country example shown in Figure 3.17. How big would
the window size have to be for the channel utilization to be greater than

98 percent? Suppose that the size of a packet is 1,500 bytes, including both
header fields and data.

Suppose an application uses rdt 3.0 as its transport layer protocol. As the
stop-and-wait protocol has very low channel utilization (shown in the cross-
country example), the designers of this application let the receiver keep send-
ing back a number (more than two) of alternating ACK 0 and ACK 1 even if
the corresponding data have not arrived at the receiver. Would this applica-
tion design increase the channel utilization? Why? Are there any potential
problems with this approach? Explain.

Consider two network entities, A and B, which are connected by a perfect
bi-directional channel (i.e., any message sent will be received correctly; the
channel will not corrupt, lose, or re-order packets). A and B are to deliver
data messages to each other in an alternating manner: First, A must deliver

a message to B, then B must deliver a message to A, then A must deliver a
message to B and so on. If an entity is in a state where it should not attempt
to deliver a message to the other side, and there is an event like rdt__

send (data) call from above that attempts to pass data down for transmis-
sion to the other side, this call from above can simply be ignored with a call
to rdt_unable_to_send (data), which informs the higher layer that it
is currently not able to send data. [Note: This simplifying assumption is made
so you don’t have to worry about buffering data.]

Draw a FSM specification for this protocol (one FSM for A, and one FSM
for B!). Note that you do not have to worry about a reliability mechanism
here; the main point of this question is to create a FSM specification that
reflects the synchronized behavior of the two entities. You should use the
following events and actions that have the same meaning as protocol rdt1.0 in
Figure 3.9: rdt_send (data), packet = make_pkt(data),udt_
send (packet), rdt_rcv(packet),extract (packet,data),
deliver_data (data). Make sure your protocol reflects the strict alter-
nation of sending between A and B. Also, make sure to indicate the initial
states for A and B in your FSM descriptions.

In the generic SR protocol that we studied in Section 3.4.4, the sender
transmits a message as soon as it is available (if it is in the window) without
waiting for an acknowledgment. Suppose now that we want an SR protocol
that sends messages two at a time. That is, the sender will send a pair of mes-
sages and will send the next pair of messages only when it knows that both
messages in the first pair have been received correctly.

Suppose that the channel may lose messages but will not corrupt or reorder
messages. Design an error-control protocol for the unidirectional reliable

P19.

P20.

P21.

PROBLEMS

transfer of messages. Give an FSM description of the sender and receiver.
Describe the format of the packets sent between sender and receiver, and vice
versa. If you use any procedure calls other than those in Section 3.4

(for example, udt_send (), start_timer (), rdt_rcv (), and so on),
clearly state their actions. Give an example (a timeline trace of sender and
receiver) showing how your protocol recovers from a lost packet.

Consider a scenario in which Host A wants to simultaneously send packets
to Hosts B and C. A is connected to B and C via a broadcast channel—a
packet sent by A is carried by the channel to both B and C. Suppose that

the broadcast channel connecting A, B, and C can independently lose and
corrupt packets (and so, for example, a packet sent from A might be cor-
rectly received by B, but not by C). Design a stop-and-wait-like error-control
protocol for reliably transferring packets from A to B and C, such that A will
not get new data from the upper layer until it knows that both B and C have
correctly received the current packet. Give FSM descriptions of A and C.
(Hint: The FSM for B should be essentially the same as for C.) Also, give a
description of the packet format(s) used.

Consider a scenario in which Host A and Host B want to send messages to
Host C. Hosts A and C are connected by a channel that can lose and corrupt
(but not reorder) messages. Hosts B and C are connected by another channel
(independent of the channel connecting A and C) with the same properties.
The transport layer at Host C should alternate in delivering messages from
A and B to the layer above (that is, it should first deliver the data from a packet
from A, then the data from a packet from B, and so on). Design a stop-and-
wait-like error-control protocol for reliably transferring packets from A and
B to C, with alternating delivery at C as described above. Give FSM descrip-
tions of A and C. (Hint: The FSM for B should be essentially the same as
for A.) Also, give a description of the packet format(s) used.

Suppose we have two network entities, A and B. B has a supply of data mes-
sages that will be sent to A according to the following conventions. When A
gets a request from the layer above to get the next data (D) message from B,
A must send a request (R) message to B on the A-to-B channel. Only when B
receives an R message can it send a data (D) message back to A on the B-to-
A channel. A should deliver exactly one copy of each D message to the layer
above. R messages can be lost (but not corrupted) in the A-to-B channel; D
messages, once sent, are always delivered correctly. The delay along both
channels is unknown and variable.

Design (give an FSM description of) a protocol that incorporates the appro-
priate mechanisms to compensate for the loss-prone A-to-B channel and
implements message passing to the layer above at entity A, as discussed
above. Use only those mechanisms that are absolutely necessary.

291

292

CHAPTER 3

e TRANSPORT LAYER

pP22.

P23.

P24.

P25.

P26.

pP27.

Consider the GBN protocol with a sender window size of 4 and a sequence
number range of 1,024. Suppose that at time ¢, the next in-order packet
that the receiver is expecting has a sequence number of k. Assume that the
medium does not reorder messages. Answer the following questions:

a. What are the possible sets of sequence numbers inside the sender’s
window at time #? Justify your answer.

b. What are all possible values of the ACK field in all possible messages
currently propagating back to the sender at time ¢? Justify your answer.

Consider the GBN and SR protocols. Suppose the sequence number space
is of size k. What is the largest allowable sender window that will avoid
the occurrence of problems such as that in Figure 3.27 for each of these
protocols?

Answer true or false to the following questions and briefly justify your
answer:

a. With the SR protocol, it is possible for the sender to receive an ACK for a
packet that falls outside of its current window.

b. With GBN, it is possible for the sender to receive an ACK for a packet
that falls outside of its current window.

c. The alternating-bit protocol is the same as the SR protocol with a sender
and receiver window size of 1.

d. The alternating-bit protocol is the same as the GBN protocol with a sender
and receiver window size of 1.

We have said that an application may choose UDP for a transport protocol
because UDP offers finer application control (than TCP) of what data is sent
in a segment and when.

Why does an application have more control of what data is sent in a segment?
Why does an application have more control on when the segment is sent?

Consider transferring an enormous file of L bytes from Host A to Host B.
Assume an MSS of 536 bytes.

a. What is the maximum value of L such that TCP sequence numbers are not
exhausted? Recall that the TCP sequence number field has 4 bytes.

b. For the L you obtain in (a), find how long it takes to transmit the file.
Assume that a total of 66 bytes of transport, network, and data-link header
are added to each segment before the resulting packet is sent out over a
155 Mbps link. Ignore flow control and congestion control so A can pump
out the segments back to back and continuously.

Host A and B are communicating over a TCP connection, and Host B has
already received from A all bytes up through byte 126. Suppose Host A
then sends two segments to Host B back-to-back. The first and second

P28.

P29.

P30.

PROBLEMS

segments contain 80 and 40 bytes of data, respectively. In the first segment,
the sequence number is 127, the source port number is 302, and the des-
tination port number is 80. Host B sends an acknowledgment whenever it
receives a segment from Host A.

a. In the second segment sent from Host A to B, what are the sequence num-
ber, source port number, and destination port number?

b. If the first segment arrives before the second segment, in the acknowledg-
ment of the first arriving segment, what is the acknowledgment number,
the source port number, and the destination port number?

c. If the second segment arrives before the first segment, in the acknowledg-
ment of the first arriving segment, what is the acknowledgment number?

d. Suppose the two segments sent by A arrive in order at B. The first
acknowledgment is lost and the second acknowledgment arrives after the
first timeout interval. Draw a timing diagram, showing these segments
and all other segments and acknowledgments sent. (Assume there is no
additional packet loss.) For each segment in your figure, provide the
sequence number and the number of bytes of data; for each acknowledg-
ment that you add, provide the acknowledgment number.

Host A and B are directly connected with a 100 Mbps link. There is one TCP
connection between the two hosts, and Host A is sending to Host B an enor-
mous file over this connection. Host A can send its application data into its
TCP socket at a rate as high as 120 Mbps but Host B can read out of its TCP
receive buffer at a maximum rate of 50 Mbps. Describe the effect of TCP
flow control.

SYN cookies were discussed in Section 3.5.6.

a. Why is it necessary for the server to use a special initial sequence number
in the SYNACK?

b. Suppose an attacker knows that a target host uses SYN cookies. Can the
attacker create half-open or fully open connections by simply sending an
ACK packet to the target? Why or why not?

c. Suppose an attacker collects a large amount of initial sequence numbers sent
by the server. Can the attacker cause the server to create many fully open
connections by sending ACKs with those initial sequence numbers? Why?

Consider the network shown in Scenario 2 in Section 3.6.1. Suppose both

sending hosts A and B have some fixed timeout values.

a. Argue that increasing the size of the finite buffer of the router might pos-
sibly decrease the throughput (A,,,).

b. Now suppose both hosts dynamically adjust their timeout values (like
what TCP does) based on the buffering delay at the router. Would increas-
ing the buffer size help to increase the throughput? Why?

293

294

CHAPTER 3

e TRANSPORT LAYER

P31.

P32.

P33.

P34.

P35.

P36.

P37.

Suppose that the five measured SampleRTT values (see Section 3.5.3)
are 106 ms, 120 ms, 140 ms, 90 ms, and 115 ms. Compute the Estimat-
edRTT after each of these SampleRTT values is obtained, using a value of
a = 0.125 and assuming that the value of EstimatedRTT was 100 ms
just before the first of these five samples were obtained. Compute also the
DevRTT after each sample is obtained, assuming a value of B = 0.25 and
assuming the value of DevRTT was 5 ms just before the first of these five
samples was obtained. Last, compute the TCP TimeoutInterval after
each of these samples is obtained.

Consider the TCP procedure for estimating RTT. Suppose that « = 0.1. Let
SampleRTT, be the most recent sample RTT, let Samp1eRTT, be the next
most recent sample RTT, and so on.

a. For a given TCP connection, suppose four acknowledgments have
been returned with corresponding sample RTTs: Sampl1eRTT,,
SampleRTT,, SampleRTT,, and SampleRTT,. Express
EstimatedRTT in terms of the four sample RTTs.

b. Generalize your formula for n sample RTTs.

c. For the formula in part (b) let n approach infinity. Comment on why this
averaging procedure is called an exponential moving average.

In Section 3.5.3, we discussed TCP’s estimation of RTT. Why do you think
TCP avoids measuring the SampleRTT for retransmitted segments?

What is the relationship between the variable SendBase in Section 3.5.4
and the variable LastByteRcvd in Section 3.5.5?

What is the relationship between the variable LastByteRcvd in
Section 3.5.5 and the variable y in Section 3.5.4?

In Section 3.5.4, we saw that TCP waits until it has received three dupli-
cate ACKs before performing a fast retransmit. Why do you think the TCP
designers chose not to perform a fast retransmit after the first duplicate ACK
for a segment is received?

Compare GBN, SR, and TCP (no delayed ACK). Assume that the timeout
values for all three protocols are sufficiently long such that five consecutive
data segments and their corresponding ACKs can be received (if not lost in
the channel) by the receiving host (Host B) and the sending host (Host A)
respectively. Suppose Host A sends five data segments to Host B, and the
second segment (sent from A) is lost. In the end, all five data segments have
been correctly received by Host B.

a. How many segments has Host A sent in total and how many ACKs has
Host B sent in total? What are their sequence numbers? Answer this
question for all three protocols.

PROBLEMS 295

b. If the timeout values for all three protocol are much longer than 5 RTT,
then which protocol successfully delivers all five data segments in short-
est time interval?

P38. In our description of TCP in Figure 3.53, the value of the threshold,
ssthresh,is setas ssthresh=cwnd/2 in several places and
ssthresh value is referred to as being set to half the window size when a
loss event occurred. Must the rate at which the sender is sending when the
loss event occurred be approximately equal to cwnd segments per RTT?
Explain your answer. If your answer is no, can you suggest a different
manner in which ssthresh should be set?

P39. Consider Figure 3.46(b). If A}, increases beyond R/2, can A, increase
beyond R/3? Explain. Now consider Figure 3.46(c). If A}, increases beyond
R/2, can Ay increase beyond R/4 under the assumption that a packet will be
forwarded twice on average from the router to the receiver? Explain.

P40. Consider Figure 3.61. Assuming TCP Reno is the protocol experiencing the u
behavior shown above, answer the following questions. In all cases, you

should provide a short discussion justifying your answer. VideoNote

Examining the behavior

a. Identify the intervals of time when TCP slow start is operating. of TCP

b. Identify the intervals of time when TCP congestion avoidance is operating.

c. After the 16th transmission round, is segment loss detected by a triple
duplicate ACK or by a timeout?

d. After the 22nd transmission round, is segment loss detected by a triple
duplicate ACK or by a timeout?

45—
€ 40
£
o 357
3
o 30
N
s 25—
[e]

2 20
2
c 157
°
=
g 10
2
o 5
|V
0 T T T T T 1

T T 1
0 2 4 6 8 10 12 14 16 18 20 22 24 26

Transmission round

Figure 3.61 ¢ TCP window size as a function of time

296

CHAPTER 3

e TRANSPORT LAYER

P41.

P42.

P43.

P44.

‘What is the initial value of ssthresh at the first transmission round?
What is the value of ssthresh at the 18th transmission round?

‘What is the value of ssthresh at the 24th transmission round?

5@ oo

During what transmission round is the 70th segment sent?

—

Assuming a packet loss is detected after the 26th round by the receipt of
a triple duplicate ACK, what will be the values of the congestion window
size and of ssthresh?

j- Suppose TCP Tahoe is used (instead of TCP Reno), and assume that triple
duplicate ACKs are received at the 16th round. What are the ssthresh
and the congestion window size at the 19th round?

k. Again suppose TCP Tahoe is used, and there is a timeout event at
22nd round. How many packets have been sent out from 17th round till
22nd round, inclusive?

Refer to Figure 3.55, which illustrates the convergence of TCP’s AIMD
algorithm. Suppose that instead of a multiplicative decrease, TCP decreased
the window size by a constant amount. Would the resulting AIAD algorithm
converge to an equal share algorithm? Justify your answer using a diagram
similar to Figure 3.55.

In Section 3.5.4, we discussed the doubling of the timeout interval after a
timeout event. This mechanism is a form of congestion control. Why does
TCP need a window-based congestion-control mechanism (as studied in
Section 3.7) in addition to this doubling-timeout-interval mechanism?

Host A is sending an enormous file to Host B over a TCP connection. Over
this connection there is never any packet loss and the timers never expire.
Denote the transmission rate of the link connecting Host A to the Internet by
R bps. Suppose that the process in Host A is capable of sending data into its
TCP socket at a rate S bps, where S = 10 - R. Further suppose that the TCP
receive buffer is large enough to hold the entire file, and the send buffer can
hold only one percent of the file. What would prevent the process in Host

A from continuously passing data to its TCP socket at rate S bps? TCP flow
control? TCP congestion control? Or something else? Elaborate.

Consider sending a large file from a host to another over a TCP connection
that has no loss.

a. Suppose TCP uses AIMD for its congestion control without slow start.
Assuming cwnd increases by 1 MSS every time a batch of ACKs is
received and assuming approximately constant round-trip times, how long
does it take for cwnd increase from 6 MSS to 12 MSS (assuming no loss
events)?

b. What is the average throughput (in terms of MSS and RTT) for this con-
nection up through time = 6 RTT?

P45.

P46.

P47.

P48.

P49.

PROBLEMS

Consider Figure 3.54. Suppose that at ¢;, the sending rate at which conges-
tion loss next occurs drops to 0.75*W .. (unbeknownst to the TCP senders,
of course). Show the evolution of both TCP Reno and TCP CUBIC for two
more rounds each (Hint: note that the times at which TCP Reno and TCP
CUBIC react to congestion loss may not be the same anymore).

Consider Figure 3.54 again. Suppose that at 7,, the sending rate at which conges-
tion loss next occurs increases to 1.5%W,_ . Show the evolution of both TCP
Reno and TCP CUBIC for at two more rounds each (Hint: see the hint in P45).

Recall the macroscopic description of TCP throughput. In the period of time
from when the connection’s rate varies from W/(2 - RTT) to W/RTT, only one
packet is lost (at the very end of the period).

a. Show that the loss rate (fraction of packets lost) is equal to

1
L = lossrate = —————
Swri 2w
8 4
b. Use the result above to show that if a connection has loss rate L, then its

average rate is approximately given by

1.22 - MSS

RTT VL

Consider that only a single TCP (Reno) connection uses one 10 Mbps link
which does not buffer any data. Suppose that this link is the only congested
link between the sending and receiving hosts. Assume that the TCP sender
has a huge file to send to the receiver, and the receiver’s receive buffer

is much larger than the congestion window. We also make the following
assumptions: each TCP segment size is 1,500 bytes; the two-way propagation
delay of this connection is 150 msec; and this TCP connection is always in
congestion avoidance phase, that is, ignore slow start.

a. What is the maximum window size (in segments) that this TCP connec-
tion can achieve?

b. What is the average window size (in segments) and average throughput
(in bps) of this TCP connection?

c. How long would it take for this TCP connection to reach its maximum
window again after recovering from a packet loss?

Consider the scenario described in the previous problem. Suppose that the

10 Mbps link can buffer a finite number of segments. Argue that in order for
the link to always be busy sending data, we would like to choose a buffer size
that is at least the product of the link speed C and the two-way propagation
delay between the sender and the receiver.

297

298

CHAPTER 3

e TRANSPORT LAYER

P50.

P51.

P52.

P53.

P54.

Repeat Problem 46, but replacing the 10 Mbps link with a 10 Gbps link. Note
that in your answer to part ¢, you will realize that it takes a very long time for
the congestion window size to reach its maximum window size after recover-
ing from a packet loss. Sketch a solution to solve this problem.

Let T (measured by RTT) denote the time interval that a TCP connection
takes to increase its congestion window size from W/2 to W, where W is the
maximum congestion window size. Argue that T is a function of TCP’s
average throughput.

Consider a simplified TCP’s AIMD algorithm where the congestion window
size is measured in number of segments, not in bytes. In additive increase, the
congestion window size increases by one segment in each RTT. In multipli-
cative decrease, the congestion window size decreases by half (if the result

is not an integer, round down to the nearest integer). Suppose that two TCP
connections, C, and C,, share a single congested link of speed 30 segments
per second. Assume that both C, and C, are in the congestion avoidance
phase. Connection C,’s RTT is 50 msec and connection C,’s RTT is 100 msec.
Assume that when the data rate in the link exceeds the link’s speed, all

TCP connections experience data segment loss.

a. If both C, and C, at time t, have a congestion window of 10 segments,
what are their congestion window sizes after 1000 msec?

b. In the long run, will these two connections get the same share of the band-
width of the congested link? Explain.

Consider the network described in the previous problem. Now suppose that
the two TCP connections, C1 and C2, have the same RTT of 100 msec.
Suppose that at time t,, C1’s congestion window size is 15 segments but C2’s
congestion window size is 10 segments.

a. What are their congestion window sizes after 2200 msec?

b. In the long run, will these two connections get about the same share of the
bandwidth of the congested link?

c. We say that two connections are synchronized, if both connections reach
their maximum window sizes at the same time and reach their minimum
window sizes at the same time. In the long run, will these two connec-
tions get synchronized eventually? If so, what are their maximum window
sizes?

d. Will this synchronization help to improve the utilization of the shared
link? Why? Sketch some idea to break this synchronization.

Consider a modification to TCP’s congestion control algorithm. Instead of
additive increase, we can use multiplicative increase. A TCP sender increases
its window size by a small positive constant @ (0 < a < 1) whenever it
receives a valid ACK. Find the functional relationship between loss rate L

P55.

P56.

P57.

P58.

and maximum congestion window W. Argue that for this modified TCP,
regardless of TCP’s average throughput, a TCP connection always spends the
same amount of time to increase its congestion window size from W/2 to W.

In our discussion of TCP futures in Section 3.7, we noted that to achieve a
throughput of 10 Gbps, TCP could only tolerate a segment loss probability of
2.10710 (or equivalently, one loss event for every 5,000,000,000 segments).
Show the derivation for the values of 2 - 10~ (1 out of 5,000,000) for the
RTT and MSS values given in Section 3.7. If TCP needed to support a

100 Gbps connection, what would the tolerable loss be?

In our discussion of TCP congestion control in Section 3.7, we implicitly
assumed that the TCP sender always had data to send. Consider now the case
that the TCP sender sends a large amount of data and then goes idle (since it
has no more data to send) at ;. TCP remains idle for a relatively long period
of time and then wants to send more data at £, What are the advantages and
disadvantages of having TCP use the cwnd and ssthresh values from ¢,
when starting to send data at ¢,? What alternative would you recommend?
Why?

In this problem, we investigate whether either UDP or TCP provides a degree
of end-point authentication.

a. Consider a server that receives a request within a UDP packet and
responds to that request within a UDP packet (for example, as done by a
DNS server). If a client with IP address X spoofs its address with address
Y, where will the server send its response?

b. Suppose a server receives a SYN with IP source address Y, and after
responding with a SYNACK, receives an ACK with IP source address Y
with the correct acknowledgment number. Assuming the server chooses a
random initial sequence number and there is no “man-in-the-middle,” can
the server be certain that the client is indeed at Y (and not at some other
address X that is spoofing Y)?

In this problem, we consider the delay introduced by the TCP slow-start
phase. Consider a client and a Web server directly connected by one link of
rate R. Suppose the client wants to retrieve an object whose size is exactly
equal to 15 S, where S is the maximum segment size (MSS). Denote the
round-trip time between client and server as RTT (assumed to be constant).
Ignoring protocol headers, determine the time to retrieve the object (includ-
ing TCP connection establishment) when

a. 4S/R > S/IR + RTT > 2S/R
b. S/R + RTT > 4 S/IR
c. S/R > RTT.

PROBLEMS

299

300

CHAPTER 3

e TRANSPORT LAYER

Programming Assignments

Implementing a Reliable Transport Protocol

In this laboratory programming assignment, you will be writing the sending and
receiving transport-level code for implementing a simple reliable data transfer pro-
tocol. There are two versions of this lab, the alternating-bit-protocol version and the
GBN version. This lab should be fun—your implementation will differ very little
from what would be required in a real-world situation.

Since you probably don’t have standalone machines (with an OS that you can
modify), your code will have to execute in a simulated hardware/software environ-
ment. However, the programming interface provided to your routines—the code that
would call your entities from above and from below—is very close to what is done
in an actual UNIX environment. (Indeed, the software interfaces described in this
programming assignment are much more realistic than the infinite loop senders and
receivers that many texts describe.) Stopping and starting timers are also simulated,
and timer interrupts will cause your timer handling routine to be activated.

The full lab assignment, as well as code you will need to compile with your own
code, are available at this book’s Web site: www.pearsonhighered.com/cs-resources.

Wireshark Lab: Exploring TCP

In this lab, you’ll use your Web browser to access a file from a Web server. As in earlier
Wireshark labs, you’ll use Wireshark to capture the packets arriving at your computer.
Unlike earlier labs, you’ll also be able to download a Wireshark-readable packet trace
from the Web server from which you downloaded the file. In this server trace, you’ll
find the packets that were generated by your own access of the Web server. You’ll ana-
lyze the client- and server-side traces to explore aspects of TCP. In particular, you’ll
evaluate the performance of the TCP connection between your computer and the Web
server. You’ll trace TCP’s window behavior, and infer packet loss, retransmission,
flow control and congestion control behavior, and estimated roundtrip time.

As is the case with all Wireshark labs, the full description of this lab is available
at this book’s Web site, www.pearsonhighered.com/cs-resources.

Wireshark Lab: Exploring UDP

In this short lab, you’ll do a packet capture and analysis of your favorite application
that uses UDP (for example, DNS or a multimedia application such as Skype). As we
learned in Section 3.3, UDP is a simple, no-frills transport protocol. In this lab, you’ll
investigate the header fields in the UDP segment as well as the checksum calculation.

As is the case with all Wireshark labs, the full description of this lab is available
at this book’s Web site, www.pearsonhighered.com/cs-resources.

AN INTERVIEW WITH...

Van Jacobson

Van Jacobson works at Google and was previously a Research
Fellow at PARC. Prior to that, he was cofounder and Chief Scientist
of Packet Design. Before that, he was Chief Scientist at Cisco.
Before joining Cisco, he was head of the Network Research
Group af Lawrence Berkeley National Laboratory and taught at UC
Berkeley and Stanford. Van received the ACM SIGCOMM Award

in 2001 for outstanding lifetime contribution to the field of commu-

nication networks and the IEEE Kobayashi Award in 2002 for “con-
fributing to the understanding of network congestion and developing
congestion control mechanisms that enabled the successful scaling
of the Internet”. He was elected fo the U.S. National Academy of
Engineering in 2004.

Please describe one or two of the most exciting projects you have worked on during your
career. What were the biggest challenges?

School teaches us lots of ways to find answers. In every interesting problem I’ve worked
on, the challenge has been finding the right question. When Mike Karels and I started look-
ing at TCP congestion, we spent months staring at protocol and packet traces asking “Why
is it failing?”. One day in Mike’s office, one of us said “The reason I can’t figure out why
it fails is because I don’t understand how it ever worked to begin with.” That turned out to
be the right question and it forced us to figure out the “ack clocking” that makes TCP work.
After that, the rest was easy.

More generally, where do you see the future of networking and the Internet?

For most people, the Web is the Internet. Networking geeks smile politely since we know
the Web is an application running over the Internet but what if they’re right? The Internet

is about enabling conversations between pairs of hosts. The Web is about distributed infor-
mation production and consumption. “Information propagation” is a very general view of
communication of which “pairwise conversation” is a tiny subset. We need to move into the
larger tent. Networking today deals with broadcast media (radios, PONs, etc.) by pretending
it’s a point-to-point wire. That’s massively inefficient. Terabits-per-second of data are being
exchanged all over the World via thumb drives or smart phones but we don’t know how to
treat that as “networking”. ISPs are busily setting up caches and CDNss to scalably distribute
video and audio. Caching is a necessary part of the solution but there’s no part of today’s
networking—from Information, Queuing or Traffic Theory down to the Internet protocol

Courtesy of Van Jacobson

301

specs—that tells us how to engineer and deploy it. I think and hope that over the next few
years, networking will evolve to embrace the much larger vision of communication that
underlies the Web.

What people inspired you professionally?

When I was in grad school, Richard Feynman visited and gave a colloquium. He talked
about a piece of Quantum theory that I’d been struggling with all semester and his explana-
tion was so simple and lucid that what had been incomprehensible gibberish to me became
obvious and inevitable. That ability to see and convey the simplicity that underlies our
complex world seems to me a rare and wonderful gift.

What are your recommendations for students who want careers in computer science and
networking?

It’s a wonderful field—computers and networking have probably had more impact on society
than any invention since the book. Networking is fundamentally about connecting stuff, and
studying it helps you make intellectual connections: Ant foraging & Bee dances demonstrate
protocol design better than RFCs, traffic jams or people leaving a packed stadium are the
essence of congestion, and students finding flights back to school in a post-Thanksgiving
blizzard are the core of dynamic routing. If you’re interested in lots of stuff and want to
have an impact, it’s hard to imagine a better field.

302

CHAPTER

The Network
Layer: Data
Plane

We learned in the previous chapter that the transport layer provides various forms
of process-to-process communication by relying on the network layer’s host-to-host
communication service. We also learned that the transport layer does so without any
knowledge about how the network layer actually implements this service. So perhaps
you’re now wondering, what’s under the hood of the host-to-host communication
service, what makes it tick?

In this chapter and the next, we’ll learn exactly how the network layer can pro-
vide its host-to-host communication service. We’ll see that unlike the transport and
application layers, there is a piece of the network layer in each and every host and
router in the network. Because of this, network-layer protocols are among the most
challenging (and therefore among the most interesting!) in the protocol stack.

Since the network layer is arguably the most complex layer in the protocol
stack, we’ll have a lot of ground to cover here. Indeed, there is so much to cover
that we cover the network layer in two chapters. We’ll see that the network layer
can be decomposed into two interacting parts, the data plane and the control plane.
In Chapter 4, we’ll first cover the data plane functions of the network layer—the
per-router functions in the network layer that determine how a datagram (that is, a
network-layer packet) arriving on one of a router’s input links is forwarded to one
of that router’s output links. We’ll cover both traditional IP forwarding (where for-
warding is based on a datagram’s destination address) and generalized forwarding
(where forwarding and other functions may be performed using values in several
different fields in the datagram’s header). We’ll study the IPv4 and IPv6 protocols
and addressing in detail. In Chapter 5, we’ll cover the control plane functions of
the network layer—the network-wide logic that controls how a datagram is routed

303

304

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

among routers along an end-to-end path from the source host to the destination host.
We’ll cover routing algorithms, as well as routing protocols, such as OSPF and BGP,
that are in widespread use in today’s Internet. Traditionally, these control-plane rout-
ing protocols and data-plane forwarding functions have been implemented together,
monolithically, within a router. Software-defined networking (SDN) explicitly sepa-
rates the data plane and control plane by implementing these control plane functions
as a separate service, typically in a remote “controller.” We’ll also cover SDN con-
trollers in Chapter 5.

This distinction between data-plane and control-plane functions in the network
layer is an important concept to keep in mind as you learn about the network layer—
it will help structure your thinking about the network layer and reflects a modern
view of the network layer’s role in computer networking.

4.1 Overview of Network Layer

Figure 4.1 shows a simple network with two hosts, H1 and H2, and several routers on
the path between H1 and H2. Let’s suppose that H1 is sending information to H2, and
consider the role of the network layer in these hosts and in the intervening routers. The
network layer in H1 takes segments from the transport layer in H1, encapsulates each
segment into a datagram, and then sends the datagrams to its nearby router, R1. At the
receiving host, H2, the network layer receives the datagrams from its nearby router
R2, extracts the transport-layer segments, and delivers the segments up to the transport
layer at H2. The primary data-plane role of each router is to forward datagrams from
its input links to its output links; the primary role of the network control plane is to
coordinate these local, per-router forwarding actions so that datagrams are ultimately
transferred end-to-end, along paths of routers between source and destination hosts.
Note that the routers in Figure 4.1 are shown with a truncated protocol stack, that is,
with no upper layers above the network layer, because routers do not run application-
and transport-layer protocols such as those we examined in Chapters 2 and 3.

4.1.1 Forwarding and Routing: The Data and
Control Planes

The primary role of the network layer is deceptively simple—to move packets from
a sending host to a receiving host. To do so, two important network-layer functions
can be identified:

* Forwarding. When a packet arrives at a router’s input link, the router must move
the packet to the appropriate output link. For example, a packet arriving from
Host H1 to Router R1 in Figure 4.1 must be forwarded to the next router on
a path to H2. As we will see, forwarding is but one function (albeit the most

4.1

OVERVIEW OF NETWORK LAYER

Figure 4.1 + The network layer

Enterprise Network

EJ

ALY ‘|

Application
Transport
Network
Link Network
Physical @5 Link
End System H1 @E @ A Physical '
=l
= &=
Router R1 = Network ¢ Network
Network Link Link Router R2
Link Physical ¢ Physical Network
Physical Link
> >< Physical

Application

Transport

Network

Link

Physical

End System H2

305

306

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

common and important one!) implemented in the data plane. In the more general
case, which we’ll cover in Section 4.4, a packet might also be blocked from exit-
ing a router (for example, if the packet originated at a known malicious sending
host, or if the packet were destined to a forbidden destination host), or might be
duplicated and sent over multiple outgoing links.

* Routing. The network layer must determine the route or path taken by packets as
they flow from a sender to a receiver. The algorithms that calculate these paths
are referred to as routing algorithms. A routing algorithm would determine, for
example, the path along which packets flow from H1 to H2 in Figure 4.1. Routing
is implemented in the control plane of the network layer.

The terms forwarding and routing are often used interchangeably by authors dis-
cussing the network layer. We’ll use these terms much more precisely in this book.
Forwarding refers to the router-local action of transferring a packet from an input
link interface to the appropriate output link interface. Forwarding takes place at very
short timescales (typically a few nanoseconds), and thus is typically implemented in
hardware. Routing refers to the network-wide process that determines the end-to-end
paths that packets take from source to destination. Routing takes place on much longer
timescales (typically seconds), and as we will see is often implemented in software.
Using our driving analogy, consider the trip from Pennsylvania to Florida undertaken
by our traveler back in Section 1.3.1. During this trip, our driver passes through many
interchanges en route to Florida. We can think of forwarding as the process of getting
through a single interchange: A car enters the interchange from one road and deter-
mines which road it should take to leave the interchange. We can think of routing as
the process of planning the trip from Pennsylvania to Florida: Before embarking on
the trip, the driver has consulted a map and chosen one of many paths possible, with
each path consisting of a series of road segments connected at interchanges.

A key element in every network router is its forwarding table. A router forwards
a packet by examining the value of one or more fields in the arriving packet’s header,
and then using these header values to index into its forwarding table. The value stored
in the forwarding table entry for those values indicates the outgoing link interface at
that router to which that packet is to be forwarded. For example, in Figure 4.2, a packet
with header field value of 0110 arrives to a router. The router indexes into its forward-
ing table and determines that the output link interface for this packet is interface 2.
The router then internally forwards the packet to interface 2. In Section 4.2, we’ll look
inside a router and examine the forwarding function in much greater detail. Forward-
ing is the key function performed by the data-plane functionality of the network layer.

Control Plane: The Traditional Approach

But now you are undoubtedly wondering how a router’s forwarding tables are con-
figured in the first place. This is a crucial issue, one that exposes the important inter-
play between forwarding (in data plane) and routing (in control plane). As shown

4.1 e« OVERVIEW OF NETWORK LAYER

Routing
Algorithm
Control plane

_— = = ==

Data plane
p Local forwarding
table

header | output
0100 3
0110 2
0111 2
1001 1 i

Values in arriving

packet's header

(0110 =p

Figure 4.2 ¢ Routing algorithms determine values in forward tables

in Figure 4.2, the routing algorithm determines the contents of the routers’ forward-
ing tables. In this example, a routing algorithm runs in each and every router and
both forwarding and routing functions are contained within a router. As we’ll see in
Sections 5.3 and 5.4, the routing algorithm function in one router communicates with
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages
containing routing information according to a routing protocol! We’ll cover routing
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can
be further illustrated by considering the hypothetical (and unrealistic, but technically
feasible) case of a network in which all forwarding tables are configured directly by
human network operators physically present at the routers. In this case, no routing
protocols would be required! Of course, the human operators would need to interact
with each other to ensure that the forwarding tables were configured in such a way
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have
both a forwarding and a routing function!

307

308 CHAPTER 4 e THE NETWORK LAYER: DATA PLANE

Control Plane: The SDN Approach

The approach to implementing routing functionality shown in Figure 4.2—with each
router having a routing component that communicates with the routing component of
other routers—has been the traditional approach adopted by routing vendors in their
products, at least until recently. Our observation that humans could manually configure
forwarding tables does suggest, however, that there may be other ways for control-
plane functionality to determine the contents of the data-plane forwarding tables.
Figure 4.3 shows an alternative approach in which a physically separate, remote
controller computes and distributes the forwarding tables to be used by each and
every router. Note that the data plane components of Figures 4.2 and 4.3 are identi-
cal. In Figure 4.3; however, control-plane routing functionality is separated from the

Remote Controller

A 7'

0
LR

Control plane

Data pl :: > < = = =2
ata plane =< =K =< == & =

Local forwarding
table

header | output
0100 3

2
0111 2
1

Values in arriving
packet’s header

0110} =

Figure 4.3 + A remote controller determines and distributes values in
forwarding tables

4.1 e« OVERVIEW OF NETWORK LAYER

physical router—the routing device performs forwarding only, while the remote con-
troller computes and distributes forwarding tables. The remote controller might be
implemented in a remote data center with high reliability and redundancy, and might
be managed by the ISP or some third party. How might the routers and the remote
controller communicate? By exchanging messages containing forwarding tables and
other pieces of routing information. The control-plane approach shown in Figure 4.3
is at the heart of software-defined networking (SDN), where the network is “soft-
ware-defined” because the controller that computes forwarding tables and interacts
with routers is implemented in software. Increasingly, these software implementa-
tions are also open, that is, similar to Linux OS code, the code is publically available,
allowing ISPs (and networking researchers and students!) to innovate and propose
changes to the software that controls network-layer functionality. We will cover the
SDN control plane in Section 5.5.

4.1.2 Network Service Model

Before delving into the network layer’s data plane, let’s wrap up our introduction
by taking the broader view and consider the different types of service that might be
offered by the network layer. When the transport layer at a sending host transmits a
packet into the network (that is, passes it down to the network layer at the sending
host), can the transport layer rely on the network layer to deliver the packet to the
destination? When multiple packets are sent, will they be delivered to the transport
layer in the receiving host in the order in which they were sent? Will the amount
of time between the sending of two sequential packet transmissions be the same
as the amount of time between their reception? Will the network provide any feed-
back about congestion in the network? The answers to these questions and others
are determined by the service model provided by the network layer. The network
service model defines the characteristics of end-to-end delivery of packets between
sending and receiving hosts.

Let’s now consider some possible services that the network layer could provide.
These services could include:

* Guaranteed delivery. This service guarantees that a packet sent by a source host
will eventually arrive at the destination host.

* Guaranteed delivery with bounded delay. This service not only guarantees
delivery of the packet, but delivery within a specified host-to-host delay bound
(for example, within 100 msec).

» In-order packet delivery. This service guarantees that packets arrive at the desti-
nation in the order that they were sent.

* Guaranteed minimal bandwidth. This network-layer service emulates the behav-
ior of a transmission link of a specified bit rate (for example, 1 Mbps) between
sending and receiving hosts. As long as the sending host transmits bits (as part

309

310

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

of packets) at a rate below the specified bit rate, then all packets are eventually
delivered to the destination host.

e Security. The network layer could encrypt all datagrams at the source and decrypt them
at the destination, thereby providing confidentiality to all transport-layer segments.

This is only a partial list of services that a network layer could provide—there are
countless variations possible.

The Internet’s network layer provides a single service, known as best-effort
service. With best-effort service, packets are neither guaranteed to be received in the
order in which they were sent, nor is their eventual delivery even guaranteed. There
is no guarantee on the end-to-end delay nor is there a minimal bandwidth guaran-
tee. It might appear that best-effort service is a euphemism for no service at all—a
network that delivered no packets to the destination would satisfy the definition of
best-effort delivery service! Other network architectures have defined and imple-
mented service models that go beyond the Internet’s best-effort service. For example,
the ATM network architecture [Black 1995] provides for guaranteed in-order delay,
bounded delay, and guaranteed minimal bandwidth. There have also been proposed
service model extensions to the Internet architecture; for example, the Intserv archi-
tecture [RFC 1633] aims to provide end-end delay guarantees and congestion-free
communication. Interestingly, in spite of these well-developed alternatives, the
Internet’s basic best-effort service model combined with adequate bandwidth provi-
sioning and bandwidth-adaptive application-level protocols such as the DASH pro-
tocol we encountered in Section 2.6.2 have arguably proven to be more than “good
enough” to enable an amazing range of applications, including streaming video ser-
vices such as Netflix and video-over-IP, real-time conferencing applications such as
Skype and Facetime.

An Overview of Chapter 4

Having now provided an overview of the network layer, we’ll cover the data-plane
component of the network layer in the following sections in this chapter. In Section 4.2,
we’ll dive down into the internal hardware operations of a router, including input
and output packet processing, the router’s internal switching mechanism, and packet
queueing and scheduling. In Section 4.3, we’ll take a look at traditional IP forwarding,
in which packets are forwarded to output ports based on their destination IP addresses.
We’ll encounter IP addressing, the celebrated IPv4 and IPv6 protocols and more. In
Section 4.4, we’ll cover more generalized forwarding, where packets may be for-
warded to output ports based on a large number of header values (i.e., not only based
on destination IP address). Packets may be blocked or duplicated at the router, or
may have certain header field values rewritten—all under software control. This more
generalized form of packet forwarding is a key component of a modern network data
plane, including the data plane in software-defined networks (SDN). In Section 4.5,
we’ll learn about “middleboxes” that can perform functions in addition to forwarding.

4.2 o WHAT'S INSIDE A ROUTER?

We mention here in passing that the terms forwarding and switching are often
used interchangeably by computer-networking researchers and practitioners; we’ll
use both terms interchangeably in this textbook as well. While we’re on the topic
of terminology, it’s also worth mentioning two other terms that are often used inter-
changeably, but that we will use more carefully. We’ll reserve the term packet switch
to mean a general packet-switching device that transfers a packet from input link
interface to output link interface, according to values in a packet’s header fields.
Some packet switches, called link-layer switches (examined in Chapter 6), base
their forwarding decision on values in the fields of the link-layer frame; switches are
thus referred to as link-layer (layer 2) devices. Other packet switches, called routers,
base their forwarding decision on header field values in the network-layer datagram.
Routers are thus network-layer (layer 3) devices. (To fully appreciate this important
distinction, you might want to review Section 1.5.2, where we discuss network-layer
datagrams and link-layer frames and their relationship.) Since our focus in this chap-
ter is on the network layer, we’ll mostly use the term router in place of packet switch.

4.2 What’s Inside a Router?

Now that we’ve overviewed the data and control planes within the network layer, the
important distinction between forwarding and routing, and the services and functions of
the network layer, let’s turn our attention to its forwarding function—the actual transfer
of packets from a router’s incoming links to the appropriate outgoing links at that router.

A high-level view of a generic router architecture is shown in Figure 4.4. Four
router components can be identified:

______ Routing
) r processor
Routing, management I
control plane (software) : 1
______________________ Fe—— e e -
Forwarding :
data plane (hardware) |
|
Input port : J Output port
v
W~] b R R R J—N
T
|
: Switch
Input port I fabric Output port
v
o M R

Figure 4.4 + Router architecture

311

312

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

e Input ports. An input port performs several key functions. It performs the physi-
cal layer function of terminating an incoming physical link at a router; this is
shown in the leftmost box of an input port and the rightmost box of an output
port in Figure 4.4. An input port also performs link-layer functions needed to
interoperate with the link layer at the other side of the incoming link; this is
represented by the middle boxes in the input and output ports. Perhaps most cru-
cially, a lookup function is also performed at the input port; this will occur in the
rightmost box of the input port. It is here that the forwarding table is consulted
to determine the router output port to which an arriving packet will be forwarded
via the switching fabric. Control packets (for example, packets carrying routing
protocol information) are forwarded from an input port to the routing processor.
Note that the term “port” here—referring to the physical input and output router
interfaces—is distinctly different from the software ports associated with network
applications and sockets discussed in Chapters 2 and 3. In practice, the number of
ports supported by a router can range from a relatively small number in enterprise
routers, to hundreds of 10 Gbps ports in a router at an ISP’s edge, where the num-
ber of incoming lines tends to be the greatest. The Juniper MX2020, edge router,
for example, supports up to 800 100 Gbps Ethernet ports, with an overall router
system capacity of 800 Tbps [Juniper MX 2020 2020].

e Switching fabric. The switching fabric connects the router’s input ports to its
output ports. This switching fabric is completely contained within the router—a
network inside of a network router!

* Qutput ports. An output port stores packets received from the switching fabric
and transmits these packets on the outgoing link by performing the necessary
link-layer and physical-layer functions. When a link is bidirectional (that is, car-
ries traffic in both directions), an output port will typically be paired with the
input port for that link on the same line card.

* Routing processor. The routing processor performs control-plane functions. In tra-
ditional routers, it executes the routing protocols (which we’ll study in Sections 5.3
and 5.4), maintains routing tables and attached link state information, and com-
putes the forwarding table for the router. In SDN routers, the routing processor is
responsible for communicating with the remote controller in order to (among other
activities) receive forwarding table entries computed by the remote controller, and
install these entries in the router’s input ports. The routing processor also performs
the network management functions that we’ll study in Section 5.7.

A router’s input ports, output ports, and switching fabric are almost always
implemented in hardware, as shown in Figure 4.4. To appreciate why a hardware
implementation is needed, consider that with a 100 Gbps input link and a 64-byte
IP datagram, the input port has only 5.12 ns to process the datagram before another
datagram may arrive. If N ports are combined on a line card (as is often done in
practice), the datagram-processing pipeline must operate N times faster—far too

4.2 o WHAT'S INSIDE A ROUTER?

fast for software implementation. Forwarding hardware can be implemented either
using a router vendor’s own hardware designs, or constructed using purchased
merchant-silicon chips (for example, as sold by companies such as Intel and Broadcom).

While the data plane operates at the nanosecond time scale, a router’s control
functions—executing the routing protocols, responding to attached links that go up
or down, communicating with the remote controller (in the SDN case) and perform-
ing management functions—operate at the millisecond or second timescale. These
control plane functions are thus usually implemented in software and execute on the
routing processor (typically a traditional CPU).

Before delving into the details of router internals, let’s return to our analogy
from the beginning of this chapter, where packet forwarding was compared to cars
entering and leaving an interchange. Let’s suppose that the interchange is a rounda-
bout, and that as a car enters the roundabout, a bit of processing is required. Let’s
consider what information is required for this processing:

e Destination-based forwarding. Suppose the car stops at an entry station and indi-
cates its final destination (not at the local roundabout, but the ultimate destination
of its journey). An attendant at the entry station looks up the final destination,
determines the roundabout exit that leads to that final destination, and tells the
driver which roundabout exit to take.

* Generalized forwarding. The attendant could also determine the car’s exit ramp on
the basis of many other factors besides the destination. For example, the selected
exit ramp might depend on the car’s origin, for example the state that issued the
car’s license plate. Cars from a certain set of states might be directed to use one exit
ramp (that leads to the destination via a slow road), while cars from other states
might be directed to use a different exit ramp (that leads to the destination via super-
highway). The same decision might be made based on the model, make and year
of the car. Or a car not deemed roadworthy might be blocked and not be allowed to
pass through the roundabout. In the case of generalized forwarding, any number of
factors may contribute to the attendant’s choice of the exit ramp for a given car.

Once the car enters the roundabout (which may be filled with other cars entering
from other input roads and heading to other roundabout exits), it eventually leaves at
the prescribed roundabout exit ramp, where it may encounter other cars leaving the
roundabout at that exit.

We can easily recognize the principal router components in Figure 4.4 in this
analogy—the entry road and entry station correspond to the input port (with a lookup
function to determine to local outgoing port); the roundabout corresponds to the
switch fabric; and the roundabout exit road corresponds to the output port. With this
analogy, it’s instructive to consider where bottlenecks might occur. What happens if
cars arrive blazingly fast (for example, the roundabout is in Germany or Italy!) but
the station attendant is slow? How fast must the attendant work to ensure there’s no
backup on an entry road? Even with a blazingly fast attendant, what happens if cars

313

314

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

traverse the roundabout slowly—can backups still occur? And what happens if most
of the cars entering at all of the roundabout’s entrance ramps all want to leave the
roundabout at the same exit ramp—can backups occur at the exit ramp or elsewhere?
How should the roundabout operate if we want to assign priorities to different cars,
or block certain cars from entering the roundabout in the first place? These are all
analogous to critical questions faced by router and switch designers.

In the following subsections, we’ll look at router functions in more detail. [Turner
1988; McKeown 1997a; Partridge 1998; Iyer 2008; Serpanos 2011; Zilberman 2019]
provide a discussion of specific router architectures. For concreteness and simplicity,
we’ll initially assume in this section that forwarding decisions are based only on the
packet’s destination address, rather than on a generalized set of packet header fields. We
will cover the case of more generalized packet forwarding in Section 4.4.

4.2.1 Input Port Processing and Destination-Based Forwarding

A more detailed view of input processing is shown in Figure 4.5. As just discussed,
the input port’s line-termination function and link-layer processing implement the
physical and link layers for that individual input link. The lookup performed in the
input port is central to the router’s operation—it is here that the router uses the for-
warding table to look up the output port to which an arriving packet will be forwarded
via the switching fabric. The forwarding table is either computed and updated by the
routing processor (using a routing protocol to interact with the routing processors in
other network routers) or is received from a remote SDN controller. The forwarding
table is copied from the routing processor to the line cards over a separate bus (e.g.,
a PCI bus) indicated by the dashed line from the routing processor to the input line
cards in Figure 4.4. With such a shadow copy at each line card, forwarding decisions
can be made locally, at each input port, without invoking the centralized routing pro-
cessor on a per-packet basis and thus avoiding a centralized processing bottleneck.

Let’s now consider the “simplest” case that the output port to which an incoming
packet is to be switched is based on the packet’s destination address. In the case of
32-bit IP addresses, a brute-force implementation of the forwarding table would have
one entry for every possible destination address. Since there are more than 4 billion
possible addresses, this option is totally out of the question.

Data link Lookup, fowarding,
Line processing queuing Switch

termination (protocol, M fabric
decapsulation)

Figure 4.5 ¢+ Input port processing

4.2 o WHAT'S INSIDE A ROUTER?

As an example of how this issue of scale can be handled, let’s suppose that our
router has four links, numbered O through 3, and that packets are to be forwarded to
the link interfaces as follows:

Destination Address Range Link Interface

11001000 00010111 00010000 00000000
through 0
11001000 00010111 00010111 11111111

11001000 00010111 00011000 00000000
through 1
11001000 00010111 00011000 11111111

11001000 00010111 00011001 00000000
through 2
11001000 00010111 00011111 11111111

Otherwise 3

Clearly, for this example, it is not necessary to have 4 billion entries in the router’s
forwarding table. We could, for example, have the following forwarding table with
just four entries:

Prefix Link Interface

11001000 00010111 00010

11001000 00010111 00011000

11001000 00010111 00011
Otherwise

w N PO

With this style of forwarding table, the router matches a prefix of the packet’s des-
tination address with the entries in the table; if there’s a match, the router forwards
the packet to a link associated with the match. For example, suppose the packet’s
destination address is 11001000 00010111 00010110 10100001; because
the 21-bit prefix of this address matches the first entry in the table, the router forwards
the packet to link interface 0. If a prefix doesn’t match any of the first three entries,
then the router forwards the packet to the default interface 3. Although this sounds
simple enough, there’s a very important subtlety here. You may have noticed that it is
possible for a destination address to match more than one entry. For example, the first
24 bits of the address 11001000 00010111 00011000 10101010 match the
second entry in the table, and the first 21 bits of the address match the third entry in the
table. When there are multiple matches, the router uses the longest prefix matching
rule; that is, it finds the longest matching entry in the table and forwards the packet to
the link interface associated with the longest prefix match. We’ll see exactly why this

315

316

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

longest prefix-matching rule is used when we study Internet addressing in more detail
in Section 4.3.

Given the existence of a forwarding table, lookup is conceptually simple—
hardware logic just searches through the forwarding table looking for the longest
prefix match. But at Gigabit transmission rates, this lookup must be performed in
nanoseconds (recall our earlier example of a 10 Gbps link and a 64-byte IP data-
gram). Thus, not only must lookup be performed in hardware, but techniques beyond
a simple linear search through a large table are needed; surveys of fast lookup algo-
rithms can be found in [Gupta 2001, Ruiz-Sanchez 2001]. Special attention must
also be paid to memory access times, resulting in designs with embedded on-chip
DRAM and faster SRAM (used as a DRAM cache) memories. In practice, Ternary
Content Addressable Memories (TCAMs) are also often used for lookup [Yu 2004].
With a TCAM, a 32-bit IP address is presented to the memory, which returns the
content of the forwarding table entry for that address in essentially constant time.
The Cisco Catalyst 6500 and 7600 Series routers and switches can hold upwards of
a million TCAM forwarding table entries [Cisco TCAM 2014].

Once a packet’s output port has been determined via the lookup, the packet
can be sent into the switching fabric. In some designs, a packet may be temporarily
blocked from entering the switching fabric if packets from other input ports are cur-
rently using the fabric. A blocked packet will be queued at the input port and then
scheduled to cross the fabric at a later point in time. We’ll take a closer look at the
blocking, queuing, and scheduling of packets (at both input ports and output ports)
shortly. Although “lookup” is arguably the most important action in input port pro-
cessing, many other actions must be taken: (1) physical- and link-layer processing
must occur, as discussed previously; (2) the packet’s version number, checksum and
time-to-live field—all of which we’ll study in Section 4.3—must be checked and the
latter two fields rewritten; and (3) counters used for network management (such as
the number of IP datagrams received) must be updated.

Let’s close our discussion of input port processing by noting that the input port
steps of looking up a destination IP address (“match”) and then sending the packet
into the switching fabric to the specified output port (“action”) is a specific case of a
more general “match plus action” abstraction that is performed in many networked
devices, not just routers. In link-layer switches (covered in Chapter 6), link-layer
destination addresses are looked up and several actions may be taken in addition to
sending the frame into the switching fabric towards the output port. In firewalls (cov-
ered in Chapter 8)—devices that filter out selected incoming packets—an incoming
packet whose header matches a given criteria (e.g., a combination of source/destina-
tion IP addresses and transport-layer port numbers) may be dropped (action). In a
network address translator (NAT, covered in Section 4.3), an incoming packet whose
transport-layer port number matches a given value will have its port number rewrit-
ten before forwarding (action). Indeed, the “match plus action” abstraction [Bosshart
2013] is both powerful and prevalent in network devices today, and is central to the
notion of generalized forwarding that we’ll study in Section 4.4.

4.2 o WHAT'S INSIDE A ROUTER?

4.2.2 Switching

The switching fabric is at the very heart of a router, as it is through this fabric that
the packets are actually switched (that is, forwarded) from an input port to an output
port. Switching can be accomplished in a number of ways, as shown in Figure 4.6:

e Switching via memory. The simplest, earliest routers were traditional computers,
with switching between input and output ports being done under direct control of
the CPU (routing processor). Input and output ports functioned as traditional I/O
devices in a traditional operating system. An input port with an arriving packet
first signaled the routing processor via an interrupt. The packet was then copied
from the input port into processor memory. The routing processor then extracted
the destination address from the header, looked up the appropriate output port
in the forwarding table, and copied the packet to the output port’s buffers. In
this scenario, if the memory bandwidth is such that a maximum of B packets per
second can be written into, or read from, memory, then the overall forwarding
throughput (the total rate at which packets are transferred from input ports to out-
put ports) must be less than B/2. Note also that two packets cannot be forwarded

Memory Interconnection Network

A

317

X
—][J0— ==
Y B
i LULLI - — [][]
z C
—][JO— — [] [un]—

B

— [] |:| —> Memory
C

— [J[mi]—

Bus

z
— [Jun] g JCI—

Key:
] Input port []I output port

Figure 4.6 ¢ Three switching techniques

X

«— O[] [m]«
-<
e 1 Tluule

318

CHAPTER 4

THE NETWORK LAYER: DATA PLANE

at the same time, even if they have different destination ports, since only one
memory read/write can be done at a time over the shared system bus.

Some modern routers switch via memory. A major difference from early routers,
however, is that the lookup of the destination address and the storing of the packet
into the appropriate memory location are performed by processing on the input line
cards. In some ways, routers that switch via memory look very much like shared-
memory multiprocessors, with the processing on a line card switching (writing)
packets into the memory of the appropriate output port. Cisco’s Catalyst 8500
series switches [Cisco 8500 2020] internally switches packets via a shared memory.

Switching via a bus. In this approach, an input port transfers a packet directly to the
output port over a shared bus, without intervention by the routing processor. This is
typically done by having the input port pre-pend a switch-internal label (header) to
the packet indicating the local output port to which this packet is being transferred
and transmitting the packet onto the bus. All output ports receive the packet, but
only the port that matches the label will keep the packet. The label is then removed
at the output port, as this label is only used within the switch to cross the bus. If mul-
tiple packets arrive to the router at the same time, each at a different input port, all
but one must wait since only one packet can cross the bus at a time. Because every
packet must cross the single bus, the switching speed of the router is limited to the
bus speed; in our roundabout analogy, this is as if the roundabout could only contain
one car at a time. Nonetheless, switching via a bus is often sufficient for routers that
operate in small local area and enterprise networks. The Cisco 6500 router [Cisco
6500 2020] internally switches packets over a 32-Gbps-backplane bus.

Switching via an interconnection network. One way to overcome the bandwidth
limitation of a single, shared bus is to use a more sophisticated interconnection net-
work, such as those that have been used in the past to interconnect processors in a
multiprocessor computer architecture. A crossbar switch is an interconnection net-
work consisting of 2N buses that connect N input ports to N output ports, as shown
in Figure 4.6. Each vertical bus intersects each horizontal bus at a crosspoint,
which can be opened or closed at any time by the switch fabric controller (whose
logic is part of the switching fabric itself). When a packet arrives from port A and
needs to be forwarded to port Y, the switch controller closes the crosspoint at the
intersection of busses A and Y, and port A then sends the packet onto its bus, which
is picked up (only) by bus Y. Note that a packet from port B can be forwarded to
port X at the same time, since the A-to-Y and B-to-X packets use different input
and output busses. Thus, unlike the previous two switching approaches, cross-
bar switches are capable of forwarding multiple packets in parallel. A crossbar
switch is non-blocking—a packet being forwarded to an output port will not be
blocked from reaching that output port as long as no other packet is currently being
forwarded to that output port. However, if two packets from two different input
ports are destined to that same output port, then one will have to wait at the input,
since only one packet can be sent over any given bus at a time. Cisco 12000 series

4.2 o WHAT'S INSIDE A ROUTER?

switches [Cisco 12000 2020] use a crossbar switching network; the Cisco 7600
series can be configured to use either a bus or crossbar switch [Cisco 7600 2020].

More sophisticated interconnection networks use multiple stages of switching
elements to allow packets from different input ports to proceed towards the same
output port at the same time through the multi-stage switching fabric. See [Tobagi
1990] for a survey of switch architectures. The Cisco CRS employs a three-stage
non-blocking switching strategy. A router’s switching capacity can also be scaled
by running multiple switching fabrics in parallel. In this approach, input ports
and output ports are connected to N switching fabrics that operate in parallel. An
input port breaks a packet into K smaller chunks, and sends (“sprays’) the chunks
through K of these N switching fabrics to the selected output port, which reas-
sembles the K chunks back into the original packet.

4.2.3 Output Port Processing

Output port processing, shown in Figure 4.7, takes packets that have been stored
in the output port’s memory and transmits them over the output link. This includes
selecting (i.e., scheduling) and de-queueing packets for transmission, and perform-
ing the needed link-layer and physical-layer transmission functions.

4.2.4 Where Does Queuing Occur?

If we consider input and output port functionality and the configurations shown
in Figure 4.6, it’s clear that packet queues may form at both the input ports and the
output ports, just as we identified cases where cars may wait at the inputs and out-
puts of the traffic intersection in our roundabout analogy. The location and extent of
queueing (either at the input port queues or the output port queues) will depend on
the traffic load, the relative speed of the switching fabric, and the line speed. Let’s
now consider these queues in a bit more detail, since as these queues grow large, the
router’s memory can eventually be exhausted and packet loss will occur when no
memory is available to store arriving packets. Recall that in our earlier discussions,
we said that packets were “lost within the network™ or “dropped at a router.” It is here,
at these queues within a router, where such packets are actually dropped and lost.

Queuing (buffer Data link
Switch management) processing Line

fabric M (protocol, termination
encapsulation)

Figure 4.7 + Output port processing

319

320

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

Suppose that the input and output line speeds (transmission rates) all have an
identical transmission rate of R, . packets per second, and that there are N input ports
and N output ports. To further simplify the discussion, let’s assume that all packets
have the same fixed length, and that packets arrive to input ports in a synchronous
manner. That is, the time to send a packet on any link is equal to the time to receive a
packet on any link, and during such an interval of time, either zero or one packets can
arrive on an input link. Define the switching fabric transfer rate R, ., as the rate at
which packets can be moved from input port to output port. If R . . is N times faster
than R, then only negligible queuing will occur at the input ports. This is because
even in the worst case, where all N input lines are receiving packets, and all packets
are to be forwarded to the same output port, each batch of N packets (one packet per
input port) can be cleared through the switch fabric before the next batch arrives.

Input Queueing

But what happens if the switch fabric is not fast enough (relative to the input line
speeds) to transfer all arriving packets through the fabric without delay? In this case,
packet queuing can also occur at the input ports, as packets must join input port
queues to wait their turn to be transferred through the switching fabric to the output
port. To illustrate an important consequence of this queuing, consider a crossbar
switching fabric and suppose that (1) all link speeds are identical, (2) that one packet
can be transferred from any one input port to a given output port in the same amount
of time it takes for a packet to be received on an input link, and (3) packets are moved
from a given input queue to their desired output queue in an FCFS manner. Multiple
packets can be transferred in parallel, as long as their output ports are different. How-
ever, if two packets at the front of two input queues are destined for the same output
queue, then one of the packets will be blocked and must wait at the input queue—the
switching fabric can transfer only one packet to a given output port at a time.

Figure 4.8 shows an example in which two packets (darkly shaded) at the front
of their input queues are destined for the same upper-right output port. Suppose that
the switch fabric chooses to transfer the packet from the front of the upper-left queue.
In this case, the darkly shaded packet in the lower-left queue must wait. But not only
must this darkly shaded packet wait, so too must the lightly shaded packet that is
queued behind that packet in the lower-left queue, even though there is no conten-
tion for the middle-right output port (the destination for the lightly shaded packet).
This phenomenon is known as head-of-the-line (HOL) blocking in an input-queued
switch—a queued packet in an input queue must wait for transfer through the fabric
(even though its output port is free) because it is blocked by another packet at the
head of the line. [Karol 1987] shows that due to HOL blocking, the input queue will
grow to unbounded length (informally, this is equivalent to saying that significant
packet loss will occur) under certain assumptions as soon as the packet arrival rate
on the input links reaches only 58 percent of their capacity. A number of solutions to
HOL blocking are discussed in [McKeown 1997].

4.2 o WHAT'S INSIDE A ROUTER?

Output port contention at time t—
one dark packet can be transferred

—CJ] - L JC)—

Switch
fabric

B B
™ B

Light blue packet experiences HOL blocking

—IL LN LN JO—
—CL JL 5w Al 00—
—IL_J[W] g

Key:
‘ destined for upper output \ destined for middle output destined for lower output
port port port

Figure 4.8 + HOL blocking at and input-queued switch

Output Queueing

Let’s next consider whether queueing can occur at a switch’s output ports. Suppose
that R, , is again N times faster than R, and that packets arriving at each of the N
input ports are destined to the same output port. In this case, in the time it takes to send a
single packet onto the outgoing link, N new packets will arrive at this output port
(one from each of the N input ports). Since the output port can transmit only a single
packet in a unit of time (the packet transmission time), the N arriving packets will
have to queue (wait) for transmission over the outgoing link. Then N more packets
can possibly arrive in the time it takes to transmit just one of the N packets that had
just previously been queued. And so on. Thus, packet queues can form at the output
ports even when the switching fabric is N times faster than the port line speeds.
Eventually, the number of queued packets can grow large enough to exhaust avail-
able memory at the output port.

321

322

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

Output port contention at time t

AT -) JO)—
— [LN -) —
A G] —

One packet time later

—IL_JLNTF W]
—OJL JL] %
—IL_JLNTF

Figure 4.9 ¢ Output port queueing

When there is not enough memory to buffer an incoming packet, a decision must
be made to either drop the arriving packet (a policy known as drop-tail) or remove
one or more already-queued packets to make room for the newly arrived packet. In
some cases, it may be advantageous to drop (or mark the header of) a packet before
the buffer is full in order to provide a congestion signal to the sender. This mark-
ing could be done using the Explicit Congestion Notification bits that we studied in
Section 3.7.2. A number of proactive packet-dropping and -marking policies (which
collectively have become known as active queue management (AQM) algorithms)
have been proposed and analyzed [Labrador 1999, Hollot 2002]. One of the most
widely studied and implemented AQM algorithms is the Random Early Detection
(RED) algorithm [Christiansen 2001]. More recent AQM policies include PIE (the
Proportional Integral controller Enhanced [RFC 8033]), and CoDel [Nichols 2012].

Output port queuing is illustrated in Figure 4.9. At time ¢, a packet has arrived
at each of the incoming input ports, each destined for the uppermost outgoing port.
Assuming identical line speeds and a switch operating at three times the line speed, one
time unit later (that is, in the time needed to receive or send a packet), all three original
packets have been transferred to the outgoing port and are queued awaiting transmis-
sion. In the next time unit, one of these three packets will have been transmitted over the
outgoing link. In our example, two new packets have arrived at the incoming side of the

4.2 o WHAT'S INSIDE A ROUTER?

switch; one of these packets is destined for this uppermost output port. A consequence
of such queuing is that a packet scheduler at the output port must choose one packet,
among those queued, for transmission—a topic we’ll cover in the following section.

How Much Buffering Is “Enough?”

Our study above has shown how a packet queue forms when bursts of packets arrive
at arouter’s input or (more likely) output port, and the packet arrival rate temporarily
exceeds the rate at which packets can be forwarded. The longer the amount of time
that this mismatch persists, the longer the queue will grow, until eventually a port’s
buffers become full and packets are dropped. One natural question is how much
buffering should be provisioned at a port. It turns out the answer to this question is
much more complicated than one might imagine and can teach us quite a bit about
the subtle interaction among congestion-aware senders at the network’s edge and the
network core!

For many years, the rule of thumb [RFC 3439] for buffer sizing was that the
amount of buffering (B) should be equal to an average round-trip time (RTT, say
250 msec) times the link capacity (C). Thus, a 10-Gbps link with an RTT of 250 msec
would need an amount of buffering equal to B = RTT - C = 2.5 Gbits of buff-
ers. This result was based on an analysis of the queueing dynamics of a relatively
small number of TCP flows [Villamizar 1994]. More recent theoretical and experi-
mental efforts [Appenzeller 2004], however, suggest that when a large number of
independent TCP flows (N) pass through a link, the amount of buffering needed is
B = RTT-C/ V/N. In core networks, where a large number of TCP flows typi-
cally pass through large backbone router links, the value of N can be large, with
the decrease in needed buffer size becoming quite significant. [Appenzeller 2004;
Wischik 2005; Beheshti 2008] provide very readable discussions of the buffer-sizing
problem from a theoretical, implementation, and operational standpoint.

It’s temping to think that more buffering must be better—larger buffers would
allow a router to absorb larger fluctuations in the packet arrival rate, thereby decreas-
ing the router’s packet loss rate. But larger buffers also mean potentially longer
queueing delays. For gamers and for interactive teleconferencing users, tens of mil-
liseconds count. Increasing the amount of per-hop buffer by a factor of 10 to decrease
packet loss could increase the end-end delay by a factor of 10! Increased RTTs also
make TCP senders less responsive and slower to respond to incipient congestion and/
or packet loss. These delay-based considerations show that buffering is a double-
edged sword—buffering can be used to absorb short-term statistical fluctuations in
traffic but can also lead to increased delay and the attendant concerns. Buffering is
a bit like salt—just the right amount of salt makes food better, but too much makes
it inedible!

In the discussion above, we’ve implicitly assumed that many independent send-
ers are competing for bandwidth and buffers at a congested link. While this is prob-
ably an excellent assumption for routers within the network core, at the network edge

323

324 CHAPTER 4 e THE NETWORK LAYER: DATA PLANE

25 -
E& 250 ms RTT <
S
u — 2
=
B £
t—@— Internet — @E%% %
Home Network == S
o
== 5
— WA= .
N?” — 0 T >
200
Time (ms)
a. b.

Figure 4.10 ¢ Bufferbloat: persistent queues

this may not hold. Figure 4.10(a) shows a home router sending TCP segments to a
remote game server. Following [Nichols 2012], suppose that it takes 20 ms to trans-
mit a packet (containing a gamer’s TCP segment), that there are negligible queueing
delays elsewhere on the path to the game server, and that the RTT is 200 ms. As
shown in Figure 4.10(b), suppose that at time # = 0, a burst of 25 packets arrives to
the queue. One of these queued packets is then transmitted once every 20 ms, so that
at + = 200 msec, the first ACK arrives, just as the 21st packet is being transmitted.
This ACK arrival causes the TCP sender to send another packet, which is queued at
the outgoing link of the home router. At = 220, the next ACK arrives, and another
TCP segment is released by the gamer and is queued, as the 22nd packet is being
transmitted, and so on. You should convince yourself that in this scenario, ACK
clocking results in a new packet arriving at the queue every time a queued packet
is sent, resulting in queue size at the home router’s outgoing link that is always five
packets! That is, the end-end-pipe is full (delivering packets to the destination at the
path bottleneck rate of one packet every 20 ms), but the amount of queueing delay is
constant and persistent. As a result, the gamer is unhappy with the delay, and the par-
ent (who even knows wireshark!) is confused because he or she doesn’t understand
why delays are persistent and excessively long, even when there is no other traffic
on the home network.

This scenario above of long delay due to persistent buffering is known as buff-
erbloat and illustrates that not only is throughput important, but also minimal delay
is important as well [Kleinrock 2018], and that the interaction among senders at the
network edge and queues within the network can indeed be complex and subtle. The
DOCSIS 3.1 standard for cable networks that we will study in Chapter 6, recently
added a specific AQM mechanism [RFC 8033, RFC 8034] to combat bufferbloat,
while preserving bulk throughput performance.

4.2 o WHAT'S INSIDE A ROUTER?

4.2.5 Packet Scheduling

Let’s now return to the question of determining the order in which queued packets are
transmitted over an outgoing link. Since you yourself have undoubtedly had to wait in
long lines on many occasions and observed how waiting customers are served, you're
no doubt familiar with many of the queueing disciplines commonly used in routers.
There is first-come-first-served (FCFS, also known as first-in-first-out, FIFO). The
British are famous for patient and orderly FCES queueing at bus stops and in the mar-
ketplace (““Oh, are you queueing?”). Other countries operate on a priority basis, with
one class of waiting customers given priority service over other waiting customers.
There is also round-robin queueing, where customers are again divided into classes
(as in priority queueing) but each class of customer is given service in turn.

First-in-First-Out (FIFO)

Figure 4.11 shows the queuing model abstraction for the FIFO link-scheduling dis-
cipline. Packets arriving at the link output queue wait for transmission if the link is
currently busy transmitting another packet. If there is not sufficient buffering space
to hold the arriving packet, the queue’s packet-discarding policy then determines
whether the packet will be dropped (lost) or whether other packets will be removed
from the queue to make space for the arriving packet, as discussed above. In our
discussion below, we’ll ignore packet discard. When a packet is completely transmit-
ted over the outgoing link (that is, receives service) it is removed from the queue.
The FIFO (also known as first-come-first-served, or FCES) scheduling discipline
selects packets for link transmission in the same order in which they arrived
at the output link queue. We’re all familiar with FIFO queuing from service centers,
where arriving customers join the back of the single waiting line, remain in order, and
are then served when they reach the front of the line. Figure 4.12 shows the FIFO queue
in operation. Packet arrivals are indicated by numbered arrows above the upper time-
line, with the number indicating the order in which the packet arrived. Individual packet
departures are shown below the lower timeline. The time that a packet spends in service
(being transmitted) is indicated by the shaded rectangle between the two timelines. In

Queue
(waiting area)

. Departures
Arrivals P

Link
(server)

Figure 4.11 ¢ FIFO queueing abstraction

325

326 CHAPTER 4 e THE NETWORK LAYER: DATA PLANE

Arrivalsl ll o l o 1 o

I } } } } } } } } } } f } } +» Time
e Tz 3 & [5
in service
} } } } } } } } } } } } } } } } +» Time
t=0 t=2 t=4 t=6 t=8 t=10 t=12 t=14
Departures

tr = (3 (s s
Figure 4.12 ¢ The FIFO queue in operation

our examples here, let’s assume that each packet takes three units of time to be transmit-
ted. Under the FIFO discipline, packets leave in the same order in which they arrived.
Note that after the departure of packet 4, the link remains idle (since packets 1 through
4 have been transmitted and removed from the queue) until the arrival of packet 5.

Priority Queuing

Under priority queuing, packets arriving at the output link are classified into prior-
ity classes upon arrival at the queue, as shown in Figure 4.13. In practice, a network
operator may configure a queue so that packets carrying network management infor-
mation (for example, as indicated by the source or destination TCP/UDP port num-
ber) receive priority over user traffic; additionally, real-time voice-over-IP packets
might receive priority over non-real-time traffic such e-mail packets. Each priority
class typically has its own queue. When choosing a packet to transmit, the priority

High-priority queue
(waiting area)

Arrivals Departures
——»

Classify Link

Low-priority queue (server)
(waiting area)

Figure 4.13 ¢ The priority queueing model

4.2 o WHAT'S INSIDE A ROUTER? 327

R 2 [a (s

Arrivalslll:l: - l - 1

I T T T T T T T T T T T T T +—» Time
gy 2 s | 5
in service MM UNNEENES 2 5
} } } } } } } } } } } } } } } } +» Time
t=0 t=2 t=4 t=6 t=8 t=10 t=12 t=14
Departures

| | | |

!
m = 7 s

Figure 4.14 + The priority queue in operation

queuing discipline will transmit a packet from the highest priority class that has a
nonempty queue (that is, has packets waiting for transmission). The choice among
packets in the same priority class is typically done in a FIFO manner.

Figure 4.14 illustrates the operation of a priority queue with two priority classes.
Packets 1, 3, and 4 belong to the high-priority class, and packets 2 and 5 belong to
the low-priority class. Packet 1 arrives and, finding the link idle, begins transmission.
During the transmission of packet 1, packets 2 and 3 arrive and are queued in the low-
and high-priority queues, respectively. After the transmission of packet 1, packet 3
(a high-priority packet) is selected for transmission over packet 2 (which, even
though it arrived earlier, is a low-priority packet). At the end of the transmission of
packet 3, packet 2 then begins transmission. Packet 4 (a high-priority packet) arrives
during the transmission of packet 2 (a low-priority packet). Under a non-preemptive
priority queuing discipline, the transmission of a packet is not interrupted once it

PRINCIPLES IN PRACTICE

NET NEUTRALITY

We've seen that packet scheduling mechanisms (e.g., priority traffic scheduling disciplines
such a strict priority, and WFQ) can be used to provide different levels of service to differ-
ent “classes” of traffic. The definition of what precisely constitutes a “class” of traffic is up
to an ISP to decide, but could be potentially based on any set of fields in the IP datagram
header. For example, the port field in the IP datagram header could be used to classify
datagrams according to the “well-know service” associated with that port: SNMP network
management datagram (port 161) might be assigned to a higher priority class than an
IMAP e-mail protocol (ports 143, or 993) datagram and therefore receive better service.
An ISP could also potentially use a datagram’s source IP address to provide priority to
datagrams being sent by certain companies (who have presumably paid the ISP for this
privilege) over datagrams being sent from other companies (who have not paid); an ISP

328

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

could even block traffic with a source IP address in a given company, or country. There
are many mechanisms that would allow an ISP to provide different levels of service to dif-
ferent classes of traffic. The real question is what policies and laws determine what an ISP
can actually do. Of course, these laws will vary by country; see [Smithsonian 2017] for a
brief survey. Here, we'll briefly consider US policy on what has come to be known as “net
neutrality.”

The term “net neutrality” doesn’t have a precise decision, but the March 2015
Order on Protecting and Promoting an Open Internet [FCC 2015] by the US Federal
Communications Commission provides three “clear, bright line” rules that are now often
associated with net neutrality:

* “No Blocking. . . . A person engaged in the provision of broadband Internet access
service, . . . shall not block lawful content, applications, services, or non-harmful
devices, subject to reasonable network management.”

* “No Throttling. . . . A person engaged in the provision of broadband Internet
access service, . . . shall not impair or degrade lawful Internet traffic on the basis of
Internet content, application, or service, or use of a non-harmful device, subject to rea-
sonable network management.”

* “No Paid Prioritization. . . . A person engaged in the provision of broadband
Internet access service, . . . shall not engage in paid prioritization. “Paid prioritization”
refers to the management of a broadband provider’s network to directly or indirectly
favor some traffic over other traffic, including through use of techniques such as traffic
shaping, prioritization, resource reservation, or other forms of preferential traffic man-
agement, . . ."

Quite interestingly, before the Order, ISP behaviors violating the first two of these rules
had been observed [Faulhaber 2012]. In 2005, an ISP in North Carolina agreed to stop
its practice of blocking its customers from using Vonage, a voice-over-IP service that com-
peted with its own telephone service. In 2007, Comcast was judged to be interfering with
BitTorrent P2P traffic by internally creating and sending TCP RST packets to BifTorrent send-
ers and receivers, which caused them to close their BitTorrent connection [FCC 2008].

Both sides of the net neutrality debate have been argued strenuously, mostly focused
on the extent to which net neutrality provides benefits to customers, while at the same
time promoting innovation. See [Peha 2006, Faulhaber 2012, Economides 2017,
Madhyastha 2017].

The 2015 FCC Order on Protecting and Promoting an Open Internet, which banned
ISPs from blocking, throttling, or providing paid prioritizing, was superseded by the 2017
FCC Restoring Internet Freedom Order, [FCC 2017] which rolled back these prohibitions
and focused instead on ISP transparency. With so much interest and so many changes,
it's probably safe to say we aren't close to having seen the final chapter written on net
neutrality in the United States, or elsewhere.

4.2 o WHAT'S INSIDE A ROUTER?

has begun. In this case, packet 4 queues for transmission and begins being transmit-
ted after the transmission of packet 2 is completed.

Round Robin and Weighted Fair Queuing (WFQ)

Under the round robin queuing discipline, packets are sorted into classes as with
priority queuing. However, rather than there being a strict service priority among
classes, a round robin scheduler alternates service among the classes. In the simplest
form of round robin scheduling, a class 1 packet is transmitted, followed by a class
2 packet, followed by a class 1 packet, followed by a class 2 packet, and so on. A
so-called work-conserving queuing discipline will never allow the link to remain
idle whenever there are packets (of any class) queued for transmission. A work-
conserving round robin discipline that looks for a packet of a given class but finds
none will immediately check the next class in the round robin sequence.

Figure 4.15 illustrates the operation of a two-class round robin queue. In this
example, packets 1, 2, and 4 belong to class 1, and packets 3 and 5 belong to the
second class. Packet 1 begins transmission immediately upon arrival at the output
queue. Packets 2 and 3 arrive during the transmission of packet 1 and thus queue for
transmission. After the transmission of packet 1, the link scheduler looks for a class 2
packet and thus transmits packet 3. After the transmission of packet 3, the scheduler
looks for a class 1 packet and thus transmits packet 2. After the transmission of packet 2,
packet 4 is the only queued packet; it is thus transmitted immediately after packet 2.

A generalized form of round robin queuing that has been widely implemented
in routers is the so-called weighted fair queuing (WFQ) discipline [Demers 1990;
Parekh 1993. WEFQ is illustrated in Figure 4.16. Here, arriving packets are classified
and queued in the appropriate per-class waiting area. As in round robin scheduling,
a WFQ scheduler will serve classes in a circular manner—first serving class 1, then
serving class 2, then serving class 3, and then (assuming there are three classes)
repeating the service pattern. WFQ is also a work-conserving queuing discipline and

R B [a 5

Arrivals 1 | l =l e ,l T 1 ‘

+—» Time

Packet
in service UNER 3 R | 5

| | |

-l IlT (| [a

Figure 4.15 ¢ The two-class robin queue in operation

t=0 t=2 t=4 t=6 t=8

Departures

t=10 t=12 t=14

+—» Time

329

330

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

v

Classify

Arrivals Departures
e w, —
o > E——
— R

w.
2 U Link

v

Figure 4.16 + Weighted fair queueing

thus will immediately move on to the next class in the service sequence when it finds
an empty class queue.

WEFQ differs from round robin in that each class may receive a differential amount
of service in any interval of time. Specifically, each class, i, is assigned a weight, w..
Under WFQ, during any interval of time during which there are class i packets to send,
class i will then be guaranteed to receive a fraction of service equal to w, /(X w;), where
the sum in the denominator is taken over all classes that also have packets queued for
transmission. In the worst case, even if all classes have queued packets, class i will still
be guaranteed to receive a fraction w, / (ij) of the bandwidth, where in this worst
case the sum in the denominator is over all classes. Thus, for a link with transmission
rate R, class i will always achieve a throughput of at least R - w; /(Zw)). Our descrip-
tion of WFQ has been idealized, as we have not considered the fact that packets are
discrete and a packet’s transmission will not be interrupted to begin transmission of
another packet; [Demers 1990; Parekh 1993] discuss this packetization issue.

4.3 The Internet Protocol (IP): IPv4, Addressing,
IPv6, and More

Our study of the network layer thus far in Chapter 4—the notion of the data and con-
trol plane component of the network layer, our distinction between forwarding and
routing, the identification of various network service models, and our look inside a
router—have often been without reference to any specific computer network archi-
tecture or protocol. In this section, we’ll focus on key aspects of the network layer on
today’s Internet and the celebrated Internet Protocol (IP).

There are two versions of IP in use today. We’ll first examine the widely
deployed IP protocol version 4, which is usually referred to simply as IPv4 [RFC
791] in Section 4.3.1. We’ll examine IP version 6 [RFC 2460; RFC 4291], which has

4.3 o THE INTERNET PROTOCOL (IP): IPV4, ADDRESSING, [PV, AND MORE

been proposed to replace IPv4, in Section 4.3.4. In between, we’ll primarily cover
Internet addressing—a topic that might seem rather dry and detail-oriented but we’ll
see is crucial to understanding how the Internet’s network layer works. To master IP
addressing is to master the Internet’s network layer itself!

4.3.1 IPv4 Datagram Format

Recall that the Internet’s network-layer packet is referred to as a datagram. We begin
our study of IP with an overview of the syntax and semantics of the IPv4 datagram.
You might be thinking that nothing could be drier than the syntax and semantics of a
packet’s bits. Nevertheless, the datagram plays a central role in the Internet—every
networking student and professional needs to see it, absorb it, and master it. (And
just to see that protocol headers can indeed be fun to study, check out [Pomeranz
2010]). The IPv4 datagram format is shown in Figure 4.17. The key fields in the IPv4
datagram are the following:

e Version number. These 4 bits specify the IP protocol version of the datagram.
By looking at the version number, the router can determine how to interpret the
remainder of the IP datagram. Different versions of IP use different datagram
formats. The datagram format for IPv4 is shown in Figure 4.17. The datagram
format for the new version of IP (IPv6) is discussed in Section 4.3.4.

* Header length. Because an IPv4 datagram can contain a variable number of
options (which are included in the [Pv4 datagram header), these 4 bits are needed

32 bits
|
\
Version Header Type of service Datagram length (bytes)
length yp g g Y
16-bit Identifier Flags 13-bit Fragmentation offset
Time-to-live LIl g Header checksum

protocol

32-bit Source IP address
32-bit Destination IP address
Options (if any)

Data

Figure 4.17 + IPv4 datagram format

331

332

CHAPTER 4

THE NETWORK LAYER: DATA PLANE

to determine where in the IP datagram the payload (for example, the transport-
layer segment being encapsulated in this datagram) actually begins. Most IP data-
grams do not contain options, so the typical IP datagram has a 20-byte header.

Type of service. The type of service (TOS) bits were included in the IPv4 header
to allow different types of IP datagrams to be distinguished from each other. For
example, it might be useful to distinguish real-time datagrams (such as those
used by an IP telephony application) from non-real-time traffic (e.g., FTP). The
specific level of service to be provided is a policy issue determined and config-
ured by the network administrator for that router. We also learned in Section 3.7.2
that two of the TOS bits are used for Explicit Congestion Notification.

Datagram length. This is the total length of the IP datagram (header plus data), meas-
ured in bytes. Since this field is 16 bits long, the theoretical maximum size of the IP
datagram is 65,535 bytes. However, datagrams are rarely larger than 1,500 bytes, which
allows an IP datagram to fit in the payload field of a maximally sized Ethernet frame.

Identifier, flags, fragmentation offset. These three fields have to do with so-called
IP fragmentation, when a large IP datagram is broken into several smaller IP data-
grams which are then forwarded independently to the destination, where they are
reassembled before their payload data (see below) is passed up to the transport layer
at the destination host. Interestingly, the new version of IP, IPv6, does not allow for
fragmentation. We’ll not cover fragmentation here; but readers can find a detailed
discussion online, among the “retired” material from earlier versions of this book.

Time-to-live. The time-to-live (TTL) field is included to ensure that datagrams
do not circulate forever (due to, for example, a long-lived routing loop) in the
network. This field is decremented by one each time the datagram is processed by
a router. If the TTL field reaches 0, a router must drop that datagram.

Protocol. This field is typically used only when an IP datagram reaches its final
destination. The value of this field indicates the specific transport-layer protocol
to which the data portion of this IP datagram should be passed. For example, a
value of 6 indicates that the data portion is passed to TCP, while a value of 17 indi-
cates that the data is passed to UDP. For a list of all possible values, see [[ANA
Protocol Numbers 2016]. Note that the protocol number in the IP datagram has
a role that is analogous to the role of the port number field in the transport-layer
segment. The protocol number is the glue that binds the network and transport
layers together, whereas the port number is the glue that binds the transport and
application layers together. We’ll see in Chapter 6 that the link-layer frame also
has a special field that binds the link layer to the network layer.

Header checksum. The header checksum aids a router in detecting bit errors in a
received IP datagram. The header checksum is computed by treating each 2 bytes
in the header as a number and summing these numbers using 1s complement arith-
metic. As discussed in Section 3.3, the 1s complement of this sum, known as
the Internet checksum, is stored in the checksum field. A router computes the
header checksum for each received IP datagram and detects an error condition if

4.3 o THE INTERNET PROTOCOL (IP): IPV4, ADDRESSING, [PV, AND MORE

the checksum carried in the datagram header does not equal the computed check-
sum. Routers typically discard datagrams for which an error has been detected.
Note that the checksum must be recomputed and stored again at each router, since
the TTL field, and possibly the options field as well, will change. An interesting
discussion of fast algorithms for computing the Internet checksum is [RFC 1071].
A question often asked at this point is, why does TCP/IP perform error checking at
both the transport and network layers? There are several reasons for this repetition.
First, note that only the IP header is checksummed at the IP layer, while the TCP/
UDP checksum is computed over the entire TCP/UDP segment. Second, TCP/
UDP and IP do not necessarily both have to belong to the same protocol stack.
TCP can, in principle, run over a different network-layer protocol (for example,
ATM) [Black 1995]) and IP can carry data that will not be passed to TCP/UDP.

e Source and destination IP addresses. When a source creates a datagram, it inserts
its IP address into the source IP address field and inserts the address of the ulti-
mate destination into the destination IP address field. Often the source host deter-
mines the destination address via a DNS lookup, as discussed in Chapter 2. We’ll
discuss IP addressing in detail in Section 4.3.2.

e Options. The options fields allow an IP header to be extended. Header options
were meant to be used rarely—hence the decision to save overhead by not includ-
ing the information in options fields in every datagram header. However, the
mere existence of options does complicate matters—since datagram headers can
be of variable length, one cannot determine a priori where the data field will start.
Also, since some datagrams may require options processing and others may not,
the amount of time needed to process an IP datagram at a router can vary greatly.
These considerations become particularly important for IP processing in high-
performance routers and hosts. For these reasons and others, IP options were not
included in the IPv6 header, as discussed in Section 4.3.4.

* Data (payload). Finally, we come to the last and most important field—the raison
d’etre for the datagram in the first place! In most circumstances, the data field of
the IP datagram contains the transport-layer segment (TCP or UDP) to be deliv-
ered to the destination. However, the data field can carry other types of data, such
as ICMP messages (discussed in Section 5.6).

Note that an IP datagram has a total of 20 bytes of header (assuming no options).
If the datagram carries a TCP segment, then each datagram carries a total of
40 bytes of header (20 bytes of IP header plus 20 bytes of TCP header) along with
the application-layer message.

4.3.2 IPv4 Addressing

We now turn our attention to IPv4 addressing. Although you may be thinking that
addressing must be a straightforward topic, hopefully by the end of this section you’ll
be convinced that Internet addressing is not only a juicy, subtle, and interesting topic

333

334

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

but also one that is of central importance to the Internet. An excellent treatment of
IPv4 addressing can be found in the first chapter in [Stewart 1999].

Before discussing IP addressing, however, we’ll need to say a few words about
how hosts and routers are connected into the Internet. A host typically has only a
single link into the network; when IP in the host wants to send a datagram, it does
so over this link. The boundary between the host and the physical link is called
an interface. Now consider a router and its interfaces. Because a router’s job is to
receive a datagram on one link and forward the datagram on some other link, a router
necessarily has two or more links to which it is connected. The boundary between the
router and any one of its links is also called an interface. A router thus has multiple
interfaces, one for each of its links. Because every host and router is capable of send-
ing and receiving IP datagrams, IP requires each host and router interface to have
its own IP address. Thus, an IP address is technically associated with an interface,
rather than with the host or router containing that interface.

Each IP address is 32 bits long (equivalently, 4 bytes), and there are thus a total
of 232 (or approximately 4 billion) possible IP addresses. These addresses are typi-
cally written in so-called dotted-decimal notation, in which each byte of the address
is written in its decimal form and is separated by a period (dot) from other bytes in
the address. For example, consider the IP address 193.32.216.9. The 193 is the deci-
mal equivalent of the first 8 bits of the address; the 32 is the decimal equivalent of
the second 8 bits of the address, and so on. Thus, the address 193.32.216.9 in binary
notation is

11000001 00100000 11011000 00001001

Each interface on every host and router in the global Internet must have an IP address
that is globally unique (except for interfaces behind NATS, as discussed in Section 4.3.3).
These addresses cannot be chosen in a willy-nilly manner, however. A portion of
an interface’s IP address will be determined by the subnet to which it is connected.

Figure 4.18 provides an example of IP addressing and interfaces. In this figure,
one router (with three interfaces) is used to interconnect seven hosts. Take a close
look at the IP addresses assigned to the host and router interfaces, as there are sev-
eral things to notice. The three hosts in the upper-left portion of Figure 4.18, and
the router interface to which they are connected, all have an IP address of the form
223.1.1.xxx. That is, they all have the same leftmost 24 bits in their IP address. These
four interfaces are also interconnected to each other by a network that contains no
routers. This network could be interconnected by an Ethernet LAN, in which case
the interfaces would be interconnected by an Ethernet switch (as we’ll discuss in
Chapter 6), or by a wireless access point (as we’ll discuss in Chapter 7). We’ll repre-
sent this routerless network connecting these hosts as a cloud for now, and dive into
the internals of such networks in Chapters 6 and 7.

In IP terms, this network interconnecting three host interfaces and one router
interface forms a subnet [RFC 950]. (A subnet is also called an /P network or simply

4.3 o THE INTERNET PROTOCOL (IP): IPV4, ADDRESSING, IPV6, AND MORE 335

223.1.1.1 ==
223.1.1.4 223.1.2.9 223.1.2.1
" N
2231327
223.1.1.2 Q
r
= 223122

223.1.1.3 ‘2 ‘2

== ==
= =
223.1.3.1 223.1.3.2

Figure 4.18 ¢ Inferface addresses and subnets

a network in the Internet literature.) IP addressing assigns an address to this subnet:
223.1.1.0/24, where the /24 (“slash-24”) notation, sometimes known as a subnet
mask, indicates that the leftmost 24 bits of the 32-bit quantity define the subnet
address. The 223.1.1.0/24 subnet thus consists of the three host interfaces (223.1.1.1,
223.1.1.2, and 223.1.1.3) and one router interface (223.1.1.4). Any additional hosts
attached to the 223.1.1.0/24 subnet would be required to have an address of the form
223.1.1.xxx. There are two additional subnets shown in Figure 4.18: the 223.1.2.0/24
network and the 223.1.3.0/24 subnet. Figure 4.19 illustrates the three IP subnets pre-
sent in Figure 4.18.

The IP definition of a subnet is not restricted to Ethernet segments that connect
multiple hosts to a router interface. To get some insight here, consider Figure 4.20,
which shows three routers that are interconnected with each other by point-to-point
links. Each router has three interfaces, one for each point-to-point link and one for
the broadcast link that directly connects the router to a pair of hosts. What subnets
are present here? Three subnets, 223.1.1.0/24, 223.1.2.0/24, and 223.1.3.0/24, are
similar to the subnets we encountered in Figure 4.18. But note that there are three
additional subnets in this example as well: one subnet, 223.1.9.0/24, for the inter-
faces that connect routers R1 and R2; another subnet, 223.1.8.0/24, for the interfaces
that connect routers R2 and R3; and a third subnet, 223.1.7.0/24, for the interfaces
that connect routers R3 and R1. For a general interconnected system of routers and
hosts, we can use the following recipe to define the subnets in the system:

336 CHAPTER 4 e THE NETWORK LAYER: DATA PLANE

‘2 _-223.1.1.0124

=
223.1.2.0/24 ~_
@ >
r —
)

223.1.3.0124

N

Figure 4.19 ¢ Subnet addresses

To determine the subnets, detach each interface from its host or router, creating
islands of isolated networks, with interfaces terminating the end points of the
isolated networks. Each of these isolated networks is called a subnet.

If we apply this procedure to the interconnected system in Figure 4.20, we get six
islands or subnets.

From the discussion above, it’s clear that an organization (such as a company or
academic institution) with multiple Ethernet segments and point-to-point links will
have multiple subnets, with all of the devices on a given subnet having the same subnet
address. In principle, the different subnets could have quite different subnet addresses.
In practice, however, their subnet addresses often have much in common. To understand
why, let’s next turn our attention to how addressing is handled in the global Internet.

The Internet’s address assignment strategy is known as Classless Interdomain
Routing (CIDR—pronounced cider) [RFC 4632]. CIDR generalizes the notion of
subnet addressing. As with subnet addressing, the 32-bit IP address is divided into
two parts and again has the dotted-decimal form a.b.c.d/x, where x indicates the
number of bits in the first part of the address.

The x most significant bits of an address of the form a.b.c.d/x constitute the
network portion of the IP address, and are often referred to as the prefix (or network
prefix) of the address. An organization is typically assigned a block of contiguous
addresses, that is, a range of addresses with a common prefix (see the Principles in
Practice feature). In this case, the IP addresses of devices within the organization
will share the common prefix. When we cover the Internet’s BGP routing protocol in

4.3 o THE INTERNET PROTOCOL (IP): IPV4, ADDRESSING, [PV, AND MORE

223.1.1.1 223.1.1.4
; [
= ——

223.1.9.1 223.1.7.1
AN /
A~
2231807 R3
223.1.2.6 T T223.1.3.27
e = y s r
223.1.2.1 223.1.2.2 223.1.3.1 223.1.3.2

Figure 4.20 ¢ Three routers interconnecting six subnets

Section 5.4, we’ll see that only these x leading prefix bits are considered by routers
outside the organization’s network. That is, when a router outside the organization
forwards a datagram whose destination address is inside the organization, only the
leading x bits of the address need be considered. This considerably reduces the size
of the forwarding table in these routers, since a single entry of the form a.b.c.d/x will
be sufficient to forward packets to any destination within the organization.

The remaining 32-x bits of an address can be thought of as distinguishing among the
devices within the organization, all of which have the same network prefix. These are
the bits that will be considered when forwarding packets at routers within the organiza-
tion. These lower-order bits may (or may not) have an additional subnetting structure,
such as that discussed above. For example, suppose the first 21 bits of the CIDRized
address a.b.c.d/21 specify the organization’s network prefix and are common to the IP
addresses of all devices in that organization. The remaining 11 bits then identify the
specific hosts in the organization. The organization’s internal structure might be such
that these 11 rightmost bits are used for subnetting within the organization, as discussed
above. For example, a.b.c.d/24 might refer to a specific subnet within the organization.

Before CIDR was adopted, the network portions of an IP address were constrained
to be 8, 16, or 24 bits in length, an addressing scheme known as classful addressing,

337

338

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

since subnets with 8-, 16-, and 24-bit subnet addresses were known as class A, B, and
C networks, respectively. The requirement that the subnet portion of an IP address be
exactly 1, 2, or 3 bytes long turned out to be problematic for supporting the rapidly
growing number of organizations with small and medium-sized subnets. A class C
(/24) subnet could accommodate only up to 28 — 2 = 254 hosts (two of the 28 = 256
addresses are reserved for special use)—too small for many organizations. However, a
class B (/16) subnet, which supports up to 65,634 hosts, was too large. Under classful
addressing, an organization with, say, 2,000 hosts was typically allocated a class B
(/16) subnet address. This led to a rapid depletion of the class B address space and
poor utilization of the assigned address space. For example, the organization that
used a class B address for its 2,000 hosts was allocated enough of the address space
for up to 65,534 interfaces—Ileaving more than 63,000 addresses that could not be
used by other organizations.

PRINCIPLES IN PRACTICE

This example of an ISP that connects eight organizations to the Internet nicely illustrates how
carefully allocated CIDRized addresses facilitate routing. Suppose, as shown in Figure 4.21,
that the ISP (which we'll call Fly-By-NightISP) advertises to the outside world that it should
be sent any datagrams whose first 20 address bits match 200.23.16.0/20. The rest of
the world need not know that within the address block 200.23.16.0/20 there are in fact
eight other organizations, each with its own subnets. This ability to use a single prefix to
advertise multiple networks is often referred to as address aggregation (also route
aggregation or route summarization).

Address aggregation works extremely well when addresses are allocated in blocks
to ISPs and then from ISPs to client organizations. But what happens when addresses
are not allocated in such a hierarchical manner? What would happen, for example, if
Fly-By-NightISP acquires ISPs-R-Us and then has Organization 1 connect to the Internet
through its subsidiary ISPs-R-Us2 As shown in Figure 4.21, the subsidiary ISPs-R-Us owns
the address block 199.31.0.0/16, but Organization 1's IP addresses are unfortunately
outside of this address block. What should be done here? Certainly, Organization 1 could
renumber all of its routers and hosts to have addresses within the ISPs-R-Us address block.
But this is a costly solution, and Organization 1 might well be reassigned to another
subsidiary in the future. The solution typically adopted is for Organization 1 to keep its
IP addresses in 200.23.18.0/23. In this case, as shown in Figure 4.22, Fly-By-NightISP
continues to advertise the address block 200.23.16.0/20 and ISPs-R-Us continues to
advertise 199.31.0.0/16. However, ISPs-R-Us now also advertises the block of addresses
for Organization 1, 200.23.18.0/23. When other routers in the larger Internet see the
address blocks 200.23.16.0/20 (from Fly-By-NightISP) and 200.23.18.0/23 (from ISPs-
R-Us) and want to route to an address in the block 200.23.18.0/23, they will use longest
prefix matching (see Section 4.2.1), and route toward ISPs-R-Us, as it advertises the long-
est (i.e., mostspecific) address prefix that matches the destination address.

4.3 o

Organization 0
200.23.16.0/23

Organization 1
200.23.18.0/23

\

Organization 2

200.23.20.0/23 ///
Organization 7

200.23.30.0/23

Fly-By-Night-ISP

\

_—

I
/

ISPs-R-Us

THE INTERNET PROTOCOL (IP): IPV4, ADDRESSING, [PV, AND MORE

“Send me anything
with addresses
beginning
200.23.16.0/20"

| —

Internet
“Send me anything
with addresses
beginning
199.31.0.0/16"
| —

Figure 4.21 ¢ Hierarchical addressing and route aggregation

Organization 0
200.23.16.0/23

Organization 2
200.23.20.0/23 \\
—_——

Fly-By-Night-ISP

Organization 7
200.23.30.0/23

Organization 1

200.23.18.0/23 \

e ISPs-R-Us

e

/

“Send me anything
with addresses
beginning
200.23.16.0/20"

| —

“Send me anything
with addresses
beginning
199.31.0.0/16 or

200.23.18.0/23"
—

Internet

Figure 4.22 ¢ ISPs-R-Us has a more specific route to Organization 1

339

340

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

We would be remiss if we did not mention yet another type of IP address, the IP
broadcast address 255.255.255.255. When a host sends a datagram with destination
address 255.255.255.255, the message is delivered to all hosts on the same subnet.
Routers optionally forward the message into neighboring subnets as well (although
they usually don’t).

Having now studied IP addressing in detail, we need to know how hosts and
subnets get their addresses in the first place. Let’s begin by looking at how an
organization gets a block of addresses for its devices, and then look at how a
device (such as a host) is assigned an address from within the organization’s block
of addresses.

Obtaining a Block of Addresses

In order to obtain a block of IP addresses for use within an organization’s subnet,
a network administrator might first contact its ISP, which would provide addresses
from a larger block of addresses that had already been allocated to the ISP. For
example, the ISP may itself have been allocated the address block 200.23.16.0/20.
The ISP, in turn, could divide its address block into eight equal-sized contiguous
address blocks and give one of these address blocks out to each of up to eight organi-
zations that are supported by this ISP, as shown below. (We have underlined the
subnet part of these addresses for your convenience.)

ISP’s block: 200.23.16.0/20 11001000 00010111 00010000 00000000
Organization 0 200.23.16.0/23 11001000 00010111 00010000 00000000

Organization 1~ 200.23.18.0/23 11001000 00010111 00010010 00000000
Organization 2 200.23.20.0/23 11001000 00010111 00010100 00000000

Organization 7 200.23.30.0/23 11001000 00010111 00011110 00000000

While obtaining a set of addresses from an ISP is one way to get a block of
addresses, it is not the only way. Clearly, there must also be a way for the ISP itself
to get a block of addresses. Is there a global authority that has ultimate responsibility
for managing the IP address space and allocating address blocks to ISPs and other
organizations? Indeed there is! IP addresses are managed under the authority of the
Internet Corporation for Assigned Names and Numbers (ICANN) [ICANN 2020],
based on guidelines set forth in [RFC 7020]. The role of the nonprofit ICANN organ-
ization is not only to allocate IP addresses, but also to manage the DNS root servers.
It also has the very contentious job of assigning domain names and resolving domain
name disputes. The ICANN allocates addresses to regional Internet registries (for
example, ARIN, RIPE, APNIC, and LACNIC, which together form the Address

4.3 o THE INTERNET PROTOCOL (IP): IPV4, ADDRESSING, [PV, AND MORE

Supporting Organization of ICANN [ASO-ICANN 2020]), and handle the alloca-
tion/management of addresses within their regions.

Obtaining a Host Address: The Dynamic Host Configuration Protocol

Once an organization has obtained a block of addresses, it can assign individual
IP addresses to the host and router interfaces in its organization. A system admin-
istrator will typically manually configure the IP addresses into the router (often
remotely, with a network management tool). Host addresses can also be config-
ured manually, but typically this is done using the Dynamic Host Configuration
Protocol (DHCP) [RFC 2131]. DHCP allows a host to obtain (be allocated) an
IP address automatically. A network administrator can configure DHCP so that a
given host receives the same IP address each time it connects to the network, or a
host may be assigned a temporary IP address that will be different each time the
host connects to the network. In addition to host IP address assignment, DHCP also
allows a host to learn additional information, such as its subnet mask, the address
of its first-hop router (often called the default gateway), and the address of its local
DNS server.

Because of DHCP’s ability to automate the network-related aspects of connect-
ing a host into a network, it is often referred to as a plug-and-play or zeroconf
(zero-configuration) protocol. This capability makes it very attractive to the network
administrator who would otherwise have to perform these tasks manually! DHCP
is also enjoying widespread use in residential Internet access networks, enterprise
networks, and in wireless LANs, where hosts join and leave the network frequently.
Consider, for example, the student who carries a laptop from a dormitory room to
a library to a classroom. It is likely that in each location, the student will be con-
necting into a new subnet and hence will need a new IP address at each location.
DHCEP is ideally suited to this situation, as there are many users coming and going,
and addresses are needed for only a limited amount of time. The value of DHCP’s
plug-and-play capability is clear, since it’s unimaginable that a system administrator
would be able to reconfigure laptops at each location, and few students (except those
taking a computer networking class!) would have the expertise to configure their
laptops manually.

DHCEP is a client-server protocol. A client is typically a newly arriving host
wanting to obtain network configuration information, including an IP address for
itself. In the simplest case, each subnet (in the addressing sense of Figure 4.20) will
have a DHCP server. If no server is present on the subnet, a DHCP relay agent (typi-
cally a router) that knows the address of a DHCP server for that network is needed.
Figure 4.23 shows a DHCP server attached to subnet 223.1.2/24, with the router
serving as the relay agent for arriving clients attached to subnets 223.1.1/24 and
223.1.3/24. In our discussion below, we’ll assume that a DHCP server is available
on the subnet.

341

342 CHAPTER 4 e THE NETWORK LAYER: DATA PLANE

DHCP
server
‘z 223125
p —4
!g—" !
223.1.1.1 T
223.1.1.4 223.1.2.9 —
223.1.2.1
\ s/

T~223.1.3.27 <—@
Arriving

DHCP

= client

223.1.2.2

LR

E E

 — —
= =
223.1.3.1 223.1.3.2

Figure 4.23 + DHCP client and server

For a newly arriving host, the DHCP protocol is a four-step process, as shown in
Figure 4.24 for the network setting shown in Figure 4.23. In this figure, yiaddr (as
in “your Internet address”) indicates the address being allocated to the newly arriving
client. The four steps are:

* DHCP server discovery. The first task of a newly arriving host is to find a DHCP
server with which to interact. This is done using a DHCP discover message,
which a client sends within a UDP packet to port 67. The UDP packet is encap-
sulated in an IP datagram. But to whom should this datagram be sent? The host
doesn’t even know the IP address of the network to which it is attaching, much
less the address of a DHCP server for this network. Given this, the DHCP client
creates an IP datagram containing its DHCP discover message along with the
broadcast destination IP address of 255.255.255.255 and a “this host” source IP
address of 0.0.0.0. The DHCP client passes the IP datagram to the link layer,
which then broadcasts this frame to all nodes attached to the subnet (we will cover
the details of link-layer broadcasting in Section 6.4).

* DHCP server offer(s). A DHCP server receiving a DHCP discover message
responds to the client with a DHCP offer message that is broadcast to all

4.3 o THE INTERNET PROTOCOL (IP): IPV4, ADDRESSING, [PV, AND MORE

DHCP server: Arriving client

223.1.2.5

| R

DHCP discover

src: 0.0.0.0, 68

dest: 255.255.255.255,67
DHCPDISCOVER

yiaddr: 0.0.0.0
transaction ID: 654 DHCP offer

src: 223.1.2.5, 67

dest: 255.255.255.255,68
DHCPOFFER

yiaddrr: 223.1.2.4
transaction ID: 654

DHCP server ID: 223.1.2.5
Lifetime: 3600 secs

\

DHCP request

src: 0.0.0.0, 68

dest: 255.255.255.255, 67
DHCPREQUEST

yiaddrr: 223.1.2.4
transaction ID: 655

DHCP server ID: 223.1.2.5
Lifetime: 3600 secs

v

DHCP ACK

src: 223.1.2.5, 67

dest: 255.255.255.255,68
DHCPACK

yiaddrr: 223.1.2.4
transaction ID: 655

DHCP server ID: 223.1.2.5
Lifetime: 3600 secs

A

/

Time Time

Figure 4.24 + DHCP client-server interaction

nodes on the subnet, again using the IP broadcast address of 255.255.255.255.
(You might want to think about why this server reply must also be broadcast).
Since several DHCP servers can be present on the subnet, the client may find
itself in the enviable position of being able to choose from among several
offers. Each server offer message contains the transaction ID of the received
discover message, the proposed IP address for the client, the network mask,
and an IP address lease time—the amount of time for which the IP address
will be valid. It is common for the server to set the lease time to several hours
or days [Droms 2002].

343

344

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

* DHCP request. The newly arriving client will choose from among one or more
server offers and respond to its selected offer with a DHCP request message,
echoing back the configuration parameters.

* DHCP ACK. The server responds to the DHCP request message with a DHCP
ACK message, confirming the requested parameters.

Once the client receives the DHCP ACK, the interaction is complete and the
client can use the DHCP-allocated IP address for the lease duration. Since a client
may want to use its address beyond the lease’s expiration, DHCP also provides a
mechanism that allows a client to renew its lease on an IP address.

From a mobility aspect, DHCP does have one very significant shortcoming.
Since a new IP address is obtained from DHCP each time a node connects to a
new subnet, a TCP connection to a remote application cannot be maintained as a
mobile node moves between subnets. In Chapter 7, we will learn how mobile cel-
lular networks allow a host to retain its IP address and ongoing TCP connections as
it moves between base stations in a provider’s cellular network. Additional details
about DHCP can be found in [Droms 2002] and [dhc 2020]. An open source refer-
ence implementation of DHCP is available from the Internet Systems Consortium
[ISC 2020].

4.3.3 Network Address Translation (NAT)

Given our discussion about Internet addresses and the IPv4 datagram format,
we’re now well aware that every IP-capable device needs an IP address. With the
proliferation of small office, home office (SOHO) subnets, this would seem to imply
that whenever a SOHO wants to install a LAN to connect multiple machines, a range
of addresses would need to be allocated by the ISP to cover all of the SOHO’s IP
devices (including phones, tablets, gaming devices, IP TVs, printers and more).
If the subnet grew bigger, a larger block of addresses would have to be allocated.
But what if the ISP had already allocated the contiguous portions of the SOHO
network’s current address range? And what typical homeowner wants (or should
need) to know how to manage IP addresses in the first place? Fortunately, there
is a simpler approach to address allocation that has found increasingly widespread
use in such scenarios: network address translation (NAT) [RFC 2663; RFC 3022;
Huston 2004, Zhang 2007; Huston 2017].

Figure 4.25 shows the operation of a NAT-enabled router. The NAT-enabled
router, residing in the home, has an interface that is part of the home network on
the right of Figure 4.25. Addressing within the home network is exactly as we
have seen above—all four interfaces in the home network have the same subnet
address of 10.0.0.0/24. The address space 10.0.0.0/8 is one of three portions of
the IP address space that is reserved in [RFC 1918] for a private network or a
realm with private addresses, such as the home network in Figure 4.25. A realm
with private addresses refers to a network whose addresses only have meaning to

4.3 e THE INTERNET PROTOCOL (IP): IPV4, ADDRESSING, IPV6, AND MORE 345

NAT translation table

WAN side LAN side
138.76.29.7, 5001 10.0.0.1, 3345

$=10.0.0.1, 3345
_12811940 186, 80

/
@ S =138.76.29.7, 5001
D = 128.119.40.186, 80)

g

10.0.0.4
%
138.76.29.7”
7 7
S =128.119.40.186, 80 S =128.119.40.186, 80
D = 138.76.29.7, 5001 , D =10.0.0.1, 3345

Figure 4.25 + Network address translation

devices within that network. To see why this is important, consider the fact that
there are hundreds of thousands of home networks, many using the same address
space, 10.0.0.0/24. Devices within a given home network can send packets to each
other using 10.0.0.0/24 addressing. However, packets forwarded beyond the home
network into the larger global Internet clearly cannot use these addresses (as either
a source or a destination address) because there are hundreds of thousands of net-
works using this block of addresses. That is, the 10.0.0.0/24 addresses can only
have meaning within the given home network. But if private addresses only have
meaning within a given network, how is addressing handled when packets are sent
to or received from the global Internet, where addresses are necessarily unique? The
answer lies in understanding NAT.

The NAT-enabled router does not look like a router to the outside world. Instead
the NAT router behaves to the outside world as a single device with a single 1P
address. In Figure 4.25, all traffic leaving the home router for the larger Internet has
a source [P address of 138.76.29.7, and all traffic entering the home router must have a
destination address of 138.76.29.7. In essence, the NAT-enabled router is hiding
the details of the home network from the outside world. (As an aside, you might
wonder where the home network computers get their addresses and where the router
gets its single IP address. Often, the answer is the same—DHCP! The router gets its
address from the ISP’s DHCP server, and the router runs a DHCP server to provide
addresses to computers within the NAT-DHCP-router-controlled home network’s
address space.)

@ 10.0.0.2
=
@ 10.0.0.3
=

346

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

If all datagrams arriving at the NAT router from the WAN have the same desti-
nation IP address (specifically, that of the WAN-side interface of the NAT router),
then how does the router know the internal host to which it should forward a given
datagram? The trick is to use a NAT translation table at the NAT router, and to
include port numbers as well as IP addresses in the table entries.

Consider the example in Figure 4.25. Suppose a user sitting in a home net-
work behind host 10.0.0.1 requests a Web page on some Web server (port 80)
with IP address 128.119.40.186. The host 10.0.0.1 assigns the (arbitrary) source
port number 3345 and sends the datagram into the LAN. The NAT router receives
the datagram, generates a new source port number 5001 for the datagram, replaces
the source IP address with its WAN-side IP address 138.76.29.7, and replaces the
original source port number 3345 with the new source port number 5001. When
generating a new source port number, the NAT router can select any source port
number that is not currently in the NAT translation table. (Note that because a port
number field is 16 bits long, the NAT protocol can support over 60,000 simul-
taneous connections with a single WAN-side IP address for the router!) NAT
in the router also adds an entry to its NAT translation table. The Web server,
blissfully unaware that the arriving datagram containing the HTTP request has
been manipulated by the NAT router, responds with a datagram whose destination
address is the IP address of the NAT router, and whose destination port number is
5001. When this datagram arrives at the NAT router, the router indexes the NAT
translation table using the destination IP address and destination port number to
obtain the appropriate IP address (10.0.0.1) and destination port number (3345)
for the browser in the home network. The router then rewrites the datagram’s
destination address and destination port number, and forwards the datagram into
the home network.

NAT has enjoyed widespread deployment in recent years. But NAT is
not without detractors. First, one might argue that, port numbers are meant to
be used for addressing processes, not for addressing hosts. This violation can
indeed cause problems for servers running on the home network, since, as we
have seen in Chapter 2, server processes wait for incoming requests at well-
known port numbers and peers in a P2P protocol need to accept incoming con-
nections when acting as servers. How can one peer connect to another peer that
is behind a NAT server, and has a DHCP-provided NAT address? Technical
solutions to these problems include NAT traversal tools [RFC 5389] [RFC
5389, RFC 5128, Ford 2005].

More “philosophical” arguments have also been raised against NAT by
architectural purists. Here, the concern is that routers are meant to be layer 3
(i.e., network-layer) devices, and should process packets only up to the net-
work layer. NAT violates this principle that hosts should be talking directly
with each other, without interfering nodes modifying IP addresses, much less
port numbers. We’ll return to this debate later in Section 4.5, when we cover
middleboxes.

4.3 e THE INTERNET PROTOCOL (IP): IPV4, ADDRESSING, IPV6, AND MORE 347

FOCUS ON SECURITY

INSPECTING DATAGRAMS: FIREWALLS AND INTRUSION DETECTION SYSTEMS

Suppose you are assigned the task of administering a home, departmental, university, or
corporate network. Attackers, knowing the IP address range of your network, can easily
send IP datagrams fo addresses in your range. These datagrams can do all kinds of
devious things, including mapping your network with ping sweeps and port scans,
crashing vulnerable hosts with malformed packets, scanning for open TCP/UDP ports on
servers in your network, and infecting hosts by including malware in the packets. As the
network administrator, what are you going to do about all those bad guys out there, each
capable of sending malicious packets into your network2 Two popular defense mechanisms
to malicious packet attacks are firewalls and infrusion detection systems (IDSs).

As a network administrator, you may first try installing a firewall between your
network and the Infernet. (Most access routers today have firewall capability.)
Firewalls inspect the datagram and segment header fields, denying suspicious data-
grams entry into the internal network. For example, a firewall may be configured to
block all ICMP echo request packets (see Section 5.6), thereby preventing an attack-
er from doing a traditional port scan across your IP address range. Firewalls can
also block packets based on source and destination IP addresses and port numbers.
Additionally, firewalls can be configured fo track TCP connections, granting entry
only to datagrams that belong to approved connections.

Additional protection can be provided with an IDS. An IDS, typically situated at
the network boundary, performs “deep packet inspection,” examining not only head-
er fields but also the payloads in the datagram (including application-layer data).
An IDS has a database of packet signatures that are known to be part of attacks.
This database is automatically updated as new attacks are discovered. As packets
pass through the IDS, the IDS attempts to match header fields and payloads to the
signatures in its signature database. If such a match is found, an alert is created. An
intrusion prevention system (IPS) is similar to an IDS, except that it actually blocks
packets in addition to creating alerts. We'll explore firewalls and IDSs in more detail
in Section 4.5 and in again Chapter 8.

Can firewalls and IDSs fully shield your network from all attacks2 The answer is
clearly no, as attackers continually find new attacks for which signatures are not yet
available. But firewalls and traditional signature-based IDSs are useful in protecting
your network from known attacks.

4.3.4 IPv6

In the early 1990s, the Internet Engineering Task Force began an effort to develop a
successor to the IPv4 protocol. A prime motivation for this effort was the realization
that the 32-bit IPv4 address space was beginning to be used up, with new subnets

348

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

and IP nodes being attached to the Internet (and being allocated unique IP addresses)
at a breathtaking rate. To respond to this need for a large IP address space, a new
IP protocol, IPv6, was developed. The designers of IPv6 also took this opportunity
to tweak and augment other aspects of IPv4, based on the accumulated operational
experience with IPv4.

The point in time when IPv4 addresses would be completely allocated (and
hence no new networks could attach to the Internet) was the subject of considerable
debate. The estimates of the two leaders of the IETF’s Address Lifetime Expec-
tations working group were that addresses would become exhausted in 2008 and
2018, respectively [Solensky 1996]. In February 2011, IANA allocated out the last
remaining pool of unassigned IPv4 addresses to a regional registry. While these reg-
istries still have available IPv4 addresses within their pool, once these addresses are
exhausted, there are no more available address blocks that can be allocated from a
central pool [Huston 2011a]. A recent survey of IPv4 address-space exhaustion, and
the steps taken to prolong the life of the address space is [Richter 2015]; a recent
analysis of IPv4 address use is [Huston 2019].

Although the mid-1990s estimates of IPv4 address depletion suggested that a
considerable amount of time might be left until the I[Pv4 address space was exhausted,
it was realized that considerable time would be needed to deploy a new technology
on such an extensive scale, and so the process to develop IP version 6 (IPv6) [RFC
2460] was begun [RFC 1752]. (An often-asked question is what happened to IPv5?
It was initially envisioned that the ST-2 protocol would become IPv5, but ST-2 was
later dropped.) An excellent source of information about IPv6 is [Huitema 1998].

IPv6 Datagram Format

The format of the IPv6 datagram is shown in Figure 4.26. The most important
changes introduced in IPv6 are evident in the datagram format:

* Expanded addressing capabilities. IPv6 increases the size of the IP address from
32 to 128 bits. This ensures that the world won’t run out of IP addresses. Now,
every grain of sand on the planet can be IP-addressable. In addition to unicast and
multicast addresses, [Pv6 has introduced a new type of address, called an anycast
address, that allows a datagram to be delivered to any one of a group of hosts.
(This feature could be used, for example, to send an HTTP GET to the nearest of
a number of mirror sites that contain a given document.)

* A streamlined 40-byte header. As discussed below, a number of IPv4 fields have
been dropped or made optional. The resulting 40-byte fixed-length header allows
for faster processing of the IP datagram by a router. A new encoding of options
allows for more flexible options processing.

e Flow labeling. TPv6 has an elusive definition of a flow. RFC 2460 states that this
allows “labeling of packets belonging to particular flows for which the sender

4.3 o THE INTERNET PROTOCOL (IP): IPV4, ADDRESSING, [PV, AND MORE

32 bits
|

Version Traffic class Flow label

Payload length Next hdr Hop limit

Source address
(128 bits)

Destination address
(128 bits)

Data

Figure 4.26 ¢ IPv6 datagram format

requests special handling, such as a non-default quality of service or real-time
service.” For example, audio and video transmission might likely be treated as
a flow. On the other hand, the more traditional applications, such as file transfer
and e-mail, might not be treated as flows. It is possible that the traffic carried by a
high-priority user (for example, someone paying for better service for their traffic)
might also be treated as a flow. What is clear, however, is that the designers of
IPv6 foresaw the eventual need to be able to differentiate among the flows, even
if the exact meaning of a flow had yet to be determined.

As noted above, a comparison of Figure 4.26 with Figure 4.17 reveals the sim-
pler, more streamlined structure of the IPv6 datagram. The following fields are
defined in IPv6:

e Version. This 4-bit field identifies the IP version number. Not surprisingly, IPv6
carries a value of 6 in this field. Note that putting a 4 in this field does not create
a valid IPv4 datagram. (If it did, life would be a lot simpler—see the discussion
below regarding the transition from IPv4 to IPv6.)

e Traffic class. The 8-bit traffic class field, like the TOS field in IPv4, can be used
to give priority to certain datagrams within a flow, or it can be used to give pri-
ority to datagrams from certain applications (for example, voice-over-IP) over
datagrams from other applications (for example, SMTP e-mail).

e Flow label. As discussed above, this 20-bit field is used to identify a flow of datagrams.

* Payload length. This 16-bit value is treated as an unsigned integer giving the
number of bytes in the [Pv6 datagram following the fixed-length, 40-byte data-
gram header.

349

350

CHAPTER 4

THE NETWORK LAYER: DATA PLANE

Next header. This field identifies the protocol to which the contents (data field) of
this datagram will be delivered (for example, to TCP or UDP). The field uses the
same values as the protocol field in the IPv4 header.

Hop limit. The contents of this field are decremented by one by each router that
forwards the datagram. If the hop limit count reaches zero, a router must discard
that datagram.

Source and destination addresses. The various formats of the IPv6 128-bit address
are described in RFC 4291.

Data. This is the payload portion of the IPv6 datagram. When the datagram
reaches its destination, the payload will be removed from the IP datagram and
passed on to the protocol specified in the next header field.

The discussion above identified the purpose of the fields that are included in the

[Pv6 datagram. Comparing the IPv6 datagram format in Figure 4.26 with the IPv4
datagram format that we saw in Figure 4.17, we notice that several fields appearing
in the IPv4 datagram are no longer present in the IPv6 datagram:

Fragmentation/reassembly. IPv6 does not allow for fragmentation and reassem-
bly at intermediate routers; these operations can be performed only by the source
and destination. If an IPv6 datagram received by a router is too large to be for-
warded over the outgoing link, the router simply drops the datagram and sends a
“Packet Too Big” ICMP error message (see Section 5.6) back to the sender. The
sender can then resend the data, using a smaller IP datagram size. Fragmentation
and reassembly is a time-consuming operation; removing this functionality from
the routers and placing it squarely in the end systems considerably speeds up IP
forwarding within the network.

Header checksum. Because the transport-layer (for example, TCP and UDP) and
link-layer (for example, Ethernet) protocols in the Internet layers perform check-
summing, the designers of IP probably felt that this functionality was sufficiently
redundant in the network layer that it could be removed. Once again, fast pro-
cessing of IP packets was a central concern. Recall from our discussion of IPv4
in Section 4.3.1 that since the IPv4 header contains a TTL field (similar to the
hop limit field in IPv6), the IPv4 header checksum needed to be recomputed at
every router. As with fragmentation and reassembly, this too was a costly opera-
tion in IPv4.

Options. An options field is no longer a part of the standard IP header. How-
ever, it has not gone away. Instead, the options field is one of the possible next
headers pointed to from within the IPv6 header. That is, just as TCP or UDP
protocol headers can be the next header within an IP packet, so too can an
options field. The removal of the options field results in a fixed-length, 40-byte
IP header.

4.3 o THE INTERNET PROTOCOL (IP): IPV4, ADDRESSING, [PV, AND MORE

Transitioning from IPv4 to IPv6

Now that we have seen the technical details of IPv6, let us consider a very practi-
cal matter: How will the public Internet, which is based on IPv4, be transitioned to
IPv6? The problem is that while new IPv6-capable systems can be made backward-
compatible, that is, can send, route, and receive IPv4 datagrams, already deployed
[Pv4-capable systems are not capable of handling IPv6 datagrams. Several options
are possible [Huston 2011b, RFC 4213].

One option would be to declare a flag day—a given time and date when all
Internet machines would be turned off and upgraded from IPv4 to IPv6. The last
major technology transition (from using NCP to using TCP for reliable transport
service) occurred almost 40 years ago. Even back then [RFC 801], when the Internet
was tiny and still being administered by a small number of “wizards,” it was real-
ized that such a flag day was not possible. A flag day involving billions of devices
is even more unthinkable today.

The approach to IPv4-to-IPv6 transition that has been most widely adopted in
practice involves tunneling [RFC 4213]. The basic idea behind tunneling—a key
concept with applications in many other scenarios beyond IPv4-to-IPv6 transition,
including wide use in the all-IP cellular networks that we’ll cover in Chapter 7—is
the following. Suppose two IPv6 nodes (in this example, B and E in Figure 4.27)
want to interoperate using IPv6 datagrams but are connected to each other by inter-
vening IPv4 routers. We refer to the intervening set of IPv4 routers between two
IPv6 routers as a tunnel, as illustrated in Figure 4.27. With tunneling, the IPv6 node
on the sending side of the tunnel (in this example, B) takes the entire IPv6 datagram
and puts it in the data (payload) field of an IPv4 datagram. This IPv4 datagram is
then addressed to the IPv6 node on the receiving side of the tunnel (in this example,
E) and sent to the first node in the tunnel (in this example, C). The intervening IPv4
routers in the tunnel route this IPv4 datagram among themselves, just as they would
any other datagram, blissfully unaware that the I[Pv4 datagram itself contains a com-
plete IPv6 datagram. The IPv6 node on the receiving side of the tunnel eventually
receives the IPv4 datagram (it is the destination of the IPv4 datagram!), determines
that the IPv4 datagram contains an IPv6 datagram (by observing that the protocol
number field in the IPv4 datagram is 41 [RFC 4213], indicating that the IPv4
payload is a IPv6 datagram), extracts the IPv6 datagram, and then routes the IPv6
datagram exactly as it would if it had received the IPv6 datagram from a directly
connected IPv6 neighbor.

We end this section by noting that while the adoption of IPv6 was initially slow
to take off [Lawton 2001; Huston 2008b], momentum has been building. NIST
[NIST IPv6 2020] reports that more than a third of US government second-level
domains are IPv6-enabled. On the client side, Google reports that about 25 percent
of the clients accessing Google services do so via IPv6 [Google IPv6 2020]. Other
recent measurements [Czyz 2014] indicate that IPv6 adoption has been accelerating.
The proliferation of devices such as IP-enabled phones and other portable devices

351

352

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

Logical view

IPv6 IPv6 IPv6 IPv6
Tunnel
Physical view
IPv6 IPv6 IPv4 IPv4 IPv6 IPv6
= = = =
GG S — 3 GG
Flow: X Source: B Source: B Flow: X
Source: A Dest: E Dest: E Source: A
Dest: F Dest: F
Flow: X Flow: X
Source: A Source: A
data Dest: F Dest: F data
A to B: IPv6 E to F: IPv6
data data
B to C: IPv4 D to E: IPv4

(encapsulating IPv6) (encapsulating IPv6)

Figure 4.27 + Tunneling

provides an additional push for more widespread deployment of IPv6. Europe’s
Third Generation Partnership Program [3GPP 2020] has specified IPv6 as the stand-
ard addressing scheme for mobile multimedia.

One important lesson that we can learn from the IPv6 experience is that it is enor-
mously difficult to change network-layer protocols. Since the early 1990s, numerous
new network-layer protocols have been trumpeted as the next major revolution for
the Internet, but most of these protocols have had limited penetration to date. These
protocols include IPv6, multicast protocols, and resource reservation protocols; a dis-
cussion of these latter two classes of protocols can be found in the online supplement
to this text. Indeed, introducing new protocols into the network layer is like replac-
ing the foundation of a house—it is difficult to do without tearing the whole house
down or at least temporarily relocating the house’s residents. On the other hand, the
Internet has witnessed rapid deployment of new protocols at the application layer.
The classic examples, of course, are the Web, instant messaging, streaming media,
distributed games, and various forms of social media. Introducing new application-
layer protocols is like adding a new layer of paint to a house—it is relatively easy to
do, and if you choose an attractive color, others in the neighborhood will copy you.

4.4 o GENERALIZED FORWARDING AND SDN

In summary, in the future, we can certainly expect to see changes in the Internet’s
network layer, but these changes will likely occur on a time scale that is much slower
than the changes that will occur at the application layer.

4.4 Generalized Forwarding and SDN

Recall that Section 4.2.1 characterized destination-based forwarding as the two steps
of looking up a destination IP address (“match”), then sending the packet into the
switching fabric to the specified output port (“action”). Let’s now consider a signifi-
cantly more general “match-plus-action” paradigm, where the “match” can be made
over multiple header fields associated with different protocols at different layers in
the protocol stack. The “action” can include forwarding the packet to one or more
output ports (as in destination-based forwarding), load balancing packets across
multiple outgoing interfaces that lead to a service (as in load balancing), rewriting
header values (as in NAT), purposefully blocking/dropping a packet (as in a fire-
wall), sending a packet to a special server for further processing and action (as in
DPI), and more.

In generalized forwarding, a match-plus-action table generalizes the notion of
the destination-based forwarding table that we encountered in Section 4.2.1. Because
forwarding decisions may be made using network-layer and/or link-layer source
and destination addresses, the forwarding devices shown in Figure 4.28 are more
accurately described as “packet switches” rather than layer 3 “routers” or layer 2
“switches.” Thus, in the remainder of this section, and in Section 5.5, we’ll refer
to these devices as packet switches, adopting the terminology that is gaining wide-
spread adoption in SDN literature.

Figure 4.28 shows a match-plus-action table in each packet switch, with the
table being computed, installed, and updated by a remote controller. We note that
while it is possible for the control components at the individual packet switches to
interact with each other (e.g., in a manner similar to that in Figure 4.2), in practice,
generalized match-plus-action capabilities are implemented via a remote controller
that computes, installs, and updates these tables. You might take a minute to compare
Figures 4.2, 4.3, and 4.28—what similarities and differences do you notice between
destination-based forwarding shown in Figures 4.2 and 4.3, and generalized forward-
ing shown in Figure 4.28?

Our following discussion of generalized forwarding will be based on Open-
Flow [McKeown 2008, ONF 2020, Casado 2014, Tourrilhes 2014]—a highly visible
standard that has pioneered the notion of the match-plus-action forwarding abstrac-
tion and controllers, as well as the SDN revolution more generally [Feamster 2013].
We’ll primarily consider OpenFlow 1.0, which introduced key SDN abstractions
and functionality in a particularly clear and concise manner. Later versions of
OpenFlow introduced additional capabilities as a result of experience gained through

353

354 CHAPTER 4 e THE NETWORK LAYER: DATA PLANE

Remote Controller

- S

0 1
LR

Control plane

Local flow table

Headers | Counters|Actions|

1 B @ 5
u o O O O

Values in arriving
packet’s header

Figure 4.28 ¢+ Generalized forwarding: Each packet switch contains a
match-plus-action table that is computed and distributed
by a remote controller

implementation and use; current and earlier versions of the OpenFlow standard can
be found at [ONF 2020].

Each entry in the match-plus-action forwarding table, known as a flow table in
OpenFlow, includes:

* A set of header field values to which an incoming packet will be matched. As in
the case of destination-based forwarding, hardware-based matching is most rap-
idly performed in TCAM memory, with more than a million destination address
entries being possible [Bosshart 2013]. A packet that matches no flow table entry
can be dropped or sent to the remote controller for more processing. In practice,
a flow table may be implemented by multiple flow tables for performance or cost
reasons [Bosshart 2013], but we’ll focus here on the abstraction of a single flow
table.

4.4 o GENERALIZED FORWARDING AND SDN

* A set of counters that are updated as packets are matched to flow table entries.
These counters might include the number of packets that have been matched by
that table entry, and the time since the table entry was last updated.

* A set of actions to be taken when a packet matches a flow table entry. These
actions might be to forward the packet to a given output port, to drop the packet,
makes copies of the packet and sent them to multiple output ports, and/or to
rewrite selected header fields.

We’ll explore matching and actions in more detail in Sections 4.4.1 and 4.4.2,
respectively. We’ll then study how the network-wide collection of per-packet switch
matching rules can be used to implement a wide range of functions including routing,
layer-2 switching, firewalling, load-balancing, virtual networks, and more in Sec-
tion 4.4.3. In closing, we note that the flow table is essentially an API, the abstrac-
tion through which an individual packet switch’s behavior can be programmed;
we’ll see in Section 4.4.3 that network-wide behaviors can similarly be programmed
by appropriately programming/configuring these tables in a collection of network
packet switches [Casado 2014].

4.4.1 Match

Figure 4.29 shows the 11 packet-header fields and the incoming port ID that can
be matched in an OpenFlow 1.0 match-plus-action rule. Recall from Section 1.5.2
that a link-layer (layer 2) frame arriving to a packet switch will contain a net-
work-layer (layer 3) datagram as its payload, which in turn will typically con-
tain a transport-layer (layer 4) segment. The first observation we make is that
OpenFlow’s match abstraction allows for a match to be made on selected fields
from three layers of protocol headers (thus rather brazenly defying the layer-
ing principle we studied in Section 1.5). Since we’ve not yet covered the link
layer, suffice it to say that the source and destination MAC addresses shown in
Figure 4.29 are the link-layer addresses associated with the frame’s sending and
receiving interfaces; by forwarding on the basis of Ethernet addresses rather than
IP addresses, we can see that an OpenFlow-enabled device can equally perform

355

Src Dst Eth VLAN VLAN oo popo [P P
MAC MAC Type ID Pri Proto TOS

Link layer Network layer

Figure 4.29 ¢ Packet matching fields, OpenFlow 1.0 flow table

Transport layer

356

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

as a router (layer-3 device) forwarding datagrams as well as a switch (layer-2
device) forwarding frames. The Ethernet type field corresponds to the upper layer
protocol (e.g., IP) to which the frame’s payload will be de-multiplexed, and the
VLAN fields are concerned with so-called virtual local area networks that we’ll
study in Chapter 6. The set of 12 values that can be matched in the OpenFlow
1.0 specification has grown to 41 values in more recent OpenFlow specifications
[Bosshart 2014].

The ingress port refers to the input port at the packet switch on which a packet
is received. The packet’s IP source address, IP destination address, IP protocol field,
and IP type of service fields were discussed earlier in Section 4.3.1. The transport-layer
source and destination port number fields can also be matched.

Flow table entries may also have wildcards. For example, an IP address of
128.119.*%.* in a flow table will match the corresponding address field of any data-
gram that has 128.119 as the first 16 bits of its address. Each flow table entry also has
an associated priority. If a packet matches multiple flow table entries, the selected
match and corresponding action will be that of the highest priority entry with which
the packet matches.

Lastly, we observe that not all fields in an IP header can be matched. For exam-
ple OpenFlow does not allow matching on the basis of TTL field or datagram length
field. Why are some fields allowed for matching, while others are not? Undoubtedly,
the answer has to do with the tradeoff between functionality and complexity. The
“art” in choosing an abstraction is to provide for enough functionality to accomplish
a task (in this case to implement, configure, and manage a wide range of network-
layer functions that had previously been implemented through an assortment of
network-layer devices), without over-burdening the abstraction with so much detail
and generality that it becomes bloated and unusable. Butler Lampson has famously
noted [Lampson 1983]:

Do one thing at a time, and do it well. An interface should capture the minimum
essentials of an abstraction. Don’t generalize; generalizations are generally
wrong.

Given OpenFlow’s success, one can surmise that its designers indeed chose their
abstraction well. Additional details of OpenFlow matching can be found in [ONF
2020].

4.4.2 Action

As shown in Figure 4.28, each flow table entry has a list of zero or more actions
that determine the processing that is to be applied to a packet that matches a flow
table entry. If there are multiple actions, they are performed in the order specified
in the list.

4.4 o GENERALIZED FORWARDING AND SDN 357

Among the most important possible actions are:

e Forwarding. An incoming packet may be forwarded to a particular physical
output port, broadcast over all ports (except the port on which it arrived) or
multicast over a selected set of ports. The packet may be encapsulated and sent
to the remote controller for this device. That controller then may (or may not)
take some action on that packet, including installing new flow table entries, and
may return the packet to the device for forwarding under the updated set of flow
table rules.

* Dropping. A flow table entry with no action indicates that a matched packet
should be dropped.

* Modify-field. The values in 10 packet-header fields (all layer 2, 3, and 4 fields
shown in Figure 4.29 except the IP Protocol field) may be re-written before the
packet is forwarded to the chosen output port.

4.4.3 OpenFlow Examples of Match-plus-action in Action

Having now considered both the match and action components of generalized
forwarding, let’s put these ideas together in the context of the sample network
shown in Figure 4.30. The network has 6 hosts (h1l, h2, h3, h4, h5 and h6) and
three packet switches (s1, s2 and s3), each with four local interfaces (numbered
1 through 4). We’ll consider a number of network-wide behaviors that we’d like
to implement, and the flow table entries in s1, s2 and s3 needed to implement this
behavior.

OpenFlow controller

‘@/

Q 2 3

.‘.
=
Host h3

Host h1 g Host h2 10.2.0.3
10.1.0.1 10.1.0. 2

I

Host h6
10.3.0.6

I L

Host h4
10.2.0.4

\@

Host h5

10.3.0.5
5

Figure 4.30 ¢ OpenFlow match-plus-action network with three packet
switches, 6 hosts, and an OpenFlow controller

358

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

A First Example: Simple Forwarding

As a very simple example, suppose that the desired forwarding behavior is that
packets from hS5 or h6 destined to h3 or h4 are to be forwarded from s3 to s1, and then
from s1 to s2 (thus completely avoiding the use of the link between s3 and s2). The
flow table entry in s1 would be:

s1 Flow Table (Example 1)

Match Action
Ingress Port = 1; IP Src = 10.3.%*; IP Dst = 10.2.* * Forward (4)

Of course, we’ll also need a flow table entry in s3 so that datagrams sent from
hS or h6 are forwarded to s1 over outgoing interface 3:

53 Flow Table (Example 1)

Match Action
IPSrc=10.3**;IPDst=10.2.%* Forward (3)

Lastly, we’ll also need a flow table entry in s2 to complete this first example, so
that datagrams arriving from s1 are forwarded to their destination, either host h3 or h4:

52 Flow Table (Example 1)

Match Action
Ingress port = 2 ; IP Dst = 10.2.0.3 Forward(3)
Ingress port = 2 ; IP Dst = 10.2.0.4 Forward (4)

A Second Example: Load Balancing

As a second example, let’s consider a load-balancing scenario, where datagrams from
h3 destined to 10.1.*.* are to be forwarded over the direct link between s2 and s1, while
datagrams from h4 destined to 10.1.*%.* are to be forwarded over the link between s2
and s3 (and then from s3 to s1). Note that this behavior couldn’t be achieved with IP’s
destination-based forwarding. In this case, the flow table in s2 would be:

4.4 o GENERALIZED FORWARDING AND SDN

52 Flow Table (Example 2)

Match Action
Ingress port = 3; IP Dst = 10.1.%.* Forward(2)
Ingress port = 4; IP Dst = 10.1.*.* Forward(1)

Flow table entries are also needed at s1 to forward the datagrams received from
s2 to either hl or h2; and flow table entries are needed at s3 to forward datagrams
received on interface 4 from s2 over interface 3 toward s1. See if you can figure out
these flow table entries at s1 and s3.

A Third Example: Firewalling

As a third example, let’s consider a firewall scenario in which s2 wants only to
receive (on any of its interfaces) traffic sent from hosts attached to s3.

52 Flow Table (Example 3)
Match Action
IPSrc=10.3.**IPDst=10.2.0.3 Forward(3)
IPSrc=10.3.%*IP Dst=10.2.0.4 Forward (4)

If there were no other entries in s2’s flow table, then only traffic from 10.3.*.* would
be forwarded to the hosts attached to s2.

Although we’ve only considered a few basic scenarios here, the versatility and
advantages of generalized forwarding are hopefully apparent. In homework prob-
lems, we’ll explore how flow tables can be used to create many different logical
behaviors, including virtual networks—two or more logically separate networks
(each with their own independent and distinct forwarding behavior)—that use the
same physical set of packet switches and links. In Section 5.5, we’ll return to flow
tables when we study the SDN controllers that compute and distribute the flow tables,
and the protocol used for communicating between a packet switch and its controller.

The match-plus-action flow tables that we’ve seen in this section are actually
a limited form of programmability, specifying how a router should forward and
manipulate (e.g., change a header field) a datagram, based on the match between
the datagram’s header values and the matching conditions. One could imagine an
even richer form of programmability—a programming language with higher-level
constructs such as variables, general purpose arithmetic and Boolean operations,
variables, functions, and conditional statements, as well as constructs specifically

359

360

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

designed for datagram processing at line rate. P4 (Programming Protocol-independent
Packet Processors) [P4 2020] is such a language, and has gained considerable inter-
est and traction since its introduction five years ago [Bosshart 2014].

4.5 Middleboxes

Routers are the workhorses of the network layer, and in this chapter, we’ve learned
how they accomplish their “bread and butter” job of forwarding IP datagrams toward
their destination. But in this chapter, and in earlier chapters, we’ve also encoun-
tered other network equipment (“boxes”) within the network that sit on the data path
and perform functions other than forwarding. We encountered Web caches in Sec-
tion 2.2.5; TCP connection splitters in section 3.7; and network address translation
(NAT), firewalls, and intrusion detection systems in Section 4.3.4. We learned in
Section 4.4 that generalized forwarding allows a modern router to easily and natu-
rally perform firewalling and load balancing with generalized “match plus action”
operations.

In the past 20 years, we’ve seen tremendous growth in such middleboxes, which
RFC 3234 defines as:

“any intermediary box performing functions apart from normal, standard func-
tions of an IP router on the data path between a source host and destination
host”

We can broadly identify three types of services performed by middleboxes:

* NAT Translation. As we saw in Section 4.3.4, NAT boxes implement private
network addressing, rewriting datagram header IP addresses and port numbers.

o Security Services. Firewalls block traffic based on header-field values or redirect
packets for additional processing, such as deep packet inspection (DPI). Intru-
sion Detection Systems (IDS) are able to detect predetermined patterns and filter
packets accordingly. Application-level e-mail filters block e-mails considered to
be junk, phishing or otherwise posing a security threat.

* Performance Enhancement. These middleboxes perform services such as com-
pression, content caching, and load balancing of service requests (e.g., an HTTP
request, or a search engine query) to one of a set of servers that can provide the
desired service.

Many other middleboxes [RFC 3234] provide capabilities belonging to these three
types of services, in both wired and wireless cellular [Wang 2011] networks.

With the proliferation of middleboxes comes the attendant need to operate,
manage, and upgrade this equipment. Separate specialized hardware boxes, separate

4.5 o MIDDLEBOXES

software stacks, and separate management/operation skills translate to significant
operational and capital costs. It is perhaps not surprising then that researchers are
exploring the use of commodity hardware (networking, computing, and storage) with
specialized software built on top of a common software stack—exactly the approach
taken in SDN a decade earlier—to implement these services. This approach has
become known as network function virtualization (NFV) [Mijumbi 2016]. An
alternate approach that has also been explored is to outsource middlebox functional-
ity to the cloud [Sherry 2012].

For many years, the Internet architecture had a clear separation between the
network layer and the transport/application layers. In these “good old days,” the
network layer consisted of routers, operating within the network core, to forward
datagrams toward their destinations using fields only in the IP datagram header. The
transport and application layers were implemented in hosts operating at the network
edge. Hosts exchanged packets among themselves in transport-layer segments and
application-layer messages. Today’s middleboxes clearly violate this separation: a
NAT box, sitting between a router and host, rewrites network-layer IP addresses and
transport-layer port numbers; an in-network firewall blocks suspect datagrams using
application-layer (e.g., HTTP), transport-layer, and network-layer header fields;
e-mail security gateways are injected between the e-mail sender (whether malicious
or not) and the intended e-mail receiver, filtering application-layer e-mail messages
based on whitelisted/blacklisted IP addresses as well as e-mail message content.
While there are those who have considered such middleboxes as a bit of an archi-
tectural abomination [Garfinkel 2003], others have adopted the philosophy that such
middleboxes “exist for important and permanent reasons”—that they fill an important
need—and that we’ll have more, not fewer, middleboxes in the future [Walfish 2004].
See the section in attached sidebar on “The end-to-end argument” for a slightly differ-
ent lens on the question of where to place service functionality in a network.

PRINCIPLES IN PRACTICE

ARCHITECTURAL PRINCIPLES OF THE INTERNET

Given the phenomenal success of the Internet, one might naturally wonder about the
architectural principles that have guided the development of what is arguably the larg-

est and most complex engineered system ever built by humankind. RFC 1958, entitled
“Architectural Principles of the Internet,” suggests that these principles, if indeed they exist,
are truly minimal:

“Many members of the Internet community would argue that there is no architecture,
but only a tradition, which was not written down for the first 25 years (or at least not
by the IAB). However, in very general terms, the community believes that the goal is
connectivity, the tool is the Internet Protocol, and the intelligence is end to end rather
than hidden in the network.” [RFC 1958]

361

362

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

So there we have itl The goal was to provide connectivity, there would be just one net-
work-layer protocol (the celebrated IP protocol we have studied in this chapter), and “intelli-
gence” (one might say the “complexity”) would be placed at the network edge, rather than
in the network core. Let's look these last two considerations in a bit more detail.

THE IP HOURGLASS

By now, we're well acquainted with the five-layer Internet protocol stack that we first
encountered in Figure 1.23. Another visualization of this stack, shown in Figure 4.31 and
sometimes known as the “IP hourglass,” illustrates the “narrow waist” of the layered
Internet architecture. While the Internet has many protocols in the physical, link, transport,
and application layers, there is only one network layer protocol—the IP protocol. This is
the one protocol that must be implemented by each and every of the billions of Internet-
connected devices. This narrow waist has played a critical role in the phenomenal growth
of the Internet. The relative simplicity of the IP protocol, and the fact that it is the only
universal requirement for Internet connectivity has allowed a rich variety of networks—with
very different underlying link-layer technologies, from Ethernet to WiFi to cellular to optical
networks to become part of the Internet. [Clark 1997] notes that role of the narrow waist,
which he refers to as a “spanning layer,” is to “... hide the detailed differences among
these various [underlying] technologies and present a uniform service interface to the appli-
cations above.” For the IP layer in particular: “How does the IP spanning layer achieve
its purpose? It defines a basic set of services, which were carefully designed so that they
could be constructed from a wide range of underlying network technologies. Software, as
a part of the Internet [i.e., network] layer, translates what each of these lower-layer tech-
nologies offers into the common service of the Internet layer.”

For a discussion the narrow waist, including examples beyond the Internet, see [Beck 2019;
Akhshabi 2011]. We note here that as the Internet architecture enters mid-life (certainly,

C)]
HTTP SMTP RTP
\ QUIC DASH /
TCP UDP

) - ¢

Ethernet PPP ...
PDCP WiFi Bluetooth

/ copper radio fiber \
()]

Figure 4.31 + The narrow-waisted Internet hourglass

4.5 o MIDDLEBOXES

the Internet's age of 40 to 50 years qualifies it for middle agel), one might observe that
its “narrow waist” may indeed be widening a bit (as offen happens in middle agel) via
the rise of middleboxes.

THE END-TO-END ARGUMENT

The third principle in RFC 1958 —that “intelligence is end to end rather than hidden in the
network” —speaks to the placement of functionality within the network. Here, we've seen
that until the recent rise of middleboxes, most Internet functionality was indeed placed at
the network’s edge. It's worth noting that, in direct contrast with the 20™ century telephone
network—which had “dumb” (non-programmable) endpoints and smart switches—the
Internet has always had smart endpoints (programmable computers), enabling complex
functionality to be placed at those endpoints. But a more principled argument for actually
placing functionality at the endpoints was made in an extremely influential paper [Saltzer
1984] that articulated the “end-to-end argument.” It stated:

1

" ... there is a list of functions each of which might be implemented in any of several
ways: by the communication subsystem, by its client, as a joint venture, or perhaps
redundantly, each doing its own version. In reasoning about this choice, the require-
ments of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with

the knowledge and help of the application standing at the end points of the com-
munication system. Therefore, providing that questioned function as a feature of the
communication system itself is not possible. (Sometimes an incomplete version of the
function provided by the communication system may be useful as a performance
enhancement.)

We call this line of reasoning against low-level function implementation the “end-to-end
argument.”

An example illustrating the end-fo-end argument is that of reliable data transfer. Since
packets can be lost within the network (e.g., even without buffer overflows, a router hold-
ing a queued packet could crash, or a portion of the network in which a packet is queved
becomes detached due to link failures), the endpoints (in this case via the TCP protocol)
must perform error control. As we will see in Chapter 6, some link-layer protocols do
indeed perform local error control, but this local error control alone is “incomplete” and
not sufficient to provide end+o-end reliable data transfer. And so reliable data transfer must
be implemented end to end.

RFC 1958 deliberately includes only two references, both of which are “fundamental
papers on the Infernet architecture.” One of these is the endtoend paper itself [Salizer 1984];
the second paper [Clark 1988] discusses the design philosophy of the DARPA Internet Protocols.
Both are interesting “must reads” for anyone inferested in Internet architecture. Follow-ons to
[Clark 1988] are [Blumenthal 2001; Clark 2005] which reconsider Internet architecture in light
of the much more complex environment in which today’s Internet must now operate.

363

364

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

4.6 Summary

In this chapter, we’ve covered the data plane functions of the network layer—the per-
router functions that determine how packets arriving on one of a router’s input links are
forwarded to one of that router’s output links. We began by taking a detailed look at the
internal operations of a router, studying input and output port functionality and destination-
based forwarding, a router’s internal switching mechanism, packet queue management and
more. We covered both traditional IP forwarding (where forwarding is based on a data-
gram’s destination address) and generalized forwarding (where forwarding and other func-
tions may be performed using values in several different fields in the datagram’s header)
and seen the versatility of the latter approach. We also studied the [Pv4 and IPv6 protocols
in detail, and Internet addressing, which we found to be much deeper, subtler, and more
interesting than we might have expected. We completed our study of the network-layer
data plane with a study of middleboxes, and a broad discussion of Internet architecture.

With our newfound understanding of the network-layer’s data plane, we’re now
ready to dive into the network layer’s control plane in Chapter 5!

Homework Problems and Questions

Chapter 4 Review Questions
SECTION 4.1

R1. Let’s review some of the terminology used in this textbook. Recall that the
name of a transport-layer packet is segment and that the name of a link-layer
packet is frame. What is the name of a network-layer packet? Recall that both
routers and link-layer switches are called packet switches. What is the funda-
mental difference between a router and link-layer switch?

R2. We noted that network layer functionality can be broadly divided into
data plane functionality and control plane functionality. What are the main
functions of the data plane? Of the control plane?

R3. We made a distinction between the forwarding function and the routing func-
tion performed in the network layer. What are the key differences between
routing and forwarding?

R4. What is the role of the forwarding table within a router?

RS5. We said that a network layer’s service model “defines the characteristics of
end-to-end transport of packets between sending and receiving hosts.” What is
the service model of the Internet’s network layer? What guarantees are made by
the Internet’s service model regarding the host-to-host delivery of datagrams?

SECTION 4.2

R6. In Section 4.2, we saw that a router typically consists of input ports, output ports,
a switching fabric and a routing processor. Which of these are implemented in

R7.

R8.

R9.

R10.

RI11.

R12.

R13.

R14.

R15.

R16.

HOMEWORK PROBLEMS AND QUESTIONS

hardware and which are implemented in software? Why? Returning to the
notion of the network layer’s data plane and control plane, which are imple-
mented in hardware and which are implemented in software? Why?

Discuss why each input port in a high-speed router stores a shadow copy of
the forwarding table.

What is meant by destination-based forwarding? How does this differ from
generalized forwarding (assuming you’ve read Section 4.4, which of the two
approaches are adopted by Software-Defined Networking)?

Suppose that an arriving packet matches two or more entries in a router’s
forwarding table. With traditional destination-based forwarding, what rule
does a router apply to determine which of these rules should be applied

to determine the output port to which the arriving packet should be
switched?

Three types of switching fabrics are discussed in Section 4.2. List and briefly
describe each type. Which, if any, can send multiple packets across the fabric
in parallel?

Describe how packet loss can occur at input ports. Describe how packet loss
at input ports can be eliminated (without using infinite buffers).

Describe how packet loss can occur at output ports. Can this loss be pre-
vented by increasing the switch fabric speed?

What is HOL blocking? Does it occur in input ports or output ports?

In Section 4.2, we studied FIFO, Priority, Round Robin (RR), and Weighted

Fair Queueing (WFQ) packet scheduling disciplines? Which of these queueing
disciplines ensure that all packets depart in the order in which they arrived?

Give an example showing why a network operator might want one class of
packets to be given priority over another class of packets.

What is an essential different between RR and WFQ packet scheduling? Is
there a case (Hint: Consider the WFQ weights) where RR and WFQ will
behave exactly the same?

SECTION 4.3

R17.

R18.

R19.

Suppose Host A sends Host B a TCP segment encapsulated in an IP data-
gram. When Host B receives the datagram, how does the network layer in
Host B know it should pass the segment (that is, the payload of the datagram)
to TCP rather than to UDP or to some other upper-layer protocol?

What field in the IP header can be used to ensure that a packet is forwarded
through no more than N routers?

Recall that we saw the Internet checksum being used in both transport-layer
segment (in UDP and TCP headers, Figures 3.7 and 3.29 respectively) and in
network-layer datagrams (IP header, Figure 4.17). Now consider a transport

365

366

CHAPTER 4

e THE NETWORK LAYER: DATA PLANE

R20.

R21.
R22.
R23.

R24.

R25.

R26.

R27.

R28.
R29.

R30.

R31.

layer segment encapsulated in an IP datagram. Are the checksums in the seg-
ment header and datagram header computed over any common bytes in the IP
datagram? Explain your answer.

When a large datagram is fragmented into multiple smaller datagrams, where
are these smaller datagrams reassembled into a single larger datagram?

Do routers have IP addresses? If so, how many?
What is the 32-bit binary equivalent of the IP address 223.1.3.27?

Visit a host that uses DHCP to obtain its IP address, network mask, default
router, and IP address of its local DNS server. List these values.

Suppose there are three routers between a source host and a destination host.
Ignoring fragmentation, an IP datagram sent from the source host to the desti-
nation host will travel over how many interfaces? How many forwarding tables
will be indexed to move the datagram from the source to the destination?

Suppose an application generates chunks of 40 bytes of data every 20 msec,
and each chunk gets encapsulated in a TCP segment and then an IP datagram.
What percentage of each datagram will be overhead, and what percentage
will be application data?

Suppose you purchase a wireless router and connect it to your cable modem.
Also suppose that your ISP dynamically assigns your connected device (that
is, your wireless router) one IP address. Also suppose that you have five PCs
at home that use 802.11 to wirelessly connect to your wireless router. How
are [P addresses assigned to the five PCs? Does the wireless router use NAT?
Why or why not?

What is meant by the term “route aggregation”? Why is it useful for a router
to perform route aggregation?

What is meant by a “plug-and-play” or “zeroconf” protocol?

What is a private network address? Should a datagram with a private network
address ever be present in the larger public Internet? Explain.

Compare and contrast the IPv4 and the IPv6 header fields. Do they have any
fields in common?

It has been said that when IPv6 tunnels through IPv4 routers, IPv6 treats the
IPv4 tunnels as link-layer protocols. Do you agree with this statement? Why
or why not?

SECTION 4.4

R32.
R33.

How does generalized forwarding differ from destination-based forwarding?

What is the difference between a forwarding table that we encountered in
destination-based forwarding in Section 4.1 and OpenFlow’s flow table that
we encountered in Section 4.4?

PROBLEMS 367

R34. What is meant by the “match plus action” operation of a router or switch? In
the case of destination-based forwarding packet switch, what is matched and
what is the action taken? In the case of an SDN, name three fields that can be
matched, and three actions that can be taken.

R35. Name three header fields in an IP datagram that can be “matched” in Open-
Flow 1.0 generalized forwarding. What are three IP datagram header fields
that cannot be “matched” in OpenFlow?

Problems

P1. Consider the network below.
a. Show the forwarding table in router A, such that all traffic destined to host
H3 is forwarded through interface 3.

b. Can you write down a forwarding table in router A, such that all traffic
from H1 destined to host H3 is forwarded through interface 3, while all
traffic from H2 destined to host H3 is forwarded through interface 4?
(Hint: This is a trick question.)

ﬁg/\@/\@

P2. Suppose two packets arrive to two different input ports of a router at exactly
the same time. Also suppose there are no other packets anywhere in the
router.

'&] ™
3 .@

H2

a. Suppose the two packets are to be forwarded to two different output ports.
Is it possible to forward the two packets through the switch fabric at the
same time when the fabric uses a shared bus?

b. Suppose the two packets are to be forwarded to two different output ports.
Is it possible to forward the two packets through the switch fabric at the
same time when the fabric uses switching via memory?

c. Suppose the two packets are to be forwarded to the same output port. Is it
possible to forward the two packets through the switch fabric at the same
time when the fabric uses a crossbar?

368 CHAPTER 4 o

P3.

P4.

Ps.

THE NETWORK LAYER: DATA PLANE

In Section 4.2.4, it was said that if R_switch is N times faster than R_line,
then only negligible queuing will occur at the input ports, even if all the
packets are to be forwarded to the same output port. Now suppose that
R_switch = R_line, but all packets are to be forwarded to different output
ports. Let D be the time to transmit a packet. As a function of D, what is the
maximum input queuing delay for a packet for the (a) memory, (b) bus, and
(c) crossbar switching fabrics?

Consider the switch shown below. Suppose that all datagrams have the same
fixed length, that the switch operates in a slotted, synchronous manner, and
that in one time slot a datagram can be transferred from an input port to an
output port. The switch fabric is a crossbar so that at most one datagram can
be transferred to a given output port in a time slot, but different output ports
can receive datagrams from different input ports in a single time slot. What is
the minimal number of time slots needed to transfer the packets shown from
input ports to their output ports, assuming any input queue scheduling order
you want (i.e., it need not have HOL blocking)? What is the largest number
of slots needed, assuming the worst-case scheduling order you can devise,
assuming that a non-empty input queue is never idle?

—_ I:I I:I Ijl — — Output port X —»
Switch

I N 50 - owwmony —

— I:I I:I IEI— — Output portZ —»

Suppose that the WEQ scheduling policy is applied to a buffer that supports
three classes, and suppose the weights are 0.5, 0.25, and 0.25 for the three
classes.

a. Suppose that each class has a large number of packets in the buffer.
In what sequence might the three classes be served in order to achieve
the WFQ weights? (For round robin scheduling, a natural sequence is
123123123 ..)).

b. Suppose that classes 1 and 2 have a large number of packets in the buffer,
and there are no class 3 packets in the buffer. In what sequence might the
three classes be served in to achieve the WFQ weights?

PROBLEMS

P6. Consider the figure below. Answer the following questions:

Arrivals
t t t t t t t +—» Time
Packet
in service
I } } } } } } } } } +—» Time

t=0 t=2

Departures 1

. Assuming FIFO service, indicate the time at which packets 2 through

12 each leave the queue. For each packet, what is the delay between its
arrival and the beginning of the slot in which it is transmitted? What is the
average of this delay over all 12 packets?

Now assume a priority service, and assume that odd-numbered packets
are high priority, and even-numbered packets are low priority. Indicate the
time at which packets 2 through 12 each leave the queue. For each packet,
what is the delay between its arrival and the beginning of the slot in which
it is transmitted? What is the average of this delay over all 12 packets?

. Now assume round robin service. Assume that packets 1, 2, 3, 6, 11, and

12 are from class 1, and packets 4, 5, 7, 8, 9, and 10 are from class 2.
Indicate the time at which packets 2 through 12 each leave the queue. For
each packet, what is the delay between its arrival and its departure? What
is the average delay over all 12 packets?

Now assume weighted fair queueing (WFQ) service. Assume that odd-
numbered packets are from class 1, and even-numbered packets are from
class 2. Class 1 has a WFQ weight of 2, while class 2 has a WFQ weight
of 1. Note that it may not be possible to achieve an idealized WFQ sched-
ule as described in the text, so indicate why you have chosen the particu-
lar packet to go into service at each time slot. For each packet what is the
delay between its arrival and its departure? What is the average delay over
all 12 packets?

. What do you notice about the average delay in all four cases (FIFO, RR,

priority, and WFQ)?

369

370 CHAPTER 4 e THE NETWORK LAYER: DATA PLANE

P7. Consider again the figure for P6.

a. Assume a priority service, with packets 1, 4, 5, 6, and 11 being high-
priority packets. The remaining packets are low priority. Indicate the slots
in which packets 2 through 12 each leave the queue.

b. Now suppose that round robin service is used, with packets 1, 4, 5, 6, and
11 belonging to one class of traffic, and the remaining packets belonging
to the second class of traffic. Indicate the slots in which packets 2 through
12 each leave the queue.

c. Now suppose that WFQ service is used, with packets 1,4, 5, 6, and 11
belonging to one class of traffic, and the remaining packets belonging to the
second class of traffic. Class 1 has a WFQ weight of 1, while class 2 has a
WEFQ weight of 2 (note that these weights are different than in the previous
question). Indicate the slots in which packets 2 through 12 each leave the
queue. See also the caveat in the question above regarding WFQ service.

P8. Consider a datagram network using 32-bit host addresses. Suppose a router

has four links, numbered 0 through 3, and packets are to be forwarded to the
link interfaces as follows:

Destination Address Range Link Interface

11100000 00000000 00000000 00000000
through 0
11100000 00111111 11111111 11111111

11100000 01000000 00000000 00000000
through 1
11100000 01000000 11111111 11111111

11100000 01000001 00000000 00000000
through 2
11100001 OT111111 11111111 11111111

otherwise 3

a. Provide a forwarding table that has five entries, uses longest prefix match-
ing, and forwards packets to the correct link interfaces.

b. Describe how your forwarding table determines the appropriate link inter-
face for datagrams with destination addresses:

11001000 10010001 01010001 01010101
11100001 01000000 11000011 00111100
11100001 10000000 00010001 01110111

PO.

P10.

P11.

P12.

P13.

P14.

PROBLEMS

Consider a datagram network using 8-bit host addresses. Suppose a router
uses longest prefix matching and has the following forwarding table:

Prefix Match Interface
00 0
010 1
011 2
10 2
11 3

For each of the four interfaces, give the associated range of destination host
addresses and the number of addresses in the range.

Consider a datagram network using 8-bit host addresses. Suppose a router
uses longest prefix matching and has the following forwarding table:

Prefix Match Interfoce
1 0
10 1
111 2
otherwise 3

For each of the four interfaces, give the associated range of destination host
addresses and the number of addresses in the range.

Consider a router that interconnects three subnets: Subnet 1, Subnet 2,
and Subnet 3. Suppose all of the interfaces in each of these three subnets
are required to have the prefix 223.1.17/24. Also suppose that Subnet 1 is
required to support at least 60 interfaces, Subnet 2 is to support at least 90
interfaces, and Subnet 3 is to support at least 12 interfaces. Provide three
network addresses (of the form a.b.c.d/x) that satisfy these constraints.

In Section 4.2.2, an example forwarding table (using longest prefix matching)
is given. Rewrite this forwarding table using the a.b.c.d/x notation instead of
the binary string notation.

In Problem P8, you are asked to provide a forwarding table (using longest

prefix matching). Rewrite this forwarding table using the a.b.c.d/x notation
instead of the binary string notation.

Consider a subnet with prefix 128.119.40.128/26. Give an example of one
IP address (of form xxx.xxx.xxx.xxx) that can be assigned to this network.

371

372 CHAPTER 4 e THE NETWORK LAYER: DATA PLANE

P15.

P16.

P17.

P18.

P19.

Suppose an ISP owns the block of addresses of the form 128.119.40.64/26.
Suppose it wants to create four subnets from this block, with each block
having the same number of IP addresses. What are the prefixes (of form
a.b.c.d/x) for the four subnets?

Consider the topology shown in Figure 4.20. Denote the three subnets with
hosts (starting clockwise at 12:00) as Networks A, B, and C. Denote the
subnets without hosts as Networks D, E, and F.

a. Assign network addresses to each of these six subnets, with the following
constraints: All addresses must be allocated from 214.97.254/23; Subnet A
should have enough addresses to support 250 interfaces; Subnet B should
have enough addresses to support 120 interfaces; and Subnet C should
have enough addresses to support 120 interfaces. Of course, subnets D, E
and F should each be able to support two interfaces. For each subnet, the
assignment should take the form a.b.c.d/x or a.b.c.d/x —e.f.g.h/y.

b. Using your answer to part (a), provide the forwarding tables (using long-
est prefix matching) for each of the three routers.

Use the whois service at the American Registry for Internet Numbers
(http://www.arin.net/whois) to determine the [P address blocks for three
universities. Can the whois services be used to determine with certainty the
geographical location of a specific IP address? Use www.maxmind.com to
determine the locations of the Web servers at each of these universities.

Suppose datagrams are limited to 1,500 bytes (including header) between
source Host A and destination Host B. Assuming a 20-byte IP header, how
many datagrams would be required to send an MP3 consisting of 5 million
bytes? Explain how you computed your answer.

Consider the network setup in Figure 4.25. Suppose that the ISP instead
assigns the router the address 24.34.112.235 and that the network address
of the home network is 192.168.1/24.

a. Assign addresses to all interfaces in the home network.

b. Suppose each host has two ongoing TCP connections, all to port 80 at
host 128.119.40.86. Provide the six corresponding entries in the NAT
translation table.

Suppose you are interested in detecting the number of hosts behind a NAT.
You observe that the IP layer stamps an identification number sequentially on
each IP packet. The identification number of the first IP packet generated by
a host is a random number, and the identification numbers of the subsequent
IP packets are sequentially assigned. Assume all IP packets generated by
hosts behind the NAT are sent to the outside world.

a. Based on this observation, and assuming you can sniff all packets sent by
the NAT to the outside, can you outline a simple technique that detects the
number of unique hosts behind a NAT? Justify your answer.

P20.

P21.

P22.

pP23.

P24.

PROBLEMS

b. If the identification numbers are not sequentially assigned but randomly
assigned, would your technique work? Justify your answer.

In this problem, we’ll explore the impact of NATs on P2P applications.
Suppose a peer with username Arnold discovers through querying that a
peer with username Bernard has a file it wants to download. Also suppose
that Bernard and Arnold are both behind a NAT. Try to devise a technique
that will allow Arnold to establish a TCP connection with Bernard without
application-specific NAT configuration. If you have difficulty devising such
a technique, discuss why.

Consider the SDN OpenFlow network shown in Figure 4.30. Suppose
that the desired forwarding behavior for datagrams arriving at s2 is as
follows:

* any datagrams arriving on input port 1 from hosts h5 or h6 that are des-
tined to hosts h1 or h2 should be forwarded over output port 2;

* any datagrams arriving on input port 2 from hosts h1 or h2 that are des-
tined to hosts h5 or h6 should be forwarded over output port 1;

e any arriving datagrams on input ports 1 or 2 and destined to hosts h3 or h4
should be delivered to the host specified;

* hosts h3 and h4 should be able to send datagrams to each other.
Specify the flow table entries in s2 that implement this forwarding behavior.

Consider again the SDN OpenFlow network shown in Figure 4.30. Suppose
that the desired forwarding behavior for datagrams arriving from hosts h3 or
h4 at s2 is as follows:

e any datagrams arriving from host h3 and destined for h1, h2, h5 or h6
should be forwarded in a clockwise direction in the network;

e any datagrams arriving from host h4 and destined for h1, h2, h5
or h6 should be forwarded in a counter-clockwise direction in the
network.

Specify the flow table entries in s2 that implement this forwarding behavior.

Consider again the scenario from P21 above. Give the flow tables entries at
packet switches s1 and s3, such that any arriving datagrams with a source
address of h3 or h4 are routed to the destination hosts specified in the desti-
nation address field in the IP datagram. (Hint: Your forwarding table rules
should include the cases that an arriving datagram is destined for a directly
attached host or should be forwarded to a neighboring router for eventual
host delivery there.)

Consider again the SDN OpenFlow network shown in Figure 4.30. Suppose
we want switch s2 to function as a firewall. Specify the flow table in s2 that
implements the following firewall behaviors (specify a different flow table
for each of the four firewalling behaviors below) for delivery of datagrams

373

374 CHAPTER 4 e THE NETWORK LAYER: DATA PLANE

destined to h3 and h4. You do not need to specify the forwarding behavior in
s2 that forwards traffic to other routers.

Only traffic arriving from hosts h1 and h6 should be delivered to hosts h3
or h4 (i.e., that arriving traffic from hosts h2 and hS5 is blocked).

Only TCP traffic is allowed to be delivered to hosts h3 or h4 (i.e., that
UDP traffic is blocked).

Only traffic destined to h3 is to be delivered (i.e., all traffic to h4 is
blocked).

Only UDP traffic from h1 and destined to h3 is to be delivered. All other
traffic is blocked.

P25. Consider the Internet protocol stack in Figures 1.23 and 4.31. Would you
consider the ICMP protocol to be a network-layer protocol or a transport-
layer protocol? Justify your answer.

Wireshark Lab: IP

In the Web site for this textbook, www.pearsonhighered.com/cs-resources, you’ll
find a Wireshark lab assignment that examines the operation of the IP protocol, and
the IP datagram format in particular.

AN INTERVIEW WITH...

Vinton G. Cerf

Vinton G. Cerf has served as Vice President and Chief Internet
Evangelist for Google since 2005. He served for over 15 years
at MCl in various positions, ending up his tenure there as Senior
Vice President for Technology Strategy. He is widely known as
the codesigner of the TCP/IP protocols and the architecture of the

Internet. During his time from 1976 to 1982 at the US Department
of Defense Advanced Research Projects Agency (DARPA|, he played
a key role leading the development of Internet and Internet-related
packet communication and security techniques. He received the US
Presidential Medal of Freedom in 2005 and the US National Medal
of Technology in 1997. He holds a BS in Mathematics from Stanford
University and an MS and PhD in computer science from UCLA.

What brought you to specialize in networking?

I was working as a programmer at UCLA in the late 1960s. My job was supported by the
US Defense Advanced Research Projects Agency (called ARPA then and DARPA now). I
was working in the laboratory of Professor Leonard Kleinrock in the Network Measurement
Center of the newly created ARPANet. The first node of the ARPANet was installed at
UCLA on September 1, 1969. I was responsible for programming a computer that was
used to capture performance information about the ARPANet and to report this information
back for comparison with mathematical models and predictions of the performance of the
network.

Several of the other graduate students and I were made responsible for working on
the so-called host-level protocols of the ARPAnet—the procedures and formats that would
allow many different kinds of computers on the network to interact with each other. It
was a fascinating exploration into a new world (for me) of distributed computing and
communication.

Did you imagine that IP would become as pervasive as it is today when you first
designed the protocol?

When Bob Kahn and I first worked on this in 1973, I think we were mostly very focused on
the central question: How can we make heterogeneous packet networks interoperate with
one another, assuming we cannot actually change the networks themselves? We hoped that
we could find a way to permit an arbitrary collection of packet-switched networks to be
interconnected in a transparent fashion, so that host computers could communicate end-to-
end without having to do any translations in between. I think we knew that we were dealing

Courtesy of Vinton G. Cerf

375

376

with powerful and expandable technology, but I doubt we had a clear image of what the
world would be like with billions of computers all interlinked on the Internet.

What do you now envision for the future of networking and the Internet? What major
challenges/obstacles do you think lie ahead in their development?

I believe the Internet itself and networks in general will continue to proliferate. There are
already billions of Internet-enabled devices on the Internet, including appliances like cell
phones, refrigerators, personal digital assistants, home servers, televisions, as well as the
usual array of laptops, servers, and so on. Big challenges include support for mobility, bat-
tery life, capacity of the access links to the network, and ability to scale the optical core of
the network in an unlimited fashion. The interplanetary extension of the Internet is a project
that is well underway at NASA and other space agencies. We still need to add [Pv6 [128-
bit] addressing to the original IPv4 [32-bit addresses] packet format. The list is long!

Who has inspired you professionally?

My colleague Bob Kahn; my thesis advisor, Gerald Estrin; my best friend, Steve Crocker
(we met in high school and he introduced me to computers in 1960!); and the thousands of
engineers who continue to evolve the Internet today.

Do you have any advice for students entering the networking/Internet field?

Think outside the limitations of existing systems—imagine what might be possible; but then
do the hard work of figuring out how to get there from the current state of affairs. Dare to
dream. The “Internet of Things” is the next big phase of Internet expansion. Safety, security,
privacy, reliability, and autonomy all need attention. The interplanetary extension of the
terrestrial Internet started as a speculative design but is becoming a reality. It may take
decades to implement this, mission by mission, but to paraphrase: “A man’s reach should
exceed his grasp, or what are the heavens for?”

CHAPTER

The Network
Layer: Control
Plane

In this chapter, we’ll complete our journey through the network layer by covering the
control-plane component of the network layer—the network-wide logic that con-
trols not only how a datagram is routed along an end-to-end path from the source
host to the destination host, but also how network-layer components and services are
configured and managed. In Section 5.2, we’ll cover traditional routing algorithms
for computing least cost paths in a graph; these algorithms are the basis for two
widely deployed Internet routing protocols: OSPF and BGP, that we’ll cover in Sec-
tions 5.3 and 5.4, respectively. As we’ll see, OSPF is a routing protocol that operates
within a single ISP’s network. BGP is a routing protocol that serves to interconnect
all of the networks in the Internet; BGP is thus often referred to as the “glue” that
holds the Internet together. Traditionally, control-plane routing protocols have been
implemented together with data-plane forwarding functions, monolithically, within a
router. As we learned in the introduction to Chapter 4, software-defined networking
(SDN) makes a clear separation between the data and control planes, implementing
control-plane functions in a separate “controller” service that is distinct, and remote,
from the forwarding components of the routers it controls. We’ll cover SDN control-
lers in Section 5.5.

In Sections 5.6 and 5.7, we’ll cover some of the nuts and bolts of managing an
IP network: ICMP (the Internet Control Message Protocol) and SNMP (the Simple
Network Management Protocol).

377

378

CHAPTER 5

Data plane

e THE NETWORK LAYER: CONTROL PLANE

5.1 Introduction

Let’s quickly set the context for our study of the network control plane by recall-
ing Figures 4.2 and 4.3. There, we saw that the forwarding table (in the case of
destination-based forwarding) and the flow table (in the case of generalized forward-
ing) were the principal elements that linked the network layer’s data and control
planes. We learned that these tables specify the local data-plane forwarding behavior
of a router. We saw that in the case of generalized forwarding, the actions taken
could include not only forwarding a packet to a router’s output port, but also drop-
ping a packet, replicating a packet, and/or rewriting layer 2, 3 or 4 packet-header
fields.

In this chapter, we’ll study how those forwarding and flow tables are computed,
maintained and installed. In our introduction to the network layer in Section 4.1, we
learned that there are two possible approaches for doing so.

e Per-router control. Figure 5.1 illustrates the case where a routing algorithm runs
in each and every router; both a forwarding and a routing function are contained

Forwarding
Table

Figure 5.1 ¢ Per-router control: Individual routing algorithm components
interact in the control plane

5.1 o [INTRODUCTION

within each router. Each router has a routing component that communicates with
the routing components in other routers to compute the values for its forwarding
table. This per-router control approach has been used in the Internet for decades.
The OSPF and BGP protocols that we’ll study in Sections 5.3 and 5.4 are based
on this per-router approach to control.

Logically centralized control. Figure 5.2 illustrates the case in which a logically
centralized controller computes and distributes the forwarding tables to be used
by each and every router. As we saw in Sections 4.4 and 4.5, the generalized
match-plus-action abstraction allows the router to perform traditional IP forward-
ing as well as a rich set of other functions (load sharing, firewalling, and NAT)
that had been previously implemented in separate middleboxes.

Logically centralized routing controller S

Control plane

Data plane T
y

"
Y
N
y

g
<
g

Control ==
Agent (CA)

(
(

Figure 5.2 + logically centralized control: A distinct, typically remote,
controller interacts with local control agents (CAs)

% 06 06 86 &5 5F

Ll

379

380

CHAPTER 5

e THE NETWORK LAYER: CONTROL PLANE

The controller interacts with a control agent (CA) in each of the routers via a
well-defined protocol to configure and manage that router’s flow table. Typically,
the CA has minimum functionality; its job is to communicate with the controller,
and to do as the controller commands. Unlike the routing algorithms in Figure 5.1,
the CAs do not directly interact with each other nor do they actively take part
in computing the forwarding table. This is a key distinction between per-router
control and logically centralized control.

By “logically centralized” control [Levin 2012] we mean that the routing
control service is accessed as if it were a single central service point, even though
the service is likely to be implemented via multiple servers for fault-tolerance,
and performance scalability reasons. As we will see in Section 5.5, SDN adopts
this notion of a logically centralized controller—an approach that is finding
increased use in production deployments. Google uses SDN to control the rout-
ers in its internal B4 global wide-area network that interconnects its data centers
[Jain 2013]. SWAN [Hong 2013], from Microsoft Research, uses a logically
centralized controller to manage routing and forwarding between a wide area
network and a data center network. Major ISP deployments, including COM-
CAST’s ActiveCore and Deutsche Telecom’s Access 4.0 are actively integrating
SDN into their networks. And as we’ll see in Chapter 8, SDN control is central to
4G/5G cellular networking as well. [AT&T 2019] notes, “ ... SDN, isn’t a vision,
a goal, or a promise. It’s a reality. By the end of next year, 75% of our network
functions will be fully virtualized and software-controlled.” China Telecom and
China Unicom are using SDN both within data centers and between data centers
[Li 2015].

5.2 Routing Algorithms

In this section, we’ll study routing algorithms, whose goal is to determine good
paths (equivalently, routes), from senders to receivers, through the network of
routers. Typically, a “good” path is one that has the least cost. We’ll see that in
practice, however, real-world concerns such as policy issues (for example, a rule
such as “router x, belonging to organization Y, should not forward any packets
originating from the network owned by organization Z”) also come into play. We
note that whether the network control plane adopts a per-router control approach or
a logically centralized approach, there must always be a well-defined sequence of
routers that a packet will cross in traveling from sending to receiving host. Thus,
the routing algorithms that compute these paths are of fundamental importance,
and another candidate for our top-10 list of fundamentally important networking
concepts.

A graph is used to formulate routing problems. Recall that a graph G = (N, E)
is a set NV of nodes and a collection E of edges, where each edge is a pair of nodes
from N. In the context of network-layer routing, the nodes in the graph represent

5.2 o ROUTING ALGORITHMS 381

Figure 5.3 ¢ Abstract graph model of a computer network

routers—the points at which packet-forwarding decisions are made—and the edges
connecting these nodes represent the physical links between these routers. Such a
graph abstraction of a computer network is shown in Figure 5.3. When we study the
BGP inter-domain routing protocol, we’ll see that nodes represent networks, and the
edge connecting two such nodes represents direction connectivity (know as peering)
between the two networks. To view some graphs representing real network maps, see
[CAIDA 2020]; for a discussion of how well different graph-based models model the
Internet, see [Zegura 1997, Faloutsos 1999, Li 2004].

As shown in Figure 5.3, an edge also has a value representing its cost. Typically,
an edge’s cost may reflect the physical length of the corresponding link (for example,
a transoceanic link might have a higher cost than a short-haul terrestrial link), the link
speed, or the monetary cost associated with a link. For our purposes, we’ll simply
take the edge costs as a given and won’t worry about how they are determined. For
any edge (x, y) in E, we denote c(x, y) as the cost of the edge between nodes x and y.
If the pair (x, y) does not belong to E, we set c(x, y) = . Also, we’ll only consider
undirected graphs (i.e., graphs whose edges do not have a direction) in our discussion
here, so that edge (x, y) is the same as edge (y, x) and that c(x, y) = c¢(y, x); however,
the algorithms we’ll study can be easily extended to the case of directed links with a
different cost in each direction. Also, a node y is said to be a neighbor of node x if
(x, y) belongs to E.

Given that costs are assigned to the various edges in the graph abstraction,
a natural goal of a routing algorithm is to identify the least costly paths between
sources and destinations. To make this problem more precise, recall that a path
in a graph G = (N, E) is a sequence of nodes (x;, x, -+, x,) such that each
of the pairs (xy, xp), (x2, X3), - -+, (x,—1, x,) are edges in E. The cost of a path
(x1, X2, -+ +, xp,) is simply the sum of all the edge costs along the path, that is,

382

CHAPTER 5

e THE NETWORK LAYER: CONTROL PLANE

c(xy, xp) + c(xy, x3) + -+ - + c(x,—, x,). Given any two nodes x and y, there are typi-
cally many paths between the two nodes, with each path having a cost. One or more
of these paths is a least-cost path. The least-cost problem is therefore clear: Find a
path between the source and destination that has least cost. In Figure 5.3, for exam-
ple, the least-cost path between source node u and destination node w is (i, x, y, w)
with a path cost of 3. Note that if all edges in the graph have the same cost, the least-
cost path is also the shortest path (that is, the path with the smallest number of links
between the source and the destination).

As a simple exercise, try finding the least-cost path from node u to z in
Figure 5.3 and reflect for a moment on how you calculated that path. If you are
like most people, you found the path from u to z by examining Figure 5.3, tracing
a few routes from u to z, and somehow convincing yourself that the path you had
chosen had the least cost among all possible paths. (Did you check all of the 17 pos-
sible paths between u and z? Probably not!) Such a calculation is an example of a
centralized routing algorithm—the routing algorithm was run in one location, your
brain, with complete information about the network. Broadly, one way in which
we can classify routing algorithms is according to whether they are centralized or
decentralized.

* A centralized routing algorithm computes the least-cost path between a source
and destination using complete, global knowledge about the network. That is, the
algorithm takes the connectivity between all nodes and all link costs as inputs.
This then requires that the algorithm somehow obtain this information before
actually performing the calculation. The calculation itself can be run at one site
(e.g., a logically centralized controller as in Figure 5.2) or could be replicated in
the routing component of each and every router (e.g., as in Figure 5.1). The key
distinguishing feature here, however, is that the algorithm has complete informa-
tion about connectivity and link costs. Algorithms with global state information
are often referred to as link-state (LS) algorithms, since the algorithm must
be aware of the cost of each link in the network. We’ll study LS algorithms in
Section 5.2.1.

* In a decentralized routing algorithm, the calculation of the least-cost path is
carried out in an iterative, distributed manner by the routers. No node has com-
plete information about the costs of all network links. Instead, each node begins
with only the knowledge of the costs of its own directly attached links. Then,
through an iterative process of calculation and exchange of information with its
neighboring nodes, a node gradually calculates the least-cost path to a destination
or set of destinations. The decentralized routing algorithm we’ll study below in
Section 5.2.2 is called a distance-vector (DV) algorithm, because each node main-
tains a vector of estimates of the costs (distances) to all other nodes in the net-
work. Such decentralized algorithms, with interactive message exchange between

5.2 o ROUTING ALGORITHMS

neighboring routers is perhaps more naturally suited to control planes where the
routers interact directly with each other, as in Figure 5.1.

A second broad way to classify routing algorithms is according to whether they
are static or dynamic. In static routing algorithms, routes change very slowly over
time, often as a result of human intervention (for example, a human manually editing
a link costs). Dynamic routing algorithms change the routing paths as the network
traffic loads or topology change. A dynamic algorithm can be run either periodically
or in direct response to topology or link cost changes. While dynamic algorithms
are more responsive to network changes, they are also more susceptible to problems
such as routing loops and route oscillation.

A third way to classify routing algorithms is according to whether they are load-
sensitive or load-insensitive. In a load-sensitive algorithm, link costs vary dynami-
cally to reflect the current level of congestion in the underlying link. If a high cost
is associated with a link that is currently congested, a routing algorithm will tend
to choose routes around such a congested link. While early ARPAnet routing algo-
rithms were load-sensitive [McQuillan 1980], a number of difficulties were encoun-
tered [Huitema 1998]. Today’s Internet routing algorithms (such as RIP, OSPF, and
BGP) are load-insensitive, as a link’s cost does not explicitly reflect its current (or
recent past) level of congestion.

5.2.1 The Link-State (LS) Routing Algorithm

Recall that in a link-state algorithm, the network topology and all link costs are
known, that is, available as input to the LS algorithm. In practice, this is accom-
plished by having each node broadcast link-state packets to all other nodes in
the network, with each link-state packet containing the identities and costs of
its attached links. In practice (for example, with the Internet’s OSPF routing
protocol, discussed in Section 5.3), this is often accomplished by a link-state
broadcast algorithm [Perlman 1999]. The result of the nodes’ broadcast is that
all nodes have an identical and complete view of the network. Each node can
then run the LS algorithm and compute the same set of least-cost paths as every
other node.

The link-state routing algorithm we present below is known as Dijkstra’s
algorithm, named after its inventor. A closely related algorithm is Prim’s algo-
rithm; see [Cormen 2001] for a general discussion of graph algorithms. Dijkstra’s
algorithm computes the least-cost path from one node (the source, which we will
refer to as u) to all other nodes in the network. Dijkstra’s algorithm is iterative and
has the property that after the kth iteration of the algorithm, the least-cost paths
are known to k destination nodes, and among the least-cost paths to all destination

383

384

CHAPTER 5

e THE NETWORK LAYER: CONTROL PLANE

nodes, these k paths will have the k& smallest costs. Let us define the following
notation:

* D(v): cost of the least-cost path from the source node to destination v as of this
iteration of the algorithm.

* p(v): previous node (neighbor of v) along the current least-cost path from the
source to v.

e N':subset of nodes; vis in N' if the least-cost path from the source to v is defini-
tively known.

The centralized routing algorithm consists of an initialization step followed by
a loop. The number of times the loop is executed is equal to the number of nodes in
the network. Upon termination, the algorithm will have calculated the shortest paths
from the source node u to every other node in the network.

Link-State (LS) Algorithm for Source Node u

1 Initialization:

2 N’ = {u}

3 for all nodes v

4 if v is a neighbor of u
5 then D(v) = c(u,vVv)

6 else D(v) =

7

8

Loop
9 find w not in N’ such that D(w) 1s a minimum
10 add w to N’
11 update D(v) for each neighbor v of w and not in N’:

12 D(v) = min(D(v), D(w)+ c(w,v))
13 /* new cost to v is either old cost to v or known
14 least path cost to w plus cost from w to v */

15 until N'= N

As an example, let’s consider the network in Figure 5.3 and compute the least-
cost paths from u to all possible destinations. A tabular summary of the algorithm’s
computation is shown in Table 5.1, where each line in the table gives the values of
the algorithm’s variables at the end of the iteration. Let’s consider the few first steps
in detail.

* In the initialization step, the currently known least-cost paths from u to its directly
attached neighbors, v, x, and w, are initialized to 2, 1, and 5, respectively. Note in

5.2 o ROUTING ALGORITHMS 385

step N’ D), plv) Dw), pw) DG, pl DGy, ply) D(2), p(2)
0 U 2,u 5u Tu © o

1 Ux 2,u 4, x 2,x o0

2 uxy 2,u 3,y 4y

3 Uxyv 3,y 4y

4 uxyvw 4y

5 uxyvwz

Table 5.1 ¢ Running the link-state algorithm on the network in Figure 5.3

particular that the costto w is setto 5 (even though we will soon see that a lesser-cost
path does indeed exist) since this is the cost of the direct (one hop) link from u to
w. The costs to y and z are set to infinity because they are not directly connected
to u.

e In the first iteration, we look among those nodes not yet added to the set N' and
find that node with the least cost as of the end of the previous iteration. That node
is x, with a cost of 1, and thus x is added to the set N'. Line 12 of the LS algorithm
is then performed to update D(v) for all nodes v, yielding the results shown in the
second line (Step 1) in Table 5.1. The cost of the path to v is unchanged. The cost
of the path to w (which was 5 at the end of the initialization) through node x is
found to have a cost of 4. Hence this lower-cost path is selected and w’s predeces-
sor along the shortest path from u is set to x. Similarly, the cost to y (through x) is
computed to be 2, and the table is updated accordingly.

e In the second iteration, nodes v and y are found to have the least-cost paths (2),
and we break the tie arbitrarily and add y to the set N" so that N’ now contains u,
x, and y. The cost to the remaining nodes not yet in N', that is, nodes v, w, and z,
are updated via line 12 of the LS algorithm, yielding the results shown in the third
row in Table 5.1.

e Andsoon...

When the LS algorithm terminates, we have, for each node, its predecessor
along the least-cost path from the source node. For each predecessor, we also have its
predecessor, and so in this manner we can construct the entire path from the source to
all destinations. The forwarding table in a node, say node u, can then be constructed
from this information by storing, for each destination, the next-hop node on the least-
cost path from u to the destination. Figure 5.4 shows the resulting least-cost paths
and forwarding table in u for the network in Figure 5.3.

386

CHAPTER 5

e THE NETWORK LAYER: CONTROL PLANE

Destination Link

% % (u, v)
& 3 0
SoH—

(u, x)
Figure 5.4 + Least cost path and forwarding table for node u

N< X S <

(u, x)

What is the computational complexity of this algorithm? That is, given n nodes
(not counting the source), how much computation must be done in the worst case to
find the least-cost paths from the source to all destinations? In the first iteration, we
need to search through all n nodes to determine the node, w, not in N’ that has the
minimum cost. In the second iteration, we need to check n — 1 nodes to determine
the minimum cost; in the third iteration n — 2 nodes, and so on. Overall, the total
number of nodes we need to search through over all the iterations is n(n + 1)/2, and
thus we say that the preceding implementation of the LS algorithm has worst-case
complexity of order n squared: O(n%). (A more sophisticated implementation of this
algorithm, using a data structure known as a heap, can find the minimum in line 9 in
logarithmic rather than linear time, thus reducing the complexity.)

Before completing our discussion of the LS algorithm, let us consider a pathol-
ogy that can arise. Figure 5.5 shows a simple network topology where link costs are
equal to the load carried on the link, for example, reflecting the delay that would
be experienced. In this example, link costs are not symmetric; that is, c(u,v) equals
c(v,u) only if the load carried on both directions on the link (u,v) is the same. In this
example, node z originates a unit of traffic destined for w, node x also originates a
unit of traffic destined for w, and node y injects an amount of traffic equal to e, also
destined for w. The initial routing is shown in Figure 5.5(a) with the link costs cor-
responding to the amount of traffic carried.

When the LS algorithm is next run, node y determines (based on the link costs
shown in Figure 5.5(a)) that the clockwise path to w has a cost of 1, while the coun-
terclockwise path to w (which it had been using) has a cost of 1 + e. Hence y’s least-
cost path to w is now clockwise. Similarly, x determines that its new least-cost path to
w is also clockwise, resulting in costs shown in Figure 5.5(b). When the LS algorithm
is run next, nodes x, y, and z all detect a zero-cost path to w in the counterclockwise
direction, and all route their traffic to the counterclockwise routes. The next time the
LS algorithm is run, x, y, and z all then route their traffic to the clockwise routes.

What can be done to prevent such oscillations (which can occur in any algo-
rithm, not just an LS algorithm, that uses a congestion or delay-based link metric)?
One solution would be to mandate that link costs not depend on the amount of traffic

5.2 o ROUTING ALGORITHMS

a. Initial routing b. x, y detect better path
to w, clockwise

C. X, Y, z detect better path d. x, y. z, detect better path
to w, counterclockwise to w, clockwise

Figure 5.5 ¢ Oscillations with congestion-sensitive routing

carried—an unacceptable solution since one goal of routing is to avoid highly con-
gested (for example, high-delay) links. Another solution is to ensure that not all rout-
ers run the LS algorithm at the same time. This seems a more reasonable solution,
since we would hope that even if routers ran the LS algorithm with the same perio-
dicity, the execution instance of the algorithm would not be the same at each node.
Interestingly, researchers have found that routers in the Internet can self-synchronize
among themselves [Floyd Synchronization 1994]. That is, even though they initially
execute the algorithm with the same period but at different instants of time, the algo-
rithm execution instance can eventually become, and remain, synchronized at the
routers. One way to avoid such self-synchronization is for each router to randomize
the time it sends out a link advertisement.

Having studied the LS algorithm, let’s consider the other major routing algo-
rithm that is used in practice today—the distance-vector routing algorithm.

387

388

CHAPTER 5

e THE NETWORK LAYER: CONTROL PLANE

5.2.2 The Distance-Vector (DV) Routing Algorithm

Whereas the LS algorithm is an algorithm using global information, the distance-
vector (DV) algorithm is iterative, asynchronous, and distributed. It is distributed in
that each node receives some information from one or more of its directly attached
neighbors, performs a calculation, and then distributes the results of its calculation
back to its neighbors. It is iterative in that this process continues on until no more
information is exchanged between neighbors. (Interestingly, the algorithm is also
self-terminating—there is no signal that the computation should stop; it just stops.)
The algorithm is asynchronous in that it does not require all of the nodes to operate in
lockstep with each other. We’ll see that an asynchronous, iterative, self-terminating,
distributed algorithm is much more interesting and fun than a centralized algorithm!

Before we present the DV algorithm, it will prove beneficial to discuss an impor-
tant relationship that exists among the costs of the least-cost paths. Let d,(y) be the
cost of the least-cost path from node x to node y. Then the least costs are related by
the celebrated Bellman-Ford equation, namely,

dy(y) = min, {c(x,v) + d,(y)}, (.1

where the min in the equation is taken over all of x’s neighbors. The Bellman-
Ford equation is rather intuitive. Indeed, after traveling from x to v, if we then take
the least-cost path from v to y, the path cost will be c(x, v) + d,(y). Since we must
begin by traveling to some neighbor v, the least cost from x to y is the minimum of
c(x, v) + d,(y) taken over all neighbors v.

But for those who might be skeptical about the validity of the equation, let’s
check it for source node # and destination node z in Figure 5.3. The source node u
has three neighbors: nodes v, x, and w. By walking along various paths in the graph,
it is easy to see that d,(z) = 5, d(z) = 3, and d,,(z) = 3. Plugging these values into
Equation 5.1, along with the costs c(u, v) = 2, c(u, x) = 1, and c(u, w) = 5, gives
d(z) = min{2 + 5,5 + 3,1 + 3} = 4, which is obviously true and which is
exactly what the Dijskstra algorithm gave us for the same network. This quick veri-
fication should help relieve any skepticism you may have.

The Bellman-Ford equation is not just an intellectual curiosity. It actually has signif-
icant practical importance: the solution to the Bellman-Ford equation provides the entries
in node x’s forwarding table. To see this, let v* be any neighboring node that achieves
the minimum in Equation 5.1. Then, if node x wants to send a packet to node y along a
least-cost path, it should first forward the packet to node v*. Thus, node x’s forwarding
table would specify node v* as the next-hop router for the ultimate destination y. Another
important practical contribution of the Bellman-Ford equation is that it suggests the form
of the neighbor-to-neighbor communication that will take place in the DV algorithm.

The basic idea is as follows. Each node x begins with D,(y), an estimate of the cost
of the least-cost path from itself to node y, for all nodes, y, in N. Let D, = [D(y): y in N]
be node x’s distance vector, which is the vector of cost estimates from x to all other nodes,
y,in N. With the DV algorithm, each node x maintains the following routing information:

5.2 o ROUTING ALGORITHMS 389

* For each neighbor v, the cost c(x,v) from x to directly attached neighbor, v

* Node x’s distance vector, that is, D, = [D,(y): y in N], containing x’s estimate of
its cost to all destinations, y, in N

e The distance vectors of each of its neighbors, that is, D, = [D,(y): y in N] for
each neighbor v of x

In the distributed, asynchronous algorithm, from time to time, each node sends a
copy of its distance vector to each of its neighbors. When a node x receives a new
distance vector from any of its neighbors w, it saves w’s distance vector, and then
uses the Bellman-Ford equation to update its own distance vector as follows:

D.(y) = min,{c(x,v) + D(y)} for each nodeyin N

If node x’s distance vector has changed as a result of this update step, node x will then
send its updated distance vector to each of its neighbors, which can in turn update
their own distance vectors. Miraculously enough, as long as all the nodes continue
to exchange their distance vectors in an asynchronous fashion, each cost estimate
D (y) converges to d(y), the actual cost of the least-cost path from node x to node y
[Bertsekas 1991]!

Distance-Vector (DV) Algorithm

At each node, x:

1 Initialization:

2 for all destinations y in N:

3 D, (y)= c(x,y)/* if y is not a neighbor then c(x,y)= o */

4 for each neighbor w

5 Dw(y) = ? for all destinations y in N

6 for each neighbor w

7 send distance vector D_= [D (y): y in N] to w

8

9 loop

10 wait (until I see a link cost change to some neighbor w or

11 until I receive a distance vector from some neighbor w)
12

13 for each y in N:

14 D (y) = min_{c(x,v) + D_(y)}

15

16 if D (y) changed for any destination y

17 send distance vector DX = [D (y): y in N] to all neighbors
18

19 forever

390

CHAPTER 5

e THE NETWORK LAYER: CONTROL PLANE

In the DV algorithm, a node x updates its distance-vector estimate when it either
sees a cost change in one of its directly attached links or receives a distance-vector
update from some neighbor. But to update its own forwarding table for a given des-
tination y, what node x really needs to know is not the shortest-path distance to y but
instead the neighboring node v*(y) that is the next-hop router along the shortest path
to y. As you might expect, the next-hop router v*(y) is the neighbor v that achieves
the minimum in Line 14 of the DV algorithm. (If there are multiple neighbors v that
achieve the minimum, then v*(y) can be any of the minimizing neighbors.) Thus,
in Lines 13—-14, for each destination y, node x also determines v*(y) and updates its
forwarding table for destination y.

Recall that the LS algorithm is a centralized algorithm in the sense that it
requires each node to first obtain a complete map of the network before running the
Dijkstra algorithm. The DV algorithm is decentralized and does not use such global
information. Indeed, the only information a node will have is the costs of the links
to its directly attached neighbors and information it receives from these neighbors.
Each node waits for an update from any neighbor (Lines 10-11), calculates its new
distance vector when receiving an update (Line 14), and distributes its new distance
vector to its neighbors (Lines 16—17). DV-like algorithms are used in many routing
protocols in practice, including the Internet’s RIP and BGP, ISO IDRP, Novell IPX,
and the original ARPAnet.

Figure 5.6 illustrates the operation of the DV algorithm for the simple three-
node network shown at the top of the figure. The operation of the algorithm is illus-
trated in a synchronous manner, where all nodes simultaneously receive distance
vectors from their neighbors, compute their new distance vectors, and inform their
neighbors if their distance vectors have changed. After studying this example, you
should convince yourself that the algorithm operates correctly in an asynchronous
manner as well, with node computations and update generation/reception occurring
at any time.

The leftmost column of the figure displays three initial routing tables for each
of the three nodes. For example, the table in the upper-left corner is node x’s ini-
tial routing table. Within a specific routing table, each row is a distance vector—
specifically, each node’s routing table includes its own distance vector and that
of each of its neighbors. Thus, the first row in node x’s initial routing table is
D, = [D.x), D(y), D(z)] = [0, 2, 7]. The second and third rows in this table are
the most recently received distance vectors from nodes y and z, respectively. Because
at initialization node x has not received anything from node y or z, the entries in
the second and third rows are initialized to infinity.

After initialization, each node sends its distance vector to each of its two neigh-
bors. This is illustrated in Figure 5.6 by the arrows from the first column of tables
to the second column of tables. For example, node x sends its distance vector D, =
[0, 2, 7] to both nodes y and z. After receiving the updates, each node recomputes its
own distance vector. For example, node x computes

5.2 o ROUTING ALGORITHMS 391

D(x) =20
D(y) = min{c(xy) + Dy(y), c(x,2) + D.(y)} = min{2 + 0,7 + 1} =2
Dy(z) = min{c(x,y) + Dy(2), c(x.2) + D(z)} = min{2 + 1,7+ 0} =3

The second column therefore displays, for each node, the node’s new distance vector
along with distance vectors just received from its neighbors. Note, for example, that

Node x table
cost to cost to cost to
| x y z | xy z | xy z
X X X 0 2 3
S y y y 2 0 1
Tz z z 310
Node y table
cost to cost to
| xy z | | x vy
X 00 00 09 X X 0 3
5y y y| 201
Tz z z 310
Node z table
cost to cost to cost to
| x y z | xy z | x vy
X © o o X 0 2 7 X 0 3
Ey| wwcof Syl 201f Sy| 201
E g Tz ‘ Tz 310

Time

Figure 5.6 + Distance-vector (DV) algorithm in operation

392

CHAPTER 5

e THE NETWORK LAYER: CONTROL PLANE

node x’s estimate for the least cost to node z, D (2), has changed from 7 to 3. Also
note that for node x, neighboring node y achieves the minimum in line 14 of the DV
algorithm; thus, at this stage of the algorithm, we have at node x that v¥(y) = y and
viz) = .

After the nodes recompute their distance vectors, they again send their updated
distance vectors to their neighbors (if there has been a change). This is illustrated in
Figure 5.6 by the arrows from the second column of tables to the third column of
tables. Note that only nodes x and z send updates: node y’s distance vector didn’t
change so node y doesn’t send an update. After receiving the updates, the nodes then
recompute their distance vectors and update their routing tables, which are shown in
the third column.

The process of receiving updated distance vectors from neighbors, recomputing
routing table entries, and informing neighbors of changed costs of the least-cost path
to a destination continues until no update messages are sent. At this point, since no
update messages are sent, no further routing table calculations will occur and the
algorithm will enter a quiescent state; that is, all nodes will be performing the wait in
Lines 10-11 of the DV algorithm. The algorithm remains in the quiescent state until
a link cost changes, as discussed next.

Distance-Vector Algorithm: Link-Cost Changes and Link Failure

When a node running the DV algorithm detects a change in the link cost from
itself to a neighbor (Lines 10-11), it updates its distance vector (Lines 13-14)
and, if there’s a change in the cost of the least-cost path, informs its neighbors
(Lines 16—17) of its new distance vector. Figure 5.7(a) illustrates a scenario where
the link cost from y to x changes from 4 to 1. We focus here only on y’ and z’s
distance table entries to destination x. The DV algorithm causes the following
sequence of events to occur:

e At time #,, y detects the link-cost change (the cost has changed from 4 to 1),
updates its distance vector, and informs its neighbors of this change since its dis-
tance vector has changed.

e At time #,, z receives the update from y and updates its table. It computes a new
least cost to x (it has decreased from a cost of 5 to a cost of 2) and sends its new
distance vector to its neighbors.

e Attime t,, y receives z's update and updates its distance table. y’s least costs do
not change and hence y does not send any message to z. The algorithm comes to
a quiescent state.

Thus, only two iterations are required for the DV algorithm to reach a quiescent
state. The good news about the decreased cost between x and y has propagated
quickly through the network.

5.2 o ROUTING ALGORITHMS

Figure 5.7 ¢+ Changes in link cost

Let’s now consider what can happen when a link cost increases. Suppose that
the link cost between x and y increases from 4 to 60, as shown in Figure 5.7(b).

1. Before the link cost changes, Dy(x) = 4, D\(z) = 1, D,(y) = 1,and D,(x) = 5.
At time £, y detects the link-cost change (the cost has changed from 4 to 60). y
computes its new minimum-cost path to x to have a cost of

D,(x) = min{c(y,x) + Dy(x), c(y,2) + D,(x)} = min{60 + 0,1 +5} =6

Of course, with our global view of the network, we can see that this new cost via
7 is wrong. But the only information node y has is that its direct cost to x is 60
and that z has last told y that z could get to x with a cost of 5. So in order to get
to x, y would now route through z, fully expecting that z will be able to get to x
with a cost of 5. As of #, we have a routing loop—in order to get to x, y routes
through z, and z routes through y. A routing loop is like a black hole—a packet
destined for x arriving at y or z as of 7, will bounce back and forth between these
two nodes forever (or until the forwarding tables are changed).

2. Since node y has computed a new minimum cost to x, it informs z of its new
distance vector at time 7,.

3. Sometime after 7, z receives y’s new distance vector, which indicates that y’s
minimum cost to x is 6. z knows it can get to y with a cost of 1 and hence com-
putes a new least cost to x of D.(x) = min{50 + 0,1 + 6} = 7. Since z’s
least cost to x has increased, it then informs y of its new distance vector at z,.

4. In a similar manner, after receiving z’s new distance vector, y determines
D,(x) = 8 and sends z its distance vector. z then determines D (x) = 9 and
sends y its distance vector, and so on.

How long will the process continue? You should convince yourself that the loop will
persist for 44 iterations (message exchanges between y and z)—until z eventually
computes the cost of its path via y to be greater than 50. At this point, z will (finally!)
determine that its least-cost path to x is via its direct connection to x. y will then

393

394

CHAPTER 5

e THE NETWORK LAYER: CONTROL PLANE

route to x via z. The result of the bad news about the increase in link cost has indeed
traveled slowly! What would have happened if the link cost c(y, x) had changed from
4 to 10,000 and the cost c¢(z, x) had been 9,999? Because of such scenarios, the prob-
lem we have seen is sometimes referred to as the count-to-infinity problem.

Distance-Vector Algorithm: Adding Poisoned Reverse

The specific looping scenario just described can be avoided using a technique known
as poisoned reverse. The idea is simple—if z routes through y to get to destination x,
then z will advertise to y that its distance to x is infinity, that is, z will advertise to y
that D,(x) = 0 (even though z knows D,(x) = 5 in truth). z will continue telling this
little white lie to y as long as it routes to x via y. Since y believes that z has no path
to x, y will never attempt to route to x via z, as long as z continues to route to x via y
(and lies about doing so).

Let’s now see how poisoned reverse solves the particular looping problem we
encountered before in Figure 5.5(b). As a result of the poisoned reverse, y’s distance
table indicates D,(x) = oo. When the cost of the (x, y) link changes from 4 to 60 at
time 7, y updates its table and continues to route directly to x, albeit at a higher cost
of 60, and informs z of its new cost to x, that is, D (x) = 60. After receiving the
update at 1,z immediately shifts its route to x to be via the direct (z, x) link at a cost
of 50. Since this is a new least-cost path to x, and since the path no longer passes
through y, z now informs y that D (x) = 50 at t,. After receiving the update from
z, y updates its distance table with Dy(x) = 51. Also, since z is now on y’s least-
cost path to x, y poisons the reverse path from z to x by informing z at time ¢, that
D,(x) = o (even though y knows that Dy(x) = 51 in truth).

Does poisoned reverse solve the general count-to-infinity problem? It does not.
You should convince yourself that loops involving three or more nodes (rather than
simply two immediately neighboring nodes) will not be detected by the poisoned
reverse technique.

A Comparison of LS and DV Routing Algorithms

The DV and LS algorithms take complementary approaches toward computing rout-
ing. In the DV algorithm, each node talks to only its directly connected neighbors,
but it provides its neighbors with least-cost estimates from itself to a/l the nodes (that
it knows about) in the network. The LS algorithm requires global information. Con-
sequently, when implemented in each and every router, for example, as in Figures 4.2
and 5.1, each node would need to communicate with all other nodes (via broadcast),
but it tells them only the costs of its directly connected links. Let’s conclude our
study of LS and DV algorithms with a quick comparison of some of their attributes.
Recall that N is the set of nodes (routers) and E is the set of edges (links).

* Message complexity. We have seen that LS requires each node to know the
cost of each link in the network. This requires O(INI |[El) messages to be sent.

5.3 * INTRA-AS ROUTING IN THE INTERNET: OSPF

Also, whenever a link cost changes, the new link cost must be sent to all nodes.
The DV algorithm requires message exchanges between directly connected
neighbors at each iteration. We have seen that the time needed for the algo-
rithm to converge can depend on many factors. When link costs change, the
DV algorithm will propagate the results of the changed link cost only if the
new link cost results in a changed least-cost path for one of the nodes attached
to that link.

Speed of convergence. We have seen that our implementation of LS is an O(INI?)
algorithm requiring O(INI IEl)) messages. The DV algorithm can converge slowly
and can have routing loops while the algorithm is converging. DV also suffers
from the count-to-infinity problem.

Robustness. What can happen if a router fails, misbehaves, or is sabotaged?
Under LS, a router could broadcast an incorrect cost for one of its attached links
(but no others). A node could also corrupt or drop any packets it received as part
of an LS broadcast. But an LS node is computing only its own forwarding tables;
other nodes are performing similar calculations for themselves. This means route
calculations are somewhat separated under LS, providing a degree of robustness.
Under DV, a node can advertise incorrect least-cost paths to any or all destina-
tions. (Indeed, in 1997, a malfunctioning router in a small ISP provided national
backbone routers with erroneous routing information. This caused other routers
to flood the malfunctioning router with traffic and caused large portions of the
Internet to become disconnected for up to several hours [Neumann 1997].) More
generally, we note that, at each iteration, a node’s calculation in DV is passed on
to its neighbor and then indirectly to its neighbor’s neighbor on the next iteration.
In this sense, an incorrect node calculation can be diffused through the entire
network under DV.

In the end, neither algorithm is an obvious winner over the other; indeed, both algo-
rithms are used in the Internet.

5.3 Intra-AS Routing in the Internet: OSPF

In our study of routing algorithms so far, we’ve viewed the network simply as a

collection of interconnected routers. One router was indistinguishable from another

in the sense that all routers executed the same routing algorithm to compute routing
paths through the entire network. In practice, this model and its view of a homog-

enous set of routers all executing the same routing algorithm is simplistic for two

important reasons:

Scale. As the number of routers becomes large, the overhead involved in communi-
cating, computing, and storing routing information becomes prohibitive. Today’s

395

396

CHAPTER 5

e THE NETWORK LAYER: CONTROL PLANE

Internet consists of hundreds of millions of routers. Storing routing information
for possible destinations at each of these routers would clearly require enormous
amounts of memory. The overhead required to broadcast connectivity and link
cost updates among all of the routers would be huge! A distance-vector algorithm
that iterated among such a large number of routers would surely never converge.
Clearly, something must be done to reduce the complexity of route computation
in a network as large as the Internet.

* Administrative autonomy. As described in Section 1.3, the Internet is a network
of ISPs, with each ISP consisting of its own network of routers. An ISP generally
desires to operate its network as it pleases (for example, to run whatever rout-
ing algorithm it chooses within its network) or to hide aspects of its network’s
internal organization from the outside. Ideally, an organization should be able to
operate and administer its network as it wishes, while still being able to connect
its network to other outside networks.

Both of these problems can be solved by organizing routers into autonomous
systems (ASs), with each AS consisting of a group of routers that are under the same
administrative control. Often the routers in an ISP, and the links that interconnect
them, constitute a single AS. Some ISPs, however, partition their network into multi-
ple ASs. In particular, some tier-1 ISPs use one gigantic AS for their entire network,
whereas others break up their ISP into tens of interconnected ASs. An autonomous
system is identified by its globally unique autonomous system number (ASN) [RFC
1930]. AS numbers, like IP addresses, are assigned by ICANN regional registries
[ICANN 2020].

Routers within the same AS all run the same routing algorithm and have infor-
mation about each other. The routing algorithm running within an autonomous sys-
tem is called an intra-autonomous system routing protocol.

Open Shortest Path First (OSPF)

OSPF routing and its closely related cousin, IS-IS, are widely used for intra-AS
routing in the Internet. The Open in OSPF indicates that the routing protocol speci-
fication is publicly available (for example, as opposed to Cisco’s EIGRP protocol,
which was only recently became open [Savage 2015], after roughly 20 years as a
Cisco-proprietary protocol). The most recent version of OSPF, version 2, is defined
in [RFC 2328], a public document.

OSPF is a link-state protocol that uses flooding of link-state information
and a Dijkstra’s least-cost path algorithm. With OSPF, each router constructs
a complete topological map (that is, a graph) of the entire autonomous system.
Each router then locally runs Dijkstra’s shortest-path algorithm to determine a
shortest-path tree to all subnets, with itself as the root node. Individual link costs
are configured by the network administrator (see sidebar, Principles and Practice:

5.3 * INTRA-AS ROUTING IN THE INTERNET: OSPF

PRINCIPLES IN PRACTICE

SETTING OSPF LINK WEIGHTS

Our discussion of link-state routing has implicitly assumed that link weights are set, a
routing algorithm such as OSPF is run, and traffic flows according to the routing tables
computed by the LS algorithm. In terms of cause and effect, the link weights are given [i.e.,
they come first) and result (via Dijkstra’s algorithm) in routing paths that minimize overall
cost. In this viewpoint, link weights reflect the cost of using a link (for example, if link
weights are inversely proportional to capacity, then the use of high-capacity links would
have smaller weight and thus be more attractive from a routing standpoint] and Dijsktra’s
algorithm serves to minimize overall cost.

In practice, the cause and effect relationship between link weights and routing paths
may be reversed, with network operators configuring link weights in order to obtain rout-
ing paths that achieve certain traffic engineering goals [Fortz 2000, Fortz 2002]. For
example, suppose a network operator has an estimate of traffic flow entering the network
at each ingress point and destined for each egress point. The operator may then want
to put in place a specific routing of ingress-to-egress flows that minimizes the maximum
utilization over all of the network’s links. But with a routing algorithm such as OSPF, the
operator’s main “knobs” for tuning the routing of flows through the network are the link
weights. Thus, in order to achieve the goal of minimizing the maximum link utilization, the
operator must find the set of link weights that achieves this goal. This is a reversal of the
cause and effect relationship—the desired routing of flows is known, and the OSPF link
weights must be found such that the OSPF routing algorithm results in this desired routing
of flows.

Setting OSPF Weights). The administrator might choose to set all link costs to 1,
thus achieving minimum-hop routing, or might choose to set the link weights to
be inversely proportional to link capacity in order to discourage traffic from using
low-bandwidth links. OSPF does not mandate a policy for how link weights are
set (that is the job of the network administrator), but instead provides the mecha-
nisms (protocol) for determining least-cost path routing for the given set of link
weights.

With OSPF, a router broadcasts routing information to all other routers in the
autonomous system, not just to its neighboring routers. A router broadcasts link-state
information whenever there is a change in a link’s state (for example, a change in
cost or a change in up/down status). It also broadcasts a link’s state periodically (at
least once every 30 minutes), even if the link’s state has not changed. RFC 2328
notes that “this periodic updating of link state advertisements adds robustness to the
link state algorithm.” OSPF advertisements are contained in OSPF messages that are

397

398

CHAPTER 5

THE NETWORK LAYER: CONTROL PLANE

carried directly by IP, with an upper-layer protocol of 89 for OSPF. Thus, the OSPF
protocol must itself implement functionality such as reliable message transfer and
link-state broadcast. The OSPF protocol also checks that links are operational (via a
HELLO message that is sent to an attached neighbor) and allows an OSPF router to
obtain a neighboring router’s database of network-wide link state.

Some of the advances embodied in OSPF include the following:

Security. Exchanges between OSPF routers (for example, link-state updates) can
be authenticated. With authentication, only trusted routers can participate in the
OSPF protocol within an AS, thus preventing malicious intruders (or networking
students taking their newfound knowledge out for a joyride) from injecting incor-
rect information into router tables. By default, OSPF packets between routers
are not authenticated and could be forged. Two types of authentication can be
configured—simple and MD5 (see Chapter 8 for a discussion on MD5 and
authentication in general). With simple authentication, the same password is con-
figured on each router. When a router sends an OSPF packet, it includes the
password in plaintext. Clearly, simple authentication is not very secure. MD5
authentication is based on shared secret keys that are configured in all the routers.
For each OSPF packet that it sends, the router computes the MDS5 hash of the
content of the OSPF packet appended with the secret key. (See the discussion of
message authentication codes in Chapter 8.) Then the router includes the resulting
hash value in the OSPF packet. The receiving router, using the preconfigured
secret key, will compute an MDS5 hash of the packet and compare it with the hash
value that the packet carries, thus verifying the packet’s authenticity. Sequence
numbers are also used with MDS5 authentication to protect against replay attacks.

Multiple same-cost paths. When multiple paths to a destination have the same
cost, OSPF allows multiple paths to be used (that is, a single path need not be
chosen for carrying all traffic when multiple equal-cost paths exist).

Integrated support for unicast and multicast routing. Multicast OSPF (MOSPF)
[RFC 1584] provides simple extensions to OSPF to provide for multicast routing.
MOSPF uses the existing OSPF link database and adds a new type of link-state
advertisement to the existing OSPF link-state broadcast mechanism.

Support for hierarchy within a single AS. An OSPF autonomous system can
be configured hierarchically into areas. Each area runs its own OSPF link-state
routing algorithm, with each router in an area broadcasting its link state to all
other routers in that area. Within each area, one or more area border routers are
responsible for routing packets outside the area. Lastly, exactly one OSPF area
in the AS is configured to be the backbone area. The primary role of the back-
bone area is to route traffic between the other areas in the AS. The backbone
always contains all area border routers in the AS and may contain non-border
routers as well. Inter-area routing within the AS requires that the packet be first

5.4 e+ ROUTING AMONG THE ISPS: BGP 399

routed to an area border router (intra-area routing), then routed through the back-
bone to the area border router that is in the destination area, and then routed to
the final destination.

OSPF is a relatively complex protocol, and our coverage here has been necessar-
ily brief; [Huitema 1998; Moy 1998; RFC 2328] provide additional details.

5.4 Routing Among the ISPs: BGP

We just learned that OSPF is an example of an intra-AS routing protocol. When
routing a packet between a source and destination within the same AS, the route
the packet follows is entirely determined by the intra-AS routing protocol. How-
ever, to route a packet across multiple ASs, say from a smartphone in Timbuktu to
a server in a datacenter in Silicon Valley, we need an inter-autonomous system
routing protocol. Since an inter-AS routing protocol involves coordination
among multiple ASs, communicating ASs must run the same inter-AS routing
protocol. In fact, in the Internet, all ASs run the same inter-AS routing protocol,
called the Border Gateway Protocol, more commonly known as BGP [RFC 4271;
Stewart 1999].

BGP is arguably the most important of all the Internet protocols (the only other
contender would be the IP protocol that we studied in Section 4.3), as it is the pro-
tocol that glues the thousands of ISPs in the Internet together. As we will soon see,
BGP is a decentralized and asynchronous protocol in the vein of distance-vector
routing described in Section 5.2.2. Although BGP is a complex and challenging pro-
tocol, to understand the Internet on a deep level, we need to become familiar with
its underpinnings and operation. The time we devote to learning BGP will be well
worth the effort.

5.4.1 The Role of BGP

To understand the responsibilities of BGP, consider an AS and an arbitrary router
in that AS. Recall that every router has a forwarding table, which plays the central
role in the process of forwarding arriving packets to outbound router links. As we
have learned, for destinations that are within the same AS, the entries in the router’s
forwarding table are determined by the AS’s intra-AS routing protocol. But what
about destinations that are outside of the AS? This is precisely where BGP comes to
the rescue.

In BGP, packets are not routed to a specific destination address, but instead to
CIDRized prefixes, with each prefix representing a subnet or a collection of subnets.

VideoNote
Gluing the Internet
Together: BGP

400

CHAPTER 5

e THE NETWORK LAYER: CONTROL PLANE

In the world of BGP, a destination may take the form 138.16.68/22, which for this
example includes 1,024 IP addresses. Thus, a router’s forwarding table will have
entries of the form (x, /), where x is a prefix (such as 138.16.68/22) and / is an inter-
face number for one of the router’s interfaces.

As an inter-AS routing protocol, BGP provides each router a means to:

1. Obtain prefix reachability information from neighboring ASs. In particular,
BGP allows each subnet to advertise its existence to the rest of the Internet. A
subnet screams, “I exist and I am here,” and BGP makes sure that all the rout-
ers in the Internet know about this subnet. If it weren’t for BGP, each subnet
would be an isolated island—alone, unknown and unreachable by the rest of the
Internet.

2. Determine the “best” routes to the prefixes. A router may learn about two or
more different routes to a specific prefix. To determine the best route, the router
will locally run a BGP route-selection procedure (using the prefix reachability
information it obtained via neighboring routers). The best route will be deter-
mined based on policy as well as the reachability information.

Let us now delve into how BGP carries out these two tasks.

5.4.2 Advertising BGP Route Information

Consider the network shown in Figure 5.8. As we can see, this simple network has
three autonomous systems: AS1, AS2, and AS3. As shown, AS3 includes a subnet
with prefix x. For each AS, each router is either a gateway router or an internal
router. A gateway router is a router on the edge of an AS that directly connects to
one or more routers in other ASs. An internal router connects only to hosts and
routers within its own AS. In AS1, for example, router lc is a gateway router; routers
la, 1b, and 1d are internal routers.

Let’s consider the task of advertising reachability information for prefix x to
all of the routers shown in Figure 5.8. At a high level, this is straightforward. First,
AS3 sends a BGP message to AS2, saying that x exists and is in AS3; let’s denote
this message as “AS3 x”. Then AS2 sends a BGP message to AS1, saying that x
exists and that you can get to x by first passing through AS2 and then going to AS3;
let’s denote that message as “AS2 AS3 x”. In this manner, each of the autonomous
systems will not only learn about the existence of x, but also learn about a path of
autonomous systems that leads to x.

Although the discussion in the above paragraph about advertising BGP reacha-
bility information should get the general idea across, it is not precise in the sense that
autonomous systems do not actually send messages to each other, but instead routers
do. To understand this, let’s now re-examine the example in Figure 5.8. In BGP,

5.4 e+ ROUTING AMONG THE ISPS: BGP

AS1 AS3

Figure 5.8 + Network with three autonomous systems. AS3 includes a
subnet with prefix x

pairs of routers exchange routing information over semi-permanent TCP connections
using port 179. Each such TCP connection, along with all the BGP messages sent
over the connection, is called a BGP connection. Furthermore, a BGP connection
that spans two ASs is called an external BGP (eBGP) connection, and a BGP ses-
sion between routers in the same AS is called an internal BGP (iBGP) connection.
Examples of BGP connections for the network in Figure 5.8 are shown in Figure 5.9.
There is typically one eBGP connection for each link that directly connects gateway
routers in different ASs; thus, in Figure 5.9, there is an eBGP connection between
gateway routers lc and 2a and an eBGP connection between gateway routers 2c
and 3a.

There are also iBGP connections between routers within each of the ASs. In
particular, Figure 5.9 displays a common configuration of one BGP connection for
each pair of routers internal to an AS, creating a mesh of TCP connections within
each AS. In Figure 5.9, the eBGP connections are shown with the long dashes; the
iBGP connections are shown with the short dashes. Note that iBGP connections do
not always correspond to physical links.

In order to propagate the reachability information, both iBGP and eBGP
sessions are used. Consider again advertising the reachability information for
prefix x to all routers in AS1 and AS2. In this process, gateway router 3a first
sends an eBGP message “AS3 x” to gateway router 2c. Gateway router 2c then
sends the iBGP message “AS3 x” to all of the other routers in AS2, including
to gateway router 2a. Gateway router 2a then sends the eBGP message “AS2
AS3 x” to gateway router lc. Finally, gateway router 1c uses iBGP to send the

401

402

CHAPTER 5

e THE NETWORK LAYER: CONTROL PLANE

Figure 5.9 ¢+ eBGP and iBGP connections

message “AS2 AS3 x” to all the routers in AS1. After this process is complete,
each router in AS1 and AS2 is aware of the existence of x and is also aware of
an AS path that leads to x.

Of course, in a real network, from a given router there may be many different
paths to a given destination, each through a different sequence of ASs. For example,
consider the network in Figure 5.10, which is the original network in Figure 5.8, with
an additional physical link from router 1d to router 3d. In this case, there are two
paths from ASI1 to x: the path “AS2 AS3 x” via router 1c; and the new path “AS3 x”
via the router 1d.

5.4.3 Determining the Best Routes

As we have just learned, there may be many paths from a given router to a destina-
tion subnet. In fact, in the Internet, routers often receive reachability information
about dozens of different possible paths. How does a router choose among these
paths (and then configure its forwarding table accordingly)?

Before addressing this critical question, we need to introduce a little more
BGP terminology. When a router advertises a prefix across a BGP connection, it
includes with the prefix several BGP attributes. In BGP jargon, a prefix along with
its attributes is called a route. Two of the more important attributes are AS-PATH
and NEXT-HOP. The AS-PATH attribute contains the list of ASs through which the

5.4 e+ ROUTING AMONG THE ISPS: BGP

NEXT-HOP

AS1 NEXT-HOP AS3

Figure 5.10 ¢ Network augmented with peering link between AS]
and AS3

advertisement has passed, as we’ve seen in our examples above. To generate the AS-
PATH value, when a prefix is passed to an AS, the AS adds its ASN to the existing
list in the AS-PATH. For example, in Figure 5.10, there are two routes from ASI
to subnet x: one which uses the AS-PATH “AS2 AS3”; and another that uses the
AS-PATH “A3”. BGP routers also use the AS-PATH attribute to detect and prevent
looping advertisements; specifically, if a router sees that its own AS is contained in
the path list, it will reject the advertisement.

Providing the critical link between the inter-AS and intra-AS routing protocols,
the NEXT-HOP attribute has a subtle but important use. The NEXT-HOP is the IP
address of the router interface that begins the AS-PATH. To gain insight into this
attribute, let’s again refer to Figure 5.10. As indicated in Figure 5.10, the NEXT-
HOP attribute for the route “AS2 AS3 x” from AS1 to x that passes through AS2
is the IP address of the left interface on router 2a. The NEXT-HOP attribute for the
route “AS3 x” from AS1 to x that bypasses AS2 is the IP address of the leftmost
interface of router 3d. In summary, in this toy example, each router in AS1 becomes
aware of two BGP routes to prefix x:

[P address of leftmost interface for router 2a; AS2 AS3; x
[P address of leftmost interface of router 3d; AS3; x

Here, each BGP route is written as a list with three components: NEXT-HOP; AS-
PATH,; destination prefix. In practice, a BGP route includes additional attributes,
which we will ignore for the time being. Note that the NEXT-HOP attribute is an [P

403

404 CHAPTER 5

Learn from inter-AS
protocol that subnet
x is reachable via
multiple gateways.

e THE NETWORK LAYER: CONTROL PLANE

address of a router that does not belong to AS1; however, the subnet that contains
this IP address directly attaches to ASI.

Hot Potato Routing

We are now finally in position to talk about BGP routing algorithms in a precise
manner. We will begin with one of the simplest routing algorithms, namely, hot
potato routing.

Consider router 1b in the network in Figure 5.10. As just described, this router
will learn about two possible BGP routes to prefix x. In hot potato routing, the route
chosen (from among all possible routes) is that route with the least cost to the NEXT-
HOP router beginning that route. In this example, router 1b will consult its intra-AS
routing information to find the least-cost intra-AS path to NEXT-HOP router 2a and
the least-cost intra-AS path to NEXT-HOP router 3d, and then select the route with
the smallest of these least-cost paths. For example, suppose that cost is defined as the
number of links traversed. Then the least cost from router 1b to router 2a is 2, the least
cost from router 1b to router 2d is 3, and router 2a would therefore be selected. Router
1b would then consult its forwarding table (configured by its intra-AS algorithm) and
find the interface / that is on the least-cost path to router 2a. It then adds (x, /) to its
forwarding table.

The steps for adding an outside-AS prefix in a router’s forwarding table for hot
potato routing are summarized in Figure 5.11. It is important to not