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Preface

This tenth edition is with a new publisher, McGraw-Hill Education. It
represents a complete overhaul of the textbook, which delivers practical
coverage designed to introduce readers to the essential concepts of automatic
control systems. The new edition features significant enhancements of all
chapters, a greater number of solved examples, labs using both LEGO*
MINDSTORMS® and MATLAB®/SIMLab, and a valuable introduction to the
concept of Control Lab. The book gives students a real-world understanding
of the subject and prepares them for the challenges they will one day face.

For this edition, we increased the number of examples, added more
MATLAB toolboxes, and enhanced the MATLAB GUI software, ACSYS, to
allow interface with LEGO MINDSTORMS. We also added more computer-
aided tools for students and teachers. The new edition has been 5 years in the
making, and was reviewed by many professors to better fine-tune the new
concepts. In this edition, Chaps. 1 through 3 are organized to contain all
background material, while Chaps. 4 through 11 contain material directly
related to the subject of control. The Control Lab material is presented in
great detail in App. D.

The following appendices for this book can be found at

www.mhprofessional.com/golnaraghi:
Appendix A: Elementary Matrix Theory and Algebra

Appendix B: Mathematical Foundations

Appendix C: Laplace Transform Table

Appendix D: Control Lab

Appendix E: ACSYS 2013: Description of the Software
Appendix F: Properties and Construction of the Root Loci
Appendix G: General Nyquist Criterion

Appendix H: Discrete-Data Control Systems


http://www.mhprofessional.com/golnaraghi

Appendix I: Difference Equations
Appendix J: z-Transform Table

The following paragraphs are aimed at three groups: professors who have
adopted the book or who we hope will select it as their text; practicing
engineers looking for answers to solve their day-to-day design problems; and,
finally, students who are going to live with the book because it has been
assigned for the control-systems course they are taking.

To Professors

The material assembled in this book is an outgrowth of junior- and senior-
level control-systems courses taught by Professors Golnaraghi and Kuo at
their respective universities throughout their teaching careers. The first nine
editions have been adopted by hundreds of universities in the United States
and around the world and have been translated into at least six languages.

Most undergraduate control courses have labs dealing with time response
and control of dc motors—namely, speed response, speed control, position
response, and position control. In many cases, because of the high cost of
control lab equipment, student exposure to test equipment is limited, and as a
result, many students do not gain a practical insight into the subject. In this
tenth edition, recognizing these limitations, we introduce the concept of
Control Lab, which includes two classes of experiments: SIMLab (model-
based simulation) and LEGOLab (physical experiments). These
experiments are intended to supplement, or replace, the experimental
exposure of the students in a traditional undergraduate control course.

In this edition, we have created a series of inexpensive control experiments
for the LEGO MINDSTORMS NXT dc motor that will allow students to do
their work within the MATLAB and Simulink® environment—even at home.
See App. D for more details. This cost-effective approach may allow
educational institutions to equip their labs with a number of LEGO test beds
and maximize student access to the equipment at a fraction of the cost of
currently available control-systems experiments. Alternatively, as a
supplemental learning tool, students can take the equipment home after
leaving a deposit and learn at their own pace. This concept has proven to be
extremely successful at Simon Fraser University, Professor Golnaraghi’s
home university in Vancouver, Canada.

The labs include experiments on speed and position control of dc motors,



followed by a controller design project involving control of a simple robotic
system conducting a pick-and-place operation and position control of an
elevator system. Two other projects also appear in Chaps. 6 and 7. The
specific goals of these new experiments are

» To provide an in-depth, practical discussion of the dc motor speed
response, speed control, and position control concepts.

» To provide examples on how to identify the parameters of a physical
system, experimentally.

» To give a better feel for controller design through realistic examples.

This text contains not only conventional MATLAB toolboxes, where
students can learn MATLAB and utilize their programing skills, but also a
graphical MATLAB-based software, ACSYS. The ACSYS software added
to this edition is very different from the software accompanying any other
control book. Here, through extensive use of MATLAB GUI programming,
we have created software that is easy to use. As a result, students need only to
focus on learning control problems, not programming!

To Practicing Engineers

This book was written with the readers in mind and is very suitable for
self-study. Our objective was to treat subjects clearly and thoroughly. The
book does not use the theorem—proof—Q.E.D. style and is without heavy
mathematics. We have consulted extensively for wide sectors of the industry
for many years and have participated in solving numerous control-systems
problems, from aerospace systems to industrial controls, automotive controls,
and control of computer peripherals. Although it is difficult to adopt all the
details and realism of practical problems in a textbook at this level, some
examples and problems reflect simplified versions of real-life systems.

To Students

You have had it now that you have signed up for this course and your
professor has assigned this book! You had no say about the choice, though
you can form and express your opinion on the book after reading it. Worse
yet, one of the reasons that your professor made the selection is because he or
she intends to make you work hard. But please don’t misunderstand us: What
we really mean is that, though this is an easy book to study (in our opinion),



it is a no-nonsense book. It doesn’t have cartoons or nice-looking
photographs to amuse you. From here on, it is all business and hard work.
You should have had the prerequisites of subjects found in a typical linear-
systems course, such as how to solve linear ordinary differential equations,
Laplace transforms and applications, and time-response and frequency-
domain analysis of linear systems. In this book, you will not find too much
new mathematics to which you have not been exposed before. What is
interesting and challenging is that you are going to learn how to apply some
of the mathematics that you have acquired during the past 2 or 3 years of
study in college. In case you need to review some of the mathematical
foundations, you can find them in the appendices, at
www.mhprofessional.com/golnaraghi. You will also find the Simulink-based
SIMLab and LEGOLab, which will help you to gain understanding of real-
world control systems.

This book has numerous illustrative examples. Some of these are
deliberately simple for the purpose of showing new ideas and subject matter.
Some examples are more elaborate, in order to bring the practical world
closer to you. Furthermore, the objective of this book is to present a complex
subject in a clear and thorough way. One of the important learning strategies
for you as a student is not to rely strictly on the textbook assigned. When
studying a certain subject, go to the library and check out a few similar texts
to see how other authors treat the same subject. You may gain new
perspectives on the subject and discover that one author treats the material
with more care and thoroughness than the others. Do not be distracted by
written-down coverage with oversimplified examples. The minute you step
into the real world, you will face the design of control systems with
nonlinearities and/or time-varying elements as well as orders that can boggle
your mind. You may find it discouraging to be told now that strictly linear
and first-order systems do not exist in the real world.
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CHAPTER 1



Introduction to Control Systems

The main objectives of this chapter are

To define a control system.

To explain why control systems are important.

To introduce the basic components of a control system.

To give some examples of control-system applications.

To explain why feedback is incorporated into most control systems.
To introduce types of control systems.

Sk

Over the past five decades, control systems have assumed an increasingly
important role in the development and advancement of modern civilization
and technology. Practically every aspect of our day-to-day activities is
affected by some type of control system. For instance, in the domestic
domain, we need to regulate the temperature and humidity of homes and
buildings for comfortable living. For transportation, various functionalities of
the modern automobiles and airplanes involve control systems. Industrially,
manufacturing processes contain numerous objectives for products that will
satisfy the precision and cost-effectiveness requirements. A human being is
capable of performing a wide range of tasks, including decision making.
Some of these tasks, such as picking up objects and walking from one point
to another, are commonly carried out in a routine fashion. Under certain
conditions, some of these tasks are to be performed in the best possible way.
For instance, an athlete running a 100-yd dash has the objective of running
that distance in the shortest possible time. A marathon runner, on the other
hand, not only must run the distance as quickly as possible, but, in doing so,
he or she must also control the consumption of energy and devise the best
strategy for the race. The means of achieving these “objectives” usually
involve the use of control systems that implement certain control strategies.

Learning Outcomes



After successful completion of this chapter, you will be able to
1. Appreciate the role and importance of control systems in our daily
lives.
2. Understand the basic components of a control system.
3. Understand the difference between the open-loop and closed-loop
systems, and the role of feedback in a closed-loop control system.

4. Gain a practical sense of real life control problems, through the use
of LEGO® MINDSTORMS*, MATLAB?, and Simulink®.

Control systems are found in abundance in all sectors of industry, such as
quality control of manufactured products, automatic assembly lines, machine-
tool control, space technology, computer control, transportation systems,
power systems, robotics, microelectromechanical systems (MEMS),
nanotechnology, and many others. Even the control of inventory and social
and economic systems may be approached from the control system theory.
More specifically, applications of control systems benefit many areas,
including

Control systems abound in modern civilization.

* Process control. Enable automation and mass production in industrial
setting.

* Machine tools. Improve precision and increase productivity.

* Robotic systems. Enable motion and speed control.

 Transportation systems. Various functionalities of the modern
automobiles and airplanes involve control systems.

* MEMS. Enable the manufacturing of very small electromechanical
devices such as microsensors and microactuators.

 Lab-on-a-chip. Enable functionality of several laboratory tasks on a
single chip of only millimeters to a few square centimeters in size for
medical diagnostics or environmental monitoring.

* Biomechanical and biomedical. Artificial muscles, drug delivery
systems, and other assistive technologies.



1-1 BASIC COMPONENTS OF A CONTROL
SYSTEM

The basic ingredients of a control system can be described by

+ Objectives of control.
* Control-system components.
* Results or outputs.

The basic relationship among these three components is illustrated in a
block diagram representation, as shown Fig. 1-1. The block diagram
representation, as later discussed in Chap. 4, provides a graphical approach to
describe how components of a control system interact. In this case, the
objectives can be identified with inputs, or actuating signals, u, and the
results are also called outputs, or controlled variables, y. In general, the
objective of the control system is to control the outputs in some prescribed
manner by the inputs through the elements of the control system.

Objecti Result
jecuves > CONTROL ESUlLs
SYSTEM

Figure 1-1 Basic components of a control system.

1-2 EXAMPLES OF CONTROL-SYSTEM
APPLICATIONS

Applications of control systems have significantly increased through
advances in computer technology and development of new materials, which
provide unique opportunities for highly efficient actuation and sensing,
thereby reducing energy losses and environmental impacts. State-of-the-art
actuators and sensors may be implemented in virtually any system, including
biological propulsion; locomotion; robotics; material handling; biomedical,
surgical, and endoscopic; aeronautics; marine; and the defense and space
industries.

The following represent some of the applications of control that have
become part of our daily lives.



1-2-1 Intelligent Transportation Systems

The automobile and its evolution in the past two centuries is arguably the
most transformative invention of man. Over the years, many innovations
have made cars faster, stronger, and aesthetically appealing. We have grown
to desire cars that are “intelligent” and provide maximum levels of comfort,
safety, and fuel efficiency. Examples of intelligent systems in cars include
climate control, cruise control, antilock brake systems (ABSs), active
suspensions that reduce vehicle vibration over rough terrain, air springs that
self-level the vehicle in high-G turns (in addition to providing a better ride),
integrated vehicle dynamics that provide yaw control when the vehicle is
either over- or understeering (by selectively activating the brakes to regain
vehicle control), traction control systems to prevent spinning of wheels
during acceleration, and active sway bars to provide “controlled” rolling of
the vehicle. The following are a few examples.

Drive-by-Wire and Driver-Assist Systems

The new generations of intelligent vehicles are able to understand the
driving environment, know their whereabouts, monitor their health,
understand the road signs, and monitor driver performance, even overriding
drivers to avoid catastrophic accidents. These tasks require significant
overhaul of past designs. Drive-by-wire technology is replacing the
traditional mechanical and hydraulic systems with electronics and control
systems, using electromechanical actuators and human—machine interfaces
such as pedal and steering feel emulators—otherwise known as haptic
systems. Hence, the traditional components—such as the steering column,
intermediate shafts, pumps, hoses, fluids, belts, coolers, brake boosters, and
master cylinders—are eliminated from the vehicle. Haptic interfaces can offer
adequate transparency to the driver while maintaining safety and stability of
the system. Removing the bulky mechanical steering wheel column and the
rest of the steering system has clear advantages in terms of mass reduction
and safety in modern vehicles, along with improved ergonomics as a result of
creating more driver space. Replacing the steering wheel with a haptic device
that the driver controls through the sense of touch would be useful in this
regard. The haptic device would produce the same sense to the driver as the
mechanical steering wheel but with improvements in cost, safety, and fuel
consumption as a result of eliminating the bulky mechanical system.

Driver-assist systems help drivers avoid or mitigate an accident by sensing



the nature and significance of the danger. Depending on the significance and
timing of the threat, these on-board safety systems will initially alert the
driver as early as possible to an impending danger. Then, it will actively
assist or, ultimately, intervene in order to avert the accident or mitigate its
consequences. Provisions for automatic override features, when the driver
loses control due to fatigue or lack of attention, will be an important part of
the system. In such systems, the so-called advanced vehicle control system
monitors the longitudinal and lateral control, and by interacting with a central
management unit, it will be ready to take control of the vehicle whenever the
need arises. The system can be readily integrated with sensor networks that
monitor every aspect of the conditions on the road and are prepared to take
appropriate action in a safe manner.

Integration and Utilization of Advanced Hybrid Powertrains

Hybrid technologies offer improved fuel consumption while enhancing
driving experience. Utilizing new energy storage and conversion technologies
and integrating them with powertrains are prime objectives in hybrid
technologies. Such technologies must be compatible with combustion engine
platforms and must enhance, rather than compromise, vehicle function.
Sample applications include plug-in hybrid technology, which would enhance
the vehicle cruising distance based on using battery power alone, and
utilizing fuel cells, energy harvesting (e.g., by converting the vibration
energy in the suspension or the energy in the brakes into electrical energy) or
sustainable energy resources, such as solar and wind power, to charge the
batteries. The smart plug-in vehicle can be a part of an integrated smart home
and grid energy system of the future, which would utilize smart energy
metering devices for optimal use of grid energy by avoiding peak energy
consumption hours.

High-Performance Real-Time Control, Health Monitoring,
and Diagnosis

Modern vehicles utilize an increasing number of sensors, actuators, and
networked embedded computers. The need for high-performance computing
would increase with the introduction of such revolutionary features as drive-
by-wire systems into modern vehicles. The tremendous computational burden
of processing sensory data into appropriate control and monitoring signals
and diagnostic information creates challenges in the design of embedded



computing technology. Toward this end, a related challenge is to incorporate
sophisticated computational techniques that control, monitor, and diagnose
complex automotive systems while meeting requirements such as low power
consumption and cost-effectiveness.

1-2-2 Steering Control of an Automobile

As a simple example of the control system, as shown in Fig. 1-1, consider
the steering control of an automobile. The direction of the two front wheels
can be regarded as the controlled variable, or the output, y; the direction of
the steering wheel is the actuating signal, or the input, u. The control system,
or process in this case, is composed of the steering mechanism and the
dynamics of the entire automobile. However, if the objective is to control the
speed of the automobile, then the amount of pressure exerted on the
accelerator is the actuating signal, and the vehicle speed is the controlled
variable. As a whole, we can regard the simplified automobile control system
as one with two inputs (steering and accelerator) and two outputs (heading
and speed). In this case, the two controls and two outputs are independent of
each other, but there are systems for which the controls are coupled. Systems
with more than one input and one output are called multivariable systems.

1-2-3 Idle-Speed Control of an Automobile

As another example of a control system, we consider the idle-speed control
of an automobile engine. The objective of such a control system is to
maintain the engine idle speed at a relatively low value (for fuel economy)
regardless of the applied engine loads (e.g., transmission, power steering, air
conditioning). Without the idle-speed control, any sudden engine-load
application would cause a drop in engine speed that might cause the engine to
stall. Thus the main objectives of the idle-speed control system are (1) to
eliminate or minimize the speed droop when engine loading is applied and
(2) to maintain the engine idle speed at a desired value. Figure 1-2 shows the
block diagram of the idle-speed control system from the standpoint of inputs—
system—outputs. In this case, the throttle angle o and the load torque T, (due
to the application of air conditioning, power steering, transmission, or power
brakes, etc.) are the inputs, and the engine speed w is the output. The engine
is the controlled process of the system.
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Figure 1-2 Idle-speed control system.

1-2-4 Sun-Tracking Control of Solar Collectors

To achieve the goal of developing economically feasible non-fossil-fuel
electrical power, a great deal of effort has been placed on alternative energy
including research and development of solar power conversion methods,
including the solar-cell conversion techniques. In most of these systems, the
need for high efficiencies dictates the use of devices for sun tracking. Figure
1-3 shows a solar collector field. Figure 1-4 shows a conceptual method of
efficient water extraction using solar power. During the hours of daylight, the
solar collector would produce electricity to pump water from the
underground water table to a reservoir (perhaps on a nearby mountain or hill),
and in the early morning hours, the water would be released into the
irrigation system.
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Figure 1-3 Solar collector field.!
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Figure 1-4 Conceptual method of efficient water extraction using solar
power.

One of the most important features of the solar collector is that the
collector dish must track the sun accurately. Therefore, the movement of the
collector dish must be controlled by sophisticated control systems. The block



diagram of Fig. 1-5 describes the general philosophy of the sun-tracking
system together with some of the most important components. The controller
ensures that the tracking collector is pointed toward the sun in the morning
and sends a “start track” command. The controller constantly calculates the
sun’s rate for the two axes (azimuth and elevation) of control during the day.
The controller uses the sun rate and sun sensor information as inputs to
generate proper motor commands to slew the collector.

0. Sun’s Rate Pl
: Motor Rate
Trim
SUN e Rate MOTOR
SENSOR Positionr CONTROLLER —: DRIVER
Error

DISH COLLECTOR

SPEED
REDUCER

A

Torque
Disturbance T,

Figure 1-5 Important components of the sun-tracking control system.

1-3 OPEN-LOOP CONTROL SYSTEMS
(NONFEEDBACK SYSTEMYS)

The idle-speed control system illustrated in Fig. 1-2, shown previously, is
rather unsophisticated and is called an open-loop control system. It is not
difficult to see that the system as shown would not satisfactorily fulfill critical
performance requirements. For instance, if the throttle angle « is set at a
certain initial value that corresponds to a certain engine speed, then when a
load torque T, is applied, there is no way to prevent a drop in the engine
speed. The only way to make the system work is to have a means of adjusting
a in response to a change in the load torque in order to maintain w at the



desired level. The conventional electric washing machine is another example
of an open-loop control system because, typically, the amount of machine
wash time is entirely determined by the judgment and estimation of the
human operator.

Open-loop systems are economical but usually inaccurate.

The elements of an open-loop control system can usually be divided into
two parts: the controller and the controlled process, as shown by the block
diagram of Fig. 1-6. An input signal, or command, r, is applied to the
controller, whose output acts as the actuating signal u; the actuating signal
then controls the controlled process so that the controlled variable y will
perform according to some prescribed standards. In simple cases, the
controller can be an amplifier, a mechanical linkage, a filter, or other control
elements, depending on the nature of the system. In more sophisticated cases,
the controller can be a computer such as a microprocessor. Because of the
simplicity and economy of open-loop control systems, we find this type of
system in many noncritical applications.

Reference Actuating Controlled
input r signal u CONTROLLED | variable y
e ————Pp
CONTROLLER PROCESS ——>

Figure 1-6 Elements of an open-loop control system.

1-4 CLOSED-LOOP CONTROL SYSTEMS
(FEEDBACK CONTROL SYSTEMS)

What is missing in the open-loop control system for more accurate and
more adaptive control is a link or feedback from the output to the input of the
system. To obtain more accurate control, the controlled signal y should be fed
back and compared with the reference input, and an actuating signal
proportional to the difference of the input and the output must be sent through
the system to correct the error. A system with one or more feedback paths
such as that just described is called a closed-loop system.



Closed-loop systems have many advantages over open-loop systems.

A closed-loop idle-speed control system is shown in Fig. 1-7. The
reference input w sets the desired idling speed. The engine speed at idle
should agree with the reference value w, and any difference such as the load
torque T, is sensed by the speed transducer and the error detector. The
controller will operate on the difference and provide a signal to adjust the
throttle angle a to correct the error. Figure 1-8 compares the typical
performances of open-loop and closed-loop idle-speed control systems. In
Fig. 1-8a, the idle speed of the open-loop system will drop and settle at a
lower value after a load torque is applied. In Fig. 1-8b, the idle speed of the
closed-loop system is shown to recover quickly to the preset value after the
application of T..
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Figure 1-7 Block diagram of a closed-loop idle-speed control system.
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Figure 1-8 (a) Typical response of the open-loop idle-speed control
system. (b) Typical response of the closed-loop idle-speed control system.



The objective of the idle-speed control system illustrated, also known as a
regulator system, is to maintain the system output at a prescribed level.

1-5 WHAT IS FEEDBACK, AND WHAT ARE
ITS EFFECTS?

The motivation for using feedback, as illustrated by the examples in Sec.
1-1, is somewhat oversimplified. In these examples, feedback is used to
reduce the error between the reference input and the system output. However,
the significance of the effects of feedback in control systems is more complex
than is demonstrated by these simple examples. The reduction of system error
is merely one of the many important effects that feedback may have upon a
system. We show in the following sections that feedback also has effects on
such system performance characteristics as stability, bandwidth, overall
gain, impedance, and sensitivity.

Feedback exists whenever there is a closed sequence of cause-and-
effect relationships.

To understand the effects of feedback on a control system, it is essential to
examine this phenomenon in a broad sense. When feedback is deliberately
introduced for the purpose of control, its existence is easily identified.
However, there are numerous situations where a physical system that we
recognize as an inherently nonfeedback system turns out to have feedback
when it is observed in a certain manner. In general, we can state that
whenever a closed sequence of cause-and-effect relationships exists among
the variables of a system, feedback is said to exist. This viewpoint will
inevitably admit feedback in a large number of systems that ordinarily would
be identified as nonfeedback systems. However, control-system theory allows
numerous systems, with or without physical feedback, to be studied in a
systematic way once the existence of feedback in the sense mentioned
previously is established.

We shall now investigate the effects of feedback on the various aspects of
system performance. Without the necessary mathematical foundation of



linear-system theory, at this point we can rely only on simple static-system
notation for our discussion. Let us consider the simple feedback system
configuration shown in Fig. 1-9, where r is the input signal; y, the output
signal; e, the error; and b, the feedback signal. The parameters G and H may
be considered as constant gains. By simple algebraic manipulations, it is
simple to show that the input—output relation of the system is

+0O 3 O O- O+
r e G v
—o——, b_ —0 0 O
O O
H
O O

Figure 1-9 Feedback system.
y G

r 1+GH

(1-1)

Using this basic relationship of the feedback system structure, we can
uncover some of the significant effects of feedback.

1-5-1 Effect of Feedback on Overall Gain

As seen from Eq. (1-1), feedback affects the gain G of a nonfeedback
system by a factor of 1 + GH. The system of Fig. 1-9 is said to have negative
feedback because a minus sign is assigned to the feedback signal. The
quantity GH may itself include a minus sign, so the general effect of feedback
is that it may increase or decrease the gain G. In a practical control system,
G and H are functions of frequency, so the magnitude of 1 + GH may be
greater than 1 in one frequency range but less than 1 in another. Therefore,
feedback could increase the gain of system in one frequency range but
decrease it in another.

Feedback may increase the gain of a system in one frequency range
but decrease it in another.



1-5-2 Effect of Feedback on Stability

Stability is a notion that describes whether the system will be able to
follow the input command, that is, be useful in general. In a nonrigorous
manner, a system is said to be unstable if its output is out of control. To
investigate the effect of feedback on stability, we can again refer to the
expression in Eq. (1-1). If GH = —1, the output of the system is infinite for
any finite input, and the system is said to be unstable. Therefore, we may
state that feedback can cause a system that is originally stable to become
unstable. Certainly, feedback is a double-edged sword; when it is improperly
used, it can be harmful. It should be pointed out, however, that we are only
dealing with the static case here, and, in general, GH = —1 is not the only
condition for instability. The subject of system stability will be treated
formally in Chap. 5.

A system is unstable if its output is out of control.

It can be demonstrated that one of the advantages of incorporating
feedback is that it can stabilize an unstable system. Let us assume that the
feedback system in Fig. 1-9 is unstable because GH = —1. If we introduce
another feedback loop through a negative feedback gain of F, as shown in
Fig. 1-10, the input—output relation of the overall system is

+0O o) O o+
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Figure 1-10 Feedback system with two feedback loops.

G
2 (1-2)
r 1+GH+GF

It is apparent that although the properties of G and H are such that the
inner-loop feedback system is unstable because GH = —1, the overall system
can be stable by properly selecting the outer-loop feedback gain F. In
practice, GH is a function of frequency, and the stability condition of the
closed-loop system depends on the magnitude and phase of GH. The bottom
line is that feedback can improve stability or be harmful to stability if it is not
properly applied.

Feedback can improve stability or be harmful to stability.

Sensitivity considerations often are important in the design of control
systems. Because all physical elements have properties that change with
environment and age, we cannot always consider the parameters of a control
system to be completely stationary over the entire operating life of the
system. For instance, the winding resistance of an electric motor changes as
the temperature of the motor rises during operation. Control systems with
electric components may not operate normally when first turned on because
of the still-changing system parameters during warm-up. This phenomenon is
sometimes called morning sickness. Most duplicating machines have a
warm-up period during which time operation is blocked out when first turned
on.

Note: Feedback can increase or decrease the sensitivity of a system.

In general, a good control system should be very insensitive to parameter
variations but sensitive to the input commands. We shall investigate what
effect feedback has on sensitivity to parameter variations. Referring to the
system in Fig. 1-9, we consider G to be a gain parameter that may vary. The
sensitivity of the gain of the overall system M to the variation in G is defined
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oM _ dM/G _ percentage change in M (1-3)

¢ 9GIM percentage changein G

where 0M denotes the incremental change in M due to the incremental
change in G, or 0G. By using Eq. (1-1), the sensitivity function is written

o MG _ 1

_IM L (1-4)
° 9G M 1+GH

This relation shows that if GH is a positive constant, the magnitude of the
sensitivity function can be made arbitrarily small by increasing GH, provided
that the system remains stable. It is apparent that, in an open-loop system, the
gain of the system will respond in a one-to-one fashion to the variation in G

(i.e., Sg/f = 1). Again, in practice, GH is a function of frequency; the
magnitude of 1 + GH may be less than unity over some frequency ranges, so
feedback could be harmful to the sensitivity to parameter variations in certain
cases. In general, the sensitivity of the system gain of a feedback system to
parameter variations depends on where the parameter is located. The reader
can derive the sensitivity of the system in Fig. 1-9 due to the variation of H.

1-5-3 Effect of Feedback on External Disturbance or Noise

All physical systems are subject to some types of extraneous signals or
noise during operation. Examples of these signals are thermal-noise voltage
in electronic circuits and brush or commutator noise in electric motors.
External disturbances, such as wind gusts acting on an antenna, are also quite
common in control systems. Therefore, control systems should be designed
so that they are insensitive to noise and disturbances and sensitive to input
commands.

Feedback can reduce the effect of noise.

The effect of feedback on noise and disturbance depends greatly on where
these extraneous signals occur in the system. No general conclusions can be



reached, but in many situations, feedback can reduce the effect of noise and
disturbance on system performance. Let us refer to the system shown in Fig.
1-11, in which r denotes the command signal and n is the noise signal. In the
absence of feedback, that is, H = 0, the output y due to n acting alone is
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Figure 1-11 Feedback system with a noise signal.
y=G,n (1-5)
With the presence of feedback, the system output due to n acting alone is

GZ

1+G.G,H

bt

Comparing Eg. (1-6) with Eg. (1-5) shows that the noise component in the
output of Eq. (1-6) is reduced by the factor 1 + G ,G,H if the latter is greater
than unity and the system is kept stable.

In Chap. 11, the feedforward and forward controller configurations are
used along with feedback to reduce the effects of disturbance and noise
inputs. In general, feedback also has effects on such performance
characteristics as bandwidth, impedance, transient response, and frequency
response. These effects will be explained as we continue.

Feedback also can affect bandwidth, impedance, transient responses,
and frequency responses.



1-6 TYPES OF FEEDBACK CONTROL
SYSTEMS

Feedback control systems may be classified in a number of ways,
depending upon the purpose of the classification. For instance, according to
the method of analysis and design, control systems are classified as linear or
nonlinear, and time-varying or time-invariant. According to the types of
signal found in the system, reference is often made to continuous-data or
discrete-data systems, and modulated or unmodulated systems. Control
systems are often classified according to the main purpose of the system. For
instance, a position-control system and a velocity-control system control
the output variables just as the names imply. In Chap. 11, the type of control
system is defined according to the form of the open-loop transfer function. In
general, there are many other ways of identifying control systems according
to some special features of the system. It is important to know some of the
more common ways of classifying control systems before embarking on the
analysis and design of these systems.

Most real-life control systems have nonlinear characteristics to some
extent.

1-7 LINEAR VERSUS NONLINEAR
CONTROL SYSTEMS

This classification is made according to the methods of analysis and
design. Strictly speaking, linear systems do not exist in practice because all
physical systems are nonlinear to some extent. Linear feedback control
systems are idealized models fabricated by the analyst purely for the
simplicity of analysis and design. When the magnitudes of signals in a
control system are limited to ranges in which system components exhibit
linear characteristics (i.e., the principle of superposition applies), the system
is essentially linear. But when the magnitudes of signals are extended beyond
the range of the linear operation, depending on the severity of the



nonlinearity, the system should no longer be considered linear. For instance,
amplifiers used in control systems often exhibit a saturation effect when their
input signals become large; the magnetic field of a motor usually has
saturation properties. Other common nonlinear effects found in control
systems are the backlash or dead play between coupled gear members,
nonlinear spring characteristics, nonlinear friction force or torque between
moving members, and so on. Quite often, nonlinear characteristics are
intentionally introduced in a control system to improve its performance or
provide more effective control. For instance, to achieve minimum-time
control, an on-off—type (bang-bang or relay) controller is used in many
missile or spacecraft control systems. Typically in these systems, jets are
mounted on the sides of the vehicle to provide reaction torque for attitude
control. These jets are often controlled in a full-on or full-off fashion, so a
fixed amount of air is applied from a given jet for a certain time period to
control the attitude of the space vehicle.

There are no general methods for solving a wide class of nonlinear
systems.

For linear systems, a wealth of analytical and graphical techniques is
available for design and analysis purposes. A majority of the material in this
text is devoted to the analysis and design of linear systems. Nonlinear
systems, on the other hand, are usually difficult to treat mathematically, and
there are no general methods available for solving a wide class of nonlinear
systems. It is practical to first design the controller based on the linear-system
model by neglecting the nonlinearities of the system. The designed controller
is then applied to the nonlinear system model for evaluation or redesign by
computer simulation. The Control Lab introduced in Chap. 8 may be used to
model the characteristics of practical systems with realistic physical
components.

1-8 TIME-INVARIANT VERSUS TIME-
VARYING SYSTEMS



When the parameters of a control system are stationary with respect to time
during the operation of the system, the system is called a time-invariant
system. In practice, most physical systems contain elements that drift or vary
with time. For example, the winding resistance of an electric motor will vary
when the motor is first being excited and its temperature is rising. Another
example of a time-varying system is a guided-missile control system in which
the mass of the missile decreases as the fuel on board is being consumed
during flight. Although a time-varying system without nonlinearity is still a
linear system, the analysis and design of this class of systems are usually
much more complex than that of the linear time-invariant systems.

1-9 CONTINUOUS-DATA CONTROL
SYSTEMS

A continuous-data system is one in which the signals at various parts of the
system are all functions of the continuous time variable t. The signals in
continuous-data systems may be further classified as ac or dc. Unlike the
general definitions of ac and dc signals used in electrical engineering, ac and
dc control systems carry special significance in control systems terminology.
When one refers to an ac control system, it usually means that the signals in
the system are modulated by some form of modulation scheme. A dc control
system, on the other hand, simply implies that the signals are unmodulated,
but they are still ac signals according to the conventional definition. The
schematic diagram of a closed-loop dc control system is shown in Fig. 1-12.
Typical waveforms of the signals in response to a step-function input are
shown in the figure. Typical components of a dc control system are
potentiometers, dc amplifiers, dc motors, dc tachometers, and so on.
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Figure 1-12 Schematic diagram of a typical dc closed-loop system.

Figure 1-13 shows the schematic diagram of a typical ac control system
that performs essentially the same task as the dc system in Fig. 1-12. In this
case, the signals in the system are modulated; that is, the information is
transmitted by an ac carrier signal. Notice that the output controlled variable
still behaves similarly to that of the dc system. In this case, the modulated
signals are demodulated by the low-pass characteristics of the ac motor. Ac
control systems are used extensively in aircraft and missile control systems in
which noise and disturbance often create problems. By using modulated ac
control systems with carrier frequencies of 400 Hz or higher, the system will
be less susceptible to low-frequency noise. Typical components of an ac
control system are synchros, ac amplifiers, ac motors, gyroscopes,
accelerometers, and so on.
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Figure 1-13 Schematic diagram of a typical ac closed-loop control
system.

In practice, not all control systems are strictly of the ac or dc type. A
system may incorporate a mixture of ac and dc components, using
modulators and demodulators to match the signals at various points in the
system.

1-10 DISCRETE-DATA CONTROL SYSTEMS

Discrete-data control systems differ from the continuous-data systems in
that the signals at one or more points of the system are in the form of either a
pulse train or a digital code. Usually, discrete-data control systems are
subdivided into sampled-data and digital control systems. Sampled-data
control systems refer to a more general class of discrete-data systems in
which the signals are in the form of pulse data. A digital control system refers



to the use of a digital computer or controller in the system so that the signals
are digitally coded, such as in binary code.

Digital control systems are usually less susceptible to noise.

In general, a sampled-data system receives data or information only
intermittently at specific instants of time. For example, the error signal in a
control system can be supplied only in the form of pulses, in which case the
control system receives no information about the error signal during the
periods between two consecutive pulses. Strictly, a sampled-data system can
also be classified as an ac system because the signal of the system is pulse
modulated.

Figure 1-14 illustrates how a typical sampled-data system operates. A
continuous-data input signal r(t) is applied to the system. The error signal e(t)
is sampled by a sampling device, the sampler, and the output of the sampler
is a sequence of pulses. The sampling rate of the sampler may or may not be
uniform. There are many advantages to incorporating sampling into a control
system. One important advantage is that expensive equipment used in the
system may be time-shared among several control channels. Another
advantage is that pulse data are usually less susceptible to noise.

Input
r(t) 41 BRI h(t) | CONTROLLED y(t)
oL Y PROCESS e
Sampler (FILTER)

Figure 1-14 Block diagram of a sampled-data control system.

Because digital computers provide many advantages in size and flexibility,
computer control has become increasingly popular in recent years. Many
airborne systems contain digital controllers that can pack thousands of
discrete elements into a space no larger than the size of this book. Figure 1-15
shows the basic elements of a digital autopilot for aircraft attitude control.
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Figure 1-15 Digital autopilot system for aircraft attitude control.

1-11 CASE STUDY: INTELLIGENT VEHICLE
OBSTACLE AVOIDANCE—LEGO
MINDSTORMS

The goal of this section is to provide you with a better understanding of the
controller design process for a practical system—in this case a LEGO®
MINDSTORMS® NXT programmable robotic system. Note the example
used here may appear too difficult at this stage but it can demonstrate the
steps you need to take for successful implementation of a control system.
You may revisit this example after successful completion of App. D.

Description of the Project?

The system setup, shown in Fig. 1-16, is a LEGO MINDSTORMS car that
is controlled using MATLAB® and Simulink®. The LEGO car, shown in Figs.
1-17 and 1-18, is equipped with an ultrasonic sensor, a light sensor, an
indicating light, an NXT motor gearbox and the NXT brick. An encoder
(sensor) is used to read the angular position of the motor gearbox. The NXT
brick can take input from up to four sensors and control up to three motors,
via RJ12 cables—see Chap. 8 for more details. The ultrasonic sensor is
placed in the front to detect the distance from the obstacle. The light sensor is
facing downward to detect the color of the running surface—in this case
white means go! The system interfaces with the host computer using a USB
connection, while the host computer logs encoder data in real-time using a
Bluetooth connection.
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Figure 1-16 Final car product with host computer.
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Figure 1-18 Car design—bottom view.

The Controller Design Procedure
The design of a control system for a practical problem requires a
systematic treatment as follows:
* Outline the objectives of the control system.

 Specify the requirements, design criteria, and constraints (Chaps. 7
and 11).

» Develop a mathematical model of the system, including mechanical,
electrical, sensors, motor, and the gearbox (Chaps. 2, 3, and 6).

 Establish how the overall system subcomponents interact, utilizing
block diagrams (Chap. 4).

« Use block diagrams, signal flow graphs, or state diagrams to find the



model of the overall system—transfer function or state space model

(Chap. 4).
* Study the transfer function of the system in the Laplace domain, or
the state space representation of the system (Chap. 3).

* Understand the time and frequency response characteristics of the
system and whether it is stable or not (Chaps. 5, 7, and 9 to 11).

* Design a controller using time response (Chaps. 7 and 11).

* Design a controller using the root locus technique (in the Laplace
domain) and time response (Chaps. 7, 9, and 11).

« Design a controller using frequency response techniques (Chaps. 10
and 11).

» Design a controller using the state space approach (Chap. 8).

+ Optimize the controller if necessary (Chap. 11).

« Implement the design on the experimental/practical system (Chaps. 7
and 11 and App. D).

Objective

The objective of this project is to have the LEGO car running on a white
surface and stop just before hitting an obstacle—in this case a wall.

Design Criteria and Constraints

The car can only be running at full speed on a white surface. The car must
stop, if the surface color is not white. The car must also stop just before
hitting an obstacle.

Develop a Mathematical Model of the System

The motor drives the rear wheels. The vehicle mass, motor, gearbox, and
wheel friction must be considered in the modeling process. You may use
Chaps. 2 and 6 to arrive at the mathematical model of the system. Also check
Sec. 7-5.

Following the process in Chaps. 6 and 7 and App. D, the block diagram
of the system using position control (using an amplifier with gain K ) and the
encoder sensor position feedback is shown in Fig. 1-19, where system
parameters and variables, in time domain, include
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Figure 1-19 Block diagram of a position-control, armature-controlled dc
motor representing the LEGO car.

R = armature resistance,

L = armature inductance, H

6 = angular displacement of the motor gearbox shaft, radian

6 = desired angular displacement of the motor gearbox shaft, radian
®_= angular speed of the motor shaft, rad/s

T = torque developed by the motor, N - m

J = equivalent moment of inertia of the motor and load connected to the
motor shaft, J=J/n* + J , kg — m’ (refer to Chap. 2 for more details)

n = gear ratio

B = equivalent viscous-friction coefficient of the motor and load referred
to the motor shaft, N - m/rad/s (in the presence of gear ratio, B must be
scaled by n; refer to Chap. 2 for more details)

K = torque constant, N - m/A

K. = back-emf constant, V/rad/s

K, = equivalent encoder sensor gain, V/rad
K = position control gain (amplifier)

The closed-loop transfer function, in Laplace domain, in this case
becomes
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where K is the sensor gain. The motor electrical time constant T = L /R
may be neglected for small L . As a result the position transfer function is
simplified to
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where Eq. (1-8) is a second-order system, and
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The transfer function in Eq. (1-8) represents a stable system for all K > 0
and will not exhibit any steady state error—that is, it will reach the desired
destination dictated by the input.

In order to study the time response behavior of the position-control system,
we use Simulink. The Simulink numerical model of the system is shown in
Fig. 1-20, where all system parameters may be obtained experimentally using
the procedure discussed in Chap. 8, as shown in Table 1-1.
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Figure 1-20 Car Simulink model.

TABLE 1-1 LEGO Car System Parameters

Car mass M=574¢

Armature resistance R =227Q

Armature inductance L =0.0047H

Motor torque constant K =0.25N-m/A

Back-EMF constant K, =0.25 V/rad/s

Equivalent viscous-friction coefhicient B=0.003026 kg- m?%s or N-m/s
Total moment of inertia J=0.00246 kg- m*

After running the simulation for the controller gain K = 12.5, we can plot
the car travel as shown in Fig. 1-21. Note encoder output was scaled to arrive
at the results shown. As shown, the car travels at a constant speed from 1 to
approximately 2.7 s before stopping. From the slope of the graph in Fig. 1-21,
we can obtain the maximum speed of the car as 0.4906 m/s. This is also
confirmed using the speed plot in Fig. 1-22. Furthermore, from this graph, we
can find the average acceleration of the car as 2.27 m/s’. The stoppage time is
dictated by the system mechanical time constant where the speed, as shown
in Fig. 1-22, decays exponentially from maximum to zero. This time must be
taken into consideration when the actual system meets an obstacle.
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Figure 1-22 Car speed graph.

Once a satisfactory response is obtained, the control system can be tested
on the actual system. The LEGO car utilizes Simulink to operate. The
Simulink model in this case is built based on the process indicated in Chap. 8
and is shown in Fig. 1-23. Remember to enter the gain parameter K = 12.5.



o

Port 4

Constant]

Ullrasonic Sensor

Sensor Error Avoidance

Gain

Gainl

Saturation

Saturalion2

0

Port A

Transport
Delay

Motor

Light Sensor

Light Density
Boundary

i

Por 3

|
FF Y

To Workspace2

Ultrasonic |

B Ligh

B 4 | | > I
Add2 Gaind ik

Distance

[ To Workspacel

Constant
Indicate Light

Port A

Gain2 To Workspace

Encoder

Figure 1-23 Simulink model to operate the LEGO car.

After the Simulink model is built, you can pair the host computer with the
NXT brick using Bluetooth—see the instructional video. We must first start
by connecting the car to the host computer using the USB cable and selecting
Run on Target Hardware in the Simulink Tools menu. When the indicating
light illuminates, the car is operational. For the car to run wirelessly, simply
unplug the USB cable at this point.

To start up the car, you can place a strip, which is not white, underneath
the light sensor, as shown in Fig. 1-24. By pulling the strip out, the car will
start its run. When the car reaches an obstacle, the indicating light will turn
off as it comes to a halt, as shown in Fig. 1-25—see the instructional video to
learn more about the ultrasonic sensor shown in the Simulink model in Fig.
1-23. After the car has finished its run, click Stop in the Simulink program to
stop the operation. All data will be stored in the computer. Using MATLAB
you can plot the vehicle time response—as illustrated in Chap. 8. As shown
in Fig. 1-26, the speed of the car is 0.4367 m/s, which is close to the
numerical simulation results. The distance that car traveled to reach the wall
is 0.8063 m. From the speed plot, shown in Fig. 1-27, the average
acceleration is 1.888 m/s’.
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Figure 1-27 Car speed plot.

1-12 SUMMARY

In this chapter, we introduced some of the basic concepts of what a control
system is and what it is supposed to accomplish. The basic components of a
control system were described. By demonstrating the effects of feedback in a
rudimentary way, the question of why most control systems are closed-loop
systems was also clarified. Most important, it was pointed out that feedback
is a double-edged sword—it can benefit as well as harm the system to be
controlled. This is part of the challenging task of designing a control system,
which involves consideration of such performance criteria as stability,
sensitivity, bandwidth, and accuracy. Finally, various types of control
systems were categorized according to the system signals, linearity, and



control objectives. Several typical control-system examples were given to
illustrate the analysis and design of control systems. Most systems
encountered in real life are nonlinear and time varying to some extent. The
concentration on the studies of linear systems is due primarily to the
availability of unified and simple-to-understand analytical methods in the
analysis and design of linear systems.

!Source: http://stateimpact.npr.org/texas/files/2011/08/Solar-Energy-Power-by-Daniel-Reese-01.jpg.
“Instructional YouTube video: http://youtu.be/gZo7gkWIZhs.
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CHAPTER 2



Modeling of Dynamic Systems

As mentioned in Chap. 1, one of the most important tasks in the analysis
and design of control systems is mathematical modeling of system
subcomponents and ultimately the overall system. The models of these
systems are represented by differential equations, which may be linear or
nonlinear. In this textbook, we consider systems that are modeled by ordinary
differential equations—as opposed to partial differential equations.

The analysis and design of control systems for most applications use linear
(or linearized) models and are well established; while the treatment of
nonlinear systems is quite complex. As a result, the control-systems engineer
often has the task of determining not only how to accurately describe a
system mathematically but also, more importantly, how to make proper
assumptions and approximations, whenever necessary, so that the system
may be realistically characterized by a linear mathematical model.

Learning Outcomes

After successful completion of this chapter, you will be able to
Model the differential equations of basic mechanical systems.
Model the differential equations of basic electrical systems.
Model the differential equations of basic thermal systems.
Model the differential equations of basic fluid systems.
Linearize nonlinear ordinary differential equations.

. Discuss analogies and relate mechanical, thermal, and fluid systems
to their electrical equivalents.

@k wh e

In this chapter, we provide a more detailed look at the modeling of
components of various control systems. A control system may be composed
of several components including mechanical, thermal, fluid, pneumatic, and
electrical systems. In this chapter, we review basic properties of some of



these systems, otherwise known as dynamic systems. Using the basic
modeling principles such as Newton’s second law of motion, Kirchoff’s law,
or conservation of mass (incompressible fluids) the model of these dynamic
systems are represented by differential equations.

As mentioned earlier, because in most cases, the controller design process
requires a linear model; in this chapter, we provide a review of linearization
of nonlinear equations. In this chapter, we also demonstrate the similarities
amongst these systems and establish analogies among mechanical, thermal,
and fluid systems with electrical networks.

A control system also includes other components such as amplifiers,
sensors, actuators, and computers. The modeling of these systems is
discussed later in Chap. 6 because of additional theoretical requirements.

Finally, it is important to mention that the modeling materials presented in
this chapter are intended to serve as a review of various second or third year
university level engineering courses including dynamics, fluid mechanics,
heat transfer electrical circuits, electronics, and sensors and actuators. For a
more comprehensive understanding of any of these subjects, the reader is
referred to courses in mentioned areas.

2-1 MODELING OF SIMPLE MECHANICAL
SYSTEMS

Mechanical systems are composed of translational, rotational, or a
combination of both components. The motion of mechanical elements is
often directly or indirectly formulated from Newton’s law of motion.
Introductory models of these mechanical systems are based on particle
dynamics, where the mass of the system is assumed to be a dimensionless
particle. In order to capture the motion of realistic mechanical systems,
including translation and rotational motions, rigid body dynamics models are
used. Springs are used to describe flexible components and dampers are used
to model friction. In the end, the resulting governing equations of motion are
linear or nonlinear differential equations that can be described by up to six
variables—in 3D, an object is capable of three translational motions and three
rotational motions. In this textbook, we mainly look at linear and planar
particle and rigid body motions.



2-1-1 Translational Motion

Translational motion can take place along a straight or curved path. The
variables that are used to describe translational motion are acceleration,
velocity, and displacement.

Newton’s law of motion states that the algebraic sum of external forces
acting on a rigid body or a particle in a given direction is equal to the product
of the mass of the body and its acceleration in the same direction. The law
can be expressed as

Z forces= Ma (2-1)

External

where M denotes the mass, and a is the acceleration in the direction
considered. Figure 2-1 illustrates the situation where a force is acting on a
body with mass M. The force equation is written as

— (1)
M — /()
Figure 2-1 Force-mass system.
2
F(t)= Ma(t) = 220 (2-2)
dt
Or,
dv(t)
=M (2-3)
f(®) >

where a(t) is the acceleration, v(t) denotes linear velocity, and y(t) is the
displacement of mass M. Note that the first step in modeling is always to
draw the free-body diagram (FBD) of the system by isolating the mass and
representing the effect of all attached components by their corresponding
reaction forces. These forces are external forces that act on the body resulting
it to accelerate. In this case, the only external force is f (t). As a general rule,
find the equations assuming the mass is moving along y(t).



Considering Fig. 2-2, where a force f (¢) is applied to a flexible structure, in
this case a cantilever beam, a simple mathematical model may be obtained
after approximating the system by a spring-mass-damper system.
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Figure 2-2 Force applied to a cantilever beam, modeled as a spring-mass-
damper system. (a) A cantilever beam. (b) Spring-mass-damper equivalent
model. (c) Free-body diagram.

In this case, in addition to the mass, the following system elements are also
involved.

 Linear spring. In practice, a linear spring may be a model of an
actual spring or a compliance of a mechanical component such as a
cable or a belt—in this case a beam. In general, an ideal spring is a
massless element that stores potential energy. The spring element in Fig.
2-2 applies a force F, to mass M. Using Newton’s concept of action and
reaction, the mass also exerts a same force to the spring K, as shown in
Fig. 2-3 and has the following linear model:



Figure 2-3 Force-spring system.
F =Ky(t) (2-4)

where K is the spring constant, or simply stiffness. Equation (2-4) implies

that the force acting on the spring is linearly proportional to the displacement
(deflection) of the spring. If the spring is preloaded with a preload tension of
T, then Eq. (2-4) is modified to

F—T=Ky(t) (2-5)

 Friction. Whenever there is motion or tendency of motion between
two physical elements, frictional forces exist. Mechanical structures also
exhibit internal friction. In the case of the beam in Fig. 2-2, upon
bending and releasing the structure, the resulting motion will eventually
come to a halt due to this internal friction. The frictional forces
encountered in physical systems are usually of a nonlinear nature. The
characteristics of the frictional forces between two contacting surfaces
often depend on such factors as the composition of the surfaces, the
pressure between the surfaces, and their relative velocity. So an exact
mathematical description of the frictional force is difficult to obtain.
Three different types of friction are commonly used in practical systems:
viscous friction, static friction, and Coulomb friction. In most cases,
and in this book, in order to utilize a linear model, most frictional
components are approximated as viscous friction, also known as viscous
damping. In viscous damping the applied force and velocity are linearly
proportional. The schematic diagram element for viscous damping is
often represented by a dashpot (or damper), such as that shown in Fig. 2-
3. Figure 2-4 shows the isolated dashpot, which has the following
mathematical expression:

In most cases, and in this book, in order to utilize a linear model, most
friction components are approximated as viscous friction, also known as



viscous damping.

% B —> }-‘(f)
% I > F,

Figure 2-4 Dashpot for viscous friction.

F,=B2~ (2-6)

where B is the viscous damping coefficient.

The equation of motion of the system shown in Fig. 2-2 is obtained using
the free-body diagram shown in Fig. 2-2c—assuming the mass is pulled
along y(t) direction. Hence, we get

d’y(t)
dt?

f()~F~F,=Ma(t)=M (2-7)

Upon substituting Egs. (2-4) and (2-5) into (2-6) and rearranging the
equation, we have

2
d ygt) . de(t)
dt dt

d’y(t
r=(29)  yo-(220]
where dt ) and dt represent velocity and

acceleration, respectively. Dividing the former equation by M, we get

M

+Ky(t)= (1) (2-8)

e B Ko K _
y(t)+ﬁy(t)+ﬁy(t)— Mr(t) (2-9)

where r(t) has the same units as y(t). In control systems, it is customary to
rewrite Eg. (2-9) as



y(t)+28w, i)+ o, y(t)=o,r(t) (2-10)

where w_and ( are the natural frequency and the damping ratio of the
system, respectively. Equation (2-10) is also known as the prototype second-
order system. We define y(t) as the output and r(t) as the input of the
system.

EXAMPLE 2-1-1 Consider the two degrees of freedom mechanical system
shown in Fig. 2-5, where a mass M, slides along a

smooth lubricated surface of mass M, that is connected

to a wall by a spring K.
oil film
My ———» f(1)
2
K
% STIR M,
(a)
2
K
SIIR M, ]] M, > f(1)
_ :
(b)
— .\fi(f) > };(f)

F, «—— M, - »F, «— M, ——» fi)

(c)

Figure 2-5 A two-degree of freedom mechanical system with spring and
damper elements. (a) A two mass spring system. (b) Mass, spring, damper
equivalent system. (c) Free-body diagram.



The displacements of masses M, and M, are measured
by y.(t) and y(t), respectively. The oil film between the
two surfaces is modeled as a viscous damping element B,
as shown in Fig. 2-5b. After drawing the free-body
diagrams of the two masses, as shown in Fig. 2-5¢, we
apply Newton’s second law of motion to each mass, we
get

Z forces= M, y,(t) (2-11)

External

Using Egs. (2-5) and (2-6), we get
—Ky,(1)+B(3,(1)— j,(t))=M,j,(1) (2-12)

z forces= M, y, (t) (2-13)

External

Similarly, using Egs. (2-5) and (2-6), we get
—B(3,(t) — 3, (1)) + f(1) = M, 3,(t) (2-14)

Thus, the two second-order differential equations of
motion become

M, ,(t)+B(3,()- 7,(t))+ Ky, (£)=0 (2-15)

M, 3,(0)+B(3,()= 7,(1))= f(t) (2-16)

EXAMPLE 2-1-2 Consider the two degrees of freedom mechanical system
shown in Fig. 2-6 with two masses M, and M,
constrained by three springs, while a force f(t) is
applied to mass M..
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Figure 2-6 (a) A two-degree of freedom mechanical system with three

springs. (b) Free-body diagram.

The displacements of masses M, and M, are measured
by y (t) and y (t), respectively. Assuming masses are
displaced in positive directions and y (t) > y (t), we draw
the free-body diagrams of the two masses, as shown in
Fig. 2-6b. This is a good trick to use to get the applied
spring force directions correct. So in this case, springs K,
and K, are in tension while K| is in compression.
Applying Newton’s second law of motion to each mass,

we get

Z forces= M, y,(t)

External

(2-17)

Using Eq. (2-5), and noting the deflection of springs K,
and K, are y (t) and (y,(t) — y,(¢)), respectively, we get

_Klyl(t) +Kz(y2(t) _yl(t)) = M1y1(t)

Z forces= M., y,(t)

External

(2-18)

(2-19)



Similarly, using Eq. (2-5), we get
=K, (y,(t) = y,(£)) =K, p,(t) + f(£) = M, 3, () (2-20)

Thus, the two second-order differential equations of
motion become

Mlyl(t)+(K1+K2)y1(t)_K2y2(t):0 (2-21)
M, y,(t) - K,y (1) +(K, +K,)y, ()= f({) (2-22)

EXAMPLE 2-1-3 Consider the three-story building shown in Fig. 2-7. Let
us derive the equations of the system describing the
motion of the building after a shock at the base due to
an earthquake. Assuming the masses of the floors are
dominant compared to those of the columns, and the
columns have no internal loss of energy, the system
can be modeled by three masses and three springs, as
shown in Fig. 2-7b. The modeling approach is then
identical to that in Example 2-1-2. We draw the free-
body diagram, assuming y(t) > y,(t) > y,(t) and obtain
the final equations of the system as
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Figure 2-7 (a) A three-story building. (b) Equivalent model as a three-
degree of freedom spring-mass system. (c) Free-body diagram.

My, (t)+(K, +K,)y,(t)-K,y,(t)=0

(2-23)
M, 7,(t)— Ky, ()+(K, + K;) y,(1) - K, y,(£) =0 (2-24)
M,y,(t)—K,y,(1)+ K, y,(1)=0 (2-25)

2-1-2 Rotational Motion

For most applications encountered in control systems, the rotational
motion of a body can be defined as motion about a fixed axis.? Newton’s
second law for rotational motion states that the algebraic sum of external
moments applied to a rigid body of inertia J about a fixed axis, produces an
angular acceleration about that axis. Or

2 Moments = Jo (2-26)

External



where J denotes the inertia and « is the angular acceleration. The other
variables generally used to describe the motion of rotation are torque T
(normally applied from a motor), angular velocity o, and angular
displacement 6. The rotational equations of motion include the following
terms:

* Inertia. A three-dimensional rigid body of mass M has three moments
of inertia and three products of inertia. In this textbook, we primarily
look at planar motions, governed by Eq. (2-26). A rigid body of mass M
has inertia, J, about a fixed rotational axis, which is a property related
to kinetic energy of rotational motion. The inertia of a given element
depends on the geometric composition about the axis of rotation and its
density. For instance, the inertia of a circular disk or shaft, of radius r
and mass M, about its geometric axis is given by

1
Je EMr2 (2-27)

When a torque is applied to a body with inertia J, as shown in Fig. 2-
8, the torque equation is written as

I(r)

F=)r

Figure 2-8 Torque-inertia system.

o de(t)  d0)
IT(t)=Ja(t)=] e =] g (2-28)

where 6(t) is the angular displacement; w(t), the angular velocity; and
a(t), the angular acceleration.

* Torsional spring. As with the linear spring for translational motion, a
torsional spring constant K, in torque-per-unit angular displacement,
can be devised to represent the compliance of a rod or a shaft when it is
subject to an applied torque. Figure 2-9 illustrates a simple torque-spring
system that can be represented by the equation
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Figure 2-9 (a) A rod under a torsional load. (b) Equivalent torque

torsional spring system. (c) Free-body diagram.

T. = K6(t) (2-29)

If the torsional spring is preloaded by a preload torque of TP, Eq. (2-
36) is modified to

T —TP=KO(t) (2-30)

* Viscous damping for rotational motion. The friction described for
translational motion can be carried over to the motion of rotation.
Therefore, Eg. (2-6) can be replaced by

1, -p2o0 (2-31)
dt

In Fig. 2-9b, the internal loss of energy in a rod is represented by
viscous damping B.

Considering the free-body diagram in Fig. 2-9c, we examine the
reactions after application of a torque in positive direction. Note we
normally use the right-hand rule to define the positive direction of
rotation—in this case counterclockwise. Upon substituting Egs. (2-29)
and (2-31) into Eq. (2-26) and rearranging the equation, we have

]d Bgt) +Bd6‘(t)
dt dt

+KO(t)=T(t) (2-32)



. do(t : d*0(t
9(1);(&) Q(t):[ E )]
where dt Jand dt represent angular velocity

and acceleration, respectively. Dividing the former equation by J, we get
.. B . K K
9(t)+78(t)+76'(t):7r(t) (2-33)

where r(t) has the same units as 6(t). In control systems, it is
customary to rewrite Eq. (2-33) as

6(1)+2lw O(t)+ >0(t) = w’r(t) (2-34)

where o and ¢ are the natural frequency and the damping ratio of the
system, respectively. Equation (2-34) is also known as the prototype
second-order system. We define 6(t) as the output and r(t) as the input
of the system. Notice that this system is analogous to the translational

system in Fig. 2-2.

EXAMPLE 2-1-4 A nonrigid coupling between two mechanical
components in a control system often causes torsional
resonances that can be transmitted to all parts of the
system. In this case, the rotational system shown in
Fig. 2-10a consists of a motor with a long shaft of
inertia J . A disk representing a load with inertia J, is
mounted at the end of the motor shaft. The shaft
flexibility is modeled as a torsional spring K and any
loss of energy within the motor is represented by
viscous damping of coefficient B. For simplicity we
assume the shaft, in this case, has no internal loss of
energy. Because of the flexibility in the shaft, the
angular displacement at the motor end and the load are
not equal—designated as 6_and 0, respectively. The
system, therefore, has two degrees of freedom.
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Figure 2-10 (a) Motor-load system. (b) Free-body diagram.

The system variables and parameters are defined as
follows:

T (t) = motor torque
B_= motor viscous-friction coefficient
K = spring constant of the shaft
6_(t) = motor displacement
®_(t) = motor velocity
J = motor inertia
6. (t) = load displacement
w, (t) = load velocity
J = load inertia
The free-body diagrams of the system are shown in
Fig. 2-17b. The two equations of the system are

e e 0l (2-35)
T T L A

m

4’6, (1)

K[6,(t)-6,()]=], pY

(2-36)



Equations (2-35) and (2-36) are rearranged as

d’6 (t)+B de,, (t)

=— 2-37
T d ]m[e (-6,(0)=-T, ) (2-37)

d’0, (t)
dt’

] [9 (1)-6,,(1)]=0 (2-38)

L

Note that if the motor shaft is rigid, 6 = 60, and all the

motor applied torque is transmitted to the load. So, in this
case the overall equation of the system becomes

dzé)m(t)Jr B, do, () 1
e ] +], dt ] +],

T (1) (2-39)

Table 2-1 shows the SI and other measurement units
for translational and rotational mechanical system
parameters.

TABLE 2-1 Basic Translational and Rotational Mechanical System
Properties and Their Units



Symbol

Parameter Used  SIUnits  Other Units Conversion Factors
Translational Motion
Mass M Iiﬂo gram  Slug ft/s* 1kg=1000 g
(ke) =2.2046 Ib (mass)
=35.274 oz (mass)
=0.06852 slug
Spring constant K N/m Ib/ft
Viscous friction B N/m/s 1b/ft/s
coefficient
Rotational Motion
Inertia J kg:m’  slug-ft’ 1g-cm=1417x10" oz-in-s’
lb-ft-5* 11b-ft-s* =192 oz-in-s’
0z+in-¢*
=3221b-ft*

10z-in-s* =386 0z-in’

2

1g-cm-s’ =980 g-cm

Spring constant K N-m/rad ft-1b/rad
N-m/rad/s ft-Ib/rad/s

o=

Viscous friction
Coeflicient



Variables

Displacement: y(f) meter (m); ft; in
1 m=3.2808 ft=39.37 in
1 ft=0.3048 m

lin.=254 mm

dy(t
Velocity: v(t) :yT(t)‘ m/s; ft/s; in/s

2

d”y(t
Acceleration: a(t)= d}; ( )m/sz; ft/s% in/s’

Force: f(t) newton (N); pound (Ib force); dyne

IN=0.2248 b (force) 1N=1 kg—m/s’
=3.5969 oz (force) 1dyn=1 g—cm/s’

Energy: E ] (joule)
1]=1N-m
1cal=4.184 ]
1 Btu=1055]

Power: P W (watt); J/s (joule/second)
IW=1]/s

Angular rotation: 6(t) radian

180
1 rad=—=57.3 deg
n

t
Angular velocity: @(t)= —r rad/s

lrpm=—
P 60

=0.1047 rad/s
1 rpm =6 deg/s

6
rad/s’

2

Angular acceleration: o/(t)=

Torque: T(t) (N-m) dyn-cm; Ib-ft 0z-in
1g-cm=0.0139 oz-in
1 0z-in=0.00521Ib- ft

11b-ft=192 0z-in

2-1-3 Conversion between Translational and Rotational
Motions

In motion-control systems, it is often necessary to convert rotational
motion into translational motion. For instance, a load may be controlled to
move along a straight line through a rotary-motor-and-lead-screw assembly,
such as that shown in Fig. 2-11. Figure 2-12 shows a similar situation in
which a rack-and-pinion assembly is used as a mechanical linkage. Another



familiar system in motion control is the control of a mass through a pulley by
a rotary motor, as shown in Fig. 2-13. The systems shown in Figs. 2-11 to 2-
13 can all be represented by a simple system with an equivalent inertia
connected directly to the drive motor. For instance, the mass in Fig. 2-13 can
be regarded as a point mass that moves about the pulley, which has a radius r.
By disregarding the inertia of the pulley, the equivalent inertia that the motor
sees is

T(1), 8.(1) )

Motor /////////.{/// M
\

Lead screw

Figure 2-11 Rotary-to-linear motion control system (lead screw).

—» x(1)

M

. Rack
Pinion 0(r)

e

Drive
motor 1)

Figure 2-12 Rotary-to-linear motion control system (rack and pinion).

—p x(f)

e

Belt Pulley

Drive
motor 1(r)



Figure 2-13 Rotary-to-linear motion control system (belt and pulley).
] =Mr? (2-40)

If the radius of the pinion in Fig. 2-12 is r, the equivalent inertia that the
motor sees is also given by Eq. (2-40).

Now consider the system of Fig. 2-11. The lead of the screw, L, is defined
as the linear distance that the mass travels per revolution of the screw. In
principle, the two systems in Figs. 2-12 and 2-13 are equivalent. In Fig. 2-12,
the distance traveled by the mass per revolution of the pinion is 2ntr. By using
Eq. (2-40) as the equivalent inertia for the system of Fig. 2-11, we have

]=M(LJ (2-41)

27T

EXAMPLE 2-1-5 Classically, the quarter-car model is used in the study of
vehicle suspension systems and the resulting dynamic
response due to various road inputs. Typically, the
inertia, stiffness, and damping characteristics of the
system as illustrated in Fig. 2-14a are modeled in a
two-degree of freedom (2-DOF) system, as shown in
Fig. 2-14b. Although a 2-DOF system is a more
accurate model, it is sufficient for the following
analysis to assume a 1-DOF model, as shown in Fig.
2-14c.

k, c ks He

(b) (c)



Figure 2-14 Quarter-car model realization. (a) Quarter car. (b) Two
degrees of freedom model. (c) One degree of freedom model.

Given the system illustrated in Fig. 2-14c, where
m = effective Y4 car mass
k = effective stiffness
c = effective damping
x(t) = absolute displacement of the mass, m
y(t) = absolute displacement of the base

z(t) = relative displacement of the mass with respect

to the base
The equation of motion of the system is defined as
follows:
mi(t) = c(y(t)— x(t))+ k(y(t)— x(t)) (2-42)
or
mix(t)+ cx(t)+ kx(t) =cy(t) + ky(t) (2-43)

which can be redefined in terms of the relative
displacement, or bounce, by substituting the relation

z() = x(t)— y(¢) (2-44)
Dividing the result by m, Eqg. (2-43) is rewritten as
() + 28w, 2(t)+ @’ z(t) = —y(t) =—al(t) (2-45)

Note that as before w_and ¢ are the natural frequency
and the damping ratio of the system, respectively.
Equation (2-45) reflects how the vehicle chassis bounces
relative to the ground given an input acceleration from
the ground—for example, after the wheels go through a
bump.

In practice, active control of the suspension system
may be achieved using various types of actuators




including hydraulic, pneumatic, or electromechanical
systems such as motors. Let’s use an active suspension
that uses a dc motor in conjunction with a rack as shown

in Fig. 2-15.

m

/_.\‘T, 0, r

L 1 iﬁ;t
- L

TLoad

(b)

Figure 2-15 Active control of the 1-DOF quarter-car model via a dc
motor and rack. (a) Schematics. (b) Free-body diagram.

In Fig. 2-15, T(¢) is the torque produced by the motor
with shaft rotation 6, and r is the radius of the motor
drive gear. Hence, the motor torque equation is

T(t)=] 6+B0+T_, (2-46)

Defining the transmitted force from the motor
assembly to the mass as f{(t), the mass equation of motion
is

mi+cx+kx=cy+ky+f (2-47)

In order to control the vehicle bounce, we use z(t) =
x(t) — y(¢t) to rewrite the equation as

mz+cz+kz=f—-my=f(t)—ma(t) (2-48)

Using



I
Load (2_49)
r

Ft)=

and noting that z = 0r, Eq. (2-48) is rewritten as

(mr*+] )0+ (cr’+ B, )0+kr’0=T(t)—mra(t) (2-50)
or
JZ+ Bz+ Kz =r[T(t)—mra(t)] (2-51)

where J=mr’'+J ,B=cr' + B, and K = kr’.

So the motor torque and be used to control the vehicle
bounce caused by ground disturbances due to
acceleration a(t).

2-1-4 Gear Trains

A gear train, lever, or timing belt over a pulley is a mechanical device that
transmits energy from one part of the system to another in such a way that
force, torque, speed, and displacement may be altered. These devices can also
be regarded as matching devices used to attain maximum power transfer.
Two gears are shown coupled together in Fig. 2-16. The inertia and friction
of the gears are neglected in the ideal case considered.

I, 9, N,

&

Figure 2-16 Gear train.

The relationships between the torques T, and T, angular displacement q,
and q,, and the teeth numbers N, and N, of the gear train are derived from the



following facts:

1. The number of teeth on the surface of the gears is proportional to
the radii r, and r, of the gears; that is,

LN, =1,N, (2-52)

2. The distance traveled along the surface of each gear is the same.
Thus,

O,r, =0,r, (2-53)

3. The work done by one gear is equal to that of the other since there
are assumed to be no losses. Thus,

T8, =T.6, (2-54)

If the angular velocities of the two gears, w, and w,, are brought into the

picture, Egs. (2-52) through (2-54) lead to

L, _ 6, N o (2-55)

T, 6 N, o r,

EXAMPLE 2-1-6 Consider motor-load assembly, shown in Fig. 2-10, with

a rigid shaft of inertia J . If we use a gear train with
Nl
=n

gearratio N2, between the motor shaft and the load
of inertia J, J is the equivalent moment of inertia of

the motor and load, J = J /n’ + J , and as a result Eq.

(2-39) is revised to
2

dr? J dt ]

In practice, gears do have inertia and friction between
the coupled gear teeth that often cannot be neglected. An
equivalent representation of a gear train with viscous



friction and inertia considered as lumped parameters is
shown in Fig. 2-17, where T denotes the applied torque,
T and T, are the transmitted torque, and B, and B, are the
viscous friction coefficients. The torque equation for gear

21s
NI
Tl’ FL’I
1,
2 (
T, 0,
ZE8
&
g2 \
Tz F\';" 92
N,
Figure 2-17 Gear train with friction and inertia.
da’6,(1) do,(t)
T,(t)=], dlfz + B, gt (2-57)
The torque equation on the side of gear 1 is
azo,(t dao, (t
T(t)=], 0,() B, 0,( )+ T,(t) (2-58)

dt’ i

N,

Using Eq. (2-55), Eq. (2-57), after premultiplication by Ni, is converted to

N (NY A0 (N de _
Tl(t)—Nsz(t)—[Nz]]z 7 +(N2]Bz - (2-59)

Equation (2-59) indicates that it is possible to reflect inertia, friction,
compliance, torque, speed, and displacement from one side of a gear train to
the other. The following quantities are obtained when reflecting from gear 2
to gear 1:



2
N
Inertia : [—1] J,
NQ.

2
N
Viscous-friction coefficient : [—1] B,
N2
N
Torque: —T, (2-60)
N

2

N
Angulardisplacement: ﬁ@z
2

N
Angular velocity : — @,
NZ

Similarly, gear parameters and variables can be reflected from gear 1 to
gear 2 by simply interchanging the subscripts in the preceding expressions. If
a torsional spring effect is present, the spring constant is also multiplied by
(IN/N)) in reflecting from gear 2 to gear 1. Now substituting Eq. (2-59) into

Eq. (2-58), we get

=y, 108, p 0 (2-61)
dt dt
where
N, Y
]1e_]1+(EJ ]2 (2-62)
B, =B, +(£J B, (2-63)
N2

EXAMPLE 2-1-7 Given a load that has inertia of 0.05 0z-in-s2, find the
inertia and frictional torque reflected through a 1:5
gear train (N /N, = 1/5, with N, on the load side). The

reflected inertia on the side of N, is (1/5)* x 0.05 =
0.002 oz-in-s2.



2-1-5 Backlash and Dead Zone (Nonlinear Characteristics)

Backlash and dead zone are commonly found in gear trains and similar
mechanical linkages where the coupling is not perfect. In a majority of
situations, backlash may give rise to undesirable inaccuracy, oscillations, and
instability in control systems. In addition, it has a tendency to wear out the
mechanical elements. Regardless of the actual mechanical elements, a
physical model of backlash or dead zone between an input and an output
member is shown in Fig. 2-18. The model can be used for a rotational system
as well as for a translational system. The amount of backlash is b/2 on either
side of the reference position.

—» x(1)

B [nput — (1)

b 2)

Output

Figure 2-18 Physical model of backlash between two mechanical
elements.

In general, the dynamics of the mechanical linkage with backlash depend
on the relative inertia-to-friction ratio of the output member. If the inertia of
the output member is very small compared with that of the input member, the
motion is controlled predominantly by friction. This means that the output
member will not coast whenever there is no contact between the two
members. When the output is driven by the input, the two members will
travel together until the input member reverses its direction; then the output
member will be at a standstill until the backlash is taken up on the other side,
at which time it is assumed that the output member instantaneously takes on
the velocity of the input member. The transfer characteristic between the
input and output displacements of a system with backlash with negligible
output inertia is shown in Fig. 2-19.
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Figure 2-19 Input—output characteristic of backlash.

2-2 INTRODUCTION TO MODELING OF
SIMPLE ELECTRICAL SYSTEMS

In this chapter, we address modeling of electrical networks with simple
passive elements such as resistors, inductors, and capacitors. The
mathematical models of these systems are governed by ordinary differential
equations. Later in Chap. 6, we address operational amplifiers, which are
active electrical elements and their models are more relevant to controller
systems discussions.

2-2-1 Modeling of Passive Electrical Elements

Consider Fig. 2-20, which shows the basic passive electrical elements:
resistors, inductors, and capacitors.
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Figure 2-20 Basic passive electrical elements. (a) A resistor. (b) An
inductor. (c) A capacitor.

Resistors. Ohm’s law states that the voltage drop, e (t), across a resistor R
is proportional to the current i(t) going through the resistor. Or

e, (1)=i(t)R (2-64)

Inductors. The voltage drop, e (t), across an inductor L is proportional to
the time rate of change of current i(t) going through the inductor. Thus,

di(t)

t)=1L
e, (t) dt

(2-65)

Capacitor. The voltage drop, e (t), across a capacitor C is proportional to
the integral current i(t) going through the capacitor with respect to time.
Therefore,

e (t)= J.%dt (2-66)

2-2-2 Modeling of Electrical Networks

The classical way of writing equations of electric networks is based on the
loop method or the node method, both of which are formulated from the two
laws of Kirchhoff, which state:

Current law or loop method. The algebraic summation of all currents
entering a node is zero.

Voltage law or node method. The algebraic sum of all voltage drops
around a complete closed loop is zero.



EXAMPLE 2-2-1 Let us consider the RL.C network shown in Fig. 2-21.
Using the voltage law

R L

O— MWW —Pp—J 0 ———
+ i(1)

e(r) o= el

Figure 2-21 RLC network. Electrical schematics.
elf)=e,+e +e, (2-67)

where e = Voltage across the resistor R
e, = Voltage across the inductor L

e = Voltage across the capacitor C

Or

e(t) =+e, (1)+ Ri(1)+ L d;(:)

(2-68)

Using current in C,

odet)

i i(t) (2-69)

and substituting for i(t) in Eq. (2-68), we get the
equation of the RL.C network as

de(t)  de(t)

LC +RC——"+e, (t)=e(t 2-70
e 5 Te(t)=elt) (2-70)

Dividing the former equation by LC and using

_ def(t)] ) _(dzec(t)]
t)= e(t)=| —7—
2 ( dt ) and dt” ) we get




R 1 1
é (£)t—e (t)t+—e [Ey=——8ll 2-71
c()LC()LCL()LC() (2-71)
In control systems it is customary to rewrite Eq. (2-70)
as

e ()+20w e (1) +wle (t)=w e(t) (2-72)

where o and { are the natural frequency and the
damping ratio of the system, respectively. As in Eq. (2-
10), Eqg. (2-72) is also known as the prototype second-
order system. We define e (t) as the output and e(t) as
the input of the system, where both terms have same
units. Notice that this system is also analegous to the
translational Mechanical system in Fig. 2-2.

EXAMPLE 2-2-2 Another example of an electric network is shown in Fig.
2-22. The voltage across the capacitor is e (t) and the

currents of the inductors are i (t) and i (t), respectively.
The equations of the network are

R, L, L

AAVA U0 A0 —p—
i,(r) i5(1)

+ +
e() C 7=edt) § R

Figure 2-22 Electrical schematic for network of Example 2-2-2.

LD R (e O=e(t) (2-73)
L, %W g e (2-74)
c2B i -, (2-75)

dt



Differentiating Egs. (2-73) and (2-74) and substituting
Eq. (2-75), we get

LR B (), ()=o) (2-76)
P di® _
Lz 7+R2 —dt Il(f)+12(t)—0 (2 77)

Exploring the similarity of this system with that
represented in Example 2-1-4, we find the two systems
are analogous when R, = 0—compare Egs. (2-76) and (2-

77) with Egs. (2-37) and (2-38).

EXAMPLE 2-2-3 Consider the RC circuit shown in Fig. 2-23. Find the
differential equation of the system. Using the voltage
law

+ R —

€r

| & +
=
~
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o
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) |
]
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e

Figure 2-23 A simple electrical RC circuit.
e, (t)=ey(t)+e(t) (2-78)
where
e, =iR (2-79)

and the voltage across the capacitor e (t) is

ec(t)= %Jidt (2-80)



But from Fig. 2-21

L.
eo(t):Ejzdt:ec(t) (2-81)
If we differentiate Eq. (2-81) with respect to time, we
get

i _de,) (2-82)

C dt
or

Ce,(t)=i (2-83)

This implies that Eg. (2-78) can be written in an input—
output form

RCé (t)+e,(t)=e¢, () (2-84)

where the 7 = RC is also known as the time constant
of the system. The significance of this term is discussed
later in Chaps. 3, 6, and 7. Using this term the equation of
the system is rewritten in the form of a standard first-
order prototype system.

e ()+~e ()=—e (1) (2-85)
T T

Notice that Eq. (2-85) is analogous to Eq. (2-8), when
M =0.

EXAMPLE 2-2-4 Consider the RC circuit shown in Fig. 2-24. Find the
differential equation of the system.
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Figure 2-24 Simple electrical RC circuit.

As before, we have

e (t)=e (t)+e,(t) (2-86)
or
em(t):éjidHiR (2-87)

But e (t) = iR. So

et

ein(t) -

e, (1) (2-88)

is the differential equation of the system. To solve Eq.
(2-88), we differentiate once with respect to time

¢ =216 ) (2-89)

RC

where, again, T = RC is the time constant of the
system.

EXAMPLE 2-2-5 Consider the voltage divider of Fig. 2-25. Given an input
voltage e (1), find the output voltage e (¢) in the circuit
composed of two resistors R and R..
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Figure 2-25 A voltage divider.

The currents in the resistors are

izw (2-90)
Rl

e (1)

= (2-91)

Equating Egs. (2-90) and (2-91), we have

e, (f)—e (t) _e(f)
Rl - RZ

(2-92)

Rearrangement of this equation yields the following
equation for the voltage divider:

R2
e {f) = R+R, e (1) (2-93)

The SI and most other measurement units for variables
in electrical systems are the same, as shown in Table 2-2.

TABLE 2-2 Basic Electrical System Properties and Their Units



Parameter Notation Units

Resistance R ohm (€2) = volt/amp
Capacitance C farad (F) = amp; s/volt = s/ohm
Inductance L henry (H) = volt; s/amp = ohm s
Variables

Charge: g(t) coulomb = newton-meter/volt
Current: i(f) ampere (A)
Voltage: e(t) volt (V)

Energy: E ] (joules)
1J=1N-m
1cal=4.184]
1Btu=1055]

Power: PW (watt); J/s (joule/second)
1W=1]/s

2-3 INTRODUCTION TO MODELING OF
THERMAL AND FLUID SYSTEMS

In this section, we review thermal and fluid systems. Knowledge of these
systems is important in many mechanical and chemical engineering control
system applications such as in power plants, fluid power control systems or
temperature control system. Because of the complex mathematics associated
with these nonlinear systems, we only focus on basic and simplified models.

2-3-1 Elementary Heat Transfer PropertiesZ’

In a thermal system, we look at transfer of heat among different
components. The two key variables in a thermal process are temperature T
and thermal storage or heat stored Q, which has the same units as energy
(e.g., J or joules in SI units). Also heat transfer systems include thermal
capacitance and resistance properties, which are analogous to same properties
mentioned in electrical systems. Heat transfer is related to the heat flow rate
g, which has the units of power. That is,



7=Q (2-94)

As in the electrical systems, the concept of capacitance in a heat transfer
problem is related to storage (or discharge) of heat in a body. The capacitance
C is related to the change of the body temperature T with respect to time and
the rate of heat flow q:

Capacitance in a heat transfer problem is related to storage (or
discharge) of heat in a body.

g=CT (2-95)

where the thermal capacitance C can be stated as a product of r material
density, ¢ material specific heat, and volume V:

C=pc,V (2-96)

In a thermal system, there are three different ways that heat is transferred.
That is by conduction, convection, or radiation.

Conduction

Thermal conduction describes how an object conducts heat. In general this
type of heat transfer happens in solid materials due to a temperature
difference between two surfaces. In this case, heat tends to travel from the hot
to the cold region. The transfer of energy in this case takes place by molecule
diffusion and in a direction perpendicular to the object surface. Considering
one-directional steady-state heat conduction along x, as shown in Fig. 2-26,
the rate of heat transfer is given by

7

qg—» Al k —>




Figure 2-26 One-directional heat conduction flow.

q =k7AAT =D AT (2-97)

where q is the rate of heat transfer (flow), k is the thermal conductivity
related to the material used, A is the area normal to the direction of heat flow
x, and AT =T — T, is the difference between the temperatures at x = 0 and x =
I, or T and T.. Note in this case, assuming a perfect insulation, the heat
conduction in other directions is zero. Also note that

1 1
D_,=—=— (2-98)
1-2 ch% R
where R is also known as thermal resistance. So the rate of heat transfer g
may be represented in terms of R as

Thermal resistance is a property of materials to resist the flow of
heat.

q=— (2-99)

Convection

This type of heat transfer occurs between a solid surface and a fluid
exposed to it, as shown in Fig. 2-27. At the boundary where the fluid and the
solid surface meet, the heat transfer process is by conduction. But once the
fluid is exposed to the heat, it can be replaced by new fluid. In thermal
convection, the heat flow is given by
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Figure 2-27 Fluid-boundary heat convection.

T

q=hAAT = D,AT (2-100)

where q is the rate of heat transfer or heat flow, h is the coefficient of
convective heat transfer, A is the area of heat transfer, and AT = T, - T is the

difference between the boundary and fluid temperatures. The term hA may be
denoted by D,, where

Dy=hA=— (2-101)

Again, the rate of heat transfer g may be represented in terms of thermal
resistance R. Thus,

q=— (2-102)

Radiation

The rate of heat transfer through radiation between two separate objects is
determined by the Stephan-Boltzmann law,

qu’A(Tl4 —Tf) (2-103)

where q is the rate of heat transfer, o is the Stephan-Boltzmann constant
and is equal to 5.667x10* W/m*.K*, A is the area normal to the heat flow, and
T and T, are the absolute temperatures of the two bodies. Note that Eq. (2-
103) applies to directly opposed ideal radiators of equal surface area A that
perfectly absorb all the heat without reflection (Fig. 2-28).
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Figure 2-28 A simple heat radiation system with directly opposite ideal
radiators.

The SI and other measurement units for variables in thermal systems are
shown in Table 2-3.

TABLE 2-3 Basic Thermal System Properties and Their Units

Symbol
Parameter Used SI Units Other Units
Resistance R °C/W K/W °F/(Btu/h)
Capacitance C J/(kg-°C) J/(kg-K) Btu/°F Btu/°R

Temperature: T(t) °C (Celsius); K (Kelvin); °F (Fahrenheit)
°C=(°F-32)x5/9, °C="K+273
Energy (heat stored): Q] (joule); Btu;

calorie
1J=1N-m

lcal=4.184]
1 Btu=1055]

Heat flow rate: q(1) J/s; W; Btu/s

EXAMPLE 2-3-1 A rectangular object is composed of a material that is in
contact with fluid on its top side while being perfectly
insulated on three other sides, as shown in Fig. 2-29.
Find the equations of the heat transfer process for the
following:



Figure 2-29 Heat transfer problem between a fluid and an insulated solid
object.

T = solid object temperature; assume that the
temperature distribution is uniform

T = top fluid temperature

£ = length of the object

A = cross-sectional area of the object
p = material density

¢ = material specific heat

k = material thermal conductivity

h = coefficient of convective heat transfer

SOLUTION The rate of heat storage in the solid from Eq. (2-95) is

dT.
= pcAfl| =L 2-104
q=pc [dt] ( )

Also, the convection rate of heat transferred from the fluid is

q=hA(T, -T,) (2-105)

The energy balance equation for the system dictates g to be the same in
Egs. (2-104) and (2-105). Hence, upon introducing thermal capacitance C
from Eq. (2-95) and the convective thermal resistance R from Eg. (2-99) and
substituting the right-hand sides of Eqg. (2-104) into Eq. (2-105), we get




RCI+T,=T; (2-106)

where the RC = 1 is also known as the time constant of the system. Notice
that Eq. (2-106) is analogous to the electrical system modeled by Eg. (2-84).

2-3-2 Elementary Fluid System Properties4

In this section, we derive the equations of fluid systems. The key
application in control systems associated with fluid systems is in the area of
fluid power control. Understanding the behavior of fluid systems will help
appreciating the models of hydraulic actuators. In fluid systems, there are five
parameters of importance—pressure, flow mass (and flow rate), temperature,
density, and flow volume (and volume rate). Our focus will primarily be on
incompressible fluid systems because of their application to elements of
popular industrial control systems such as hydraulic actuators and dampers.
In case of incompressible fluids, the fluid volume remains constant, and just
like electrical systems, they can be modeled by passive components including
resistance, capacitance, and inductance.

For an incompressible fluid, density p is constant, and the fluid
capacitance C is the ratio of the volumetric fluid flow rate g to the rate
of pressure P.

To understand these concepts better, we must look at the fluid continuity
equation or the law of conservation of mass. For the control volume shown
in Fig. 2-30 and the net mass flow rate q = pq, we have

/‘M\“
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Figure 2-30 Control volume and the net mass flow rate.



m = pqdt (2-107)

av

where m is the net mass flow, p is fluid density, dar LA is the net

volumetric fluid flow rate (volume flow rate of the ingoing fluid g minus
volume flow rate of the outgoing fluid q ). The conservation of mass states

dm d d

e g =—( M Y=—ilp¥ 2-108
dt P4 dt( o) dt(p ) ( )
am _ v (2-109)
a PP

where m is the net mass flow rate, M _ is the mass of the control volume (or
for simplicity “the container” fluid), and V is the container volume. Note

dVv
— =g, —g = (2-110)
ar 9 —49.=4

which is also known as the conservation of volume for the fluid. For an
incompressible fluid, p is constant. Hence setting p = 0 in Eq. (2-109), the

conservation of mass for an incompressible fluid is
m=pV=pq (2-111)

Capacitance—Incompressible Fluids

Similar to the electrical capacitance, fluid capacitance relates to how
energy can be stored in a fluid system. The fluid capacitance C is the
change in the fluid volume that is stored over the pressure change.
Alternatively capacitance is defined as the ratio of the volumetric fluid flow
rate g to the rate of pressure P as follows:

C=V:

— (2-112)
P

L4
p

or



q=CP (2-113)

EXAMPLE 2-3-2 In a one-tank liquid-level system, the fluid pressure in the
tank that is filled to height h (also known as head),
shown in Fig. 2-31, is the weight of the fluid over the
cross-sectional area, or

g h

14

Figure 2-31 Incompressible fluid flow into an open-top cylindrical
container.

pVg _ phgA
P=—=="""_=ph 2-114
A 4 P% -1

As aresult, from Egs. (2-112) and noting V = Ah, we
get

et B _A (2-115)
P pgh pg

In general, the fluid density p is nonlinear and may depend on
temperature and pressure. This nonlinear dependency p(P,T), known as the
equation of state, may be linearized using the first-order Taylor series
relating r to P and T:

dp ap)
=0+ = P=P 4| =— T-T 2-116
p pref ( aP JPref >Tref ( ref ) ( aT Pref ’Tref ( “ ) ( )

where p , P_, and T are constant reference values of density, pressure, and
temperature, respectively. In this case,



ﬁ=i(a—pJ (2-117)
pref ap P sTar

a:__L{ﬁﬂ) (2-118)

ref ’Tref

are the bulk modulus and the thermal expansion coefficient,
respectively. In most cases of interest, however, the temperatures of the fluid
entering and flowing out of the container are almost the same. Hence
recalling the control volume in Fig. 2-30, the conservation of mass Eq. (2-
108) reflects both changes in volume and density as

dm_dpy, 4V (2-119)
dt dt dt
If the container of volume V is a rigid object, V = 0. Hence,
dm _dpy, (2-120)
dt dt

Substituting the time derivative of Eqg. (2-116), assuming no temperature
dependency, into Eq. (2-120) and using Eq. (2-117), the capacitance relation
may be obtained as

V.o .
q:EP:CP (2-121)

In general, density may depend on temperature and pressure. In the
latter case, the fluid is considered to be compressible.

dm

Note that df Do = Prer was used to arrive at Eq. (2-121). As aresult in

the case of a compresible fluid inside a rigid object, the capacitance is



C=— (2-122)
p

EXAMPLE 2-3-3 In practice, accumulators are fluid capacitors, which may
be modeled as a spring-loaded piston systems as
shown in Fig. 2-32. In this case, assuming a spring-
loaded piston of area A traveling inside a rigid
cylindrical container, using the conservation of mass
Eq. (2-119) for compressible fluids, we get

A ’—bx

\A
— 7| YYYY ]

P(J'fm
Figure 2-32 A spring-loaded piston system.
dp dv
gy o BE (2-123
plef q dt pref dt )

Assuming a compressible fluid with no temperature
dependency, taking a time derivative of Eqg. (2-116) and

using Eq. (2-117), we have

dp _p.s dP (2-124)
it B dt

Combining Egs. (2-123) and (2-124) and using Eq. (2-
122), the pressure rise rate within the varying control
volume of Fig. 2-42 is shown as

p=B
v

1 :
(q_V)_E(q_V) (2-125)

where V = Ax. This equation reflects that the rate of



change of pressure inside a varying control volume is
related to the entering fluid volumetric flow rate and the
rate of change of chamber volume itself.

Inductance—Incompressible Fluids

Fluid inductance is also referred to as fluid inertance in relation to the
inertia of a moving fluid inside a passage (line or a pipe). Inertance occurs
mainly in long lines, but it can also occur where an external force (e.g.,
caused by a pump) causes a significant change in the flow rate. In the case
shown in Fig. 2-33, assuming a frictionless pipe with a uniform fluid flow
moving at the speed v, in order to accelerate the fluid, an external force F is
applied. From Newton’s second law,

Inductance (or inertance) occurs mainly in long pipes or where an
external force causes a significant change in the flow rate.

Figure 2-33 A uniform incompressible fluid flow forced through a
frictionless pipe.

F=AAP= Mv=pAlv

AP=(P —P) (2-126)
But
V=Av=gq (2-127)
So
(P —P,)=Lq (2-128)

where



A

1 (2-129)

is known as the fluid inductance. Note that the concept of inductance is
rarely discussed in the case of compressible fluids and gasses.

Resistance—Incompressible Fluids

As in the electrical systems, fluid resistors dissipate energy. However,
there is no unique definition for this term. In this textbook, we adopt the most
common term, which relates fluid resistance to pressure change. For the
system shown in Fig. 2-34, the force resisting the fluid passing through a
passage like a pipe is

R

Figure 2-34 Flow of an incompressible fluid through a pipe and a fluid
resistor R.

In this textbook, fluid resistance relates the pressure drop to the
volumetric flow rate q.

F,=AAP=A(P,-P) (2-130)

where AP = P, — P is the pressure drop and A is the cross-sectional area of
the pipe. Depending on the type of flow (i.e., laminar or turbulent) the fluid
resistance relationship can be linear or nonlinear and relates the pressure drop
to the volumetric flow rate g. For a laminar flow, we define

AP =Rgq (2-131)
R:£ (2-132)
q

where q is the volume flow rate. Table 2-4 shows resistance R for various



passage cross sections, assuming a laminar flow.

TABLE 2-4 Equations of Resistance R for Laminar Flows



Fluid Resistance

Symbols used

General case

Circular cross section

Square cross section

Rectangular cross section

Rectangular cross section: approximation

Annular cross section

Annular cross section: approximation

Fluid volume flow rate: g
Pressure drop: AP=P, =P P,
Laminar resistance: R

Lz Fluid viscosity

w =width; h=height; ( =length;

d =diameter

Re 32 ,uzf
Ad,
4A
d, = hydraulic diameter = —
perimeter
_128ul
- nd*
2ul
R="E
W
8l
RS
wh
(1+h/w)
12ul
R=—1
wh
wlh=small
8l
R=—t

erodf[l—iJ
dﬂ

d, =outer diameter; d, =inner diameter

_L2ul
md &
d,/d, =small

R




When the flow becomes turbulent, the pressure drop relation Eqg. (2-131)
is rewritten as

AP=R,q' (2-133)

where R_is the turbulent resistance and n is a power varying depending on
the boundary used—for example, n = 7/4 for a long pipe and, most useful, n
= 2 for a flow through an orifice or a valve.

In order to get a sense of the laminar and turbulent flows and their
corresponding resistance terms, you may wish to conduct a simple
experiment by applying a force on the plunger syringe filled with water. If
you push the plunger with a gentle force, the water is expelled easily from the
other end through the syringe orifice. However, application of a strong force
would cause a strong resistance. In the former case, you encounter a mild
resistance due to the laminar flow, while in the latter case the resistance is
high because of the turbulent flow.

EXAMPLE 2-3-4 For the liquid-level system shown in Fig. 2-35, water or
any incompressible fluid (i.e., fluid density r is
constant) enters the tank from the top and exits
through the valve with resistance R in the bottom. The
fluid height (also known as head) in the tank is h and
is variable. The valve resistance is R. Find the system
equation for the input, g, and output, h.

A One-Tank Liquid-Level System

lfh

9o




Figure 2-35 A single-tank liquid-level system.

SOLUTION The conservation of mass suggests
dm _d(pV)

dt  dt

= P4, ~ P4, (2-134)

where pq and pq, are the mass flow rate in and out of
the valve, respectively. Because the fluid density p is a
constant, the conservation of volume also applies, which
suggests the time rate of change of the fluid volume
inside the tank is equal to the difference of incoming and
outgoing flow rates.

dv) _dian) _
aar T S

Recall from Eq. (2-112) the tank fluid capacitance is

c YV _Ah_ A

=— == (2-136)
P pgh pg

where P is the rate of change of fluid pressure at the
outlet valve. From Eq. (2-132), resistance R at the valve,
assuming a laminar flow, is defined as

o (2-137)

4o

where AP = P — P_is the pressure drop across the
valve. Relating the pressure to fluid height h, which is
variable, we get

P =P, +pgh (2-138)

where P _is in the pressure at the valve and P__is the

atmospheric pressure. Hence, from Eq. (2-137), we
obtain



_psh

2-139
=g ( )

After combining Egs. (2-134) and (2-139), and using
the relationship for capacitance from Eq. (2-136), we get
the system equation

RC%Jrh:iqi (2-140)

t pg

Or using Eq. (2-139) we can also find the system
equation in terms of the volumetric flow rate

RCq,+4, =g, (2-141)

where system time constant is 7 = RC. This system is
analogous to the electrical system represented by Eg. (2-

85).

EXAMPLE 2-3-5 The liquid-level system shown in Fig. 2-36 is the same as
that in Fig. 2-35, except the drainage pipe is long with
the length of ¢.

qu

A.p

R do
P P, X —>

«— ! —»

Figure 2-36 A single-tank liquid-level system.

In this case the pipe will have the following inductance
(P —P)=1(qg, (2-142)

As in the previous example, at the valve the resistance



is

R= 0 (2-143)
9o
And the tank fluid capacitance is the same as Example
2-3-4:
A
C=— (2-144)
pPg

Substituting Eq. (2-143) into Eqg. (2-142) and using P,
- Purm + pgh’ we get

pgh=Lq,+Rq, (2-145)
But from the conservation of volume we also have

dw) _
dt

Differentiating Eq. (2-145) we can modify Eq. (2-146)
in terms of input, q, and output, g . That is,

Ah=q —q, (2-146)

L. R
—q,+—4q, =

11
pg pg- A

q;— an (2-147)

Using the capacitance formula in Eq. (2-144), Eq. (2-
147) is modified to

LC4,+RCq,+4, =4, (2-148)

EXAMPLE 2-3-6 Consider a double-tank system, as shown in Fig. 2-37,
with h, and h, representing the two tank heights and R,
and R, representing the two valve resistances,

respectively. We label the pressure in the bottom of
tanks 1 and 2 as P, and P, respectively. Further, the



pressure at the outlet of tank 2 is P, = P_ . Find the
differential equations.

A Two-Tank Liquid-Level System
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Figure 2-37 Two-tank liquid-level system.

SOLUTION Using the same approach as Example 2-
3-4, it is not difficult to see for tank 1:

d(V.) .
T;":Al}ﬁ =4, — 4,
_ _Pl_Pz_ _(Patm+pghl)_(Patm+pgh2) (2-149)
=4, R =4; R
1 1
and for tank 2:
v, . P-P, P—P
=A =g —g ==t 3 %3 3
At 2y =4, —4, R1 R2
— (Ijatm +pgh1 )_(})atm +pgh2)_ (Patm +pgh2)_Patm (2_150)
Rl Rz

Thus, the equations of the system are

- pghpgh,
Aol e 3o,
lh'l Rl Rl qz

(2-151)

A,h, —%+[L+Ringh2 =0 (2-152)

1 1 2



The SI and other measurement units for variables in fluid systems are
tabulated in Table 2-5.

TABLE 2-5 Basic Fluid System Properties and Their Units

Parameter Symbol Used SI Units Other Units
Resistance (hydraulic) R N s/m’ Ib,- s/in®
Capacitance (hydraulic) L m’/N in/1b

Time constant T=RC s

Variables

Pressure: P N/m’ Pa, psi (Ib/in’)
Volume flow rate: g m/s; ft*/s in'/s
Mass flow rate: g, kg/s; Ib/s

2-4 LINEARIZATION OF NONLINEAR
SYSTEMS

From the discussions given in the preceding sections on basic system
modeling, we should realize that most components found in physical systems
have nonlinear characteristics. In practice, we may find that some devices
have moderate nonlinear characteristics, or nonlinear properties that would
occur if they were driven into certain operating regions. For these devices, the
modeling by linear-system models may give quite accurate analytical results
over a relatively wide range of operating conditions. However, there are
numerous physical devices that possess strong nonlinear characteristics. For
these devices, a linearized model is valid only for limited range of operation
and often only at the operating point at which the linearization is carried out.
More importantly, when a nonlinear system is linearized at an operating
point, the linear model may contain time-varying elements.

2-4-1 Linearization Using Taylor Series: Classical
Representation

In general, Taylor series may be used to expand a nonlinear function f



(x(t)) about a reference or operating value x (t). An operating value could be
the equilibrium position in a spring-mass-damper, a fixed voltage in an
electrical system, steady-state pressure in a fluid system, and so on. A
function f (x(t)) can therefore be represented in a form

f(x()) =ic‘,-(X(t)—x0(t))i (2-153)

where the constant c represents the derivatives of f (x(t)) with respect to
x(t) and evaluated at the operating point x (t). That is,

| _1df(x,)

0 dx (2-154)
Or
F(x() = flx, () @um—xo(tm%Wmt)—xo(mz
TGO e LTS ey ass)

6 dt

If A(x) = x(t) — x,(¢t) is small, the series Eg. (2-155) converges, and a
linearization scheme may be used by replacing f (x(t)) with the first two terms

in Eg. (2-155). That is,

nl dt”

) df (),
FOE) = Flxg (D) + === (x(0) = 5, (1) (2-156)

=c,+Ax

The following examples serve to illustrate the linearization procedure just
described.

EXAMPLE 2-4-1 Find the equation of motion of a simple (ideal) pendulum
with a mass m and a massless rod of length ¢, hinged
at point O, as shown in Fig. 2-38.
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Figure 2-38 (a) A simple pendulum. (b) Free-body diagram of mass m.

SOLUTION Assume the mass is moving in the
positive direction as defined by angle 8. Note that 8 is
measured from the x axis in the counterclockwise
direction. The first step is to draw the free-body diagram
of the components of the system, that is, mass and the
rod, as shown in Fig. 2-38b. For the mass m, the
equations of motion are

Y F. =ma, (2-157)
F =
2F =ma, (2-158)

where F and F are the external forces applied to mass
m, and a_and a, are the components of acceleration of
mass m along x and y, respectively. If the position vector
from point O to mass m is designated by vector R,
acceleration of mass m is the second time derivative of R,
and is a vector a with tangential and centripetal
components. Using the rectangular coordinate frame (x,
y) representation, acceleration vector is



a

_d’R d*(¢cos@i+ sin67)
Cdrt dt?
=(—¢Bsin0—16* cos@)f+(€éc059—.€92 sinQ)}' (2-159)

where i and J are the unit vectors along x and y
directions, respectively. As a result,

a, =(—/8sinO— (6* cosh) (2-160)
a, =((BcosO—(0*sin0) (2-161)
Considering the external forces applied to mass, we

have
ZFx =—F,cos@+mg (2-162)
Y F, =—F,sin6 (2-163)

Equations (2-241) and (2-242) may therefore be
rewritten as

—F; c039+mg:m(—.(?ésin9— (6* cosB) (2-164)
~F, sin@=m(/BcosO— (6" sinh) (2-165)

Premultiplying Eq. (2-164) by (-sinf) and Eq. (2-165)

by (cosf) and adding the two, we get

—mgsin@=ml6 (2-166)
where
sin“@+cos’6=1 (2-167)

After rearranging, Eq. (2-167) is rewritten as
ml0+mgsinf=0 (2-168)

or



é+%s’m9:0 (2-169)

In brief, using static equilibrium position 8 = 0 as the
operating point, for small motions the linearization of the
system implies 6 ~ 0 as shown in Fig. 2-39.

Linear
11 Approximation
Operating
Point 6 =0
F} Phase (degrees)
! T T T R T
=360 =270 -1 =90 0 90 18 270 60

11
Sine wave /

Figure 2-39 Linearization of 8 ~ 0 about 6 = 0 operating point.

Hence, the linear representation of the system is
0+ %9 =0, Or

0+w0=0 (2-170)

/g
a) s

where " V[ rad/s is the natural frequency of the
linearized model.

EXAMPLE 2-4-2 For the pendulum shown in Fig. 2-38, rederive the
differential equation using the moment equation.

SOLUTION The free-body diagram for the moment
equation is shown in Fig. 2-38b. Applying the moment
equation about the fixed point O,



ZMD =ml’a

—(sinB-mg =ml*6 (2-171)

Rearranging the equation in the standard input—output
differential equation form,

ml*0+mg/lsinf=0 (2-172)
or

9+%Sin9:() (2-173)

which is the same result obtained previously. For small
motions, as in the Example 2-4-1,

sin@ ~6 (2-174)
The linearized differential equations is
O+w0=0 (2-175)

where, as before

@, == (2-176)

2-5 ANALOGIES

In this section, we demonstrate the similarities among mechanical, thermal,
and fluid systems with electrical networks. As an example, let us compare
Egs. (2-10) and (2-71). It is not difficult to see that the mechanical system in
Fig. 2-2 is analogous to a series RLC electric network shown in Fig. 2-21.
These systems are shown in Fig. 2-40. In order to exactly see how
parameters, M, B, and K are related to R, L, and C; or how the variables y(t)
and f (t) are related to i(t) and e(t), we need to compare Egs. (2-8) and (2-59).



Thus,
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Figure 2-40 Analogy of a spring-mass-damper system to a series RLC
network. (a) A spring-mass-damper system. (b) A series RLC equivalent.

Using a force-voltage analogy, the spring-mass-damper system in
Fig. 2-2 is analogous to a series RLC electric network shown in Fig. 2-
19.

EY0) o)

M= =+B= =+ Ky(t)=f(1 (2-177)
di(t) . 1¢.
L7+Rz(t)+EJz(t)dt:e(t) (2-178)

This comparison is more properly made upon integrating Eq. (2-177) with
respect to time. That is,

Mdv(t)
dt

+Bv(t)+ K [v(t)dt = f(t) (2-179)

where v(t) represents the velocity of mass m. As a result, with this
comparison, mass M is analogous to inductance L, the spring constant K is
analogous to the inverse of capacitance 1/C, and the viscous-friction
coefficient B is analogous to resistance R. Similarly, v(t) and f (t) are
analogous to i(t) and e(t), respectively. This type of analogy is also known as



force-voltage analogy. Similar assessment can be made by comparing the
rotational system in Eq. (2-32) with the RLC network of Example 2-4-1.

Using a parallel RLC network with current as a source, some literature use
a force-current analogy that is not discussed here.? Comparing the thermal,

fluid, and electrical systems, similar analogies may be obtained, as shown in
Table 2-6.

TABLE 2-6 Mechanical, Thermal, and Fluid Systems and Their
Electrical Equivalents

Parameter Relation to
System Electrical R, L, C Variable Analogy
Mechanical (translation) Ri(t)=Bu(t) e(t) analogous (1)
M%+Bv[t]+KIv(t)dt:ﬂt} R=B i(t) analogous v(t)
h
analogous to lji(t) dt=K jv(t) dt Whete
di(t) i 9 e(t) = voltage
L=+ Ri(t)+— [i(t) dt =e(t) i
dt C O ” i(t)=current
. f(t)=force
L), )
dt dt v(t) =linear velocity
F=M
Mechanical (rotation) R=B e(1) analogous T(t)
] %%w(m K jw(r) dt=T(t) i 1 i(t) analogous o(f)
K where
analogous to
i) ; L=] e(t) = voltage
LW-FRf(f)-FEJ-I‘(t)df:E(f) i(t):current
T(t)=torque

o(t) = angular velocity



Fluid (incompressible) AP=Rq(t) e(t) analogous AP

(laminar flow) i(t) analogous ¢(f)
R is the fluid resistance, which  yhere
depends on the flow regime

_ e(t) = voltage
q(t)=CP

i(t)=current
C is the fluid capacitance, which

AP= diff
depends on flow regime PressHIe Crierence

e i (flow in a pipe) q(t)=volume flow rate

Where L is the fluid inductance
(aka inertance)
A =area of cross section

|=length
p = fluid density

Thermal R £ e(t) analogous T(t)
q i(t) analogous g(t)
R is the thermal resistance where
1 e(t) = voltage

i(f) = current
C s the thermal capacitance
T(t) = temperature

q(t) =heat flow

A
C=r—
EXAMPLE 2-5-1 For the liquid-level system shown in Fig. 2-35, Pg is
_psh
the capacitance and 4, is the resistance. As a

result, system time constant is T = RC.

A One-Tank Liquid-Level System



SOLUTION In order to design a speed, position, or
any type of control system, the first task at hand is to
arrive at a mathematical model of the system. This will
help us to “properly” develop the best controller for the
required task (e.g., proper positioning of the arm in a pick
and place operation).

A general advice is to use the simplest model you can
that is “good enough!” In this case, we can assume the
effective mass of the arm and the mass of payload are
concentrated at the end of a massless rod, as shown in
Fig. 2-41. You can experimentally arrive at what mass m
in your model should be. See App. D for details.

0

““~

i

Figure 2-41 One-degree-of-freedom arm with required components.

As in Example 2-2-1, is moving in the positive
direction as defined by angle 0. Note that 0 is measured
from the x axis in the counterclockwise direction. For the
mass m, the equations of motion may be obtained by
taking a moment about point O, we get

Y M, =T=m(*0 (2-180)

where T is the external torque applied by the motor to
accelerate the mass.

In Chap. 6, we significantly augment this model by
adding the model of the motor.



2-6 PROJECT: INTRODUCTION TO LEGO
MINDSTORMS NXT MOTOR—MECHANICAL
MODELING

This section provides a simple, yet practical, project for you to better
appreciate the theoretical concepts that have been discussed so far.

The goal of this project is further to build a one-degree-of-freedom robot
using the LEGO MINDSTORMS NXT motor, shown in Fig. 2-42, and to
arrive at the mathematical model of the mechanical one-degree of freedom
arm. This example is followed through in Chaps. 6, 7, 8, and 11. The detailed
discussion on this topic is provided in App. D, with the objective to provide
you with a series of experiments for measuring a dc motor’s electrical and
mechanical properties, and ultimately, to create a mathematical model for
the motor and the robot arm shown in Fig. 2-42 for controller design
purposes.

The first objective of this project is to help you better understand how
to measure a dc motor’s electrical and mechanical characteristics and
ultimately create a model for the motor.
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Figure 2-42 A simplified model of a one-degree-of-freedom robotic arm.

As shown in Fig. 2-42, the components of our robotic system include an
NXT brick, an NXT motor, and several LEGO pieces found in the basic
LEGO MINDSTORMS kit, which are used here to construct a one-degree-of-
freedom arm. The arm is to pick up a payload and drop it into the cup, which
is located at a specified angle while data are sampled in Simulink.
Programming is done on the host computer using Simulink and is uploaded
on to the NXT brick via USB interface. The brick then provides both power



and control to the arm via the NXT cables. Additionally, there is an optical
encoder located behind the motor which measures the rotational position of
the output shaft with one-degree resolution. The host computer samples
encoder data from the NXT brick via a Bluetooth connection. In order for the
host computer to recognize the NXT brick, the host computer must be paired
with the NXT brick when setting up the Bluetooth connection.*

2-7 SUMMARY

This chapter is devoted to the mathematical modeling of basic dynamic
systems, including various examples of mechanical, electrical, thermal, and
fluid systems. Using the basic modeling principles such as Newton’s second
law of motion, Kirchhoff’s law, or conservation of mass the model of these
dynamic systems are represented by differential equations, which may be
linear or nonlinear. However, due to space limitations and the intended scope
of this text, only some of the physical devices used in practice are described.

Because nonlinear systems cannot be ignored in the real world, and this
book is not devoted to the subject, we introduced the linearization of
nonlinear systems at a nominal operating point. Once the linearized model is
determined, the performance of the nonlinear system can be investigated
under the small-signal conditions at the designated operating point.

Finally, in this chapter we establish analogies between mechanical,
thermal, and fluid systems with equivalent electrical networks.

REFERENCES

1. W.J. Palm III, Modeling, Analysis, and Control of Dynamic
Systems, 2nd Ed., John Wiley & Sons, New York, 1999.

2. K. Ogata, Modern Control Engineering, 4th Ed., Prentice Hall, New
Jersey, 2002.

3. 1. Cochin and W. Cadwallender, Analysis and Design of Dynamic
Systems, 3rd Ed., Addison-Wesley, New York, 1997.

4. A. Esposito, Fluid Power with Applications, 5th Ed., Prentice Hall,
New Jersey, 2000.

5. H.V.VuandR. S. Esfandiari, Dynamic Systems, Irwin/McGraw-



Hill, Boston, 1997.

6. J. L. Shearer, B. T. Kulakowski, and J. F. Gardner, Dynamic
Modeling and Control of Engineering Systems, 2nd Ed., Prentice Hall,
New Jersey, 1997.

7. R.L. Woods and K. L. Lawrence, Modeling and Simulation of
Dynamic Systems, Prentice Hall, New Jersey, 1997.

8. E.J. Kennedy, Operational Amplifier Circuits, Holt, Rinehart and
Winston, Fort Worth, TX, 1988.

9. J. V. Wait, L. P. Huelsman, and G. A. Korn, Introduction to
Operational Amplifier Theory and Applications, 2nd Ed., McGraw-Hill,
New York, 1992.

10. B. C. Kuo and F. Golnaraghi, Automatic Control Systems, 8th Ed., John
Wiley & Sons, New York, 2003.

11. F. Golnaraghi and B. C. Kuo, Automatic Control Systems, 9th Ed., John
Wiley & Sons, New York, 2010.

PROBLEMS

PROBLEMS FOR SEC. 2-1

2-1.  Find the equation of the motion of the mass-spring system shown in
Fig. 2P-1. Also calculate the natural frequency of the system.

i

k

mn

l,v(r)

Figure 2P-1

2-2. Find its single spring-mass equivalent in the five-spring one-mass
system shown in Fig. 2P-2. Also calculate the natural frequency of the
system.



mn

Figure 2P-2

2-3. Find the equation of the motion for a simple model of a vehicle
suspension system hitting a bump. As shown in Fig. 2P-3, the mass of wheel
and its mass moment of inertia are m and J, respectively. Also calculate the

natural frequency of the system.

i,

k

0

Figure 2P-3

2-4.  Write the force equations of the linear translational systems shown
in Fig. 2P-4.
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Figure 2P-4

2-5.  Write the force equations of the linear translational system shown in
Fig. 2P-5.
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Figure 2P-5

2-6. Consider a train consisting of an engine and a car, as shown in Fig.
2P-6.

.----""""“P
L&) U_ﬂ 0 Q 'n_l LiL'lgLo_c;

Figure 2P-6

A controller is applied to the train so that it has a smooth start and stop,
along with a constant-speed ride. The mass of the engine and the car are M
and m, respectively. The two are held together by a spring with the stiffness
coefficient of K. F represents the force applied by the engine, and m
represents the coefficient of rolling friction. If the train only travels in one
direction:

(@) Draw the free-body diagram.



(b) Find the equations of motion.

2-7. A vehicle towing a trailer through a spring-damper coupling hitch is
shown in Fig. 2P-7. The following parameters and variables are defined: M is
the mass of the trailer; K, the spring constant of the hitch; B, the viscous-

damping coefficient of the hitch; B, the viscous-friction coefficient of the
trailer; y (t), the displacement of the towing vehicle; y (t), the displacement of
the trailer; and f (¢), the force of the towing vehicle.

S(0).y(1) V(1)

‘_‘ K, <—|
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® 1 OBION!
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)'r‘,

Figure 2P-7
Write the differential equation of the system.

2-8. Assume that the displacement angles of the pendulums shown in
Fig. 2P-8 are small enough that the spring always remains horizontal. If the
rods with the length of L are massless and the spring is attached to the rods 7
from the top, find the state equation of the system.

Figure 2P-8



2-9. (Challenge Problem) Figure 2P-9 shows an inverted pendulum on a
cart.

m

0)

(o | Motor

| O G@) |

Figure 2P-9

If the mass of the cart is represented by M and the force f is applied to hold
the bar at the desired position, then

(@) Draw the free-body diagram.
(b) Determine the dynamic equation of the motion.

2-10. (Challenge Problem) A two-stage inverted pendulum on a cart is
shown in Fig. 2P-10.
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Figure 2P-10

If the mass of the cart is represented by M and the force f is applied to hold
the bar at the desired position, then

(@) Draw the free-body diagram of mass M.
(b) Determine the dynamic equation of the motion.

2-11. (Challenge Problem) Figure 2P-11 shows a well-known “ball and
beam” system in control systems. A ball is located on a beam to roll along the
length of the beam. A lever arm is attached to the one end of the beam and a
servo gear is attached to the other end of the lever arm. As the servo gear
turns by an angle 6, the lever arm goes up and down, and then the angle of
the beam is changed by a. The change in angle causes the ball to roll along
the beam. A controller is desired to manipulate the ball’s position.
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Figure 2P-11

Assuming:

m = mass of the ball

r = radius of the ball

d = lever arm offset

g = gravitational acceleration
L = length of the beam

J = ball’s moment of inertia
p = ball position coordinate
a = beam angle coordinate

0 = servo gear angle

Determine the dynamic equation of the motion.

2-12. The motion equations of an aircraft are a set of six nonlinear
coupled differential equations. Under certain assumptions, they can be
decoupled and linearized into the longitudinal and lateral equations. Figure
4P-12 shows a simple model of airplane during its flight. Pitch control is a
longitudinal problem, and an autopilot is designed to control the pitch of the
airplane.



Figure 2P-12

Consider that the airplane is in steady-cruise at constant altitude and
velocity, which means the thrust and drag cancel out and the lift and weight
balance out each other. To simplify the problem, assume that change in pitch
angle does not affect the speed of an aircraft under any circumstance.

Determine the longitudinal equations of motion of the aircraft.

2-13. Write the torque equations of the rotational systems shown in Fig.
2P-13.
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Figure 2P-13

2-14. Write the torque equations of the gear-train system shown in Fig.

2P-14. The moments of inertia of gears are lumped as J, J, and J.. T (¢) is the
applied torque; N, N, N, and N, are the number of gear teeth. Assume rigid

shafts.

(@) Assume that J, J, and J, are negligible. Write the torque equations of
the system. Find the total inertia the motor sees.

(b) Repeat part (a) with the moments of inertia J,, J,, and J..
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Figure 2P-14

2-15. Figure 2P-15 shows a motor-load system coupled through a gear
train with gear ratio n = N/N,. The motor torque is T (t), and T (t) represents a
load torque.

(a) Find the optimum gear ratio n* such that the load acceleration a, =
d’0 /dt is maximized.
(b) Repeat part (a) when the load torque is zero.
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Figure 2P-15

2-16. Figure 2P-16 shows the simplified diagram of the printwheel



control system of a word processor. The printwheel is controlled by a dc
motor through belts and pulleys. Assume that the belts are rigid. The
following parameters and variables are defined: T (t) is the motor torque;

0 (t), the motor displacement; y(t), the linear displacement of the printwheel;
J , the motor inertia; B , the motor viscous-friction coefficient; r, the pulley
radius; M, the mass of the printwheel.

Write the differential equation of the system.

Printwheel
H L O,
—»V
£, Pulley
em
Motor
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Figure 2P-16

2-17. Figure 2P-17 shows the diagram of a printwheel system with belts
and pulleys. The belts are modeled as linear springs with spring constants K|

and K.

Write the differential equations of the system using 6 and y as the
dependent variables.

em
Motor
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Figure 2P-17

2-18. Classically, the quarter-car model is used in the study of vehicle
suspension systems and the resulting dynamic response due to various road



inputs. Typically, the inertia, stiffness, and damping characteristics of the
system as illustrated in Fig. 2P-18a are modeled in a two-degree of freedom
(2-DOF) system, as shown in Fig. 2P-18b. Although a 2-DOF system is a
more accurate model, it is sufficient for the following analysis to assume a 1-
DOF model, as shown in 2P-18c.

Find the equations of motion for absolute motion x and the relative motion
(bounce) z=x —y.
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Figure 2P-18 Quarter-car model realization. (a) Quarter car. (b) Two
degrees of freedom. (c) One degree of freedom.

2-19. The schematic diagram of a motor-load system is shown in Fig. 2P-
19. The following parameters and variables are defined: T (t), the motor

torque; w (t), the motor velocity; 0 (t), the motor displacement; w (t), the load
velocity; 0 (t), the load displacement; K, the torsional spring constant; J , the
motor inertia; B , the motor viscous-friction coefficient; and B, the load
viscous-friction coefficient.

Write the torque equations of the system.
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Figure 2P-19

2-20. This problem deals with the attitude control of a guided missile.
When traveling through the atmosphere, a missile encounters aerodynamic
forces that tend to cause instability in the attitude of the missile. The basic
concern from the flight-control standpoint is the lateral force of the air, which
tends to rotate the missile about its center of gravity. If the missile centerline
is not aligned with the direction in which the center of gravity C is traveling,
as shown in Fig. 2P-20, with angle 0, which is also called the angle of attack,
a side force is produced by the drag of the air through which the missile
travels. The total force F, may be considered to be applied at the center of
pressure P. As shown in Fig. 2P-20, this side force has a tendency to cause
the missile to tumble end over end, especially if the point P is in front of the
center of gravity C. Let the angular acceleration of the missile about the point
C, due to the side force, be denoted by «,. Normally, a, is directly
proportional to the angle of attack 6 and is given by

K.d
aF:Fl

Figure 2P-20

where K, =a constant that depends on such parameters as dynamic pressure, velocity of the missile,
air density, and so on, and

] = missile moment of inertia about C

d = distance between C and P



The main objective of the flight-control system is to provide the stabilizing
action to counter the effect of the side force. One of the standard control
means is to use gas injection at the tail of the missile to deflect the direction
of the rocket engine thrust T, as shown in Fig. 2P-20.

(@) Write a torque differential equation to relate among T, 6, 0, and the
system parameters given. Assume that ¢ is very small, so that sin §(t) is
approximated by §(t).

(b) Repeat parts (a) with points C and P interchanged. The d, in the
expression of a_ should be changed to d..

2-21. Figure 2P-21a shows a well-known “broom-balancing” system in
control systems. The objective of the control system is to maintain the broom
in the upright position by means of the force u(t) applied to the car as shown.
In practical applications, the system is analogous to a one-dimensional
control problem of the balancing of a unicycle or a missile immediately after
launching. The free-body diagram of the system is shown in Fig. 2P-21b,
where

— ul(l)
— x(f)




Figure 2P-21

f = force at broom base in horizontal direction

f, = force at broom base in vertical direction

* M = mass of broom

* g = gravitational acceleration

* M = mass of car

» J = moment of inertia of broom about center of gravity CG = M L /3
(@) Write the force equations in the x and the y directions at the pivot

point of the broom. Write the torque equation about the center of gravity CG
of the broom. Write the force equation of the car in the horizontal direction.

(b) Compare your results with those in Prob. 2-9.

2-22.  Most machines and devices have rotating parts. Even a small
irregularity in the mass distribution of rotating components can cause
vibration, which is called rotating unbalanced. Figure 2P-22 represents the
schematic of a rotating unbalanced mass of m. Assume that the frequency of
rotation of the machine is w.

Derive the equations of motion of the system.

Guide

y(1) o m e Friction

1 ¢ 7Free

Figure 2P-22



2-23. Vibration absorbers are used to protect machines that work at the
constant speed from steady-state harmonic disturbance. Figure 2P-23 shows a
simple vibration absorber.

J(0)

{ (1)
M

3
3 [ 13

Figure 2P-23

Assuming the harmonic force F(t) = Asin(wt) is the disturbance applied to
the mass M, derive the equations of motion of the system.

2-24. Figure 2P-24 represents a vibration absorption system.

Assuming the harmonic force F(t) = Asin(wt) is the disturbance applied to
the mass M, derive the equations of motion of the system.
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Figure 2P-24

2-25.  An accelerometer is a transducer as shown in Fig. 2P-25.

Find the dynamic equation of motion.

O———<
v gK

voltage

O——<

(1)

Figure 2P-25

PROBLEMS FOR SEC. 2-2
2-26. Consider the electrical circuits shown in Fig. 2P-26a and b.
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Figure 2P-26

For each circuit find the dynamic equations.

2-27. 1In a strain gauge circuit, the electrical resistance in one or more of
the branches of the bridge circuit, shown in Fig. 2P-27, varies with the strain
of the surface to which it is rigidly attached to. The change in resistance
results in a differential voltage that is related to the strain. The bridge is
composed of two voltage dividers, so the differential voltage Ae can be
expressed as the difference in e, and e..




Figure 2P-27

(@) Find Ae.

(b) If the resistance R, is has a fixed value of R3, plus a small increment in
resistance, R, then k.=r:+38R, For equal resistance values (R, =R =R, = R; =
R), rewrite the bridge equation (i.e., for Ae).

2-28. Figure 2P-28 shows a circuit made up of two RC circuits. Find the
dynamic equations of the system.

R, R,

€y e 2 e,
% AN—
—»ip —> g
O |=Fa | =<
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Figure 2P-28

2-29. For the Parallel RLC Circuit, shown in Fig. 2P-29, find the dynamic
equations of the system.

e R e
—’iR
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Figure 2P-29

PROBLEMS FOR SEC. 2-3

2-30. Hot oil forging in quenching vat with its cross-sectional view is
shown in Fig. 2P-30.
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Figure 2P-30

The radii shown in Fig. 20-30 are r, r,, and r, from inside to outside. The
heat is transferred to the atmosphere from the sides and bottom of the vat and
also the surface of the oil with a convective heat coefficient of k. Assuming:

k = thermal conductivity of the vat

k = thermal conductivity of the insulator
¢, = specific heat of the oil

d_ = density of the oil

c = specific heat of the forging

m = mass of the forging

A = surface area of the forging

h = thickness of the bottom of the vat

T = ambient temperature

Determine the system model when the temperature of the oil is desired.

2-31. A power supply within an enclosure is shown in Fig. 2P-31.
Because the power supply generates lots of heat, a heat sink is usually
attached to dissipate the generated heat. Assuming the rate of heat generation
within the power supply is known and constant, Q, the heat transfers from the
power supply to the enclosure by radiation and conduction, the frame is an
ideal insulator, and the heat sink temperature is constant and equal to the
atmospheric temperature, determine the model of the system that can give the
temperature of the power supply during its operation. Assign any needed
parameters.
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Figure 2P-31

2-32. Figure 2P-32 shows a heat exchanger system.

Fluid B Fluid A

Fluid A Fluid B

Figure 2P-32

Assuming the simple material transport model represents the rate of heat
energy gain for this system, then

(mC)(TZ B T] ) - qgained
where m represents the mass flow, T, and T, are the entering and leaving

fluid temperature, and ¢ shows the specific heat of fluid.

If the length of the heat exchanger cylinder is L, derive a model to give the
temperature of fluid B leaving the heat exchanger. Assign any required
parameters, such as radii, thermal conductivity coefficients, and the



thickness.

2-33. Vibration can also be exhibited in fluid systems. Figure 2P-33
shows a U-tube manometer.
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Figure 2P-33

Assume the length of fluid is L, the weight density is m, and the cross-
section area of the tube is A.

(@) Write the state equation of the system.
(b) Calculate the natural frequency of oscillation of the fluid.

2-34. A long pipeline connects a water reservoir to a hydraulic generator
system as shown in Fig. 2P-34.

mg “ . 0.v




Figure 2P-34

At the end of the pipeline, there is a valve controlled by a speed controller.
It may be closed quickly to stop the water flow if the generator loses its load.
Determine the dynamic model for the level of the surge tank. Consider the
turbine-generator is an energy converter. Assign any required parameters.

2-35. A simplified oil well system is shown in Fig. 2P-35. In this figure,
the drive machinery is replaced by the input torque, T (t). Assuming the
pressure in the surrounding rock is fixed at P and the walking beam moves
through small angles, determine a model for this system during the upstroke
of the pumping rod.
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Figure 2P-35

P,

2-36. Figure 2P-36 shows a two-tank liquid-level system. Assume that Q,
and Q, are the steady-state inflow rates, and H, and H, are steady-state heads.

If the other quantities shown in Fig. 2P-36 are supposed to be small, derive
the state-space model of the system when h, and h, are outputs of the system

and g, and g, are the inputs.
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Figure 2P-36
PROBLEMS FOR SEC. 2-4

2-37. Figure 2P-37 shows a typical grain scale.

Assign any required parameters.
(@) Find the free-body diagram.

(b) Derive a model for the grain scale that determines the waiting time for
the reading of the weight of grain after placing on the scale platform.

(c) Develop an analogous electrical circuit for this system.



Viscous

Figure 2P-37

2-38. Develop an analogous electrical circuit for the mechanical system
shown in Fig. 2P-38.

AL

Figure 2P-38



2-39. Develop an analogous electrical circuit for the fluid hydraulic
system shown in Fig. 2P-39.
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Figure 2P-39

PROBLEMS FOR SEC. 2-5

See Chap. 3 for more linearization problems.

‘In more complex applications, advanced modeling topics such as Lagrange’s approach may be used
as alternatives to Newton’s modeling approach.

‘Rotations about an arbitrary axis or an axis passing through the rigid body center of mass are
represented by different equations. The reader should refer to a textbook on dynamics of rigid bodies
for a more detailed exposure to this topic.

*For more in-depth study of this subject, refer to Refs. 1 to 7.

“For a more in-depth study of this subject, refer to Refs. 1 to 7.

*In a force-current analogy, f(t) and v(t) are analogous to i(t) and e(t), respectively, while M, K, and
B are analogous to C, 1/L, and 1/R, respectively.

®For instructions on setting up the Bluetooth connection, visit
http://www.mathworks.com/matlabcentral/fileexchange/35206-simulink-support-package-for-lego-
mindstorms-nxt-hardware/content/lego/legodemos/html/publish lego communication.html#4.


http://http://www.mathworks.com/matlabcentral/fileexchange/35206-simulink-support-package-for-lego-mindstorms-nxt-hardware/content/lego/legodemos/html/publish_lego_communication.html#4

CHAPTER 3



Solution of Differential Equations of
Dynamic Systems

Before starting this chapter, the reader is encouraged to refer to App. B to
review the theoretical background related to complex variables.

As mentioned in Chap. 2, the design process of a control system starts with
development of a mathematical model of the system, represented by
differential equations. In this textbook, as in many conventional control
engineering applications, we consider systems that are modeled by ordinary
differential equations—as opposed to partial differential equations.

Learning Outcomes

After successful completion of this chapter, you will be able to
1. Convert linear time-invariant ordinary differential equations into the
Laplace domain.
2. Find the transfer function, poles and zeros of differential equations,
represented in the Laplace domain.
3. Find the response of linear time-invariant differential equations using
inverse Laplace transforms.
4. Understand the behavior of first and prototype second-order
differential equations.
5. Find the state space representation of linear time-invariant
differential equations.
6. Find the response of state space equations using inverse Laplace
transforms.
7. Find transfer functions using the state space approach.

8. Find the state space representation, from the transfer function of the
system.



Once we obtain the equations of the system, we need to develop a set of
analytical and numerical tools that can assist us with a clear understanding of
the performance of the system. This is an important step in advance of
extending the design of a control system to a prototype or the actual system.
Two most common tools for studying the behavior of (i.e., the solution of) a
control system are the transfer function and the state-variable methods.
Transfer functions are based on the Laplace transform technique and are valid
only for linear time-invariant systems, whereas the state equations can be
applied to linear as well as nonlinear systems.

In this chapter, we review ordinary time-invariant differential equations
and how they are treated utilizing the Laplace transforms or the state space
approach. The main objectives of this chapter are

» To review ordinary time-invariant differential equations.

* To review the fundamentals of Laplace transforms.

* To demonstrate the applications of Laplace transforms to solve linear
ordinary differential equations.

 To introduce the concept of transfer functions and how to apply them
to the modeling of linear time-invariant systems.

 To introduce state space systems.

» To provide examples on how Laplace transforms and state space
systems are used to solve differential equations.

Because some of these topics are considered as review material for the
reader, the treatment of these subjects will not be exhaustive. Additional
supplemental material can be found in appendices.

3-1 INTRODUCTION TO DIFFERENTIAL
EQUATIONS

As discussed in Chap. 2, a wide range of systems in engineering are
modeled mathematically by differential equations. These equations generally
involve derivatives (or integrals) of the dependent variables with respect to
the independent variable—usually time. For instance, as shown in Sec. 2-2-2,
a series electric RLC (resistance-inductance-capacitance) network, shown in
Fig. 3-1a, can be represented by the differential equation:
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Figure 3-1 (a) A series RLC network. (b) A spring-mass-damper system.

rcfe®) | pee® e (3-1)
dr?
or alternatively,
di(t) . i(f)
L7+Rz(t)+J?dt:e(t) (3-2)

Similarly from Sec. 2-1-1, a simple mass-spring-dashpot mechanism,
shown in Fig. 3-1b, may be modeled using the Newton’s second law as

dzy(t)( 2 ®

M
dt? dt

+Ky(t)= (1) (3-3)

Recall from Chap. 2 that these two systems are analogous, and they can
both be represented by a standard prototype second-order system of the
form:

£)+28w, y(t)+w, y(t) = w,u(t) (3-4)

3-1-1 Linear Ordinary Differential Equations

In general, the differential equation of an nth-order system is written as



d'y)  d7y) dy(t)

dtn n—1 dtnfl +”.+a1 dt +a0y(t)
d"u(t) d"u(t) du(t)
=p +b +.-+b +b u(t 3-5

which is also known as a linear ordinary differential equation if the
coefficients a,a,,...,a_ and b,b ,...,b_are real constants and are not functions
of y(t). In control systems, the terms u(t) and y(t) are known as the input and
the output of the system, respectively, for ¢t > t. Note that, in general, there
may be more than one input function applied to Eg. (3-5). But since the
system is linear, we can utilize the principle of superposition and study the
effect of each input on the system separately.

A first-order linear ordinary differential equation is therefore in the general
form

st} _ :
_ ot ay(t)=f() (3-6)

and the second-order general form of a linear ordinary differential equation

is

2
4 ygt) +4a, dy(t) +a
dt dt

()= f(1) (3-7)

In this text, we primarily study systems represented by ordinary differential
equations. As we saw, in Chap. 2, there are systems—for example, fluid and
heat transfer systems—that are actually modeled by partial differential
equations. In that case, these system equations are modified—under special
circumstances such as restricting the fluid flow in one direction—and are
converted into ordinary differential equations.

3-1-2 Nonlinear Differential Equations

Many physical systems are nonlinear and must be described by nonlinear
differential equations. For instance, the differential equation describing the
motion of a pendulum of mass m and length ¢, Eq. (2-169), is



é+%$n9=0 (3-8)

Because in Eq. (3-8), sinf(t) is nonlinear, the system is a nonlinear
system. In order to be able to treat a nonlinear system, in most engineering
practices, the corresponding equations are linearized, about a certain
operating point, and are converted into a linear ordinary differential equation
form. In this case using static equilibrium position 8 = 0 as the operating
point, for small motions, the linearization of the system implies 6 % 0, or

é+%9=0 (3-9)

See Sec. 2-4 for more details on Taylor series linearization technique. Also
you may wish to refer to Sec. 3-9 where this topic is revisited in matrix
format.

3-2 LAPLACE TRANSFORM

Laplace transform technique is one of the mathematical tools used to solve
linear ordinary differential equations. This approach is very popular in the
study of control systems because of the following two features:

Laplace transform is one of the techniques used to solve linear
ordinary differential equations.

1. The homogeneous and the particular components in the solution of
the differential equation are obtained in one operation.

2. The Laplace transform converts the differential equation into simple
to manipulate algebraic form—in what is known as the s-domain.

3-2-1 Definition of the Laplace Transform

Given the real function f (t) that satisfies the condition:

[ Fwelde <o (3-10)



for some finite, real o, the Laplace transform of f () is defined as
F(s)= | _f(yedr (3-11)
or
F(s) = Laplace transform of f(t)= L[ f(t)] (3-12)

The variable s is referred to as the Laplace operator, which is a complex

variable; that is, s = 0 + jw, where o is the real component, / = V —1land wis
the imaginary component.

The defining equation in Eg. (3-12) is also known as the one-sided
Laplace transform, as the integration is evaluated from ¢ = 0 to c. This
simply means that all information contained in f(t) prior to t = 0 is ignored or
considered to be zero. This assumption does not impose any limitation on the
applications of the Laplace transform to linear systems, since in the usual
time-domain studies, time reference is often chosen at t = 0. Furthermore, for
a physical system when an input is applied at t = 0, the response of the system
does not start sooner than ¢ = 0.* Such a system is also known as being causal
or simply physically realizable.

The following examples illustrate how Eq. (3-12) is used for the evaluation
of the Laplace transform of f(t).

EXAMPLE 3-2-1 Let f(t) be a unit-step function that is defined as

" t_O, <0 (3-13)
fW)=u/(t)= L 20
The Laplace transform of f{t) is obtained as
- —st Loy T
F(s)=Lu,(®)]= | u(t)e™ dt =—=¢""| == (3-14)
o S o S

Eaq. (3-14) is valid if

u (e |de = [ e |dt <o (3-15)

Ji



which means that the real part of s, o', must be greater
than zero. Having said that, , ., we simply refer to the
Laplace transform of the unit-step function as 1/s.

EXAMPLE 3-2-2 Consider the exponential function
f)y=e* t>0 (3-16)

where « is a real constant. The Laplace transform of
f(t) is written

—(s+o0)t

1

e
sta | sta

(3-17)

Iﬂsyzj:e”“eﬂ‘dt:

Toolbox 3-2-1

Use the MATLAB symbolic toolbox to find the Laplace transforms.
>> syms t

= £ = ¥4

i —

£a

>> laplace(f)

ans =

24/s”5

3-2-2 Important Theorems of the Laplace Transform

The applications of the Laplace transform in many instances are simplified
by utilization of the properties of the transform. These properties are
presented in Table 3-1 for which no proofs are given here.

TABLE 3-1 Theorems of Laplace Transforms



Multiplication by a
constant

Sum and difference

Differentiation

Integration

Shift in time

LIKf (£)]=kF(s)
LI, 02 [,(O]=E(s) £ E(s)

ﬁ[-‘% =sF(s)- £(0)

dt”

where

E[@ =5"F(s)-s"" f(0)—~s"2f"(0)~--— f*(0)

d'f(1)
)
f (0)_ dt; .

denotes the kth-order derivative of f(f) with respect to t, evaluated at t =0.

ﬁ“f(f)dr]:is)
' 5
I I L e

Lf(t-Thu(t-T)]=e™F(s)

where u (¢-T) denotes the unit-step function that is shifted in time to
the right by T.



Initial-value theorem

Final-value theorem

u(t-T)=

5

0, t<T
1, t2T

lim f(t)=limsF(s)

f—0 §—yoa

lim f(t)= linUlsF(s) if sF(s) does not have poles on or to the right of the

e
imaginary axis in the s-plane.

The final-value theorem is very useful for the analysis and design of
control systems, because it gives the final value of a time function by
knowing the behavior of its Laplace transform at s =0.

Complex shifting E[emt f(t)] = F(s+a)
Real convolution t
Fl(s)Fz(s):EUO fO)f - r)dr}
=] [ DA -T)e [= L0 £0)
where the symbol * denotes convolution in the time domain.
In general
L[E$)E6)]# (1) fi(1)
Complex convolution  py £, (O)]=E(s)*E(s)

where # denotes complex convolution in this case.

3-2-3 Transfer Function

In classical control, transfer functions are used to represent input-output
relations between variables. Let us consider the following nth-order
differential equation with constant real coefficients:

Iy ATy dy(t)
dJ;n +a’rt71 dtny—l ++alz—t+a0y(t)
_p, D) Ly AT e PO (3-18)
ar" ar" i



The transfer function between a pair of input and output variables is
the ratio of the Laplace transform of the output to the Laplace transform
of the input.

The coefficients a,a,,...,a_ and b,b ,...b_are real constants. Once the input
u(t) for t > t, and the initial conditions of y(t) and the derivatives of y(t) are
specified at the initial time ¢ = ¢, the output response y(t) for t > ¢t is
determined by solving Eq. (3-18).

The transfer function of Eq. (3-18) is a function G(s), defined as
G(s)= L[g(#)] (3-19)

Taking the Laplace transform on both sides of the equation and assume
zero initial conditions. The result is

(s"+a, s+ +as+a,)Y(s)=(b,s" +b,. 8" +-+bs+b,)U(s)  (3-20)
The transfer function between u(t) and y(t) is given by

Y(s) b,s"+Db, s" +---+bs+b,

G(S): n n—1
U(s) s"+a, s +-+as+a,

(3-21)

The properties of the transfer function? are summarized as follows:

 The transfer function of a linear system of differential equations is the
ratio of the Laplace transform of the output to the Laplace transform of
the input.

 All initial conditions of the system are set to zero.
 The transfer function is independent of the input of the system.

3-2-4 Characteristic Equation

The characteristic equation of a linear system is defined as the equation
obtained by setting the denominator polynomial of the transfer function to
zero. Thus, for the system described by differential equation shown in Eq. (3-
18), the characteristic equation of the system is obtained from the
denominator of the transfer function in Eq. (3-21) so that



s"+a_ s+ t+as+a, =0 (3-22)

3-2-5 Analytic Function

A function G(s) of the complex variable s is called an analytic function in
a region of the s-plane if the function and all its derivatives exist in the
region. For instance, the function

G(s)= (3-23)

is analytic at every point in the s-plane except at the points s =0 and s = —
1. At these two points, the value of the function is infinite. As another
example, the function G(s) = s + 2 is analytic at every point in the finite s-
plane.

3-2-6 Poles of a Function

A pole, also known as a singularity, plays a very important role in the
studies of classical control theory. Loosely speaking, the poles of a transfer
function in Eq. (3-21) are the points in the Cartesian coordinate frame (aka
the s-plane) at which the function becomes infinite. In other words, the poles
are also the roots of the characteristic Eq. (3-22), which make the
denominator of G(s) to become equal to zero.?

If the denominator of G(s) includes the factor (s — p), for r =1, the pole at s
= p, is called a simple pole; for r = 2, the pole at s = p, is of order two; etc.

As an example, the function
10(s+2)

= D63y (324

has a pole of order 2 at s = -3 and simple poles at s = 0 and s = —1. It can
also be said that the function G(s) is analytic in the s-plane except at these
poles. See Fig. 3-2 for the graphical representation of the finite poles of the
system in the s-plane.
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Figure 3-2 Graphical representation of s(s+1)(s+3) in the s-

plane: X poles and O zeros.

3-2-7 Zeros of a Function

The zeros of a transfer function G(s) in Eqg. (3-24) are the points in the s-
plane at which the function becomes zero.

If the numerator of G(s) includes the factor (s —z), for r =1, the zero at s =
z is called a simple zero; for r = 2, the zero at s = z is of order two; and so
on.

In other words, the zeros of G(s) are also the roots of the numerator
equation in Eqg. (3-24).! For example, the function in Eq. (3-24) has a simple
zero at s = —2.

Mathematically speaking, the total number of poles equals the total
number of zeros, counting the multiple-order poles and zeros and taking into
account the poles and zeros at infinity. The function in Eqg. (3-24) has four
finite poles at s = 0, —1, —3, and —3; there is one finite zero at s = —2, but there
are three zeros at infinity, because

10
limG(s)=1lim— =0 (3-25)

§—poo §—3o0 S



Therefore, the function has a total of four poles and four zeros in the entire
s-plane, including infinity. See Fig. 3-2 for the graphical representation of the
finite zeros of the system.

Practically speaking, we only consider the finite poles and zeros of a
function.

Toolbox 3-2-2

For Eq. (3-23), use “zpk" to create zero-pole- Alternatively use:

gain models by the following sequence of MATLAB  »>> clear all

functions s v onid (L0 I

>> G = zpk([-2],[0 -1 -3 -3],10) >> Gp=10%(s+2) /(% (s41) *(543)"2)
Zero/pole/gain: Transfer function:

10 (s+2) 108+ 20

(s+1) (s43)%2

s'¢+78"3+158" +95s

Convert the transfer function to polynomial form
>> Gp=tf(Q)

Transfer function:

10 s + 20

8 + 783+ 1582 +98

Use "pole” and “zero” to obtain the poles and Convert the transfer function Gp to zero-
zeros of the transfer function pole-gain form
>> pole(Gp) >> Gzpk=zpk (Gp)
ans = Zero/pole/gain:
0 10 (s+2)
-1

s (843)"2 (s+1)

>> zero(Gp)
ans =
=2

3-2-8 Complex Conjugate Poles and Zeros

When dealing with the time response of control systems, see Chap. 7,
complex-conjugate poles (or zeros) play an important role, and as a result,



they deserve special treatment here. Consider the transfer function

(02

G(s)= = 3-26
(5) s’+20w s+ w; (3-26)

Let us assume that the value of ( is less than 1, so that G(s) has a pair of
simple complex-conjugate poles at

s=s,=—0+jow and s=s5,=—0— jo (3-27)
where
o=(w, (3-28)
and
0=0,1-{* (3-29)

The poles in Eq. (3-27) are represented in rectangular form, where

= _1, (—0,w), and (—0,—w) are real and imaginary coefficients of s, and s,,
respectively. Focusing on (—0,w), it represents a point in the s-plane as shown
in Fig. 3-3. A point in a rectangular coordinate frame may also be defined by
a vector R and an angle ¢. It is then easy to see that

Jjo
A
s-plane
51=—0 + JO
1 R ¢
Z . >
. R /0
! /,&\ s
} | -
51 =-0—j




Figure 3-3 A pair of complex conjugate poles in the s-plane.

—0 =Rsing (3-30)
@ = Rcos¢

where
R = magnitude of s

¢ = phase of s and is measured from the o (real) axis. Right-hand rule
convention: positive phase is in counterclockwise direction.

Hence,

R=+Vo’+®’
¢=tan™ L et
—0
Introducing Eq. (3-30) into s, in Eq. (3-27), we get
s=s,=R(cos@+ jsing) (3-32)

Upon comparison of Taylor series of the terms involved, it is easy to
confirm

e’ =cosp+ jsing (3-33)

Equation (3-33) is also known as the Euler formula. As a result, s, in Eq.
(3-1) may also be represented in polar form as

s=s§ = Re?” =R/¢ (3-34)
Note that the conjugate of the complex pole in Eqg. (3-34) is
s=s5,=R(cos¢— jsing)=Re ” =R/ —¢ (3-35)

3-2-9 Final-Value Theorem

The final-value theorem is very useful for the analysis and design of
control systems because it gives the final value of a time function by knowing
the behavior of its Laplace transform at s = 0. The theorem states: If the



Laplace transform of f (t) is F(s), and if sF(s) is analytic (see Sec. 3-2-5 on
the definition of an analytic function) on the imaginary axis and in the right
half of the s-plane, then

lim f (t) = limsF(s) (3-36)

f—sc0 5—0

The final-value theorem is not valid if sF(s) contains any pole whose real
part is zero or positive, which is equivalent to the analytic requirement of
sF(s) in the right-half s-plane, as stated in the theorem. The following
examples illustrate the care that must be taken in applying the theorem.

EXAMPLE 3-2-3 Consider the function

5

—— (3-37)
s(s*+s+2)

F(s)

Because sF(s) is analytic on the imaginary axis and in
the right-half s-plane, the final-value theorem may be
applied. Using Eq. (3-36), we have

5 5
i t)=1limsF(s)=1i = (3-38)
lim /(1) =limsF(s) =lim 5————=>

EXAMPLE 3-2-4 Consider the function

)
S+’

F(s)= (3-39)

which is the Laplace transform of f(t) = sin wt.
Because the function sF(s) has two poles on the
imaginary axis of the s-plane, the final-value theorem
cannot be applied in this case. In other words, although
the final-value theorem would yield a value of zero as the
final value of f{(t), the result is erroneous.

3-3 INVERSE LAPLACE TRANSFORM BY



PARTIAL-FRACTION EXPANSION

Given the Laplace transform F(s), the operation of obtaining f(t) is termed
the inverse Laplace transformation and is denoted by

f(t)=Inverse Laplace transform of F(s)=L"[F(S)] (3-40)

The inverse Laplace transform integral is given as

() =—— [ F(s)e"ds (3-41)
2r

where c is a real constant that is greater than the real parts of all the
singularities of F(s). Equation (3-41) represents a line integral that is to be
evaluated in the s-plane. In a majority of the problems in control systems, the
evaluation of the inverse Laplace transform does not rely on the use of the
inversion integral of Eq. (3-41). For simple functions, the inverse Laplace
transform operation can be carried out simply by referring to the Laplace
transform table, such as the one given in App. C. For complex functions, the
inverse Laplace transform can be carried out by first performing a partial-
fraction expansion on F(s) and then using the Transform table. You can also
use the MATLAB symbolic tool to find the inverse Laplace transform of a
function.

3-3-1 Partial Fraction Expansion

When the Laplace transform solution of a differential equation is a rational
function in s, it can be written as

(s) (3-42)

G(s)

where P(s) and Q(s) are polynomials of s. It is assumed that the order of
P(s) in s is greater than that of Q(s). The polynomial P(s) may be written as

P(s)=s"+a,_s""+---+as+a, (3-43)

where a,a,,...,a  are real coefficients. The methods of partial-fraction



expansion will now be given for the cases of simple poles, multiple-order
poles, and complex-conjugate poles of G(s). The idea here is to simplify G(s)
as much as possible to allow us find its inverse Laplace transform at ease
without referring to tables.

G(s) Has Simple Poles
If all the poles of G(s) are simple and real, Eq. (3-42) can be written as

Gs) = Q) _ Q(s) (3-44)

P(s) (s+s)(s+s,)-(s+s))

where s, # s, # ... # s.. Applying the partial-fraction expansion, Eq. (3-43) is
written as

K K
G(s) = K, 2o — (3-45)
s+s,  s+s, s+s,
or
K K K
G(s)=—"+—2 4.4 —0 = QAs) (3-46)
- ey s+s,  (s+s)(s+s,)-(s+s,)

The coefficient K (i = 1,2,...,n) is determined by multiplying both sides of
Eq. (3-46) by the factor (s + s) and then setting s equal to —s. To find the
coefficient K , for instance, we multiply both sides of Eq. (3-46) by (s + s)
and let s = —s,. Thus,

K, =[(s+5)G()]| (3-47)
or
K, =Kﬂ+>%1<sz+---+ Al g
1+ 1 +
(3-48)
Q(=s,)

(52 _51)(53 _51)"'(Sn _51)



EXAMPLE 3-3-1 Consider the function

~ 55+3 ~ 55+3
(s+D(s+2)(s+3) s’+65°+11s+6

G(s) (3-49)

which is written in the partial-fraction expanded form

K K K
G(S): -1 + =2 =3

2 (3-50)
s+1 s+2 s+3

The coefficients K ,K , and K , are determined as

follows:
3 _ 5(=1)+3 . i
K_l—[(s+1)G(s)]|s:_]——(2_1)(3_1)— 1 (3-51)
_ _ﬁ_ 3.52
K, =[(s+2G()| _, = TR (3-52)
- _m__ 3-53
K, =[(s+3)Gs)|_, = T (3-53)
Thus, Eg. (3-49) becomes
Gl ® (3-54)

+ —
s+1 s+2 s+3

Toolbox 3-3-1
For Example 3-3-1, Eq. (3-49) is a ratio of two polynomials.

>> b = [5 3] % numerator polynomial coefficients
>> a = [1,6,11,6] % denominator polynomial coefficients

You can calculate the partial fraction expansion as



>> [r, p, k] = residue (b, a)
r =
~6.0000
7.0000
~1.0000
p =
~3.0000
~2.0000
-1.0000
B =
[ ]

Note r represents the numerators of Eq. (3-54), and p represents the

corresponding pole values. Now, convert the partial fraction expansion
back to polynomial coefficients.

>> [b,a] = residue(r,p,k)
b =
0.0000 5.0000 3.0000
8 =

1.0000 6.0000 11.0000 6.0000

Note b and a represent the coefficients of the numerator and
denominator polynomials in Eg. (3-49), respectively. Note also that the
result is normalized for the leading coefficient in the denominator.

Taking the inverse Laplace transform on both sides using the Laplace
table in App. C or using the following MATLAB toolbox, we get

g(t)=—e"+7e* -6 t=0 (3-55)

Toolbox 3-3-2

For Example 3-3-1, Eq. (3-54) is composed of three functions, which
we call f1, 2, and f3. Using the Symbolic functions in MATLAB we
have




>> syms s
>> f1=-1/(s+1)

fl1 =
-1/(s + 1)
»» £2=7/(8+2)
E2 =
7/ (s + 2)
>> £3=-6/(s+3)
£3 =
-6/(s8 + 3)
>> g=ilaplace(fl)+ilaplace(f2)+ilaplace(£3)
g’ =

T*exp(-2*t) - exp(-t) - 6*exp(-3*t)

Note g is the inverse Laplace transform of G(s) in Eq. (3-54), as
shown in Eq. (3-55). Alternatively you may also directly find the inverse
Laplace transform of Eq. (3-49).

>> f4=(5*g+3) /((s+1) *(s+2) * (s+3))
f4 =

(5*s + 3)/((s + L)*(s + 2)*(s + 3))

>> g=ilaplace (f4)

g =

7¥exp(-2*t) - exp(-t) - 6%exp(-3*t)

G(s) Has Multiple-Order Poles
If r of the n poles of G(s) are identical—that is the pole at s = —s, is of
multiplicity r — G(s) is written as

_Q@s) _ Q(s)

P(s) (s+s,)(s+s,)-+(s+s, )(s+s,)

G(s) (3-56)

(i # 1,2,...,n —r), then G(s) can be expanded as



Gl)=Na g Ka ) Been
s+s,  s+s, S+S,_,

|« n—r terms of simple poles —|

+ 4 + 4, +-ot 4,
s+s, (s+s,) (s+s,) 2-57)

|« r terms of repeated poles —)|

Then (n —r) coefficients, K ,K ,...,K_, which correspond to simple poles,
may be evaluated by the method described in Eq. (3-47). The determination
of the coefficients that correspond to the multiple-order poles is described as
follows:

A =[(s+s)G)] (3-58)
d ;

A =—|(s+5)G(s)] (3-59)

dS s=—5;

1 d? .
2= Eg[m 5,) G(s)] (3-60)
1 d , (3-61)
A D e+ 60
EXAMPLE 3-3-2 Consider the function

G(s) ! ! (3-62)

- s(s+1)°(s+2) B S 455" +95° +75% +2s
By using the format of Eq. (3-57), G(s) is written as

K K A A A
G(s)=—4—"24 L4 —2 4 -3

- - (3-63)
s s+2 s+1 (s+1)° (s+1)




The coefficients corresponding to the simple poles are

K, =[sG(s)]|_, =%
K, =[(s+2)G()]|_, =

and those of the third-order pole are

A, =[(s+11°G(s)]| _ =-1

s==1

)
=— =0
o ds|s(s+2)

s=—1

A, =L(s4176(5)
ds

1d*

S LIRS C70) [ T
L 21ds? ., 2ds*| s(s+2) . -
The completed partial-fraction expansion is
) (RN BN I

25 2s+2) s+1 (s+1)

Toolbox 3-3-3

For Example 3-3-2, Eq. (3-62) is a ratio of two polynomials.

(3-64)

(3-65)

(3-66)

(3-67)

(3-68)

(3-69)



>> clear all
>>a=1[15972] % coefficients of polynomial s”4+5*s”3+9*5*247*5+2

a =
1 5 9 7 2
>> b = [1] % polynomial coefficients
b =
1

>> [r, p, k] = residue(b,a) % b is the numerator and a is the denominator
e =
-1.0000
1.0000
-1.0000
1.0000
p:
-2.0000
-1.0000
-1.0000
-1.0000
k =
(]
>> [b,a] = residue(r,p,k) % Obtain the polynomial form
b =
-0.0000 -0.0000 -0.0000 1.0000
B =
1.0000 5.0000 9.0000 7.0000 2.0000

Taking the inverse Laplace transform on both sides using the Laplace
table in App. C or using the following MATLAB toolbox, we get
1 e*Zt tze*I
(t)=——e"+—+
g(t)=> 5

t>0 (3-70)

Toolbox 3-3-4

For Example 3-3-2, Eq. (3-69) is composed of four functions, which
we call f1, f2, £3, and f4. Using the Symbolic functions in MATLAB,
we have



>> syms s

s> f1=1/(2%s)
£i =
1/(2*g)

>> f2=1/(2*(s+2))
2 =
1/(2*s + 4)

>> £3=-1/(8+1)

£3 =

-1/(s + 1)

>> f4=-1/(s+1)"3
f4 =

1/(s + 1)°3

>> g=ilaplace(fl)+ilaplace(f2)+ilaplace(f3)+ilaplace(f4)
g’:
exp(-2*t)/2 - exp(-t) - (t"2*exp(-t))/2 + 1/2

Note g is the inverse Laplace transform of G(s) in Eq. (3-69), as
shown in Eq. (3-70). Alternatively you may also directly find the inverse
Laplace transform of Eq. (3-63).

>> £5=1/(s* (s+1) "3* (s8+2))

f5 =

1/(s*(s + 1)%3*(s + 2))

>> g=ilaplace (£5)

g’:

exp(-2*t) /2 - exp(-t) - (t"2*exp(-t))/2 + 1/2

G(s) Has Simple Complex-Conjugate Poles

The partial-fraction expansion of Eq. (3-42) is valid also for simple
complex-conjugate poles. As discussed in Sec. 3-2-8, complex-conjugate
poles are of special interest in control system studies and as a result require a
more special attention.

Suppose that G(s) of Eq. (3-42) contains a pair of complex poles s = —0 +
jow and s = —0 — jo . The corresponding coefficients of these poles are found

by using Eg. (3-45),
K

-0+ jw

—(s+0 - j®)G(s) (3-71)

s=—0+j®



K =(s+0— jw)G(s)

-0+ jw

(3-71)

s=—0+jo

The procedure for finding the coefficients in Egs. (3-71) and (3-72) is
illustrated through the following example.

EXAMPLE 3-3-3 Consider the second-order prototype function

a)z

G(s)= < (3-73)
(s) s*+20w s+ @’

Let us assume that the value of (is less than 1, so that
the poles of G(s) are complex. Then, G(s) is expanded as

follows:
K .. K .
G(s)=——"2 7 (3-74)
S+0—jo  s+0+ jw
where
o=,
C {3-75)
®=0,1-¢
The coefficients in Eq. (3-73) are determined as
a)Z
K ., =(s+0— jw)G(s) =1 (3-76)
s=—0+jm 210)
0)2
K_, ,, =(s+0+ jo)G(s) =t (3-77)
s=—0—jo 2](0
The complete partial-fraction expansion of Eq. (3-73)
is
2
G(s) =2 [ L 1 } (3-78)
2jo|s+0—jo s+0+ jo

Taking the inverse Laplace transform on both sides
of the last equation gives



2

g(t) =;)%e_0t(ejwt —e /) t20 (3-79)
Ja

() =—=2—e " sin(w,\[1-71) 20 (3-80)

Toolbox 3-3-5

For Example 3-3-3, Eq. (3-73) is composed of two functions, which
we call f1 and f2. Using the Symbolic functions in MATLAB, we have
>> SYMS § WO W Z
>> f1= wn"2/ (2*j*um*sqrt (1-2°2) ) * (1/ (s+z*wm-j*wn*sqrt (1-2°2) ) )
1=
(wn*i) /(2% (1 - 2*2)%(1/2)* (s + wn*z - wn* (1 - z"2)"(1/2)*i)
>> £2= wn"2/ (2¥]*um*sqrt (1-2"2) ) * (-1/ (s+z*wn+j *un*sqrt (1-2"2) )
f2.=
(wn*i) /(2% (1 - 2%2)*(1/2)*(s + wn*z + wn*(1 - 2°2)*(1/2)*1))
>> g=1laplace(f1])+ilaplace(f2)
g=
- (wn*exp(-t* (wn¥z - wn*(1 - 2°2)*(1/2)*1)) 1) /(2%(1 - 2°2)"(1/2)) + (wm*exp(-t*(wn*z + wn*(1
- 2°2)%(1/2) 1)) *i) /(2* (1 - 2%2)*(1/2)
>> g=simplify(q)
g =
(wn*exp(-t*wn*z) *sin(t+wn* (1 - 2*2)*(1/2)))/(1 - 2°2)*(1 /2)

Note g is the inverse Laplace transform of G(s) in Eq. (3-78), as
shown in Eq. (3-80). We have used the symbolic simplify command to
convert g to trigonometric format. Note also that in MATLAB (i) and (j)
both represent SQRT(-1).

Alternatively you may also directly find the inverse Laplace transform

of Eqg. (3-73).



>> f£3=wn"2/(s"2+2*z*wn*s+wn"2)
£3 =
wn*2/(s8%2 + 2*z*s*wn + wn’2)
>> g=ilaplace(£3)
g =
(wn*exp (-t*wn*z) *sin(t*wn* (1 - z"2)%(1/2)))/(1 - z"2)"(1/2)

3-4 APPLICATION OF THE LAPLACE
TRANSFORM TO THE SOLUTION OF LINEAR
ORDINARY DIFFERENTIAL EQUATIONS

As we saw in Chap. 2, mathematical models of most components of
control systems are represented by first- or second-order differential
equations. In this textbook, we primarily study linear ordinary differential
equations with constant coefficients such as the first-order linear system:

d
%ntaoy(t): £() (3-81)

or the second-order linear system:

2
d ygt) a dy(t)
dt dt

+a,y(t) = f(t) (3-82)

Linear ordinary differential equations can be solved by the Laplace
transform method with the aid of the theorems on Laplace transform given in
Sec. 3-2, the partial-fraction expansion, and the table of Laplace transforms.
The procedure is outlined as follows:

1. Transform the differential equation to the s-domain by Laplace
transform using the Laplace transform table.

2. Manipulate the transformed algebraic equation and obtain the output
variable.

3. Perform partial-fraction expansion to the transformed algebraic
equation.

4. Obtain the inverse Laplace transform from the Laplace transform



table.

Let us examine two specific cases, first- and second-order prototype
systems. The prototype forms of differential equations provide a common
format of representing various components of a control system. The
significance of this representation became evident in Chap. 2 and becomes
more evident when we study the time response of control systems in Chap.
7.

3-4-1 First-Order Prototype System

In Chap. 2, we demonstrated that fluid, electrical, thermal, and mechanical
systems are modeled by differential equations. Figure 3-4 shows four cases of
mechanical, electrical, fluid, and thermal systems that are modeled by first-
order differential equations, which may ultimately be represented by the
first-order prototype of the form

+ R -
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Figure 3-4 (a) A spring-dashpot mechanism. (b) A series RC network. (c)
A one-tank liquid level system. (d) A heat transfer problem.

The prototype forms of differential equations provide a common
format of representing various components of a control system.

m+1y(t):lu(t) (3-83)
dt 71 £

where T is known as the time constant of the system, which is a measure
of how fast the system responds to initial conditions of external excitations.
Note that the input in Eq. (3-83) is scaled by 1/t for cosmetic reasons.

In the spring-damper (no mass) system in Fig. 3-4a
K Ku(t)

y(t)+ Ey(t) =5

(3-84)

B

where Ku(t) = f(t) is the applied force to the system, and f K is the time
constant, which is the ratio of damping constant B and spring stiffness K. In
this case, displacements y(t) and u(t) are the output and input variables,
respectively.

In the RC circuit in Fig. 3-4b, the output voltage e () satisfies the
following differential equation:

éo(t)+éeo(t) :éem(t) (3-85)

where e (t) is the input voltage and T = RC is the time constant.

In the one-tank liquid level system in Fig. 3-4c, the system equation is
defined in terms of the output volumetric flow rate g, as

J QO qi
+ L _ 4 3-86
1 RC RC ( )



where q is the input flow rate, RC = T is the system time constant, R is
fluid resistance, and C is the tank capacitance.

Finally, in the thermal system represented in Fig. 3-4d, C is thermal
capacitance C, R is convective thermal resistance, RC = T is system time
constant, T, is solid object temperature, and T is top fluid temperature. The
equation of the system representing the heat transfer process is

T(, Tf

T,+—L=—L (3-87)
' RC RC

As evident from Egs. (3-84) through (3-87), they are all represented by the
first-order prototype system Eg. (3-83), and to understand their respective
behaviors, we can solve Eq. (3-83) for a test input—in this case a unit step
input:

0, t<0,
u(t)zus(t)z{l t:o (3-88)

The unit step input is basically a constant input applied to the system, and
by solving for the differential equation, we examine how the output responds
to this input. Rewriting Eq. (3-83) as

__dy(t) y
=724 y(0) (3-89)
_dy(0) 1
/O =g =L )= L) = Y(s), we have

L Y(5)+Y(s) (3-90)
S

Or, as a result, the output in s-domain is

1 1
Y(s)=—
sTs+1

(3-91)

Notice that the system has a pole at zero due to the input and one at s = -1/
T as shown in Fig. 3-5. For a positive T, the pole in the left-half s-plane.



Using partial fractions, Eq. (3-91) becomes

s-plane

Figure 3-5 Pole configuration of the transfer function of a prototype first-
order system.

K K
Y(t)=—24+—L (3-92)
S Ts+1

where K, =1 and K , = —1. Applying the inverse Laplace transform to Eq.
(3-92), we get the time response of Eq. (3-83).

y(t)=1-e"" (3-93)
where t is the time for y(t) to reach 63 percent of its final value of
lim y(¢) =limsY(s)=1
t—co s—0

Typical unit-step response of y(t) is shown in Fig. 3-5 for a general value
of t. As the value of time constant T decreases, the system response
approaches faster to the final value.

Toolbox 3-4-1

The inverse Laplace transform for Eq. (3-91) is obtained using the
MATLAB Symbolic Toolbox by the following sequence of MATLAB
functions.



>> syms s tau;

>> ilaplace(l/ (tau*s®2+s))
ans =

1 - exp(-t/tau)

The result is Eq. (3-93).
Note, the sym command lets you construct symbolic variables and
expressions, and the command

>> gyms s tau;

is equivalent to

>> s=sym(‘s’);
>> tau=sym(‘tau’) ;

Time response of Eg. (3-83), shown in Fig. 3-6, for a given value 1 =
0.1 s is obtained using

>> clear all;

p B = 0:0.0L1y

>> tau = 0.1;

>> plot(l-exp(-t/tau));

You may wish to confirm that at time t = 0.1 s, y(t) = 0.63.

0 t

Figure 3-6 Unit-step response of a first-order prototype differential
equation.

3-4-2 Second-Order Prototype System



Similar to the previous section, various mechanical, electrical, and fluid
systems discussed in Chap. 2 may be modeled as a second-order prototype
system—see, for example, the systems shown in Fig. 3-1, represented by Egs.
(3-1) and (3-3). The standard second-order prototype system has the form:

Damping ratio ¢ plays an important role in the time response of the
prototype second-order system.

d’y(t)
dt?

+2{w %nta)jy(t) = u(t) (3-94)

H

where ¢ is known as the damping ratio, @ is the natural frequency of the
system, y(t) is the output variable, and u(t) is the input. As in Sec. 3-4-1, we
can solve Eq. (3-94) for a test input—in this case a unit step input:

0, t<0,
u(t):us(t):{l ;O (3-95)

_dy(0) s 1
If H0)= dt = e LMD =M s, and L(y(t)) = Y(s), the output

relation in the s-domain is

(02

1
Y(s)=- < (3-96)
ss*+2lw, s+

where the transfer function of the system is

_Y(s) N (3-97)
UGs) s*+2fw,s+o;

G(s)

The characteristic equation of the prototype second-order system is
obtained by setting the denominator of Eq. (3-97) to zero:

A(s)=s’+2{w s+w; =0 (3-98)



The two poles of the system are the roots of the characteristic equation,

expressed as
5,5, =—Cw, T, -1 (3-99)

From the poles of the system shown in Eq. (3-99), it is clear that the
solution to Eqg. (3-96) has a direct correlation to the value of the damping
ratio . The damping ratio determines if the poles in Eqg. (3-99) are real or
complex. In order to get a clear picture of the time behavior of the system, we
first find the inverse Laplace transform of Eq. (3-96) for three important
cases (< 1,(>1.

System Is Critically Damped { = 1

When the two roots of the characteristic equation are real and equal, we
call the system critically damped. From Eq. (3-99), we see that critical
damping occurs when ¢ = 1. In this case, the output relation in the s-domain,
represented by Eg. (3-96), is rewritten as

2 2
Y(s)=l 5 “n : Lo 5 (3-100)

s +2w 5+, s(s+w,)

Further, the transfer function in Eq. (3-98) becomes

wZ

G(s)=—"— (3-101)
(s+w,)

where G(s) has two repeated poles at s = —w, as shown in Fig. 3-7. In
order to find the solution of the differential equation, in this case, we obtain
the partial fraction representation of Eq. (3-100) following the process
defined in Example 3-3-2. Hence, by using the format of Eq. (3-57), Y(s) is

written as




s-plane

-y, 0

> O

Figure 3-7 Poles of Y(s) in a critically damped prototype first-order

system with a unit step input.

where
1 2
K,=|(s)=—22— || =1
s(s+w,)" ]|,
wZ
A=|(s+w ) -— =-1
2 |:( n) s S+a)n)2:| .
d 1 o
A=—|(+w,) - - =-1
: ds{( ) s(s+a)n)2} .

The completed partial-fraction expansion is

(3-102)

(3-103)

(3-104)

(3-105)



1 1 1
= rm) Gray 5109

Taking the inverse Laplace transform on both sides using the Laplace
table in App. C or using the following MATLAB toolbox, we get

y(t)=1—e " —te™™ >0 (3-107)

Toolbox 3-4-2

Equation (3-106) is composed of three functions, which we call f1, {2,
and f3. Using the Symbolic functions in MATLAB, we have

>> gyms S whn

s Fls 1)s

f1 =

1/8

>> f2=-1/(s+wn)
f2 =

-1/(s + wn)
>> f3=-1/(s+wn) "2
Fa =
-1/ (s + wn)” 2
>> y=ilaplace(fl)+ilaplace(f2)+ilaplace(£3)
y:
1 - t*exp(-t*wn) - exp(-t*wn)

Alternatively, we can directly find the inverse Laplace transform of

Eq. (3-100).

>> syms s wn
sy Fl= 1/s
fl1 =
1/s
>> f2= wn"2/(s+wn)*2
f2 =
wn"2/(s + wn) "2
>> y=ilaplace(f1*f2)
Y:
1 - t*exp(-t*wn) - exp(-t*wn)



Note y is the inverse Laplace transform of Y(s) in Eg. (3-100), as

shown in Eqg. (3-107).

System Is Overdamped { > 1

When the two roots of the characteristic equation are distinct and real, we
call the system overdamped. From Eq. (3-99), we see that an overdamped
scenario occurs when ¢ > 1. In this case the output relation in the s-domain,
represented by Eq. (3-96) is rewritten as

1 2
() [ f— (3-108)
ss*+2{w, s+ o;

Further, the transfer function in Eq. (3-108) becomes

wz

G(s)= < 3-109
(5) s’ +2{w,s+o; ( !

where G(s) has two poles at

5,8, =—Cw, T —1 (3-110)

Let’s define
o=(w, (3-111)

as the damping factor, and

=01 (3-112)

is, for the purpose of reference, loosely called the conditional (or damped)
frequency of the system—note the system will not exhibit oscillations in the
overdamped case, so usage of the term frequency is not an accurate term. We
use the following numerical example for easier understanding of the
approach.



%3
- L 6= @ =+2 rad/s:
EXAMPLE 3-4-1 Consider Eq. (3-108) with 4 and @,

Y(s)=l 2 =1 2

- (3-113)
ss?4+3s+2 s(s+1)(s+2)

The transfer function of the system G(s) in Eq. (3-109)
has two poles at s, =1 and s, = 2, as shown in Fig. 3-8. In
order to find the solution of the differential equation, in
this case, we obtain the partial fraction representation of

Eg. (3-113) following the process defined in Example 3-
3-1. Hence, by using the format of Eqg. (3-45), Y(s) is
written as

Jjo

A

s-plane

N NN L
7. T T P O

Figure 3-8 Poles of Y(s) in an overdamped prototype first-order system
with a unit-step input.

K
Y(s)=0 4ty Ko

g 4 (3-114)
s (s+1) (s+2)

where



K =[( )1#} ) (3-115)

o T S D)5+ 2)

1 2 i
K—l =|:($+1);m_ _ =2 (3—116)
1 2
_ L . _ 3-117
£ {(”2)5 (s+1)(s+2)} : G117

§=—2

The completed partial-fraction expansion is

Y(s)=l__2 L (3-118)

+
s (s+1) (s+2)

Taking the inverse Laplace transform on both sides
using the Laplace table in App. C or using the following
MATLAB toolbox, we get

y(t)=1-2e"+e 20 (3-119)

Toolbox 3-4-3

Equation (3-118) is composed of three functions, which we call f1, f2,
and f3. Using the Symbolic functions in MATLAB, we have

>> syms s

s» fl=1/g
1 =
1/8

>> f2=-2/(8+1)
f2 =

-2/(s + 1)

>> £3=1/(s+2)
£3 =
1/(s + 2)

>> y=ilaplace(fl)+ilaplace(f2)+ilaplace(£3)
Y:

exp(-2*t) - 2*exp(-t) + 1



Alternatively we can directly find the inverse Laplace transform of

Eq. (3-113),

>> Syms s

>> y=ilaplace(2/ (s*(s+1)*(s+2)))
Y =

exp(-2*t) - 2*exp(-t) + 1

which is the same as Eq. (3-119).

EXAMPLE 3-4-2 Consider a modified second-order prototype of the

form:

d*y(t d
”() +2tw, y()+a) y(t) = Aw’u(t) (3-120)

where A is a constant. The transfer function of this
system is
AW’
G(s)=— T (3-121)
s*+2{w,s+ o,

Assigning the following values to the differential
equation parameters, we get

2
d ygt) +351)/(t)
dt dt

+2y(t)=5u.(¢) (3-122)

where u (t) is the unit-step function. The initial
_y _,

conditions are y(0) = -1 and dt | To solve
the differential equation, we first take the Laplace
transform on both sides of Eq. (3-122):

sY (s)—sy(0)— #(0)+3sY (s)—3y(0)+2Y(s)=5/s (3-123)



Substituting the values of the initial conditions into the
last equation and solving for Y(s), we get
—5*—545 —s” —s+5

s)= = (3-124)
s(s*+3s42) s(s+1)(s+2)

Equation (3-124) is expanded by partial-fraction
expansion to give

5 5 3

22 (3-125)
2s s+1 2(s+2)

Y(s)

Taking the inverse Laplace transform of Eq. (3-125),
we get the complete solution as

5 3
y(t)zE—Se‘r +Ee'2t t>0 (3-126)

The first term in Eq. (3-126) is the steady-state or the
particular solution; the last two terms represent the
transient or homogeneous solution. Unlike the classical
method, which requires separate steps to give the
transient and the steady-state responses or solutions,
the Laplace transform method gives the entire solution in
one operation.

If only the magnitude of the steady-state solution of
y(t) is of interest, the final-value theorem of Eq. (3-36)
may be applied. Thus,

The terms transient and steady-state responses are used to indicate
the homogeneous and particular solutions of differential equations.

—'—545_5
lim y(f)=1lim sY(s)=1im 25 e 2

I ke W (3-127)
t—yco 50 s—0 §°+3s+2 2

where, in order to ensure the validity of the final-value



theorem, we have first checked and found that the poles
of function sY(s) are all in the left-half s-plane.

From Example 3-4-2, it is important to highlight that in control systems,
the terms transient and steady-state responses are used to indicate the
homogeneous and particular solutions of differential equations. We study
these topics in detail in Chap. 7.

System Is Underdamped (< 1

When the two roots of the characteristic equation are complex with equal
negative real parts, we call the system underdamped. From Eg. (3-99), we
see that underdamped scenario occurs when 0 < ¢ < 1. In this case, the output
relation in the s-domain, represented by Eq. (3-96), is written as

a)Z

1
Y(s)=-— ? 3-128
(s) ss+20w, s+o; ( )

Further, the transfer function in Eq. (3-128) becomes

COZ

G(s)= L 3-129
(5) ss+20w, s+’ ( )

where G(s) has two complex-conjugate poles at

5.5, =—Co, * jo 1-* (3-130)

where the j term was cosmetically introduced to reflect that the poles are
complex-conjugate. Let’s define

o=(o, (3-131)
as the damping factor, and
0=w0,1-{* (3-132)
as the conditional (or damped) frequency of the system. Figure 3-9

illustrates the relationships among the location of the characteristic equation
roots and 0,{,w and w. For the complex-conjugate roots shown,



‘\
‘—
Qv

c=Cw, —» 0

Root

Figure 3-9 Relationships among the characteristic-equation roots of the
prototype second-order system and g, {, @, and ®.

* . is the radial distance from the roots to the origin of the s-plane, or
0,= J(Co,’ +0;(1-).

* 0o'is the real part of the roots.

* w is the imaginary part of the roots.

* (is the cosine of the angle between the radial line to the roots and the
negative axis when the roots are in the left-half s-plane, or ¢ = cos6.

The partial-fraction expansion of Eq. (3-128) is written as

K Kfoﬂ‘w Kfofjco
Y(s)=—2+ — + - (3-133)
s S+O0—jo s+0+jo




where

K,=sY(s)|_, =1 (3-134)
o
K ;. =(s+0—jo)Y(s) ot W (3-135)
. _e#
K ow= (s+0+ jo)Y(s) T W (3-136)
The angle ¢ is given by
p=m—cos” { (3-137)

and is illustrated in Fig. 3-9. The inverse Laplace transform of Eq. (3-128)
IS now written as

1
Y =1+ ——
2jy1-¢"

Lo sin[a)n 1—§2t—¢] £>0
J1—£
where Euler’s formula from Eq. (3-33) has been used to convert

exponential terms inside the brackets in Eg. (3-138) to a sine function.

Substituting Eq. (3-137) into Eq. (3-138) for ¢, we have

y(t)zl—;egw"tsin w, 1= Jt+cos'C | t20 (3-139)

oot [ pl@=9) _ e—j(mr—@)]

(3-138)

=1+

EXAMPLE 3-4-3 Consider the linear differential equation

2
dd); L 34.5%+1000 (£)=1000u (£) (3-140)

The initial values of y(t) and dy(t)/dt are zero. Taking
the Laplace transform on both sides of Eqg. (3-140), and



solving for Y(s), we have

2
Y(s) 1000 - @, (3-141)

©s(s*+34.55+1000)  s(s?+ 20w, s+ 0?)

where, using the second-order prototype
representation, { = 0.5455 and w_= 31.6228. The inverse
Laplace transform of Eq. (3-141) can be executed
substituting these values into Eq. (3-139). Or

y(t) =1-1.193¢"7*" sin(26.5t +0.9938) >0 (3-142)
where

6=cos™ ¢ =0.9938 rad[:56.94°71rr3§1] (3-143)

o={w,=17.25 (3-144)

®=0,1-§* =265 (3-145)

Notice the final value of y(t) = 1 in this case, which
implies the output perfectly follows the input at steady
state. See Fig. 3-10 for the time response plot obtained
from the following MATLAB toolbox.
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Figure 3-10 Time response y(t) of the second-order system in Eg. (3-140)
for a unit-step input.

Toolbox 3-4-4

Time response plot of Eq. (3-140) for a unit-step input may be
obtained using



num = [1000]; Alternatively:

den = [1,34.5 1000]; s =tf (‘s');

G = tf (num,den); G=1000/ (s*2+34.5%s+1000) ;
step(G) ; step (G);

title (‘Step Response’) title (‘'Step Response’)
xlabel ('Time (sec’) xlabel ('Time(sec’)
ylabel (‘Amplitude y(t)’) ylabel (‘'Amplitude’)

“step” produces the time response of a function for a unit-step input.

3-4-3 Second-Order Prototype Systemm—Final Observations

The effects of the system parameters ¢ and w_on the step response y(t) of
the prototype second-order system can be studied by referring to the roots of
the characteristic equation in Eq. (3-89).

Using the next toolbox, we can plot the unit-step time responses of Eq. (3-
96) for various positive values of ¢ and for a fixed natural frequency w = 10
rad/s. As seen, the response becomes more oscillatory with larger overshoot
as ¢ decreases. When ¢ > 1, the step response does not exhibit any overshoot;
that is, y(t) never exceeds its final value.

Toolbox 3-4-5

The corresponding time responses for Fig. 3-11 are obtained by the
following sequence of MATLAB functions:



clear all

wn=10;

for l=[0.2 0.4 0.6 0.8 1 1.2 L.4 1.6 1.8 2]
t=0:0.1:50;

num = [wn."2];

den = [1 2*1*wn wn. 2];
t=0:0.01:2;

step (num, den, t)

hold on;

end

xlabel (*Time (secs) ')
yvlabel (‘Amplitude y(t) ")
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Figure 3-11 Unit-step responses of the prototype second-order system
with various damping ratios.

The effect of damping of the second-order system on the characteristic
equation roots—that is, poles of the transfer function in Eq. (3-97)—is further
illustrated by Figs. 3-12 and 3-13. In Fig. 3-12, w _is held constant while the
damping ratio ¢ is varied from —oo to +oo. Based on the values of (, the
classification of the system dynamics appears in Table 3-2.



JjO A

Figure 3-12 Locus of roots of the characteristic equation of the prototype
second-order system.
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Figure 3-13 Step-response comparison for various characteristic-
equation-root locations in the s-plane.

TABLE 3-2 Classification of the System Response Based on the
Values of ¢

2

Poles of G(s) :%

T2 sk, (1) Response Classification
0 < é‘ < 1 : 51 ’52 - _gwn i ja)n \Jll_gz (_é‘wn < 0) Underdamped
(=1 s,5,=-0, Critically damped

Es1: 5,5, =—to, to, ng_l Overdamped

£=0: 5.5, =1j0 Undamped (marginally unstable)

n

Negatively damped (unstable)

£<0: s,5,==C0, T jo 1-* (o, >0)

 The left-half s-plane corresponds to positive damping; that is, the
damping factor or damping ratio is positive. Positive damping causes the
unit-step response to settle to a constant final value in the steady state
due to the negative exponent of exp(—{w t). The system is stable.

 The right-half s-plane corresponds to negative damping. Negative
damping gives a response that grows in magnitude without bound, and
the system is unstable.

« The imaginary axis corresponds to zero damping (¢ = 0 or { = 0).
Zero damping results in a sustained oscillation response, and the system
is marginally stable or marginally unstable.

Figure 3-13 illustrates typical unit-step responses that correspond to the
various root locations already shown.

In this section, we demonstrated that the location of the characteristic
equation roots plays an important role in the time response of a prototype



second-order system—or any control system for that matter. In practical
applications, only stable systems that correspond to ¢ > 0 are of interest.

3-5 IMPULSE RESPONSE AND TRANSFER
FUNCTIONS OF LINEAR SYSTEMS

An alternative way to define the transfer function is to use the impulse
response, which is defined in the following sections.

3-5-1 Impulse Response

Consider that a linear time-invariant system has the input u(t) and output
y(t). As shown in Fig. 3-14, a rectangular pulse function u(t) of a very large
magnitude {i/2e becomes an impulse function for very small durations as € —
0. The equation representing Fig. 3-14 is

u (f)
A

2¢

T—¢ T+¢

: > 1
 T-p:

Figure 3-14 Graphical representation an impulse function.



0 t<T-¢€

u(t)=- L T—E T8 (3-146)
2€
0 [2T+€

“

For @i = 1, u(t) = 4(t), is also known as unit impulse or Dirac delta function
with the following properties:

0(t—17)=0; t#7T

O(t—1)dt=1; £€>0 (3-147)

T—&

["“8(t-1) fdt = fey e>0

where f(t) is any function of time. For t = 0 in Eq. (3-146) taking the
Laplace transform, using Eq. (3-11), and noting the actual limits of the
integral are defined from t = 0~ to t = oo, the Laplace transform of { (), using
the third property in Eq. (3-147) is unity, that is,as¢ - 0

LI5(1)] = j;"é(t)e“dt ( )
3-148

_ j::a(r—r) fydt=e" =1

In the following examples, we obtain the impulse response of a prototype
second-order system.

EXAMPLE 3-5-1 For the following second-order prototype system find the
impulse response:

d*y(t
dyg ) +26o, +a) Zy(t) = u(t) (3-149)
For zero initial conditions,
2
Gls) =L _ it (3-150)

U(s) s*4+2lw s+?



is the transfer function of system (3-149). For u(t) = ¢
(), since L[{(t)] = U(s) = 1, using the inverse Laplace
calculations in Example 3-3-3, the impulse response y(t)
=g for0<{<1is

()= 1wng2 e sin(m,\1-¢*t) t20 (3-151)

EXAMPLE 3-5-2 Consider the linear differential equation

2
dd}ggt)+34.5%+1000y(t):10005(t) (3-152)

Following the solution in Eq. (3-151), the impulse
response is

y(£)=37.73¢ " sin(26.5t) =0 (3-153)

Using Toolbox 3-5-1, the time response plot of Eq. (3-
153) is shown in Fig. 3-15.
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Figure 3-15 Impulse response y(t) of the second-order system in Eq. (3-

153).

Toolbox 3-5-1

The unit impulse response of Eg. (3-152) may also be obtained using

MATLAB.



num = [1000]; Alternatively:

den = [1,34.5,1000]; s =tf ('s');

G = tf (num,den); G=1000/ (s"2+34.5%s+1000) ;

impulse (G) ; impulse (G) ;

title (‘Impulse Response’) title (‘Impulse Response'’)

xlabel (‘Time (sec’) xlabel (‘'Time (sec’)

ylabel (‘Amplitude y(t)’) ylabel (‘Amplitude y(t)’)

“impulse” produces the time response of a function for an impulse
input.

3-5-2 Time Response Using the Impulse Response

It is important to point out that the response of any system can be
characterized by its impulse response ¢(t), which is defined as the output for
a unit-impulse input 6(t). Once the impulse response of a linear system is
known, the output of the system y(t), for any input, u(t), can be found by using
the transfer function. Recall,

The time response of any linear system, for any given input can be
found by using the impulse response.

Gls) = L) _Y(s) (3-154)
L(u(t)) U(s)

is the transfer function of the system. For more details see, for example,
Ref. 14. We demonstrate this concept through the following example.

EXAMPLE 3-5-3 For the second-order prototype system in Eq. (3-149) use
the impulse response g(t) from Example 3-5-1 to find
the time response for a unit-step input u(t) = u(t).

The Laplace transform of Eq. (3-149) for zero initial
conditions is




1 o] G(s)
Llynl= Y“y_ss+lgvs+w s

(3-155)

Recall from Eq. (3-139), the time response of this
system was obtained to be

—lw t

y(t)=1—hsm[(a)m/l—gz)wcos—l g] (>0 (3-156)

Using Eq. (3-155) and the convolution properties of
Laplace transforms, from Table 3-1, we have

_GGs) _GGs) Al _ y
LlOl= === Ll *g(0)]= £| [ugte-dr | (3-157)
As a result from Eg. (3-157), the output y(t) is
therefore
[(ugt-nyde = -2 sin(w, 1= (t-1))dr 120 (3-158)

N

or, after some manipulations, we get

o t

y(t):l—hsin[(a)mh—gz)r+9} £20 (3-159)

where 6 = cos™ ¢. Obviously, Egs. (3-159) and (3-156)
are identical.

3-5-3 Transfer Function (Single-Input, Single-Output
Systems)

Let G(s) denote the transfer function of a single-input, single-output
(SISO) system, with input u(t), output y(t), and impulse response g(t). We can
formalize the findings in Sec. 3-5-1 and conclude the following.

The transfer function is alternatively defined as the Laplace transform



of the impulse response, with all the initial conditions set to zero.

Hence, the transfer function G(s) is defined as

_Y(s)

G(s)=L[g(®)] 00

(3-160)

with all the initial conditions set to zero, and Y(s) and U(s) are the Laplace
transforms of y(t) and u(t), respectively.

3-6 SYSTEMS OF FIRST-ORDER
DIFFERENTIAL EQUATIONS: STATE
EQUATIONS

State equations provide an alternative to the transfer function approach,
discussed earlier, to study differential equations. This technique particularly
provides a powerful means to treat and analyze higher-order differential
equations and is highly utilized in modern control theory and more advanced
topics in control systems, such as optimal control design.

In general, an nth-order differential equation can be decomposed into n
first-order differential equations. Because, in principle, first-order differential
equations are simpler to solve than higher-order ones, first-order differential
equations are used in the analytical studies of control systems. As an
example, for the differential equation in Eg. (3-2), shown here

di(t) . i(t)
L7+Rz(r)+j?dr=e(r) (3-161)
if we let

x,(t)= [i(t)dt (3-162)

and



dx, (t)
x, (1) =——=i(t)
’ dt
then Eq. (3-161) is decomposed into the following two first-order
differential equations:

dx,(t)

dt =%,(0)
dxz(t)__ 1 R 1
e ch1(f) sz(t)-kLe(t)

Alternatively, for the differential equation in Eq. (3-3),

d’y(1) dy(t) _
M % (t)+B s +Ky(t)= f(t)
if we let
x, ()= y(t)
and
()= 0 _ O

dt dt

then Eq. (3-166) is decomposed into the following two first-order
differential equations:

dx, ()

dt =%,(f)
de®_ B K o1
g sz(t) Mxl(t)+Mf(t)

In a similar manner, for Eq. (3-5), let us define

(3-163)

(3-164)

(3-165)

(3-166)

(3-167)

(3-168)

(3-169)

(3-170)



x,(t) = y(t)

t (3-171)
_ dn—ly(t)
x?? (t)_ dtnfl

then the nth-order differential equation is decomposed into n first-order
differential equations:

dx, (t)

b
dx,(t) =35, 1)

- (3-172)
de;z‘(t) = —0ayX4 (t)_ a1xz(t) =4, 53X (t) 1%y (t)+ f(t)

Notice that the last equation is obtained by equating the highest-ordered
derivative term in Eq. (3-5) to the rest of the terms. In control systems theory,
the set of first-order differential equations in Eqg. (3-172) is called the state
equations, and x ,x,,...,x , are called the state variables. Finally, the minimum
number of state variables needed is usually the same as the order n of the
differential equation of the system.

The minimum number of state variables needed to represent a
differential equation, is usually the same as the order of the differential
equation of the system.

EXAMPLE 3-6-1 Considering the two degrees of freedom mechanical
system shown in Fig. 3-16 with two masses M, and M,
constrained by three springs, while a fore f(t)is applied



to mass M.,.

— V(1) — V(1)
K, K,
M, v M =
—» f(1)
(a)
(1) - V(1)
D — Fs3

Fye— M, |[—>»Fy «— M,
> 1)

(b)

Figure 3-16 A two degree of freedom mechanical system with three
springs.

The displacements of masses M, and M, are measured
by y (t) and y (t), respectively. From Example 2-1-2, the
two second-order differential equations of motion are

M,5,(t)+(K,+K,)y,(t)- K,y,(t)=0 (3-173)

M, 7,(t)-K,y,()+(K, + K,)y,(t)= f(1) (3-174)
if we let

x, ()= y,(f) (3-175)

x,(t)=y,(t) (3-176)

and



x,(£) = dz, () _ dyi () (3-177)
dt dt

x,(t)= e, () _ 4y5(1) (3-178)
dt dt

Then the two second-order differential equations are
decomposed into four first-order differential equations,
that is, the following state equations:

#0 _e0 (3-179)

d"ét(” - (3-180)

d";:” :—(KIA;f(Z)xl(t)+%x2(t) (3-181)
%:%xl(t)—@xz(t)+ ﬁ? (3-182)

Note that the process of selecting the state variables is
not unique, and we could have used the following

representation:
%)= ,(t) (3-189)
()= dx, () _ dy,(t) (3-184)
dt dt
X (D)= y,(1) (3-185)
dxy (1) _dy,(1) 3-186
=== s

As a result the state equations become

dx, (1) _ 3.187
AL e



dx,() (K +K,) K,

5 m x, (H)+ Exa(t) (3-188)
i) 3-189

5 =%, (1) ( )

dx4(t) _&_ _(K2+K3) f(t) 3_190
- M, (0 —2 x,(8)+ ) ( )

3-6-1 Definition of State Variables

The state of a system refers to the past, present, and future conditions of
the system. From a mathematical perspective, it is convenient to define a set
of state variables and state equations to model dynamic systems. As stated
earlier, the variables x (t),x (t),...,x (t) defined in Eq. (3-171) are the state

variables of the nth-order system described by Eq. (3-5), and the n first-order
differential equations, in Eq. (3-172), are the state equations. In general,
there are some basic rules regarding the definition of a state variable and
what constitutes a state equation. The state variables must satisfy the
following conditions:

* At any initial time ¢ = t, the state variables x (¢ ),x(t,),...,x (t ) define
the initial states of the system.
* Once the inputs of the system for t > ¢t and the initial states just

defined are specified, the state variables should completely define the
future behavior of the system.

The state variables of a system are defined as a minimal set of variables,
x,(£),x(t),...,X (t), such that knowledge of these variables at any time ¢, and
information on the applied input at time ¢, are sufficient to determine the state
of the system at any time t > t. Hence, the space state form for n state
variables is

x(t)= Ax(t)+ Bu(t) (3-191)

where x(t) is the state vector having n rows,



and u(t) is the input vector with p rows,

u(t)=

()]
x,(t)

[ %,(8)]

ot
u, (1)

u,(t)

The coefficient matrices A and B are defined as

all a12
A _ a21 a22
anl anz
bll blz
B _ b21 b22
bf’ll bnz

(nxn)

(nx p)

(3-192)

(3-193)

(3-194)

(3-195)

EXAMPLE 3-6-2 For the system described by Egs. (3-187) through (3-

190),

x(t)=

x, (1) j
x,(1)
x5(f)
x,(t)

(3-196)



u(t) = f(t) (3-197)

0 1 0 0
_(K1+K2) 0 K, 0
M, M, (3-198)
o (4%x4)
0 0 0 1
K 0 _(K2 +K,) 5
M2 MZ
-
0
B=| 0 |@4x1) (3-199)
1
M2

3-6-2 The Output Equation

One should not confuse the state variables with the outputs of a system. An
output of a system is a variable that can be measured, but a state variable
does not always need to satisfy this requirement. For instance, in an electric
motor, such state variables as the winding current, rotor velocity, and
displacement can be measured physically, and these variables all qualify as
output variables. On the other hand, magnetic flux can also be regarded as a
state variable in an electric motor because it represents the past, present, and
future states of the motor, but it cannot be measured directly during operation
and therefore does not ordinarily qualify as an output variable. In general, an
output variable can be expressed as an algebraic combination of the state
variables. For the system described by Eq. (3-5), if y(t) is designated as the
output, then the output equation is simply y(t) = x,(t). In general,



»()
t
vo=| 72 |- cx)+ Duee) (3-200)
7, ()
Cll C12 Cln
C C C
c=| » 7 " (3-201)
qu qu an
du dlz dlp
d d e d
D= * ® % (3-202)
] dql qu dqp i

We will utilize these concepts in the modeling of various dynamical
systems next.

EXAMPLE 3-6-3 Consider the second-order differential equation, which
was also studied in Example 3-4-1.

dy(t)  dy(t) _ 45
e +3 pr +2y(t) =2u(t) ( )
If we let
x,(1)=y(t) (3-204)
and
x,(t)= duilt) _dyis) (3-205)

dt dt



then Eq. (3-203) is decomposed into the following two
first-order differential equations:

dx (1) _ ) (3-206)
dt :
dx, ) =—2x,(t)—3x, () +2u(t) (3-207)

dt

where x (t), x,(t) are the state variables, and u(t) is the
input, we can—at this point arbitrarily—define y(t) as the

output represented by
y(£)=x,(t)

In this case, we are simply interested in state variable
x,(t) to be our output. As a result,

(3-208)

x(t)=[ bt ]; u(t) = u(t) (3-209)
% (D)

— 0 1 . — 0 . — . — e
A{ B } B{ ) } c_[ 1 0 ] D=0 (3-210)

EXAMPLE 3-6-4 As another example the state equations in vector-matrix

form:
dx ) | )
dxdt —(a 0+a ) 1 1—2 a %{t) 0
Rid) _ Bl ) X0 |+ o [r0) (3-211)
dt 1+a,a, 1+aya, {
a@® || o o o [LB0

The output equation may be a more complex



representation of the state variables, for example,

y(t)= x, () +—2— . (1) (3-212)
1+a,a, 1+a,a,
where
co|l1 4 % (3-213)
1+aya, 1+aya,

EXAMPLE 3-6-5 Consider an accelerometer, which is a sensor used to
measure the acceleration of an object it is attached to,
as shown in Fig. 3-17. If the motion of the object is
u(t), the equation of motion for the accelerometer
seismic mass M shown in the free-body diagram of
Fig. 3-17b may be written as

v(1)

+ Accelerometer
e,(t) Output Voltage

M

I\E ;B u(t) Accelerometer Casing

'

u(t) = Motion of the Object

(a)

¥(t) measures motion from equilibrium
of mass M

M

Iy

Fs Fd
(b)




Figure 3-17 (a) Schematic of an accelerometer mounted on a moving
object. (b) Free-body diagram.

—K(y(t)—u(t))— B(y(t)—u(t)) = My(t) (3-214)

where B and K are the accelerometer internal material
damping constant and stiffness, respectively. If we define
the relative motion of the seismic mass M by z(t)

2(t)= y(t) —u(t) (3-215)

Then Eq. (3-214) can be rewritten in terms of the
object acceleration which the sensor measures:

MZz(t)+ Bz(t)+ Kz(t) = — Mii(t) (3-216)

The accelerometer output is in terms of voltage, which
is linearly proportional to the seismic mass relative
motion through constant K —also known as the sensor
gain. That is

e,(t)=K z(t) (3-217)
In state space form, if we define the state variables as
x,(t)=z(t) (3-218)

and

_dx, () _dz(t)

(3-219)
dt dt

x, ()

then Eq. (3-216) is decomposed into the following two
state equations:

dxéit) D) (3-220)
de) B K _
- sz(t) Mxl(t)+u(t) (3-221)



where x (t), x(t) are the state variables, and u(t) is the
input. We can define e (t) as the output.

So
x(r){xl(”} alEy=Hi(E) (3-222)
x,(t)
0 1 s
A= K B | B:M; C=[K, 0]; D=0 (3-223)
M M
e, (t)=K,x, (1) (3-224)

We will revisit this problem later on in this chapter. As
a side note, in order to better understand how an
accelerometer measures acceleration, we need to
understand its frequency response characteristics, which
we will address in Chap. 10. For more appreciation of
this topic, you may wish to refer to Ref. 14.

EXAMPLE 3-6-6 Consider the differential equation

dy(t) dy(t)  dy(t)
+5 + +2y(t) =u(t (3-225)
dar’ dt? dt L=t
Rearranging the last equation so that the highest-order
derivative term is set equal to the rest of the terms, we
have

'y dyt) dy(t) 3-226
e 5 0 T 2y(t)+u(t) ( )

The state variables are defined as



x, ()= y(1)
= dy(t) (3-227)

dt

d’y(t)

%)= dt?

Then the state equations are represented by the vector-
matrix equation

x(t)= Ax(t)+ Bu(t) (3-228)

where x(t) is the 2 x 1 state vector, u(t) is the scalar
input. The output equation is arbitrarily selected in this

case to be
y(t)=x,(t)=[1 0]x(¥) (3-229)
Hence,
0 1 0 0
A= 0 0 1;B=0;C:[1o] (3-230)
-2 -1 =5 1

3-7 SOLUTION OF THE LINEAR
HOMOGENEOUS STATE EQUATION

The linear time-invariant state equation
x(t) = Ax(t)+ Bu(t) (3-231)

can be solved using either the classical method of solving linear
differential equations or the Laplace transform method. The Laplace
transform solution is presented in the following equations.

Taking the Laplace transform on both sides of Eq. (3-231), we have
sX(s)—x(0)=AX(s)+BU(s) (3-232)



where x(0) denotes the initial-state vector evaluated at t = 0. Solving for

X(s) in Eq. (3-232) yields
X(s)=(sI—A)"x(0)+(sI— A)"'[BU(s)] (3-233)

where I is the identity matrix, X(s) = L[x(t)] and U(s) = L[u(¢t)]. The
solution of the state equation of Eq. (3-231) is obtained by taking the inverse
Laplace transform on both sides of Eq. (3-233):

x()=L"[(sI-A)"]x(0)+ L (s - A)'[BU(s)]} (3-234)
Once the state vector x(t) is found, the output is easy to obtain through
y(t)=Cx(t)+Du(t) (3-235)

EXAMPLE 3-7-1 Consider the state equations representation of the system
represented by Eq. (3-203) in Example 3-6-3

x| | o 1 |[x(®] |0 ]
heE R WA T e

The problem is to determine the solution for the state
vector x(t) for t > 0 when the input is a unit step, that is,
u(t) =1 for t > 0. This system is the same as the second-
order overdamped system in Example 3-4-1. The
coefficient matrices are identified to be

o] e
=2 =3 2

Therefore,

sI—A:{ s U }{ g 1 }:{ Pl } (3-238)
0 s -2 =3 2 s+3

The inverse matrix of (sI — A) is




(I-Ayi=e— | st3 1 (3-239)
§+35+2| =2 5

The solution of the state equation is found using Eq.

(3-234). Thus,
-t —2t -t =2 = =2
x(=| 2 "¢ T x| T | izo0 (3-240)
—2e "+ 2e —g " +2e e —2e

where, the second term of the solution can be obtained
by taking the inverse Laplace transform of (sI — A)
“"BU(s). Thus, we have

LT-AY'BU(s)= £ 5| $T3 1 H 0 H

S43s+2] 2 s || 2 s
i 2 ~t =2t
o | ||| PO | 20 (3-241)
$"+3s+2 ) el —2e™

Note that in the current example, the overall solution in Eqg. (3-239) is a
superposition of the response due to the initial conditions and the input u(t).
For zero initial conditions, the response in this case is identical to the solution
in Eg. (3-119) obtained earlier for the overdamped system in Example 3-4-1.
The solution of the state equations, however, is more powerful because it
shows both states x (t) and x (t). Finally, having found the states, we can now

find the output y(¢) from Eg. (3-235).

3-7-1 Transfer Functions (Multivariable Systems)

The definition of a transfer function is easily extended to a system with
multiple inputs and outputs. A system of this type is often referred to as a
multivariable system. In a multivariable system, a differential equation of the
form of Eq. (3-5) may be used to describe the relationship between a pair of
input and output variables, when all other inputs are set to zero. This equation
is restated as



d"y(t) d"y(t) dy(t)
g =, , = +---+a17+a0y(t)

m m—1
p ) AT L e
dt™ dt™ dt

(3-242)

u(t)

The coefficients a,a,,...,a_ and b,b,,...,b_are real constants. Using the state
space representation of Eq. (3-242), we have

axit) _ ity Bulo) (3-243)
i
¥(t) = Cx() + Du(t) (3-244)

Taking the Laplace transform on both sides of Eq. (3-242) and solving for
X(s), we have

X(s)=(sI—A) " x(0)+(sI— A)" BU(s) (3-245)

The Laplace transform of Eq. (3-244) is

Y(s) =CX(s)+DU(s) (3-246)
Substituting Eq. (3-245) into Eq. (3-246), we have
Y(s)=C(sI-A) " x(0)+C(sI—A) " BU(s)+DU(s) (3-247)

Because the definition of a transfer function requires that the initial
conditions be set to zero, x(0) = 0; thus, Eq. (3-247) becomes

Y(s)=[C(sI— A)"'B+D]U(s) (3-248)
We define the transfer-function matrix between u(t) and y(t), as
G(s)=C(sI-A)"'B+D (3-249)
where G(s) is a g x p. Then, Eq. (3-248) becomes
Y(s)=G(s)U(s) (3-250)



In general, if a linear system has p inputs and g outputs, the transfer
function between the jth input and the ith output is defined as

G,(s)=— (3-251)

with U(s) =0, k=1,2,..., p, k # j. Note that Eq. (3-251) is defined with
only the jth input in effect, whereas the other inputs are set to zero. Because
the principle of superposition is valid for linear systems, the total effect on
any output due to all the inputs acting simultaneously is obtained by adding
up the outputs due to each input acting alone. When all the p inputs are in
action, the ith output transform is written as

Y,(5) = G, ()U,(8)+ G, ()U, (s)+++-+ G, ()U, (s) (3-252)
where
[ G,(s) Gu(s) - G,(s) |
Gls) G, (8) Gpls) - Gls) (3-253)
qu'(s) Gq;(s) . G;(s)

is the g x p transfer-function matrix.

Later in Chaps. 4 and 8 we will provide more details on treatment of
differential equations using the state-space approach.

EXAMPLE 3-7-2 Consider a multivariable system, described by the
following differential equations

d’y,(t) dy(t) _ 3.254
A a3y, 0 =u (0 (3-254)

v (8 dy. (¢

y{;g )y y;t( ) 43,1+ 23, (B =, (8) (3-255)

Using the following choice of state variables:



x,(t) =y, (1)

(1) = % (3-256)

x,(£)=y,(1)

where, these state variables are defined by mere
inspection of the two differential equations because no
particular reasons for the definitions are given other than
that these are the most convenient. Now equating the first
term of each of the equations of Egs. (3-254) and (3-255)
to the rest of the terms and using the state-variable
relations of Eq. (3-256), we arrive at state equations and
output equations in vector-matrix form as represented by

Egs. (3-243) and (3-244). Or,

x, (1) 0o 1 0 x,(1) 0 0 I wi
@) 1=l 0 -4 3 () |+ 1 0 [ul(t)] (3-257)
x,(1) -1 -1 =2 || x,(t) 0 1 2
] x,(1)
7i) ]{1 0 0} %) |=Cx(® (3-258)
7,(¢) 0 0 1

x,(1)

where the output choice has been set arbitrarily. In
order to determine the transfer-function matrix of the
system using the state-variable formulation, we substitute
the A, B, and C matrices into Eq. (3-249). First, we form
the matrix (sI — A):

s -1 0
(sI-A)=| 0 s+4 -3 (3-259)
1 1 s+2

The determinant of (sI — A) is

|sSI—A| =5’ +65" +11s+3 (3-260)



Thus,

(I-A)" = adj(sI-A)
det(sI—A)
. sS+6s+11  s+2 3
T 3 -3 s(s+2) 3s (3-261)
s +6s +11s+3
—(s+4) —(s+1) s(s+4)
The transfer-function matrix between u(t) and y(t) is
1 s+2 3
G(s)=C(sI-A)'B= (3-262)
(s)=C( ) s3+652+115+3{ —(s+1) s(s+4) }

Alternatively, using the conventional approach, we
take the Laplace transform on both sides of Egs. (3-257)
and (3-258) and assume zero initial conditions. The
resulting transformed equations are written in vector-
matrix form as

{ s(s+4) -3 H %) H Uy(s) ] .
gl B2 Y,(s) U,(s)

Solving for Y(s) from Eq. (3-263), we obtain

Y(s)=G(s)U(s) (3-264)
where
G(s)= { s(s+4) -3 ]_1
s+1 5+2 (3-265)

B 1 (s+2) 3
(P 4652 +11s+3)| —(s+1) s(s+4)

which will give the same results as in Eq. (3-262).



EXAMPLE 3-7-3 For the state equation represented in Example 3-7-1, if we
define the output as

y(£)=Cx(t); C=[1 0] (3-266)

That is y(t) = x,(¢t). For zero initial conditions, the
transfer-function matrix between u(t) and y(t) is

G(s)=C(sI-A)"B=[ 1 0 ](ﬁ{ 5;3 1 H 2 D (3-267)
or,
G(s)=% (3-268)
s +3s+2

which is identical to the second-order transfer function
for the overdamped system in Example 3-4-1.

3-7-2 Characteristic Equation from State Equations

From the transfer function discussions in the previous section, we can
write Eq. (3-249) as

adj(sI—A) B+D
det(sI—A)

_ Cladj(sI-A)]B+|sI-A|D

- |sT— A

G(s)=C(sI-A) 'B+D=C
(3-269)

Setting the denominator of the transfer-function matrix G(s) to zero, we get
the characteristic equation:

|sI—A|=0 (3-270)

which is an alternative form of the characteristic equation but should lead
to the same equation as in Eq. (3-22). An important property of the
characteristic equation is that, if the coefficients of A are real, then the
coefficients of |sI — A| are also real. The roots of the characteristic equation



are also referred to as the eigenvalues of the matrix A.

EXAMPLE 3-7-4 The matrix A for the state equations of the differential
equation in Eqg. (3-225) is given in Eqg. (3-230). The

characteristic equation of A is

s -1 0
IsSI-Al=| 0 s -1 |=5"+5s"+s+2=0 (3-271)
2 1 s+5

Note that the characteristic equation is a polynomial of
third order while A is a 3 X 3 matrix.

EXAMPLE 3-7-5 The matrix A for the state equations of Example 3-7-1 is
given in Eqg. (3-237). The characteristic equation of A

is

s -1
2 s5+3

|sT—-A|= =5’ +35+2=0 (3-272)

Note in this case the order of the characteristic
equation and the A matrix dimension are the same.

EXAMPLE 3-7-6 The characteristic equation in Example 3-7-2 is

|sI-A|=s"+65"+11s+3=0 (3-273)

Again A is a 3 x 3 matrix, and the characteristic
equation is a third-order polynomial.

3-7-3 State Equations from the Transfer Function

Based on the previous discussions, transfer function of the system can be
obtained from the state space equations. However, obtaining the state space
equations from the transfer function without a clear knowledge of the
physical system model and its properties is not a unique process—
particularly because of variety of potential choices for the state and the output
variables. The process of going from the transfer function to the state diagram



is called decomposition. In general, there are three basic ways to decompose
transfer functions. These are direct decomposition, cascade decomposition,
and parallel decomposition. Each of these three schemes of decomposition
has its own merits and is best suited for a particular purpose. This topic will
be further discussed in more detail in Chap. 8.

In this section, we demonstrate how to get state equations from the transfer
function using the direct decomposition technique. Let us consider the
transfer function between u(t) and y(t) is given by

Y(s) b,s"+b, s"" +-+bs+b,

G(s)= —~ ; m<n—1 (3-274)
U(s) s"+a s" +--+as+a,

where, the coefficients a,a,,...,a_, and b,b,...,b are real constants, U(s) =
Llu(u(t)], and Y(s) = L[y(t)]. As we shall see later it is necessary to have m <
n — 1. Premultiplying both sides of Eqg. (3-274) by the denominator, we get

Obtaining the state space equations from the transfer function without
a clear knowledge of the physical system model and its properties is not
a unique process.

s"+a s +etas+a \Y(s)=(b s"+b "4+ bs+b )U(Gs)  (3-275)
n—1 1 0 m m—1 1 0

Taking the inverse Laplace transform of Eq. (3-275), while recalling that
the transfer function is independent of initial conditions of the system, we get
the following nth-order differential equation with constant real coefficients:

d"y(t) d”fly(t) dy(t)
g +a_ = +---+a17+a0y(t)
m m—1
_p U0, 4 u(t)+---+bl%+bou(t) (3-276)

A me e

In this decomposition approach, our goal is to convert the transfer function
in Eq. (3-274) into the state space form:



dxf)=Ax(r)+Bu(t) (3-277)

y(t)=Cx(t)+ Du(t) (3-278)

Note y(t) and u(t) are not vectors and are scalar functions. From the
denominator of Eq. (3-274) the characteristic equation is an nth-order
polynomial,

|sSI-A|=s"+a,s"" +---+as+a,=0 (3-279)

which implies A to be a n X n matrix. As a result the system is expected to
have n states. Hence,

x, ()
t
=] = (3-280)
x,(f)
We assume the following form for the coefficient matrix B:
P o T
0
B=| (nx1) (3-281)
— 1 -

Hence, for Egs. (3-277), (3-278), and (3-279), respectively, we must have




dr %(0)
dx,(t)
dt - x3(t)
dx, (t)
—n x,, (1)
dx;; t(t) =—ax,(t)—ax,(t)——a_x _ (t)—a,_x, )+ut) (3-282)
and
y(t)=b, x,()+ b, x,({t)++b _x (t) (3-283)

This implies, in the output Eq. (3-278), D = 0 and C has one row and n
columns. That is,

C=[b, b b, ~ b, b (Ixn) (3-284)

where this requires m not to exceed n — 1 in Eq. (3-274)—that is, m < n —
1.

Finally, as a result of the direct decomposition technique, the coefficient
matrices A, B, C, and D are

0 1 0 0 0 0
0 0 1 0 0 0
A= : : , B= :
0 0 0 0 1 0
—4, —4 -4, 4, —4,, i 1 1
C:[ b, b b, - b, b } D=0 (3-285)

Again, please note that this topic will be further discussed in more detail in
Chap. 8.

EXAMPLE 3-7-7 Consider the following input-output transfer function:



Y(s) 28 +545

— (3-286)
U(s) s°+6s°+11s+4

The dynamic equations of the system using direct
decomposition method are

dx (1)
dt
0 1 0 x, () 0
dxét(t) =l 0 0 1 x,(t) [+ 0 |u(t)
. (6 -4 -11 -6 x, () 1
L dt —
yit)=[ 5 1 2 lx() (3-287)

EXAMPLE 3-7-8 Consider the accelerometer in Example 3-6-4, as shown
in Fig. 3-17. If the motion of the object is u(t), the
equation of motion for the accelerometer seismic mass
M shown in the free-body diagram of Fig. 3-17b may
be written as

—K(y(t)—u(t)) - B(y(t)—u(t)) = My(t) (3-288)

where B and K are the accelerometer internal material
damping constant and stiffness, respectively. Rearranging

Eq. (3-288), we have
M y(t)+By(t)+ K y(t)= Bu(t)+ Ku(t) (3-289)

In this case, we use the accelerometer absolute
displacement y(t) as our output variable. The transfer
function in this case represents a displacement input-
output relation



Ys) MM (3-290)

then using direct decomposition, Eq. (3-290) is
decomposed into the following two state equations:

dx, () _

- x, (1) (3-291)
d—i;?:—%xl(t)—%xz(tﬂu(t) (3-292)

where x (t), x,(t) are the state variables, and

displacement u(t) is the input. From Eq. (3-283), the
output is therefore

K B K B
y(t){ W W }X(t)=ﬂxl(t)+ﬂx2(t) (3-293)

In order to confirm that Egs. (3-291) through (3-293)
do indeed represent the transfer function in Eq. (3-290),
let us take the Laplace transform while setting the initial
conditions to zero. Hence,

sX,(s)=X,(s) (3-294)
K B
__ _ 3-295
sX,(s) X, (s)-—X,(s)+U(s) ( )
K B
_ 3-296
Y(s) X,(s)+—X,(s) ( )

where X (s) = L[x,(0)], X,(s) = LIx,(t)], U(s) = L[u(¢)]
and Y(s) = L[y(t)]. Using Eq. (3-294) to eliminate X (s)
from Egs. (3-295) and (3-296), we have

B K
[s +—s+ )Xl(s)—U(s) ( )



k-5 (3-298)
M M
Solving Egs. (3-297) and (3-298) in terms of Y(s) and
U(s), we get
B_K
Y) __ M M (3-299)
FONNCINE SIS
M M

which is the same as Eq. (3-290).

In order to reconcile this representation of the
accelerometer with that of Example 3-6-5, let us
introduce a new output variable

2t) = y(t)—u(t) :%xl(t)+]\—i-x2(t)—u(t) (3-300)

Taking the Laplace transform, assuming zero initial
conditions, we have

Z(s):%Xl(sH%Xz(s)—U(s) (3-301)

Using Eqg. (3-294) to eliminate X (s) from Eq. (3-301),
and solving the resulting equation and Eg. (3-297) in
terms of Z(s) and U(s), we get

Z(s)__ =s (3-302)

U(s) _32+£s+£
M M

which is the transfer function of Eq. (3-216).

3-8 CASE STUDIES WITH MATLAB

In this section, we use state space to find the time response of simple



practical examples.

EXAMPLE 3-8-1 Let us consider the RLC network shown in Fig. 3-18.
Using the voltage law

R L
O AMN—P— T ———
+ i(1)
+
e(f) C== el
o
Figure 3-18 RLC network.
e(t)=e,+e, +e, (3-303)

where e, = voltage across the resistor R
e, = voltage across the inductor L
e_= voltage across the capacitor C

or
e(t)=+e () + Ri(t) + L d;(;) (3-304)
Using current in C,
cde®) i (3-305)
dt

and taking a derivative of Eg. (3-304) with respect to
time, we get the equation of the RLC network as

5 = 4
I d“i(t) +R di(t) N i(t) _ de(t)
dt* dt C dt

(3-306)

A practical approach is to assign the current in the
inductor L, i(t), and the voltage across the capacitor C,



de. (1)
Cdt
di(t)
dt

e (t), as the state variables. The reason for this choice is
because the state variables are directly related to the
energy-storage element of a system. The inductor stores
kinetic energy, and the capacitor stores electric potential
energy. By assigning i(t) and e (¢) as state variables, we
have a complete description of the past history (via the
initial states) and the present and future states of the
network. The state equations for the network in Fig. 3-18
are written by first equating the current in C and the
voltage across L in terms of the state variables and the
applied voltage e(t). In vector-matrix form, the equations
of the system are expressed as

|

e (t)
i(t)

0
]+ 1 |e(t) (3-807)
L

This format is also known as the state form if we set

%(t)
x,(t)

or

B

]
C

_H
L

|

e (1)

] (3-308)
i(t)

X
Yol+
x2

e(t) (3-309)

~|— ©

Let us define the output as



|:y1(t):|_ xl(t) B ec(t)
] | o || i)

|10
y(f) = 0 1}c(t)

(3-310)

That is we are interested in measuring both the current
i(t) and the voltage across the capacitor, ec(t).

As a result, the coefficient matrices are

1
= 0
A= C ol o] ;c{l 0} (3-311)
L

The transfer functions between e(t) and y(t) are

obtained by applying Eq. (3-249), when all the initial
states are set to zero. Hence, from

G(s)=C(sI-A)'B

1 1 (3-312)
_LC52+RCS+I{ Cs }
More specifically, the two transfer functions are
E(s) _ . (3-313)
E(s) 1+RCs+LCs?
I(s) Cs (3-314)

E(s) 1+ RCs+LCs?

Toolbox 3-8-1

Time-domain step responses for the outputs in Egs. (3-313) and (3-
314) are shown in Fig. 3-19, using R=1,L =1, C=1:




R=1; I=1; C=1;
£=0:0.02:30;

numl = [1];

denl = [L*C RxC 1] ;
num2 = [C 0];

den2 = [L*C R*C 1];
Gl = tf (numl, denl);
G2 = tf (num2, den2);
yl = step (G1, t);
y2 = step (G2, t);
plot (t,yl);

hold on

plot (t, y2, ‘--");
xlabel (‘Time (s) ')
ylabel (*Output’)
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Figure 3-19 Output voltage and current step responses for Example 3-8-

1.

EXAMPLE 3-8-2 As another example of writing the state equations of an
electric network, consider the network shown in Fig.
3-20. According to the foregoing discussion, the
voltage across the capacitor, e (t), and the currents of
the inductors, i (t) and i(t), are assigned as state
variables, as shown in Fig. 3-20. The state equations
of the network are obtained by writing the voltages
across the inductors and the currents in the capacitor
in terms of the three state variables. The state

30



equations are
R, Ly L

AAVA p——JUO T —p—
i(1) I(1)

o
e(t) () & e § R,

Figure 3-20 Electrical schematic of the network of Example 3-8-2.

di, (¢
le—(t):—Rlil(t)—ec(tHe(t) (3-315)
di, (t
L% g e ) (3-316)
dt
de(t) . .
' g =i, (t)—1i,(t) (3-317)
In vector-matrix form, the state equations are written
as
B oy -k L
" - R 1L | Li 3.318
X, |= 0 2 x, |+ U le(t) (3- )
LZ L2 0
X3 1 1 Xy 0
I - 0 _ =
where
% i(t)
x, |=| i, (8-319)



Similar to the procedure used in the previous example,
the transfer functions between I1(s) and E(s), I(s) and

E(s), and E (s) and E(s), respectively, appear next i (t)

I,(s) L,Cs’+R,Cs+1

_ (3-320)
E(s) A
L 1 (3-321)
E(s) A
E(s) _Lys+R, (3-322)
E(s) A
where
A=LLCs+(RL,+R,L)Cs*+(L,+L,+R R,C)s+R +R (3-323)
12 12 21 1 2 152 1 2

Toolbox 3-8-2

Time-domain step responses for the outputs in Egs. (3-320) to (3-322)
are shown in Fig. 3-21, usingR =1,R =1,L =1,L =1, C=1:




R1=1; R2=1; Ll=1; L2=1; C=1;
£=0:0.02:30;

numl = [L2*C R2*C 1];

num2 = [1];

num3 = [L2 R2];

den = [L1*L2*C R1*L2*C+4+R2*L1*C L1+L24R1*R2*C R1+R2];
Gl = tf (numl, den);

G2 = tf (num2, den) ;

G3 = tf (num3, den);

vl = step (Gl, t);

y2 = step (G2, t);
y3 = step (G3, t);
plot{t, wl);

hold on

plot(t, y2, ‘--7);
hold on

plot(t, y3, *-.7);
xlabel (‘Time (s) ')
ylabel (*Output’)
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Figure 3-21 Output voltage and current step responses for Example 3-8-
2.

EXAMPLE 3-8-3 Consider the accelerometer in Examples 3-6-4 and 3-7-8,

as shown in Fig. 3-17. The state equations of the
system using the state variables defined in Example 3-

7-8 are
d’;lf” _x,(t) (3-324)
(3-325)

dx, (1) K B
i Mxl(t) sz(t)+ u(t)



y(t)
z(t)

}

where x (t), x,(t) are the state variables, and

displacement u(t) is the input. Here we define the output
equation to reflect both absolute and relative
displacements of the seismic mass as outputs, that is, y(t)
and z(t). From Eq. (3-283), the output is therefore

B
M (3-326)
B

x,(t) 0
[ (0 H S }“m

The two system transfer functions were obtained

2| = ==

M

earlier as
B K
Y(s) M M (3-327)
Uts) ¢, B, K
2

Z2(s) s (3-328)
Ul o, B, X

M

Toolbox 3-8-3

Time-domain step responses for the outputs in Egs. (3-327) and (3-
328) are shown in Fig. 3-22, using M =1, B= 3, and K = 2:




K=2; M=1; B=3;
£t=0:0.02:30;

numl = [B/M K/M];
num2 = [-1 0 0];
den = [1 B/M K/M];
Gl = tf(numl, den);
G2 = tf (num2, den)
vl = step (G1, t);
y2 = step (G2, t);
plot (t, v1);

hold on

plot(t, vy2, ‘--7);
xlabel (‘Time (Second)’) ; ylabel (‘'Step Response’ )

I
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Figure 3-22 Absolute and relative displacement time responses to a step
displacement input for the accelerometer seismic mass in Example 3-8-3.

Considering the time response plots in Fig. 3-22, are as expected. That is,
for a unit step base movement, the absolute displacement follows the base at
steady state, while the mass relative motion with respect to base, after
experiencing initial acceleration, settles to zero.

3-9 LINEARIZATION REVISITED—THE
STATE-SPACE APPROACH



In Sec. 2-4, we introduced the concept of linearization using the Taylor
series technique. Alternatively, let us represent a nonlinear system by the
following vector-matrix state equations:

ax(t)

o =f[x(t),r(t)] (3-329)

where x(t) represents the n x 1 state vector; r(t), the p % 1 input vector; and
f[x(t), r(t)], an n x 1 function vector. In general, f is a function of the state
vector and the input vector.

Being able to represent a nonlinear and/or time-varying system by state
equations is a distinct advantage of the state-variable approach over the
transfer-function method, since the latter is strictly defined only for linear
time-invariant systems.

As a simple example, the following nonlinear state equations are given:

) _ o+ 2200 (3-330)
it

) ) (3-331)
dr

Because nonlinear systems are usually difficult to analyze and design, it is
desirable to perform a linearization whenever the situation justifies it.

A linearization process that depends on expanding the nonlinear state
equations into a Taylor series about a nominal operating point or trajectory is
now described. All the terms of the Taylor series of order higher than the first
are discarded, and the linear approximation of the nonlinear state equations at
the nominal point results.

Let the nominal operating trajectory be denoted by x (t), which
corresponds to the nominal input r,(t) and some fixed initial states.
Expanding the nonlinear state equation of Eq. (3-329) into a Taylor series
about x(t) = x,(t) and neglecting all the higher-order terms yields

R R e P M ol IIURCE

X0 Xl



wherei=1, 2,...,n. Let

Ax; =x,— X,
and
Ary =1, —1,
Then
Ax; =X, — X,
Since
X, = fi(X,,1,)
Equation (3-332) is written as
A%, Zaf ) ij+iw Ar,
7=l %o = i Xl

Equation (3-337) may be written in vector-matrix form:

Ax = A* Ax+B* Ar

where
S o . 3|
dx, 0x, 0x,
9, 9% . 9f
A*=| dx, OJx, 0x,
aof, df,  9f,
dx, 0x, 0x,

(3-333)

(3-334)

(3-335)

(3-336)

(3-337)

(3-338)

(3-339)



A
dar,  or, Jr,
of, 9f, . 9,
B*=| or, 0r Jr, (3-340)
o 9 . 9
dr,  0r, dr,

The following simple example illustrates the linearization procedure just
described.

EXAMPLE 3-9-1 For the pendulum in Fig. 2-38, with a mass m and a
massless rod of length [, if we define x, = 0 and x, = 6

as state variables, the state space representation of the
system model becomes

% = )
g (3-341)
X, = —?sinxl(t)

Expanding the nonlinear state equation of Eq. (3-341)
into a Taylor series about x(t) = x (t) = 0 (or 8 = 0) and
neglecting all the higher-order terms yields, with r(t) = 0
since there is no input (or external excitations) in this

case, we get
Ax, ()= aaf;(r) Ax,(t)= %sz(r) = Ax,(t) (3-342)
3| —Zsinx (t)}
9500 _ {f 1 __ g 3.343
sz(t)——axl(t)Axl(t)— %0 Ax, (5= =5 8, (1) (3-343)

x, =0



where Ax, and Ax (t) denote nominal values of x (t) and
x,(t), respectively. Notice that the last two equations are

linear and are valid only for small signals. In vector-
matrix form, these linearized state equations are written
as

[ A0 ]:{ g2 H A% (0 ] (3-344)
Ax, () a 0 || Ax,(t)

where

a= % = constant (3-345)

If we let = 60,?, Eq. (3-344) becomes
Ax, (1) = Ax(t) (3-346)

Switching back to classical representation, we get the
linear system

0+w’0=0 (3-347)

EXAMPLE 3-9-2 In Example 3-9-1, the linearized system turns out to be
time-invariant. As mentioned earlier, linearization of a
nonlinear system often results in a linear time-varying
system. Consider the following nonlinear system:

-1

3-348
0 ( )

xl(t) =

x,(t) =u(t)x,(£) (3-349)

These equations are to be linearized about the nominal
trajectory [x, (t),x (t)], which is the solution to the
equations with initial conditions x(0) = x,(0) = 1 and input
u(t) = 0.



Integrating both sides of Eq. (3-349) with respect to t,

we have
x,(t)=x,(0)=1 (3-350)
Then Eg. (3-348) gives
x,(t)=—t+1 (3-351)

Therefore, the nominal trajectory about which Egs. (3-
350) and (3-351) are to be linearized is described by

X, (H)=—t+1 (3-352)
K (=1 (3-353)
Now evaluating the coefficients of Eq. (3-337), we get
W _y RO _ 2 WO, IO _

%0 0 m wm am@ 7 Gun Y e
Equation (3-337) gives

A%, (1) =— ()Ax(t) (3-355)

Ax, () =u, () Ax, (£)+ x,, (1) Au(t) (3-356)

By substituting Egs. (3-353) and (3-354) into Eqgs. (3-
348) and (3-349), the linearized equations are

Ax, (t Ax (t
J.Cl( o] o 2 {100 Au(t) (3-357)
A%, (1) 0 0 Ax, (1) 1-t
which is a set of linear state equations with time-

varying coefficients.

EXAMPLE 3-9-3 Figure 3-23 shows the diagram of a magnetic-ball-
suspension system. The objective of the system is to



control the position of the steel ball by adjusting the
current in the electromagnet through the input voltage
e(t). The differential equations of the system are

Magnetic-Ball Suspension System
i,

( VWV 000 —e4¢—0O
S R )

Electromagnet

Steel ball

Mg

Figure 3-23 Magnetic-ball-suspension system.

dyO) o 1)

M e
D)

(3-358)

di(t)

e(t)=Ri(t)+ L (3-359)
where e(t) = input voltage
y(t) = ball position
i(t) = winding current
R = winding resistance
L = winding inductance
M = mass of ball
g = gravitational acceleration
Let us define the state variables as x (t) = y(t),x,(t) =



dy(t)/dt, and x (t) = i(t). The state equations of the system
are

dx(;:t) B (3-360)
ol _ o 1 Tl (3-361)
dt M x,(t)
dx(t) _ R 1 -
22— ()4 elt) (3-362)

Let us linearize the system about the equilibrium point
y,(t) = x,, = constant. Then,

_ ey () 3.363
x5 ()= 5 =0 ( )
'y, (1) _, (3-364)

dt?

The nominal value of i(t) is determined by substituting

Eq. (3-364) into Eq. (3-359)

e(t) = Ri(t)+ L d;(;) (3-365)
Thus,
i, (1) =x,,(t) = Mgx,, (3-366)

The linearized state equation is expressed in the state
space form, with the coefficient matrices A* and B*
evaluated as



i 0 1 0 1T 0 1 0 T
2 1/2
Xo3 _2x03 g ez
0 == 0 2 3-367
A>-< = ngl M_xm == xol [ ]\/Ix01 ( )
R
0 0 7 0 0 _R
L
B+ = (3-368)

- © ©

3-10 SUMMARY

Two most common tools for solving the differential equations representing
dynamic systems are the transfer function and the state-variable methods.
Transfer functions are based on the Laplace transform technique and are valid
only for linear time-invariant systems, whereas the state equations can be
applied to linear as well as nonlinear systems.

In this chapter, we started with differential equations, and how the Laplace
transform is used for the solution of linear ordinary differential equations.
This transform method is characterized by first transforming the real-domain
equations into algebraic equations in the transform domain. The solutions are
first obtained in the transform domain by using the familiar methods of
solving algebraic equations. The final solution in the real domain is obtained
by taking the inverse transform. For engineering problems, the transform
tables and the partial-fraction expansion method are recommended for the
inverse transformation. Throughout, we introduced various MATLAB
toolboxes to find the solution of differential equations and to plot their
corresponding time responses.

This chapter was presented the state space modeling of linear time-
invariant differential equations. We further provided solution to the state
equations using Laplace transform technique. The relationship between the
state equations and transfer functions was also established. We finally



demonstrated that given the transfer function of a linear system, the state
equations of the system can be obtained by decomposition of the transfer
function.

Later in Chaps. 7 to 11 we will provide more examples on modeling of
physical systems that will utilize these subjects. Further in Chaps. 7 and 8, we
will provide more details on solution and time response of differential
equations using the Laplace transform and the state-space approaches,
respectively.
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PROBLEMS

PROBLEMS FOR SEC. 3-2

3-1. Find the poles and zeros of the following functions (including the
ones at infinity, if any). Mark the finite poles with % and the finite zeros with
o in the s-plane.

—— 10(s+2)

(a) s*(s+1)(s+10)
Gls) = 10s(s+1)

(b) (s+2)(s*+3s5+2)
G(s) = 10(s+2)

(c) s(5*+2542)
Gls)=——

(d) 10s(s+1)(s+2)

3-2. Poles and zeros of a function are given; find the function:
(@) Simple poles: 0, —2; poles of order 2: —3; zeros: —1, ©

(b) Simple poles: —1, —4; zeros: 0

(c) Simple poles: —3, o; poles of order 2: 0, —1; zeros: %j, o

3-3. Use MATLAB to find the poles and zeros of the functions in Prob. 2-



3-4. Use MATLAB to obtain L{sin* 2t}. Then, calculate L{cos’ 2t} when
you know L{sin’ 2t}. Verify your answer by calculating L{cos’ 2t} in
MATLAB.

3-5. Find the Laplace transforms of the following functions. Use the
theorems on Laplace transforms, if applicable.

(@) &)= 5te”'u (t)

(b) g()=(tsin2t+ e u (1)
(© g(t)=2e sin2tu (t)
(d) g(t)=sin2tcos2tu (t)

g(t)= 23‘5”5(;‘— kT) , where 6(f) = unit-impulse function
(e) k=0

3-6. Use MATLAB to solve Prob. 3-5.

3-7. Find the Laplace transforms of the functions shown in Fig. 3P-7.
First, write a complete expression for g(t), and then take the Laplace
transform. Let gT(t) be the description of the function over the basic period
and then delay gT(t) appropriately to get g(t). Take the Laplace transform of
g(t) to get the following:

g(n)
l e
0 B
L 1 2 3 4 5 6 7 8 f
(a)
g(r)
1 |
0 B
| 2 3 4 t
(b)
Figure 3P-7

3-8. Find the Laplace transform of the following function.



t+1 0<t<l
0 1<t<2
2—t 2<t<3
0 t>3

e

g(t)=

3-9. Find the Laplace transform of the periodic function in Fig. 3P-9.

1)
A
1
. T T a
-1 —
Figure 3P-9

3-10. Find the Laplace transform of the function in Fig. 3P-10.
fir)
A

0 >

Figure 3P-10

3-11. The following differential equations represent linear time-invariant
systems, where r(t) denotes the input and y(t) the output. Find the transfer
function Y(s)/R(s) for each of the systems. (Assume zero initial conditions.)

3 2
d ygt) " d ygt) dy(t) +6y(t)=3 dr(t)
(@) dt dt t dt
4 2
d%ﬂ+mdyghdﬂﬂ
(b) dt dt dt

+5 +r(t)

+5y(t)=5r(t)



o d;)ligfulo d;);gt)+2d};(tr)+y(t)+2J;y(T)d7:%4,2 (t)

(d) d;;;gr) + d)‘;(:) +5y(t) =r(t)+2r(t-1)

N dz)fd(tt:l)+4dy(;:1)+5y(t+l) ) s otyeaf s

® d;igt)ﬂdz(t) d);i)+2y(r)+2j_my(r)dr=dr(;;2)+2r(r—2)

3-12. Use MATLAB to find Y(s)/R(s) for the differential equations in
Prob. 2-29.

PROBLEMS FOR SEC. 3-3

3-13. Find the inverse Laplace transforms of the following functions.
First, perform partial-fraction expansion on G(s); then, use the Laplace
transform table.

G(s)=——
(a) s(s+2)(s+3)

G(s) =——r
(b) (s+1)(s+3)
G(s) = 100(s+2) .
(©) s(s*+4)(s+1)
G(s) = 2(s+1)
(d) s(s*+s+2)
1
@ Gy
G(s) = 2(s*+s+1)
1)) s(s+1.5)(s* +55+5)
G(s) = 242se " +4e”
(2) s> +3s+2

2s+1
G(s) =5
(h) ST+6s°+11s+6

3s°+10s° + 8s+5
. G(S): 4 3 2
(i) s +55"4+7s"+55+6

=]




3-14. Use MATLARB to find the inverse Laplace transforms of the
functions in Prob. 3-13. First, perform partial-fraction expansion on G(s);
then, use the inverse Laplace transform.

3-15. Use MATLAB to find the partial-fraction expansion to the
following functions.

—— 10(s+1)

() s*(s+4)(s+6)
G(s) = (s+1)

(b) s(s+2)(s* +2s5+2)
Gls)=— 5(s+2)

(c) s (s+1)(s+5)
a1 - Sezzs

(d) (s+1)(s” +s+1)
G(s)= 100(s* +s+3)

(e) s(s* +55+3)
G(s)=— ! ;

1)) s(s"+1)(s+0.5)
G(s) = 25 +5°+8s+6

(8) (s> +4)(s* +25+2)
Gs)= 25" +95° +155" +s5+2

(h) s°(s+2)(s+1)

3-16. Use MATLARB to find the inverse Laplace transforms of the
functions in 3-15.

PROBLEMS FOR SEC. 3-4

3-17. Solve the following differential equations by means of the Laplace
transform.

d’f(t) _df(t) .y
5 41(t)= t
(@) dt’ ’ dt Tafin)=eTu )(Assume zero initial conditions.)




&

(1)

dt :xz(t)
o dx;t(f):_2x1(t)—3x2(t)+us(t)x1(())zlsz(g)zo

d’y(t) d’y(t) dy(t) P
+2 + +2y(t)=—e"u(t
dt’ dt’ dt H)==e ()
d’y dy
0)=-1 0)=1y(0)=0
© dtl( ) dt( )=1y(0)
3-18. Use MATLAB to find the Laplace transform of the functions in

Prob. 3-17.
3-19. Use MATLARB to solve the following differential equation:

d2y

ottt

(Assuming zero initial conditions.)

3-20. A series of a three-reactor tank is arranged as shown in Fig. 3P-20
for chemical reaction.

CAI
pE——— CAZ CA3
v l l —»
: 4
Er
=
1 Reactor 3
Reactor 2
—
Reactor 1

Figure 3P-20

The state equation for each reactor is defined as follows:



dC 1

R1: '—di& = -{1000+100C,, ~1100C,, ~kV,C, )
1
dC 1
e V. 1 -
dC 1
R3: 7’” =-1000C,;, ~1000C,; ~k,V,C,]

3

when V and k represent the volume and the temperature constant of each
tank as shown in the following table:

Reactor v k

1 1,000 0.1
2 1,500 0.2
3 100 0.4

Use MATLAB to solve the differential equations assuming C, =C,_=C, =
Oatt=0.

PROBLEMS FOR SEC. 3-5

3-21. Figure 3P-21 shows a simple model of a vehicle suspension system
hitting a bump. If the mass of wheel and its mass moment of inertia are m and
J, respectively, then

(@) Find the equation of the motion.

(b) Determine the transfer function of the system.

(c) Calculate its natural frequency.

(d) Use MATLAB to plot the step response of the system.




Figure 3P-21

3-22. An electromechanical system has the following system equations.

di
L—+RI+ K, w=e(t
5 . (1)

dw
—+Bw—K.,i=0
]ﬁ ?

For a unit-step applied voltage e(t) and zero initial conditions, find
responses i(t) and w(t). Assume the following parameter values:

L=1Hm]=kg m*, B=2Nms, R=1Q, K, =1V s, K, =1 N m/A.

3-23. Consider the two-degree-of-freedom mechanical system shown in
Fig. 3P-23, subjected to two applied forces, f(t) and f(t), and zero initial
conditions. Determine system responses x (t) and x,(t) when

(@ £(O=0,10=u,0)
(b) 1. =u(®), f() = u,(0.
Use the following parameter values:
m,=m,=1kg, b =2Ns/m, b,=1Ns/m, k, =k, =1N/m .
x,(f) xy(f)

kl kZ
—— T — SITh
5@

fo(0)

iy my
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Figure 3P-23
PROBLEMS FOR SECs. 3-6 AND 3-7

3-24. Express the following set of first-order differential equations in the

v



dx(t)

= Ax(f)+ Bu(f)
vector-matrix form of dt (®) ()

%:—xl(l‘)+2x2(t)
d_’zt(ﬁ:_zxz(r)+3x3(t)+ul(t)
dx,(t) _ _

(a) 7_ xl(t) 3x2(t) x3(t)+u2(t)
w:—xl(t)+2xz(t)+2ul(t)
dt
%:le(r)—xa(r)w(ﬂ
dx,(t) B _

o =3x, (1) —4x, (1) — x, ()

3-25. Given the state equation of the system, convert it to the set of first-
order differential equation.

0 -1 2 0 -1

A= 1 0 1 B=| 1 0

(a) -1 =2 1 0 0
3 1 -2 -1
A= -1 2 2 |B= 0
(b) 00 1 2

3-26. Consider a train consisting of an engine and a car, as shown in Fig.
3P-26.

o AT TR

VSO e O8O

1"1;10 0

Figure 3P-26



A controller is applied to the train so that it has a smooth start and stop,
along with a constant-speed ride. The mass of the engine and the car are M
and m, respectively. The two are held together by a spring with the stiffness
coefficient of K. F represents the force applied by the engine, and p
represents the coefficient of rolling friction. If the train only travels in one
direction:

(@) Draw the free-body diagram.

(b) Find the state variables and output equations.

(c) Find the transfer function.

(d) Write the state space of the system.

3-27. A vehicle towing a trailer through a spring-damper coupling hitch is
shown in Fig. 3P-27. The following parameters and variables are defined: M
is the mass of the trailer; K, the spring constant of the hitch; B, the viscous-
damping coefficient of the hitch; B, the viscous-friction coefficient of the
trailer; y (t), the displacement of the towing vehicle; y (t), the displacement of
the trailer; and f(¢), the force of the towing vehicle.

fir), yy(1) Va(t)

4_| K, <—|
A I:I TRAILER

® OO

Figure 3P-27

(a) Write the differential equation of the system.

(b) Write the state equations by defining the following state variables:
Xl(t) = y](t) _.yz(t) and Xz(t) = dy2(t)dt'

3-28. Figure 3P-28 shows a well-known “ball and beam” system in
control systems. A ball is located on a beam to roll along the length of the
beam. A lever arm is attached to the one end of the beam and a servo gear is
attached to the other end of the lever arm. As the servo gear turns by an angle
0, the lever arm goes up and down, and then the angle of the beam is changed



by a. The change in angle causes the ball to roll along the beam. A controller
is desired to manipulate the ball’s position.

P
Beam g
ol

L

Lever Arm

f

Gear

Figure 3P-28

Assuming:
m = mass of the ball
r = radius of the ball
d = lever arm offset
¢ = gravitational acceleration
L =length of the beam
J = ball’s moment of inertia
p =ball position coordinate
o= beam angle coordinate
0 = servo gear angle
(@) Determine the dynamic equation of the motion.
(b) Find the transfer function.

(c) Write the state space of the system.
(d) Find the step response of the system by using MATLAB.

3-29. Find the transfer function and state-space variables in Prob. 2-12.



3-30. Find the transfer function Y(s)/T (s) in Prob. 2-16.

3-31. The schematic diagram of a motor-load system is shown in Fig. 3P-
31. The following parameters and variables are defined: T (t) is the motor

torque; w (t), the motor velocity; 0 (t), the motor displacement; w (t), the load
velocity; 0 (¢), the load displacement; K, the torsional spring constant; J , the
motor inertia; B , the motor viscous-friction coefficient; and B, the load
viscous-friction coefficient.

(@) Write the torque equations of the system.

(b) Find the transfer functions © (s)/T (s) and ® (s)/T (s).

(c) Find the characteristic equation of the system.

(d) LetT (t) =T, be a constant applied torque; show that w = w, =
constant in the steady state. Find the steady-state speeds w_and w.,.

(e) Repeat part (d) when the value of J is doubled, but J stays the same.

0,,.(1) K 0,(1)
MOTOR LOAD
- Flexible -
‘f.';r Bm Tm(f) shaft O‘)L(r) J’r
©,, (1) By

Figure 3P-31

3-32. In Prob. 2-20,
(@) Assume that T is a constant torque. Find the transfer function ®(s)/

A(s), where ©(s) and A(s) are the Laplace transforms of 8(t) and { (¢),
respectively. Assume that ¢ (t) is very small.

(b) Repeat part (a) with points C and P interchanged. The d, in the
expression of a, should be changed to d..

3-33. In Prob. 2-21,

(@) Express the equations obtained in earlier as state equations by
assigning the state variables as x, = 0, x, = d0/dt,x, = x and x, = dx/dt. Simplify
these equations for small 8 by making the approximations sin 6 = 6 and cosf
= 1.



(b) Obtain a small-signal linearized state-equation model for the system
in the form of

dAx(t)

ar = A Ax(t)+ B Ar(t)

at the equilibrium point X0, (f) =1,%,,(£) = 0,x,,(f) =0, and x,, (1) = 0.

3-34. Vibration absorbers are used to protect machines that work at the
constant speed from steady-state harmonic disturbance. Figure 3P-34 shows a
simple vibration absorber.

f0)

{ v(1)
Iﬂbq’

I’\,
K x(1) K

n i

Figure 3P-34

Assuming the harmonic force F(t) = Asin(wt) is the disturbance applied to
the mass M:

(@) Derive the state space of the system.
(b) Determine the transfer function of the system.

3-35. Figure 3P-35 represents a damping in the vibration absorption.

Assuming the harmonic force F(t) = Asin(wt) is the disturbance
applied to the mass M:

(@) Derive the state space of the system.
(b) Determine the transfer function of the system.



F(r) y()

Figure 3P-35

3-36. Consider the electrical circuits shown in Fig. 3P-36a and b.

Cr2 Cr2

|| ||

[l I
O MW VA O
+ 2R 2R 2t
Vm C == % R Vout
O < O

(a)

r Iy ' R
O—MWA—TI 0 AL VAN ®)
+ _— +
V’m i(t) T C‘I T CZ Vout
O O

(b)

Figure 3P-36

For each circuit:
(@) Find the dynamic equations and state variables.



(b) Determine the transfer function.
(c) Use MATALRB to plot the step response of the system.

3-37. The following differential equations represent linear time-invariant
systems. Write the dynamic equations (state equations and output equations)
in vector-matrix form.

(@) =50

o d;)ligt) 13 d; );Et) 5 d;;(tt) 29(0) =r(8)

o d;)ligr) +5 d;;gt) + 3%;(:) +y(0)+ [ y(@)dr =r(7)
) d;}gt) +1.5 d;}; St) P 2.5% (1) =20(t)

3-38. The following transfer functions show linear time-invariant
systems. Write the dynamic equations (state equations and output equations)
in vector-matrix form.

G(s):fi
(a) s +3s+2

6
G(s)=
(b) (<) s°+6s°+11s+6

+2
G(s):zs—

(c) s“+7s+12
G(s)= s* +11s” + 355+ 250

(d) s'(s” +4s” +395+108)

3-39. Repeat Prob. 3-38 by using MATLAB.

3-40. Find the time response of the following systems:

x|l o 1] = 0

%, | | -2 —3”x]+{1}“
(a) 2 | : 2

A1 —0.5”% ]j{ 0.5 }t}c[l 0]{% ]
(b) Xy 1 0 X 0 X5




4-41. Given a system described by the dynamic equations:

dx(t)
dt

= Ax(f)+ Bu(t) y(t)=Cx(t)

0
A= 0 o 1 [ B={o|C=[10 0]
@ 1 -2 -3 1

b L

(©) )y =l —2

(1) Find the eigenvalues of A.

(2) Find the transfer-function relation between X(s) and U(s).
(3) Find the transfer function Y(s)/U(s).

3-42. Given the dynamic equations of a time-invariant system:

d’;(;) _ Ax()+Bu(t) y(t)=Cx(t)
where
0 1 0 0
A=l 0 0 1 |B=[o|C=[11 0]
] =3 -3 1

Find the matrices A, and B, so that the state equations are written as

dx(t)
dt

= A,X(t)+B,u(t)

where



x] (t)
y(1)

api)
dt

X(l)=

3-43. Figure 3P-43a shows a well-known “broom-balancing” system in
control systems. The objective of the control system is to maintain the broom
in the upright position by means of the force u(t) applied to the car as shown.
In practical applications, the system is analogous to a one-dimensional
control problem of the balancing of a unicycle or a missile immediately after
launching. The free-body diagram of the system is shown in Fig. 3P-43b,
where

— u(l)
— x(1)

() (o)

(a)

Figure 3P-43



.= force at broom base in horizontal direction
f, = force at broom base in vertical direction
M, = mass of broom
g = gravitational acceleration
M_= mass of car

J, = moment of inertia of broom about center of gravity CG = M,L /3

(@) Write the force equations in the x and the y directions at the pivot
point of the broom. Write the torque equation about the center of gravity CG
of the broom. Write the force equation of the car in the horizontal direction.

(b) Express the equations obtained in part (a) as state equations by
assigning the state variables as x, = 0, x, = d0/dt,x, = x and x, = dx/dt. Simplify
these equations for small 6 by making the approximations 6 = 0 and cosf = 1.

(c) Obtain a small-signal linearized state-equation model for the system in
the form of

dAx(t)
dt

= A* Ax(t)+ B* Ar(t)

at the equilibrium point x_ (¢) = 1,x (t) = 0,x,(t) = 0, and x,(t) = 0.

3-44. The “broom-balancing” control system described in Prob. 3-43 has
the following parameters:

M,=1kg M_=10kg L=1m g=2322ft/s’
The small-signal linearized state equation model of the system is

Ax(t)= A* Ax(t)+ B* Ar(t)

where
0 1.0 0 | 0]
aio| 2592 0 0 0 | o | 00732
0 0 0 1 0
236 0 0 0 0.0976




Find the characteristic equation of A* and its roots.

3-45. Figure 3P-45 shows the schematic diagram of a ball-suspension
control system. The steel ball is suspended in the air by the electromagnetic
force generated by the electromagnet. The objective of the control is to keep
the metal ball suspended at the nominal equilibrium position by controlling
the current in the magnet with the voltage e(t). The practical application of
this system is the magnetic levitation of trains or magnetic bearings in high-
precision control systems. The resistance of the coil is R, and the inductance
is L(y) = L/y(t), where L is a constant. The applied voltage e(t) is a constant
with amplitude E.

(a) Let E, be a nominal value of E. Find the nominal values of y(t) and
dy(t)/dt at equilibrium.
(b) Define the state variables at x (t) = i(t),x,(t) = y(t), and x(t) = dy(t)/dt.
dx(t) _f(x.0)
Find the nonlinear state equations in the form of dt
(c) Linearize the state equations about the equilibrium point and express
the linearized state equations as

dAx(t)
dt

= A* Ax(t)+ B* Ae(t)

The force generated by the electromagnet is Ki*(t)/y(t), where K is a
proportional constant, and the gravitational force on the steel ball is Mg.
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Figure 3P-45

3-46. The linearized state equations of the ball-suspension control system

described in Prob. 3-45 are expressed as

where

Let the control current Ai(t) be derived from the state feedback Ai(t) =

-KAx(t), where

+j,—-1—-j,—-10, and

(b) Plot the responses of Ax (t) = Ay (t) (magnet displacement) and Ax (t)

0
115.2
0
—3 72

—-10.

1
—0.05
0
0

0
—-18.6
0
37.2

e(r)

0

0

1
—-0.1

K:[ k k kK, }
(@) Find the elements of K so that the eigenvalues of A* — B*K are at —1

Ax(t) = A* Ax(t) + B* Ai(t)

= Ay (t) (ball displacement) with the initial condition

0
=5.55
0

| —6.55 |



Ax(0) =

(c) Repeat part (b) with the initial condition
P g ]
0
0.1
0

Ax(0) =

Comment on the responses of the closed-loop system with the two sets of
initial conditions used in (b) and (c).

‘Strictly speaking, the one-sided Laplace transform should be defined from t = 0" to t = c. The
symbol t = 0~ implies the limit of t — 0 is taken from the left side of t = 0. For simplicity, we shall use t
=0ort=t,(=0) as the initial time in all subsequent discussions. A Laplace transform table is given in
App. C.

*The transfer function in Eq. (3-20) is said to be strictly proper if the order of the denominator
polynomial is greater than that of the numerator polynomial (i.e., n > m). If n = m, the transfer function
is called proper. The transfer function is improper if m > n.

“The definition of a pole can be stated as: If a function G(s) is analytic and single-valued in the

lim[(s—p,) G(s)]

neighborhood of point p,, it is said to have a pole of order r at s = p, if the limit s—7; has
a finite, nonzero value. In other words, the denominator of G(s) must include the factor (s — p,)’, so
when s = p, the function becomes infinite. If r =1, the pole at s = p, is called a simple pole.

“The definition of a zero of a function can be stated as: If the function G(s) is analytic at s = Z, it is

lim[(s—z,)"G(s)]

said to have a zero of order r at s = Z, if the limit s—% has a finite, nonzero value. Or,
simply, G(s) has a zero of order r at s = Z_ if 1/G(s) has an rth-order pole ats = Z..



CHAPTER 4



Block Diagrams and Signal-Flow
Graphs

In Chap. 2, we studied the modeling of basic dynamic systems, and later in
Chap. 3 we utilized transfer function and state space methods to convert these
models from differential equation representation into formats more suitable
for control system analysis. In this chapter, we introduce block diagrams as
graphical alternatives for modeling control systems and their underlying
mathematics. Block diagrams are popular in the study of control systems
because they provide better understanding of the composition and
interconnection of the components of a dynamic system. A signal-flow graph
(SFG) may also be used as an alternative graphical representation of a control
system model. SFGs may be regarded as an alternative representation of a
block diagram.

Learning Outcomes

After successful completion of this chapter, you will be able to
1. Utilize block diagrams, its components, and their underlying
mathematics to obtain transfer function of a control system.
2. Establish a parallel between block diagrams and signal-flow graphs.
3. Utilize signal-flow graphs and Mason’s gain formula to find transfer
function of a control system.
4. Obtain the state diagrams, an extension of the SFG to portray state
equations and differential equations.

In this chapter, we utilize the block diagrams and SFGs and the Mason’s
gain formula to find the transfer function of the overall control system.
Through case studies at the end of the chapter, we apply these techniques to
the modeling of various dynamic systems that we already studied in Chaps. 2



and 3.

4-1 BLOCK DIAGRAMS

Block diagram modeling together with transfer function models describe
the cause-and-effect (input-output) relationships throughout the system. For
example, consider a simplified block diagram representation of the heating
system in your lecture room, shown in Fig. 4-1, where by setting a desired
temperature, also defined as the input, one can set off the furnace to provide
heat to the room. The process is relatively straightforward. The actual room
temperature is also known as the output and is measured by a sensor within
the thermostat. A simple electronic circuit within the thermostat compares the
actual room temperature to the desired room temperature (comparator). If
the room temperature is below the desired temperature, an error voltage will
be generated. The error voltage acts as a switch to open the gas valve and
turn on the furnace (or the actuator). Opening the windows and the door in
the classroom would cause heat loss and, naturally, would disturb the heating
process (disturbance). The room temperature is constantly monitored by the
output sensor. The process of sensing the output and comparing it with the
input to establish an error signal is known as feedback. Note that the error
voltage here causes the furnace to turn on, and the furnace would finally shut
off when the error reaches zero.

Block diagrams provide better understanding of the composition and
interconnection of the components of a dynamic system.

Heat Loss

Desired Room Actual Room

Temperature + Temperature
Thermostat Error Gas Valve Furnace Room 3

h 4

Voltage

I Feedback

Figure 4-1 A simplified block diagram representation of a heating



system.

The block diagram in this case simply shows how the system components
are interconnected, and no mathematical details are given. If the
mathematical and functional relationships of all the system elements are
known, the block diagram can be used as a tool for the analytic or computer
solution of the system.

In general, block diagrams can be used to model linear as well as nonlinear
systems. For nonlinear systems, the block diagram variables are in time
domain, and for linear systems, the Laplace transform variables are used.

So in this case, assuming linear models for all system components, the
system dynamics can be represented, in the Laplace domain, by a transfer
function

Ti(s)
To(s)

(4-1)

where Ti(s) is the Laplace representation of the Desired Room
Temperature and To(s) is the Actual Room Temperature, as shown in Fig. 4-
1.

Alternatively, we can use signal flow graphs or state diagrams to provide a
graphical representation of a control system. These topics are discussed later
in this chapter.

4-1-1 Modeling of Typical Elements of Block Diagrams in
Control Systems

The common elements in block diagrams of most control systems include

* Comparators

 Blocks representing individual component transfer functions,
including

* Reference sensor (or input sensor)

* QOutput sensor

* Actuator

 Controller

+ Plant (the component whose variables are to be controlled)



* Input or reference signals
* Output signals

* Disturbance signal

* Feedback loops

Figure 4-2 shows one configuration where these elements are
interconnected. You may wish to compare Figs. 4-1 and 4-2 to find the
control terminology for each system. As a rule, each block represents an
element in the control system, and each element can be modeled by one or
more equation. These equations are normally in the Laplace domain (because
of ease in manipulation using transfer functions), but the time representation
may also be used. Once the block diagram of a system is fully constructed,
one can study individual components or the overall system behavior. The key
components of a block diagram are discussed next.

Disturbance

Input
npu Reference

+ Output
L
Sensor

Controller —»{ Actuator Plant

Output
Sensor

Figure 4-2 Block diagram representation of a general control system.

Comparators

One of the important components of a control system is the sensing and the
electronic device that acts as a junction point for signal comparisons—
otherwise known as a comparator. In general, these devices possess sensors
and perform simple mathematical operations such as addition and subtraction
(such as the thermostat in Fig. 4-1). Three examples of comparators are
illustrated in Fig. 4-3. Note that the addition and subtraction operations in
Fig. 4-3a and b are linear, so the input and output variables of these block
diagram elements can be time-domain variables or Laplace-transform
variables. Thus, in Fig. 4-3a, the block diagram implies



r(7) e(f)=r(t)-y(1) r(1) e(t) = r(t) + y(t)
— — }—
R(s) + E(s) = R(s) - Y(s) R(s) + E(s) = R(s) + Y(s)
- +

(1) | Y(s) y(0) | Y(s)

(a) (b)

A comparator
performs addition
and subtraction

y(1) | ¥(s)

(c)

Figure 4-3 Block diagram elements of typical sensing devices of control
systems. (a) Subtraction. (b) Addition. (c) Addition and subtraction.

e(t)=r(t)— y(t) (4-2)
or
E(s)=R(s)-Y(s) (4-3)

Blocks

As mentioned earlier, blocks represent the equations of the system in time
domain or the transfer function of the system in the Laplace domain, as
demonstrated in Fig. 4-4.



i (1) x (D) Time
I 3 —» /
8, u) domain
U (s) X (s) Lapl
. Laplace
EEE— > .
Cait) domain

Figure 4-4 Time and Laplace domain block diagrams.

In Laplace domain, the following input-output relationship can be written
for the system in Fig. 4-4:

E(s)=R(s)-Y(s) (4-3)

If signal X(s) is the output and signal U(s) denotes the input, the transfer
function of the block in Fig. 4-4 is

X(s)

T

(4-5)

Typical block elements that appear in the block diagram representation of
most control systems include plant, controller, actuator, and sensor.

EXAMPLE 4-1-1 Consider the block diagram of a cascade system with
transfer functions G1(s) and G2(s) that are connected
in series, as shown in Fig. 4-5. The transfer function
G(s) of the overall system can be obtained by
combining individual block equations. Hence, for
variables A(s) and X(s), we have

U (s) A (s) X (s)
—P G 1 (s) ——P GQ (s) —p>

Figure 4-5 Block diagrams G1(s) and G2(s) connected in series—a
cascade system.



X(s)= A(5)G,(s)
A(s)=U(s)G, ()
X(5) =G, (5)G, (s)
X(s)

G(s)= 0Gs)

G(s)=G,(s)G,(s) (4-6)

Using Eg. (4-6), the system in Fig. 4-5 can be
represented by the system in Fig. 4-4.

EXAMPLE 4-1-2 Consider a more complicated system of two transfer
functions G (s) and G (s) that are connected in parallel,
as shown in Fig. 4-6. The transfer function G(s) of the
overall system can be obtained by combining
individual block equations. Note for the two blocks,

G (s) and G(s), A(s) act as the input, and A(s) and
A/(s) are the outputs, respectively. Further, note that
signal U(s) goes through a branch point P and is
renamed as A (s). Hence, for the overall system, we
combine the equations as follows:



A] (s) AQ (s)
P G1 (s5)
U (s) p
L G0
A, () A3 (s)

Figure 4-6 Block diagrams G (s) and G (s) connected in parallel.

A(s)=U(s)

A (s)=A,(s)G,(s)

A, (s)=A,(s)G,(s)

X(s)=A,(s)+A,(s)

X(s)=U(s)(G,(s)+G,(s))
X(s)

UG

G(s)

Or,
G(s)=G,(s)+G,(s) (4-7)

Using Eq. (4-7), the system in Fig. 4-6 can be
represented by the system in Fig. 4-4.

Feedback

For a system to be classified as a feedback control system, it is necessary
that the controlled variable be fed back and compared with the reference
input. After the comparison, an error signal is generated, which is used to
actuate the control system. As a result, the actuator is activated in the
presence of the error to minimize or eliminate that very error. A necessary
component of every feedback control system is an output sensor, which is
used to convert the output signal to a quantity that has the same units as the
reference input. A feedback control system is also known a closed-loop
system. A system may have multiple feedback loops. Figure 4-7 shows the
block diagram of a linear feedback control system with a single-feedback



loop. The following terminology is defined with reference to the diagram:

R(s) Uls) Y(s)
G(s) >

(1)

H(s) |¢—

B(s)

Figure 4-7 Block diagram of a basic negative feedback control system.

r(t), R(s) = reference input (command)
(1), Y(s) = output (controlled variable)
b(t), B(s) = feedback signal
u(f), Uls) = actuating signal, also known as error signal e(t), E(s) when H(s) =
But in most textbooks E(s) is used regardless of value of the feedback
transfer function
H(s) = feedback transfer function
G(s)H(s) = L(s) = loop transfer function
G(s) = forward-path transfer function
M(s) = Y(s)/R(s) = closed-loop transfer function or system transfer function

The closed-loop transfer function M(s) can be expressed as a function of
G(s) and H(s). From Fig. 4-7, we write

Y(s)=G(s)U(s) (4-8)
and
B(s)=H(s)Y(s) (4-9)

The actuating signal is written as



Substituting Eq. (4-10) into Eq. (4-8) yields
Y(s)=G(s)R(s)—G(s)H(s)Y (s) (4-11)

Substituting Eq. (4-9) into Eq. (4-7) and then solving for Y(s)/R(s) gives
the closed-loop transfer function

Y (s) G(s)

M(s)= =
R(s) 1+G(s)H(s)

(4-12)

The feedback system in Fig. 4-7 is said to have a negative feedback loop
because the comparator subtracts. When the comparator adds the feedback,
it is called positive feedback, and the transfer function Eq. (4-12) becomes

_ Y(s) G(s)

M(s) =
R(s) 1-G(s)H(s)

(4-13)

If G and H are constants, they are also called gains. If H = 1 in Fig. 4-7,
the system is said to have a unity feedback loop, and if H = 0, the system is
said to be open loop.

4-1-2 Relation between Mathematical Equations and Block
Diagrams

Consider the second-order prototype system that we have studied in Chaps.
2 and 3:

¥(t)+20w, x(t)+ 0’ x(t) = u(t) (4-14)

which has Laplace representation (assuming zero initial conditions

x(0)=x(0)=0):

X(s)s*+28w, X(s)s+w: X(s)=w?U(s) (4-15)

Equation (4-15) consists of constant damping ratio ¢, constant natural
frequency w, input U(s), and output X(s). If we rearrange Eq. (4-15) to

0. U(s)—2lw, X(s)s— > X(s)= X(s)s (4-16)



it can graphically be shown as in Fig. 4-8.

®,2U(s) + s2 X(s)

20w, *X(s)

,2X(s)

Figure 4-8 Graphical representation of Eg. (4-16) using a comparator.

2
The signals 200,5X(s) ang @, X(s) may be conceived as the signal X(s)
2
going into blocks with transfer functions 2w s and @», respectively, and the
signal X(s) may be obtained by integrating s* X(s) twice or by postmultiplying
by 1/s2, as shown in Fig. 4-9.

®,2U(s) 52 X(s) X(s)
+ Lz N\ "
-

2Lw,s Ll

20w, sX(s)
X

oL (s)

®,2X(s)

2
Figure 4-9 Addition of blocks 1/s,, 2w s, and @ to the graphical
representation of Eg. (4-16).

Because the signals X(s) in the right-hand side of Fig. 4-9 are the same,
they can be connected, leading to the block diagram representation of the
system Eq. (4-16), as shown in Fig. 4-10. If you wish, you can further dissect
the block diagram in Fig. 4-10 by factoring out the term 1/s as in Fig. 4-11a
to obtain Fig. 4-11b.



Uls) + 1 X(s)
—Pp ' g

Figure 4-10 Block diagram representation of Eg. (4-16) in Laplace

domain.
—[ T
20w, l—— 5 |e—
(a)
Uls) i A(s) 1 V(s) 1 X(s)
—> 0, e < rs >
20w, |le—
o, [
(b)

Figure 4-11 (a) Factorization of 1/s term in the internal feedback loop of
Fig. 4-10. (b) Final block diagram representation of Eq. (4-16) in Laplace
domain.



From Chap. 2, we know that the second-order prototype system in Eq. (4-
14) can represent various dynamic systems. If the system studied here, for
example, corresponds to the spring-mass-damper seen in Fig. 2-2; then
internal variables A(s) and V(s) representing acceleration and velocity of the
system, respectively, may also be incorporated in the block diagram model.
The best way to see this is by recalling that 1/s is equivalent of integration in
Laplace domain. Hence, if A(s) is integrated once, we get V(s), and after
integrating V(s), we get the X(s) signal, as shown in Fig. 4-11b.

It is evident that there is no unique way of representing a system model
with block diagrams. We may use different block diagram forms for different
purposes. As long as the overall transfer function of the system is not altered.
For example, to obtain the transfer function V(s)/U(s), we may yet rearrange
Fig. 4-11 to get V(s) as the system output, as shown in Fig. 4-12. This enables
us to determine the behavior of velocity signal with input U(s).

Uls) : + 1 X(s)
— ¥ o, e »
20w,s |e—

Figure 4-12 Block diagram of Eg. (4-16) in Laplace domain with V(s)
represented as the output.

EXAMPLE 4-1-3 Find the transfer function of the system in Fig. 4-11b and
compare that to Eq. (4-15).

2
SOLUTION The @, block at the input and feedback
signals in Fig. 4-11b may be moved to the right-hand side
of the comparator, as shown in Fig. 4-13a. This is the

2
same as factorization of @» as shown below:



Uis) + A](.S)
— >

X(s)
(a)

Vi(s) B X(s) -

(b)

2
Figure 4-13 (a) Factorization of @x. (b) Alternative block diagram
representation of Eq. (4-16) in Laplace domain.

©0>U(s)— 0> X(s)=w>(U(s)— X(s)) (4-17)

The factorization operation on Eq. (4-16) results in a
simpler block diagram representation of the system
shown in Fig. 4-13b. Note that Figs. 4-11b and 4-13b are
equivalent systems. Considering Fig. 4-11b, it is easy to
identify the internal feedback loop, which in turn can be
simplified using Eq. (4-12), or

1

Vi) _ s 1 (4-18)
A (s) 1+2§a)ﬁ s+2¢w,
s

After pre- and postmultiplication by wi and 1/s,
respectively, the block diagram of the system is
simplified to what is shown in Fig. 4-14, which
ultimately results in



Uls) + ®,’ 1 X(s)
" 51200, 4 »

a)z

n

Figure 4-14 A block diagram representation of s +200,5+ 0,

2

a)n
X(s): s(s+2lw,) _ o’ (4-19)
ues) o, o] ss+2lw s+’

s(s+2fm,)

Equation (4-19) is the transfer function of system Eq.

(4-15).

EXAMPLE 4-1-4 Find the velocity transfer function using Fig. 4-12 and
compare that to the derivative of Eqg. (4-19).

SOLUTION Simplification of the two feedback
loops in Fig. 4-12, starting with the internal loop first, we

have
1
S 2
1+2§w” .
V(S) s
U(s) 1
1+—3 W,
2
1+ 5o, s
)
Vi(s) a)js (4-20)

UGs) s°+2lw s+’

Equation (4-20) is the same as the derivative of Eq. (4-



19), which is nothing but multiplying Eqg. (4-19) by an s
term. Try to find the A(s)/U(s) transfer function.
Obviously you must get s°X(s)/U(s).

4-1-3 Block Diagram Reduction

As you might have noticed from the examples in the previous section, the
transfer function of a control system may be obtained by manipulation of its
block diagram and by its ultimate reduction into one block. For complicated
block diagrams, it is often necessary to move a comparator or a branch
point to make the block diagram reduction process simpler. The two key
operations in this case are

1. Moving a branch point from P to Q, as shown in Figs. 4-15a and
b. This operation must be done such that the signals Y(s) and B(s) are
unaltered. In Fig. 4-15a, we have the following relations:

(a) P
A(s) ———» Gyls) » Y(s)

B(s) «— H(s) [«

(b)

A(s)

h 4

Gy(s) —» Y(s)

HL(S)

B(s) €4— G5

Figure 4-15 (a) Branch point relocation from point P to (b) point Q.

Y(s)=A(s)G,(s)

(4-21)
B(s)=Y(s)H(s)

In Fig. 4-15b, we have the following relations:



Y(s)=A(s)G,(s)

B H,(s) (4-22)
B(s)=A(s) G.09
But
_A(s)
G,(s)= Y6 (4-23)

2. Moving a comparator, as shown in Figs. 4-16a and b, should also
be done such that the output Y(s) is unaltered. In Fig. 4-16a, we have the
following relations:

(a) i3
A(s) ———————p G,(s) » Y(s)
+
B(s) H,(s)
(b) + Yi(s)
A(s) Gy(5) —»Y(s)
+
H,(s)
B(S) = m

Figure 4-16 (a) Comparator relocation from the right-hand side of block
G (s) to (b) the left-hand side of block G (s).

Y(s)=A(s)G,(s)+ B(s)H,(s) (4-24)

In Fig. 4-16b, we have the following relations:



H,(s)

Y, (s)=A(s)+ B(s)

G, (s) (4-25)
Y(s)=Y,(s)G,(s)
So
H,(s)
Y(s)= A(s)G,(s)+ B(s) G.() G,(s) (4-26)

= Y(s)=A(s)G,(s)+B(s)H,(s)

EXAMPLE 4-1-5 Find the input-output transfer function of the system
shown in Fig. 4-17a.



+
Y, Y, + Y
' 4 G2 G3 "—’
=
(a)
+
Y. ) & +
2 > Gy I G, Y
(b)
Y.
T » G,G3+G,y L
(c)
R E Gl Y’,I Y
> 1+G| G2H| P GQGa+G4 L

(d)



Figure 4-17 (a) Original block diagram. (b) Moving the branch point at
Y, to the left of block G,. (c) Combining the blocks G, G, and G.. (d)
Eliminating the inner feedback loop.

SOLUTION To perform the block diagram
reduction, one approach is to move the branch point at Y,
to the left of block G, as shown in Fig. 4-17b. After that,
the reduction becomes trivial, first by combining the
blocks G, G, and G, as shown in Fig. 4-17¢, and then by
eliminating the two feedback loops. As a result, the
transfer function of the final system after the reduction in
Fig. 4-17d becomes

Y(s) GGG, +G6,

E(s) 1+G,G,H,+G,G,G,+G,G,

(4-27)

4-1-4 Block Diagrams of Multi-Input Systems: Special Case
—Systems with a Disturbance

An important case in the study of control systems is when a disturbance
signal is present. Disturbance (such as heat loss in the example in Fig. 4-1)
usually adversely affects the performance of the control system by placing a
burden on the controller/actuator components. A simple block diagram with
two inputs is shown in Fig. 4-18. In this case, one of the inputs, D(s), is
known as disturbance, while R(s) is the input. Before designing a proper
controller for the system, it is always important to learn the effects of D(s) on
the system.



D(s)

Controller _ Plant

R(s) E(s) Y(s)
R (s G, G, (5>

Qutput Sensor

Hl g

Figure 4-18 Block diagram of a system undergoing disturbance.

We use the method of superposition in modeling a multi-input system.

Super Position

For linear systems, the overall response of the system under multi-inputs is
the summation of the responses due to the individual inputs, that is, in this
case,

Yo=Y, |D:0 +Y, |R:0 (4-28)

to

When D(s) = 0, the block diagram is simplified (Fig. 4-19) to give the
transfer function:

R Y(s
(s) ( ) G, G, (s )»
+

H ¢——"-

Figure 4-19 Block diagram of the system in Fig. 4-18, when D(s) = 0.

Y(s)  G(5)G,(s)
R(s) 1+G(s)G,(s)H,(s)

(4-29)

When R(s) = 0, the block diagram is rearranged to give (Fig. 4-20):



D(s)

Y s
+

D(s) — Y(s)

GH, le—

(b)
Figure 4-20 Block diagram of the system in Fig. 4-18, when R(s) = 0.
Y(s) —G,(s)

- (4-30)
D(s) 1+G,(s)G,(s)H,(s)
As a result, from Eq. (4-28) to Eq. (4-32), we ultimately get
=291 R+ 2 p)
= R(s) D(s)
D=0 R=0 (4_31)
GG -G
Y(s)=——2—R(s)+——=—D(s)
1+G,G,H, 1+G,G,H,
Observations

Fl -0 ana b1
Rlp=0 and P lr=0 have the same denominators if the disturbance signal goes



"
to the forward path. The negative sign in the numerator of P |r=0 shows that
the disturbance signal interferes with the controller signal, and, as a result, it
adversely affects the performance of the system. Naturally, to compensate,
there will be a higher burden on the controller.

4-1-5 Block Diagrams and Transfer Functions of
Multivariable Systems

In this section, we illustrate the block diagram and matrix representations
(see App. A) of multivariable systems. Two block diagram representations of
a multivariable system with p inputs and g outputs are shown in Figs. 4-21a
and b. In Fig. 4-21a, the individual input and output signals are designated,
whereas in the block diagram of Fig. 4-21b, the multiplicity of the inputs and
outputs is denoted by vectors. The case of Fig. 4-21b is preferable in practice
because of its simplicity.

() ——» ——» (0
r(t) ————» —>» W)
MULTIVARIABLE
- SYSTEM :

r(t) ——» — 3,0

(a)

r() —— | MULTIVARIABLE -
SYSTEM

(b)
Figure 4-21 Block diagram representations of a multivariable system.

Figure 4-22 shows the block diagram of a multivariable feedback control



system. The transfer function relationships of the system are expressed in
vector-matrix form (see App. A):

G(s) Y o

H(s) &

Figure 4-22 Block diagram of a multivariable feedback control system.

Y(s) =G(s)U(s) (4-32)
U(s)=R(s)—B(s) (4-33)
B(s)=H (s)Y(s) (4-34)

where Y(s) is the g x 1 output vector; U(s), R(s), and B(s) are all p x 1
vectors; and G(s) and H(s) are g X p and p x g transfer-function matrices,

respectively. Substituting Eq. (4-11) into Eq. (4-10) and then from Eq. (4-10)
to Eq. (4-9), we get

Y(s)=G(s)R(s)—G(s)H (s)Y(s) (4-35)
Solving for Y(s) from Eq. (4-12) gives
Y(s)=[I+G(s)H(s)]'G(s)R(s) (4-36)

provided that I + G(s)H (s) is nonsingular. The closed-loop transfer matrix
is defined as

M(s)=[I+G(s)H(s)] ' G(s) (4-37)
Then Eq. (4-14) is written as
Y(s)=M(s)R(s) (4-38)

EXAMPLE 4-1-6 Consider that the forward-path transfer function matrix
and the feedback-path transfer function matrix of the



G(s)

I+G(s)H (s)=

M(S)Z[I+G(S)H(s)]“1G(s):%

M(s)=

system shown in Fig. 4-22 are

_ 1 1 _
s+1 s H(s):{
2 _
i s+2 |

(4-39)

1 0
0 1

respectively. The closed-loop transfer function matrix
of the system is given by Eq. (4-15), and is evaluated as

follows:
| 1 1 | [ s+2 1 ]
Tfr—r—s o LR
541 s | a4 s (4-40)
1 s+3
2 1+—— 2 e
I s+2 1L s+2 |
The closed-loop transfer function matrix is
sz 1 || 1 1]
s+2 S s+1 s (4-41)
s+2
A — 5 S
i s+1 1L s+2 |
where
+254+3 2 s +55+2
A — _S —S —= —S s (4'42)
s+1s+2 s s(s+1)
Thus,
3s°+9s+4 1
s(s+1) s(s+1)(s+2) s (4-43)
s?+5s+2 5 3542
s(s+1)




4-2 SIGNAL-FLOW GRAPHS

A SFG may be regarded as an alternative representation of a block
diagram. The SFG was introduced by S. J. Mason [2, 3] for the cause-and-
effect (input-output) representation of linear systems that are modeled by
algebraic equations. An SFG may be defined as a graphical means of
portraying the input-output relationships among the variables of a set of
linear algebraic equations.

The relation between block diagrams and SFGs are tabulated for four
important cases, as shown in Fig. 4-23.



Transfer Function Block Diagram Signal Flow Diagram
- o -—-—-— -

One block System (a) )
Y(s) o
Ris) = Gis) |
R(s) Y(s) R(s)  G(y) Y(s)
—» Gs) —» 0 > 0

Cascade (c) (d)
;{T‘?j = GI{S} Gz(S)
; y R(s) Gls) A(s) Gis) ¥(s)
R(i+ Gy(s) A(‘s)k Gy(s) ﬂb o—> o—> 0
Parallel (e) ()
Al(S) Ay(s)
Y(s) , Gy(s)
Y = Gy(s) + Gofs K
R(s) 1(8) + Gyfs) Ris) + ¥ G,(s)
P f R(s) < : Yis)
Gyls) A(s) Y(s) = Ay(5)+A4(s)
Ay(s) As(s) : Gls) S
Feedback (2) (h)
Yis) . Gls) 1 G(s) |
Ris) ~1+G(s)Hls) RO EGs) - e A e
+ R(s)  E(s) Y(s) M)
- -H(s)
B0) H(s) [«

Figure 4-23 Block diagrams and their SFG equivalent representations.
(a) Input-output representation in block diagram form. (b) Equivalent input-
output representation in SFG form. (c) A cascade block diagram
representation. (d) Equivalent cascade SFG representation. (e) A parallel
block diagram representation. (f) Equivalent parallel SFG representation. (g)
A negative feedback block diagram representation. (h) Equivalent negative



feedback SFG representation.

Considering Fig. 4-23b, when constructing an SFG, junction points, or
nodes, are used to represent variables—in this case U(s) is the input variable
and Y(s) is the output variable. The nodes are connected by line segments
called branches, according to the cause-and-effect equations. The branches
have associated branch gains and directions—in this case the branch
represents the transfer function G(s). A signal can transmit through a branch
only in the direction of the arrow. In general, the construction of the SFG is
basically a matter of following through the input-output relations of each
variable in terms of itself and the others. As a result, in Fig. 4-23b, the SFG
represents the transfer function:

In an SFG, signals can transmit through a branch only in the direction
of the arrow.

Y(s)
U(s)

=G(s) (4-44)

where U(s) is the input, Y(s) is the output, and G(s) is the gain, or
transmittance, between the two variables. The branch between the input node
and the output node should be interpreted as a unilateral amplifier with gain
G(s), so when a signal of one unit is applied at the input U(s), a signal of
strength G(s)U(s) is delivered at node Y(s). Although algebraically Eq. (4-44)
can be written as

1
U(s)= @Y(s) (4-45)

the SFG of Fig. 4-23b does not imply this relationship. If Eqg. (4-45) is
valid as a cause-and-effect equation, a new SFG should be drawn with Y(s) as
the input and U(s) as the output.

Comparing Fig. 4-23¢ with Fig. 4-23d, or Fig. 4-23e with Fig. 4-23g, it is
easy to see that the nodes in SFGs represent the variables in the block
diagrams—that is, input, output, and intermediate variables such as A(s). The



nodes are then connected through branches with gains that represent the
transfer functions G (s) and G (s), respectively.

The SFG representation of cascade and parallel forms and the feedback
system, shown in Figs. 4-23e and f, are discussed in more detail in the next
section.

4-2-1 SFG Algebra

Let us outline the following manipulation rules and algebra for the SFGs:

1. The value of the variable represented by a node is equal to the sum
of all the signals entering the node. For the SFG of Fig. 4-24, the value
of y. is equal to the sum of the signals transmitted through all the

incoming branches; that is,

n=a,y,+a,y,+a,y, +ay, (4-46)

y3
@]

Figure 4-24 Node as a summing point and as a transmitting point.

2. The value of the variable represented by a node is transmitted
through all branches leaving the node. In the SFG of Fig. 4-24, we have



Y6 =iz M1
Y =80 (4-47)

Vs = A,

3. Parallel branches in the same direction connecting two nodes can
be replaced by a single branch with gain equal to the sum of the gains of
the parallel branches. An example of this case is illustrated in Figs. 4-23f
and 4-25.

\ a+b+c /
L g O g <

S

Vi h)

Figure 4-25 Signal-flow graph with parallel paths replaced by one with a
single branch.

4. A series (cascade) connection of unidirectional branches, as shown
in Fig. 4-23d or 4-26, can be replaced by a single branch with gain equal
to the product of the branch gains.

(f|1 drq ({1‘_!_

O > O | o O | g O
M ¥, Y3 Y4
a | 3“31(1’}4
@ > O
Y1 Y4

Figure 4-26 Signal-flow graph with cascade unidirectional branches
replaced by a single branch.

5. A feedback system as shown in Fig. 4-23¢ is subject to the



following algebraic equations:
E(s)=R(s)—H(s)Y(s) (4-48)
and
Y(s)=G(s)E(s) (4-49)

Substituting Eq. (4-49) into Eq. (4-48), while eliminating the
intermediate variable E(s), we get

Y(s)=G(s)R(s)—G(s)H(s)Y (s) (4-50)

Solving for Y(s)/R(s), we get the closed-loop transfer function

Y(s)  G(s)

M(s)= =
R(s) 1+G(s)H(s)

(4-51)

EXAMPLE 4-2-1 Convert the block diagram in Fig. 4-27a to an SFG
format.



» Gy
+
Yy Y 4
— (4 L Gy 3 —
i 2
— i
(a)
o 0 0 0 0 0 0
R E Y 6 Y, Y Y
(b)

v

Figure 4-27 (a) Block diagram of a control system. (b) Signal nodes. (c)
Equivalent signal-flow graph.

SOLUTION First identify all block diagram
variables—in this case, R, E, Y, Y, Y, and Y. Next,



EXAMPLE 4-2-2

associate each variable to a node, as shown in Fig. 4-27b.
Note that it is important to clearly identify the input and
output nodes R and Y, respectively, as shown in Fig. 4-
27b. Use branches to interconnect the nodes while
ensuring the branch directions match the signal directions
in the block diagram. Label each branch with the
appropriate gain corresponding to a transfer function in
Fig. 4-27a. Make sure to incorporate the negative
feedback signs into the gains (i.e., -G ,(s),—G (s) and — 1)

—see Fig. 4-27c.

As an example on the construction of an SFG, consider
the following set of algebraic equations:

Yy=ap),Ta5,)s

Y3 =05), T Y, (4-52)
Yi=0y), Ty Tay,Y,

Vs =0y, HaY,

The SFG for these equations is constructed, step by
step, in Fig. 4-28.



({] 2
O O
¥ ¥ Y3 Ya Ys
(@) yo = appy) + aspys
Lf‘;z H_“
ay2 b3
O O P @]
¥ Y2 V3 Ya Vs
(b) Yo =ajoy) +azpy3 Y3 =dp3Vp + daz)y
UJr}‘. (]44
(| 12
O g O
yl }’5
(C) yp =gy +A3pV3 Y3 = dpaVy + Ag3Vy Vg =AYy + A3gV3 + dysVy
(z’}l ('f_l_; (7
a 12
O o
Y1

(d) Complete signal-flow graph

Figure 4-28 Step-by-step construction of the signal-flow graph in Eq. (4-

52).

4-2-2 Definitions of SFG Terms

In addition to the branches and nodes defined earlier for the SFG, the
following terms are useful for the purpose of identification and execution of

the SFG algebra.



Input Node (Source)
An input node is a node that has only outgoing branches (example: node
U(s) in Fig. 4-23b).

Output Node (Sink)

An output node is a node that has only incoming branches (example: node
Y(s) in Fig. 4-23b). However, this condition is not always readily met by an
output node. For instance, the SFG in Fig. 4-29a does not have a node that
satisfies the condition of an output node. It may be necessary to regard y,
and/or y, as output nodes to find the effects at these nodes due to the input. To
make y, an output node, we simply connect a branch with unity gain from the
existing node y, to a new node also designated as y,, as shown in Fig. 4-29b.
The same procedure is applied to y,. Notice that, in the modified SFG of Fig.
4-29b, the equations y, =y, and y, = y, are added to the original equations. In
general, we can make any noninput node of an SFG an output by the
procedure just illustrated. However, we cannot convert a noninput node into
an input node by reversing the branch direction of the procedure described
for output nodes. For instance, node y, of the SFG in Fig. 4-29a is not an
input node. If we attempt to convert it into an input node by adding an
incoming branch with unity gain from another identical node y, the SFG of
Fig. 4-30 would result. The equation that portrays the relationship at node y,
now reads

An input node has only outgoing branches.

An output node has only incoming branches.



GI“ (’Iw_“

Vi g V3
dqy

(a) Original signal-flow graph

(b) Modified signal-flow graph

Figure 4-29 Modification of a signal-flow graph so that y, and y, satisfy
the condition as output nodes.

oYz
\ 4!
¢12 923
O > Q »
Vi R ois) V3

ff';‘_h

Figure 4-30 Erroneous way to make node y, an input node.

Y=y, taLy, +a, )y, (4-53)

which is different from the original equation given in Fig. 4-29a.
Path

A path is any collection of a continuous succession of branches traversed
in the same direction. The definition of a path is entirely general, since it
does not prevent any node from being traversed more than once. Therefore,
as simple as the SFG of Fig. 4-29a is, it may have numerous paths just by



traversing the branches a, and a,, continuously.

Forward Path

A forward path is a path that starts at an input node and ends at an output
node and along which no node is traversed more than once. For example, in
the SFG of Fig. 4-28d, y, is the input node, and the rest of the nodes are all
possible output nodes. The forward path between y, and y, is simply the
connecting branch between the two nodes. There are two forward paths
between y, and y: One contains the branches from y to y, to y, and the other
one contains the branches from y, to y, to y, (through the branch with gain a )
and then back to y, (through the branch with gain a ). The reader should try to
determine the two forward paths between y and y,. Similarly, there are three
forward paths between y and y..

Path Gain

The product of the branch gains encountered in traversing a path is called
the path gain. For example, the path gain for the pathy —y, -y, —y, in Fig. 4-
28disaa.a

127723734

Loop

A loop is a path that originates and terminates on the same node and along
which no other node is encountered more than once. For example, there are
four loops in the SFG of Fig. 4-28d. These are shown in Fig. 4-31.




Figure 4-31 Four loops in the signal-flow graph of Fig. 4-28d.

The SFG gain formula can only be applied between an input node
and an output node.

A is the same regardless of which output node is chosen.

Forward-Path Gain
The forward-path gain is the path gain of a forward path.

Loop Gain
The loop gain is the path gain of a loop. For example, the loop gain of the
loopy,—y,—y,—y,inFig. 4-31isa a,a,.

Nontouching Loops

Two parts of an SFG are nontouching if they do not share a common node.
For example, the loops y,—y,—y, and y, — y, of the SFG in Fig. 4-28d are
nontouching loops.

Two parts of an SFG are nontouching if they do not share a common
node.

4-2-3 Gain Formula for SFG

Given an SFG or block diagram, the task of solving for the input-output
relations by algebraic manipulation could be quite tedious. Fortunately, there
is a general gain formula available that allows the determination of the input-
output relations of an SFG by inspection.

Given an SFG with N forward paths and K loops, the gain between the
input node y and output node y_ is [3]

N
M= 3}’}0ut = MkAAk (4-54)
in k=1



where
y., = input-node variable
¥, = output-node variable
M = gain between y, and y__
N = total number of forward paths between y. and y__
M, = gain of the kth forward paths between y._and y

out
A=1-YL +XL,— YL+ (4-55)
i=1 j=1 k=1

or

A =1 — (sum of the gains of all individual loops) + (sum of products
of gains of all possible combinations of twoe nontouching loops) — (sum
of products of gains of all possible combinations of three nontouching
loops) + (sum of products of gains of all possible combinations of four
nontouching loops) —...

A, = the A for that part of the SFG that is nontouching with the kth

forward path.

The gain formula in Eg. (4-54) may seem formidable to use at first glance.
However, A and A, are the only terms in the formula that could be

complicated if the SFG has a large number of loops and nontouching loops.
Care must be taken when applying the gain formula to ensure that it is
applied between an input node and an output node.

EXAMPLE 4-2-3 Consider that the closed-loop transfer function Y(s)/R(s)
of the SFG in Fig. 4-23f is to be determined by use of
the gain formula, Eqg. (4-54). The following results are
obtained by inspection of the SFG:

1. There is only one forward path between R(s) and
Y(s), and the forward-path gain is

M, =G(s) (4-56)

2. There is only one loop; the loop gain is



L, =-G(s)H(s) (4-57)

3. There are no nontouching loops since the forward
path is in touch with the loop L, . Thus, A1 =1, and

A=1-L, =1+G(s)H(s) (4-58)

Using Eq. (4-54), the closed-loop transfer function is
written as

Y(s)_MA, __ G(s) (4-59)
R(s) A 1+ G(s)H(s)

which agrees with Eq. (4-12) or (4-51).

EXAMPLE 4-2-4 Consider the SFG shown in Fig. 4-28d. Let us first
determine the gain between y, and y. using the gain

formula.
The three forward paths between y, and y. and the
forward-path gains are

Forward path Gain
K==V Ve s M, =ay,a,,0,,0,
N=)r s M, =a,,a,

2 P P 2 M, =a,,a,,0,

The four loops of the SFG are shown in Fig. 4-28. The
loop gains are

Loop Gain

%= Y= Ys L =aya,
2 Pl Ly=ay,a,
230 Thub o Ly = a,,a,0;
Y~ Y Ly=ay

There are two nontouching loops; that is,

Yi—Vs—Ys and Ya— V4



Thus, the product of the gains of the two nontouching
loops is

L,=aya5a,, (4-60)
All the loops are in touch with forward paths M, and
M.. Thus, A, = A, = 1. Two of the loops are not in touch

with forward path M2. These loops are y, —y,—y, and y, —
y,. Thus,

A, =1-a,a,—a, (4-61)
Substituting these quantities into Eq. (4-54), we have

¥ MA+MA+MA,
g A

— (a12a23a34a45 )+ (alzazs )(1- G343~ Ay )+ G1295495 (4-62)
1- (a23a32 T30+ 0,050, 14y, )+ Ap3l3,Qy

where

A=l & Lok By b By Loy

= 1= (35, + Ay 0y + 8y 0585+ Gy )+ 0530550, (4-63)

The reader should verify that choosing y2 as the

output,
Y2 — am(l_ (3,043 — a44) (4_ 64)
b2 A

where A is given in Eq. (4-63).

EXAMPLE 4-2-5 We can convert the block diagram in Fig. 4-32a to an
SFG format in Fig. 4-32¢, by first associating all block
diagram variables y —y to a node as in Fig. 4-32b.
Next using branches we interconnect the nodes while
ensuring the branch directions match the signal
directions in the block diagram. Then we label each



branch with the appropriate gain corresponding to a
transfer function in Fig. 4-32a. Make sure to
incorporate the negative feedback signs into the gains
(i.e., —H(s), — H(s), — H(s), and — H (s))—see Fig. 4-
32c.

Figure 4-32

(c)

(a) Block diagram of a control system. (b) Signal nodes



representing the variables. (c) Equivalent signal-flow graph.

The two forward paths between y and y and the
forward-path gains are

Forward path Gain
N Vo= Vs=Ys=Vs— Vs Vs M1:G1G7_G3G4
N=V:= Vs Ve Vs M2:G1G5

The four loops of the SFG are shown in Fig. 4-32. The
loop gains are

Loop Gain

V2=V ) L, =-GH,

Yi— Vs~V L, =-G;H,
V2= V3= Vi~ Vs Vs Ly, =-G,G,G;H,
Y~ ¥ Yo L,=-H,

The three following loops are nontouching
Y2=Ys= Y2 Vo= Ys—Ys and yo—y, =y,

Thus, the products of the gains of two of the three
nontouching loops are

L,=GGHH, L,=GHH, and L,=G,H,H, (4-65)
Also the following two loops are nontouching
V2= VamYs—y, and yo—y -y,

Thus, the product of the gains of the nontouching loops
is

L,=GG,G,H,H, (4-66)

Further, the product of the three nontouching loop
gains is



L, =—GGH H,H, (4-67)
Hence,

A=1+G,H,+G,H, +G,G,G,H, +H,
+G,G,H,H, +G,H,H, +G,H,H, +G,G,G,H,H, +G,G,H,H,H, (4-68)

All the loops are in touch with forward paths M. Thus,
A =1.Loopy,—Yy.—y,is not in touch with forward path
M,. Thus,

A,=1+G,H, (4-69)
Substituting these quantities into Eq. (4-54), we have

&: & M1A1 +M2A2 _ G]G2G3G4 +G1G5(1+G3H2)

(4-70)
Yo W A A
The following input-output relations may also be
obtained by use of the gain formula:
&=1+G3H2+H4+G3H2H4 (4-71)
Y A
y_4:G1G2(1+H4) (4_72)

2 A

4-2-4 Application of the Gain Formula between Output
Nodes and Noninput Nodes

It was pointed out earlier that the gain formula can only be applied
between a pair of input and output nodes. Often, it is of interest to find the
relation between an output-node variable and a noninput-node variable. For
example, in the SFG of Fig. 4-32, it may be of interest to find the relation
y/y,, which represents the dependence of y upon y,; the latter is not an input.

We can show that, by including an input node, the gain formula can still be
applied to find the gain between a noninput node and an output node. Let y_



be an input and y_ be an output node of an SFG. The gain, y_/y, where y, is
not an input, may be written as

You ZMA, from y;, 10
yout — y‘m — A (4-73)
yz L ZMkAk from y,, toy,

yin A

Because A is independent of the inputs and the outputs, the last equation is
written as

Yout — ZMkAk from ;10 Your (4_74)
¥, EMA,

from y;,to v,

Notice that A does not appear in the last equation.

EXAMPLE 4-2-6 From the SFG in Fig. 4-32, the gain between y, and y, is
written as
&: y7/y1 — G1G2G3G4 +G1G5(1+G3H2)
yl y2/y1 1+G3H2+H4+G3HZH4

(4-75)

EXAMPLE 4-2-7 Consider the block diagram shown in Fig. 4-27a. The
equivalent SFG of the system is shown in Fig. 4-27c.
Notice that since a node on the SFG is interpreted as
the summing point of all incoming signals to the node,
the negative feedback on the block diagram is
represented by assigning negative gains to the
feedback paths on the SFG. First, we can identify the
forward paths and loops in the system and their
corresponding gains. That is,

Forward path Gain
R-E-Y,-Y,-Y-Y M,=GG,G,
R-E-Y,-Y,-Y M,=G,G,



The four loops of the SFG are shown in Fig. 4-28. The
loop gains are

Loop Gain
Yo=Vi= s L,=-GG,H,
Ya=Ys= Vs L,=-GG,H,
Vo= Vs=Vs™ Y™ )y L31:_G1G2G3
Y= Y=Y L,=-GG,

Note that all loops touch. Hence, the closed-loop
transfer function of the system is obtained by applying
Eq. (4-54) to either the block diagram or the SFG in Fig.

4-27. That is,
Y(s) _G,G,G,+GG, (4-76)
R(s) A
where
A=1+G,G,H, +G,G,H, +G,G,G, +G,H, +G,G, (4-77)
Similarly,
E(s): 1+G,G,H, +G,G,H, +G,H, (4-78)
R(s) A
Y(s) 66,6, +6E, (4-79)

E(s) 1+G,G,H,+G,G,H,+G,H,

The last expression is obtained using Eq. (4-74).

4-2-5 Simplified Gain Formula

From Example 4-2-7, we can see that all loops and forward paths are

touching in this case. As a general rule, if there are no nontouching loops and
forward paths (e.g., y,—y,—y, and y, — y, in Example 4-2-3) in the block
diagram or SFG of the system, then Eq. (4-54) takes a far simpler look, as

shown next.




Mo Pow _ Z Forward Path Gains

4-80
Vo 1—Loop Gains ( )

EXAMPLE 4-2-8 For Example 4-2-5, where there are nontouching loops, as

seen in Fig. 4-33, the simplified gain formula can be
used by eliminating the nontouching loops after some
block diagram manipulations.

h

\.‘ ‘) l'v

(a)

(o]
Y i) ¥3 A/ Vs Ve

G 6

o]
h 4

Y6 Y7

Figure 4-33 (a) Modified block diagram of the control system in Fig. 4-
32 to eliminate the nontouching loops. (b) Signal nodes representing the



variables. (c) Equivalent signal-flow graph.

The two forward paths between y and y and the
forward-path gains are now

Forward path Gain
NW=)a= Vi Ya=Vs— Y™ ¥y M,=GG,GG,G,
y1_yz_y3_yﬁ_y? MzzGngGf

The two touching loops of the SFG are shown in Fig.
4-33. The loop gains are

Loop Gain
Y= Vi= ) L,=-GH,
Yoo Vs= V=)™ )s L, =-GG,GH,

Note in this case

G 1
G,=——>— and G, = (4-81)
1+G,H,

Hence,

A=1+ Gl Gy ; +G GGy H+H
+ GG Hy + G H H o+ G H L, +6G,GH H, + GG H (4-82)

As a result,

Y(s) GG,G,+GG,

= (4-83
R(s) A

4-3 STATE DIAGRAM

In this section, we introduce the state diagram, which is an extension of the
SFG to portray state equations and differential equations. A state diagram is



constructed following all the rules of the SFG using the Laplace-transformed
state equations. The basic elements of a state diagram are similar to the
conventional SFG, except for the integration operation.

Let the variables x (t) and x(t) be related by the first-order differentiation:
— 2 =x,(t) (4-84)

Integrating both sides of the last equation with respect to t from the initial
time ¢, we get

x,(0= x,(0)dT+x,(t,) (4-85)

Because the SFG algebra does not handle integration in the time domain,
we must take the Laplace transform on both sides of Eqg. (4-85). We have

t

X, (s)= LU xz(f)dr} % () = X,(9) —U;Oxz(r)dr}ﬁ(ﬂ (4-86)

fo S S S

Because the past history of the integrator is represented by x (t ), and the
state transition is assumed to startat T = ¢, x(t) = 0 for 0 <t <t. Thus, Eq.
(4-86) becomes

X,(s) | x,(t)

X (s)=—"2"+
s s

(4-87)

Equation (4-83) is now algebraic and can be represented by an SFG, as
shown in Fig. 4-34, where the output of the integrator is equal to s times the
input, plus the initial condition x (t )/s. An alternative SFG with fewer

elements for Eq. (4-87) is shown in Fig. 4-35.




Figure 4-34 Signal-flow graph representation of

(S) (X, (s)s]+[x,(t,)/s],

X1 (ro)

\ &
il
o S o)
Xy (s) X,(s)

Figure 4-35 San alternative signal-flow graph representation of

X, (s)=[X,(s)/s]+[x,(t,)/s]

4-3-1 From Differential Equations to State Diagrams

When a linear system is described by a high-order differential equation, a
state diagram can be constructed from these equations, although a direct
approach is not always the most convenient. Consider the following
differential equation:

d'yt)  d7y(t) dy(t)
Tt g = =t ay(t)=r(0) (4-88)

To construct a state diagram using this equation, we rearrange the equation
as

d'y()  d7y() dy(t)
i = Th T oo T
dt dt dt

—a,y(t)+r(t) (4-89)



The outputs of the integrators in the state diagram are usually defined as

the state variable.

The process is highlighted next.

1. The nodes representing R(s),s"Y (s),s" 'Y (5),...,sY(s), and Y(s)
are arranged from left to right, as shown in Fig. 4-36a.

2. Because s'Y(s) corresponds to dy(t)/dt, i =0, 1, 2, ..., n, in the
Laplace domain, the nodes in Fig. 4-36a are connected by branches to
portray Eg. (4-85), resulting in Fig. 4-36b.

(0] 0 8] o] P 0 0
R §Y Sy Y s¥ Y
(a)

e Y sY Y
C = L] L] L]
R

*{!’|

v

=0

v

~o



Figure 4-36 State-diagram representation of the differential equation of

Eq. (4-89).

3. Finally, the integrator branches with gains of s are inserted, and the
initial conditions are added to the outputs of the integrators, according to
the basic scheme in Fig. 4-35.

The complete state diagram is drawn as shown in Fig. 4-36¢. The outputs
of the integrators are defined as the state variables, x,, x,, ..., x . This is
usually the natural choice of state variables once the state diagram is drawn.

When the differential equation has derivatives of the input on the right
side, the problem of drawing the state diagram directly is not as
straightforward as just illustrated. We will show that, in general, it is more
convenient to obtain the transfer function from the differential equation first
and then arrive at the state diagram through decomposition (Sec. 8-10).

The outputs of the integrators in the state diagram are usually defined
as the state variable.

EXAMPLE 4-3-1 Consider the differential equation

2
d )fgt) +3dy(f)
dt dt

+2y(8)=r(t) (4-90)

Equating the highest-ordered term of the last equation
to the rest of the terms, we have

Ayt __ dy(e)

= —29(t)+r(t (4-91)
Following the procedure just outlined, the state
diagram of the system is drawn as shown in Fig. 4-37.

The state variables x, and x, are assigned as shown.



¥ty ¥(t)
s S

Figure 4-37 State diagram for Eq. (4-89).

4-3-2 From State Diagrams to Transfer Functions

The transfer function between an input and an output is obtained from the
state diagram by using the gain formula and setting all other inputs and initial
states to zero. The following example shows how the transfer function is
obtained directly from a state diagram.

EXAMPLE 4-3-2 Consider the state diagram of Fig. 4-37. The transfer
function between R(s) and Y(s) is obtained by applying
the gain formula between these two nodes and setting
the initial states to zero. We have

L4 N (4-92)
R(s) s*+3s+2

4-3-3 From State Diagrams to State and Output Equations

The state equations and the output equations can be obtained directly from
the state diagram by using the SFG gain formula. The general form of a state
equation and the output equation for a linear system is described in Chap. 3
and presented here.

State equation:



dx(t)

=ax(t)+br(t) (4-93)

Output equation:
y(t)=cx(t)+dr(t) (4-94)

where x(t) is the state variable; r(t) is the input; y(t) is the output; and a, b,
¢, and d are constant coefficients. Based on the general form of the state and
output equations, the following procedure of deriving the state and output
equations from the state diagram are outlined:

1. Delete the initial states and the integrator branches with gains s
from the state diagram, since the state and output equations do not
contain the Laplace operator s or the initial states.

2. For the state equations, regard the nodes that represent the
derivatives of the state variables as output nodes, since these variables
appear on the left-hand side of the state equations. The output y(t) in the
output equation is naturally an output node variable.

3. Regard the state variables and the inputs as input variables on the
state diagram, since these variables are found on the right-hand side of
the state and output equations.

4. Apply the SFG gain formula to the state diagram.

EXAMPLE 4-3-3 Figure 4-38 shows the state diagram of Fig. 4-37 with the
integrator branches and the initial states eliminated.
Using dx (t)/dt and dx (t)/dt as the output nodes and
x,(t), x(t), and r(t) as input nodes, and applying the
gain formula between these nodes, the state equations
are obtained as

Y
O

[ =1

Figure 4-38 State diagram of Fig. 4-37 with the initial states and the



integrator branches left out.

() 4-95
Fram e
%:—le(t)—?)xz(tHr(t) (4-96)

Applying the gain formula with x (t), x (t), and r(t) as
input nodes and y(t) as the output node, the output
equation is written as

y(t)=x,(t) (4-97)

Note that for the complete state diagram, shown in Fig.
4-37 with t, as the initial time. The outputs of the

integrators are assigned as state variables. Applying the
gain formula to the state diagram in Fig. 4-37, with X (s)

and X (s) as output nodes and x (t), x(t), and R(s) as
input nodes, we have

s'(1+3s7) § s
Xl(s):Txl(to)+fx2(to)+XR(s) (4-98)
D52 5 v
X,(s)= x,(t,)+ sz(t0)+ ZR(S) (4-99)
where
A=1+3s"+2572 (4-100)

After simplification, Egs. (4-98) and (4-99) are
presented in vector-matrix form:

X, (s) ]: 1 { s+3 1 }[ x,(t,) ]+ 1 [ 1 }R(S) )
X, (s) (s+1)(s+2)| -2 s x,(t,) (s+1)(s+2)| s

Note that Eg. (4-100) may also be obtained by taking
the Laplace transform of Egs. (4-95) and (4-96). For zero




initial conditions, and since Y(s) = X (s), the output-input
transfer function is

Yi)__ 1 (4-102)

R(s) s*+3s+2

which is the same as Eq. (4-88).

EXAMPLE 4-3-4 As another example on the determination of the state
equations from the state diagram, consider the state
diagram shown in Fig. 4-39a. This example will also
emphasize the importance of applying the gain
formula. Figure 4-39b shows the state diagram with
the initial states and the integrator branches deleted.
Notice that, in this case, the state diagram in Fig. 4-
39b still contains a loop. By applying the gain formula
to the state diagram in Fig. 4-39b with X (), %,(t), and
X,(f) as output-node variables and r(t), x (t), x,(t), and
x,(t) as input nodes, the state equations are obtained as
follows in vector-matrix form:



(.’()

X5(1p) x (1)

(a)

(b)

Figure 4-39 (a) State diagram. (b) State diagram in part (a) with all initial
states and integrators left out.



dx (t)
dt
dx (1)

dt
dx, (1)

dt

(a,+a,) 1 1 0 ) ?
—\d a —d.d
—2 3 g —22 x,(t) [+| 0 |r(t) (4-103)
1+a0a3 (t) X
0 0 ! %3

The output equation is

1
x, (1) + —2

Gy5 Gya;

x,(t) (4-104)

4-4 CASE STUDIES

EXAMPLE 4-4-1 Consider the mass-spring-damper system shown in Fig.

4-40a. The linear motion concerned is in the

horizontal direction. The free-body diagram of the
system is shown in Fig. 4-40b. Following the
procedure outlined in Sec. 2-1-1, the equation of
motion may be written into an input-output form as

—— (0 }—» y(0)

AN

1

Ky(f) ¢——
— f) (1) M — )

dt

(b)

Figure 4-40 (a) Mass-spring-friction system. (b) Free-body diagram.

y(r)+%y(t)+%?(t)=%ﬂt) (4-105)



BAO)
where y(t) is the output, M is considered the input,

dy(t i d’y(t)
no=(22) ym:[ x
and dt )and t
and acceleration, respectively.

For zero initial conditions, the transfer function

between Y(s) and F(s) is obtained by taking the Laplace
transform on both sides of Eq. (4-105):

] represent velocity

Y(s)(32+£s+£J:@ (4-106)
M M) M

Hence,

Yis) _ ! (4-107)

F(s) Ms*+Bs+K

The same result is obtained by applying the gain
formula to the block diagram, which is shown in Fig. 4-

41.

F(s)

1 1 iy
M s Ky 2

K |«

Figure 4-41 Block diagram representation of mass-spring-damper system
of Eq. (4-106).

Equation (4-105) may also be represented in the space
state form

x(t)=Ax(t)+Bu(t) (4-107)



where

x,(1)
x(t)—[ xz(t) ] (4-108)
and
u(t):& (4-109)
M

The output equation is
y(£)=x,(t) (4-110)

So Eq. (4-107) is rewritten as

: 0 1
S T O I T P O (4-111)
X, —H _M X, M
The state Eq. (4-111) may also be written as a set of
first-order differential equations:
dx (t)
c:llt =)
dx,(t) K B 1 (4-112)
=g ()= () — f(t
. Mxl() sz() Mf()
y()=x,(t)

For zero initial conditions, the transfer function
between Y(s) and F(s) is obtained by taking the Laplace
transform on both sides of Eq. (4-112):

sk ()= X 15)
B K 1
] = L3 (4-113)
sX,(s) MXZ(S) MX1(5)+MF(5)

Y(s)=X,(s)



resulting in

Y(s) 1

— - (4-114)
F(s) Ms"+Bs+K

The block diagram associated with Eq. (4-113) is
shown in Fig. 4-42. Note that this block diagram may
also be obtained directly from the block diagram in Fig.
4-41 by factoring out the 1/M term. The transfer function
in Eg. (4-114) may also be obtained by applying the gain
formula to the block diagram in Fig. 4-42.

F(s) X5(s) 1 | YY) =X(s) ’

§

S

x| ==

Figure 4-42 Block diagram representation of mass-spring-damper system
of shown in Fig. 4-41.

For nonzero initial conditions, Eq. (4-112) has a
different Laplace transform representation that may be
written as

sX,(s)—x,(0)=X,(s)

SXZ(S)_-’CQ(O):_%XZ(S)—%Xl(S)+%F(S) (4-115)
Y(s)=X,(s)

The corresponding SFG representation for Eq. (4-115)
is shown in in Fig. 4-43.
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Figure 4-43 SFG representation of mass-spring-damper system of Eq. (4-
115) with nonzero initial conditions x (t)) and x(t).

Upon simplifying Eq. (4-115) or by applying the gain
formula to the SFG representations of the system, the
output becomes

1 Ms

S)=——— FS +— x /(i
) Ms>+Bs+K ) Ms*+Bs+K 1(f)

+—— x,(t 4-116
Ms®+Bs+K :{fo) ( )

Toolbox 4-4-1

Time domain step response for Eqg. (4-114) is calculated using
MATLAB forK=1,M=1,B=1:



K=1; M=1; B=1l;
t=0 : 0.02: 30;
num = [1];

M B K] ;

[oR
0]
|
Il

G = tf(num, den);

vyl = step (G, t);

plot(t, y1);

xlabel (*Time (Second)’) ; ylabel (‘Step Response’)

title (‘Response of the system in Eqg. (4-114) to step input’)

The step response of the system in Eq. (4-114) is shown in Fig. 4-44.
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Figure 4-44 Time response of Eq. (4-114) for a unit step input.

EXAMPLE 4-4-2 Consider the system shown in Fig. 4-45a. Because the
spring is deformed when it is subject to a force f(t),
two displacements, y, and y,, must be assigned to the
end points of the spring. The free-body diagrams of
the system are shown in Fig. 4-45b. The force
equations are



> (1) 0]

% 1 P

B K
(a)
> y,(1) —> 00
- M ———» «——I ——» f(D)
B d..\’z(f ) K

r Ky, (1) =y, (0]

(b)

Figure 4-45 Mechanical system for Example 4-4-2. (a) Mass-spring-
damper system. (b) Free-body diagram.

F(O) =Ky, ()- y,(®)] (4-117)
DO Loy =Luw (3-83)
dt T T

These equations are rearranged in input-output form as

alzyz(t)+ B dyz(t)

i T a4 z(f)— yl(f) (4-119)

For zero initial conditions, the transfer function
between Y (s) and F (s) is obtained by taking the Laplace
transform on both sides of Eq. (4-118):

Y, (s) K
Y,(s) Ms*+Bs+K

(4-120)

For state representation, the equations may be
rearranged as



1
yl(f)—yz(r)+ff(t)

ay,(t) B dy®) K
dt* M dt M

(4-121)
[)ﬁ(t)_yz(t)]

The transfer function in Eq. (4-120) may also be
obtained by applying the gain formula to the block
diagram representation of the system, which is from Eq.
(4-121) and is shown in Fig. 4-46. Note that in Fig. 4-46,
F(s), Y(s), X (s), Y(s), and X (s) are Laplace transforms of
f(0), y (0), x,(t), y(t), and x (t), respectively. For zero initial
conditions, the transfer function of Eq. (4-121) is the
same as that of Eq. (4-119). By using the last two
equations, the state variables are defined as x (t) = y ()
and x (t) = dy (t)/dt, and t state equations are therefore
written as



J@)

(a)

F(s) 1 Y,(s) 1 1 Y5(s)
— APQ—D - M >
+ T i

= =

¥ §

x| ==

A

(b)

Figure 4-46 Mass-spring-damper system of Eqg. (4-121). (a) The signal-
flow graph representation. (b) Block diagram representation.

dx,(t) _
dt %)

dx,(t) B

i M
yz(t): x1(t)

1
— (4-122)
(£)+—f(O)

EXAMPLE 4-4-3 Figure 4-47a shows the diagram of a motor coupled to an
inertial load through a shaft with a spring constant K.
A nonrigid coupling between two mechanical
components in a control system often causes torsional
resonances that can be transmitted to all parts of the
system. The system variables and parameters are
defined as follows:
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Figure 4-47 (a) Motor-load system. (b) Free-body diagram.

T (t) = motor torque
B = motor viscous-friction coefficient
K = spring constant of the shaft
0 (t) = motor displacement
® (t) = motor velocity
J = motor inertia
0 (t) = load displacement
w,(t) = load velocity
J = load inertia
The free-body diagrams of the system are shown in

Fig. 4-47b. The torque equations of the system are

d’e,(t) :_&dem(t)_E[an(t)_QL(t)]+]iTm(t) (4-123)

46, (1)

- (4-124)

K[6,(t)-6,()]=],

In this case, the system contains three energy-storage



elements in J , J , and K. Thus, there should be three state

variables. Care should be taken in constructing the state
diagram and assigning the state variables so that a
minimum number of the latter are incorporated.
Equations (4-123) and (4-124) are rearranged as

200550 _Xig, 0-6,00+ 1,0 (4-125)

&6, K

— 4-126
5 I [6,(t)—06,(t)] ( )

The state variables in this case are defined as

x,(6)=0,(1)=0,(t), x,(t)=d6, (t)/dt, ypq
x,(t)=de6,,(t)/dl. The state equations are

P - (0-x,(0)

do)_K (4-127)
a J !

de,(t) _ K . _B, 1

=T RO T

The SFG representation is shown in Fig. 4-48.

Figure 4-48 Rotational system of Eq. (4-123) signal-flow graph
representation.



EXAMPLE 4-4-4 Let us consider the RLC network shown in Fig. 4-49a.
Using the voltage law

R L
(@] AN/ p——000
+ i(1)
+

e(r) C_— eill)
0

(a)

i(0) e 0)

5

1
L
0 »>
e(r)
i) (0)
) WY
Es) [ 1 § 1 i E.(s)
* L e _ iy Cs
R ¢
L
n
[

(c)



Figure 4-49 RLC network. (a) Electrical schematics. (b) Signal-flow
graph representation. (c) Block diagram representation.

e(t)=e;+e, +e, (4-128)

where e, = voltage across the resistor R
e, = voltage across the inductor L
e = voltage across the capacitor C
Then

di(t)

e(t)=+e.(t)+Ri(t)+L A (4-129)

Taking a derivative of Eq. (4-129) with respect to time,
and using the relation for current in C:

de,(t) . _
C=e = =i(1) (4-130)

we get the equation of the RLC network as

2, ] :
L z(zt)+Rd:(t)+t(t) _ de(t) (4-131)
dt dt ~ C dt

A practical approach is to assign the current in the
inductor L, i(t), and the voltage across the capacitor C,
e (t), as the state variables. The reason for this choice is
because the state variables are directly related to the
energy-storage element of a system. The inductor stores
kinetic energy, and the capacitor stores electric potential
energy. By assigning i(t) and e (¢) as state variables, we
have a complete description of the past history (via the
initial states) and the present and future states of the
network. The state equations for the network in Fig. 4-
49b are written by first equating the current in C and the
voltage across L in terms of the state variables and the
applied voltage e(t). In vector-matrix form, the equations
of the system are expressed as



de () , L ;
dr | _ C eIl (4-132)
di(t) 1 R | i =

i dt 1 L L L

This format is also known as the state form if we set

xl(t) B ec(t) (4-133)
) | | i)
Then
. 0 l 0
e s " t) (4-134)
Xs 1 R %2 " % “
| L L -

The transfer functions of the system are obtained by
applying the gain formula to the SFG or block diagram of
the system in Fig. 4-49¢ when all the initial states are set

to zero.
-2
E(s) _ (1/LC)s _ ! (4-135)
E(s) 1+(R/L)s'+(1/LC)s™ 14 RCs+LCs*
-1
I(s) (1/L)s Cs (4-136)

E(s) 1+(R/L)s' +(1/LC)s> 1+ RCs+LCs’

Toolbox 4-4-2

Time domain unit step responses using Egs. (4-135) and (4-136) are
shown using MATLAB forR=1,L =1, and C = 1:



numl = [1];
denl = [L*C R*C 1];
num2 = [C 0];

den2 = [L*C R*C 1];

Gl = tf(numl, denl) ;
G2 = tf(num2, den2);

¥yl = step(Gl, t);

y2 step (G2, t);
plet (t,v1) ;

hold on

plot (t, y2, '--7);

xlabel (*Time"’)

ylabel (*Output’)

The results are shown in Fig. 4-50 where unit step
responses for e (t) and i(t) are obtained from Eq. (4-135)
and i(t) using Eq. (4-136) forR=1,L =1, and C = 1.
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Figure 4-50 RLC network time domain unit step responses for e (t) using
Eq. (4-135) and i(t) using Eq. (4-136) for R=1,L =1,and C = 1.

EXAMPLE 4-4-5 As another example of writing the state equations of an
electric network, consider the network shown in Fig.
4-51a. According to the foregoing discussion, the
voltage across the capacitor, e (t), and the currents of
the inductors, i (t) and i(t), are assigned as state
variables, as shown in Fig. 4-51a. The state equations
of the network are obtained by writing the voltages
across the inductors and the currents in the capacitor
in terms of the three state variables. The state



equations are

e.{t)

E

&

=

@)
(1)

-02 1 1 1 1 1
0 5 10 13 20 25 30
Time (sec)

Figure 4-51 Network of Example 4-4-5. (a) Electrical schematic. (b) SFG
representation.

Ll%:—fllil(t)—ec(tﬂe(t) (4-137)
LW R ret) (4-138)
c% _: h—i (4-139)

dt



In vector-matrix form, the state equations are written

dsS
R, 1 -
L L, 1
% % =
R 1 L
%, |= 0 -2 — x, |+ bole(t) (4-140)
L, L 0
X3 | | X3 0
- = 0 L i
C C

where x =1 (t), x, = i(t), and x, = e (t). The signal-flow
diagram of the network, without the initial states, is
shown in Fig. 4-51b. The transfer functions between I (s)
and E(s), I(s) and E(s), and E (s) and E(s), respectively,
are written from the state diagram

I(s) L,Cs*+R,Cs+1

= (4-141)
E(s) A
5l 1 (4-142)
E(s) A
Ec(s):Lzs+R2 (4-143)
E(s) A
where
A=LL,Cs’+(RL,+R,L)Cs*+(L,+L,+RR,C)s+R +R, (4-144)

The the unit step responses are shown in Fig. 4-52.
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Figure 4-52 Example 4-4-5 network time domain unit step responses for
i (t) using Eq. (4-141), i(t) using Eq. (4-142) and e (t) using Eq. (4-143) for R,
=1,R=1,L=1,L,=1,and C=1.

Toolbox 4-4-3

Time domain unit step responses using Egs. (4-141) to (4-143) are
shown using MATLAB forR =1,R,=1,L =1,L,=1,and C = 1:




R1=1; R2=1; Ll=1; L2=1; C=1;
=0 = 0.02 : 30 =

numl = [L2*C R2*C 1];

num2 = [1];

num3 = [L2 R2];

den = [L1*L2*C R1*L2*C+4+R2*L1*C L1+L24R1*R2*C R1+R2];
Gl = tf (numl, den);

G2 tf (num2, den) ;

G3 = tf (num3, den);

vyl = step(Gl, t);

y2 = step(G2, t);

y3 = step(G3, t);

plet (t, yl);

hold on

plotlt,; ¥2,; “-~'):

hold on

plot(t, v3, ‘-.');

xlabel (*Time’)

ylabel (*Output’)

4-5 MATLAB TOOLS

There is no specific software developed for this chapter. Although the
MATLAB Controls Toolbox offers functions for finding the transfer
functions from a given block diagram, it was felt that students may master
this subject without referring to a computer. For simple operations, however,
MATLAB may be used, as shown in the following example.

EXAMPLE 4-5-1 Consider the following transfer functions, which
correspond to the block diagrams shown in Fig. 4-53.



R(s) ———— Gy(s) ——»] Gols) ——» 1)

(a)
—» G(s)
+
R(s) » Y(s)
+
| Gy(s)
(b)
R(s) p G(s) » Y(s)
+

H(s) [¢——

(c)

Figure 4-53 Basic block diagrams used for Example 4-3-1.

1 s+1 1
G(s)=——, G,(s)=——, G(s)=
1(s) s+1 (%) s+2 (s) s(s+1)

 Hig)=10 (4-145)

Use MATLAB to find the transfer function Y(s)/R(s)
for each case. The results are as follows.

Toolbox 4-5-1
Case (a): Use MATLAB to find G *G..

Approach 1 Approach 2

>> clear all >> clear all

>> 8 = tf(‘*s’); =5 GBl=tf£ ([1] ;, [T 2])
>> Gl=1/(s+1)

Gl = Gl =

1 i



s + 1 s + 1

>> G2=(s+1)/(s+2) >> @G2=tf([1 1], [1 2])
s + 1 s + 1
S + 2 s + 2
>> YR=G1*G2 >> YR=G1*G2
g 4 1 s + 1
s"2 + 3 5 + 2 s"2 + 3 85 + 2
>> YR simple=minreal (YR) >> YR simple=minreal (YR)
YR simple= YR simple=
1 1
s + 2 s + 2

Use “minreal(YR)” for pole zero cancellation, if necessary.
Alternatively use “YR=series(G1,G2)” instead of “YR=G1*G2”.
Case (b): Use MATLAB to find G, + G..

Y(s)  2s+3  2(s+L.5)
R(s) s*+3s+2 (s+1)(s+2)




Approach 1

>> clear all

s» g = wE(Mer);

>> Gl=1/(s+1)
Transfer function:

s + 1

>> G2=(s8+1)/ (8+2)
Transfer function:
s + 1

s + 2

>> YR=G1+G2
Transfer function:
%2 + 3 8 + 3

8™ 4+ 3 & + B

>> YR=parallel (G1l,G2)

Transfer function:
s™2 + 3 8 + 3

82 + 3 8 4 2

Approach 2
>> clear all
s GL=RE( [1] , [T Z])

Transfer function:

s + 1

5% G2=tfI[1 1];[1 2])

Transfer function:
s + 1

s + 2

>> YR=G1+G2
Transfer function:
22 + 3 8 + 3

s*2 + 3 8 + 2

>> YR=parallel (G1,G2)

Transfer function:
s™2 + 3 8 + 3

8°% 4 3 5 4 B

Use “minreal(YR)” for pole zero cancellation, if necessary.
Alternatively use “YR=parallel(G1,G2)” instead of “YR=G1+G2”.

Use “zpk(YR)" to obtain the Use “zero(YR)” to obtain Use “pole(YR)" to obtain
real zero/pole/Gain format:  transfer function zeros: transfer function poles:
>> zpk (YR) >> zero(YR) >> pole(YR)
Zero/pole/gain: ans = ans =

(8"2 + 38 + 3) -1.5000 + 0.86601 -2

--------------- -1.5000 - 0.86601 -1

(s+2) (g+1)

Toolbox 4-5-2

Case (c): Use MATLAB to find the closed-loop feedback function
G

1+GH



Y(s) 1
R(s) s*+s+10

Approach 1 Approach 2
>> clear YR >> clear all
ss g o= BE (W) ; >> G=tf([1],[1,1,0])
>> G=1/(s*(s+1))
Transfer function: Transfer function:
1 1
™2 + 8 g2 4+ @
&5 H=10 >> H=10
H = H =
10 10
>> YR=G/ (1+G*H) >> YR=G/ (1+G*H)
Transfer function: Transfer function:
g2 + 8 ™2 + 8
s + 2 8™3 + 11 82 + 10 s g4 + 2 8%3 + 11 8”2 + 10 8
>> YR simple=minreal (YR) >> YR simple=minreal (YR)
Transfer function: Transfer function:
1 1
82 + 8 + 10 g2 + 8 + 10

Use “minreal (YR)” for pole zero cancellation, if necessary.

Alternatively use: Use “pole(YR)” to obtain transfer function poles:
>> YR=feedback (G, H) >> pole(YR)

Transfer function: ans =

1 -0.5000 + 3.12251

____________ -0.5000 - 3.12251

4-6 SUMMARY

This chapter was devoted to the mathematical modeling of physical
systems. Transfer functions, block diagrams, and signal-flow graphs were
defined. The block diagram representation was shown to be a versatile



method of portraying linear and nonlinear systems. A powerful method of
representing the interrelationships between the signals of a linear system is
the SFG. When applied properly, an SFG allows the derivation of the transfer
functions between input and output variables of a linear system using the gain
formula. A state diagram is an SFG that is applied to dynamic systems that
are represented by differential equations.

At the end of the chapter, various practical examples were given, which
complete the modeling aspects of dynamic and control systems already
studied in Chaps. 2 and 3. MATLAB was also used to calculate transfer
functions and time responses of simple block diagram systems.
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PROBLEMS

PROBLEMS FOR SEC. 4-1
4-1. Consider the block diagram shown in Fig. 4P-1.



X— E,l K >Y
s(s+p)
KD.S |
Figure 4P-1
Find:

(@) The loop transfer function.

(b) The forward path transfer function.
(c) The error transfer function.

(d) The feedback transfer function.

(e) The closed loop transfer function.

4-2.  Reduce the block diagram shown in Fig. 4P-2 to unity feedback
form and find the system characteristic equation.

X—3 q o 1 »Y
) G

(s+1)

Figure 4P-2

4-3.  Reduce the block diagram shown in Fig. 4P-3 and find the Y/X.



Figure 4P-3

4-4. Reduce the block diagram shown in Fig. 4P-4 to unity feedback
form and find the Y/X.

H,

e

Figure 4P-4

4-5. The aircraft turboprop engine shown in Fig. 4P-5a is controlled by a
closed-loop system with block diagram shown in Fig. 4P-5b. The engine is
modeled as a multivariable system with input vector E(s), which contains the
fuel rate and propeller blade angle, and output vector Y(s), consisting of the
engine speed and turbine-inlet temperature. The transfer function matrices are
given as



, _
10
s(s+2)
> 1
S s+1 |

o]

Find the closed-loop transfer function matrix [I+G(s)]"G(s).

—
COMBUSTION
o (]2
il - —
\_"‘\
gy (= |1
COMPRESSOR TU;\BINE
)kd
PROPELLER
G(s) i L

Figure 4P-5

H(s) &——

4-6. Use MATLAB to solve Prob. 4-5.

4-7. The block diagram of the position-control system of an electronic
word processor is shown in Fig. 4P-7.

(a) Find the loop transfer function ® (s)/® (s) (the outer feedback path is

open).

(b) Find the closed-loop transfer function ® (s)/O (s).
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Sensor Preamp ratio
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Current feedback

K

Tachometer feedback

K,

Figure 4P-7

4-8. The block diagram of a feedback control system is shown in Fig. 4P-
8. Find the following transfer functions:

Y(s)
(@) ROl

Y(s)
(b) EO)|y

Y(s)
(© NGl
(d) Find the output Y(s) when R(s) and N(s) are applied simultaneously.
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Figure 4P-8

4-9. The block diagram of a feedback control system is shown in Fig. 4P-
9

(@) Apply the SFG gain formula directly to the block diagram to find the
transfer functions:

(OISO
R(S) N=0 N(S) R=0
Express Y(s) in terms of R(s) and N(s) when both inputs are applied
simultaneously.

(b) Find the desired relation among the transfer functions G (s), G(s),
G,(s), G(s), H(s) and H(s) so that the output Y(s) is not affected by the
disturbance signal N(s) at all.




GQ(S ) G3(S ) B

Hy(s)

Figure 4P-9

4-10. Figure 4P-10 shows the block diagram of the antenna control
system of the solar-collector field shown in Fig. 1-5. The signal N(s) denotes
the wind gust disturbance acted on the antenna. The feedforward transfer
function G ) is used to eliminate the effect of N(s) on the output Y(s). Find
the transfer function Y(s)/N(s)|, .. Determine the expression of G (s) so that
the effect of N(s) is entirely eliminated.

N(s)

Gd(S) <
= +
R(s) E(s) E y 10 Y(s)
? 5+10 s(s + 5) s

Figure 4P-10

4-11. Figure 4P-11 shows the block diagram of a dc-motor control



system. The signal N(s) denotes the frictional torque at the motor shaft.

(@) Find the transfer function H(s) so that the output Y(s) is not affected
by the disturbance torque N(s).

(b) With H(s) as determined in part (a), find the value of K so that the
steady-state value of e(t) is equal to 0.1 when the input is a unit-ramp

function, (1) =1u (), R(s)=1/ 52, and N(s) = 0. Apply the final-value
theorem.

N(s)

¥(s) ”

+
G B
i T

H(s)

A

G(s) = K(s + 3)
s 4+ Dis + 2)

Figure 4P-11

4-12. The block diagram of an electric train control is shown in Fig. 4P-
12. The system parameters and variables are

e (t) = voltage representing the desired train speed,
v(t) = speed of train, ft/sec

M =Mass of train = 30,000 Ib/sec

K = amplifier gain

K = gain of speed indicator = 0.15 V/ft/sec
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Figure 4P-12

To determine the transfer function of the controller, we apply a step
function of 1 V to the input of the controller, that is, e (t) = u(t). The output

of the controller is measured and described by the following equation:

f(t)=100(1-0.3¢" —0.7¢™* Yu ()
(a) Find the transfer function G (s) of the controller.

(b) Derive the forward-path transfer function V(s)/E(s) of the system. The
feedback path is opened in this case.

(c) Derive the closed-loop transfer function V(s)/E (s) of the system.

(d) Assuming that K is set at a value so that the train will not run away
(unstable), find the steady-state speed of the train in feet per second when the
input is e (t) = us(¢)V.

4-13. Use MATLARB to solve Prob. 4-12.

4-14. Repeat Prob. 4-12 when the output of the controller is measured
and described by the following expression:

f(£)=100(1—0.3¢*"**)u (t—0.5)
when a step input of 1 V is applied to the controller.

4-15. Use MATLARB to solve Prob. 4-14.

4-16. A linear time-invariant multivariable system with inputs r (t) and
r(t) and outputs y (t) and y (t) is described by the following set of differential
equations.



d’y,(t)
dt?

d’y,(t) (1) s dr,(1)
5 +3 5 + (1) yz(t)—rz(t)+—dt

dy,(t)

+2 +3y,(t)=r(t)+1,(t)

Find the following transfer functions:

v(9)| v Y| %)
R1(5)|R2:0 R1(5)|R2:0 R2(5)|R1:0 R2(S)1R1:0

PROBLEMS FOR SEC. 4-2

4-17. Find the state-flow diagram for the system shown in Fig. 4P-4.

4-18. Draw a signal-flow diagram for the system with the state-space of

-5 —6 3 05 0
X= 1 0 -1 [X+| 0 05 |U
-05 15 05 05 0.5

7 05 05 0 X
05 0 05
4-19. Find the state-space of a system with the following transfer
function:

Bs+B
G(s) =0
ST+HASs+HAS

4-20. Draw signal-flow graphs for the following sets of algebraic
equations. These equations should first be arranged in the form of cause-and-
effect relations before SFGs can be drawn. Show that there are many possible
SFGs for each set of equations.

X, =X, ~3%,4+3
Xy =0%; —2xy 05,

(a) X =4x,+x,—5x,+5



2x,+3x, +x,==1
Xy — 2y Xy =]

(b) 3x,+x;,=0

4-21. The block diagram of a control system is shown in Fig. 4P-21.
(@) Draw an equivalent SFG for the system.

(b) Find the following transfer functions by applying the gain formula of
the SFG directly to the block diagram.

Y(s)| Y(s)| E(s)
R(S)ye NGNeo Ry

E(s)
NGl g

(c) Compare the answers by applying the gain formula to the equivalent
SFG.

N(s)

R(s) ZON ey I o) | Ys),

+wv

Hy(s) |«

Figure 4P-21

4-22. Apply the gain formula to the SFGs shown in Fig. 4P-22 to find the
L L, % X
Y, Y, Y, Y,

following transfer functions:



W =

G. 4

Y -

-

(d)




Figure 4P-22

4-23. Find the transfer functions Y/Y, and Y /Y of the SFGs shown in Fig.
4P-23.

Gy

Figure 4P-23

4-24. Signal-flow graphs may be used to solve a variety of electric
network problems. Shown in Fig. 4P-24 is the equivalent circuit of an
electronic circuit. The voltage source e () represents a disturbance voltage.

The objective is to find the value of the constant k so that the output voltage



e (t) is not affected by e (t). To solve the problem, it is best to first write a set
of cause-and-effect equations for the network. This involves a combination of
node and loop equations. Then construct an SFG using these equations. Find
the gain e /e, with all other inputs set to zero. For e, not to affect e , set e /e, to

Zero.

R.\' €5 R: i2 €3 E.}

es(r)+<> § R, §R~,
i(f) D §R4 §R;, ey(t)

ol

Figure 4P-24

4-25. Show that the two systems shown in Fig. 4P-25a and b are
equivalent.
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Figure 4P-25

4-26.  Show that the two systems shown in Fig. 4P-26a and b are not
equivalent.

% 1 G, 1
-H, -H, -H,
(a)
G, G, G, |
o—>—Qq——>—Q—>+—Qp—>—0—>—0
Yf YG
_H, _H,

Figure 4P-26

4-27.

Find the following transfer functions for the SFG shown in Fig. 4P-
27.



= 7 =
Y7 =0 Yl =0

(b)

Figure 4P-27

4-28. Find the following transfer functions for the SFG shown in Fig. 4P-
28. Comment on why the results for parts (c) and (d) are not the same.

Y,
@ e
E
) b
Y,
@ "hi



Figure 4P-28

4-29. The coupling between the signals of the turboprop engine shown in
Fig. 4P-4a is shown in Fig. 4P-29. The signals are defined as

R (s) = fuel rate

R (s) = propeller blade angle

Y (s) = engine speed

Y (s) = turbine inlet temperature

(@) Draw an equivalent SFG for the system.
(b) Find the A of the system using the SFG gain formula.
(c¢) Find the following transfer functions:

Yi(s)
R,(s)

Y (s)

R,(s)

Y.6s)
R (s)

()
R,(s)

R2 =0 Rl =0 R2 =0 R] =0

(d) Express the transfer functions in matrix form, Y(s) = G(s)R(s).



R, (s) Yy(s)
—p G(s) >

U

Yz(S) >

G(s)

Figure 4P-29

4-30. Figure 4P-30 shows the block diagram of a control system with
conditional feedback. The transfer function G (s) denotes the controlled
process, and G (s) and H(s) are the controller transfer functions.

(a) Derive the transfer functions Y(s)/R(s)|,, and Y(s)/N(s)|_.. Find
Y(s)/R(s)IN=0 when G (s) = G (s).
(b) Let

100

GP(S)=GC(S)=m

Find the output response y(t) when N(s) = 0 and r(t) = u(¢).

(c) With G(s) and G (s) as given in part (b), select H(s) among the
following choices such that when n(t) = u(t) and r(t) = 0, the steady-state
value of y(t) is equal to zero. (There may be more than one answer.)

H(s)= 10 H(s):L
s(s+1) (s+1)(s+2)
10(s+1) e
H(s)= H(s)=— (n=positive integer) Select .
$

s+2

Keep in mind that the poles of the closed-loop transfer function must all be
in the left-half s-plane for the final-value theorem to be valid.
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Figure 4P-30

4-31. Use MATLARB to solve Prob. 4-30.

PROBLEMS FOR SEC. 4-3

4-32. Consider the following differential equations of a system:

% — —le(t)—i' 3x2(t)
2= 5x,(t)—5x,(t)+ 2r(t)

(@) Draw a state diagram for the following state equations.
(b) Find the characteristic equation of the system.
(c) Find the transfer functions X (s)/R(s) and X (s)/R(s).

4-33. The differential equation of a linear system is

3 2
d ygt)+5d ygf)+6dy(t)
dt dt dt

+10y(t)=r(t)

where y(t) is the output, and r(t) is the input.
(@) Draw a state diagram for the system.
(b) Write the state equation from the state diagram. Define the state



variables from right to left in ascending order.

(c) Find the characteristic equation and its roots. Use any computer
program to find the roots.

(d) Find the transfer function Y(s)/R(s).

(e) Perform a partial-fraction expansion of Y(s)/R(s).

(f) Find the output y(t) for t > 0 when r(t) = u (t).

(g) Find the final valu