

• Table of Contents

Real 802.11 Security: Wi-Fi Protected

Access and 802.11i

By Jon Edney, William A. Arbaugh

Publisher : Addison Wesley

Pub Date : July 15, 2003

ISBN : 0-321-13620-9

Pages : 480

"Real 802.11 Security provides clear descriptions of current

and emerging security techniques. The authors handle

complex topics nicely, and offer significant clarification of

IEEE draft standards."

-Russ Housley, IETF Security Area Director and founder of

Vigil Security, LLC

"This is certainly the definitive text on the internals of

802.11 security!"

-John Viega, founder and chief scientist, Secure Software,

Inc.

http://www.informit.com/safari/author_bio.asp@ISBN=0321136209
http://www.informit.com/safari/author_bio.asp@ISBN=0321136209

"This book keeps the exposition as straightforward as

possible and enables you to cut through the maze of

acronyms, hacking tools, rumored weaknesses, and vague

vendor security claims to make educated security decisions

when purchasing or deploying WLAN."

-Simon Blake-Wilson, Director of Information Security, BCI

Business professionals and advanced home users are

captivated by the convenience of working on wireless

networks. But how can privacy and security be maintained

effectively? Real 802.11 Security describes an entirely new

approach to wireless LAN security based on the latest

developments in Wi-Fi technology. This is the book that will

show you how to establish real security within your Wi-Fi

LAN.

Recent developments in Wi-Fi security achieve what no

amount of reconfiguration can do: They solve the problem

at the source. Wi-Fi Protected Access (WPA) repairs

weaknesses in existing Wi-Fi systems and is designed to

allow software upgrades. The upcoming 802.11i standard

will offer a much higher level of security than previously

offered and will provide flexible, extremely secure solutions

for future products.

Real 802.11 Security addresses the theory,

implementations, and reality of Wi-Fi security. It provides an

overview of security issues, explains how security works in

Wi-Fi networks, and explores various security and

authentication protocols. The book concludes with an in-

depth discussion of real-world security issues and attack

tools.

Written by two experts in wireless security, Jon Edney and

William Arbaugh, this book shows you how to stay informed

and aware when making security decisions, and what steps

you can take to implement the most effective, proactive

wireless security now and in the future.

• Table of Contents

Real 802.11 Security: Wi-Fi Protected

Access and 802.11i

By Jon Edney, William A. Arbaugh

Publisher : Addison Wesley

Pub Date : July 15, 2003

ISBN : 0-321-13620-9

Pages : 480

 Copyright

Praise for Real 802.11 Security: Wi-Fi Protected Access

and 802.11i

 Preface

 Why This Book Now?

 Audience

 Organization

 Disclaimer

 Acknowledgments

 Part I. What Everyone Should Know

 Chapter 1. Introduction

 Setting the Scene

http://www.informit.com/safari/author_bio.asp@ISBN=0321136209
http://www.informit.com/safari/author_bio.asp@ISBN=0321136209

 Roadmap to the Book

 Notes on the Book

 Chapter 2. Security Principles

 What Is Security?

 Good Security Thinking

 Security Terms

 Summary

 Chapter 3. Why Is Wi-Fi Vulnerable to Attack?

 Changing the Security Model

 What Are the Enemies Like?

 Traditional Security Architecture

 Danger of Passive Monitoring

 Summary

 Chapter 4. Different Types of Attack

 Classification of Attacks

 Attacks Without Keys

 Attacks on the Keys

 Summary

 Part II. The Design of Wi-Fi Security

 Chapter 5. IEEE 802.11 Protocol Primer

 Layers

 Wireless LAN Organization

 Basics of Operation in Infrastructure Mode

 Protocol Details

 Radio Bits

 Summary

 Chapter 6. How IEEE 802.11 WEP Works and Why It

Doesn't

 Introduction

 Authentication

 Privacy

 Mechanics of WEP

 Why WEP Is Not Secure

 Summary

 Chapter 7. WPA, RSN, and IEEE 802.11i

 Relationship Between Wi-Fi and IEEE 802.11

 What Is IEEE 802.11i?

 What Is WPA?

 Differences Between RSN and WPA

 Security Context

 Keys

 Security Layers

 Relationship of the Standards

 Summary

 Chapter 8. Access Control: IEEE 802.1X, EAP, and

RADIUS

 Importance of Access Control

 Authentication for Dial-in Users

 IEEE 802.1X

 EAP Principles

 EAPOL

 Messages Used in IEEE 802.1X

 Implementation Considerations

 RADIUS�Remote Access Dial-In User Service

 Summary

 Chapter 9. Upper-Layer Authentication

 Introduction

 Who Decides Which Authentication Method to Use?

 Use of Keys in Upper-Layer Authentication

 A Detailed Look at Upper-Level Authentication

Methods

 Transport Layer Security (TLS)

 Kerberos

 Cisco Light EAP (LEAP)

 Protected EAP Protocol (PEAP)

 Authentication in the Cellular Phone World: EAP-

SIM

 Summary

 Chapter 10. WPA and RSN Key Hierarchy

 Pairwise and Group Keys

 Pairwise Key Hierarchy

 Group Key Hierarchy

 Key Hierarchy Using AES�CCMP

 Mixed Environments

 Summary of Key Hierarchies

 Details of Key Derivation for WPA

 Nonce Selection

 Computing the Temporal Keys

 Summary

 Chapter 11. TKIP

 What Is TKIP and Why Was It Created?

 TKIP Overview

 Per-Packet Key Mixing

 TKIP Implementation Details

 Message Integrity�Michael

 Per-Packet Key Mixing

 Summary

 Chapter 12. AES�CCMP

 Introduction

 Why AES?

 AES Overview

 How CCMP Is Used in RSN

 Summary

 Chapter 13. Wi-Fi LAN Coordination: ESS and IBSS

 Network Coordination

 WPA/RSN Information Element

 Preauthentication Using IEEE 802.1X

 IBSS Ad-Hoc Networks

 Summary

 Part III. Wi-Fi Security in the Real World

 Chapter 14. Public Wireless Hotspots

 Development of Hotspots

 Security Issues in Public Hotspots

 How Hotspots Are Organized

 Different Types of Hotspots

 How to Protect Yourself When Using a Hotspot

 Summary

 Chapter 15. Known Attacks: Technical Review

 Review of Basic Security Mechanisms

 Review of Previous IEEE 802.11 Security

Mechanisms

 Attacks Against the Previous IEEE 802.11 Security

Mechanisms

 Man-in-the-Middle Attacks

 Problems Created by Man-in-the-Middle Attacks

 Denial-of-Service Attacks

 Summary

 Chapter 16. Actual Attack Tools

 Attacker Goals

 Process

 Example Scenarios

 Other Tools of Interest

 Summary

 Chapter 17. Open Source Implementation Example

 General Architecture Design Guidelines

 Protecting a Deployed Network

 Planning to Deploy a WPA Network

 Deploying the Infrastructure

 Practical Example Based on Open Source Projects

 Summary

 Acknowledgments

 References and More Information

 Appendixes

 Appendix A. Overview of the AES Block Cipher

 Finite Field Arithmetic

 Steps in the AES Encryption Process

 Appendix B. Example Message Modification

 Example Message Modification

 Appendix C. Verifying the Integrity of Downloaded

Files

 Checking the MD5 Digest

 Checking the GPG Signature

 Acronyms

 References

Copyright

Many of the designations used by manufacturers and sellers

to distinguish their products are claimed as trademarks.

Where those designations appear in this book, and Addison-

Wesley was aware of a trademark claim, the designations

have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the

preparation of this book, but make no expressed or implied

warranty of any kind and assume no responsibility for errors

or omissions. No liability is assumed for incidental or

consequential damages in connection with or arising out of

the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in

quantity for bulk purchases and special sales. For more

information, please contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales

(317) 581-3793

international@pearsontechgroup.com

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsontechgroup.com
http://www.awprofessional.com/default.htm

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Edney, Jon.

Real 802.11 security : Wi-Fi protected access and 802.11i /

Jon Edney and William A. Arbaugh.

p. cm.

Includes bibliographical references and index.

ISBN 0-321-13620-9 (pbk. : alk. paper)

1. Wireless LANs--Security measures. 2. IEEE 802.11

(Standard) I. Arbaugh, William A. II. Title.

TK5105.59.E36 2004

005.8�dc21

2003049595

Copyright © 2004 by Pearson Education, Inc.

All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted, in

any form, or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior

consent of the publisher. Printed in the United States of

America. Published simultaneously in Canada.

For information on obtaining permission for use of material

from this work, please submit a written request to:

Pearson Education, Inc.

http://www.awprofessional.com/default.htm

Rights and Contracts Department

75 Arlington Street, Suite 300

Boston, MA 02116

Fax: (617) 848-7047

Text printed on recycled paper

1 2 3 4 5 6 7 8 9 10�CRS�0706050403

First printing, July 2003

Praise for Real 802.11 Security:

Wi-Fi Protected Access and

802.11i

Jon Edney and Bill Arbaugh are both recognized

experts in the world of Wi-Fi security, and they both

played a significant role in the development of the

latest security standards. This book will provide you

with a comprehensive understanding of Wi-Fi security,

from the basics of why it's needed to implementation

on your Wi-Fi network. It will provide you with the

information you need to make the right security

decisions in a way that is both easy to understand and

enjoyable to read.

�Dennis Eaton, Chairman, Wi-Fi Alliance, www.wi-fi.org

Real 802.11 Security provides clear descriptions of

current and emerging security techniques. It will be

extremely useful to product designers, network

administrators, and advanced home users. The

authors handle complex topics nicely, and offer

significant clarification of IEEE draft standards. This

book provides timely information about TKIP and CCMP

which is critical to understanding wireless local area

network security.

�Russ Housley, founder of Vigil Security, LLC and IETF

Security Area Director

Edney and Arbaugh have done a remarkable job at

laying out all the details in a clear and thorough

http://www.wi-fi.org/default.htm

manner. They don't hide any warts. This is certainly

the definitive text on the internals of 802.11 security!

�John Viega, chief scientist, Secure Software, Inc., co-

author of Building Secure Software

The approach of Real 802.11 Security will be useful for

a wide audience: IT managers tasked with deploying

WLAN, engineers keen to learn about WLAN security,

as well as curious home users. The book keeps the

exposition as straightforward as possible and enables

readers to cut through the maze of acronyms, hacking

tools, rumored weaknesses, and vague vendor

security claims to make educated security decisions

when purchasing or deploying WLAN. The authors are

two of the leading experts on WLAN security, and I'm

particularly excited to see them working together.

�Simon Blake-Wilson, Director of Information Security,

BCI

The need is there for a good book on 802.11 security,

and the authors have something to contribute. Real

802.11 Security is comprehensive and detailed without

getting mired in the details. I like the writing and think

the book will be helpful for anyone interested in

wireless.

�Robert Bruen, Merrimack College

Real 802.11 Security is an enjoyable, informative and

easy-to-read book about the intricacies of 802.11-

based wireless security. If you want to know about the

important issues surrounding 802.11-based wireless

security, this book will definitely help you.

�Victor R. Garza, security consultant and author

Wi-Fi Wireless LANs are now commonplace in

commerce, public places, and in the home, but their

security flaws have received wide press. WPA and IEEE

802.11i will address these flaws, but people deploying

wireless LANs need information to fully understand the

security issues and have confidence in the available

solutions. Real 802.11 Security fits this bill nicely. It

brings together relevant topics and places them in

context�explaining why the solutions being developed

for WLAN security are as they are.

�Simon Black, security consultant

Preface

Why This Book Now?

Audience

Organization

Disclaimer

Why This Book Now?

Ask anyone with a computer whether they want to be

protected against strangers reading their data or planting

viruses. Not really worth the effort, is it? Everyone wants

this type of protection. However, most Wi-Fi wireless LANs

operating in 2003 have no effective security. In fact, so

many Wi-Fi LANs operate without security that an entire new

hobby, "war driving," has sprung up in which folks drive

around detecting and connecting to unsuspecting networks

for fun. There are Web sites that publish the location and

details of unprotected networks that are found�there are

bound to be some near you! This problem is the result of

people being unaware of the danger, but you are different,

right?

The fact that you are reading this preface means that you

are aware of the need to take active steps to implement

security. Already, you may have implemented some security

approach, perhaps as recommended by the supplier of the

equipment you installed. Would that this were enough. The

horrible truth is that the security systems shipped with Wi-Fi

systems over the period from 1999 to 2002 are completely

inadequate, some would say completely broken. Any

computer-literate person can now download from the

Internet tools that will attack and break into the first-

generation Wi-Fi systems.

This book will show you how to tip the balance back in your

favor�how to establish real security within your Wi-Fi LAN. It

is not just about configuring your computer correctly or

choosing good passwords, although these things are

important. There are many books that focus on "parameter

setting." What we describe in this book is a whole new

approach to wireless LAN security enabled by the recent

development of new core technology for Wi-Fi. The new

developments achieve what no amount of reconfiguration

can do: they solve the problem at the source. In this book

we show how the new approaches work and how they

should be applied to maximum effect. Whether you are a

system administrator or an advanced home user, this book

will open your eyes to current weaknesses and practical,

implementable solutions.

To Wi-Fi or Not to Wi-Fi

For many years, Wi-Fi or IEEE 802.11 wireless LANs were

considered an interesting technology but not mainstream.

This has changed. Now ordinary people and companies, not

just technology addicts and experimenters in IT

departments, see the practical benefits of this technology.

There are two categories of users: business and home.

Corporations set up Wi-Fi LANs to allow rapid network

deployment, to reduce the cost of installing wiring, and to

give workers more flexibility in where and when they work.

Home users also want to avoid installing wiring and like the

ability to use a laptop on the couch or in a comfy chair

outside.

System administrators have a big problem when it comes to

Wi-Fi LANs. On the one hand they recognize the benefits of

wireless both for their own configuration management and

for users. On the other hand, they must not deploy anything

that will be a serious security threat. We say "serious"

because there is always some security risk in any

technology deployment. The only truly secure network is no

network. So system administrators have to choose between

banning Wi-Fi networks or figuring out how to obtain the

needed level of security. Experienced system administrators

recognize that any new system component brings both

benefits and risks. The problem with Wi-Fi up to now has

been how to evaluate the risk.

The Cavalry Is Here

In 2001 those few who deployed security often relied on the

original Wi-Fi security method, called WEP. Regrettably, and

quite suddenly, it was discovered that WEP had major

security flaws and, while arguably better than nothing,

customers were left without effective protection. The result,

in 2002, was an unparalleled effort on the part of the

industry to devise a replacement for WEP, something that

would be impregnable, but which could be used to upgrade

the existing installed systems. In 2003 we see the results of

this effort being deployed.

The new solutions for Wi-Fi security are being delivered in

two installments. The first installment is called Wi-Fi

Protected Access (WPA), announced by the Wi-Fi Alliance at

the end of 2002. WPA has been specifically designed to

allow software upgrade of most existing Wi-Fi systems. It

repairs all the security weaknesses found in older Wi-Fi

systems and has been developed to provide system

administrators with a solution to the security dilemma.

In time WPA will be incorporated into a new version of the

IEEE 802.11 standard (IEEE 802.11i) that is incomplete at

the time of writing. This will provide a flexible and extremely

secure solution for all future products. WPA offers levels of

security much higher than previously available. The failure

of WEP was a sharp wake-up call for the industry and the

prevailing mood during 2002 was "we will never let this

happen again." As a result, the best experts have

participated in creating the new solution and the results

have been reviewed worldwide prior to completion.

Naturally, change brings questions:

"Should I implement WPA now rather than wait for

IEEE 802.11i?"

"What do I do with my existing WEP equipment/Can I

upgrade it?"

"Is it now safe to put Wi-Fi inside the firewall?"

These are the types of questions that this book answers. We

could answer them right here: "yes," "yes," "yes," but our

goal in writing is to ensure that you understand enough

about the mechanics to answer these questions for yourself.

In this book we look at security issues, protocols, and

applications. An overview covers all the important protocols

from IEEE 802.11 and IEEE 802.1X through to authentication

protocols such as RADIUS and EAP. We cover the security

protocols of WPA and IEEE 802.11i in detail. We also look at

the real-world tools that have been used to attack Wi-Fi

systems and you will learn why these will no longer be a

threat.

Audience

This book is written principally for system administrators but

will also be useful to technically oriented home users and

design engineers. It focuses on why the new Wi-Fi security

methods are secure and how they work. You will finish with

an understanding of Wi-Fi security so you will know what

you are doing, and why. The book does not flood you with

pages of installation and configuration instructions for

specific vendor equipment, as that information changes

frequently and becomes obsolete. You should use this book

alongside vendor documentation to create customized

security solutions.

System administrators have been badly burned in the past

by assurances that Wi-Fi LANs had effective built in security,

assurances that did not hold true over time. We feel that

administrators will not want to take at face value

statements like "the new WPA and IEEE 802.11i methods are

completely secure." They should be able to see for

themselves how the security methods are implemented and

understand for themselves why the types of weakness that

existed previously have been overcome. Only when this

trust is reestablished can administrators continue

deployment in comfort. This book attempts to provide all the

information needed for this understanding.

If you are a design engineer in any networking field, wireless

or otherwise, you will find this book relevant. The security

technologies incorporated into WPA and IEEE 802.11i are the

state of the art for data networking, and it is much easier to

learn and understand technology when it is described in the

context of a real system. It seems likely that some of the

techniques incorporated into the wireless LAN area will also

be applied to wired LANs in the future.

If you are just generally interested in the area, you will find

lots of material describing the approach to security that is

needed to provide a robust defense. You may choose to skip

some of the chapters that describe the protocol and you will

probably be surprised to see the real examples of hacking

tools presented in the later chapters.

We assume that you have a reasonable understanding of

how computer networks operate. You don't need to be an

expert, especially to understand the first part of the book,

but we presume you know what a Wi-Fi access point does

and how it is connected to the rest of the network. We don't

explain terms like Ethernet or TCP/IP in detail. There is a

primer on IEEE 802.11 if you are not familiar with the

protocol used to communicate over the air.

clbr://internal.invalid/book/0321136209_24031533.html

Organization

This book is organized into three parts. Roughly speaking,

these parts describe:

Things you should know about security in general

How both the old and new methods of security work in

Wi-Fi networks

Real-world issues and examples of attack tools that

have been (and continue to be) used

In Part I, "What Everyone Should Know," we review issues

that everybody should know about security. Some of these

issues are commonsense, but you may not have thought

about them. If you are already a security expert and

exploring how security works for Wi-Fi, consider skimming

this material because many of the principles will be familiar.

Part II, "The Design of Wi-Fi Security," starts with a primer on

IEEE 802.11 that runs through the basics of Wi-Fi systems

communication. It describes the types of messages that are

exchanged, usually hidden from the end user, and explains

how a portable device like a laptop can find, select, and

connect to an access point. The primer contains a moderate,

but hopefully not oppressive, amount of detail. You need to

understand the messages being sent between the Wi-Fi

components to appreciate the security risks.

After the primer, the book delves into the security protocols

for Wi-Fi. It describes the original Wi-Fi security approach,

WEP, and explains why this method is no longer considered

secure. It then covers the new approaches of Wi-Fi Protected

Access (WPA) and IEEE 802.11i Robust Security Networks.

Both the new methods share a common approach and are

scalable from small networks of a few devices up to

international corporations. The solution involves many

pieces assembled in layers. This makes the approach

appear complicated but, if you take one layer at a time, you

can understand each part separately.

Part III, "Wi-Fi Security in the Real World," returns to

practical issues. We start off with a review of security in

hotspots or public access networks. Such network access is

becoming increasingly popular in Internet cafes and

airports; and hotspots bring their own special security risks.

We then look at some of the tools available on the Web that

anyone can download for attacking wireless LANs. Our

philosophy here is that it is only by sitting in the cockpit of

the enemy's plane that you can understand the threat it

poses. Finally we make recommendations about practical

actions for designing a secure network and look at an open

source project that has been established to set up and test

the security approaches that you will need to deploy.

We have not focused on specific vendor products. In the end

each vendor will package the new security approaches in its

own way. They will hide the complexity behind graphical

user interfaces and try to simplify the installation and

maintenance as much as possible. All this can make life

easy for you if you are deploying the equipment. However,

while the work required to install systems can be boiled

down, we believe that the understanding of what is going on

should be sharpened up. Why? Because at the end of the

day, you're the one that gets hurt by attacks, not the

vendor.

There is no "neighborhood watch" scheme for network

security. The administrator or owner of the equipment must

be aware of the risks and be proactive in response. Of

course most people can't afford, and don't want, to spend all

their time working on security issues. We all welcome

shortcuts from vendors that simplify or set up the systems.

However, remember that salespeople are optimists, but

security people must be pessimists.

Our advice to you is simple: Be informed. Take advantage of

vendor tools to simplify installation and management but

understand what they are doing. Know enough to decide

what is best for you and to tweak under the hood when you

think it is necessary. Make better purchasing decisions and

sleep well at night. Helping you meet these goals is the

purpose of this book.

Disclaimer

Readers should be aware that some of the standards

described in this book are still under development and may

have changed by the time this book is published. The

information in this book is intended to be descriptive and

should not be relied upon for implementation as a substitute

for the published industry standards.

clbr://internal.invalid/book/0321136209_24031533.html

Acknowledgments

Many people helped in the creation of this book. The authors

wish to thank the major reviewers: Simon Black, Robert

Bruen, Victor Garza, John Viega, and Dan Seth Wallach for

their attention to detail and helpful input. In specific areas

we greatly appreciated the insight and comments of Simon

Blake-Wilson (authentication), Russ Housley (TKIP and

CCMP), Nancy Cam-Winget (key hierarchy), Bernard Aboba

(access control), Henry Haverinen (public access), and Mike

van Opstal and Adam Sulmicki (configuration issues).

We are grateful for the cheerful but persistent support of our

commissioning editor Jessica Goldstein and the work of the

Addison-Wesley production team, Elizabeth Ryan, Elizabeth

Collins, Maria Coughlin, and Rob Mauhar.

We also wish to acknowledge the work of IEEE 802.11 Task

Group 'i' members in creating the security solutions that we

have been able to document.

Finally, Jon would like to acknowledge his wife Margaret for

her quiet but strong support, and Bill would like to thank his

family for their understanding and support while completing

this book.

Jon Edney, 2003

www.wifi-security.co.uk

William A. Arbaugh, 2003

Department of Computer Science

University of Maryland, College Park

Part I: What Everyone Should

Know

Chapter 1. Introduction

Chapter 2. Security Principles

Chapter 3. Why Is Wi-Fi Vulnerable to Attack?

Chapter 4. Different Types of Attack

clbr://internal.invalid/book/0321136209_24031533.html

Chapter 1. Introduction

Setting the Scene

Roadmap to the Book

Notes on the Book

Setting the Scene

Broadcast radio and, later, broadcast TV have defined

wireless for two generations. The ability for radio waves and

TV signals to go anywhere and be heard and seen by

anyone has provided huge benefits to the general public

since the early twentieth century. If you are the receiver this

broadcast capability is very attractive, but sometimes for

the sender these broadcast qualities can be a major

disadvantage.

The military were the first to address the disadvantage of

being heard by everyone. To protect communications over

radio, the military adapted secret codes that had for many

years been used to protect written messages. Techniques

such as spread spectrum transmission were invented to try

to prevent unwanted reception. Catalyzed by the need to

protect wireless communication during the Cold War (1950

to 1980), huge advances were made in secure

communications, but the general public did not receive any

direct benefits from this work.

Because wireless technology has advanced and dropped in

price, now almost everyone uses both radio receivers and

transmitters�in mobile phones, cordless phones, Wi-Fi LANs,

and a host of other equipment. However, along with this

proliferation in use, over the past few years millions of

people in industry and at home have had to face up to a

basic conflict. They want the wireless advantage, "receive

anywhere," without the wireless feature of "send to

everyone."

This book specifically addresses Wi-Fi security. Wi-Fi is the

most popular wireless method for networking computers,

and people use it widely both in corporate locations and in

the home. Typically a Wi-Fi "adapter card" is inserted into a

computer so data can be sent to other computers or the

Internet via a short-range radio link to a Wi-Fi access point.

It means you can work at your desk or in a conference room,

in your home office or in the family room. It provides

freedom. Increasingly, Wi-Fi "access zones" in shops or

hotels also provide Internet access to people "on the road."

Wi-Fi is not the only wireless technology available. For short-

range communications Bluetooth or HomeRF[1] can be used.

Cellular modems can also be used if a low connection speed

is acceptable. However, Wi-Fi provides simple wireless

broadband access and has become the market leader.

[1]
 HomeRF was a market competitor during 2000�2001 but lost out to

the more successful Wi-Fi technology.

"Wi-Fi" is a brand name coined by the Wi-Fi Alliance. The

purpose of the brand is to identify products that have been

tested to ensure interoperability between vendors. Wi-Fi

products include plug-in adapter cards, network adapters

connected by USB, access points, and integrated devices

such as personal digital assistants (PDAs) or even cellular

phones. The Wi-Fi Alliance has established a testing program

that operates all products bearing the logo in conjunction

with a range of products from other vendors. As a result,

customers can be confident that products will work outside

the store. Wi-Fi products must be designed using an industry

standard, known as IEEE 802.11.[2] There are various

subgroups within IEEE 802.11, and each one is assigned a

letter. For example, IEEE 802.11b is the standard on which

many Wi-Fi systems are based today.

[2]
 The IEEE (Eye-triple-E) is a nonprofit, technical professional

association of more than 377,000 members in 150 countries. The full

name is the Institute of Electrical and Electronics Engineers, Inc.,

although the organization is most popularly known and referred to by its

acronym.

You may have used Wi-Fi systems already. Perhaps you have

become addicted to the convenience of working wherever

suits you best, but you are wondering how to maintain the

privacy of your information and you may have tried some of

the security features built into your Wi-Fi system. Because

you are reading this book, you are probably still concerned

about the level of protection you have. You are right to be

concerned. As you read through this book, you will realize

that the tools provided with most Wi-Fi systems to date are

not adequate to protect you. Although some of your data

might not be important enough to attract any serious

attack, the availability of downloadable attack tools means

that even the kid next door might be able to get at your

data. Our goal is to not only guide you to a secure solution

but also to ensure that you get a good understanding of the

problems of security and how they are solved.

clbr://internal.invalid/book/0321136209_24031533.html

Roadmap to the Book

We once took a tour of a well-known brewery in St. Louis,

Missouri. We mention this not just because we enjoyed it,

but because the tour, like this book, was divided into three

parts. In the first part of our tour we were informed about

the issues of beer�the difficulties of producing good flavor

and the importance of good ingredients. In the second part

we walked the factory floor and looked at the machinery,

the tanks, and pipes involved in the production process.

Finally, we met the real thing as we were given the

opportunity to drink the product.

In a similar way the three parts of this book address the

theory, implementations, and reality concerning Wi-Fi

security. If you are not interested in the mechanics, you can

skip the finer details. Likewise, you may be comfortable with

the theory and want to focus on how it is put into practice.

Either way, you do not have to read the book from cover to

cover to realize its benefits.

Part I examines the security problem in general. Initially we

look at the general principles on which security is built and

then specifically at why Wi-Fi and other wireless LAN

technologies are vulnerable to attack. We discuss where

attacks might come from and the types of people who might

carry them out. Finally we look at the types of tools that

attackers use to break into systems. This section of the book

is not highly technical, but it should help you understand

how vulnerable a Wi-Fi system can be.

In Part II we head to the factory floor to look at the

machinery that can protect you. In the overview of how Wi-

Fi systems work, we do not discuss such issues as how to

install the software drivers or how to plug in the USB

connector. Instead, we go right into the IEEE 802.11 protocol

to look at the messages being transmitted between

systems. It is at this level that the attack tools work, and it

is only at this level that you can get an understanding of

how the security defenses work. The original IEEE 802.11

standard did provide a security method called "WEP." Many

people relied on WEP for protection and were alarmed to

discover that it was not effective. Part II includes a chapter

that details how WEP works and why it was broken. Look

here for a useful lesson in understanding security.

The remainder of Part II describes the security technologies

that are being introduced to provide real protection. There

are many pieces to the picture, and successive chapters

deal with the solutions from the lowest layers up. You may

have seen jargon words and acronyms used in relation to

Wi-Fi security. You will find them explained here.

Part III moves to real implementation issues. We look at the

special requirement of public access networks such as

hotspot zones. We review attacks that have been performed

against Wi-Fi systems and analyze how they worked. We let

you sit in the attacker's seat and, if you wish, try out some

of the attack tools yourself. This is a good way to test

whether you can break into your own system. Finally, we

look at an open source implementation of wireless LAN

security. We do not provide step-by-step guides to installing

particular brands of equipment. When you understand how

all the pieces fit together, you will be much better

positioned to understand and successfully follow the

installation instructions that come with the products you

purchase.

Notes on the Book

We describe many techniques for attacking Wi-Fi systems

and even provide step-by-step instructions on how to use

attack tools. Some people are uncomfortable with this

approach, but we reject the argument that it assists people

who have bad intent. Those people will find out what they

need to know one way or another. It is the honest people

who will be left in the dark unless these details are exposed.

Unless you are familiar with your enemies' weapons, you

cannot set up a proper defense.

Also, there is an emotive debate about the word "hacker."

This word was originally coined to describe honest,

hardworking, and very inventive programmers. It is still

used with this meaning by some in the industry, who prefer

the word "cracker" to describe security attackers. The

general public, however, uses the word "hacker" to mean a

person who attacks computers with malicious intent. We use

the word "hacker" in this sense, and we apologize for any

irritation this causes.

Finally, to avoid confusion, we'd like to clear up the

relationships among the terms Wi-Fi, wireless LAN, and IEEE

802.11.

Wireless LAN is a general term used for short-range,

high-speed radio networks. Wi-Fi is one kind of wireless

LAN.

IEEE 802.11 is the formal technical standard that

defines how Wi-Fi systems operate.

Wi-Fi is the industry standard for products based on

IEEE 802.11 as defined by the Wi-Fi Alliance. Wi-Fi

products are tested for compatibility among different

manufacturers.

Broadly speaking, IEEE 802.11 and Wi-Fi refer to the same

thing, but some parts of the IEEE 802.11 standard are not

implemented by Wi-Fi systems and, conversely, some

extensions are added. If you have any doubts, substitute

"Wi-Fi" every time you see "wireless LAN" or "IEEE 802.11."

clbr://internal.invalid/book/0321136209_24031533.html

Chapter 2. Security Principles

This chapter is a guide to security thinking. Although it ends

with a section defining common terms, it is not intended to

be a primer on cryptography. Rather it reviews the

assumptions that people make when setting up networks

and generally in communication. We see how it is necessary

to challenge assumptions to identify weaknesses and move

toward a secure environment.

clbr://internal.invalid/book/0321136209_24031533.html

What Is Security?

The word security can mean different things when taken in

different contexts. For instance, we talk about security in

relation to national policy, personal safety, financial risk,

and privacy of communication. We even use the word to

describe our state of emotions. So what is the common

thread that links these definitions? Why do we use the same

word to describe protection from muggers and protection

from hackers?

We propose to define security in the context of two groups:

"the good guys" and the "bad guys." It doesn't matter if we

are talking about people, robots, or computers; in our

definition, if there are no "bad guys," you are secure by

default. Imagine a perfect world with no crime�there would

be no need for a police force. Security tries to create such a

perfect world, not globally but in a controlled space; it tries

to create a bubble within which there are no "bad guys" at a

given time. National security performs this role for a

country, personal security for the living space of an

individual, and emotional security for the confines of a

person's mind. If the security is implemented successfully,

the entity being secured is immune from the influence of the

"bad guys." It is as though the bad guys don't exist.

As we look at Wi-Fi security, keep this goal in mind: Make it

as though the bad guys don't exist. It is dangerous to focus

on only one mechanism of security, such as data encryption,

or to concentrate on defending against a certain type of

attack. Also, it is wrong to ignore security weaknesses just

because they have low consequences. Suppose a virus

succeeds in getting into your computer, but it does no

damage. Would we say security hasn't been breached

because no damage was done? No, because although there

is no consequence, we still have a security breach. In the

same way, solutions for Wi-Fi LAN security should prevent

any sort of interference with, or monitoring of, your actions.

This is the ultimate goal of security.

With the new Wi-Fi security measures covered in this book,

we can come close to this ultimate security goal. There is

only one thing we cannot achieve because we are using

wireless. Someone can prevent your communications by

transmitting a jamming signal; in other words, the bad guys

will still be able to demonstrate their presence by blocking

communication. But if we design our security protocols

correctly, and install them correctly, that is all they can do.

Good Security Thinking

Rather than dive straight into the methods for implementing

network security, let's take a high-level look at six principles

of security thinking. You won't find these principles in a book

such as How to Make Friends and Influence People; they are

inevitably based on a philosophy of mistrust.

1. Don't talk to anyone you don't know.

Accept nothing without a guarantee.

Treat everyone as an enemy until proved otherwise.

Don't trust your friends for long.

Use well-tried solutions.

Watch the ground you are standing on for cracks.

The sixth principle is a bit cryptic. The "ground" in this

context refers to the pile of assumptions we all stand on. As

you will see shortly, this sixth principle is the real danger

zone in security and one of the most fruitful for the enemy.

1. Don't Talk to Anyone You Don't

Know

In the context of security, this means you must be 100%

certain about the identity of a device or person before you

communicate. Security gurus point out that it is impossible

to be 100% certain of anything, but it is the job of security

designers to bring you as close to 100% as you need.

To understand this principle even

better, consider this analogy.

Imagine you are at a wild party.

You are strapped to a chair in the

middle of the room and

blindfolded. Nobody touches you

and your nose is covered so you

can't smell peoples' perfume.

Well, we never get invited to

these sorts of parties anyway;

but if you did, you would know

what it feels like to be a Wi-Fi

LAN.

In this scenario, you can listen and you can speak, but you

have no other means to identify the people in the room. A

simpler (albeit more boring) analogy is a telephone

conference call. In ordinary phone conversations, during

which we can hear but not see the other person on the

phone, we constantly prove to ourselves that the other

person is who we think he is. In most cases, we do this

subconsciously. Initially we assume the caller is who he says

he is; we accept his identity as stated. However, before we

open our communications channels, we test that identity. If

we know the caller, we recognize the voice and we go

straight to open mode. If we don't, we cautiously open up as

we hear information that is consistent with the person's

stated identity. Throughout the call, we continue to monitor

and are alert to comments that sound strange or out of

context.

Conference calls are difficult because more people are

involved and you need to constantly identify who is talking.

Imagine that somebody makes a comment that you don't

quite hear and you say, "Could you repeat that?" The

comment is repeated, but can you be sure the same person

repeated it, or that what was repeated is the same as the

original comment?

The only reliable solution to this quandary is to require that

the identities of all the call participants be proven without a

doubt for every sentence they speak.

For a Wi-Fi LAN, it is not enough to verify the identity of the

other party. A Wi-Fi LAN must also verify that every message

really came from that party.[1] A simple method to

authenticate someone is to require that they know a secret

password or key. This can be used at the start of

communication to establish identity, and then the same

secret key can be incorporated into each message to ensure

the message's authenticity. The idea is that, even if enemies

are impersonating valid network addresses and other

information, they cannot substitute rogue messages for

authentic ones because they don't know the secret key,

which must be incorporated into every message. This

approach was the basis of the original IEEE 802.11/Wi-Fi

Security protocol called WEP; but, as we will see later, it was

too simple to be secure in the long run.

[1]
 A variation on this theme is when you want to be sure a group of

messages all came from the same sender, even though you don't know

the identity of the sender.

2. Accept Nothing Without a

Guarantee

Like "security," the word "guarantee" means different things

to different people (for instance, try taking your used car

back to the dealer when things go wrong). In the context of

network security, "guarantee" means a guarantee of

authenticity. In other words, it is proof that the message has

not been changed.

You know the sender must prove his identity before you

accept his message, but you also need to be sure that what

you receive is the message the sender intended to send and

that the message has not been modified, delayed, or even

replaced with a new message.

At first this seems like a small point and one that is

essentially the same as proving the identity of the sender.

After all, if the message has been altered, then surely the

enemy must have intercepted and resent it.

Consider the following.

1. A friend sends a valid message to you.

An enemy intercepts the message before you receive it,

modifies some bits, and then sends it on to you.

You receive the message and check the sender's identity;

but because the enemy sent it last, you can detect the

interception, right?

Well, no…there are two flaws in that conclusion, as shown in

Figure 2.1. The first is that it assumes it is possible to know

who sent you the message. Remember the onus is on the

sender to provide proof for the receiver to check. In a

wireless environment, we cannot expect the receiver to

have a magic method of knowing who sent the message

other than by reading its contents. Therefore, if an enemy

forwards an identical copy of a message sent by a friend,

how can the receiver possibly know that it has been handled

in transit? Therefore, you cannot detect that a message has

been handled simply by looking at it.

Figure 2.1. Modified Message

Appears to Come from a Friend

The second flaw is one of those hidden assumptions. We

have assumed it is necessary for the enemy to receive and

then resend the message. However, in a wireless

environment, the enemy might discover a way to modify the

message while the friend is transmitting it. Today, we don't

know any way to do that. But you could imagine that a

carefully timed burst of radio transmission from the enemy,

colliding with the friendly transmission, might cause the

receiver to interpret a bit to have a different value, even

though the rest of the transmission came from the friend. In

this case the enemy has tampered with a message without

retransmitting it at all.

In practice many security protocols use a method that

provides both identity proof and tamper-resistant packaging

in the same algorithm. However, the rule still applies:

Accept nothing without a guarantee.

3. Treat Everyone as an Enemy until

Proved Otherwise

A few years ago a story circulated about a scam involving

automatic teller machines (ATMs) (Neumann, 2001). We

have since heard several versions of the story, so it might

be urban myth, but it's interesting nonetheless. Someone

obtained an old ATM that had been taken out of service. The

ATM was complete and still had its bank logo attached. This

person installed the ATM in a small trailer, ran it off a

generator, and parked it in a busy downtown area. Shoppers

assumed the bank was being proactive by introducing

mobile ATMs and went to withdraw cash. The machine

displayed an error message saying it was empty of cash, but

it recorded the customers' ATM card information and

personal identification numbers (PINs). Each day, the

criminal made copies of all the ATM cards used and

withdrew the maximum allowed amount from the real bank

for every card, each day, until the scam was discovered and

the cards were disabled. This scam succeeded because the

customers assumed only the real bank would set up an ATM.

The ATM cards did not have the capability to check the

machine's authenticity either.[2]

[2]
 Modern smart card devices can check that they are inserted into a

valid machine.

This example illustrates the importance of not giving

information to anyone until that person has proved identity.

Arguably the customers in this example followed this rule,

but their standard of proof was too low�they trusted the

bank sign on the ATM!

This rule is important in Wi-Fi wireless LAN applications. In a

wired LAN, for example, you have a pretty good idea where

you are connected because you plug the cable into a hole in

the wall, which either you or an IT department maintain.

Assuming you keep your wiring closet locked, you should be

safe. However, by design, Wi-Fi LANs can search the

airwaves looking for networks to join. Access points

advertise their availability by transmitting beacon frames

with their identity. It is, of course, trivial for an enemy to

start up an access point from a van and falsely advertise

that he is part of your network in the hope of fooling a few

WLAN cards into connecting. Later we will see how the new

Wi-Fi security protocols work to ensure that you are not

caught in this trap.

4. Don't Trust Your Friends for Long

"Make new friends but keep the old…." What does it mean

to "keep" a friend? The word "keep" implies an active

process, a process of affirmation. Suppose one day you are

walking down the street and you meet up with your best

friend from high school. This is a nice surprise because you

had lost contact and you hadn't seen this person for 10

years. You grew up with this friend and shared all your

secrets. After reminiscing for a while, you learn things are

not going well and you hear the dreaded words, "Can you

lend me some money? I absolutely promise I'll pay you

back." Why do you feel uncomfortable? Ten years ago you

might have forked over the money in complete confidence.

Why not now? You have not reaffirmed the friendship; you

don't really know who this person is anymore. You would

have to take time to reestablish trust before you were

comfortable again.

Applying this analogy to Wi-Fi security, friends are those

devices you can communicate with and enemies are

everyone else. "Friends" in a Wi-Fi LAN can be identified

because they possess tokens such as a secret key that can

be verified. Such tokens, whether they are keys, certificates,

or passwords, need to have a limited life. You should keep

reaffirming the relationship by renewing the tokens. Failure

to take this step can result in unpleasant surprises.

There is a difference between policy and protocol. In simple

terms, the security protocol is designed to implement the

security policy. You are going to decide for your organization

which people are "friends." You are also going to decide

when those friends can access the network and, for

multisite corporations, where they are allowed access. All

these issues are part of security policy. It is then the job of

the security protocol, in conjunction with hardware and

software, to ensure that no one can breach the policy. For

example, enemies should never get access.

In the Wi-Fi LAN context, a friend is usually a person or a

computer. If you are talking to some dedicated equipment,

such as a server or a network gateway, you need to

establish that the equipment is considered a friend in your

security policy. However, in the case of laptop or desktop

computers, it might not be enough to identify the

equipment. The laptop might have been stolen or left

unattended. In these cases, you need to be sure the person

using the computer is also legitimate. Memorizing a

password is the most common way to do this.

Normally, well at least in theory, people who work for your

company are friends and it is acceptable to communicate

with them. In larger companies the notion of "friend" can be

divided down to departments or projects. Even when you

are certain of the other party's identity, you might have to

check whether she has left the company or moved off the

project.

Corporations have security databases that are constantly

updated with the access rights or credentials of all

prospective friends. Later we will look at how Wi-Fi LAN

security can be linked to those databases. However,

accessing such a database often requires a significant

investment in time and resources, and in some cases, the

database might be temporarily inaccessible.

To reduce overhead, it is common to verify another person's

credentials and then assume these credentials are OK for a

limited period of time before checking again. The actual

amount of time can be set by the security administrator and

might vary from a few minutes to a few days.

5. Use Well-Tried Solutions

A security guru will never say that something is "totally

secure." So what's the best you can do? How can you ever

develop trust in a security protocol?

Part of security psychology involves developing a high level

of mistrust for anything new. To see how this affects

people's attitudes, let's take encryption as an example. The

object of encryption is to make the encrypted data look like

perfectly random noise. Suppose you take an arbitrary

message, pass it through the encryption algorithm, and

send it over a communications link. Then repeat the process

millions of times, sending the same message over and over

but encrypting it each time before sending. If the encryption

algorithm is good, every transmission will be different and

look totally random. If you could do this with no gaps in the

transmission, no amount of analysis on the output stream

would reveal any pattern�just white noise.

Now comes the hard part. If you really did convert the

message to random white noise, it would not be very useful

because neither the friend nor the enemy would be able to

decode it. The trick is to make it look like noise to the

enemy while enabling the friend to extract the original data.

Many algorithms are available for achieving this goal, but

how can you tell which ones really work? If the message is

to be decoded by the friend, it cannot be true

noise�somewhere there must be some information that

allows the data to be extracted. So how can you be sure an

enemy cannot eventually figure out that information and

decode the message?

The answer to this question has two parts. The first involves

mathematical analysis called cryptanalysis. Cryptanalysis

lets you determine how hard it is to break the encryption

code by conventional or well-known methods. However,

weaknesses can also come from unconventional methods,

such as unexpected relationships between computations in

the algorithm or implicit hidden assumptions. Therefore, the

second part of developing confidence in a new algorithm is

the good old "test of time."

There is no shortage of encryption algorithms. Occasionally,

very occasionally, an algorithm will be broken�that is,

someone figures out how to decode a message without

using the computing power of all the computers in the

universe. However, this is not the primary motivation for

research into new methods. It takes a certain amount of

computing power, energy, and memory to perform

encryption and decryption. Different types of devices have

different capabilities. For example, the computing resources

of a modern desktop computer are different from those of a

mobile phone. Therefore, much of the research into new

methods is directed at tailoring methods to the resources of

real devices. There is no problem deploying an

unbreakable[3] encryption code if you have limitless

computing power and energy, but creating a method that

can be run on a battery-powered PDA is a challenge.

[3]
 We use "unbreakable" here in the real world sense. Theoretically all

encryption algorithms are breakable with enough time and computing

power except the Vernam cipher, which uses pure random data, different

for every message.

The point here is that new methods are still invented from

time to time, and the question then arises whether a new

method is really secure. Initially, security gurus are likely to

be skeptical about the claims of any new algorithm. That is

not to say that they lack interest or enthusiasm�it just

means they won't give it a seal of approval until the method

has a few miles on the odometer.

If you are introducing a new method, you depend heavily on

the interest of the world's security experts if you want to get

the method accepted widely. First of all, the method has to

be publicly available and sufficiently interesting to attract

experts' attention. If it is not novel, or if it includes mistakes,

your method will get nothing more than a sniff. If you are a

credible guru and your method has some good new tricks,

the others might walk around and kick the tires. If you are

really doing well, several of them will go for a test drive. But

before your method can become truly accepted, it needs to

be deployed in the real world for several years, hopefully in

an application that attracts attacks. When a method is

deployed in the public eye, both hackers and legitimate

security researchers will receive kudos if they can break the

system. For example, when IEEE 802.11 WEP was broken,

the story reached national newspapers, and the researchers

who discovered the cracks attracted much attention. But, if

you survive a few years and no one has broken your

method, it can achieve the status of trusted and mature.

You probably will, too.

You can see why it is so hard to get new methods accepted

and adopted. But you can also see why it is necessary for

this process to occur and why security gurus are correct to

take a wait-and-see approach. Notice also that it is not

enough to invent a great method. Unless the method can

attract the interest of the cryptographic research

community and be deployed to attract the interests of

hackers, it can never really be tested.

So what about the new Wi-Fi security methods? How can we

be sure they are safe? It is true that the new security

methods for Wi-Fi have not had time in the field. However,

the technology used to implement them is based wherever

possible on preexisting and well-tried algorithms. It's always

tempting for engineers to reinvent the wheel and come up

with some grand new scheme of their own. Because of the

experience of the security professional involved in the new

Wi-Fi approach, this temptation has been resisted. Having

said that, some new concepts have been incorporated, and

although they have been reviewed around the world, the

"newness" risk does still apply.

We will see later how the lack of review by the security

research community was one of the factors that led to

problems in the original IEEE 802.11 WEP security. By

contrast, the new standard has had participation and review

from world-renowned experts in the field, and the principles

employed, where novel, have been presented at

cryptographic conferences to stimulate review.

6. Watch the Ground You Are

Standing on for Cracks

Every day, we make countless assumptions. From our

earliest days we have learned how to look at situations and

decide which ones are safe and which ones are dangerous.

Over time we perform many of these skills subconsciously;

we learn to trust, and for most of us, that trust is only

occasionally misplaced, sometimes painfully.

Humans automatically transfer safe assumptions from

conscious memory to subconscious behavior. The key word

here is automatically; that is, people are not aware this

transfer happens. In fact, if it didn't happen, we could not

function, as our minds would be cluttered with so many

checks and questions. However, this essential ability for life

is the open door that has been exploited by generations of

con men, pickpockets, and tricksters in performing crimes. It

is also the starting point for hackers who want to attack your

network.

People design software, hardware, and systems. People

write and evaluate international standards. No matter how

sophisticated the design tools, or what computer-aided

design software is used, the designers' assumptions still

come shining through. Some are valid and some false�and,

more dangerously, many are applied subconsciously or

implicitly.

Consider a medieval castle. The designers could specify

thick walls, deep moats, and strong gates. They could

require that gallons of boiling oil be kept ready at all times.

But how would the castle folk fare against a modern

helicopter cruising overhead, dropping boiling oil on them?

They would have no defense because the designers

unconsciously assumed that attacks would not come from

the air. This assumption is a hidden weakness of the castle

design.

How is it possible to protect against things that you can't

even imagine? How can you see the implicit assumptions

and bring them forward for inspection and testing? There is

no certain way, but these challenges mold the way of

thinking for security experts.

As a result, it can be difficult to have ordinary conversations

with security experts. Here is a simple test to determine

whether you are talking to a security guru: Ask him to name

the security system he considers to be the strongest in the

world for sending secret data by any method (wireless, wire,

smoke signals, whatever). Then ask the following question,

"Would I be secure if I implemented this in my system?" If

the answer is "yes," you are not talking to a real security

guru.

Security gurus never say, "This is completely secure." They

make statements like, "Based on the assumption that

attackers are limited to computational methods and

processor architectures similar to today, it is

computationally infeasible to mount a [certain type of

attack] and no other types of attack are known to be more

effective at this time." Sometimes they are prepared to say

that one method is definitely as secure as another method,

but the word "definite" doesn't get too many outings in the

security expert's vocabulary.

Such hedging doesn't translate well to the glossy front of a

product box, where customers simply look for the words

"this is secure." The best approach for a customer is to

understand the strengths of the security method used and,

where possible, the assumptions that were made in the

design. If the assumptions are reasonable, the method is

well designed, and plenty of people are using it (to ensure

future support), the customer can be comfortable.

The challenge for hackers, of course, is to look for the little

cracks and crevices that result from hidden assumptions.

Unfortunately for the rest of us, this search is an intriguing,

fascinating, and motivating challenge for hackers. Some

people like to do crossword puzzles, and some people like to

play sophisticated problem-solving computer games, often

wrapped in a fantastical visual landscape. Hacking is

another form of these mind games. When inventing a new

virus or a password-cracking program, the hacker is trying

to see into the mind of the designer and look for false

assumptions that were made subconsciously. For example, a

recent virus called "Code Red" (actually a worm) worked by

exploiting the fact that when internal memory buffers

overflowed in a computer, information was accidentally left

in memory in a place that was accessible from outside. The

system's designers made the false assumption that buffers

do not overflow and that, if they do, the excess buffers are

properly thrown away. Almost certainly this was a

subconscious assumption; it was false and an attacker found

it.

Security Terms

To set up a system in practice, we need to implement the six

principles covered in the previous section using mechanisms

that tend to be similar from one system to the next. It

doesn't really matter whether you are implementing a

system to send secret letters by pigeon or a security

method for a wireless LAN. Some common processes and

terms should be understood. This section briefly describes

some of the main terms used in security. Sometimes words

in common use have a specific meaning in security. For

example, the word "encryption" tends to be used in

common speech to refer to an entire security protocol,

whereas in security it refers to a single specific process.

Threat model: We need a means to measure whether a

security system meets its goals. One way to understand

the security goals in a given situation is to make a list of

all the types of attack that are known. This "list" is used

to create the threat model, which is the basis for

designing and evaluating security. Having created the

list, we then identify all those threats against which we

plan to defend. From a practical standpoint, some of the

threats on the list may be too low risk and too expensive

to defend against. As an example, the threat model for

protecting wired Ethernet LANs does not (usually)

include the threat of being monitored via the tiny

radiations coming from the wires. By contrast, unwanted

monitoring of radio emissions is central to the threat

model of wireless LANs.

Security protocol: Many people use the word

"encryption" in a general way to talk about security. You

often hear people talking about "sending data over an

encrypted link," and so on. This is dangerous because

encryption is only one part of the process, albeit a very

important part. Real security is provided by a set of

processes and procedures that are carefully linked

together. This set of procedures and processes is called

the security protocol. It is important to realize that even

if the most advanced encryption techniques are used,

you have no security if they are used together in the

wrong way.

Keys and passwords: These terms are often used

interchangeably, although there is a slight difference in

meaning. Both refer to a piece of information that is

intended to be secret to two or more parties.

Conventionally, the term password is used to refer to

keys that are chosen by humans. The term key is more

often used to describe information generated by a

machine that is usually not human-readable. You will

often see references to the length of the key. For

example, the original IEEE 802.11 had "40-bit" keys,

whereas most Wi-Fi WEP systems have "128-bit keys." In

general, longer keys are more difficult to crack than

shorter keys, but not always�it depends on the key

entropy (described next).

Key entropy: What is important about passwords and

keys is the number of different possible values a key can

take. Theoretically, a 40-bit key has 240 or 1,000 billion

possible values. However, if we restrict the values that

are allowed, the effectiveness of the key goes down. For

example, suppose the user enters a 40-bit key as five

uppercase letter symbols (assume each letter uses 8

bits, hence 40 bits total). An example of such a

password is the string "LASER." Because each symbol is

limited to only 26 letters, you can have only 265 (or

about 12 million) different passwords. By limiting the

type of password, you have reduced the number of

possible passwords by a factor of 100,000. The number

of possible key values determines the strength of the

key and is known as the key entropy. In our earlier

example, the restriction to using uppercase letters has

reduced the key entropy (and hence its effectiveness)

from 40 bits to 23 bits, even though the key remains 40

bits long. If we restricted ourselves to known words and

names, it would be reduced even more.

Authentication: The heart of security is the ability to

distinguish the "good guys" from the "bad guys." If you

can't be sure whom you are talking to, you can't protect

yourself against attack. The term authentication is

used at two different levels in security protocols, and

this sometimes leads to confusion. The first level is user

authentication and the second level is message

authentication. The objective of user authentication is to

prove that the other party with whom you want to

communicate is who she says she is. Note that although

we talk about "user" here, it could be that the other

party is a computer or even a software process running

on a server rather than a person. Message

authentication has a different objective: to prove that a

received message has not been tampered with, delayed,

altered, or copied. A message is said to be authentic if

it passes these tests. Typically, user authentication must

be performed to identify the other party, and message

authentication is done to ensure that subsequent

communications come from that other party and are

unaltered.

Authorization: The process of user authentication is

difficult to perform correctly. Therefore, it is discussed

extensively in this book and in others. You often see

statements such as,"When the mobile device is

authenticated, the access point allows it to

communicate with the network." This is not quite true.

We saw a cartoon by Gary Larson recently in which a

ghoulish specter was peeking through a partly open

front door held by a security chain. The old lady inside

was saying, "Ah, but how do I know you really are the

angel of death?" The message is simple: the fact that

you know who someone is (authenticate) doesn't mean

you always want to give him access. The decision to "let

him in" is called authorization and comes after

authentication.

Encryption: The process of combining a piece of data

and a key to produce random-looking numbers is called

encryption. It is useful only if a known key can be used

to transform the random-looking numbers back to the

original data. Note that we have said nothing about

LANs, packets, wires, or even time. Encryption is just a

computational algorithm of which there are many

variants. Encryption algorithms are used to create

security protocols.

clbr://internal.invalid/book/0321136209_24031533.html

Summary

In this chapter we looked into the mindset behind security

systems design, as well as into the minds of computer

attackers and legitimate researchers. Seeing how security

gurus think and work is interesting�you don't have to

become a guru to install and run a secure system. Home

users need basic policy skills to run the network and basic

protocol skills to make an informed purchasing choice.

Managers of large networks need complex policy

arrangements and can benefit from a detailed

understanding of the protocols, particularly for problem

diagnosis and interfacing to other systems.

The whole field of security related to computing network is

huge. We have set the scene in this chapter by looking at

the basic assumptions underlying security. The next chapter

considers how these apply to wireless and, in particular, Wi-

Fi networks. If you wish to study the more general aspects of

computer security, these books provide comprehensive

general coverage: Bishop (2002) and Pfleeger et al. (2002).

clbr://internal.invalid/book/0321136209_24031533.html

Chapter 3. Why Is Wi-Fi

Vulnerable to Attack?

This chapter begins by asking the questions "Who is likely to

attack?" and "What motivates them to attack?" By

understanding the enemy, you will be better prepared to set

up and evaluate defenses. We look at the technical

characteristics that make Wi-Fi LANs especially vulnerable

and review different system approaches that have been

applied to try to provide security.

clbr://internal.invalid/book/0321136209_24031533.html

Changing the Security Model

The question in the title of this chapter seems too obvious

to ask. Everyone knows that Wi-Fi LANs use radio waves,

those waves propagate all over the place, and therefore

anyone can listen in on your communications. So why have

a chapter dedicated to this subject? Well, it's worth

spending time looking at the effect that this widespread

propagation has on conventional security models because

this type of uncontrolled propagation creates the problems

we need to solve.

In the past, security architectures were often developed on

the assumption that the core parts of the network were not

physically accessible to the enemy. People inside the

building were considered to be friends, and friends were

expected to monitor visitors. Attacks were only expected in

well-defined places such as the connection to the outside

Internet, where firewalls are located. Wi-Fi LANs turn these

assumptions on their heads. Using radio propagation is like

inviting anyone who passes by, friend or enemy, to come

into your facility and plug into an Ethernet jack of his choice.

This totally open scenario requires a new way of thinking

about LAN security and introduces new challenges. Wi-Fi

LANs are vulnerable because they don't work according to

the old rules.

Another vulnerability follows from the fact that

eavesdropping can lead to breaches of the network. Some

people may not care if outsiders read their communications.

They may feel they have nothing to hide and they aren't

doing anything secret. However, everybody should care if

enemies can come into their network and delete information

or plant a virus. These two threats cannot actually be

separated. If you allow passive listening, you open yourself

to active attacks.

With that in mind, this chapter does not only answer the

question in the title but also looks at the implications of this

vulnerability. Specifically, this chapter considers how a

network is organized in the conventional security model and

how Wi-Fi conflicts with this organization. It also looks at two

ways to adjust the model to include Wi-Fi using VPN and

direct wireless connections. To understand these

implications, however, it is important to first take a look at

the types of people who are likely to try to attack your

network, and discuss their motivations for doing so.

clbr://internal.invalid/book/0321136209_24031533.html

What Are the Enemies Like?

The popular media such as television, newspapers, and

movies are fond of the word "hacker," which has passed into

the English language and probably many others. However,

there is no clear definition for what constitutes a hacker.

Movies usually represent a hacker either as a nerdy, socially

disconnected genius or as a 12-year-old computer

wizard�and neither of these descriptions is usually true. In

fact there are so many activities that can be described as

"hacking" that we could probably all earn the title at some

point or other. Still, there are people who specialize in

attacking computer security in sophisticated ways, and they

certainly merit the title of hacker. It is useful in building our

defenses to try to understand the motivations of those

enemies who are prepared to dedicate resources to attacks.

Hackers fall into categories of threat that you can draw like

a pyramid. At the bottom are people, sometimes called

"script kiddies," who have relatively weak tools. As you

move up toward the top of the pyramid, the number of

attackers decreases quickly but their expertise and the

complexity of their tools increase. This middle section is

where you would start to see cryptographic attack

tools�that is, tools that seek to break into secure systems

rather than just searching for systems where security is

turned off. At the top of the pyramid is a small group we

describe as ego hackers using the most sophisticated

techniques.

Let's start with the casual sorts of privacy violations. If you

peek over someone's shoulder on an airplane to read the

presentation she is preparing, are you a hacker? IEEE

802.11 committee meetings involve hundreds of people

using a huge Wi-Fi LAN. Even here some people forget to

enable protection of their laptops. If, in a boring moment, a

committee member browses around the network out of

curiosity, is that person a hacker?

From the point of view of popular culture, these casual acts

do not constitute hacking. But from the point of view of a

security system, there is no distinction between casual and

dedicated attacks, except in the sophistication of the tools

that are used. All unwelcome network visitors must be

classed as potential enemies regardless of their motivations

or skills.

The enemy has choices in where and when to attack. It is

the job of security policy to anticipate the possibilities and

the job of security protocols to block the attacks. Correctly

anticipating all the options is one of the challenges of good

security. To use a crude example, there is no point in locking

the front door if you leave the windows open.

Almost any attack can be explained by one of these

motivations:

Gaming: A hacker gambles her time and effort in the

hope of a payoff through a successful attack. Many

sports and games rely on a similar motivation. It is the

cyber equivalent to fly-fishing.

Profit or revenge: The attacker wants to steal

information, damage your system because of a

grievance, or alter your system to acquire a tangible

reward (such as money, stock, or pension rights).

Ego: The hacker wants to prove, to himself or his peers,

that he is clever, tenacious, and brave.

The motivation determines the options the attacker

considers. A revenge attacker, for example, may consider

blowing up your network server with a bomb, whereas such

an approach would be unlikely to provide satisfaction to the

ego player.

Gaming Attackers

By far the largest number of attacks come from gaming

attackers. We use this term to describe people who have too

much time on their hands and enjoy playing a game called

"let's see whether we can watch the neighbors without their

knowing."

People can stumble into this type of activity almost

accidentally by downloading a tool they found on the Web

that is designed to compromise security. There are many

such programs and they are easy to download, install, and

run. Chapter 16 looks at a few examples. Some of these

programs simply try to access every Internet (IP) address

possible, looking for a response. These programs, called

scanners, require no technical expertise and can work

unattended. You download it, run it, and go to work, school,

or bed. The next day you can check to see whether it found

anything. These types of programs can sometimes be

successful when running on a broadband connection such as

cable modem or ADSL.

Performing these simple incursions requires little expense.

As with any good game, players can get early, but limited,

positive results such as a list of active computers. It's easy

to see how these types of tools can be captivating. In most

cases the fun wears off, due to lack of success or lack of

interesting discoveries or fear of detection. However, for a

few people the desire to make progress will become

stronger, leading them to look for more powerful tools and

other ways to score successes. People who attack you in this

way generally don't understand security, but they do know

how to run downloaded scripts.

The picture of a fresh-faced teen sliding down the slippery

path to a life of obsession and ultimate destruction is, of

course, more than a little sensational. But it becomes easier

to understand why people get involved in security attacks,

and a few really do move into the hard-core categories.

Fresh faced or not, these attackers are your enemy when

you are setting up network security.

While the gamers are the most numerous, they are easy to

block and against. It is easy to mount this class of attack by

downloading the appropriate scripts and programs. Our

concern here is whether the gaming hackers are likely to

attack Wi-Fi LANs. Such attacks require a different type of

hardware and a greater investment in time. However, all the

elements of "the game" are still there.

Even the simplest security mechanisms provide protection

against low-level attacks. But many Wi-Fi LANs are running

with no security at all. Companies and individuals are often

unaware of security risks or assume that eavesdropping is

the only risk. They may be concerned about security but

procrastinate about taking action�leaving their system in

the default unprotected state that it was in when they

bought it, regularly thinking, "I must figure out that security

configuration stuff sometime." Whatever the reason, there

are many unprotected Wi-Fi LANs and it is quite simple to

get a laptop computer and a Wi-Fi LAN adapter card and

drive around a city or suburb looking for a network to join.

You would be surprised how quickly a network can be found.

Even this simple attack requires more effort than running a

script on your PC at home. You have to have a laptop and

you have to spend time and gas driving around. This fact is

enough to discourage a large percentage of the casual

attackers. Furthermore, if you have any security (such as

WEP) turned on, attackers will probably pass you by in

search of an unprotected network. Generally, they only

attack a protected network if they think you have something

special. If you have broadband Internet access, you are at

risk from attackers who want to use you as an Internet

jumping-off point. They may be looking for free broadband

access. However, there can be a more sinister purpose if the

attacker wants to use your link for illegal purposes. In this

scenario a person might use your account to download

illegal pornography or to coordinate with other criminals or

even terrorists. You are likely to be completely unaware of

this type of incursion.

In rare cases, hackers who are moving up the "difficulty

levels" may consider the security implemented on your

system as a challenge for gaming. WEP does have

weaknesses that can be exploited by special tools easily

downloaded from the Internet (see Chapter 6).

Profit or Revenge Attackers

You are unlikely to suffer an attack for profit or revenge if

you are a home user (unless you have a dog that likes to dig

up the neighbor's lawn or something similar). In reality,

attacking for profit is probably not that common. There have

been cases in which credit card databases have been

compromised. Stealing credit card information is actually a

form of identity theft because the information can be used

to make purchases while the thief is pretending to be the

cardholder. Such identity thefts can usually be detected, and

the culprits run a risk of being caught and sent to jail.

However, there may be many more subtle attacks that are

undetected. For example, if an attacker could read the

financial results of a corporation before they were

announced, he might be able to make money by buying or

selling shares. This is an ideal attack because, providing his

stock transaction is not so huge as to get attention, no one

would ever know that an attack had occurred. This is why

we used the word "probably" when we said profit attacks are

rare. There is no good way to assess how any of these types

of attack occur.

The risk of revenge attacks from disgruntled ex-employees

or even customers is growing. This can show up as attempts

to corrupt a Web site, plant a virus, or delete files. You can

see that there is an important distinction between profit and

revenge attacks. Profit attacks try to leave no trace. The

point of a revenge attack is to be as visible as possible.

Profit or revenge attackers have a specific objective and a

particular target, and they are prepared to invest time and

money into planning. They are likely to research the best

methods, think about weaknesses, and find the right tools

for the attack. If you use a Wi-Fi LAN, they will consider it as

an avenue for attack.

Doing reconnaissance on Wi-Fi LANs is easy. The attacker

drives as close as possible to your building, starts up a

laptop, finds out what networks you have running, and

identifies the names of the access points. With simple tools,

he can find out how many users are operating. He can

quickly determine whether you are using Wi-Fi LAN security

and whether it is WEP or some other system. If you have no

security in operation, he can connect immediately. It may be

that even if he gets on your network, you have logon

passwords for all the servers; but, as has been mentioned

previously, this only increases the level of sophistication of

the required tools. If the attacker is smart, he will make

several trips and try to remain undetected either until the

job is done or until he is ready to inflict the damage.

The fact that these types of attacks can be performed over

a period of time allows the enemy to go away and gradually

learn more and acquire stronger tools. It is this iterative

process, driven by a specific goal, which makes this

category of attacker dangerous. If revenge is the goal then,

when accomplished, the attacker will probably not repeat.

He will have "gotten even" in some dysfunctional way of

thinking. Of course, the profit attacker is very likely to

repeat if undetected and poses a threat that increases over

time. This is one reason why companies need to

continuously reevaluate security policy and put effective

monitoring in place

One interesting approach to detection of such attacks is a

honeypot network.[1] This type of network is actually

designed to attract attacks. A honeypot network looks like a

conventional network, but it is intentionally weak and not

attached to any real data. Your goal is to catch the attacker

before he or she recognizes the trap.

[1]
 For more information, see Lance Spitzner, Honeypots: Tracking

Hackers. Boston: Addison-Wesley, 2003.

To construct a simple honeypot network, set up an access

point, attach it to an old computer, and put a load of useless

junk data on the computer. Create directories with names

like "Accounts" or "Personnel" that are access protected.

Give the access point a different network name from that of

your real network and site it near the visitors' parking.

Leave WEP off or turn it on with a weak password like

"admin." Make sure that all your legitimate clients are

configured only to use the legitimate access points. Then

watch for a wireless client attached to the honeypot access

point. Most access points can log when a client connects.

You may be able to use a network management program to

get an audible alert. This would give you the opportunity to

stroll outside to look for a suspicious person with a laptop in

his car.

A honeypot network lets you evaluate the likelihood of

attacks on your network and the types of attack being

made. More advanced honeypot servers can gather

information about attackers. If you are interested in

retaliating against a serious attacker through law

enforcement, you need to gather proof of the attacks and of

the identity of the attacker. Some honeypot programs are

not servers at all but instead smart software that emulates

the behavior of a server to keep the attack going while

information is gathered. 00[Sub]7, the Ultimate SubSeven

Logging tool by Jeff Capes, for example, is a program that

can be run on a home computer and sits on one of the ports

most commonly attacked. It logs information when an attack

occurs and can notify attackers of the monitoring�which

usually scares them away.

Ego Attackers

At the top of the threat pyramid is the ego hacker. Ego

hackers come closest to matching the image of hackers in

popular culture. They are motivated by the difficulty of the

task and by the feeling that they are members of an elite

group. They seek contact with other ego hackers and status

within that group. Promotion in the group comes from

demonstrating successful attacks and distributing inventive

new methods. To be successful, a person would need to

climb a long learning curve, understanding all the methods

of attack and assimilating the weaknesses of existing

systems. They would need to understand at a detailed level

how the security protocols work on each system they wish

to attack. Ultimately their knowledge and capability may put

them on a par with legitimate security researchers. A few

ego hackers have crossed the border and established

legitimate security businesses.

Rather than wait for ego hackers to break into security

systems, crypto professionals look for flaws in cryptographic

systems and publish them. This is not popular with the

companies that sell the equipment. For example, when the

attacks on WEP were discovered, many in the industry

wanted to avoid the information becoming widely known.

However, legitimate security researchers know that they are

in a race against the top-level ego hackers. These hackers

will uncover any weaknesses that the researchers don't find

first.

A more contentious issue is the publishing of hacking tools.

For example, the weaknesses of WEP were published and

vendors started to react. Then a software tool called

AirSnort was made available on the Web

(http://airsnort.shmoo.com/), rending WEP security instantly

useless. What was the value in releasing such a tool?

Supporters argued that ego hackers would have developed

such a tool in secret and it was better to develop it in public.

Whatever your stance in this debate, AirSnort certainly got

everyone's attention. The much-improved Wi-Fi Protected

Access (WPA) is the result.

Now we are ready to look at how Wi-Fi security can be

incorporated into existing networks. Trying to attach Wi-Fi

systems to a network with a conventional security

http://airsnort.shmoo.com/default.htm

architecture can cause real problems. These systems have

very different characteristics from conventional wired

hardware.

Traditional Security Architecture

The traditional approach for network security is to divide the

network into two zones: trusted and untrusted. The

trusted zone is the area under your physical control, where

access is limited by the security guard at the front door (or

by your family when at home). There is no need for network

security protection within the trusted zone because there

are no enemies present. You might have an account on your

computer to prevent people from accessing your private

files, but you assume that no one will mess with data going

across the wires between computers.

By contrast, you regard the untrusted zone as full of

enemies. Internet access or even dedicated wired links

through the public network are untrusted. Where the

untrusted network meets the trusted network, there is

typically a firewall to prevent all the enemies getting in (see

Figure 3.1). The firewall is the electronic equivalent of the

security guard (Cheswick et al., 2003).

Figure 3.1. Conventional Security

Architecture

Difficulties arise when trusted people find themselves in the

untrusted zone and want to access their home network.

When you are traveling and staying in a hotel, you need a

safe way to get back to the trusted zone in your company.

One solution is virtual private network (VPN) technology.

VPN extends the trusted zone out into the untrusted area

through a secure tunnel, as shown in Figure 3.2. Imagine

one of the old diving machines in which a diver went down

into the water wearing a metal suit and with an umbilical

cord bringing down air. The secure tunnel is a bit like that

umbilical cord.

Figure 3.2. Remote User in "Trusted

Bubble"

VPN uses a security protocol to form a connection, typically

between a remote person and the home office. Helped by

encryption, this connection is (theoretically) impenetrable to

the enemies in the untrusted zone even though it passes

right under their noses.

VPN can suffer from deployment issues. VPN software must

be installed on the computer of the remote user, and it must

be compatible with that of the VPN server. Because

interoperability between vendors' products is not assured,

you should consider buying the server and the client

software from the same company. This type of VPN solution

works at the Internet Protocol (IP) level and is not usually

built in to network adapter cards such as Ethernet or Wi-Fi

LAN PC cards. Also, because the implementation on the

remote computer is usually in software, VPN may limit the

speeds with which the computers can communicate

(although for remote access the speed of the Internet is

usually the limitation rather than the speed of the software).

VPN is widely used in corporations for remote access and, in

these applications, it is very effective (Norris and Pretty,

2000).

The important question is, "How does Wi-Fi LAN fit into this

conventional security architecture?" Should it be deployed

like the devices in the trusted zone�connected straight to

the network? Or should it be placed behind the firewall? Life

would be much easier if the answers to these questions

were clear. In fact, a Wi-Fi LAN can be deployed either way.

Placing wireless LANs outside the firewall means they must

connect using VPN�a disadvantage. Connect directly to the

network inside the firewall means you have to ensure that

the wireless LAN is inherently secure. Although we briefly

discuss the first option (via VPN), this book focuses on the

second option. A direct connect is more common and it

places bigger security demands on the technology. WPA and

IEEE 802.11i address this option.

Option 1: Put Wireless LAN in the

Untrusted Zone

In some situations the Wi-Fi LAN user is clearly in an

untrusted zone. For example, some airports have installed

Wi-Fi wireless LAN coverage in waiting areas or lounges (for

more detail, see Chapter 14). If you subscribe to the service,

you can connect to the Wi-Fi LAN and have direct high-

speed Internet access while waiting for your flight. This is a

clear example of working in an untrusted zone.

Now think about sitting at your desk in your office. Although

you are in a trusted zone, your wireless signal may be going

down the corridor and out the window. You have to assume

that the signal can be picked up outside the building.

Therefore, even though you are sitting at your desk, you are

operating in an untrusted zone just like an airport. If you

have no security on your Wi-Fi LAN and your access points

are connected to your internal wired LAN, you have

converted your entire building's network into an untrusted

zone!

With the possible exception of national security

headquarters, offices do not have perfect screening. You

may decide, therefore, that Wi-Fi LANs are always operating

in an untrusted zone regardless of where you are. In some

sense you have created the situation shown in Figure 3.3,

wherein the untrusted area extends inside your building.

Figure 3.3. Wireless User Is in

Untrusted Zone

One response to this situation is to handle Wi-Fi LAN users in

the same way that you handle remote users. Make them use

VPN as if they were outside the building. Even though a

person is sitting at her desk, all the communications from

Wi-Fi LAN computers must be encrypted by VPN software

before passing over the network. These communications

then go to the wireless access point and on to an Ethernet

connection that is outside the firewall. From there they go

through the firewall and are decoded by the VPN server.

Finally, the messages are placed on the trusted wired

network and arrive at their destination, which might be the

printer on the desk of a Wi-Fi LAN user. Figure 3.4 shows this

design. There are several disadvantages with this approach:

VPN software on the laptop can sometimes be intrusive,

slowing down communication and limiting the types of

operations that can be performed.

The VPN server may have limited capacity. Often

companies install servers that can handle 20 to 50

users. This is enough for remote users in the field

connecting from time to time. However, if you have

many internal Wi-Fi LAN users, you need a high-capacity

VPN server.

The access points must be connected to the untrusted

side of the firewall. They must have dedicated wiring

and cannot share with the internal Ethernet system. If

there are multiple access points, you probably need a

dedicated patch panel to avoid the possibility that the

access point wiring and the internal wiring are

connected up by mistake.

Figure 3.4. Treating a Wi-Fi LAN User

Like a Remote User

These disadvantages make this approach unattractive for

many companies as well as impractical for small office and

home users. Some companies have proceeded along these

lines because they realized that the first generation of Wi-Fi

was not sufficiently secure. Most would prefer the second

approach, in which the Wi-Fi LAN becomes part of the

trusted network, because it is simpler to administer.

Option 2: Make Wi-Fi LAN Trusted

The alternative to treating Wi-Fi LAN as a pariah that can

never be trusted is to make the Wi-Fi LAN itself

fundamentally impenetrable by enemies. Your goal is to

make the LAN so secure that it can be regarded in the same

way as physical wiring and treated as part of the trusted

zone. Thinking along these lines led to the original security

system of IEEE 802.11 being called "WEP," which stands for

Wired Equivalent Privacy.

The idea runs something like this: It is very difficult, but not

impossible, for an enemy to tap into a wired network in a

building. There are various options, such as breaking into

the building, bribing a security guard or employee, or using

highly sensitive and directional radio receivers to pick up

the slight emissions from the Ethernet cable connectors. The

point is that it is not impossible to breach wired LAN

security. So, the theory goes, you can make Wi-Fi LANs as

trusted as wired LANs by making it very difficult to decode

the wireless signals. You don't need to make it impossible to

break the wireless security, just more difficult than breaking

into the wired network because the enemy will always take

the simplest route.

This principle that the enemy takes the path of least

resistance is reasonable, but you cannot realistically

compare the difficulty of bribing a security guard with the

difficulty of breaking the Wi-Fi LAN security protocol. More

modern thinking concludes that Wi-Fi LAN security must be

evaluated on its own merits rather than by comparison to

attacks on the wiring plant. The standard of security that

has been set for the new generation of Wi-Fi and IEEE

802.11 is very high. It makes the signals look so random

that any amount of monitoring by enemies does not provide

useful information. It also prevents forgery, tampering, and

other attack techniques. As a result, you can considering

moving the Wi-Fi LAN back inside the trusted domain.

Once you believe that information being sent by wireless is

completely inaccessible to attackers (perhaps more so than

information on the wires), you can treat Wi-Fi LAN devices in

the same way as regular LAN devices. The access points go

right on to the regular internal LAN, and Wi-Fi LAN users who

connect to them have the same rights as everybody else.

Wi-Fi LAN can still be used in the untrusted zone, when

people are passing through a hotel or airport, by employing

VPN. WPA allows the old security model to be put back in

place, making it much easier to integrate Wi-Fi into

everyday networks. The same principle applies at home:

you can treat Wi-Fi in the same way as you treat the

Ethernet cables running across your floor. No one can get

access to them but you.

clbr://internal.invalid/book/0321136209_24031533.html

Danger of Passive Monitoring

Earlier we mentioned the link between passive monitoring

and active attacks. Everybody is subject to eavesdropping.

People overhear conversations or peek over shoulders at

laptops on planes. Business users should be sensitive to this

issue and take steps with confidential information. However,

there is usually a clear distinction between eavesdropping

and interfering. You might not notice someone peeking at

your laptop screen and you might not care if the information

were not confidential. You would certainly notice if someone

leaned across and typed on your keyboard.

The same is not true for an unsecured Wi-Fi LAN. Unless

security is in place, you may not be able to detect when you

are being attacked. The simplest form of attack is a

connection to an unprotected access point. Access points

send out wireless messages advertising themselves to

anyone in range. If security is turned off, the enemy can

request a connection just as an authorized user would.

Magazine reports have written about driving around a city

with a laptop and connecting directly into companies'

unprotected wireless LANs (Hopper, 2002). This has become

known as "war driving" and has been publicized by, among

others, Pete Shipley in California. He created software,

linked to a GPS receiver, that automatically logs the position

of vulnerable networks (Poulsen, 2001). There is even a

term "warchalking" for the practice of marking on the

sidewalk where access to a Wi-Fi network has been

detected.

The prospect of strangers connecting to your LAN is

frightening, but surely the network operating system can

protect you? Attackers can't log on to the server because it

requires a username and password�right? Well, yes and no.

Attackers can't log on to the server; but, if they are clever,

they don't need to. They can monitor the Wi-Fi LAN to find

an existing user who has already logged on, and then they

imitate that user's transmissions. If the attacker copies the

user's network address information, the server may not

realize that it is talking to an enemy and may allow all the

same access rights as the valid user has.

These examples show just how vulnerable a Wi-Fi LAN can

be unless security is put in place. Even if you don't care

about eavesdropping and you use your home computer only

for browsing the Web, don't assume that you are safe

without activating security measures. If the enemy can see

you, he can always touch you.

Summary

This chapter outlines why Wi-Fi networks are vulnerable to

attack and what types of attackers you might encounter. By

understanding the motivations and resources of attackers,

you can establish your policy on defense. Some people

would argue that your policy should always be "go for the

maximum defensive measures and never compromise on

security." But this is too simplistic. Remember, the ultimate

wireless security comes by not using Wi-Fi LAN at all! In the

same way, ultimate road safety comes by staying at home.

However, practical managers recognize that there are real

benefits to Wi-Fi LANs and an effective policy balances risk

and utility.

The second half of this chapter defines two strategies for

managing security risk. One is to treat all wireless

connections as if they were outside the firewall�that is,

completely untrusted. This is an expensive approach in

terms of equipment and performance, but one that fits well

into existing security architectures. The second approach is

to treat the Wi-Fi LAN as a trusted component of the

network. This requires confidence in the integrity of the Wi-

Fi security method. The rest of this book focuses on showing

how the second scenario can be used and why the security

level is now sufficient to justify your trust.

clbr://internal.invalid/book/0321136209_24031533.html

Chapter 4. Different Types of

Attack

Chapter 4 provides an overview of the different types of

attack that a Wi-Fi LAN must defend against. Some types of

attack are quite obvious, but many are subtle and done in

unexpected ways. These subtle attacks are the most

dangerous because they exploit our assumptions about

where the vulnerabilities lie. We focus on attack concepts.

Later, in Chapter 15, we provide a much more detailed and

technical analysis for certain known attacks that have been

successful against early Wi-Fi systems.

As we build our defenses, it is important to understand the

types of attack we may encounter. The technical approach

of an attack can vary from crude to sophisticated, but the

fact that an attack is crude doesn't make it ineffective. For

example, if someone steals your laptop while it is logged

onto the network, they have made a successful, albeit crude

and detectable, security attack. More sophisticated methods

of attack, however, allow an attacker to gain access without

being detected�and these methods are more dangerous.

Detecting a security breach is a close second in importance

to preventing the breach. For example, if a security breach

were detected immediately and appropriate responses

taken, service might be disrupted but the damage might be

considerably reduced. By contrast, if an intruder were

allowed to break in multiple times over an extended period,

the consequences could be catastrophic. The smarter the

attacker is, the more careful they will be to avoid detection.

clbr://internal.invalid/book/0321136209_24031533.html

Classification of Attacks

Attacks can be classified into four broad categories:

snooping, modification, masquerading, and denial of

service. In practice, an attack may employ several of these

approaches. Almost all attacks start with snooping, for

example.

More formally, attack methods are classified as

"passive" and "active." Passive attacks include

eavesdropping. Active attacks are subdivided into

"forgery," "message modification," and "denial of

service." We use a simpler list of four categories for

use in the explanations here.

Snooping,[1] as the name suggests, is simply accessing

private information. This information could be used for an

advantage, such as getting company secrets to help your

own business or stock purchase decisions. It could also be

used for active assaults such as blackmail. Encryption can

be used to make snooping difficult. The attacker is required

either to know the secret encryption key or to use some

clever technique to recover the encrypted data.

[1]
 Also known as "footprinting" or "information gathering."

Modifications to data can be achieved in some nonobvious

ways. When thinking about modification attacks, most

people consider an attacker modifying e-mails with

malicious content or changing the numbers in an electronic

bank transfer. While such high-level modifications have

been accomplished, there are more subtle ways to modify

data. For example, if you can intercept a wireless

transmission and change the destination address field (IP

address) on a message, you could cause that message to be

forwarded to you across the Internet, instead of to its

intended recipient. Why would you want to do this? Because

the message on the wireless link is encrypted and you can't

read the content, but if you can get it forwarded across the

Internet, you will receive the decrypted version. The IP

header is easier to attack because it is a known format.

Masquerading is the term used when an attacking network

device impersonates a valid device. It is the ideal approach

if an attacker wants to remain undetected. If the device can

successfully fool the target network into validating it as an

authorized device, the attacker gets all the access rights

that the authorized device established during logon.

Furthermore, there will be no security warnings. Even an

eagle-eyed IT manager scanning the traffic records won't

see anything amiss unless the attacker does things that a

normal user wouldn't do, such as trying to access system

areas. There are, of course, nonelectronic attacks based on

masquerading that are equally effective�if you leave your

terminal logged in and go to lunch, anyone can sit down and

get your access rights. It is the same principle.

Denial of service (DoS) is quite unlike the other three

categories both in technique and goals. While the other

three extend extra privilege to the attacker, a DoS attack

usually blocks out everybody, including the attacker. The

object of a DoS attack is to cause damage to the target by

preventing operation of the network. In 2000 the largest

attack yet publicized occurred with a distributed DoS attack

against several major Web commerce sites. The attack

blocked access to the sites for hours. This attack originated

from thousands of remotely controlled computers

throughout the world whose owners were largely unaware of

their participation. The attackers used these "zombie"

computers to generate large amounts of traffic directed

toward their victims, preventing them from servicing valid

requests. Why did they do it? Perhaps to gain bragging

rights�this is classic ego hacking culture. A more sinister

reason might be to gather experience and data for some

larger future event.

In principle, DoS attacks could be mounted for commercial

reasons. Bringing down a sales Web site in the run-up to the

holidays could inflict financial damage on a competitor.

However, it is unlikely that any serious retailer has actually

used such tactics. An attack by an ex-employee with a

grievance is more plausible. DoS attacks are hard to prevent

on the Internet and usually rely on causing the receiving

server to exhaust its buffer resources so it cannot accept

any valid connections for a period of time. Unfortunately for

us, DoS attacks on Wi-Fi LANs are easy to mount and almost

impossible to prevent.

The enemy can successfully use some of these attacks

without having access to your secret network keys.

However, in most cases the damage that can be done

without knowing the keys is quite limited. If the attacker can

find out your keys, then you move into a different category

of danger. Unauthorized modifications to Web sites and the

stealing of databases full of credit card details occur

because someone has broken the keys. As we look at the

types of attack that can be made against Wi-Fi LANs, we'll

consider these cases separately: first, attacks against the

network without the keys, and second, attacks to try to

uncover the keys themselves.

Attacks Without Keys

Getting the keys is the ultimate success for an attacker, but

it's surprising how much information can be obtained

without ever needing to compromise the keys. In some

cases it's possible to completely breach security. In this

section we look at a few of the activities attackers might

perform as an alternative to key attacks.

Snooping

First, consider snooping. Let's imagine you are an attacker

within range of your target�a Wi-Fi LAN that is using secret

keys and hence is encrypting messages in some way. Let's

also assume you have a modified Wi-Fi card designed to

intercept data. You have a lot of knowledge about IEEE

802.11 protocols as well as higher-level protocols like TCP/IP.

"You" may be a very clever person with a PhD in

communications…or in this context, "you" may be a

sophisticated program running on the laptop of a total

moron. Either way, the question is, what can be seen?

First of all, you can see and read all the information coming

from the access points.[2] Therefore, you know the network

name (or SSID). If the network name is something obvious

like "accounts_department," you can get an idea of what the

users on the network might be doing. You have most likely

identified the manufacturer of each access point by looking

at its MAC address, and you may even know the model

number based on the capabilities or proprietary information

that each includes in its beacons. If that model has any

hidden flaws, that information might be useful. Some

security advisers propose disabling SSID broadcasts; but

while this step may reduce "war driving" attacks (see

Chapter 3), it provides only a short-term advantage, as the

information will be discovered as soon as a new user

connects to an access point.

[2]
 Access points transmit regular beacon messages advertising various

pieces of information. This is covered in detail in Chapter 5, "IEEE 802.11

Protocol Primer."

As an attacker, you may also see quite a bit of data going to

and from an access point. By watching for a while, you will

be able to count how many wireless devices are connected

to each access point (just by looking for different MAC

addresses). You will also be able to identify the

manufacturer of the wireless adapter in each case from the

first three bytes of the MAC address. If the network is using

WEP, you might be able to see whether everyone is using

the same key (shared) or whether each device has a

separate key by looking at bits in the IEEE 802.11 header.

That information could be useful later.

So far, it has been easy. But when you capture any of the

data packets, you cannot interpret them because they are

encrypted. We are not considering attempts to decrypt the

packets here because that is an attack on the secret key

and is covered in the next section. So if you are not going to

try to crack the code, can you do anything useful?

You can, using a technique called traffic analysis. Traffic

analysis is the study of message externals, for example,

frequency of communication and size. So, the first thing is

to watch the size of the packets. You should be able to

identify which protocol they are using by checking the

length. For example, certain TCP/IP messages, such as

acknowledgment frames, have a fixed length and occur with

a typical regularity. This applies to other protocols, too, so

the length of the packets can tell you the network protocol

in use. Let's suppose it is TCP/IP. You can look out for

messages such as DHCP discover messages that are used to

give IP addresses to the network.

You can also get information from the timing of messages.

By watching messages go to the network from a user and

timing when messages come back, you can probably guess

whether that user is browsing the Web or working on a local

server. Even the amount of data being sent around might

give a clue as to what is happening. For example, a sudden

increase in activity might mean that the payroll is being

prepared or that a shipment is being prepared.

Unfortunately, it is possible to learn a whole lot about the

types of things going on in a network just by watching

packet lengths and noting timing without looking inside the

packets. However, you cannot see anything really useful,

such as the message content. Like the voyeur watching the

neighbor's window when the blind is down, you'll see

shadows that tell you whether someone is "in the room," but

nothing more.

So, by itself, snooping an encrypted LAN can only provide

information about how, when, and by which devices the

network is being used. This information by itself is of limited

use; but combined with other information the attacker might

gain from other methods or sources, it can be very helpful.

So now let's look at the prospects for combining snooping

and modification.

Man-in-the-Middle Attack

(Modification)

Suppose two people are communicating�traditionally in

security literature, they are called Alice and Bob. Alice

receives messages from Bob and Bob receives from Alice.

Suppose there is an attacker able to intercept and cut off

the communications. Suppose that the attacker can imitate

Bob while sending to Alice and imitating Alice while sending

to Bob. In this case Alice and Bob are subject to a "man-in-

the-middle" attack, as shown in Figure 4.1. Such attacks can

be used to modify messages in transit without detection.

Figure 4.1. Man-in-the-Middle-Attack

There are (at least) two ways to modify a message: you can

modify it on the fly or you can capture, modify, and replay

the message, a technique known as store and forward.

Modification on the fly is really hard. You would need to send

a burst of radio transmission at just the right moment to

cause the receiver to interpret a bit incorrectly. Because of

the sophisticated modulation used in Wi-Fi LANs, bits are not

sent individually but in groups coded together, making it

very difficult to change a single bit at a time. Therefore, we

will, for the moment, assume that any modification occurs

due to a store-and-forward approach by the attacker; on-

the-fly modification might be possible in theory, but we

won't cover the topic any further.

The store-and-forward method is called a man-in-the-middle

modification attack. The principle is simple enough in wired

networks: an attacker cuts the wire, receives all the data,

and is careful to send it on so the two devices at the ends

don't know their data is being intercepted. There is, for

example, a man-in-the-middle attack possible at every

forwarding router in the Internet, which is one reason the

Internet is treated as totally insecure.

In Wi-Fi LANs a man-in-the-middle attack is a little more

difficult to mount because there is no wire to cut. The

enemy must stop the receiver from getting the message on

the initial transmission so he can then forward it after

exercising his evil intent. The procedure could work

something like this. To become a man-in-the-middle

between mobile device (Mob) and the access point (AP), the

enemy must:

1. Listen for a message from Mob to AP.

Read in the message up to the checkword[3] at the end.

[3]
 The checkword is used by the receiver to detect any errors in the

data.

Transmit a sudden burst of noise to corrupt the

checkword�this causes AP to drop the message as invalid,

but the attacker now has a copy of the valid message.

Forge an acknowledge message with AP's address and send

it to Mob; now Mob thinks the message has been received

by AP.

Recalculate the correct checkword and send the captured

message to AP; AP thinks it came from Mob.

Wait for an acknowledgment message from AP and send a

burst of noise so Mob ignores it and doesn't see two

acknowledgments for the same packet.

Clearly, this procedure is not simple, but it is absolutely

feasible and would effectively put the attacker in the middle

of the communications. Neither the access point nor the

mobile device would have any idea that the communications

were intercepted.

Another approach�and one that is much more likely to

occur�would be for the enemy to set up a bogus access

point. The bogus AP identifies a real AP in advance. When an

unwitting mobile device sees the bogus AP and tries to

associate, the bogus AP simply copies all the messages it

receives to the valid AP, substituting its own MAC address.

Similarly, it copies all the messages received from the good

AP back to the mobile device. By this method, it doesn't

need to know the encryption keys because the MAC address

fields that it modifies are not encrypted. As a result, all the

data between the mobile device and the good AP goes

through the bogus AP en route.

Once the enemy is established in the middle of a

communication, he has the opportunity to mess with the

data. Remember that this intervention is possible even

when the data is encrypted and without the enemy knowing

the secret keys. The question is, what can modification

achieve without the attacker knowing the keys?

There is really very little that can be accomplished by

modifying individual messages, unless you have some

knowledge about the contents of the messages before they

were encrypted. The enemy has some information about

most packets because the TCP/IP header has a fixed format

and some of the fields have fixed or obvious values (such as

the length field). The attacker might like to modify the

destination IP address to try to get the data sent out over

the Internet (to him). This is a really hard attack to

accomplish, however, and it is quickly detected by the

sender because it would be hard (but not impossible) to get

a response back.

More can be achieved if the attacker is allowed to replay

captured messages. For example, suppose the attacker

spots an ICMP message going from the mobile device to the

network server. An ICMP message is a short administrative

message sent between devices in a TCP/IP network. The

attacker could guess what the ICMP message type is from

the length. Many ICMP messages require a response from

the server that the enemy will also see (although it is still

encrypted). Remember that the enemy can't read either

message but can make an educated guess at much of the

content. Furthermore, if the enemy can send the same

encrypted ICMP message again, the server might come back

with a response every time�thinking it came from the valid

device.

Now the attacker can play games. The ICMP message

contains a checkword. If the attacker changes a single bit

and resends the message, after decryption the checkword

will indicate an error and the message will be thrown away.

The attacker will notice that there was no reply from the

server. So what if the attacker can modify both a data bit

and some of the checkword bits? If he is allowed to try over

and over, maybe tens of thousands of times, eventually the

enemy will find a combination that gets a response from the

server again. By playing this game, an attacker could

eventually decode the message. At the end of several hours,

he has found out the IP address of the mobile device and

the server. For a fuller description of this attack, see Borisov

et al. (2001). Although this is a potentially successful attack,

it's no big deal. A lot of work would be required for a

relatively small amount of information. However, even a

small crack cannot be considered acceptable in a security

system. As in a dam wall, small cracks can lead to real

breaches and eventually the collapse of the system.

Active attacks are sometimes difficult to carry out, and they

run the risk of being detected. Nonetheless, against some

systems, WEP being one of them, active attacks can

accomplish a great deal for the attacker. However, the new

security methods of WPA and RSN are resiliant to such

attacks. This is one reason why most attackers will try to get

the keys. With the exception of DoS attacks, attacks without

keys are generally used only as a step toward determining

the keys. Once an enemy has the keys, your only hope is to

detect the intruder, shut down the network, and change the

lock.

clbr://internal.invalid/book/0321136209_24031533.html

Attacks on the Keys

The problem with keys in general is that there are so many

ways to get at them. Let's take a simple case of a burglar

who wants to break into a bank vault. The walls are thick

steel and so the burglar has concluded that the only viable

way in is through the vault door, which needs a key. What

are the options? Well, here are a few:

Find where the key is stored and steal it.

Get a job in the bank and finagle a few moments of

access to the key; make an impression to copy later.

Point a gun at the manager and make him unlock the

vault.

Make lots of different keys and try them all.

Pick the lock.

The list goes on, and a real burglar would have a few more

to suggest as well. All of these attacks have an analogy in

Wi-Fi LAN security, and by no means do they all involve

clever cryptography. Let's get the most obvious one out of

the way first. The simplest way to get a key is to look over

the shoulder of a person as she enters a password or simply

to ask a disgruntled employee to tell you. It is well known

that thieves are able to observe and remember sequences

of digits typed into a phone when a victim uses a calling

card. This is a problem whenever you expose your key

information to people. Humans are a weak link in security.

One solution is to keep the keys inside the computer and

not visible to the human operator. The problem with this

approach is that, if the computer is stolen, the key goes with

it and the thief can get access by masquerading as the valid

user until the theft is discovered. In general, the best

protection comes from choosing good passwords and

changing them regularly.

One-Time Passwords

A clever solution that avoids human weakness is the use of

the one-time password. As the name suggests, the idea is

that each and every time you log on or connect, you use a

new password�hence each password is only used once. In a

typical case, the user has a credit card-sized gadget that

displays a set of digits. The display changes once per

minute to a new number. Back at headquarters is a special

server, running off an accurate clock, which knows which

number is being displayed by the card at any point in time.

When the user logs on, she types in the number currently

displayed and the server checks that it is valid. However,

five minutes later, if the same password is entered, the

server will reject it. The idea is that the password, if

memorized, is of very limited value and the card stays with

the user even if the computer is stolen�quite a clever

system.

One-time passwords incorporate a concept called liveness

that is vital to good security. Liveness is simply the

inclusion of something that changes in time so you can

detect whether someone is using old (and hence probably

copied) information.

Burying the Keys

If you try to hide the key information from the user, it is still

vulnerable to eventual discovery by a sufficiently dedicated

attacker. This is particularly true if the enemy has physical

access to the equipment where the key is stored. For

example, if the enemy can take a laptop home and work on

it, and if he has sufficient technical skills, he can probably

get the key, no matter how deeply it is buried in the

software or hardware of the device. As an example, a large

corporation in the United States had Wi-Fi wireless LAN

adapters custom-made so the WEP key was programmed

into the flash memory of the adapters before shipment and

was never visible to the software on the computer. Despite

this precaution, eventually someone was able to reverse-

engineer the key value and publish it on the Internet. At that

moment, the security of all the cards the company

possessed plummeted to nothing.

Another example involves the cracking of the password on a

mobile phone SIM card (Kocher et al., 1999). SIM cards are

thumbnail-sized smart cards used in European and some

U.S. cellular phones. The benefits of a smart card are its

self-contained memory and built-in microprocessor.

Therefore, the key can be stored inside and is not accessible

from the outside. When you want to check whether a

password is correct, you send it to the microprocessor in the

card. The microprocessor does the check and simply tells

you "correct" or "incorrect." It would seem an ideal solution

because no one, including the manufacturer, can read the

password once it leaves the factory. And yet attackers did

find several ways to crack the passwords.

In one particularly clever approach, they obtained a copy of

the program that the little microprocessor used. They had

realized that the specific instructions that the processor

executed depended on the value of the password. When the

password byte presented was correct, it took one path; and

when it was wrong, it took another. Astonishingly they

realized that they could guess which type of instruction was

being executed simply by carefully measuring the electrical

current consumption used by the smart card. This meant

they could try each byte of the password one at a time until

they saw the card perform the "equal" test. It was like

cracking a ten-digit combination lock when the lock beeps

every time you enter one digit correctly. They cracked the

code in very little time. Now, of course, smart cards have

been modified so the instruction operation is not signaled by

the current consumption, but this story once more illustrates

the ingenuity of attackers.

A third example when burying the key failed concerns the

protection of DVD movies. To stop people from reading DVD

movies into their computers, the contents on the discs are

encrypted. However, a DVD player obviously has to know

the keys in order to decrypt and play the contents.

Therefore, each DVD manufacturer has to sign up to very

tough licensing restrictions, and those who have access to

the encryption key must use special care to keep it safe. Did

this work? No. As you might expect, only a couple of years

passed before programs appeared that could decrypt a DVD.

A Finnish teenager reverse-engineered a ROM chip from a

DVD player and determined not only a valid key but also the

previously unknown proprietary encryption algorithms.

There is little the industry can do now because they can't

change the key without making obsolete millions of

consumers' DVD players. They have resorted to taking

aggressive legal action against anyone who tries to

distribute the program (Salkever, 2000).

One of the main lessons of these examples is the well-

known security policy that you should change the master

keys from time to time. We will discuss how often is

appropriate in the later section on network configuration.

Wireless Attacks

Most of the things that have been said so far about

protecting keys apply regardless of the type of security

system you are using. They are not specific to wireless.

Wireless, of course, introduces a whole new set of

opportunities for attackers trying to get keys because it is so

easy to access the data streams, even though they may be

encrypted. Imagine a hacker ten years ago, before the

advent of wireless LAN. The hacker would like to get access

to the network inside a corporation. It's very risky because

access to the building is restricted; and even after the

attacker got inside, there would be limited time to sample

the data. "Wouldn't it be great," the hacker dreams, "if I

could get in there and install a radio transmitter that sent all

the data outside, where I could pick it up in safety." Today,

not only has the hacker's dream come true but also

someone else (the corporation) has already bought the

equipment and installed it! Life's not usually like that.

The problem for the attacker is that the data is encrypted

and she needs the keys. Assuming you don't change the

keys, she has as much time as she wants to capture sample

messages and analyze them. What to do next?

First, let's look at a couple of assumptions we need to make

about what the attacker knows. To do this, we need to

introduce some common terms:

Plaintext: The data before encryption�this is what we

want to protect

Ciphertext: The encrypted version that the enemy can

see over the radio link

Keys: The secret value that is used to encrypt/decrypt

the message

Cipher: The algorithm and rules used to perform the

encryption and decryption

To summarize, the ciphertext is created by processing the

plaintext with the ciphersuite using the keys (see Figure

4.2). This process is sometimes written as a formula:

Ciphertext = Cipher (Key, Plaintext).

Figure 4.2. Encryption Terms

Okay, coming back to our attacker. We know that she has a

copy of the ciphertext because that can be snooped directly.

We know that she doesn't know the key because getting it is

her objective. What about the cipher and the plaintext?

One of the rules of modern cryptography is that you should

assume that the attacker knows the algorithm used for

encryption.[4] Most attack methods rely on finding

weaknesses in the underlying algorithm or in its

implementation. If, however, the attacker does not know the

algorithm, an attack is almost impossible. So it might seem

that keeping the algorithm secret is a good idea. This type

of thinking, also known as security by obscurity, has been

adopted in some security systems. For example, the

encryption algorithm used in most European cellular phones

is a secret and may be different from one mobile phone

operator to another. However, security experts feel that

keeping the algorithm secret is a bad idea for (at least) two

reasons:

[4]
 This is known as Kirchoff's criterion.

It is impossible to keep a secret forever, no matter how

hard you try. People have to know the algorithm in order

to implement it, and sooner or later someone will be

bribed, get drunk at a crypto conference (yes, it could

happen), or have their laptop stolen. Sooner or later, the

secret will come out, and the bad guys might get the

secret. That leaves all of us users vulnerable without

knowing it.

The other disadvantage of keeping the cryptographic

algorithm a secret is that this approach doesn't allow

legitimate researchers to look for flaws. If there is a

flaw, it is better that a researcher finds it and alerts

everyone before an attacker finds and exploits it. The

weaknesses of IEEE 802.11 WEP were found and

publicized in this way. The equipment manufacturers

may not be pleased by such publication. They tend to

argue that it is better to keep flaws quiet and fix them in

the background. However, this is a dangerous

approach�you can be sure that if only 1% of people

know about the flaw, the hacker community is included

in the 1% along with the manufacturers. So by

publication, the public is well served.

So, now we are assuming that the attacker knows the

ciphertext and the cipher. Does she have the plaintext? This

might seem like a silly question because if she has the

plaintext, why does she need to crack the code at all?

However, consider that the objective is not to crack a single

message; it is to get the keys so every message can be

read. The hacker may know the plaintext of a single

message and use that to attack the keys. So let's ask that

again�could the enemy get a sample of the plaintext?

In fact, there are quite a few ways in which this might be

done. The first way has already been mentioned: protocol

headers. In IEEE 802.11, the MAC header is not encrypted,

but all the rest of the message is (for more discussion, see

Chapter 5). If you are using a protocol such as TCP/IP, this

means that the header portion of the TCP/IP message is part

of the plaintext that is converted to ciphertext. The danger

is that the header always occurs in the same place (at the

start of the packet) and that some of the fields have fixed

values, or values that can be easily guessed. This means

that an attacker immediately has some knowledge about

the plaintext. Furthermore, some IP messages are of a

known format, such as DHCP discover messages used in

assigning network addresses. These are encrypted but can

be identified from their length. In these cases, an attacker

might correctly guess the entire plaintext.

It gets worse! If a person is accessing a Web site, and the

attacker can guess which Web site, he can get the plaintext

just by going to the same site. Suppose that someone goes

to a popular news Web site. The home page is downloaded

and sent encrypted across the wireless link. If the attacker

can correctly guess which frames are which, he has the

plaintext as well as the ciphertext. Guessing which frames

are which is not as hard as you might think because the

number of bytes in certain parts of the home page, such as

pictures, provides a clue. The last method for getting

plaintext is the simple approach of sending e-mail. If an

attacker knows the e-mail address of a user at the target, he

could send the user a message that at some point might be

read. The attacker has a chance to identify when his

message is read from the length. Alternatively, the e-mail

might persuade the user to click a link to the home page of

a Web site that the attacker knows.

Because there are so many ways for attackers to guess or

obtain samples of plaintext, we have to assume that they

can obtain all three components: the ciphertext, the

plaintext, and the cipher. Once they have all three, they can

start an attack on the keys.

Attacking the Keys Through Brute

Force

The first thing anyone thinks about when it comes to

working out the keys is the brute force attack. We'll look at

this because the statistics are fun. Basically, the brute

force method means that an attacker tries every possible

key until he finds a match. Given that he knows the

ciphertext and protocol, he would start with a key value of

all zeros, decrypt the message, and see whether it matches

the plaintext (or any fragments he has). If he keeps adding

1 to the key value, in principle, he will sooner or later hit on

the right key because all possible keys will have been tried.

Well, "sooner or later" is probably "later or never" in any real

encryption system. In fact, if an attacker felt lucky enough

to stumble on the key this way, he should buy a ticket for

the state lottery. The odds of winning are considerably

higher for the lottery.

The time taken for a brute force attack depends on the key

size, or more correctly the key entropy (see Chapter 2). This

is one of the reasons that government export controls tend

to be set according to key length. For example, it used to be

that you could not export any security technology from the

United States with a key length of more than around 40 bits.

This was one reason why in the original IEEE 802.11

standard, WEP used a 40-bit key.

To crack a 40-bit key using brute force, you would, on

average, have to try 239 times,[5] which equals 550 billion

different keys. That's a big number, but it's not impossible.

Say you have a supercomputer that can conduct one test

per microsecond; you could crack the key in about a week.

[5]
 The total number of combinations is 2

40
 but on average you would

only have to try half of them before finding the right one. Hence 2
39

.

Because the 40-bit key is crackable, many security systems

use larger keys�128 bits is common. In an attempt to

strengthen security, some wireless LAN manufacturers

brought out IEEE 802.11 systems using 104-bit keys, a

length that was eventually adopted as a de facto standard.

Most Wi-Fi systems support 104-bit keys, although strictly

this has never been part of the IEEE 802.11 standard. The

use of a longer key really renders brute force attacks

completely ineffective, assuming the underlying

cryptographic algorithm has no weaknesses. Let's suppose

supercomputers become faster and we can try a hundred

keys in a microsecond. With a 104-bit key, you would still

need (on average) 3,200,000 billion years to find the right

key. Yes, 3 million billion years�and if that doesn't put you

off, then you must be an avid lottery player. If you want to

check the calculation yourself, here is the formula:

Ave Time = 2103 / (num tries per sec) / (num secs per

year)

Dictionary Attacks

Given that you can so easily defeat brute force attacks by

adding a few bits to the key, any attacker with an IQ in the

double digits will look for another approach. Here's the idea:

Instead of trying every possible key, try only those keys that

you think the user is likely to use. For example, the attacker

could assume that the key is made up entirely of letters and

numbers, as is typical for user-chosen passwords. As we

discussed in Chapter 2, this reduces key entropy. A 104-bit

key is now only as effective as a 78-bit key because only 6

bits of every byte are used. However, 78 bits is still

uncrackable using brute force so the attacker must narrow

down further. This approach to reducing the number of keys

to test brings us to the idea behind a dictionary attack

(Bishop, 2002; Salkever, 2000).

In a dictionary attack, the enemy uses a huge dictionary, or

database, containing all the likely passwords. This will

certainly include every word in the English language and

may contain other languages as well. It will contain

thousands of place names and proper names. It will contain

words extracted from every street address in the United

States (for example). Every name registered in the phone

book, including first and last names, will be there. Every

common pet name, strings of digits for every zip code, the

date of every day in the year, and on and on.

The creation of such a database might seem like a

formidable task, but the hacker community shares material,

and bit by bit more data is added to the dictionary. Of

course, in the end there will be millions of entries in the

dictionary�but remember that the enemy is reducing the

key space from multiple gazillions, so getting it down to a

few million is a real advantage.

With such a database, if the enemy can take home a sample

of ciphertext and plaintext and leave it crunching away, the

password could be cracked in a few days rather than a few

billion years. The availability of such attack dictionaries

explains why security managers want users to define

passwords that use both upper- and lowercase (in

unexpected places), and to insert digits or other strange

characters. The attack works only against human-readable

passwords or keys derived from such passwords in a known

way.

Certain security protocols are more susceptible to dictionary

attack than others. It depends to some extent on how the

master password, selected by the user, is applied to the

encryption process. For example, a password such as

"Vesuvius" would easily be discovered by a dictionary

attack. However, if the key used for encryption were derived

from "Vesuvius" through a number of processing steps,

dictionary attacks would not be easy. Consider the following:

A user has chosen the password "Vesuvius". But before the

key is used, the letters are swapped around in a known way

to give "svsuieVu". This new version is used for the key

instead. Both ends of the link know how to swap the bytes

around, so it is not a problem for the friendly devices; but

the letter-swapping will foil a simple dictionary attack. Of

course, if the enemy knows the rule for swapping the

letters, he can build this rule into the attack, so you could

arrange to use a different swapping pattern depending on

some other information known to both ends of the link.

Swapping the bytes is a simple example and not a practical

secure method. However, there are much more

sophisticated ways to obscure the passwords before use,

some of which are used in the new IEEE 802.11 security

protocol (see Chapter 10). As a result of such key

derivation, most modern security systems are not

susceptible to dictionary attack.

Algorithmic Attacks

If the enemy cannot mount a brute force or a dictionary

attack, another approach is to try to break the

algorithm�that is, to try to find a flaw in the way the

encryption is performed that might expose the key value.

We will see later that this was the successful attack made

on WEP. It is difficult to describe these algorithmic attacks

generally because they depend so much on the algorithm

and understanding the weaknesses often requires that you

are a cryptographic expert. However, there is a

straightforward analogy with safe breaking.

In many B movies involving safe breaking, the master

criminal is seen with a doctor's stethoscope, listening to the

front door of a large safe and carefully turning the dial.

When we were kids, we had no idea why anyone would do

that and assumed that the criminal was seeing whether the

safe was sick and hence easy to break into. The use of the

stethoscope was never explained, as if the movie producers

assumed all viewers were master safecrackers and would

know what was going on. Years later, we realized that the

purpose was to try to find one digit of the combination at a

time by listening to faint clicking noises coming from the

levers inside. This is a prime example of attacking the

algorithm. The safecracker knows how the mechanism

(algorithm) works and knows that it leaks information about

the combination due to the noises. In particular, it leaks

information about one digit at a time. By exploiting the leak

one digit at a time, the combination is discovered.

Furthermore, the time required goes up only in proportion to

the number of digits, whereas the difficulty of a brute force

attack goes up exponentially with the number of digits.

The algorithmic style of attack is very similar to that used

against WEP. A weakness in the algorithm allows one byte of

the key to be attacked at a time. Although it takes a while to

crack each byte of the key, the total time is proportional to

the number of bytes. This means that it is only slightly more

difficult to crack a 104-bit key than it is a 40-bit key.

Successful attacks against the algorithm are frightening

because, once the method is discovered, it is usually easy to

build automatic tools to find out the keys. And, as has been

observed, after the keys are discovered, your only chance is

detection of the intruder.

clbr://internal.invalid/book/0321136209_24031533.html

Summary

In this chapter we have seen that there are many ways in

which attacks can be mounted against security systems.

Methods do not need to be sophisticated to be effective, nor

does the person making the attack need to be a technical

expert if he is using a tool written by such an expert. Most

security attacks in the past have come from bad passwords

or dictionary attacks. However, key derivation is helping to

reduce this problem. Now attackers must look for flaws in

the algorithms�or at least weaknesses that allow the

strength of the keys to be compromised.

The special vulnerability of Wi-Fi LANs makes them

susceptible to all these attacks and means that the security

protections chosen must be extremely good. By the end of

this book, you will see how the new Wi-Fi and IEEE 802.11

security methods are, indeed, that good.

clbr://internal.invalid/book/0321136209_24031533.html

Part II: The Design of Wi-Fi

Security

Chapter 5. IEEE 802.11 Protocol Primer

Chapter 6. How IEEE 802.11 WEP Works and Why It

Doesn't

Chapter 7. WPA, RSN, and IEEE 802.11i

Chapter 8. Access Control: IEEE 802.1X, EAP, and

RADIUS

Chapter 9. Upper-Layer Authentication

Chapter 10. WPA and RSN Key Hierarchy

Chapter 11. TKIP

Chapter 12. AES�CCMP

Chapter 13. Wi-Fi LAN Coordination: ESS and IBSS

Chapter 5. IEEE 802.11 Protocol

Primer

This chapter provides an overview of how the IEEE 802.11

protocol operates. You may feel that understanding the way

in which low-level messages are exchanged is not relevant

to understanding security. If you are concerned only with

setting up a secure network following the configuration

instructions in the manual, you are probably right. But one

purpose of this book is to explain the new security system of

IEEE 802.11 in sufficient detail that you become convinced

that it really has been well thought out and is thoroughly

secure. Accepting that systems are secure on face value is

less work but sometimes leads to disappointment. To

understand the later sections of this book, you need a

grounding in the basic standard. Hopefully just enough of

that grounding is provided here, but not too much.

clbr://internal.invalid/book/0321136209_24031533.html

Layers

The connection between the user and the LAN is a sequence

of hardware and software components, each connected

through a clearly defined interface. It's useful to think of this

like a very efficient government organization that goes into

operation when you, the user, fill out a form for some

service and hand it in. Unlike a real government

organization where your application form gets used as a

coffee mat for a few weeks before falling behind the

photocopier, in this super efficient service, the form passes

from department to department and is rapidly processed by

each before being handing on to the next. Within

milliseconds, your service request is satisfied or rejected.

In a computer network layers implement this department

concept. Each layer performs a particular function and is

responsible for certain activities. The layers close to the

user are called upper layers and the layers down by the LAN

are called lower layers. Most engineering students are

taught about the ISO seven-layer model in which the layers

are defined with particular names and meanings. We don't

propose to reiterate the complete model here, partly

because it is boring and partly because few practical

implementations really follow it in its entirety. However, we

will look at the layers of a typical real system (Davie et al.,

1999).

At the top is the user�the person sitting at a terminal and

hoping to get service (such as read a document from a

server or copy a file). To do this, the user interacts with an

application program such as Microsoft Internet Explorer.

Let's look at the sequence of events required to access a

remote file, as shown in Figure 5.1:

1. When the application is asked to open a file, it

requests the service of a file subsystem that

understands directory structures and server

names.

If the requested file is on a network server, the file

subsystem needs to talk to that server and requests the

services of the network operating system to determine what

type of network protocol is needed.

The network operating system forwards a message to the

remote server and asks the appropriate protocol layer, such

as TCP/IP, to deliver it.

The network protocol layer packages the message in the

appropriate format and generates multiple packets of data,

each usually about 100�1,500 bytes in length. Then the

protocol layer asks the link layer to deliver the packets.

The link layer uses the services of low-level hardware and

software to transport a single packet of data across a single

link, which could be an Ethernet link or a wireless LAN link.

The physical layer is the actual electrical signals or radio

waves that transfer the data in the appropriate form for the

medium being used.

Figure 5.1. Handling a Request

Through Layers

Message replies that arrive follow a similar path (but of

course in reverse).

The notable thing about this sequence is the way in which

each layer does its job: no more and no less. The link layer

just delivers packets. It doesn't care what they contain or

where they are eventually headed. It has to get it from here

to there and if there is a dead end�well, that's someone

else's problem. It's like the truck driver who delivers the

elephant to the nunnery at 23 Main St. "That's the address

on my form so that's where Jumbo gets off." The fact that

there is a zoo at 32 Main St. is not in any way relevant to

the truck driver.

clbr://internal.invalid/book/0321136209_24031533.html

Wireless LAN Organization

When we talk about "wireless LAN," we are generally

referring to the link and physical layers of the network. The

IEEE 802 standards deal with these layers for a range of

different LAN technologies, including IEEE 802.3, which is

commonly (but incorrectly) called "Ethernet" [IEEE 802.3].

IEEE 802.11, of course, is the very widely deployed standard

for Wi-Fi wireless LAN. In most LAN technologies, the same

type of LAN must exist at both ends of a link. In other words,

an Ethernet cable connects an Ethernet port on a computer

to an Ethernet port on a hub. The equivalent to the LAN hub

in IEEE 802.11 is the access point, which acts like the center

of a wheel in distributing data for most Wi-Fi LANs. When

IEEE 802.11 systems work through an access point, they are

said to be operating in infrastructure mode because the

access point is coordinating the Wi-Fi LAN from a fixed point

and often providing a connection to a wired Ethernet

network.

In the early days of Ethernet, you could use a hub (like all

systems today) or you could connect all the computers

together using a single coaxial cable. In the latter case, you

didn't need a hub because the single cable joined all the

computers together in series. When any computer sent a

message, all the others could potentially receive it, but only

the recipient to whom it was addressed would actually

listen. IEEE 802.11 has a similar mode called ad-hoc mode.

In this case no access point is needed and each wireless

device can transmit directly to any other. It was intended to

be useful for groups of people who wanted to set up a

network anywhere and share information�hence, "ad-hoc."

To summarize, IEEE 802.11 has two modes, infrastructure

and ad-hoc, sometimes referred to by the technical

acronyms ESS and IBSS, respectively. From a security

standpoint, ad-hoc networks present quite a challenge and

we will deal with them separately in a later chapter. Most

people operate in infrastructure mode because they want to

be able to connect to a wired infrastructure such as a local

Ethernet or an Internet connection. Infrastructure mode also

offers a much better platform for building security. Most of

what is described in the following chapters refers to

operation in infrastructure mode.

clbr://internal.invalid/book/0321136209_24031533.html

Basics of Operation in Infrastructure

Mode

In the following discussion AP is the acronym for a fixed

access point and STA (short for "station") refers to the

wireless device, such as a laptop computer, that wants to

connect to the network. The AP and STA talk to each other

using wireless messages. We will assume that the AP is

connected to a wired network that the STA wants to access.

To help understand the process by which the STA connects

to the AP and starts to send data, we'll run through a

simplified overview first. This describes the sequence of

events that occur in systems that are not using security.

Let's assume that the AP is already turned on and operating.

The AP advertises its presence by transmitting short

wireless messages at a regular interval, usually about 10

times a second. These short messages are called beacons

and allow wireless devices to discover the identity of the AP.

Now suppose that someone powers up a laptop with a Wi-Fi

network adapter installed (the STA). After the initialization

phase, the STA will start to search for an AP. It may have

been configured to look for a particular AP, or it may be

prepared to connect to any AP, regardless of identity. There

are a number of different radio frequencies (called

channels) that could be used so the STA must tune into

each channel in turn and listen for beacon messages. This

process is called scanning. The process can be accelerated

by probing, as explained later in this chapter.

The STA may discover several APs in a large network and

must decide to which it intends to connect; often this

decision is made based on signal strength. When the STA is

ready to connect to the AP, it first sends an authenticate

request message to the AP. The original IEEE 802.11

standard defined the authenticate messages as part of the

security solution, but they are not used for this purpose in

Wi-Fi (for reasons why, see Chapter 6). Because, in our

scenario, we are not using security, the AP immediately

responds to the authenticate request by sending an

authenticate response indicating acceptance.

Now that the STA has permission to connect to the AP, it

must take one more step before the connection is complete.

In IEEE 802.11 the concept of "connection" is called

association. When an STA is associated with an AP, it is

eligible to send data to and receive data from the network.

[1] The STA sends an association request message and

the AP replies with an association response indicating

successful connection. After this point, data sent from the

STA to the AP is forwarded onto the wired LAN to which the

AP is connected. Similarly, data from the wired LAN

intended for delivery to the STA is forwarded by the AP.

[1]
 In the original Wi-Fi products, being associated gave you network

access right away. However, as we show in Chapter 8, in the new

security approach, association only allows the STA to begin the full

authentication process needed for secure network access.

This overview scenario describes the sequence of events by

which an STA joins a network. Many details have been left

out in the interests of simplicity. Some of the details are

brought out in the rest of this chapter.

In IEEE 802.11 there are three types of messages:

Control: These are short messages that tell devices

when to start and stop transmitting and whether there

has been a communication failure.

Management: These are messages that the STA and

AP use to negotiate and control their relationship. For

example an STA uses a management message to

request access to the AP.

Data: Once the STA and AP have agreed to connect,

data is sent using this type of message.

We won't discuss control messages in detail here, but

management messages are important for you to understand

the process of connecting to a Wi-Fi LAN. The rest of this

section describes the management messages and the

processes they support.

Beacons

Beaconing is the method by which the access point tells the

world it is ready for action and maintains timing in the

network. Beacons are management frames that are

regularly sent out by the AP, typically about ten times a

second. The beacon contains useful information such as the

network name and the capabilities of the AP. For example,

the beacon can tell the STA whether the AP supports the

new security provisions of the IEEE 802.11 standard.

Probing

When a station turns on, it can listen for beacons, hoping to

find an access point with which to connect. You might think

that ten beacons a second would be plenty for the STA to

find the right access point quickly. However, remember that

there are multiple frequency channels and that if the STA

has to go to each frequency and wait for 0.1 seconds, it

could take a while to complete the scan (in other words, the

search all the channels). Furthermore, if you are already

connected and want to find a new access point because

your signal strength is getting weak, you must find the new

access point very rapidly to avoid disruption. For this

reason, the STA has the option to send a probe request

message. This is basically the equivalent of shouting "hello,

anyone there?" when entering a dark cave. If any access

points receive the probe request, they immediately reply

with a probe response that looks essentially like a beacon

message. In this way, an STA can rapidly learn about the

access points in its area.

Connecting to an AP

Remember that the process of connecting to an AP is called

association. When you want to connect, you send an

association request; the access point may reply with an

association response. If that response is positive, you are

now associated with the access point.

Roaming

If there are multiple access points on the same network,

your STA might choose to move its association from the

current AP to a new one. First it should disconnect from the

old AP using a disassociation message. Then it connects

to the new AP using a reassociation message. The

reassociation message has some information about the old

AP that can be useful to make the handover smoother. The

information allows the new AP to talk to the old AP to

confirm that the roam has taken place.

Sending Data

Once you are associated and after authentication has been

performed, you can start sending data. In most cases data is

exchanged between the STA and the AP. In fact, this is the

normal method even if you are sending data to another STA.

First, you send to the AP and then you allow the AP to

forward to the STA. Often data will go to the AP and then be

forwarded on to an Ethernet LAN or to an Internet gateway.

To facilitate this, each IEEE 802.11 data frame going to or

from the AP has three addresses. Two may be considered

the "final" source and destination, and the third is the

"intermediate" address�that of the access point through

which the message passes.

When you are sending from the STA to the AP, there is one

source address�that of the STA that sent the message�and

two destination addresses. One destination address

specifies the AP and the other specifies the eventual

destination for the message. Similarly data from the access

point to the STA has one destination address (the STA) and

two source addresses�the AP and also the originator of the

message.

clbr://internal.invalid/book/0321136209_24031533.html

Protocol Details

It is not our intent in this book to present the details of how

IEEE 802.11 MAC[2] protocol works. The basic operating

concept is simple, as described in the previous paragraphs.

However, the numerous control mechanisms for dealing

with different speeds, power saving, priority of service, and

retransmission run into hundreds of pages. If you are really

interested in those details, there are books[3] specializing on

the MAC protocol and the physical layer interfaces (in other

words, the radio and modem). Much of the cleverness of the

standard is in how it coordinates multiple wireless devices

so they can share the available radio bandwidth and not

spend all their time colliding and transmitting over the top

of each other.

[2]
 Medium access control.

[3]
 For example, the IEEE 802.11 Handbook: A Designer's Companion by

Al Petrick and Bob O'Hara, published by IEEE Press.

This book naturally focuses on the security protocols that

have been built into IEEE 802.11. These security protocols

have been added in two stages. The first stage was

incorporated in 1997 with the introduction of the first

standard. The second stage, the so-called robust security

network (RSN), was developed during 2001�2003. In fact,

the two approaches are quite different and require separate

descriptions. However, they both depend on some features

of the main IEEE 802.11 protocol that we describe here.

Let's look at these details now so the explanation of the

security protocol makes sense later.

General Frame Formats

Every transmission over the wireless medium has a similar

form, as shown in Figure 5.2. First a special pattern is sent

out called the preamble, which the receivers on other Wi-Fi

LAN devices can identify as IEEE 802.11. By the end of the

preamble, which only lasts a few microseconds, all the

receivers in range should have locked on and adjusted

themselves to interpret the data that is to follow. The next

part of the transmission is called the PLCP header. PLCP

stands for Physical Layer Convergence Protocol, a fact that

we invite you to forget immediately because it is of no

importance to security. Suffice it to say that this header

contains information relevant to the receiver logic, such as

the data rate of the remaining part of the frame and the

packet length. Following the PLCP header is the MAC header,

followed by the user data and a cyclic redundancy check

(CRC) to detect errors. It is the portion starting with the MAC

header in which we are most interested.

Figure 5.2. Basic Frame Format in

IEEE 802.11

MAC header

The MAC header comes in three basic flavors, depending on

whether the information is a control frame, a management

frame, or a data frame. The most important part of the MAC

header is the addressing information. The MAC header

contains the source and destination addresses to allow

delivery of the frame to the correct device. As is standard

for IEEE LANs, these addresses are 6 bytes (48 bits) long,

and each device has a unique address assigned during

manufacture. The destination address can be unicast,

which means it must be delivered to a single device (with

the matching address); or it can be multicast, which means

that it may be delivered to several devices or possibly all

devices in range. It is important to remember this concept

because it has a profound impact on security. So let's

restate:

Unicast address: Deliver to one device

Multicast address: Deliver to several devices

Broadcast address: Deliver to all devices (special case of

multicast)

Other IEEE 802 LANs also use MAC headers, although each

has its own format. For example, IEEE 802.3 (Ethernet) MAC

headers are quite simple and have just two addresses and a

field to indicate the length of the data. IEEE 802.11 MAC

headers are much more complicated and have many fields

used in coordinating the Wi-Fi LAN. The MAC header of an

IEEE 802.11 frame can have from two addresses to four

addresses, depending on the situation. Conceptually the

four addresses are:

Transmitter address (TA): The transmitting device

Receiver address (RA): The receiving device

Source address (SA): The device that created the

original message

Destination address (DA): The device that eventually

receives the message

A moment's thought shows why you might need different

combinations. In an ad-hoc network (no AP), the devices

send messages directly from one to another. In this case the

device that creates the message is also the device that

sends it. Similarly, the device that receives the message is

also the one that processes it. So in ad-hoc frames, only two

addresses are contained in the MAC header.

In an infrastructure network where an access point is

operating, all the mobile devices send their frames to the

AP, which then forwards them to the correct destination. In

this case the mobile device creates and sends the

messages; the access point receives them but is not the

final destination. Therefore, three addresses are needed:

Mobile device address (source and transmitter: SA = TA)

Access point address (receiver: RA)

Eventual destination (DA)

When messages are going the other way (from the AP to the

mobile device), the three addresses are:

Originating device address (source: SA)

Access point address (transmitter: TA)

Mobile device address (receiver: RA and DA)

In principle, all four addresses are used when one access

point talks wirelessly to another access point.[4] However,

this mode of operation is not fully specified in the standard

and the few implementations that exist are usually

proprietary to each manufacturer.

[4]
 Sometimes called wireless bridging.

MAC addresses are relevant to security because, although

the rules say that every device has a unique address, it is

easy for enemies to break the rules and pretend to be

someone else by copying their address. This is a classic

hijack attack in which the enemy allows a legitimate device

to establish a connection and then takes over the

connection by masquerading as that station. Another

problem with MAC addresses from a security standpoint is

that they have to be visible to the outside world in order to

have any meaning. Think of posting a secret letter. You can

use whatever code you like in the letter; but if you also use

a secret code for the address on the front of the envelope,

the postal service isn't going to be impressed and isn't going

to deliver it. The problem with public disclosure of your MAC

address is that, in principle, someone can track where you

go and where you log on even if he can't see what you are

saying.

Apart from the addresses, the MAC header contains quite a

lot of information related to efficient operation of the Wi-Fi

LAN. Most of this is not relevant to security except that it

may need to be protected from malicious modification. In

the future, for a wireless LAN operating to the proposed IEEE

802.11e approach, the MAC header may also contain

information to identify the type of data and the priority with

which it should be handled.

Management Frames

Remember that there are three categories of MAC frame:

control, management, and data. The control frames are very

short and perform functions like acknowledgment and

polling. The data frames have a simple format, as shown in

Figure 5.2. The user data section carries data that came

from a higher layer. The management frames deserve a

little more scrutiny because these are involved in the

security protocol.

The original 1997 standard listed the following management

frames for use in infrastructure mode:

Beacon (notify)

Probe (request and response)

Authenticate (request and response)

Associate (request and response)

Reassociate (request and response)

Dissassociate (notify)

Deauthenticate (notify)

In this list, notify means "sent out but no response is

expected."

The body of a management frame comprises two parts. The

first part is a set of fixed fields appropriate to the type of

management frame. The second part contains elements. An

element is a self-contained packet of information that may

(or may not) be relevant to the receiving device. There may

be a number of elements added to the fixed portion of the

management message, as shown in Figure 5.3.

Figure 5.3. Management Frame

Format

The fixed field contains various items of information specific

to particular types of management frames. This includes, for

example, flag bits that indicate whether optional features

are active. Including in the fixed field area information for

options that are not selected would be inefficient; instead,

the fixed field just indicates whether the option is used and

an appropriate element is added. The use of elements is a

powerful and flexible idea with several benefits:

The use of elements has allowed the standard to be

updated more easily. For example, information required

for operating the new security methods can be put into

elements. The advantage is that old systems that do not

understand the new elements can simply ignore them. If

the format of the fixed fields had been changed, the old

system would be quite incompatible.

Individual manufacturers sometimes take advantage of

the extendibility to add elements specific to some

special feature that they provide (although this is not

really allowed by the standard). For example, many

systems add a proprietary element in beacons that

indicates, to their own brand of mobile device, how busy

the access point is. This allows a feature called load

balancing in which the mobile stations distribute

themselves evenly across all the access points. Of

course, this arrangement doesn't help mobile stations

that are made by a different company than the access

point because they will not understand the proprietary

element and just throw it away. However, the inability to

understand proprietary elements does not prevent

standard operation.

Each element has a similar structure. The first byte

identifies the type of element. The second byte indicates the

length: how many bytes are in the element and the

information in the bytes that follow. Because the type and

length come first, the receiver can skip over the element if it

doesn't recognize or understand the type number.

We'll get into more detail on management frames later

when we look at the way the security protocols operate; but

for now, let's take a quick look at beacon frames. Actually

there are several variants depending on the type of wireless

LAN you use, but we'll look at the most common one: IEEE

802.11b (Wi-Fi) in infrastructure mode. This beacon has

three fixed fields followed by several elements, generally at

least four.

The sequence of fields in a normal beacon is shown in Table

5.1. Remember that beacons are sent out by access points

to advertise themselves. The information is used in two

ways. First, beacons are used to locate access points with

the right network name (SSID) and suitable capabilities.

Then, after association, the beacons are used to let the

attached devices know that the access point is still

operating and in range and also to coordinate certain

operations such as power save mode. Let's review each field

individually:

Timestamp

This field is initialized when the AP first starts and keeps

going up in microseconds. The field is 64 bits long, which

means, amazingly, that even counting up once per

microsecond, it would take over half a million years to

overflow! The value is used by all the attached devices to

synchronize their operation.

Table 5.1. Beacon Format

Contents Type

MAC header (indicates a beacon) header

Timestamp Fixed Field

Beacon Interval Fixed Field

Contents Type

Capability Info. Fixed Field

SSID (network name) Element

Supported Data Rates Element

Radio Parameters Element

Power Save Flags Element

Beacon Interval

This field tells everybody when the next beacon is expected

to follow. The usual default for beacon interval is around 0.1

second.

Capabilities Information

This field identifies whether the AP supports various optional

features. The original standard only had five bits defined;

but as more and more features have been added to the

standard, the number has increased dramatically. This field

is important to security because it allows the access point to

advertise that it supports the new RSN operation.

SSID

The SSID (or network name) gives the identity of the

network to prospective wireless devices. There is no security

in this�any rogue access point can advertise your SSID and

most wireless devices have an option to allow use of any

and all SSIDs they find in an area. When there are several

Wi-Fi LANs operating in the same space, SSID helps you to

choose which one to join. Do not labor under the

misconception that choosing an unusual SSID provides some

sort of security. This is absolutely not the case.

Supported Data Rates

This element indicates what speeds the access point can

support. For example, an old access point might only

support rates of 1 or 2Mbps. An IEEE 802.11b access point

supports 1, 2, 5.5, or 11Mbps; and an IEEE 802.11g access

point rates up to 54Mbps. An IEEE 802.11g device will prefer

to associate to an AP that could support its highest data rate

so this information is needed in advance. Note that because

this is an element and not a fixed field, it can be extended in

the future.

Radio Parameters

This element indicates the radio frequency that is being

used by the access point. You might think that if you were

able to receive the message in the first place, you must

know which frequency you have selected. However, in some

cases it is possible to be on a nearby frequency and still

receive a message from an adjacent channel (although

poorly). The effect is similar to hearing a noisy distorted

version of a nearby FM radio station when you are not quite

tuned in.

Power Save Flags (TIM)

These flags are used to tell sleepy wireless devices that

there is data waiting for them. Power-saving devices turn off

between beacons and then wake up to check these flags. If

there is no flag set for them, and they have nothing they

want to send, they can go back to sleep until the next

beacon.

Others

It is really important to remember that many new elements

have been added over the years as the standard has

developed. The ones shown in Table 5.1 are just those in the

original standard. When we look in detail at the security

protocol, you will see that security-related information is

added using elements

Radio Bits

This section has been left until last because it is really not

relevant to security at all. In fact, if your only interest is

security, skip to the next section. However, a brief overview

of the radio side seems relevant to a book focused on

wireless LANs. We have seen that the MAC layer produces a

frame of data that it desires to be transmitted over the radio

waves. From the point of view of the radio, this is just a long

stream of bits. It is the job of the radio to take the bits and

generate a few electromagnetic waves that can be picked

up somewhere else and converted back to the same bits.

Simple, huh? Well, actually, no.

Currently (in other words, as of 2003), there are two

frequency bands that are available for sending IEEE 802.11

data; these are referred to as the 2.4GHz band and the

5GHz band. Band allocation is a very complicated area

because governments jealously guard and control the use of

radio spectrum, especially after they discovered the value of

spectrum auctions in the late 1990s. Different countries and

regions of the world have different rules, and we could

easily fill a book on this topic alone. Here we will limit

ourselves to observing that these two bands exist and, at

any point in time, your radio operates in one or the other.

Having determined the radio spectrum that is available, the

designer needs to figure out how to convert the digital bits

into a high-frequency analog signal that can be amplified

into an antenna to generate electromagnetic waves.

Converting from bits to analog is the same task that a

regular telephone modem performs�and, in fact, the portion

of the radio that converts bits into analog is called the

modem. The radio can be considered as two bits. The first

part contains the modem, sometimes called the baseband

section, and the second part contains all the very high

frequency electronics to drive the antenna, usually called

the radio frequency (RF) section. RF design is very

specialized, and we salute the designers and discuss no

further. The MODEM deserves more of a look.

Remember that the object is to convert digital bits into

analog signals. One of the simplest modem techniques is

called frequency shift keying (FSK): Send one frequency

for a 0 bit and another for a 1 bit. You could use such a

scheme to send Morse code for example�if you only needed

a few bits a second! Having invented our first simple

scheme, now apply 50 years of research and stir in a large

consignment of top-quality gray matter and you might

arrive at the very sophisticated techniques used in today's

wireless LANs, such as orthogonal frequency division

multiplexing (OFDM) and convolutional coding.

According to natural laws, there is a limit to how much

information can be sent in a given amount of radio

bandwidth. Furthermore, as you increase the information

rate toward the theoretical limit, you become more

susceptible to corruption by random noise. The

sophisticated mathematical techniques that have been

applied to wireless LAN are designed to get the optimum

balance between high data rate and range. Put the data rate

too high and you are susceptible to noise�hence the range

becomes too short. But use the right mathematical

technique, and you can increase the data rate without

sacrificing range.

Improvements in modem techniques (and some changes to

the regulations) have resulted in successive versions of IEEE

802.11 offering higher speed. The original 1997 standard

only provided 2Mbps in the 2.4GHz band. IEEE 802.11a

allowed an immediate leap to 54Mps in the 5GHz band,

partly due to better modem technology and partly due to

more available spectrum. However, 802.11a implementation

was not practical at the time the standard was completed

and product didn't appear until 2002. In 1999, IEEE 802.11b

increased the speed to 11Mbps in the 2.4GHz band and set

the stage for rapid growth of the wireless LAN market.

Recently IEEE 802.11g has increased speeds again in

2.4GHz by introducing more sophisticated modem

techniques. Soon we can anticipate new versions in the

5GHz band that might push data rates up to 100 or

200Mbps.

Well, interesting as all this is, none of it is relevant to

security. The same security techniques can apply whether

you are using 100Mbps or going back to your Morse code

transmitter.

Summary

A broad understanding of how Wi-Fi networks operate is

important for you to understand how the security

mechanisms work. This chapter has reviewed IEEE 802.11

from the basic topology down to an outline of the protocol

messages. We have seen how the Wi-Fi LAN fits into a stack

of layers between the operating system and the wireless

medium. Wi-Fi provides the lower layers of communication,

while higher layers such as TCP/IP ensure delivery of data

from end to end.

We looked at the way Wi-Fi LAN are organized, showing how

there are two modes of operation�ad-hoc (IBSS) and

infrastructure (ESS). The most common mode is ESS, which

uses an access point.

Operation of the Wi-Fi LAN is coordinated by a stream of

management and control messages in addition to data

messages. This chapter has reviewed the main message

types and how the management messages enable wireless

devices to find each other and form connections. The

security mechanisms are tied up with the process of making

connections and passing data. The next chapter looks in

detail at the original security method WEP, whose operation

was closely tied to the Wi-Fi management messages.

Chapter 6. How IEEE 802.11

WEP Works and Why It Doesn't

This chapter is dedicated to failure. It focuses entirely on

WEP, the security method originally employed with Wi-Fi

LANs and which has now been discredited due to its

numerous security weaknesses. It may seem strange to

devote so much space to a protocol that will soon be

consigned to history. However, an understanding of WEP

and its failure modes is very educational as a case study

and highlights the areas that need to be addressed for real

security. The first half of the chapter looks at the design of

WEP and the second half shows why it fails to meet its

security goals.

Introduction

For the first five years of its life, IEEE 802.11 had only one

method defined for security. This was called Wired

Equivalent Privacy or WEP (often misidentified as Wireless

Effective Privacy and other variants). In 2000, as Wi-Fi LANs

increased in popularity, they attracted the attention of the

cryptographic community, who rapidly detected cracks in

the WEP approach. By the end of 2001, tools were available

on the Internet designed to crack open WEP in a fairly short

time.

For many people, WEP is the only choice until the new

security methods added to the IEEE 802.11 standard

become established. Even with its weaknesses, WEP is still

more effective than no security at all, providing you are

aware of its potential weaknesses. It provides a barrier,

albeit small, to attack and is therefore likely to cause many

attackers to just drive on down the street in search of an

unprotected network. Most of the attacks depend on

collecting a reasonable sample of transmitted data so, for a

home user, where the number of packets sent is quite small,

WEP is still a fairly safe option. This section looks at how

WEP works in detail, what its weaknesses are, and what an

attacker has to do to break in.

Some people criticize the designers of the original IEEE

802.11 standard for creating WEP with inherent weaknesses.

However, there are a few things that need to be taken into

account. The first is that, at the time WEP was designed, it

was not intended to provide military levels of security. As

the name suggests, WEP was intended to make it difficult to

break in�in the same sense that it is difficult to break into a

building to connect to the wired LAN�but not impossible to

break in. Section 8.2.2 of the 1999 IEEE 802.11 standard

states the following as the objectives for WEP (quoted

verbatim):

It is reasonably strong: The security afforded by the

algorithm relies on the difficulty of discovering the

secret key through a brute-force attack. This in turn is

related to the length of the secret key and the frequency

of changing keys. WEP allows for the changing of the

key (K) and frequent changing of the Initialization Vector

(IV).

It is self-synchronizing: WEP is self-synchronizing for

each message. This property is critical for a data-link-

level encryption algorithm, where "best effort" delivery

is assumed and packet loss rates may be high.

It is efficient: The WEP algorithm is efficient and may be

implemented in either hardware or software.

It may be exportable: Every effort has been made to

design the WEP system operation so as to maximize the

chances of approval, by the U.S. Department of

Commerce, of export from the U.S. of products

containing a WEP implementation. However, due to the

legal and political climate toward cryptography at the

time of publication, no guarantee can be made that any

specific IEEE 802.11 implementations that use WEP will

be exportable from the USA.

It is optional: The implementation and use of WEP is an

IEEE 802.11 option.

Notice that the requirements try to balance "reasonably

strong" against the need for simple implementation and

exportability. The issue of self-synchronization is really

important for Wi-Fi LAN. Basically, what it says is that each

packet must be separately encrypted so, given a packet and

the key, you should have all the information you need.

Clearly, you don't want a situation in which a single dropped

packet makes all the following ones indecipherable.

The IEEE 802.11 standard only ever specified the use of 40-

bit keys. As we have seen, 40 bits is too short to withstand

serious brute force attack, which was why it was acceptable

under export rules. The rationale was that if, say, a bank

was intending to use wireless LAN, it would have its own

security protocol running over the top of WEP and this

security would be much higher, as appropriate to its

application.

In retrospect, accepting this concept of a "reasonable" level

of security was a mistake. Some people will argue that there

are only two types of security: strong and none. The

standard should probably have incorporated a really strong

solution or taken a position that security had to be provided

by some other means (like virtual private networking (VPN),

for example). However, the power of marketing came to

play and, in the promotion of IEEE 802.11 to the world,

somehow the word "reasonably" was dropped in the

brochures and WEP was simply described as secure.

Furthermore, after export restrictions were relaxed,

manufacturers made nonstandard extensions by using 104-

bit keys. This step made them feel justified in adding

adjectives like "extremely" and "absolutely" to the brochure.

WEP was now completely secure, at least in the minds of the

marketing managers. The long key extensions were adopted

as part of the Wi-Fi specification and became the norm in

the industry in 1999.

For the moment, let's step back from the marketing hype

and look at how WEP works. To do that, we need to get back

to the low-level IEEE 802.11 messages, some of which are

covered in Chapter 5. All of the following refers to the 1999

standard. We cover the new security protocols in depth in a

later section.

The IEEE 802.11 (1999) defined two levels of security: open

and shared key. Open security really means no security. It

is used in the same way that one would say, "I went to work

and left the front door of my house open." Most people have

figured out this is not a good security policy for their homes,

and you probably feel the same way about Wi-Fi LANs.

Shared key simply means that both ends of the wireless

link know a key with a matching value. To be useful, this

must be a secret shared only between trusted parties.

clbr://internal.invalid/book/0321136209_24031533.html

Authentication

There are two parts to WEP security described in the

standard. The first is the authentication phase and the

second is the encryption phase. The idea goes roughly as

follows: When a new mobile device wants to join to an

access point, it must first prove its identity. Ideally, the

mobile device would also like the access point to prove itself

as well. This phase is known as authenticating each

other's identity. We need to delve into the concept of

authenticating a bit more deeply here because

authenticating in a WEP environment is a bit of a fool's

errand.

The purpose of authentication is for each party to prove that

he is who he claims to be. When you sign a check, you are

authenticating yourself to the recipient, who will then use

the signature to prove to the bank that you really wrote the

check. In a LAN environment, every device has a

(supposedly) unique number called the MAC address. Every

transmission from a device on the LAN contains its MAC

address so the identity of the sender can be checked. But

how do you know that someone else didn't forge a message

with a fake MAC address? One approach is to authenticate a

device when it first joins the LAN and agree to a secret code

that will be used to protect every subsequent message.

Because only the true device and the access point know the

secret code, each message can be validated as authentic

when it is received. This is the purpose of authentication.

Now let's go back to IEEE 802.11 WEP. It has an

authentication phase in which a new device proves that it is

a trusted member of the group. We will look at how that is

done in a moment. The access point reasons that, if the

device can prove that it is trusted, it is reasonable to believe

that the device's MAC address is true. Based on this trust, it

will let the new device join. Unfortunately, however, in WEP

no secret token is exchanged upon authentication. So there

is no way to know whether the subsequent messages come

from the trusted device or from an impostor. This

authentication is really a rather embarrassingly pointless

exercise and, in fact, was completely dropped from the Wi-Fi

specification, despite being in the IEEE 802.11 standard.

As an analogy, imagine you hear a knock at the door and

open it to find a man who has come to repair a utility fault

inside your home. The man is wearing a utility company

uniform and a mask with two holes for the eyes (okay, okay,

bear with us for a moment). You ask for identification and he

hands you a utility company badge. You even call up the

utility company and confirm that he is scheduled to visit.

The man comes in and then says he needs to go out to his

van for a few minutes. In 30 seconds, a figure appears

wearing the same uniform and mask and walks into your

house. Question: How do you know it is the same guy? You

don't know for sure. So what was the point of checking in

the first place if you can't positively identify the man every

time he walks in? You can now see the point of the mask in

the analogy: In real life, we use our recognition of a person's

face to confirm a person's authentication. But in a Wi-Fi LAN,

there is no inherent way to do this. We will see later that the

new security methods do provide this type of guarantee.

Despite its weakness, some systems still do use the

"authentication" phase of the original IEE802.11 standard,

so let's look at the messages that are exchanged. In the

primer section, we point out that IEEE 802.11 uses three

types of message: control, management, and data. The

authentication phase uses management frames, as shown

in Figure 6.1. For open authentication, the mobile device

sends one message requesting authentication and the

access point replies with a success message. For WEP-based

authentication, an exchange of four messages occurs. First

the mobile device requests authentication, and then the

access point sends a challenge message. The mobile device

responds to the challenge to prove that it knows a secret

key and, if the proof is accepted, the access point sends the

success message.

Figure 6.1. Authentication Sequences

in the Original IEEE 802.11 Standard

In principle, if the access point is operating in open mode, it

always accepts the authentication request and responds

with an authentication success message. This is the

definition of open system operation. However, in practice

many systems provide proprietary screening methods, the

most popular being MAC address lists. The access point has

a list of the MAC addresses that it will allow to join the

network. This list is created by the manager and

programmed in. The authentication is refused unless the

mobile device's MAC address is found in the list. This doesn't

protect against MAC address forgery, but it gives basic

protection against very simple attacks using an off-the-shelf

Wi-Fi LAN card, or even against accidental connection to the

wrong network or another person's system.

WEP authentication is intended to prove to a legitimate

access point that the mobile device knows the secret key.

When the mobile device requests authentication, the access

point sends a random number called challenge text. This

is an arbitrary 128-bit number (preferably random). The

mobile device then encrypts this number with the secret key

using WEP and sends it back to the access point. Because

the access point remembers the random number previously

sent, it can check whether the result sent back was

encrypted with the correct key; the mobile device must

know the key in order to encrypt the random value

successfully. Notice that this does nothing to prove to the

mobile device that the access point knows the key. Notice

also that if an attacker is listening, you just handed them a

matching sample on which to start work because the

challenge contains the plaintext and the response contains

the ciphertext. You can start to see why the organization

defining interoperability, the Wi-Fi Alliance, dropped the use

of this exchange altogether.

The one benefit of the authentication exchange in a

legitimate network is that it prevents stations joining the

network unless they know the WEP key. There is a time

savings in rejecting mobile devices that cannot

communicate after associating. This is a management

feature rather than a security feature. For example, if

someone were to mistakenly enter the wrong key value, or

fail to update his keys, the access point would reject the

authentication and the user would be notified of the failure.

Without the authentication phase, the mobile device is

accepted, but every frame it sends is discarded by the

access point due to decryption failure. From the mobile side,

it is hard to distinguish this failure from failure due to

interference or being out of range.

For completeness, let's look at the frame of the

authentication messages used in this phase. Although

multiple messages may be sent, they all have the same

general format, as shown in Figure 6.2.

The Algorithm Number indicates the type of

authentication being used:

0 � Open system

1 � Shared key (WEP)

The Transaction Sequence indicates where we are in the

authentication sequence. The first message is 1, the

second 2, and the third message (only used with WEP) is

3.

The Status Code is sent in the final message to indicate

success or failure of the authentication request.

The Challenge Text field is used in the shared key (WEP)

authentication, as described previously.

Figure 6.2. Authentication Message

Format

clbr://internal.invalid/book/0321136209_24031533.html

Privacy

If asked "What is the purpose of wireless LAN security,"

many people identify privacy as the key issue. It means

preventing strangers from intercepting and understanding

your data. Privacy is only one component of a security

protocol and is not always needed, as the earlier analogy

with signing a check shows. However, for Wi-Fi LAN security,

privacy is a very desirable attribute, and was central to

WEP's objectives.

Use of RC4 Algorithm

When WEP is enabled, the data messages are encrypted so

an attacker who listens in cannot understand the contents

(at least this is the intent). To decode the message, you

have to know the secret key. The original IEEE 802.11

standard specified a two-phase approach: First you

authenticate, and then you encrypt the data. As we have

seen, the authentication method is next to useless; in fact, it

is worse than useless because it gives an enemy information

to use in an attack. Therefore, most Wi-Fi systems use open

authentication and then switch on encryption after

association. The fact that you effectively skip the

authentication phase doesn't give the enemy any

advantage in this case because, although he can join the

network unchallenged, he can't send or receive any data

without knowing the WEP keys for encryption.

The management of WEP keys is confusing because there

are several of them used in different situations. We look at

this in detail later; but for this section, let's assume that

both the access point and the mobile device know the keys

and that the mobile device has successfully associated (with

or without authentication).

Security systems can be based around stream ciphers or

block ciphers. A stream cipher takes a sequence of

ordinary data (plaintext) and produces a sequence of

encrypted data (ciphertext). It's like a sausage machine�you

keep feeding plain bytes in one end and encrypted bytes

come out the other end in a continuous process. A block

cipher handles a single block of data at a time. It is more

like a bakery�the dough is broken into lumps and each lump

is processed separately to produce a loaf. In the case of

data, fixed-length blocks are formed (typically 8, 16, or 32

bytes). Each block goes into the encryption algorithm and

emerges as a completely different block of the same length.

An important distinction between stream and block ciphers

is that the internal state of a stream cipher is continuously

updated as data is processed. By contrast, the state of a

block cipher is reset for each block prior to processing.

WEP uses a stream cipher called RC4 to encrypt the data

packets (Schneier, 1996). At the highest level, RC4 is a black

box that takes in one byte from a stream at a time and

produces a corresponding but different byte for the output

stream, as shown in Figure 6.3. As with all encryption

streams, the output stream is intended to look like a

sequence of random numbers regardless of what the input

stream looks like. Decryption is the reverse process and

uses the same keys as for encryption (hence this is called a

symmetric algorithm).

Figure 6.3. Stream Cipher

One of the advantages of RC4 is that it is fairly easy to

implement and does not use any complicated or time-

consuming operations like multiplication. Generally, this is

the challenge for designers of an algorithm�to make it both

secure and easy to implement. There are two main phases

to RC4's use. In the first phase, initialization, some internal

data tables are constructed based on the key value

supplied; and in the second phase, the data runs through

and is encrypted.

In the case of WEP, both the initialization phase and the

encryption phase occur with each packet. That is, each

packet is treated as if it were a new stream of data, which

ensures that if one packet is lost the following packet can

still be decrypted. This is both a strength and, as we shall

see later, a source of weakness.

Initialization Vector (IV)

Before looking at the algorithm itself, we need to consider

the encryption key again. As we mentioned previously, the

original key length was 40 bits, which most manufacturers

have increased to 104 bits. Manufacturers often refer to

their 104-bit key solutions as "128-bit" security. So what

happens to the extra 24 bits? The answer lies in the

initialization vector.

There is a problem in using a fixed key value. Although the

key may be updated from time to time, it is fixed relative to

the flood of data packets running through the system.

Effectively all the data packets are encrypted using the

same key value. Suppose you initialize the RC4 algorithm

with your key and run the message "qwertyuiop" into it.

Suppose you get the encrypted result "b%fP*aF$!Y". This

looks good and undecipherable. However, if the key is fixed,

every time you run the same text "qwertyuiop" after

initialization, you get the same result. In one sense, this is

good�if you were to get a different result every time, it

might make decryption somewhat tricky. But in another

important way, this is very bad because it gives an attacker

information. If she spots the same encrypted bytes in a

given position, she knows that the original plaintext is being

repeated.

How might this ability to spot repeated text be useful? Well,

for example, the IP address always falls in the same place in

a packet. So if you see the same encrypted bytes in that

location, you know the message is from the same IP address

(or going to the same IP address) as a previous message.

You could think up lots of examples, but the basic principle

is that you are giving information to the attacker and that is

bad.

The solution to this problem is the initialization vector

(IV). This is a very simple concept. Instead of just using the

fixed secret key to encrypt the packets, you combine the

secret key with a 24-bit number that changes for every

packet sent. This extra number is called the IV and

effectively converts the 104-bit key into a 128-bit key. In our

opinion, calling this 128-bit security is a minor con trick

because the value of the IV is not secret at all but is

transmitted openly with the encrypted frame.

To prevent the use of a fixed key for encryption, the actual

key used to initialize the RC4 algorithm is the combination

of the secret key and the IV, as shown in Figure 6.4.

Figure 6.4. Using the IV

Because the IV value always changes, the key used for

encryption effectively changes with every packet so even if

the input data (plaintext) is the same, the encrypted data

(ciphertext) is always different.

The initialization vector is not a secret. In fact, it is sent

openly as part of the transmission so the receiver knows

which IV value to use in decryption. Any attacker can read

the IV as well. In theory, knowledge of the IV is useless

without knowledge of the secret part of the key. To be

effective, the same IV value should never be used twice with

a given secret key. Because the attacker can read the IV

value, he could keep a log of the values used and notice

when a value is used again. This would be the basis for an

attack.

Unfortunately the IV in IEEE 802.11 WEP is only 24 bits long.

This seems like quite a long number, but a few calculations

show that it is not really enough. A 24-bit number has

values from 0 to 16,777,216�so there are about 17 million

IV values possible. A busy access point at 11Mbps is capable

of transmitting/receiving about 700 average-sized packets a

second. If a different IV value were used for every packet, all

the values would be used up in less than seven hours!

Because few people change their keys every day, IV values

are bound to be reused.

There are other causes of IV reuse due to implementation

issues. For example, many systems always start with the

same IV value after a restart, and then the IV follows the

same sequence as it is updated for each packet. Many

systems change the IV according to a pseudorandom

sequence�that is, a sequence that is superficially random

but always follows the same sequence of numbers when

started with a given value. If there are 20 mobile devices

turned on in the morning, and they all start with the same IV

value and follow the same sequence, then the same IV

value will appear 20 times for each value in the sequence.

The problems with the IV illustrate that it is hard to design

security protocols based on stream ciphers because the

internal state of the encryption process is not reset during a

stream. Chapter 11 illustrates that the new version of WEP,

called TKIP, which is also based on RC4, avoids IV reuse as

an important part of the design.

WEP Keys

The way in which WEP keys are used is a great source of

confusion to many people. Awkward terminology in the

standard makes this situation even worse. The different

types of keys in the standard have names that are confusing

and misleading and, as a result, many manufacturers have

tried to "help" by inventing new terms that are more easily

understood. This is a double-edged sword because, while

the new terms are better, they are not consistent across

manufacturers, with the result that there are now multiple

names in use for the same concepts. No wonder people

have difficulty in understanding WEP keys.

So as not to propagate this confusion, we only use the

terms used in the original standard, so you need to do

some homework: Learn the official terms and, if required,

cross reference them to the names used in the system you

have installed. There are only two types of WEP keys

mentioned in the standard. The correct terms are:

Default key(s)

Key mapping key(s)

Table 6.1 is a translation table showing the user-friendly

names manufacturers use for these terms.

WEP keys have the following characteristics:

Fixed length: Usually 40 bits or 104 bits

Static: No changes in key value except by

reconfiguration

Table 6.1. Manufacturer Names

for WEP keys

Standard Term Manufacturer's Term

Standard Term Manufacturer's Term

Default key Shared key

Group key

Multicast key

Broadcast key

Key

Key mapping key Individual key

Per-station key

Unique key

Shared: Access point and mobile device both have copy

of the same key(s)

Symmetric: Same key used to encrypt and decrypt

information

The keys are static, and both the mobile device and the

access point must have a copy. So the question arises how

to configure the key into both devices in a way that does not

risk the key being discovered. The IEEE 802.11 standard

conveniently bypasses this problem with the words "The

required secret is presumed to have been delivered to

participating STAs via a secure channel that is independent

of IEEE 802.11." This is not an unreasonable position

because the method of installing the keys is bound to vary

for different types of devices. You can install the keys on a

laptop computer, for example, by typing them or using a

floppy disk. However, if you have a mobile phone with Wi-Fi

LAN built in, you need to use a different approach�for

example, using a smart card.

Although skipping the issue of key distribution is reasonable

for the standard, it doesn't make the job any easier for the

system manager. At home, it is relatively easy. Just bring up

a configuration utility provided with the system, choose the

key values, and type them in. You can easily manage a few

tens of users in this way. However, in a corporation with

dozens or even hundreds of users, installing the keys to all

the mobile devices and access points is an absolute

nightmare�especially because it is essential to avoid

unscrupulous people finding out the key values. Changing

the keys can also be a major undertaking, so it doesn't help

when the security guru tells you to change keys every seven

hours to avoid IV reuse! In practice, each vendor tends to

use a different approach to solve this problem. Most allow

the simple option of typing in the key value using a utility or

via the client driver interface. Some allow keys to be

distributed to the mobile stations on a floppy disk that

contains the keys in some obscured format. Sophisticated

methods for secure key distribution have been invented, but

these are not included in the WEP specification. If you are

using WEP, you'll probably have to put up with typing the

keys in for now.[1]

[1]
 A few vendors have attempted to provide key distribution with WEP,

notably Cisco LEAP (see Chapter 9).

There are two different approaches to using keys under WEP.

Usually when there are two ways to do something in a

standard, you can figure there was a technical argument in

the standards committee that neither side could win. In the

end, they included both approaches and assumed the

market would decide which to use. In fact, in the case of

WEP, both approaches are useful in different circumstances.

In the first case, all the mobile devices and the access

points use a single set of keys. These keys are called

default keys.

In the second case, each mobile device has a key that is

unique. In other words the key used between each

mobile device and the access point is specific to that

connection and not known to other mobile devices.

These keys are called key mapping keys.

The two modes are shown diagrammatically in Figure 6.5.

Note that in the first case all the devices need to know only

one key between them. In the second case, the mobile

devices each know one key, but the access point has to

have a table of all the keys. You can see that the names

"default" and "key mapping" used in the standard don't

relate very well to the function, which is why manufacturers

have coined new terms in their documentation. Just

remember default keys are shared, and mapping keys map

to a specific device.

Figure 6.5. Difference Between

Default and Key Mapping Keys

Default Keys

Consider a scenario in which you want all the mobile devices

to share the same secret key, as in a home installation and

in most small- to medium-sized commercial organizations.

You decide to use the default keys. In fact, many

manufacturers only support default key operation so this

may be your only option. When you go to enter your key,

you are surprised to find that there is not one, but four,

default keys in the system. The IEEE 802.11 standard

specifies that there should be four default keys for each

device. This is another great source of confusion�do you

need to enter all four? Do you need the same four on every

mobile device as well? The level of confusion is so high that

some users get as far as this configuration screen and give

up, opting to take a chance without using WEP.

As with many things, these options make sense when you

understand why you have them. Here are two key facts that

help:

1. Only one default key is needed for security to

work.

Multiple default keys are supported to help you change keys

smoothly.

Let's suppose there was only one default key available

system-wide. When you install your Wi-Fi LAN system, you

choose a key and program it into the access point. You

program the same key into each of the mobile devices and

into new ones that you add later. Everything is fine until, like

a good security manager, you decide it is time to change

the key value. How do you do it? If you change the key in

the access point, all the mobile devices will be disconnected

immediately. Then you will have to track down all the users

and reprogram their mobile device with the new key. This

step could take hours, or days if people are out of the office.

You could send out a memo telling everyone that from 9:00

Monday the key is changing and they need to update their

computers. However, at least half the people will forget and

be on the phone complaining their Wi-Fi LAN connection is

broken and, in any case, you can hardly publish the key

value in the memo for them to type in. If there were only

one default key, changing its value would be a real pain in

the neck.

The answer is to use two default keys "simultaneously." It

works like this: When there are two default keys defined, all

transmissions are encrypted using a single key that you

select. This is called the active key. However, received

frames can be decrypted using either of the two keys as

appropriate. In summary, if you have multiple default keys

you always encrypt using the active key but you can decrypt

using any default key that is appropriate.

This technique of multiple keys makes key change much

easier. The key change works as shown in Figure 6.6 (A�D).

Figure 6.6A. Before Changing Keys

Figure 6.6D. Completed Key Update

In Figure 6.6A, the mobile station and access point are

communicating using the first default key ABCDEF. The

second default key is not assigned (this is called a null key).

Now the manager decides to change the key. The first thing

to do is to program the new key JKLMNP into to the access

point as the second default key, as shown in Figure 6.6B.

Note that the access point still transmits using ABCDEF�that

is still the active key. By the way, you should never use such

weak key values as these in a real system!

Figure 6.6B. Adding a Second Default

Key

The next stage in the change is to notify all the users that

they need to have their keys updated. Perhaps you go to

their desks or ask them to come to you. In each case you

install the new secret key and make the new key active on

their devices. Now the users whose devices have been

updated will be transmitting using the new key, as shown in

Figure 6.6C.

Figure 6.6C. Use of Both Old and New

Keys

Notice that the access point is still sending using the old

key, but the active key on the mobile has been changed.

The access point must use the old key because some users

have not been updated yet and don't know the new key.

Access point transmissions using the old key are accepted

by mobile devices that have not been updated and also by

the ones that have the new key. The mobile devices with the

new key still have a copy of the old key available. In the

same way the access point can accept messages from both

updated and un-updated mobile devices because it also has

both keys available.

After all the users' devices have been updated, or after a

cut-off date for the change, you move the access point over

to the new key and the old key is deleted, as shown in

Figure 6.6D. You can see how this key change has been

possible with relatively little disruption because of the

availability of multiple default keys. You need only two

default keys to make this transfer work, so why are there

four default keys? Was the Standards committee feeling

generous on that day or is there some other reason?

We have assumed so far that the keys are used

bidirectionally. In other words, the same key is used to

receive and to transmit (except during a key change). With

four keys, you can operate with different keys in each

direction. Remember that transmitted frames are always

encrypted using the active key. The active key is identified

using a number: 0, 1, 2, or 3. So, for example, the AP might

transmit using default key 0. However, there is no reason

why the mobile devices have to transmit using 0. The

mobile devices might all be configured with an active key of

2. Think about what that means�the AP encrypts its

messages using key 0, but the mobile devices encrypt using

key 2. Key 2 on the AP has to match key 2 on the mobile

device and key 0 on the mobile has to match key 0 on the

AP. However, key 0 is different from key 2. This is called

directional key use.

If you think directional key use gives more security, you

could decide to always use keys 0 and 1 for AP

transmissions and keys 2 and 3 for mobile device

transmissions. You need two keys in each case to allow the

key change to occur for each direction separately, making a

total of four keys in use.

The key number (0, 1, 2, or 3) that is used for transmission

has to be notified to the receiver so it knows which key to

use for decryption. This is done by sending the information,

called the KeyID bits, in each encrypted frame.

Now you know why there are four keys available. Remember

that you are not obliged to use all four. You can operate

quite happily with only one default key, provided you don't

mind disruption when changing the value. There is one more

use for default keys, which is needed when you use the key

mapping keys, as described in the next section.

Key Mapping Keys

The basic principle of key mapping keys is to give each

mobile device its own key value. The benefits of this

approach are obvious in a large organization. If you have

1,000 users on a site and they all share a single default key,

you will have a very hard time keeping that key secret and

performing key updates. If instead each user has a unique

key, you can change an individual key and enable or disable

single users if, for example, a laptop is lost or stolen.

Not all manufacturers support key mapping keys because of

the complexity of configuring and maintaining them. If you

want to use this feature, you may need to shop around (and

if you are shopping around now, we suggest you skip WEP

and go straight to the new security approach of Wi-Fi WPA).

Anyway, we briefly run through the issues here for

completeness.

Using different keys per mobile device introduces a small

but important complication related to broadcast handling.

The architecture of most LANs derives from the idea of

sharing a communication channel. For example, early wired

LANs used a coax cable, rather like the antenna cable on a

TV, to connect all the computers in series. The cable was

shared between all the computers. Even today with modern

Ethernet cabling, LAN hubs usually connect all the ports

together so that they act like a single wired connection. In

the wireless environment, radio transmissions are obviously

shared due to the fact that anyone can receive them. In a

shared LAN, three types of message operate: unicast

messages, which are sent to a single destination, group

messages, which are sent to several destinations at once

and broadcast messages, which are sent to everyone. The

last two cases are collectively called multicast messages.

Here's the rub: If every mobile device uses a different key,

how does the AP send a broadcast message? Which key

should it use for encryption? The solution is that all

multicast traffic is sent using a default key that is shared by

all the mobile devices. Only unicast messages are sent

using the mapping key that is specific to the receiver. You

need to program a minimum of two keys into each mobile

device.

Apart from the need for two keys, implementing key

mapping keys at the mobile device end is the same as for

default keys. You must, for example, put the special key for

this device into key number 0. The broadcast key goes into

one of the other locations, say key number 2. You would set

key 0 as the active key; mobile devices do not sent

broadcasts, they only receive them.

The access point is much more complicated because it

needs to know the special key for every possible station that

might want to associate. Potentially this means keeping a

table of hundreds of entries. Whenever the AP receives a

frame, it has to pick out the sender's MAC address and use

it as an index into the table to find the right key to use for

decrypting. Similarly, before transmitting, it has to look up

the correct key based on the destination address. This is

tough work for the AP and you can see why some

manufacturers opted not to provide support. The other

problem is that the list of keys takes up memory space and,

if there are several APs, they all have to have the same copy

of the list. This makes management in a large system

difficult and error prone.

The key mapping key option is a good idea, but it is not

supported by all AP vendors and therefore has not been

widely deployed. If you are interested in this type of

approach, you will find that the new security methods such

as WPA do provide these capabilities�and the ability to

manage the key lists in a much more effective way.

By the way, the AP can operate with default keys and key

mapping keys simultaneously; you are not required to

switch between one or the other modes. When the AP

receives a frame (or wants to send one), it looks in the key

table to see whether there is an entry corresponding to the

MAC address of the mobile. If it finds an entry, it uses it. If

not, it uses the default key instead. Eureka! That is why it is

called the default key. And that is why almost no one uses

the term "default key" outside the standard (and this book).

clbr://internal.invalid/book/0321136209_24031533.html

Mechanics of WEP

So far we have discussed the original goals of WEP and

given an overview of the design and use of keys. Now we

will look in much more detail at the way in which WEP is

implemented. You need to understand where the

weaknesses of WEP arise.

Fragmentation

We are used to using the telephone. There was a time when

all telephones looked the same. This was partly due to the

monopoly of the telephone companies but probably was

also due to the need for people who had not grown up with

telephones to feel comfortable with the user interface they

had learned. Today, telephones are part of our psyche. We

can handle phones in any shape or size as naturally as

catching a ball or walking on unfamiliar ground. We pick up

the phone, dial the number, and talk to the other person

with little effort. We don't care about the many complicated

processes that occur between our lips and the ear of the

receiver (that sounds a bit weird. but we're talking about

electronic processes). A similar situation has evolved for

application programs. There was a time when a programmer

needed to know about the details of the network protocols

and hardware that were used for communication. Today, the

operating systems environment allows application programs

to make a connection and communicate data with ease and

without knowledge of the network implementation.

If a network includes a Wi-Fi LAN link, data from the

operating system or a driver needs to pass to the IEEE

802.11 MAC service layer. In other words, a packet of data

arrives at the Wi-Fi LAN with instructions to send it out. This

packet of data is called an MSDU (MAC service data unit). If

things go well, this MSDU will eventually pop out of the MAC

service layer on the destination device and be passed to the

operating system or driver for delivery to the target

application. Before it reaches the radio for transmission,

however, the MSDU may be broken up into several smaller

pieces, a process called fragmentation. Each fragment is

processed for WEP encryption. A MAC header is added to the

front and a checkword added to the end.

You can see that the original MSDU may now be spread

across several smaller messages and have had more bytes

added on�quite apart from the fact that it will now be

encrypted. Each one of the smaller messages is called an

MPDU (MAC protocol data unit). We'll look at the last few

stages, during which an MPDU encounters the encryption

process.

The process treats the data as a block of unformatted bytes;

the size depends on the original MSDU contents and the

fragmentation settings. It is typically in the range of

10�1,500 bytes. The first step in encryption is to add some

bytes called the integrity check value (ICV).

Integrity Check Value (ICV)

The idea behind the ICV is to prevent anyone from

tampering with the message in transit. In both encrypted

and unencrypted messages, a check is made to detect

whether any bits have been corrupted during transmission.

All the bytes in the message are combined in a result called

the CRC (cyclic redundancy check). This 4-byte value is

added on to the end of the frame immediately prior to

processing for transmission. Even if a single bit in the

message is corrupted, the receiving device will notice that

the CRC value does not match and reject the message.

While this detects accidental errors, it provides no

protection from intentional errors because an attacker can

simply recompute the CRC value after altering the message

and ensure that it matches again.

ICV is similar to the CRC except that it is computed and

added on before encryption. The conventional CRC is still

added after encryption. The theory is that, because the ICV

is encrypted, no attacker can recompute it when attempting

to modify the message. Therefore, the message is rendered

tamper-proof. Er… well, only in theory, as we'll see shortly

that clever people found a loophole. For now, let's suppose

it works as intended.

So the ICV is computed by combining all the data bytes to

create a four-byte checkword. This is then added on the end,

as shown in Figure 6.7.

Figure 6.7. Adding the ICV

Preparing the Frame for Transmission

After the ICV is appended, the frame is ready for encryption.

First, the system must select an IV value and append it to

the secret WEP key (as indicated by the active key

selection). Next, it initializes the RC4 encryption engine.

Finally it passes each byte from the combined data and ICV

block into the encryption engine. For each byte going in, an

encrypted byte comes out until all the bytes are processed.

This is a stream cipher.

For the receiver to know how to decrypt the message, the

key number and IV value must be put on the front of the

message. Four bytes are added for this purpose. The first

three bytes contain the 24-bit IV value and the last byte

contains the KeyID number 0, 1, 2, or 3, as shown in Figure

6.8.

Figure 6.8. Adding the IV and KeyID

bits

Finally, the MAC header is attached and the CRC value

placed at the end to detect transmission errors. A bit in the

MAC header indicates to the receiver that the frame is WEP

encrypted so that it knows how to handle it.

The receive process follows logically. The receiver notes that

the WEP bit is set and therefore reads and stores the IV

value. It then reads the key ID bits so it can select the

correct WEP key, append the IV value, and initialize the RC4

encryption engine. Notice that with RC4 there is no

difference between the encryption and decryption

processes. If you run the data through the encryption

process twice, you get back to the original data�in other

words, the second encryption cancels out the first.

Therefore, you need only one engine for both encryption

and decryption. After the encryption engine is initialized, the

data is run through one byte at a time to reveal the original

message. The final step is to compute the ICV and verify

that the value matches that in the received message. If all is

well, the data portion is passed up for further processing.

RC4 Encryption Algorithm

RC4 is the name of the encryption algorithm used by WEP.

An encryption algorithm is just a set of operations that you

apply to plaintext to generate ciphertext. Obviously it is not

helpful unless there is a corresponding decryption algorithm.

In the case of RC4, the same algorithm is used for

encryption and decryption. The value of an encryption

algorithm lies partly in how strong it is and partly in how

easy it is to implement. The strength of an algorithm is

measured by how hard it is to crack the ciphertext. There

certainly are stronger methods than RC4. However, RC4 is

remarkably simple to implement and considered to be very

strong if used in the right way. This last point is important

because we will see all the weakness of WEP later, and

those weaknesses do not derive from faults in RC4, but in

the way it is applied in the case of WEP.

RC4[2] is a proprietary stream cipher designed in 1987.

While the algorithm has received a great deal of public

attention, RSA Labs, Inc. regards the description of the

algorithm as a trade secret. Implementers should consult

RSA Labs about this issue. However, the algorithm was

reverse-engineered and made public anonymously in 1994.

[2]
 RC4 stands for the fourth cipher designed by Ron Rivest (Rivest Cipher

4).

Fortunately, because RC4 is simple to implement, it is also

simple to describe. The basic idea behind RC4 encryption is

to generate a pseudorandom sequence of bytes called the

key stream that is then combined with the data using an

exclusive OR (XOR) operation. For those not familiar with the

XOR operation, it combines two bytes and generates a

single byte. It does this by taking and comparing

corresponding bits in each byte. If they are equal, the result

is 0; if they differ, the result is 1. An example is shown in

Figure 6.9.

Figure 6.9. XOR Operation

XOR is often written mathematically using the symbol " " so

the example shown in the figure would be written:

00110101 11100011 = 11010110

One important characteristic of XOR is that if you apply the

same value twice, the original value is returned:

00110101 11100011 = 11010110

11010110 11100011 = 00110101

In other words, if A B = C, then C B = A. You might

guess that in the case of RC4, this property is exploited as

follows:

Encryption: Plaintext Random = Ciphertext

Decryption: Ciphertext Random = Plaintext

It is necessary that "random" looks random to an attacker

but that both ends of the link can generate the same

"random" value for each byte processed. It is therefore

called pseudorandom and is generated by the RC4

algorithm.

The most important property of a pseudorandom key stream

is that you can calculate the next byte in the sequence only

if you know the key used to generate the stream. If you

don't know the key, it really looks random. Note that the

XOR operation completely hides the plaintext values. Even if

the plaintext is just a long series of 0 values, the ciphertext

still looks random to an attacker.

XOR is a trivially easy operation for a computer to

implement so the only challenge is to generate a good

pseudorandom number stream. You need one

pseudorandom byte for each byte of the message to be

encrypted. RC4 generates such a stream.

There are two phases in RC4: key setup and pseudo-random

generation. The first phase, the key setup algorithm,

establishes a 256-byte array with a permutation of the

numbers 0�255; that is, all the numbers are present in the

array but the order is mixed up. The permutation in the

array, or S-box, is established by first initializing the array

with the numbers 0�255 in order. The elements in the S-box

are then rearranged through the following process. First, a

second 256-byte array, or K-box, is filled with the key,

repeating as needed to fill the array. Now each byte in the S-

box is swapped with another byte in the S-box. Starting at

the first byte, the following computation is made:

j = (Value in first byte of S-box) + (Value in

first byte of K-box)

j is a single byte value and any overflow in the

addition is ignored.

Now j is used as an index into the S-box and the value at

that location is swapped with the value in the first location.

This procedure is repeated another 255 times until each

byte in the S-box has been swapped. The process is

described by the following pseudocode for people familiar

with programming:

i = j = 0;

For i = 0 to 255 do

 j = (j + Si + Ki) mod 256;

Swap Si and Sj;

End;

Once the S-box has been initialized, the next phase in RC4 is

the pseudorandom generation phase. This phase involves

more swapping of bytes in the S-box and generates one

pseudorandom byte per iteration (R). The equations for the

iterations are shown here.

i = (i + 1) mod 256

j = (j + Si) mod 256

Swap Si and Sj

k = (Si + Sj) mod 256

R = Sk

To generate the ciphertext, each byte of plaintext is XORed

with a value of R as produced by the RC4 algorithm. Notice

how the whole process has been done using byte length

additions and swaps�very easy operations for computer

logic.

Theoretically, RC4 is not a completely secure encryption

system because it generates a pseudorandom key stream,

not truly random bytes. But it's certainly sufficiently secure

for our application, if applied correctly to the protocol.

Using XOR in this way is similar to a Vernam cipher

(Vernam, 1926). Gilvert Vernam developed this

cipher during World War I while working for AT&T.

However, it is only completely secure if R is a true

random byte (Menenez et al., 1996). What

constitutes a true random byte is a philosophical

debate we won't open here. But suppose that you

generated a huge table of random numbers by

sampling cosmic noise or some genuinely random

physical event rather than using a pseudorandom

algorithm such as in RC4. You could use your random

numbers by sending a secret copy to your friend for

use with the Vernam cipher. This has the advantage

that the numbers are truly random and known to

both ends of the link. This approach is very secure,

but you would be allowed to use the table only once.

Then you would have to eat it or otherwise dispose of

it�it is a one-time pad. Ensuring that a one-time

pad system is completely secure requires never

reusing the same series of random bytes twice.

Because the former Soviet Union made this serious

mistake following World War II, the American National

Security Agency (NSA) was able to decrypt a number

of enciphered messages sent by Soviet agents in a

project code named VENONA (U.S. NSA, 1999).

Why WEP Is Not Secure

WEP was included in the original IEEE 802.11 standard in

1997, but it was not until 1999 that systems were widely

deployed when IEEE 802.11b and Wi-Fi became established.

Most vendors added key extensions allowing a 104-bit key

to be used (128 bit if you count the IV), and this was also

adopted by Wi-Fi.

The industry started to have concerns about WEP security

as designs were made and engineers started to point out

some problems. In particular, the weakness of the

authentication method was noted, as described earlier, and

the authentication phase was dropped altogether. However,

the manufacturers' concerns related to the strength of the

security rather than the overall integrity. In other words,

they were concerned that a serious and major attack might

succeed. Nobody thought that it would be easy to break

WEP.

Because of these concerns and also because of the

difficulties in key management discussed in this chapter, the

IEEE 802.11 Standards Committee launched a new task

group to look at upgrading the security approach. The IEEE

802.11 committee is, essentially, a voluntary organization.

Meetings are held roughly six times a year and the meetings

are open to any industry members. The process involves

technical presentations, discussions, drafting text, and a lot

of voting. It is a democratic and parliamentary process. As a

result, new standards do not develop quickly. Major

modifications such as the security subsystem take years

rather than months.

While the IEEE 802.11 group was considering a new

approach, the security research community was also looking

at WEP. In the early days, security gurus had not paid much

attention because wireless LAN was not a widespread

technology. But by 2000 it was appearing everywhere and

many universities had installations. Security researchers

had direct contact with Wi-Fi LAN. As did most people, they

realized the potential advantages; but, unlike most people,

they immediately questioned whether the security

provisions were bomb-proof.

The answer came in 2000 as a series of reports emerged

highlighting weakness after weakness (Walker, 2000;

Arbaugh et al., 2001; Borisov et al., 2001). Finally, an attack

was published showing that the keys could be extracted in a

busy network within hours, regardless of the key length. The

press were ecstatic. Security weakness and security

breaches sell copy, and headlines appeared around the

world. Even the main public media channels covered the

event. This was a measure of how far IEEE 802.11 had come

that it was considered of interest to the general public.

However, there were lots of red faces�embarrassed

manufacturers and angry customers.

This section looks in detail at the attacks on WEP that have

been identified. WEP is a general term that covers a number

of security mechanisms. As a basis for evaluating WEP, let's

review the mechanisms that are needed for security:

Authentication

Access control

Replay prevention

Message modification detection

Message privacy

Key protection

Unfortunately, WEP fails to perform in all these areas. We'll

look at each one separately.

Authentication

Authentication is about one party proving to the other that

he really is who he claims to be. Authentication is not a one-

time process�in other words, it is not enough to prove once

that you are authentic. It is only useful if you can prove it

every time you communicate. The process of authentication

is often time consuming, and so a common approach is to

perform full authentication on first contact and then provide

a limited-life "identity badge." Ideally, the identity badge is

such that it cannot be transferred to someone else. A photo

ID is an example in which the government or corporation

authenticates you.

In the wireless world, you usually need mutual

authentication. The network wants proof about the user, but

the user also wants proof that the network really is the

expected one. This is important for Wi-Fi LANs because it is

so inexpensive to set up decoy access points.

Finally, security experts point out that it is essential to use

different secret keys for authentication than you use for

encryption.[3] The use of derived keys is recommended

because master keys should rarely or never be exposed

directly to attack. In summary, the basic requirements for

authentication in wireless LANs are:

[3]
 It is acceptable to cryptographically derive two separate keys from a

single master key. If done correctly, the two keys are effectively

independent.

1. Robust method of proving identity that cannot be

spoofed

Method of preserving identity over subsequent transactions

that cannot be transferred

Mutual authentication

Independent keys independent from encryption (and other)

keys

Unfortunately, WEP fails on all counts. As a reminder, WEP

authentication relies on a challenge�response mechanism.

First, the AP sends a random string of numbers. Second, the

mobile device encrypts the string and sends it back. Third,

the AP decrypts the string and compares to the original

string. It can then choose to accept the device and send a

success message.

The key used for this process is the same WEP key used for

encryption, thus breaking rule 4. The operation does not

authenticate the access point to the mobile device because

a rogue access point can pretend it was able to check the

encrypted string and send a success message without ever

knowing the key. Hence rule 3 is broken.

Rule 2 is broken because there is no token provided to

validate subsequent transactions, making the whole

authentication process rather futile.

Rule 1 is rather irrelevant given the weaknesses already

pointed out, but it's quite interesting to look at why this also

fails.

During authentication the access point sends a random

string of 128 bytes. The way in which this "random" string is

generated is not defined, but one would hope at least that it

was different for each authentication attempt. The mobile

station encrypts the string and sends it back. Sounds good,

but hang on a moment�WEP encryption involves generating

a sequence of pseudorandom bytes called the key stream

and XORing it with the plaintext. So any one watching this

transaction now has the plaintext challenge and the

encrypted response. Therefore, simply by XORing the two

together, the enemy has a copy of the RC4 random bytes.

Remember the basic equation:

P R = C (Plaintext XOR Randombytes =

Ciphertext)

And remember that XORing twice gets you back to the

original value (that's decryption):

If P R = C then C R = P

By the same argument, XORing the ciphertext with the

plaintext gives you the random key stream:

If P R = C then C P = R

Whoops, the game's over! The attacker now knows the key

stream corresponding to a given IV value. Now the attacker

simply requests authentication, waits for the challenge text,

XORs with the previously captured key stream, and returns

the result with the previously captured IV.

To check the result, the access point appends the IV (chosen

by the attacker) to the secret key and generates the RC4

random key stream. These will, of course, be the same

bytes that the attacker worked out because the key and IV

are the same as last time. Therefore when the access point

decrypts the message by XORing with the RC4 key stream,

surprise, surprise, it matches. The attacker is

"authenticated" without ever knowing the secret key.

Hopeless!

Although an attacker can get authenticated in this way, she

can't then communicate because frames are encrypted with

WEP. Therefore, she needs to break WEP encryption as well.

However, there is even more bad news. For some of the

methods of attacking encryption keys, the enemy needs a

sample of matching plaintext and ciphertext. Sometimes

this can be quite hard for an attacker to get, and there are

various tricky methods that she might use to try to get such

a sample. What a gift! The WEP authentication method

provides a 128-byte sample free of charge. Worse, it is a

sample of the first 128 bytes of the key stream, which is the

most vulnerable to attack.[4] So not only does this approach

not authenticate, it actually assists the enemy to attack the

encryption keys. Hmmm… we better move on. Most systems

today don't use the futile WEP authentication phase anyway.

[4]
 We will look at this vulnerability in more detail in Chapter 11 on TKIP.

Access Control

Access control is, rather obviously, the process of allowing

or denying a mobile device to communicate with the

network. It is often confused with authentication. All that

authentication does is to establish who you are; it does not

follow that, because you are authenticated, you should be

allowed access.

In general, access is usually controlled by having a list of

allowed devices. It may also be done by allowing access to

anyone who can prove he has possession of a certificate or

some other electronic pass.

IEEE 802.11 does not define how access control is

implemented. However, identification of devices is only

done by MAC address, so there is an implication that a list of

acceptable MAC addresses exists somewhere. Many systems

implement a simple scheme whereby a list of allowed MAC

addresses can be entered into the access point, even when

you are operating without WEP. However, given the ease

with which MAC addresses can be forged, this cannot be

considered as a serious security mechanism.

If you can't trust the MAC address, the only thing left to WEP

is the encryption key. If the mobile station doesn't know the

correct WEP key, then the frames it sends will produce an

ICV error when decrypted. Therefore, the frames will be

discarded and, effectively, the device is denied access. This

last line of defense is really all that the original IEEE 802.11

standard has to offer.

Replay Prevention

Let's suppose you are an attacker with a wireless sniffer that

is able to capture all the frames sent between an access

point and a mobile device. You observe that a new user has

turned on her laptop and connected to the network. Maybe

the first thing that happens is that the server sends her a

login message and she enters her user name and password.

Of course, you can't see the actual messages because they

are encrypted. However, you might be able to guess what's

going on, based on the length of the messages.

Later on, you notice the user has shut down and gone

home. So now is your chance. Bring up your own client

using her MAC address and connect to the network. As we

have seen earlier, that part is easy. Now, if you are lucky,

you'll receive a message to log in. Again, you won't be able

to decode it, but you can guess what it is from the size. So

now you send a copy of the message the legitimate user

sent at that point. You are replaying an old message without

needing to know the contents. If there were no replay

protection, the access point would correctly decode the

message; after all, it was originally encrypted with a valid

key before you recorded it. The access point passes the

message to the login server, which accepts it as a valid

login. You, as an attacker, just successfully logged into the

network and the server. It's not clear where you would go

from there. However, from a security standpoint, this is a

serious breach.

There are many other examples in which a replay attack can

breach security unless the network is designed specifically

to detect and reject old copies of messages. The wireless

security protocol should allow only one copy of a message

to be accepted. Ever.

By this time, it may come as no surprise to discover that

WEP has no protection against replay at all. It was just not

considered in the design. There is a sequence number in the

MAC frame that must increase monotonically. However, it is

not included in the WEP protection so it is easy to modify

the sequence number to be valid without messing with the

encrypted portion on the frame.

Replay protection is not broken in WEP; it simply doesn't

exist.

Message Modification Detection

WEP has a mechanism that is designed to prevent message

modification. Message modification can be used in subtle

ways. The first thing people think about when message

modification is proposed is to change the contents of the

message in an obvious way. For example, changing the

destination bank account number on a deposit or changing

the amount transferred. However, in reality such large-scale

modifications would be very hard to mount and assume that

you can read the original message and effectively forge new

messages.

If you are unable to decrypt the message, it is not obvious

how modifying the ciphertext would be useful. However,

even in this case modifications can be used to extract

information. A technical paper by Borisov et al. (2001)

proposed a method to exploit "bit flipping" in which a few

bits of the ciphertext are changed at a time. They pointed

out that the position of the IP header is usually known after

encryption because WEP does not rearrange the byte

positions. Because the IP header has a checksum, changing

one bit in the header causes the checksum to fail. However,

if you also change bits in the checksum, you might get a

match. The researchers showed that, by flipping a few bits

at a time and seeing whether the IP frame was accepted,

based on whether responses came back, they could

eventually decode portions of a frame.

To prevent tampering, WEP includes a checkfield called the

integrity check value (ICV). We looked at this briefly in the

previous section on frame formats. The idea behind the ICV

is simple: compute a check value or CRC (cyclic redundancy

check) over all the data to be encrypted, append the check

value to the end of the data, and then encrypt the whole lot.

If someone changes a bit in the ciphertext, the decrypted

data will not have the same check word and the

modification will be detected. The thinking is that, because

the ICV is encrypted, you cannot go back and correct its

value to compensate for the other changes you have made.

It is only intended to provide protection to the ciphertext. If

an attacker already knows the keys, he can modify the data

and recompute the ICV before re-encrypting and forwarding

the frame. So use of the ICV protects the ciphertext from

tampering�right?

Wrong again! Borisov et al. pointed out a flaw in the logic.

The CRC method used to compute the ICV is called a linear

method. It turns out that, with a linear method, you can

predict which bits in the ICV will be changed if you change a

single bit in the message. The ICV is 32 bits. Let's suppose

the message is 8,000 bits (1,000 bytes) and you flip bit

position 5244. You can then compute which bits in the ICV

will be changed as a result. It is typically not a single bit but

a combination of bits that will change. Note that we used

the word "change," not "set" or "clear." You don't need to

know the actual value of the plaintext; you just need to

know that if you flip the value of a certain bit in the data,

you can keep the ICV valid by also flipping a certain

combination of its bits. Unfortunately, because WEP works

by XORing the data to get the ciphertext, bit flipping

survives the encryption process. Flipping a bit in the

plaintext always flips the same bit in the ciphertext, and

vice versa.

If you've hung in through the argument in the last

paragraph, you will see that, because of the fact that bit

flipping survives encryption; the assumption that the ICV is

protected by encryption just doesn't hold water. Its actual

value is protected, but you can reliably flip its bits. And

because you can work out which bits to flip corresponding to

a change in the data, you can completely defeat its

protection.

With a muffled thump, another of WEP's protections just hit

the floor. The reality is that WEP provides no effective

protection against ciphertext modification.[5]

[5]
 In fact, in the general case, no integrity check word can be used

successfully with RC4 unless it is created using a key generated

specifically for integrity checking (as distinct from the encryption key).

Message Privacy

This is the big one: attacking the encryption method of WEP.

We have seen that the other protections have already been

stripped away; but, at the end of the day, if the encryption

method holds up, then the attacker is very limited in what

he can do. So far, it's just watching shadows or throwing

rocks at the window; but if the encryption can be breached,

the attacker is inside the house.

There are two main objectives in attacking the encryption:

decode a message or get the keys. The ultimate success is

to get the keys. Once an attacker has the keys, he is free to

explore and look for the valuables. Possession of the keys

doesn't automatically mean access to confidential

information because there are other layers of security

inside, such as server passwords and operating system

protections. However, the issue of network access is put

aside. Furthermore, if an attacker can get the keys, he can

probably go undetected, which is important to buy the time

to find useful information. If an attack is detected, the WEP

keys can be changed, putting the attacker back to square

one.

The next best thing to getting the keys is to be able to get

the plaintext. If you can get the plaintext in a reasonably

fast and reliable way, you have access to a range of other

types of attacks using message modification and replay.

That information can also be used as a stepping-stone to

getting the keys.

There are three weaknesses in the way RC4 is used in WEP

and we will look at each case separately:

IV reuse

RC4 weak keys

Direct key attack

IV Reuse

One of the first cryptographers to point out weaknesses in

WEP was Jesse Walker of Intel. In October 2000 he wrote a

submission to the IEEE 802.11 Standards Committee

entitled "Unsafe at any key size: An analysis of the WEP

encapsulation." This title was designed to get attention�and

it did. Walker pointed out a number of potential weaknesses,

but especially focused on the issue of IV reuse.

Let's quickly review how the IV is used. Instead of using a

fixed secret key, the secret key is appended to a 24-bit IV

value and then the combined IV/ secret is used as the

encryption key. The value of the IV is sent in the frame so

the receiving device can perform the decryption. One

purpose of the IV is to ensure that two identical messages

don't produce the same ciphertext. However, there is a

second and more important purpose related to the way WEP

uses XOR to create the ciphertext.

Let's suppose for a moment that there was no IV and only

the secret key is used for encryption. For every frame, the

RC4 algorithm is initialized with the key value prior to the

start of the pseudorandom key stream generation. But if the

key were to remain fixed, the RC4 algorithm would be

initialized to the same state every time. Therefore the key

stream produced would be the same sequence of bytes for

every frame. This is disastrous because, if the attacker can

figure out what that key stream is, he can decode every

frame simply by XORing the frame with the known

sequence. He doesn't need to know the key.

By adding the IV value to the key each time, RC4 is

initialized to a different state for every frame and so the key

stream is different for each encryption�much better. Let's

review that statement because there is an implicit

assumption: The IV value is different for every frame. If the

IV is a constant value, you are no better off than in the static

key case.

So we see that constant IV is useless. We can also see that

using a different IV for every frame, and I mean every

frame, is a good idea. What about the middle ground? There

are a limited number of possible IVs so it is acceptable to

use a different IV for most frames but eventually start

reusing IVs that have been used in the past. The simple

answer is that this is not acceptable�but it is precisely what

WEP does.

Let's look at why IV reuse is a problem. We have said that

the IV should be different for every frame. However, the

original IEEE 802.11 standard did not say how it should be

generated (actually it did not require that it be changed at

all!). Intuitively you might think that the best approach

would be to generate a random value. However, with

random selection there is a good chance that you will get a

repeating IV quite quickly. This is known as the birthday

paradox (see sidebar).

In the case of IVs, it means that you are likely to get a

duplicate IV sooner than you expect if you pick random

values.

The best way to allocate IVs is simply to increment the value

by 1 each time. This gives you the longest possible time

before a repeating value. However, with a 24-bit IV, an IV

collision (use of a previous value) is guaranteed after 224

frames have been transmitted (nearly 17 million). IEEE

802.11b is capable of transmitting 500 full-length frames a

second and many more shorter frames. At 500 frames a

second, the IV space would be all used up in around seven

hours.

In reality a collision is likely much sooner because there may

be many devices transmitting, each incrementing a

separate IV value and using it with the same key (assuming

default keys are in use). Implementation errors can

compound the problem. At least one major Wi-Fi LAN

manufacturer always initializes the IV counter to 0 when the

system is started up. Imagine that ten users come into work

and start up their laptops. Depending on who does what, the

IV counter of some will get ahead of others, but there will be

a rich harvest of IV collisions to be had by an observer. IV

collisions are a fact of life for WEP so let's look again at why

collisions are a problem.

The Birthday Paradox

When you meet someone, there is only a 1 in 365

chance that the person has the same birthday as

you. However, the chance of meeting someone with

your birthday increases surprisingly fast as you meet

more people. In fact, there is a 50% chance that you

will find someone with a matching birthday within

the first 25 people you meet. This is a surprising fact,

which is probably why it is called a paradox.

If you know the key stream corresponding to a given IV

value, you can immediately decode any subsequent frame

that uses the same IV (and secret key). This is true

regardless of whether the secret key is 40 bits, 104 bits, or

1,040 bits. To decode every message, you would have to

know the key stream for every possible IV value. Because

there are nearly 17 million possible IV values, that seems

like a daunting task. However, it's not impossible: If you

want to store a 1,500-byte key stream, for every possible IV

you need a storage space of 23Gbytes�quite feasible on the

hard disk of an everyday computer. With such a database,

you could decode every message sent without ever knowing

the secret key. However, you still have to find out all those

key streams and that's not so easy.

Suppose you have captured two messages encrypted using

the same IV and secret key. You know that the key stream is

the same in both cases, although you don't know what it is

yet. Using our simple notation:

C1 = P1 KS (Ciphertext msg1 = Plaintext

msg1 XORed Keystream)

and

C2 = P2 KS (KS is the same in each case)

If you XOR C1 and C2, KS disappears:

C1 C2 = (P1 KS) (P2 KS) = P1 P2 KS

KS = P1 P2

This is true because XORing the same value twice takes you

back to your original value.

So the attacker now has a message that is the XOR of two

plaintexts. Is that useful? No not yet. However, some of the

values of plaintext are definitely known, such as certain

fields in the header. In other fields the value is not known,

but the purpose is known. For example, the IP address fields

have a limited set of possible values in most networks. The

body portion of the text often encodes ASCII text, again

giving some possible clues.

Over a period of time, if you collect enough samples of

duplicated IVs, you can probably guess substantial portions

of the key stream and hence decode more and more. It's like

a collapsing building: Each block you knock away makes it

more likely that the whole lot will fall down. It's hacker's

celebrity squares in which you have some of the letters in a

word and you try to guess the whole sentence. But once you

succeed for a given IV, you can decode every subsequent

frame using that IV and generate forged frames using the

same IV. All without knowing the key.

This characteristic of WEP was worrisome and resulted in

IEEE 802.11 undertaking the new security design. However,

it was not considered a major threat to everyday use. After

all, it would take a huge effort to decode a significant

number of frames and the need for intelligence in guessing

the plaintext makes it hard to create an automatic script

tool. So the cryptographers cringed and the manufacturers

worried, but the world went on after this attack was

publicized. But there was worse to come.

RC4 Weak Keys

The fundamental part of RC4 is not encryption but

pseudorandom number generation. Once we have a string

of pseudorandom bytes, we can use them to encrypt the

data by the XOR function. As we have seen, using this

simple XOR function is a source of weakness if it is not

applied correctly; but for the moment, let's concentrate on

the pseudorandom sequence, or key stream.

RC4 works by setting up a 256-byte array containing all the

values from 0 to 255. That is, each value from 0 to 255

appears once and only once in the array. However, the order

in which they appear is "randomized." This is known as a

permutation of the values. What's more, the values are

reorganized continuously as each pseudorandom byte is

generated so there is a different permutation of the array

each time.

Each pseudorandom byte is generated by picking a single

value from the permutation based on two index values, i

and j, which also change each time. There are very many

permutations (or arrangements) of 255 values that can be

made. In fact, combined with the two indices, there are 512

* 256! (factorial) possibilities, a number too big to compute

on any calculator we have, even using scientific notation.

This property of RC4 makes it very powerful despite its

simple implementation. It is amazingly hard to distinguish

an RC4 pseudorandom sequence from a real random

sequence. RC4 has been studied by many cryptographers

and yet the best known method for distinguishing an RC4

stream from true random data requires a continuous sample

of 1Gbyte of the stream before it can reliably decide that

the stream was generated by RC4. For WEP, of course, we

already know RC4 is used, but this fact gives you some idea

how effective RC4 really is once it gets going.

The phrase "once it gets going" in the last sentence is

important. It signals the fact that RC4 has a potential

weakness. To understand the weakness, let's quickly review

how RC4 works. First it creates a table (the S-box) with all

the values 0�255. Then it creates a second 256-byte table

with the key, repeated over and over until the table is full.

Then it rearranges the S-box based on values in the key

table. This is the initialization phase. The first

pseudorandom byte is generated by rearranging the S-box

again and picking a byte.

The problem here is that there are not many

rearrangements between the initial setup of the key table

and the first pseudorandom byte. Fluhrer et al. (2001)

analyzed this fact, resulting in their now famous paper

"Weaknesses in the Key Scheduling Algorithm of RC4." They

showed that for certain key values, which they called weak

keys, a disproportionate number of bits in the first few

bytes of the key stream (pseudorandom bytes) were

determined by a few bits in the key itself.

Let's look at this weakness in another way: Ideally if you

change any one bit in the key, then the output key stream

should be totally different. Each bit should have a 50%

chance of being different from the previous key stream. The

paper showed that this was not the case. Some bits of the

key had a bigger effect than others. Some bits had no effect

at all (on the first few bytes of key stream). This is bad for

two reasons. First, if you reduce the number of effective bits,

it is easier to attack the keys. Second, the first few bytes of

plaintext are usually easier to guess. For example, in WEP it

is usually the LLC header that starts with the same

hexadecimal value "AA". If you know the plaintext, you can

derive the key stream and start attacking the key.

There is a very simple way to avoid the weakness: Discard

the first few bytes of the RC4 key stream. In other words,

wait until the RC4 algorithm gets going before starting to

use the output. A recommendation from RSA Labs is to

discard the first 256 bytes of the key stream, but of course

WEP does not do this and such a change would mean that

old systems would no longer interoperate.

You might think that this is not so bad. After all, you might

not be using a weak key; or if you know which keys are

weak, you could avoid them, right? Think again. Remember

the IV is added to the secret key. And the IV is always

changing. So sooner or later, the IV guarantees that a weak

key is generated. It brings tears to your eyes, doesn't it! But

there's worse to come.

Direct Key Attacks

In their landmark paper, Fluhrer et al. showed that using a

public IV value appended to the secret key generated a

huge weakness because it allowed the attacker to wait for a

potentially weak key and directly attack the key. There are

two cases, one in which the IV is appended (after the secret

key) and one in which the IV is prepended (before the secret

key). The prepend case is the more vulnerable�and it's the

relevant case for WEP, which, by now, should come as no

surprise to you.

If you are interested in how the attacks work, get a college

degree in mathematics and read the paper. But in overview,

the idea is based on exploiting the weak key problem in the

first bytes. First assume that you know the plaintext for the

first few bytes, which you do for IEEE 802.11 because it is

usually an IEEE 802.1LLC SNAP header. Watch transmissions

looking for a weak key generated by the IV. Now you know

that there is a correlation between the ciphertext, the

plaintext, and the secret key bytes. There are only a limited

number of possible values for the first secret key byte that

could match the plaintext and ciphertext. After capturing

about 60 such messages, the attacker can guess the first

key byte with reasonable certainty.

The method can be tuned to attack each secret key byte in

turn so eventually the entire secret key can be extracted.

Note that increasing the key size from 40 bits to 104 bits

only means that it takes 2.5 times longer to extract the

key�in other words, the time to crack the key goes up

linearly with key size rather than exponentially.

All the previous weaknesses of WEP pale into insignificance

compared to this attack. Remember that extracting the keys

is the ultimate goal of an attacker, and here is a method

that directly extracts the keys in linear time. This attack

blew apart the remnants of WEP security. Worse, because it

used a fairly mechanical approach, it was feasible to create

a script tool that would do the job unattended.

Within months, some "helpful" person invested their time

into generating a cracker tool. Publicizing the threat was a

service to everyone, but I leave it as an exercise for the

readers to determine what satisfaction is obtained by the

authors of tools that turn threat into reality and lay waste to

millions of dollars of investment. However, the tool was

published, it is available on the Internet, and attackers can

use it to crack WEP systems open at will.

clbr://internal.invalid/book/0321136209_24031533.html

Summary

This chapter explains in detail how WEP works and then

explains why you shouldn't use it. If you are currently using

WEP, this chapter shows why you need to change. When the

original IEEE 802.11 standard was published, Wired

Equivalent Privacy (WEP) was included as a method to

provide secure communications. However, as this chapter

describes, WEP fell short of real needs in a number of areas.

The methods of key management were weak and did not

scale to large networks. The key length was too small and

some vendors introduced extensions to try to "improve the

security." The final straw that broke the camel's back was

the discovery of an attack that could successfully retrieve

the secret keys by traffic monitoring.

It is said that those who don't read history are doomed to

repeat it. This chapter provides the history. WEP is an

interesting case study in the problems that can occur when

security protocols are developed without proper review by

security experts. Mostly the chapter is worth reading

because it points out so many of the pitfalls that have been

overcome in the new methods. Understanding WEP's failings

before moving on will help you understand why the next-

generation security methods are so much stronger.

clbr://internal.invalid/book/0321136209_24031533.html

Chapter 7. WPA, RSN, and IEEE

802.11i

Chapter 7 introduces the new security protocols that replace

WEP and provide real security. In the next few chapters we

delve into details regarding how the new protocols work and

are applied to real installations. In this chapter, we define

the terms and explain the process under which the protocols

developed. We look at the importance of keys to the solution

and how the keys are used within the context of a secure

system. Finally, prior to diving into detail in Chapter 8, we

provide a roadmap of the many standards used in the new

security solutions.

Relationship Between Wi-Fi and IEEE

802.11

The Institute of Electrical and Electronics Engineers

(www.IEEE.org) operates a group called the Standards

Association (SA). Among many other standards, the IEEE-SA

is responsible for the IEEE 802 family: "Local Area and

Metropolitan Area Networks." IEEE 802 is divided into

working groups, each of which produces standards in a

specific area, as shown in Figure 7.1. The ".11" working

group produces standards for wireless LANs.

Figure 7.1. IEEE 802 Standards

Working Group

The original IEEE 802.11 standard was ratified in 1997 and

became an international standard in 1999. Work continues

and updates to the base standard are made from time to

time. Some of these, such as 802.11b and 802.11a, are

complete while others are still in development. At the time

this book was written, 802.11i had not been ratified and was

still in draft form. Note that updates such as IEEE 802.11b

are not whole new standards; they are addendums to the

existing standard. Care is taken to ensure that older

equipment is not made obsolete by any changes.

http://www.ieee.org/default.htm

Standards allow manufacturers to produce products that

have known physical characteristics. For example, two

wireless LAN systems could not communicate with each

other unless they use compatible radio frequencies and

modulation methods. The standard specifies such things in

detail. The IEEE 802.11 standard also defines protocol

messages and operating algorithms (see Chapter 5).

Standards are very useful to manufacturers because they

create a technical specification from which designs can be

made. However, end users�that is, the customers who buy

the products�have a different concern. IEEE 802.11 might

tell them the characteristics of the product, but it does not

guarantee that a product from vendor A will completely

interoperate with a product from vendor B.

IEEE 802.11 is a long and complicated standard. Despite the

best efforts of the standards body, there are bound to be

areas that are ambiguous or not fully defined. Also there are

a number of features that are optional and different

manufacturers might make different choices in their

designs. To avoid interoperability problems, the Wi-Fi

Alliance was formed by a group of major manufacturers and

the logo "Wi-Fi" was created.

To obtain Wi-Fi certification, a manufacturer must submit its

product for testing against a set of "gold standard" Wi-Fi

products. The Wi-Fi Alliance created its own test plan based

on IEEE 802.11. Some features of IEEE 802.11 are not

required for Wi-Fi certification. Conversely, there are some

requirements that are additional to the standard. Where

there is ambiguity in the standard, the correct behavior is

defined by the way the gold standard products work. In this

way interoperability is ensured. In summary, Wi-Fi defines a

subset of IEEE 802.11 with some extensions, as shown in

Figure 7.2.

Figure 7.2. Relationship of Wi-Fi to

IEEE 802.11

What Is IEEE 802.11i?

The addendum to the standard that specifies the new

generation of security is called IEEE 802.11i. At the time of

writing, no such standard has been released, but a draft of

the standard is under discussion by Task Group i of the

working group. The draft is fairly complete and is unlikely to

change substantially before release, but changes are

certainly possible.

IEEE 802.11i defines a new type of wireless network called a

robust security network (RSN). In some respects this is

the same as the ordinary or WEP-based networks. However,

in order to join an RSN, a wireless device has to have a

number of new capabilities, as described in the following

chapters. In a true RSN, the access point allows only RSN-

capable mobile devices to connect and places rigorous

security constraints on the process. However, because many

people will want to upgrade over a period of time and use

pre-RSN equipment during the upgrade, the IEEE 802.11i

defines a transitional security network (TSN) in which

both RSN and WEP systems can operate in parallel.

At the time of writing, no RSN-capable products are on the

market. Such products cannot be released until the standard

has been completed. Most existing Wi-Fi cards cannot be

upgraded to RSN because the cryptographic operations

required are not supported by the hardware and are beyond

the capability of software upgrades. Therefore it will be

some time before full RSN networks become operational. By

contrast, WPA networks can be implemented immediately.

clbr://internal.invalid/book/0321136209_24031533.html

What Is WPA?

Remember that the definition of Wi-Fi came after completion

of the IEEE 802.11 standard. However, the major Wi-Fi

manufacturers decided that security was so important to

end users that it had to move as fast as possible to deliver a

replacement for WEP. Furthermore, they concluded that

customers would not be prepared to just throw away all

their existing Wi-Fi equipment in order to switch to RSN;

they would want to upgrade their products through

software. To address this need, Task Group i started to

develop a security solution based around the capabilities of

existing Wi-Fi products. This led to the definition of the

Temporal Key Integrity Protocol (TKIP), as described in

Chapter 11. TKIP is allowed as an optional mode under RSN.

The development of TKIP was a great help to allow upgrade

of existing systems, but the industry couldn't wait until the

lengthy process of standards ratification was completed.

Therefore, the Wi-Fi Alliance adopted a new security

approach based on the draft RSN but only specifying TKIP.

This subset of RSN is called Wi-Fi Protected Access (WPA).

Many leading vendors have now produced software

upgrades so existing product can be converted to support

WPA and most new products are now shipped with WPA

capability. The Wi-Fi Alliance has created a test plan for WPA

so vendors can ensure interoperability.

Cases in which the industry has run ahead of standards are

not that uncommon. This has happened a number of times

in modem technology and sometimes has led to two

factions of the industry selling incompatible products.

Fortunately, the Wi-Fi Alliance has avoided this type of a

split and most manufacturers are supporting the Wi-Fi WPA

specification.

clbr://internal.invalid/book/0321136209_24031533.html

Differences Between RSN and WPA

WPA and RSN share a common architecture and approach.

WPA has a subset of capability focused specifically on one

way to implement a network, whereas RSN allows more

flexibility in implementation. RSN also supports the AES[1]

cipher algorithm in addition to TKIP, whereas WPA focuses

on TKIP.[2] Because WEP is more commonly found in

corporations today, a natural approach is to implement WPA

now, upgrade installed systems as required, and then move

towards a full RSN solution over a period of time as new

products are deployed. Eventually, as the older products are

retired, this will lead to a system based entirely on IEEE

802.11i. In this way, WPA provides for the needs of all the

current Wi-Fi LAN users in the most common configurations,

while in the long term the full RSN allows more flexibility.

[1]
 "AES" stands for Advanced Encryption Standard; see Chapter 12 for

details.

[2]
 TKIP stands for Temporal Key Integrity Protocol; see Chapter 11 for

details.

RSN and WPA share a single security architecture under

which TKIP- or AES-based security protocols can operate.

This architecture covers procedures such as upper-level

authentication, secret key distribution, and key renewal�all

of which are relevant to both TKIP and AES. The RSN

architecture is quite different from that of WEP and quite a

bit more complicated. However, it provides a solution that is

both secure and scalable for use in large networks. One of

the huge problems for WEP, from the earliest days, was that

it was impractical to manage key distribution once you had

more than a few tens of users. That problem has been

addressed by both RSN and WPA.

Nobody can ever (legitimately) claim that a security system

is unbreakable. However, it is fair to say that the RSN/WPA

approach was devised with the involvement of specialist

security experts and received far more scrutiny from the

cryptographic community than WEP did when it was being

developed. WEP received this kind of scrutiny only after it

was deployed and the result was humiliation. The design of

RSN/WPA has had the full participation of security experts.

That doesn't guarantee that it will not be broken next week.

But we doubt it will and we wouldn't be wasting time writing

this book if we thought otherwise.

Note that most of the discussion about RSN here

assumes that you are operating in IEEE 802.11

infrastructure mode and that you have an access

point. RSN (but not WPA) can also apply to ad-hoc

mode in which there is no access point. Ad-hoc mode

is sometimes referred to as IBSS (Independent Basic

Service Set) mode. We cover the special issue of IBSS

mode in Chapter 13; in this chapter, the discussion

assumes that you, like most people, are using

infrastructure mode.

clbr://internal.invalid/book/0321136209_24031533.html

Security Context

IEEE 802.11 Task Group i had two objectives: to create a

new scalable security solution and, of course, to provide

effective protection against all known passive and active

attacks. It was assumed that the new solution would

completely replace WEP over time. Therefore, the solution

developers started from scratch. The first and most

important change in approach was the separation of the

user authentication process and message protection

(integrity and privacy). Authentication is the process by

which you prove that you are eligible to join a network (and

that the network is legitimate); and message protection

ensures that once you have joined the network, you can

communicate without risk of interception, modification, or

any of a host of other security risks. Separation of user

authentication and message protection allows a solution

that can be scaled from small systems to entire

corporations. However, the two parts must be linked

together into a security context.

The concept of a security context is important to grasp and

lies at the heart of the RSN.[3] However, the idea of a

security context is by no means unique to data

communications. One simple example of a security context

is your travel passport. The main purpose of a passport is

for government officials to check who is entering and

leaving the country. Countries want to allow their own

citizens to come and go, hopefully freely. To do this, they

need to provide their citizens with tangible evidence that

they are, in fact, citizens.

[3]
 We use RSN here and in the rest of the chapter because it is the

overall model for security. WPA is derived from the RSN model so all the

same comments can be applied to the WPA design.

When you first apply for a passport, you are required by

your country's government to provide proof of your identity.

This is at the heart of the passport system. In the context of

people, it's not obvious how to go about this proof of

identity. To some extent possession of special documents

such as birth certificates and so on might help, but these

are easily forged or stolen. Many countries rely on the

evidence of other people to confirm who you are. For

example, in Britain you are required to get a signed

statement by a nonrelative of "suitable stature." The list of

qualifications for "suitable stature" is rather strange, but

generally a minister of religion or a police officer would be

an example. This person must have known you for a few

years and sign the form to say so. The person's role is as a

sort of certification authority trusted by you and the

government.

So far so good�you have been authenticated, you sent in

the forms, and the government has filed your picture in a

large dusty vault and agrees that you exist. Now it is

necessary that you have some token to prove that fact and,

more importantly, that you are the person that was

originally authenticated. This is the passport document.

Most countries validate the passport by embedding the

authenticated photograph. Some include fingerprints or

descriptions of obvious features such as "no nose" or similar.

Passports also have a limited duration, after which they are

no longer valid.

When the government accepts your form, it establishes a

security context. The passport proves that the context

exists and that it refers only to you. Of course, this proof of

context is extremely weak. It is relatively easy to fool the

authentication process or modify the passport document. In

particular, you can take over someone else's context by

changing the picture in the passport. There are a lot of

implicit trust relationships here. The immigration officer

trusts the passport office not to issue fake passports, and

the government agency trusts the immigration officer to

perform a real check. This brings out the point that in

authentication, you often have to trust other parties.

An RSN's security context has to be far stronger than that of

a passport. However, the general concept is the same�an

authentication process followed by a limited-life security

context giving rights to the participants. A lot of the

architecture of RSN relates to how to establish and maintain

a security context between wireless LAN devices (usually a

mobile device and an access point). The backbone of this

context is the secret key.

clbr://internal.invalid/book/0321136209_24031533.html

Keys

Security relies heavily on secret keys. And security is

completely lost if the keys are copied or stolen. In the

passport example, the passport document is the rough

equivalent of a key. It is not used for encryption or any such

functions, but the assumption is that it cannot be copied (in

other words, forged) and it will not be stolen or willingly

given up. If either of these events occurs, the whole system

breaks down.

In RSN the security context is defined by the possession of

limited-life keys. Unlike with WEP, in RSN there are many

different keys forming part of a key hierarchy, and most of

these keys are not known before the authentication process

completes. In fact, the creation of the keys is done in real

time as the security context is established after

authentication. Because they are created in real time, they

are referred to as temporal keys. These temporal keys

may be updated from time to time, but they are always

destroyed when the security context is closed.

A key is basically a shared secret between two or more

parties. Perhaps it would be more accurate to say that a key

is any shared data that is useful only if it is kept secret. The

magic word abracadabra is not very magical because

everyone knows it and, by saying it, you're not actually

doing anything. A real magic word is one that only a special

group knows and that gives the group privileges or power.

So it is with keys.

Keys can be used in two distinct ways. They can provide

proof of your identity (such as a passport) and they can give

access to services (such as the key to your car). Purists will

point out that this is really the same thing because you get

access to the service by proving that you are the person

who has permission. However, the distinction is useful when

looking at the way keys are used.

During the authentication phase, you have to prove your

identity by demonstrating that you have knowledge of a

secret. Passing this test entitles you to receive the other

keys�those that open doors and start engines, for example.

In the case of RSN, correctly authenticating enables you to

receive or create the keys that are used for encryption and

data protection. These useful keys are sometimes called the

temporal or session keys because they work only so long

as the security context is in place.

In principle, temporal keys can be created out of thin air. For

example, when encrypting messages between two parties,

you simply require that both parties (and only these parties)

have the same key value. You don't care what that value is,

so if you have a way that two parties can separately

generate the same "random" number at roughly the same

time, you can use that as the key. When you have finished

communicating, you can just throw away the key.

Authentication is based on some shared secret information

that cannot be created automatically. An authentication key

must be created by someone trusted and attached to the

holder in such a way that it can't easily be copied or stolen.

And, of course, the trusted key giver has to be certain of the

identity of the key receiver. The basis of all authentication

methods, therefore, is that the entity that is to be

authenticated possesses some special information in

advance, which is called the master key. Using the master

key in a way that protects it from discovery is very

important. As a general rule, the master key is rarely, if

ever, used directly; instead, it is used to create temporal

keys. (WEP, of course, rode through this rule by using the

master key both in authentication and encryption.)

In summary, there are two types of keys: a fixed or master

key that provides proof of identity, and any number of

temporal keys that are created or derived from the master

key for use in the security protocol. Understanding this

distinction helps to understand the way in which RSN is

designed.

clbr://internal.invalid/book/0321136209_24031533.html

Security Layers

Despite the best efforts of social reformers, humans tend to

organize things into layers when it comes to management.

There was a fashion in the 1980s for start-up companies to

be organized on a communal basis in which everyone was

equally important and all meetings were open. Nice touch,

but the reality is that every one of those companies that

grew beyond a handful of people coalesced into a layer

management structure very rapidly. People must have a

limited scope of control in order to be effective. Therefore, if

the organization is to scale up in size, you have to allow

specialization of function and different levels of policy

control.

So what's this got to do with Wi-Fi LANs? Well, in some ways,

WEP was like the trendy start-up. All the security issues

were bundled into a single simple package of measures and

all were defined within a single standard. Quite distinct from

the technical failings of WEP, this resulted in a solution that

could not be scaled beyond a handful of devices. Some

functions, such as encryption, are very local affairs and are

only relevant to the Wi-Fi LAN hardware that is doing the

actual communication. But other issues, in particular the

decisions about who is allowed to access the network, have

very wide importance and need to be consistent across an

entire network.

For these reasons, it is necessary to identify and implement

management layers in the security solution. This can be

seen in the passport control system that involves layers of

government from the immigration officer at the airport desk,

through the passport administration center and up to the

immigration policy decision makers in the Cabinet.

In the context of wireless LAN security, three layers are

clearly identified. In fact, these layers are not specific to

wireless LAN, but apply to any LAN-related security system.

An advantage to choosing this layered model is that the RSN

solution can fit into existing security architectures that have

been deployed for other purposes and also leverage the

standards that already exist.

The three layers of security are:

Wireless LAN layer

Access control layer

Authentication layer

The wireless LAN layer is the worker. It is the job of this

layer to deal with raw communications, advertising

capabilities and accepting applications to join the network.

The wireless LAN layer is also responsible for encrypting and

decrypting the actual data once a security context is

established.

The access control layer is the middle manager. It is the

job of this layer to manage the security context. It must stop

any data passing to or from an enemy. Here an "enemy" is

defined as anyone who does not have a current security

context established. The access control layer is fickle, and

you can immediately change your status from enemy to

friend when authentications occur and the security context

is established. The access control layer talks to the

authentication layer to know when it may open the security

context and it participates in creating the associated

temporal keys.

The most senior layer is the authentication layer. At this

layer the policy decisions are made and proofs of identity

are accepted (or rejected). In effect the authentication layer

has power of veto over anyone who wants to join the LAN

and delegates power to the access control layer once it

approves the application for someone to join the LAN. The

wireless LAN layer obviously resides in the wireless device

contained in the access point. Usually the access control

layer resides completely in the access point. Although in

small systems the authentication layer might be in the

access point also, in larger systems, the authentication layer

is usually implemented in an authentication server quite

separate from the access points. This ability to centralize

the authentication server provides a scalable way to

manage the user database. In other words, it solves the key

management problems of WEP and makes it easier to

integrate Wi-Fi LANs into the overall corporate security

management system.

On a mobile station, there are similar layers. Typically, the

wireless LAN layer is implemented in the Wi-Fi adapter card

and its associated software drivers. The access control and

authentication services may be implemented in the

operating system or, for older systems, in the application

level software provided by the manufacturer. Remember

that it is very important that the mobile device also

authenticates the network to ensure that it is not joining a

fake network set up by an attacker. Figure 7.3 shows the

relationship of all the layers and a typical example of where

the layers operate. Note that in the figure "supplicant"

refers to the part of the mobile device's operating system

that makes the request to join the wireless LAN.

Figure 7.3. Relationship of Layers

How the Layers Are Implemented

The IEEE 802.11 standard covers only wireless LANs, and

the standards group is not chartered to define the behavior

of systems outside this specific area. This presents a

problem when designing systems that need the cooperation

of various layers to work. This is one of the reasons that the

original WEP standard tried to define all the security issues

within the wireless LAN layer. When designing RSN, the

standards task group avoided this problem by referencing

existing standards developed outside IEEE 802.11,

especially for the access control and authentication layers.

In the few cases in which these other standards needed to

be modified, the IEEE 802.11i group contacted the other

relevant standards and requested changes to be made.

There seemed to be a perfect existing candidate for the

access control layer. As early work progressed on the

security standard, another standards group, IEEE 802.1X,

was putting the finishing touches on a standard designed

specifically to deal with access control (IEEE, 2001) IEEE

802.1X was selected as most appropriate for access control

with (almost) universal approval, although this, too, had to

be modified later to meet all the needs of security identified

by the TGi group.

The authentication layer was much more problematic. The

difficulty here was that there are many possible candidates.

The purpose of having the authentication done by this upper

layer was so that corporations could integrate the

authentication into their existing security approach. But it

turns out that there are quite a few different methods in

use. And, of course, each corporation believes that the

approach it is using is the best one.

In the end the decision was made that IEEE 802.11i would

not specify any mandatory upper-layer authentication

method, but that the RSN approach would be designed in

such a way that any of the existing "good" methods could

be applied. The word "good" here underlines the fact that

the standard places requirements on the security

capabilities of acceptable methods. For example, all

methods must support mutual authentication.

In the following chapters, we look in more detail at the way

in which the authentication, access control, and wireless

LAN layers are implemented and how they interact. Because

there are layers and different standards are employed at

each layer, it might seem that RSN is very complicated.

There is no doubt that it is a formidable task to read all the

standards that are incorporated directly or by reference.

What we intend to achieve in this book is an overview of the

relevant parts of each standard so you don't need to

undertake this task. Then those standards should be much

more accessible should you choose to dive in.

Relationship of the Standards

The next few chapters cover a bewildering number of

standards, mostly those of IEEE 802 and IETF (RFCs). The

following reference list of all the standards that we mention

should help you keep track of these standards and serve as

a roadmap to indicate if and where they fit into the RSN

picture. You may find you want to refer back here as the

picture starts to form in your mind.

List of Standards

Here is a list of all the standards mentioned in Chapters 8

through 12.

Name Title or Description

IEEE 802.1X Port access control

IEEE 802.3 Wired LAN

IEEE 802.11 Wireless LAN

IEEE 802.11e Wireless LAN with Quality or Service

Management (in development)

Name Title or Description

IEEE 802.11i Wireless LAN Security (in development)

RFC 1321 MD-5 Message Digest Algorithm

RFC 1510 Kerberos V5

RFC 1661 Original PPP standard

RFC 1964 GSSAPI Kerberos Protocol Mechanism

RFC 2058 Earlier RADIUS spec. (superseded)

RFC 2104 Hash Message Authentication Code

RFC 2138 Earlier RADIUS spec. (superseded)

RFC 2246 Transport Layer Security (TLS)

RFC 2284 PPP Extensible Authentication Protocol

(EAP)

Name Title or Description

RFC 2548 Microsoft Vendor Specific RADIUS

Attributes

RFC 2716 PPP EAP TLS Authentication Protocol

RFC 2743 Generic Security Service Application

Programming Interface

RFC 2865 RADIUS

RFC 2866 RADIUS Accounting

RFC 2869 EAP over RADIUS

RFC 2945 The SRP Authentication and Key

Exchange System

draft-ietf-pppext-

rfc2284bis

Updates EAP

draft-aboba-radius-

rfc2869bis

Update to RFC2869

Name Title or Description

draft-josefsson-

pppext-eap-tls-eap

PEAP

draft-haverinen-

pppext-eap-sim

GSM-SIM over EAP

Cisco LEAP Proprietary Vendor protocol for Wi-Fi

Security

RC4 Encryption Cipher

AES Encryption Cipher

Pictorial Map

Figure 7.4 shows a pictorial map of the main standards used

in an RSN solution based on TLS authentication. Inevitably

the picture is a bit simplistic, but it shows how the TLS

authentication process is buried inside a set of standards

that provide the communications first between the mobile

device and the access point and then between the access

point and the authentication server. The links are shown as

a set of concentric tubes; the outer tube is the

communications medium and successive inner tubes are the

encapsulations used to transport the information. As we said

at the beginning of this section, we do not expect you to

understand the whole picture from looking at Figure 7.4, but

we hope it will form a reference point to which you can

return.

Figure 7.4. Main Standards in an RSN

Solution Based on TLS

clbr://internal.invalid/book/0321136209_24031533.html

Summary

In earlier chapters we alluded frequently to "the new

security solutions." We talked a lot about the difficulty of

implementing good security and explained how the existing

Wi-Fi security solutions had fallen short of what was needed.

In this chapter we introduced IEEE 802.11i RSN and Wi-Fi

Protected Access (WPA). This new generation of security

methods will take over from WEP and finally meet the needs

of both high security and scalability for large systems.

Systems based on RSN and WPA need not be complicated to

install if the vendor has delivered all the pieces correctly.

However, many pieces are required, and a full explanation

takes some time. In this book we devote Chapters 8 through

12 to describing all the pieces and the way in which they

depend on each other. To ease the learning process, in this

chapter we have described a layered approach to thinking

about the various components and have provided a map to

show how the numerous standards fit together in an

implementation.

As with many complicated systems, when all the pieces are

put together it is not hard to understand what is going on.

The difficulty is that in the beginning you can be

overwhelmed by the number of pieces. To ease you through

this burden, in the following chapters we lead you through

the core access control descriptions first, and then look at

the higher layers that provide the authentication. Finally we

return to the wireless level to look at key distribution and

implementation of the actual Wi-Fi security protocols.

Chapter 8. Access Control: IEEE

802.1X, EAP, and RADIUS

This chapter introduces some of the protocols that are

central to the new security solutions. One of the most basic

functions needed for security is access control and the new

security solutions are built around a standard, IEEE 802.1X,

which is specifically designed to implement access control.

This chapter starts by describing the need for access control

and then shows how the control techniques developed for

dial-up modem pools have been reused in conjunction with

WI-Fi LANs. As we will see, the combination of IEEE 802.11,

IEEE 802.1X, EAP, and RADIUS provide a solution scalable

from home networks all the way to large corporate

networks.

clbr://internal.invalid/book/0321136209_24031533.html

Importance of Access Control

Access control is one of the most important elements of

security. The object of security is to separate the world into

"good guys" and "bad guys." It follows that you cannot

achieve security unless you have a mechanism to perform

this separation. That mechanism is access control.

On the surface, maintaining control is straightforward. All

situations have the following elements:

An entity that wants to have access�the supplicant

An entity that controls the access gate�the

authenticator

An entity that decides whether the supplicant is to be

admitted�for now, we will call this the authorizer

Suppose a visitor knocks on your front door and your child

opens it (with the security chain on). The visitor is the

supplicant, your child is the authenticator, and you are the

authorizer. Only if you say it's okay will your child take off

the security chain and let the visitor in (don't you wish you

really had such power!). If you answer the door personally,

you take the role of both authenticator and authorizer.

The steps involved in access control follow a similar pattern:

1. Authenticator is alerted by the supplicant.

Supplicant identifies himself.

Authenticator requests authorization from the authorizer.

Authorizer indicates YES or NO.

Authenticator allows or blocks access.

These steps work to control access; but as we discussed in

earlier chapters, if the supplicant wants to come and go

repeatedly without going through this procedure each time,

he needs to obtain some sort of token that proves that he

has been authorized. In the case of a corporation, for

example, that might be a swipe card that opens the

employee entrance door.

So if access control is really this simple, why devote a whole

chapter to it? Well, the reality is that while the concept and

goals of access control are simple, designing a system that

is immune to attack is very difficult. Most of the access

control systems dealing with people are trivially easy to fool

by an intelligent con man. How many of us have left our

swipe card at home one day and, upon arriving at work, just

walked in behind another employee? For Wi-Fi LANs, we

can't allow even the slightest flaw in the access control

method, or else hacker tools will appear on the Internet

within months. Getting it right is hard.

This chapter focuses on the three protocols that are used to

implement access security in WPA and RSN:

IEEE 802.1X

EAP: Extensible Authentication Protocol

RADIUS: Remote Authentication Dial-In User Service

The first two protocols are mandatory for WPA and RSN.

RADIUS is the method of choice for WPA and is an option for

RSN.

There is much confusion about IEEE 802.1X and what it

does. Because it is difficult for customers to fully understand

all the elements of security, vendors tend to talk about IEEE

802.1X as if it were the entire security solution for Wi-Fi

LANs. In reality, as we will see shortly, IEEE 802.1X is only a

small part of the solution, albeit an important one. IEEE

802.1X is the foundation of both WPA and RSN.

IETF Standards

Many of the standards in this chapter and in Chapter

9, "Upper Layer Authentication," were developed by

the Internet Engineering Task Force (IETF), an

organization that is completely different from the

IEEE (although both often involve the same people).

All the most basic protocols used on the Internet,

starting with the Internet Protocol (IP) itself, have

been defined by the IETF. The organization, which

operates more on technical consensus and less on

formal voting, creates documents called RFCs, short

for "Request for Comments." The RFC number for

EAP is RFC2284, for example. Despite the title, most

RFCs are quite stable and not subject to much

change. Perhaps these should transition to NMCTs

(No More Comments Thank you), but this would not

be in the spirit of continuous technical review, which

the IETF encourages.

The stability of RFCs allows vendors to implement

and deliver products. New ideas in the IETF are

floated using draft documents, which are circulated

for discussion. Rather than having a number, these

drafts have a name incorporating the subject and

main author. For example, "draft-haverinen-pppext-

eap-sim-03.txt" describes draft three of a proposal

written by Henry Haverinen to use EAP with GSM

phone systems using a SIM smart card. Proposals

that become group work items use the generic "ietf,"

such as "draft-ietf-pppext-eap-ttls-00.txt," which

describes how to use EAP in conjunction with

Tunneled TLS authentication.

Many drafts are dropped due to lack of interest, but

those that get support from the group eventually

move on to become RFCs. This is relevant to EAP

because, at the time of this writing, most of the new

EAP methods were in the form of draft IETF

submissions. In addition, a revised version of EAP

was in the works (draft-ietf-pppext-rfc2284bis-02.txt)

and expected to supersede the current version. The

revision, of course, does not change the existing

protocol, but extends and clarify its capabilities. By

the time you read this book, this draft might have

become a new RFC. All the RFCs and current drafts

are publicly available from www.ietf.org.

Before we look at IEEE 802.1X, let's take a diversion and

look at the history of dial-in modem support. "Why now?"

you may say. The fact is that the main protocols of EAP and

RADIUS were both developed in the context of dial-in

access.[1] It turns out that dial-in access control is organized

in a very similar way to IEEE 802.1X, which is why the same

protocols, EAP and RADIUS, can be applied to both. By

reviewing the dial-in case first, you will find that the WPA

and RSN cases make more sense.

[1]
 Strictly, EAP was developed to support Point-to-Point Protocol (PPP),

which is very widely used in dial-up networks but also has other

applications.

http://www.ietf.org/default.htm
clbr://internal.invalid/book/0321136209_24031533.html

Authentication for Dial-in Users

Millions of people use dial-up access for Internet

connectivity every day. Each person's computer is

configured with the phone number of the Internet service

provider (ISP), a user name and a password; management of

the connection is done automatically. Behind the scenes, the

majority of these connections use a protocol called Point-to-

Point Protocol (PPP), reflecting the fact that the connection is

just that�a point-to-point connection between two modems

that between them provide an unformatted byte-by-byte

link. PPP converts the unstructured modem link into a

packet-based environment suitable for transporting the IP

packets. Importantly, it deals with initial handshaking during

which the two ends can negotiate a common feature set. It

also has a mechanism for user authentication that we are

interested in here. The original PPP (RFC1661) described

simple methods to authenticate the user that are still

implemented by many ISPs today. When you initiate dial-up

access on your computer, you may see a little box on the

screen saying, "authenticating…" while this occurs. You

might also be asked to enter a password during this phase.

These events typically happen during the PPP negotiation.

PPP has two authentication methods described in the

original standard; but by current opinion, neither method is

considered very strong. In fact, the simplest method, PAP,

which is still used by many ISPs, actually sends the user

name and password in clear text so any snooper on the link

can steal it. The other popular method, CHAP, uses a

challenge response mechanism, somewhat similar to the

original WEP method. This is much better than PAP but still

not considered very strong.

In the dial-up case, the authentication method doesn't need

to be very strong. Generally, the worst that happens if

someone steals your password is that they get free access

to the ISP for which you may be paying. In addition, dial-up

lines are much harder to intercept than LANs. However, in

some situations a stronger authentication method is needed

and the fact that PPP specifies only two weak methods

presents a problem. Any new PPP authentication methods

would have to be registered with the IANA (Internet

Assigned Numbers Authority), and this would create a

problem for existing deployed systems that are already "PPP

compliant."

To solve this problem, IETF members decided that a more

extensible method was needed for PPP. Therefore, the

option of EAP was added alongside PAP and CHAP. EAP

allows full authentication to be delayed until after the

preliminary PPP link is established. RFC2284 "PPP Extensible

Authentication Protocol (EAP)" describes how this

modification is applied and used with PPP; it says nothing

about IEEE 802.1X or wireless LAN (neither of which existed

when RFC2284 was written). Recognition of LAN applications

is one of the changes proposed in the draft update (draft-

ietf-pppext-rfc2284bis-02.txt). This will include references to

IEEE 802.1X and IEEE 802.11 in the EAP definition.

The intent of EAP is to enable the use of an authentication

algorithm between the supplicant and the authorizer. EAP is

designed to allow different types of authentication methods

to be used �that is why it is called extensible. The object is

to enable the supplicant to prove his identity to the

authorizer. Many methods allow mutual authentication so

both parties prove their true identity to the other.

It is common in dial-up networks to have a modem pool in

each local phone area to provide cheap access, often called

a point of presence (POP). However, the service provider

doesn't want to keep a copy of their user database at every

POP; they want a central database. This creates a three-

party situation that is very similar to that of a corporate Wi-

Fi LAN. Using the terminology in our introduction, the user is

the supplicant, the POP is the authenticator, and the central

database is the authorizer. The protocol used between the

POP and the central database to get permission to allow a

dial-in user access to the network is called RADIUS (Remote

Access Dial-In User Service). We look at RADIUS in more

detail later in this chapter.

The organization of a typical dial-in network is shown in

Figure 8.1.

Figure 8.1. Organization of Dial-in

Network

Three parties are shown in Figure 8.1:

Users (supplicants)

Network access server (NAS), located in the POP;

authenticator

Authentication server (AS), which can be located

centrally; authorizer

Note that the term "authorizer" is not an official term, but

one that we invented in the introduction to aid in

understanding the roles of the parties. From here on, we use

the term "authentication server" rather than authorizer

because this is most widely used to describe the authorizing

entity.

EAP allows a flexible approach so arbitrary and complicated

authentication protocols can be exchanged between the

supplicant and the authentication server. To allow this,

RADIUS has been extended to enable EAP messages to be

forwarded by the NAS. The NAS acts as a sort of middleman

in the authentication process, just relaying EAP messages

between the supplicant and the server until the

authentication process completes. When the authentication

server makes a decision, the result gets sent to both the

NAS and the supplicant in RADIUS/EAP messages. This

enables the NAS to either allow access or disconnect the

unauthorized user.

This three-party model is in use in thousands of POPs around

the world (although few use EAP at this time). This is

relevant because the situation in corporate Wi-Fi LAN looks

rather similar to Figure 8.1. The supplicant is the Wi-Fi user

that wants network access. The equivalent of the NAS is the

access point, and there is an authentication server that

controls the authorization process. The difference is that

IEEE 802.11 provides a structured packet network so that

PPP is not needed. In the next section we see that the role of

IEEE 802.1X is to provide a similar access control function to

that performed by the NAS in Figure 8.1.

IEEE 802.1X

IEEE 802.1X is very simple in concept. Its purpose is to

implement access control at the point at which a user joins

the network. It divides the network universe into three

entities along the lines we discussed in the previous section:

Supplicant, which wants to join the network

Authenticator, which controls access

Authentication server, which makes authorization

decisions

The point at which a user connects to the network is called a

port. A network may have many ports; for example, in a

switched LAN hub,[2] each Ethernet connector would be one

port. There is a one-to-one relationship between a

supplicant and a port, and each port has an associated

authenticator to control its state. There is a many-to-one

relationship between the ports and the authentication

server. In other words, a single authentication server is

usually responsible for many ports, each with its own

controlling authenticator.

[2]
 Because each port must act independently, IEEE 802.1X can only be

supported by a LAN switch, not a conventional shared LAN hub.

Although wireless is our primary concern, IEEE 802.1X was

not originally designed with wireless communication in

mind. In fact, work was started on IEEE 802.1X before the

first version of IEEE 802.11 was completed in 1997. The

opening paragraph of IEEE 802.1X says:

IEEE 802 Local Area Networks are often deployed in

environments that permit unauthorized devices to be

physically attached to the LAN infrastructure.

Note that the word "physically" implies a wired connection.

The original thinking behind IEEE 802.1X was to protect

ports such as might be found on a switched Ethernet hub.

The idea was to prevent just anyone from connecting to the

network by plugging an Ethernet cable into a hole in the

wall and, instead, require that a potential user's identity and

authorization status be checked. As IEEE 802.1X moved

toward completion, people recognized that the same

principle could be extended from wired ports to wireless

connections. Cisco incorporated the concept into its

products first, and the approach was adopted for RSN in

IEEE 802.11i and, subsequently, by the Wi-Fi Alliance for

WPA.

The main point of providing port security is to protect

network connections where those connections might be

accessible in a nonsecure area, such as a lobby or

conference room. For most corporations this is a small

number of ports. But for wireless, it is potentially every

connection, because the nature of wireless makes almost all

links publicly accessible. This is why IEEE 802.1X is so

appropriate for IEEE 802.11.

IEEE 802.1X in a Simple Switched Hub

Environment

Before looking at its application in WPA/RSN, let's get an

overview of what IEEE 802.1X does in a simple switched hub

environment. Control is based around the concept of a

switch on each port that is normally open (no connection).

The switch is closed only when the supplicant is authorized.

As shown in Figure 8.2, the hub ports are all disconnected

initially. If anyone plugs in, he doesn't automatically get

network access. It is important to note that it would be most

unusual for the switches to be implemented as actual

physical contacts. The switch here is only logical, like

software or logic gates. When the switch is "open," data

packets are not forwarded to or from the port. When it is

closed, they are sent. The Ethernet port remains electrically

active all the time.

Figure 8.2. Initial State of IEEE

802.1X Switched LAN Hub

One of the obvious problems in the diagram shown in Figure

8.2 is that it doesn't provide any way for the devices to ask

the switched hub for permission to connect. It's like

forgetting to put a doorbell on your front door. No one can

ring to ask to come in. Remember that each port has an

authenticator that is responsible for opening and closing the

switch, so IEEE 802.1X provides a way to talk to the

authenticator even when the switch is open.

This is like the security guard at the front door of an office

building. When you arrive you are not allowed in, but you

are allowed to talk to the security guard to ask for entry. In

the terminology of IEEE 802.1X, the authenticator has

control over the port state (whether the switch is open or

closed), as shown in Figure 8.3. Here we see that the device

on port 0 has been accepted and is connected to the

network; another device is in the process of requesting

access to the authenticator on port 1 but does not have

access yet. The protocol used to communicate between the

supplicant and the authenticator is based on EAP.

Figure 8.3. Role of IEEE 802.1X

Authenticator

In Figure 8.3, it looks as if the authenticators are making the

decisions about who is allowed access. In reality, the

decision to admit or reject an applicant is usually based on

an authentication database controlled and managed by an

administrator. For this, the authenticator must communicate

to an authentication server in order to get the answer

"accept" or "reject" when a supplicant applies to join the

network.

The authenticators in Figure 8.3 act like a security guard

that has no authority. For every person who comes to the

door, the guard has to call upstairs to the boss to find out

whether it is OK to allow access. In a small system, the

authentication server (the boss) could reside right in the

switched hub and would simply have a list of users allowed

access. Typically, the list of users would be configured by

the system administrator in advance. This approach is

impractical except for the smallest networks because each

hub would have to be configured separately. Therefore, the

authentication server is typically located at some central

place in the network, as shown in Figure 8.4.

Figure 8.4. Role of Remote

Authentication Server

In Figure 8.4, all four authenticators for the hub shown

communicate with the authentication server. In practice, the

same would be true for all hubs on the network so the

authentication server could be making decisions for many

thousands of ports (hopefully not at the same time).

Although we have used a picture of a multiport switched

LAN hub in these examples, the IEEE 802.1X standard is

really only concerned with one port at a time. Each port has

its own state independent of any others in the box. Figure

8.5 shows a picture extracted directly from the IEEE 802.1X

specification illustrating the relationships among the

entities.

Figure 8.5. IEEE 802.1X Model As

Shown in IEEE Standard

Figure 8.5 again shows the three players: supplicant system,

authenticator system, and authentication server system.

The supplicant is the device that wishes to get connected.

Note that the switch connects through to "services offered

by the authenticator's system." Usually we assume this

means "connected to the network," but it could be some

other service. PAE means port access entity, the full name

for a port.

Figure 8.5 includes a reference to a higher-layer protocol

between the authenticator and the authentication server.

The EAP protocol is used by the various parties to

communicate with each other. EAP messages go between

the supplicant and the authenticator. The authenticator may

also forward them to the authentication server as part of the

process of authorization in a similar way that the NAS does

in a dial-in network. If the authentication server is in a

remote location, these messages need to be sent over a

network using some higher-layer protocol. This is where

RADIUS can be called into action to transfer the requests

over an IP network. RADIUS was designed to perform this

job in the dial-up user case, and now we can reuse it for

IEEE 802.1X support. WPA specifies RADIUS for this purpose,

although other protocols are also possible.

One of the differences between dial-in networks and IEEE

802.1X is that, with IEEE 802.1X, there is no need to use PPP

because IEEE 802 LANs are designed to send data packets.

However, it is still necessary to have some sort of protocol

so the receiver can identify the information, and that

protocol is called EAPOL (EAP over LAN). As described later

in this chapter, EAPOL has several types of messages. Apart

from the one that delivers the EAP messages, there are

several additional ones that are useful for actions like

attracting the attention of the authenticator (the doorbell

analogy). Also there is a message for transferring key-

related information.[3] WPA and RSN use a similar message

in the process of establishing an encrypted link (see Chapter

10).

[3]
 This message has no use on wired 802 LANs because they do not

support cipher suites.

IEEE 802.1X in Wi-Fi LANs

Given that IEEE 802.1X is designed to control individual LAN

ports, how does it map to the wireless case in which there is

a single access point supporting many devices? We have to

treat each wireless connection between a mobile device and

the access point as if it were an independent connection. In

effect, we replace the physical connections of a switched

LAN hub with logical connections formed by the wireless

communications.

In the context of IEEE 802.1X, each mobile device is a

supplicant wanting to be provided with the services of the

access point (which typically means connection to a wired

network). To accomplish this, the access point must create,

for each supplicant it encounters, a logical port complete

with an authenticator. Each authenticator is responsible for

controlling access for the mobile supplicant to which it has

been assigned. Along with the logical port and

authenticator, there is also a logical control switch. As you

would expect, the control switch starts in the open position.

A new wireless device, acting as a supplicant, has to apply

for access by sending messages to the authenticator, which

controls its connection inside the access point. All this is

done in software. There is no physical authenticator or

switch, so the number of IEEE 802.1X entities in operation is

the same as the number of associated mobile devices,

regardless of how many that might be (Figure 8.6).

Figure 8.6. Logical IEEE 802.1X Ports

in an Access Point

It is a common misconception that IEEE 802.1X is only

relevant to big corporate environments in which there are

dedicated authentication servers. However, in practice, the

authentication server could be a simple process inside the

access point�just a list of user names and passwords, for

example. This means that the same principles of IEEE

802.1X that apply for huge networks can also apply to home

networks. If the authentication server is built inside the

access point, there is no need to use RADIUS because the

authenticator and authentication server do not need to talk

over the network; they are in the same box! However, in

this case the number of supported authentication methods

would be limited to those selected by the equipment vendor.

So far we have mostly talked about IEEE 802.1X in the

context of access control. This has been described as a sort

of one-time operation: The supplicant requests access and

the authenticator grants it after referring to the

authentication server. This may be sufficient for dial-up

access or for Ethernet LAN ports because there is a physical

connection for each supplicant and it is very hard for an

attacker to take over that connection once it is authorized.

Clearly the same is not true for Wi-Fi LANs. Without

protection, it would be trivially easy for an attacker to wait

until a valid user was granted access and then start using

the connection by stealing his identity. Therefore, for Wi-Fi

LANs, we have to bind the authorization to a mechanism

that prevents this type of session hijack. This is

accomplished by incorporating message authentication

(integrity) as part of the authorization process. We must be

sure that both the access point and the mobile device have

their secret keys in place by checking message authenticity

and that they have turned on encryption before granting

access to the network. This important difference greatly

complicates the process and resulted in some minor

changes to IEEE 802.1X to ensure synchronization of the

process. A new standard, IEEE 802.1AA, is being developed

at the time of writing to update IEEE 802.1X partly as a

result of its application to IEEE 802.11i. To explore the way

that synchronization is achieved, see Chapter 10.

clbr://internal.invalid/book/0321136209_24031533.html

EAP Principles

In some ways EAP performs the role of an actor's agent.

When an actor is looking for work, the agent takes her to a

movie director and introduces them. The agent sits back

while the actor and director talk about the job, but jumps in

again at the end to close the deal.

EAP has a set of messages that it uses to make the

introductions and to close the deal. These are used with all

upper-layer authentication methods.[4] EAP also allows two

parties to exchange information that is specific to the

authentication method they want to use. The content of

these authentication-specific methods is not defined in EAP.

In fact, they can be completely proprietary authentication

methods or newly invented ones. EAP's ability to handle part

of the communication in a standardized way and part in a

specific way is the key to its extensibility. We refer to these

authentication-specific messages as "middle messages"

because they occur after the introduction and before the

closing.

[4]
 Upper-layer authentication methods are discussed in Chapter 9 and

include methods such as SSL, TLS, and Kerberos V5.

Quite a lot of these middle messages can be exchanged

before the authentication is completed. The reason why EAP

is extensible is that the details of these special messages

are left to other RFCs to fill in. For example, there is an RFC

saying how to use Transport Layer Security (TLS) over EAP;

another (draft) says how to use Tunneled TLS (TTLS) over

EAP, and so on. It also means that if you invent a new

method later on, you can write a new draft called

"mymethod over EAP"; and if it becomes popular, other

people can implement it on existing systems.

RFC2284 (EAP) is a very short document as these things go.

In fact, not counting references, acknowledgments,

definitions, and so on, it is only nine pages long. RFC2284

(EAP) specifies that four types of message can be sent:

Request: Used to send messages from the

authenticator to the supplicant

Response: Used to send messages from the supplicant

to the authenticator

Success: Sent by the authenticator to indicate access is

granted

Failure: Sent by the authenticator to indicate access is

refused

Note that these messages are described here in terms of the

authenticator. However, in the IEEE 802.1X scenario, the

authenticator forwards the messages on to the

authentication server, most likely using RADIUS. In this case

it is the authentication server that generates request,

success, and/or failure messages and the authenticator just

relays them to the supplicant.

Request and response messages are further subdivided

using the EAP Type field. The Type field indicates what

information is being carried in the EAP message. The first six

message types are defined in the standard; all the others

are reserved for specific authentication methods. The most

important predefined type is Identity (type value 1).

Typically, this is used as part of the EAP introduction phase:

the message EAP-Request/Identity is sent by the

authenticator to a new supplicant. The supplicant replies

with the message EAP-Response/Identity containing its

user name or some other identifier that will be understood

by the authentication server.

Type numbers higher than 6 are not defined by RFC2284

(EAP), but they are issued (uniquely) by IANA for each new

authentication method that is introduced. Some are even

issued for vendor-proprietary methods. The type number for

TLS, for example, is 13, which means that all EAP-Request

and EAP-Response messages with this type field contain

information that is specific to the TLS upper-layer

authentication method.

The use of the Type field is a bit inconsistent. For the most

part, it indicates the authentication method. But in a few

cases, it defines a special-purpose message. For example, a

message with a type value of 2 is called a notification

message and is used to send some user-displayable text.

This could be anything from "Please enter your password" to

"Prepare to meet thy maker"�it really doesn't matter. The

message is intended to appear on the screen of the user's

system (although few systems actually support this). A

message with a type value of 3 is called a NAK and is used

when a request is made for an authentication method that is

not supported. If an EAP request with type TLS is sent to a

peer that doesn't support TLS, it can respond with a Type

field of NAK.

Type value 1 Identity could be considered a special-

purpose message or it could be considered a very simple

authentication method. Under IEEE 802.1X, this request is

often the first thing sent and the supplicant will reply with a

response message giving its identity information. Originally

this was treated as a special type to be used prior to the

main authentication phase. However, this has been subtly

changed in the revised EAP draft (while remaining

compatible with the previous version). The simplest

authentication exchange could go:

EAP-Identity request (from authenticator)

EAP-Identity response (from supplicant)

EAP-Success (from authenticator)

Here the device has been "authenticated" on pure trust: "I

choose to believe that you are who you say with no proof."

Or perhaps proof is available by some other means. For

example, the identity might be generated by a smart card

that changes every second, synchronized to the

authentication server.[5] This type of null authentication can

be used with simple wireless LAN networks that have

preloaded secret keys (called preshared keys) and then

rely on the encryption to prevent unwanted

communications.

[5]
 This is often referred to as a one-time password.

Because the EAP-Identity exchange can be considered a

complete authentication method by itself, when you do the

identity exchange followed by another method such as TLS,

you are really running two authentication methods in

sequence. This concept of serial authentication has been

generalized in the new EAP draft, which simply lists the EAP-

Identity message as a basic authentication method and then

says that you are allowed to run as many authentication

methods in sequence as you wish prior to the final EAP-

Success or EAP-Failure message.

This ability to run multiple authentication methods in

sequence can be exploited in new approaches that allow the

client to authenticate the network before revealing its

identity. One approach, PEAP (Protected EAP), is discussed in

more detail in Chapter 9.

EAP Message Formats

All EAP messages have a similar basic format, as shown in

Figure 8.7. Code is one byte indicating the type of message:

Request (01)

Response (02)

Success (03)

Failure (04)

Figure 8.7. EAP Message Format

Identifier is a value in the range 0�255 and IEEE 802.1X

indicates that it should be incremented for each message

sent. When a response is sent, the identifier is set equal to

that in the request. This helps for checking which response

goes with which request. Length is the total number of

bytes in the EAP message (including Code and so on). It is a

16-bit value. Finally, Data is the actual request or response

data being sent.

We have already discussed the Success and Failure packets.

These messages are short and contain no data. One of

these messages is used at the end of the authentication

process to signal the result. Because the Success and Failure

are common across all authentication protocols,

intermediate devices (such as the access point) can detect

when an authentication completes without understanding all

the details of the authentication method. The access point

should wait for the RADIUS Accept message before making

any decision about access rights.

The details of the authentication method are sent in the

request and response messages. These have an extra field

called Type. The format of an EAP-Request or EAP-Response

message is shown in Figure 8.8.

Figure 8.8. EAP-Request/Response

Message

You can see the Type field, which is used to identify the

request or response. The Type field is essential to separate

all the different authentication methods. In fact, it is the key

to the extensibility of EAP. Each new authentication method

is assigned a unique value so the system knows whether the

request contains information relevant to, for example, TLS

or PEAP.[6]

[6]
 These authentication methods are described in Chapter 9.

clbr://internal.invalid/book/0321136209_24031533.html

EAPOL

The EAP RFC does not specify how messages should be

passed around. It does not, for example, specify transport

over the Internet using IP. In fact, EAP is not a LAN protocol

at all because EAP was originally designed for use with dial-

up authentication via a modem. So if we are going to get

EAP messages passed around our network, we have to find

a way to encapsulate the EAP messages during their

journey. IEEE 802.1X defines a protocol called EAP over

LAN to get EAP messages passed between the supplicant

and the authenticator.

IEEE 802.1X provides the description for EAPOL. It describes

frame formats for Ethernet (IEEE 802.3) and token ring LANs

but not for IEEE 802.11. If you just wanted to encapsulate

the EAP message, you could prepend an Ethernet MAC

header on an EAP message and send it over the LAN. But

the IEEE 802.1X committee decided to add a few more

useful messages and fields while it was defining EAPOL. Not

all EAPOL frames actually carry EAP messages; some are

used to perform administrative tasks. The five types of

EAPOL messages are:

EAPOL-Start

EAPOL-Key

EAPOL-Packet

EAPOL-Logoff

EAPOL-Encapsulated-ASF-Alert

We won't deal with the last message type here. It is

connected with what we think is the rather dangerous idea

of allowing an unauthorized device to send management

alerts to the system. This message is not used by WPA/RSN.

EAPOL-Start

When the supplicant first connects to the LAN, it does not

know the MAC address of the authenticator. Actually it

doesn't know whether there is an authenticator present at

all. To help get things going, IEEE 802.1X defines a message

called EAPOL-Start. By sending this message to a special

group-multicast MAC address reserved for IEEE 802.1X

authenticators, a supplicant can find out whether an

authenticator is present and let it know that the supplicant

is ready. In many cases the authenticator will already be

notified that a new device has connected from some

hardware notification. For example, a hub knows that a

cable is plugged in before the device sends any data. In this

case the authenticator may preempt the Start message with

its own message. In either case the authenticator sends an

EAP-Request Identity message using the EAPOL-Packet

frame (perhaps twice, if both send the initial message at the

same time).

EAPOL-Key

Using this message type, the authenticator sends

encryption (and other) keys to the supplicant once it has

decided to admit it to the network. Of course it is necessary

to encrypt the keys themselves before sending them, and

IEEE 802.1X does not specify how this is done.[7] In fact,

IEEE 802.1X offers little help when it comes to combining

encryption with the authentication process. This was a

major obstacle that had to be overcome in the WPA/RSN

network design. Chapter 10, "WPA and RSN Key Hierarchy,"

outlines how a slightly modified EAPOL-Key message is used

to establish encryption keys and also to validate that both

sides have correct keys before allowing access.

[7]
 This is rectified in IEEE 802.1AA.

EAPOL-Packet

This EAPOL frame is used for sending the actual EAP

messages. It is simply a container for transporting an EAP

message across the LAN, which was the original objective of

the EAPOL protocol.

EAPOL-Logoff

This message type indicates that the supplicant wishes to

be disconnected from the network.

For reference, the format of an EAPOL frame for use by

Ethernet is shown in Figure 8.9. All of the packet types listed

above fall into this format.

The protocol version is always 1 (this could change in

the future).

The packet type number indicates start, key, and so on.

For some message types, no further information is

needed and the packet body length is set to 0 (and the

body is omitted). However, if there is a packet body,

such as an EAP message, its length and data are added

on as appropriate.

Figure 8.9. EAPOL Frame Format

clbr://internal.invalid/book/0321136209_24031533.html

Messages Used in IEEE 802.1X

Messages must pass between three parties: the supplicant,

authenticator, and authentication server. IEEE 802.1X uses

EAP, or more specifically, EAPOL, to pass these messages

between the supplicant and the authenticator. Let's start by

following through the sequence of events when a new

supplicant arrives.

Authentication Sequence

An outline of the authentication sequence is shown in Figure

8.10. When a supplicant wants to connect, it must first

attract the attention of the authenticator. In most cases the

authenticator is alerted by the connection process. It might

be that the act of plugging in the cable or, in the case of

wireless, associating with the access point is enough.

Otherwise, the EAPOL-Start message can be used.

Figure 8.10. EAP Message Flow

The authenticator first responds with an EAP-

Request/Identity message. This is a standard EAP message

that is equivalent to shouting, "Who's there?" The

authenticator is allowed to skip this step if it knows the

identity of the supplicant by some other method. The

supplicant must respond with an EAP-Response/Identity

message. This raises an interesting issue because so far the

supplicant can't be certain whether the authenticator can be

trusted, especially in a wireless network. Suppose the

authenticator is a rogue access point set up by an attacker.

The supplicant might not want to reveal its identity at that

time and uses a pseudonym instead. Some schemes support

the use of pseudonyms[8] ; but, for the moment, let's

assume the supplicant is not shy and is prepared to send its

identity to the authenticator.

[8]
 For example, PEAP.

So far all the messages we have discussed have gone

between the supplicant and the authenticator (in IEEE

802.11, this would be the mobile device and the access

point). The authentication server has not been involved until

now. It is important not to waste the authentication server's

time until the supplicant has shown that it actually speaks

IEEE 802.1X by responding to the first EAP-Request. Having

obtained the identity of the supplicant, the authenticator

needs to contact the authentication server to find out

whether this supplicant is to be allowed in. The

authentication server can't make this decision until it has

verified that the supplicant really corresponds to the identity

it has given. This is the whole point of authentication. To

avoid the need for the authenticator (in the access point)

having to know all the authentication methods, the EAP

messages used for authentication are passed directly to the

authentication server.

In effect, during this phase the supplicant and the server are

talking directly. In our earlier office building analogy, the

security guard has opened the door and asked the person's

name, but not let him in yet. Then the guard calls his boss

and says, "Can we let Harry Acker in?" The boss runs

through a set of questions, which the security guard asks

Harry one by one. The guard passes the answers back to the

boss. The guard just relays the questions and answers and,

in the end, the boss makes a decision on entry. Note that

during this phase, the guard might not understand the

purpose of the questions as in the following scenario:

Harry to guard: Hello, can I come in?

Guard to Harry: Who are you?

Harry to guard: I'm Harry Acker.

Guard to boss: Harry Acker wants to come in.

Boss to guard: Ask him whether the oak tree is a

mammal or a marsupial.

(Guard asks Harry)

Harry to guard: It is a marsupial.

(Guard tells boss)

Boss to guard: Don't let him in.

Guard to Harry: You can't come in.

Note that the questions and answers relayed by the guard

made no sense to him but clearly enabled the boss to make

a decision that the guard then put into effect.

During the authentication process, the authenticator takes a

quick look at each EAP message that is passed between the

supplicant and authentication server. It is watching for

certain messages that it understands. In particular, it is

looking for an EAP-Success or an EAP-Failure. It must wait

until the authentication server indicates whether the

supplicant has been accepted or rejected. A RADIUS

message provides the indication when RADIUS is being

used.

Implementation Considerations

So much for the theory, but where does IEEE 802.1X reside

in real systems? For most Wi-Fi LANs, the logical place to put

IEEE 802.1X is in the access point. In fact the close coupling

between IEEE 802.1X and key management makes it hard to

place it anywhere else. There were proposals in the

standards work that would allow the key management and

wireless access point functions to be separated so IEEE

802.1X could be placed on a separate access box to which

the access point was connected. This approach was not

adopted for WPA/RSN.

It is possible to build wireless LANs without an access point

using IBSS or ad-hoc mode. In this case, it is necessary for

every mobile device to have both a supplicant and an

authenticator operating in parallel (see Chapter 13).

Some operating systems such as Microsoft Windows XP

have support for IEEE 802.1X supplicants built in. When

configuring the clients, you only need to enable IEEE

802.1X-based authentication and choose the authentication

method. Of course the choice of authentication methods

may be limited and you may have to install additional

software to get the method you need. In older operating

systems, IEEE 802.1X is probably not built in and you will

need to install special drivers from the manufacturer of the

Wi-Fi equipment you are installing. In all cases, supporting

generic IEEE 802.1X is not enough for Wi-Fi LAN. There are

other special requirements of WPA/RSN related to key

management that must be built into the IEEE 802.1X

implementation. In general the manufacturer of the adapter

card provides all the necessary hooks and drivers to

implement this extra stuff when the operating system does

not. You should confirm that when a vendor advertises RSN

or IEEE 802.11i compatibility that it does properly integrate

with the operating system you intend to use. Systems

labeled "Wi-Fi WPA" are likely to have the necessary

software and will have been tested for interoperability with

other vendors.

IEEE 802.1X can also be used in embedded mobile devices

such as mobile phones or PDAs. In this case, the operating

system may not be visible to the user. If the device supports

IEEE 802.11i RSN or WPA, all the integration issues should

be taken into account in the device. However, you will

probably have little or no flexibility on the authentication

method available. Be sure to find out what authentication

method is used on such a device and confirm that your

authentication server can support it.

As a final note, remember that IEEE 802.1X itself does not

define the way that EAP messages are passed between the

authenticator and the authentication server. However, it

strongly hints that RADIUS is a good way to go in IP

networks. It even includes an annex section outlining how

RADIUS might be used. RADIUS has already been mentioned

and is covered in the next section. Remember that RADIUS

is needed only if the authentication server is remote to the

authenticator. IEEE 802 deals with LAN protocols generally

and is applicable to LANs regardless of whether they use

TCP/IP. IEEE 802.1X does not specify RADIUS because it is

based on IP packets, which are part of the TCP/IP protocol

family. In reality, IP networks are by far the most common,

but this was not always the case and IP still isn't used

everywhere. Here we assume that you are using an IP

network and we focus on RADIUS where there is a network

connection between the authenticator and the

authentication server. WPA goes further and defines RADIUS

as a mandatory implementation choice to help ensure

interoperability.

RADIUS�Remote Access Dial-In User

Service

Although RADIUS is not specifically part of the IEEE 802.11i

standard, many practical corporate implementations use it

to communicate between the access point and the

authentication server. Small office or home installations are

very unlikely to use RADIUS because the authentication

server is probably inside the access point. So what exactly is

RADIUS? Is it a protocol or type of product? You will often

hear the term RADIUS server. Is this something you can buy,

or can you go to your PC shop and say, "I'd like to buy a

RADIUS server please"?

The exact definition of a RADIUS server is a source of

confusion. There are companies that make and sell

authentication servers. You can make your own

authentication server by installing a commercial software

package on a conventional PC. However, there is no

standard definition for the features of such servers. Some

authentication servers are dedicated to specific

authentication methods. Others may have special

capabilities such as redundant or distributed operation. A

redundant server has standby units that take over

seamlessly if the primary server fails, and a distributed

server has many servers operating in different locations

while it keeps a common authentication database updated

and consistent between all sites.

RADIUS defines two things. First, it defines a set of

functionality that should be common across authentication

servers. Second, it defines a protocol that allows other

devices to access those capabilities. When we talk about a

RADIUS server, we are talking about that subpart of the

authentication server that supports the RADIUS capabilities;

and when we talk about RADIUS, we are generally referring

to the protocol used to talk to the server.

RADIUS is specified by the IETF and is designed for use with

TCP/IP type networks; it assumes that devices use an IP

network to talk to a RADIUS server. As with many aspects of

the Internet, the capabilities and needs of systems are

continuously evolving, and RADIUS has been stretched and

bent by various additions over the years. Therefore, when

you buy an authentication server that includes RADIUS

capability, you need to ensure that it supports any new bells

and whistles that you might need. For example, EAP over

RADIUS (RFC 2869) is needed for IEEE 802.11i RSN security,

but it was not included in the original RADIUS specification

(RFC 2865). RADIUS allows the definition of vendor-specific

attributes for special features that the server might provide.

One such special feature, Microsoft's MS-CHAPv1/v2

authentication method, is used widely and has almost

become a standard requirement.

The first RADIUS RFC (specification) was RFC2058, issued in

1997, although this was superceded almost immediately by

RFC2138. In 2000 RFC2138 was further updated and

replaced by RFC2865. As noted at the start of the chapter,

one motivation behind RADIUS was the support of dial-in

modem pools. An ISP might want to provide dial-up access

over a substantial area or even nationwide. Customers don't

want to pay long-distance phone call charges, so the ISP has

to set up a modem pool in each local phone area so users

can connect cheaply (or for free). At each modem pool site

is a dial-in server that answers the calls, authenticates that

the user is a valid customer, and then runs the PPP to allow

connection to the Internet. The problem is that each modem

pool server needs to know all possible valid users in order to

perform the authentication step. The motivation for RADIUS

is to have a central authentication server that knows all the

customers and allows the modem-pool servers to forward

the authentication information to the central site for

checking. In RADIUS terms, the modem pool server is the

NAS (network access server) and the authentication server

(AS) is the RADIUS server.

The analogy with a Wi-Fi LAN is clear. In our case the access

point is like the NAS. There may be many of them dotted

about the place, and we don't want each one to have to

know the authentication database. We can use the RADIUS

server, as was intended, to provide centralization of the

authentication decisions. If you want to read the

specifications, the ones that are relevant to WPA/RSN are:

RFC2865: Remote Authentication Dial-In User Service

(RADIUS)

RFC 2866: RADIUS Accounting

RFC 2867: RADIUS Accounting for Tunneling

RFC 2868: RADIUS Authentication for Tunneling

RFC2869: RADIUS Extensions

RFC 3162: RADIUS over IP6

RFC 2548: Microsoft Vendor-Specific RADIUS Attributes

RFC2869 is relevant because it contains information on how

to use EAP over RADIUS. Note also that at the time of this

writing, there is a draft RFC potentially updating RFC2869

This draft is called Draft-aboba-radius-rfc2869bis-10:

RADIUS Support for Extensible Authentication Protocol

(EAP). This draft update recognizes that EAP is now also

used in IEEE 802.1X applications in addition to PPP dial-up

modems. The original RFC gives examples based on PPP,

but this has been generalized in the update.

RADIUS Mechanics

This section reviews how RADIUS works at the protocol level.

The basic message set for RADIUS is deceptively simple.

Most of the complexity lies with messages called attributes.

Core Messages

The core protocol of RADIUS is very simple. There are just

four relevant messages:

Access-Request (NAS AS)

Access-Challenge (NAS AS)

Access-Accept (NAS AS)

Access-Reject (NAS AS)

In the WPA/RSN case, the access point is the equivalent of

the NAS and AS is the RADIUS authentication server.

These four messages reflect the fact that PPP, the dial-in

modem protocol, has two options for authentication: PAP

and CHAP. PAP is a simple user name/password approach.

CHAP requires that the server send random data called a

challenge, which the dial-in system must encrypt and

return for checking. Let's consider how this works with dial-

in.

First we'll tackle the PAP case, as shown in Figure 8.11: The

user dials in and the NAS answers and indicates that it is

using PAP authentication. The user's system then responds

by sending the user name and password for the account.

The NAS now sends an Access-Request message to the

RADIUS server containing the user name and password

information.[9] The RADIUS server responds with either

Access-Accept or Access-Reject and the NAS acts

accordingly. This is a very simple approach and, of course, it

is subject to a wide range of attacks. The worst part is that

the password is sent unencrypted over the phone link so

anyone monitoring the link can copy it. It is about as secure

as one of those little padlocks that come with cheap

suitcases�just pretend security, really.[10]

[9]
 Actually, it sends an encrypted version using the "hiding" algorithm in

RFC2865.

[10]
 In defense of PAP, the threat model for PPP assumed that the telco

wire was secure. This is generally a pretty good supposition, in which

case there is nothing so bad about passwords in the clear.

Figure 8.11. PAP Operation

CHAP is a little better, and makes an attempt at secure

authentication, as shown in Figure 8.12. Rather than sending

the password unencrypted across the phone link, the user

sends only its user name to the NAS. The NAS now needs to

respond with a challenge. To get the challenge data, the

NAS could send the user name to the server using an

Access-Request, whereupon the server would send the

challenge data using Access-Challenge. However, in most

implementations the NAS avoids disturbing the server and

generates the challenge by itself, as shown in Figure 8.12.

The challenge is passed back to the dial-in user's system,

which is required to encrypt the challenge with the

password and send it back. Finally the NAS is able to send

the challenge, response, and identity to the AS, indicating

that it is using CHAP.

Figure 8.12. CHAP Operation

This approach means that the password is not sent

unencrypted; it also provides some liveness because the

challenge changes on each access attempt. However, it is

still subject to dictionary attack because both the

unencrypted and encrypted versions of the challenge are

accessible to an attacker.

Partly because of the dictionary attack weakness, Microsoft

implemented a modified version of CHAP called MS-CHAP

that is now used widely in corporate dial-up pools. Microsoft

"standardized" their attribute definitions through RFC2548,

Microsoft Vendor-Specific RADIUS Attributes.

RADIUS was specifically designed with two PPP

authentication scenarios in mind: simple password request

PAP and challenge response CHAP. In WPA/RSN, we need to

use RADIUS in conjunction with a security protocol that is

state of the art�far more complex (and secure) than the

simple PAP and CHAP methods. To do this, we need to

change the purpose of some of the messages in RADIUS. For

example, to support EAP we will use the access-challenge

method, not as a challenge, but as a way to send EAP

requests and responses. The good news is that RADIUS is

flexible enough to accommodate these changes. One of the

reasons it is flexible is because of its use of attributes.

Core Message Format and Attributes

Although essentially only four messages are used for

authentication via RADIUS, the meaning of the messages

can be changed extensively through different message

attributes. Figures 8.11 and 8.12 show how the Access-

Request message can mean three different things at

different times. The attributes the message carries are

different in each case. The main body of the RADIUS

message is composed of a series of attributes; each is a

self-contained package of information that (hopefully) has

meaning to both communicating parties.

Every RADIUS message has the same basic format, as

shown in Figure 8.13. We will work through each field to

explain its use and meaning.

Figure 8.13. Basic Format of RADIUS

Message

The Code byte indicates the type of message:

Access-Request: 1

Access-Accept: 2

Access-Reject: 3

Access-Challenge: 11

The Identifier is an arbitrary number used to match up

requests and replies, and the Length word indicates the

total number of bytes in the message. The Authenticator is

much more interesting because is has a bearing on security.

The Authenticator is 16 bytes (128 bits) long and its use

depends on the type of message:

In the Access-Request message, the authenticator contains

a 16-byte nonce value. A nonce is a number whose value is

never used twice in two different requests. In RADIUS, the

nonce is used for two purposes. First, if the Access-Request

message is sending a password value in an attribute, the

password value is encrypted using a combination of a secret

key and this nonce. Second, reply messages use the nonce

value in deriving an integrity check value, as described in

the next paragraph.

One of three messages�Access-Accept, Access-Reject, and

Access-Challenge�is sent in response to an Access-Request

message. It is important to check that the reply came from

the legitimate RADIUS server and has not been modified in

transit. To accomplish this, an integrity check value (16

bytes) is computed and inserted into the Authenticator field

of the reply.

The NAS and the RADIUS server share a secret key between

them. To create the check value, the RADIUS server

combines the entire reply message with the secret key.

Before the computation, it inserts the nonce from the

request message into the Authenticator position of the reply

message and when the integrity check value has been

computed, it overwrites the nonce to form a new

Authenticator value. It is not practical to forge a reply that

will match the request message without knowing the secret

key and the use of the nonce reduces[11] the opportunity to

replay an old message.

[11]
 We say "reduces" rather than "eliminates" because the creation of

the nonce is implementation dependent and cannot be guaranteed to be

unique in the true meaning of the word "nonce."

Attributes

The useful information carried in RADIUS messages is

contained within attributes. Each message can carry one or

more attributes and each is a self-contained package of

information. It will come as no surprise that the ability to

extend RADIUS depends on the ability to define and support

new attributes. For a RADIUS server to be useful to you, it

must support the attributes you need in your application

(and the services accessed through the attributes). This is

where an industry definition like WPA is useful because you

can simply ask the vendor if the server conforms to the

requirements of WPA. Because WPA has been designed

around some common existing attributes (albeit proprietary

extensions), this should not be a problem in practice,

providing your RADIUS server has the required support.

Each attribute has the same format:

A 1-byte Type field to identify the attribute

A 1-byte Length field that indicates the number of bytes

in the whole attribute

Attribute specific data (if any)

Table 8.1. Examples of RADIUS

Attributes

Attribute

Type

Value

Name Description

Attribute

Type

Value

Name Description

1User-

Name

The identification name or user name of

the user.

2User-

Password

Contains the login password. The

password data is encrypted using a

shared secret and the nonce value from

the Authenticator field of the Access-

Request.

3CHAP-

Password

During CHAP, the user encrypts the

challenge and returns a value. The

value is forwarded from the NAS to the

RADIUS server in this attribute.

4NAS-IP-

Address

The IP address of the NAS to which the

RADIUS server should respond.

18Reply

Message

This sends text that can be displayed to

the user to indicate some event or

needed action.

Attribute

Type

Value

Name Description

26Vendor-

Specific

This attribute allows vendors to

implement and communicate special

features relevant only to their

equipment. Interestingly, if they choose

to make their vendor-specific attributes

public, other vendors can support the

features, forming a sort of nested

standards process. Microsoft has done

this for MS-CHAP.

There are many possible attributes. Some of the more

common ones are listed in Table 8.1.

EAP over RADIUS

Because EAP was designed to extend authentication via

dial-in modems, and given that so many modem pools use

RADIUS, a method was needed to carry EAP over RADIUS.

Extensions to RADIUS that accomplish this are described in

RFC2869. These extensions are relevant to Wi-Fi LAN

because WPA and RSN also use EAP. Several RADIUS

extensions are defined in RFC2869. RFC2869 also has some

updated procedures for sending accounting information, and

it describes how to support Apple Computer's ARAP for dial-

in support of Apple machines. We focus only on the section

dealing with EAP over RADIUS.

In the early RADIUS standard, only two messages were

available for sending authentication information between

parties: Access-Request to send data from the NAS to the

RADIUS server, and Access-Challenge to send data from the

RADIUS server to the NAS. As the name suggests, Access-

Challenge has a particular purpose similar to the challenge

used in CHAP. However, RFC2869 uses this message in a

more general way to pass information back from the RADIUS

server. Thus EAP messages are sent to the authentication

messages inside an Access-Request message and responses

are returned inside an Access-Challenge message.

The EAP message itself is sent inside one or more special

attributes that have a type value of 79. All the usual EAP

messages can be sent. There are a few rules to help existing

RADIUS implementations map the requests to the existing

conventions. For example, the identity of the dial-in user is

usually sent in an EAP-Response/Identity message. This

message is forwarded to the RADIUS server in an EAP

attribute, but the identity information should also be copied

into a User-Name attribute (type 1) and included so that

RADIUS servers, including older versions, can still

understand and maybe forward the message to the right

place.

Recall that EAPOL includes a message called EAPOL-Start

designed to kick the authenticator into action when a new

device arrives and wants to get connected. RFC2869 defines

a similar message called EAP-Start, which is an EAP attribute

with no data. The attribute is just two bytes�a type field of

79 indicating the EAP-Message attribute and a length byte

of value 2. This can be used by the NAS to get the RADIUS

server started, as shown in Figure 8.14.

Figure 8.14. Authentication Exchange

Using EAP over RADIUS

In Figure 8.14 we have shown the access point in place of

the dial-up NAS, although the principles are just the same.

The access point also contains an IEEE 802.1X

authenticator, which talks EAP to the new client

(supplicant). EAP messages that the IEEE 802.1X

authenticator wants to pass back to the authentication

server are packaged in RADIUS and sent to the RADIUS

server. Let's step through the sequence of events.

First the new device sends an EAPOL-Start to the access

point authenticator. If the access point knows that the

RADIUS server supports EAP, it can go ahead and issue the

EAP-Request/Identity message to the client device and send

the response to the server directly. If, however, it is unsure

about the server's capability, it can ask the RADIUS server

to initiate the EAP exchange by sending the RADIUS server

an EAP-Start message in an Access-Request message. If the

server doesn't support EAP, it replays with a reject message

(this is not a good idea for every exchange because the

RADIUS server could be deluged with messages). If the

server is EAP enabled, it sends the EAP-Request/Identity

message in a RADIUS Access-Challenge message. Figure

8.14 provides an example in which the authentication

method is TLS. At the end of the exchange, an EAP-Success

or EAP-Fail signifies the result.

Use of RADIUS in WPA and RSN

As shown in Figure 8.14, the way RADIUS and EAP over

RADIUS work fits very well with Wi-Fi WPA/RSN architecture.

However, there is one important difference between the Wi-

Fi and the dial-up case: For dial-up, the concern is only initial

authentication, whereas WPA/RSN is concerned with

establishing a lasting security context. In the dial-up case, it

is only necessary to determine whether the user should be

admitted to the system. Because of the nature of phone

lines, an attacker is unlikely to hijack a dial-in modem once

it has connected (although such an approach is theoretically

possible). Therefore, once authentication is complete, there

is a tendency for the NAS to sit back and assume a good

guy is connected. However, as we have seen, with Wi-Fi LAN

it is trivially easy to hijack an established connection just by

stealing a legitimate MAC address.

Protection against session hijacking is provided by per-

packet authentication and integrity protection. To provide

this protection, the authentication server must pass a secret

master key down to the access point. This process of

generating and passing the keys is covered in great detail in

Chapter 10. Earlier RADIUS servers based on RFC2865�2869

did not provide the ability to send keys from the

authentication server to the NAS. The RFC assumes that the

password is sent the other way for validation. However, one

vendor, Microsoft, has solved this problem for another

security protocol. Microsoft helped create an RFC covering

their proprietary extensions to RADIUS (RFC2548: Microsoft

Vendor-Specific RADIUS Attributes). These extensions

contain an attribute called MS-MPPE-Recv-Key, which is

specifically intended to deliver key information to the NAS.

In fact the description in the RFC says:

The MS-MPPE-Recv-Key Attribute contains a session

key for use by the Microsoft Point-to-Point Encryption

Protocol (MPPE). As the name implies, this key is

intended for encrypting packets received by the NAS

from the remote host. This attribute is only included in

Access-Accept packets.

In the IEEE 802.11i context, "MPPE" becomes "WPA" or

"RSN," "NAS" becomes "access point," and "remote host"

becomes "mobile device." At Microsoft's suggestion, this

attribute was adopted into WPA as the recommended way to

pass the master key information from the RADIUS server to

the access point. It almost goes without saying that this

attribute supports (and requires) encryption of the key

material prior to transmission and therefore provides a more

secure key delivery mechanism. Whether this attribute will

make it into 802.11i is another story. The National Institute

of Standards and Technology (NIST) has requested that it be

deprecated in favor of a standard attribute using a key wrap

algorithm.

Now we have all the pieces for using WPA/RSN in

conjunction with RADIUS. The requirements are that the

access point should support RADIUS, including the

extensions for EAP and at least the Microsoft key delivery

attribute. Also, the RADIUS server must not only support

these protocols but must also understand that it is required

to send the pairwise master key (PMK) to the access point

(see Chapter 10). It is not mandatory under RSN to use

RADIUS, although it is under WPA. Therefore, it is likely that

this approach will become popular and that the RADIUS

server vendors will ensure that their software provides

support.

clbr://internal.invalid/book/0321136209_24031533.html

Summary

This chapter begins with a basic definition of access control.

On the surface, the process of establishing the identity of

the caller, checking for authorization, and opening or closing

the gate is extremely simple. So simple, in fact, that the

qualification requirements for a nightclub's doorman tend to

be more concerned with physical mass than cranial capacity.

We have seen how the three-party model of caller, security

guard, and authorizer has been adopted first for dial-up

modem authentication, second for LAN access

authentication using IEEE 802.1X, and finally for wireless

LAN authorization using IEEE 802.11 and IEEE 802.1X.

This chapter also reviewed how the messages between the

three controlling parties are carefully defined using the

protocols EAP and RADIUS. We observed that wireless LAN

places an additional burden on the process because it is so

vulnerable to session hijack. In the case of WPA and RSN, it

is necessary to establish a set of secret keys between the

access point and the mobile device to protect against hijack.

It this way, the authorization obtained during the access

control procedure becomes like an access pass that can be

used over and over with each packet of data sent.

The establishment of the secret session keys and their

binding to the access control procedure has been one of the

challenges of developing new security protocols (see

Chapter 10). In Chapter 9, we look at the upper-level

authentication protocols that ensure beyond doubt that the

entities that you intend to authorize really are who they say

they are.

Chapter 9. Upper-Layer

Authentication

This chapter reviews several of the major authentication

methods. We cover in some detail the way that Transport

Layer Security and Kerberos V5 work and how they can be

applied to Wi-Fi network security. We also look at some

newer ideas, such as ways to link together Wi-Fi LAN user

authentication with cellular phone authentication.

clbr://internal.invalid/book/0321136209_24031533.html

Introduction

Chapter 7 defines three major layers of security: wireless

LAN layer, the access control layer, and the authentication

layer. This chapter looks at the authentication layer and,

more specifically, at the protocols used to implement

authentication. IEEE 802.11 lies in the wireless LAN layer,

which is considered the lowest layer, and IEEE 802.1X lies in

the access control layer. The authentication methods use

higher-layer protocols and the term "upper-layer

authentication" reflects the fact that the methods do not

depend on specific LAN technology. A range of different

methods can be used for authentication in RSN; some of the

major ones are described here.

We look first at Transport Layer Security (TLS), the default

method for WPA that can also be used with RSN. Later in the

chapter we look at Kerberos V5 and some of the new

methods being invented, such as Protected EAP (PEAP) and

the use of cellular phone authentication for Wi-Fi LAN

devices (GSM-SIM). We also examine the inner workings of

the authentication process and see how the messages are

mostly exchanged between the supplicant and the server,

with the access point (authenticator) playing a sort of

observant go between in the process.

Who Decides Which Authentication

Method to Use?

Given the number of authentication methods that could be

used with RSN, the question arises, which one is correct?

There is no simple answer. If you are starting from scratch to

implement security, you should choose the method that is

most widely supported in the available products. Today a

leading candidate is TLS. However, if you have an existing

system such as Kerberos V5 in operation, perhaps used with

your wired network, it makes sense to try to apply that

existing system to RSN. RSN is intended to provide this

flexibility. In the interests of interoperability, the Wi-Fi

Alliance has mandated that all WPA products should, at

least, support TLS.

The Wi-Fi Alliance was free to choose which upper-layer

authentication methods should be supported. However, the

IEEE 802 working group is more restricted in specifying such

things because, by virtue of being "upper-layer," the

authentication method falls outside the scope of LAN

protocol standards.

As such, IEEE 802.11 cannot and does not define the upper-

layer authentication method, and instead leaves it to the

implementers of the systems to decide. This was an issue of

much rancor during the early days of the IEEE 802.11i

standards work. Some people pointed out that it would be

very hard to guarantee interoperability between different

vendors' systems unless all the details of the authentication

methods were specified. However, other people pointed out

that, because of the range of different applications for Wi-Fi

LAN, a single authentication method could not be suitable in

all cases. This problem has been reduced by WPA, which

does specify the method (TLS). It seems very likely that the

method that is deployed for WPA will also be the most

popular one when the transition to IEEE 802.11i RSN occurs.

This chapter presents solutions for several choices,

including TLS, Kerberos V5, Protected EAP (PEAP), and the

use of cellular phone authentication for wireless LAN

devices (GSM-SIM). While the use of TLS is well defined

through WPA, different vendors may implement other

methods differently and interoperability cannot always be

guaranteed. For example, the RFCs for Kerberos as defined

by the IETF do not specify how to implement over IEEE

802.1X, let alone RSN. If you are not using WPA with TLS,

you need to check carefully whether a vendor supports the

authentication method you want, and whether they do so in

the same way as any other vendor whose products you have

purchased.

clbr://internal.invalid/book/0321136209_24031533.html

Use of Keys in Upper-Layer

Authentication

Authentication is part of a process of creating a security

context within which communications can take place.

Because the process of full authentication is costly and time

consuming, it is common to do full authentication

occasionally and provide some token that can be used as

proof of authentication in subsequent transactions. In the

case of RSN, and indeed most security protocols, the proof

is provided by creating secret key values as part of the

authentication process.

The upper-layer authentication method is responsible for

proving beyond a doubt that each party possesses some

secret knowledge connected to their identity, and for

providing the tokens or keys needed to support a security

context. It has to do this in a way that does not leak any

useful information about the shared secrets.

Before looking in detail at individual methods, let's look at

the two main classes of solution: symmetric keys and

asymmetric keys, sometimes known as secret and public

keys, respectively.

Symmetric Keys

The concept of the symmetric secret key is simple. Each

party has a copy of some secret information. Authentication

occurs when each party proves to the other that they know

the secret. This is like the child's method, "You can't come in

unless you tell me the password." When each party has

proved itself, they can both create matching session keys

for use in the security context. Such keys are derived from

the secret master key but may also incorporate other

information, such as the time and arbitrary numbers created

for the session (called nonces). The purpose of these extra

items is to ensure that the session keys are usable only in

the current session and cannot be reused later.

The main limitation with the secret key approach is that you

have to get the secret to both parties in the first place.

Sometimes that is not a problem. To communicate with your

domestic partner, for example, you could agree on your

secret Wi-Fi LAN key during a private moment when no one

else is listening. This scenario, or at least the key exchange

part, also works in corporate environments in which there is

a secure place for the two parties, such as the employee

and the IT manager, to meet. However, the approach

doesn't scale at all for widespread use. In a huge

corporation it is hard to distribute such keys and, in the case

of Internet commerce, it is impossible. When you want to

make a secure exchange with another party in another

country whom you have never met, and never will, there is

no practical way to safely agree on secret keys by informal

communication.

Asymmetric Keys

To deal with the situation in which you can't easily distribute

the secret key, the idea of asymmetric key encryption was

invented, leading to the use of public keys. Public key

encryption is supported by a set of components often

referred to as PKI (public key infrastructure).

First, let's look at the encryption part of public key use. The

very words "public key" sound like a contradiction in terms.

If the key is public, what use can it be for privacy? However,

this name is misleading because a person who uses public

key encryption actually has two keys. One key is made

public and the other must be kept private. Furthermore,

these are not any two keys; the public and the private

copies are a mathematically connected pair. The way public

key encryption works is fascinating and almost

counterintuitive.

As an analogy, suppose a wizard wants to send you a

message. He writes the message on a piece of paper and

puts it in a magic box. Now he closes the box and recites

your name three times. The box is immediately sealed and

cannot now be opened by anyone except you; not even the

wizard can open it. When the box arrives, you recite a secret

word three times and the box opens. The wizard knows your

name and can seal the box with it; that is your public key.

But only you know the secret word to open the box again;

that is your private key.

How does this work with encryption? Many encryption

systems are symmetric in that the same key is used to

encrypt and then decrypt the message. However, public key

systems use an asymmetrical method in which different

keys are used for encryption and decryption. You encrypt

with key E and decrypt with key D. Furthermore, you can't

decrypt with key E, and knowing E doesn't enable you to

compute D. In public key encryption, E is the spell to seal

the box, or the public key. D is the spell to open the box, or

the private key.

When you want to use public key encryption through

programs such as PGP (Pretty Good Privacy), you first use a

key-generating utility. You run this utility and usually enter

some personal information to help ensure your keys are

unique to you. The utility then generates two key values, a

public key and a private key. The public key can be given

to anyone. And the key can be used to encrypt a message

using your public key and send it to you. Only you can

decrypt the message because only you know the private

key. It's like magic!

A subtle and important variant of this method lets you sign

messages. Signing a message is like signing a document: It

is intended to prove that the message came from a

particular person. Message signing works in the reverse way

from encryption. You use a private key to create a signature

and a public key to check the signature. In a simple case,

you take your name and encrypt it with your private key.

The result is added to the end of your message. Anyone who

receives the message (friend or foe) can decrypt the

signature using your public key. If the signature successfully

decrypts and reveals your name, it proves that you must

have sent the message because no one else knows the

secret key that was used to encrypt it. A forger could not

have encrypted your name correctly because she wouldn't

know your secret key. So this proves that you approved the

message in the same way that signing a letter

does�actually, much stronger.

In reality, the above scheme doesn't prevent someone from

creating a new bogus message and copying your encrypted

signature from a valid message (like photocopying your

signature on a letter). To protect against this, you must do

more than include your name in the signature; you must

include other information as well. In practice, the entire

contents of the message are usually included in the

signature computation to protect against tampering.

Because verifying that a message really came from the

sender is very important, systems like PGP do both

encryption and message signing. Remember that public key

encryption by itself provides privacy but does not

authenticate the sender. Suppose you receive an encrypted

message saying, "Sally, come quickly, I need your help.

Meet me at the bar downtown, Fred." How do you know the

message is real (ignoring the fact that your name probably

isn't Sally)? The message is encrypted with your public key,

so anyone could have forged it. A burglar may want you to

leave your house, or worse. But if Fred signed the message

with his private key, you can verify that it was really him

who sent it, right?

Well, maybe … it depends. Now we are back to our original

key distribution problem. How do you know that Fred's

public key really belongs to Fred? In this case, it's probably

because you met Fred face to face and he told you the

public key. Or more likely, you have had various exchanges

of e-mail with Fred using his key and you trust that it really

is him. But suppose you just started using public key

yesterday and you received an e-mail (unencrypted) from

Fred two days ago that said, "Hi. This PGP stuff is cool�let's

use it. My public key is: FREDSKEY." Can you be sure that

Fred sent this message and not some (computer-literate)

burglar? This is reminiscent of the sort of problem that we

had with the distribution of symmetric secret keys.

Certificates and Certification

Authorities

What is needed is a way to certify that public keys are

legitimate. This issue of certifying that a public key really

belongs to the expected person becomes even more

important when you use the method for Internet

transactions with complete strangers or corporations. Think

about e-commerce. You really want to be sure that the Web

site you are giving your credit card details to is who they

say they are. When your order doesn't show up, and you call

to inquire, you don't want to hear, "Sorry, we have no record

of that transaction" because someone was impersonating

the vendor. The solution comes by using a trusted third

party: a certificate authority.

Essentially, a certificate authority is a trusted

independent organization that certifies a set of public and

private keys for use with PKI transactions. The authority

handles this task by generating certificates in a standard

format. A certificate is just a bunch of data. It has no

physical form. However, when another party sends you a

certificate, it contains enough information for you to

validate who they are and establish a secure context. With

most Web purchases, this is a one-way context that protects

the consumer. The vendor gets protection through your

credit card details!

Suppose you set up a Web company selling flags. You get a

Web domain name such as www.myflagsarebest.com. You

want this address to be certified to you so, when people

come to your site and go to the secure purchase area, they

are sure that no one is hijacking the connection. You can go

to a certificate authority and purchase a certificate that

binds your company and its Web site into your public and

private key pair.

When someone visits your site and goes to the secure area,

you send her your certificate. The browser on her PC looks

at the certificate and evaluates who issued it. Assuming you

went to a well-known certificate authority, the browser will

likely accept the certificate as trusted (you can control this

in the advanced options of the browser). If not, it notifies the

user that an untrusted certificate has arrived and prompts

her to decide whether to proceed.[1] The certificate contains

the public key for your site, so now the browser can start

encrypting all the messages. Your Web server is able to

decrypt the messages with your private key, and so the

transaction is protected. The customer can feel confident

that the credit card details and order information are going

to the right place and not being snooped along the way.

[1]
 Unfortunately at this point 99% of users don't understand the

message and click "proceed" anyway.

How does the browser know that the certificate was really

issued by the certificate authority and not just made up by a

crook? Because the entire certificate is signed by the

certificate authority using its private key, and therefore it

can be proved authentic because its validity can be tested

by checking the signature with the authority's public key,

which is also in the certificate. Neat, huh? Note that the

browser may, in any case, choose to send a message to the

certificate authority to check for revocation. If someone had

compromised your Web site or somehow found out your

secret key, you might want to disable the certificate. This

would prevent someone else issuing copies of your

certificate in the event he got your secret key. To disable the

certificate, you notify the certificate authority, which marks

it as revoked and informs anyone who asks that this is the

case. It's the same idea as canceling a stolen credit card.

This example has been simplified for the purpose of

illustrating how certificates work. Full details of Internet

transactions and security are outside the scope of this book.

However, the example does outline the general approach

taken by SSL (Secure Socket Layer) used by all the main

browsers (and invented by Netscape). SSL is the basis of

TLS, which is covered in more detail later in this chapter.

clbr://internal.invalid/book/0321136209_24031533.html

A Detailed Look at Upper-Level

Authentication Methods

We have looked at an overview of two approaches:

symmetric (secret) key and asymmetric (public) key. In

practice the two methods are often combined. In particular,

it is common for systems to use PKI to establish a security

context and then exchange key values and use symmetric

keys for encryption. The reason for this is that asymmetric

key encryption takes more processing power than

symmetric key encryption does.

However, the distinction is useful because the two major

upper-level authentication methods we cover fall into both

camps. Kerberos is more often based on the secret key

approach, while TLS is based on a certificate approach. The

following sections look at each of these methods in detail

and show how they can be incorporated into the RSN model.

We also consider three other methods, each of interest for a

different reason:

Cisco LEAP is important because it has already been

deployed using WEP and was the first adopted method

to use IEEE 802.1X and EAP.

Protected EAP (PEAP) is a new approach that allows

complete privacy in the authentication. Even the

identity of the supplicant can be hidden from outside

observers.

EAP-SIM is an approach that allows cellular phone type

devices to incorporate IEEE 802.11 interfaces and

authenticate using IEEE 802.1X.

Transport Layer Security (TLS)

In the early years of the World Wide Web, Netscape

dominated the design of browsers. In fact, most of the

innovations in the area during those years came from

Netscape. One of those innovations related to security. The

early use of the Web was mostly technical. However, the

potential for Web trading soon became apparent. A major

obstacle to trading was the problem of securing the

transaction information. Netscape invented a security

approach that came to be known as SSL to help address this

problem.

SSL was based on the use of digital certificates. Although it

allows for certificates in both the server and the client, the

most common model is that the server identifies itself with a

certificate and the client uses a password or some other

method such as credit card details. The use of a certificate

on the server has the tremendous advantage that

purchasers do not need to register with the site prior to

making purchases. Registration is a nuisance and it may be

necessary to distribute the password by a method separate

from the Internet. Sometimes password distribution is done

by post office mail. You would have to go to the Web site

and register. Then you would be mailed a letter containing

your password, which could be used to log in and make

purchases. But such delays and inconvenience put people

off shopping. By contrast, the use of certificates with SSL

offers a way to identify and validate Internet traders

immediately as well as providing a secure link so sensitive

information like credit card details can be sent. No prior

arrangement is necessary, enabling the all important

impulse purchase.

SSL was built into the Netscape browser and eventually

became a standard method for secure Web transactions. It

provides a way to authenticate one or both parties and then

to open a private communication channel with encryption

and integrity checking. However, although the specifications

for SSL were made available, it was still a proprietary

solution controlled by a single vendor. Vendors and

customers prefer technology that is built on international

standards rather than proprietary solutions. Therefore, a

decision was made to standardize SSL (or a related version)

within the IETF.

The result is TLS, which is described in IETF RFC-2246

released in 1999. TLS is the standardized version of SSL. In

fact the RFC clearly states this in its introduction:

This document and the TLS protocol itself are based on

the SSL 3.0 Protocol Specification as published by

Netscape.

However, as the RFC also points out, the differences are

such that the two do not interoperate directly. TLS is entirely

concerned with the transport protocol layer and builds on to

the TCP/IP layer. It does not concern itself with browsers,

operating systems, or sockets (originally a UNIX concept but

now extended to Microsoft Windows, Apple Macintosh, and

other systems).

Functions of TLS

TLS provides more services than we need for WPA/RSN

upper-layer authentication. Full TLS provides authentication,

encryption, and, in principle, data compression functions.[2]

WPA and RSN have their own built-in encryption methods

such as TKIP or AES�CCMP, and neither WPA nor RSN

specifies the use of data compression. However, the

authentication method of TLS is very suitable and fits well

into the EAP/IEEE 802.1X model.

[2]
 As far as we are aware, the compression functions have never been

used in practice.

We'll look at TLS overall first before focusing on the

WPA/RSN capabilities. TLS is divided into two layers: the

record protocol and the handshake protocol. The record

protocol is responsible for shifting data between the two

ends of the link using the parameters agreed via the

handshake protocol.

The layers are shown diagrammatically in Figure 9.1. You

can see how TLS relies on a reliable connection such as

TCP/IP to send messages backward and forward. Data

comes from the application to the TLS record protocol,

where it gets encrypted and compressed as appropriate

prior to being sent to the other end. Assuming the other end

is valid, the message is then decrypted and uncompressed

before delivery.

Figure 9.1. TLS Layers

Notice how the TLS handshake protocol also uses the record

protocol to send its messages during the handshake phase.

This seems counterintuitive because the handshake protocol

is used to negotiate the parameters of the record protocol

layer over which it is communicating. TLS is design to

handle this bootstrap process; in its initial state, the record

protocol just forwards data without any encryption or

compression. The record protocol layer operates according

to a group of settings or parameters called a connection

state. The connection state should be thought of as the

configuration settings for the layer. It includes things like

"which encryption algorithm is in use" and "what are the

encryption keys." The record protocol layer can store four

connection states: two connection states for each direction

of communication. Two of the states are current and two are

pending, as follows:

Current transmit connection state

Pending transmit connection state

Current receive connection state

Pending receive connection state

The difference between current and pending is quite simple.

Current refers to the settings that are in effect now. Pending

is a group of settings that are being prepared for use next.

When the change occurs, the pending state becomes the

current state and a new empty pending set is created, as

shown in Figure 9.2. When the connection is first initialized,

the current state is NULL: Everything just passes through.

There are no keys, no encryption method, and no

compression. During this time the handshake protocol can

operate and build up the security parameters in the pending

states. When everything is ready, the pending states

become the current states and the security goes into effect.

Figure 9.2. Changing Connection

State

TLS uses certificates for authentication (see the discussion

of certificates earlier in the chapter). There are a number of

different types of certificate, all working on similar

principles. TLS is flexible enough to deal with all the cases,

but it makes reading the TLS specification rather tedious.

Suffice it to say, a certificate is typically delivered by the

server for the client to verify. In rare applications, the server

may also request a certificate from the client. Client

certificates are typically used only when there is an in-house

certificate authority�for example, when a corporation issues

its own certificates for its employees.

Certificates are based on public key cryptography. It is a

clever technique, but it is expensive in processing

requirements. The nature of public key crypto methods

means that many more computations are needed to encode

and decode messages than for symmetric key operations.

As a result, TLS does not use public key encryption for bulk

data transfers of the record layer; instead, it uses symmetric

keys that are agreed upon between the parties during the

public key phase. The handshake protocol uses the

certificates to perform public key cryptography during the

authentication process. It also uses the public key

cryptography to exchange some session keys that can be

used by the record layer to encrypt data during the session.

This approach greatly reduces the workload and, as it

happens, fits in very nicely with the way in which WPA/RSN

is organized.

Handshake Exchange

A relationship is established between two parties in TLS by

using a handshake exchange. This involves a series of

messages sent between the parties in a specific order, as

summarized in Figure 9.3 and explained in the following

sections.

Figure 9.3. TLS Message Exchange

Summary

There are several options concerning which messages are

sent and what information they contain, but the order is

important and, before the end of the handshake, every

message is checked for validity. At the start of the

handshake, the two parties exchange hello messages,

rather like people actually. Remember that TLS is not

symmetrical, so one party must take the role of the server

and the other the client. Ideally, the client should send the

hello message first.

Client Hello (client server)

The client hello is more than just a courtesy message; it

contains a list of the ciphersuites and compression methods

that the client can support. A cipher suite is a combination

of cryptographic methods used together to perform security.

In TLS the ciphersuite defines the type of certificates, the

encryption method, and the integrity-checking method. The

TLS RFC defines some standard combinations, and the client

can indicate which ones it supports, in order of preference.

Importantly, the Client Hello also carries a random number

called ClientHello.random, which can be any value but

should be completely unpredictable to everyone (except the

client). This random number is used to generate liveness.

A Note on Liveness

When watching sports on TV, you will often hear

reference to a live broadcast. This means the

broadcast is happening in real time and is not a

recording made earlier. It is in this context that we

refer to liveness in security. You need to know that

the negotiation is live and that you are not dealing

with a recording of a previous exchange. Generating

and incorporating a different number with each

session makes it much harder to use recorded data

in an attack. A truly random number has the

disadvantage that there is a small probability that

the same value will occur twice. A number that is

guaranteed never to be used again is called a

nonce.

Server Hello (server client)

When the server receives the Client Hello message, it must

check that it is able to support one of the chosen

ciphersuites and compression methods; then it replies with

a Server Hello message. The Server Hello contains two more

important items. First, it contains another random number,

called ServerHello.random, which is different from the

client's random value. Second, it contains a session ID that

the client and server use to refer to the session from then

on. One of the features of TLS is that a security session,

once established, can be resumed multiple times by the

client indicating current session ID in the Client Hello

message. This is useful for browsers to quickly return to

pages that have already been visited. At this stage the

client and server have exchanged greetings with the result:

1. They have synchronized their states.

They have agreed on a session ID.

They have agreed on a ciphersuite.

They have exchanged two random numbers (nonces).

"Synchronizing their states" simply means that they both

have the same understanding of what is going on. It's no

good if one thinks the handshake is just starting and the

other thinks it's nearly finished. Also, during the handshake

both the client and the server must carefully keep copies of

all the messages they have sent or received. At the end of

the handshake, they will be required to prove that they have

these copies to help ensure that no one has altered or

inserted any messages.

Server Certificate (server client)

The next phase involves the certificate exchanges. If the

session is being resumed, this stage can be skipped. The

server sends its certificate to the client. Remember that

there are two important things in the certificate. First, it

contains the name and public key of the server. These can

be used to encrypt messages to the server and validate

signed messages from the server. Second, it is signed by a

certificate authority to prove that it is authentic. The client

validates the certificate using the certificate authority's

public key and then remembers the server's public key to

encrypt further messages to the server. Although a bogus

server could copy and send the valid certificate, it would not

subsequently be able to decrypt the correct pre-master

secret because it does not have the secret part of the

public/private key pair.

Client Certificate (client server)

The server may require the client to send a certificate. For

Web browsing applications, it is unusual for the client to

have a certificate�though this might change in the future as

credit card use becomes more integrated with Web security.

Already some services have emerged that allow members of

the public to register and obtain digital certificates, which

may then be used for access to subscription services.

However, the financial industry is reluctant to adopt new

technology too quickly, for very good reasons. The majority

of transactions are still done using the traditional (and

pitifully insecure) method of giving a credit card number and

expiry date, albeit over a secure communications channel.

For these types of transaction, the server sends a certificate

but the client does not.

If a corporation is using TLS for internal network security, it

might choose to give out certificates to its own employees.

In this case, the IT department becomes a certificate

authority and issues certificates for its own servers and all

the users. If this approach is taken, the server can be

configured to request a certificate from the user. The fact

that the client produces a certificate proves nothing, of

course, because it could easily have been copied from a

previous session. However, the client can subsequently

prove that it also has the certificate secret key by digitally

signing a message to the server. This is done in the

certificate verify stage that we explore later.

So far the client and server have exchanged hello

messages. The server has sent a certificate and may have

requested the client to do the same. At this point the server

sends a Server Hello Done message and waits for the

client to take the next step. If the server requested a

certificate, the first thing the client should do is send it over;

it will be checked later. Now comes the interesting part: The

client and server establish a mutual secret key for use in

further communications.

Client Key Exchange (client server)

The goal of this phase is to create a mutual secret key

between the client and the server, called the master secret.

This key binds together the random numbers that were

exchanged in the hello message with a secret value that is

created dynamically and known only by the two parties (the

client and the server). Note that the random numbers

(nonces) sent during the hello phase could be seen by

anybody monitoring the link; they are exchanged in the

clear and not encrypted. By contrast, the random value

created at this stage is known as the pre-master secret to

reflect the fact that it is secret and will be used to generate

the master key. The simplest way to generate the pre-

master key and get it securely to both the server and the

client is to take advantage of the server's certificate. The

client simply generates a random number (48 bytes),

encrypts it using the server's public key, and sends it to the

server using a client key exchange message. The server

decrypts it with its private key and, bingo, both sides have

the pre-master secret.

Client Certificate Verification

If the client sent a certificate, now is the time for it to prove

that it is the legal owner of that certificate. This is where

those copies of all the messages come in useful. The client

proves itself by hashing together all the messages up to this

point (see the sidebar "A Note on Hashing"), including both

the ones sent and the ones received. It then sends the result

to the server and signs the message with the secret key of

its certificate. The server receives the message and checks

the signature using the client's public key as delivered in the

client's certificate. If the signature checks out, the server

also computes the hash of messages and checks that the

result matches. If the signature or the hash check fails, the

server should assume that the client is bogus. If it checks

out, the server can be sure that the client knows the secret

key for the certificate.

The client and server are now in a position to compute the

master secret. The details of how this is done are rather

complicated, but the concept is simple. Both parties have

the following identical information:

Pre-master secret

Client random number (nonce)

Server random number (nonce)

They both now cryptographically combine these values by

hashing to produce a 48-byte (384-bit) master key. Because

they both have the same values and use the same

algorithm, they will, of course, both compute the same key.

The incorporation of the random numbers ensures liveness

and guarantees that no one can use a recording of a

previous exchange. The quality of the random number

generator on both sides needs to be high. Some so-called

random numbers generate a random distribution of

numbers, but in an entirely predictable way. For example,

the Rand() function available in many programming

languages always produces the same "random" sequence

after initialization. The random number used in security

must really be unpredictable even after reinitialization.

A Note on Hashing

Hashing is an operation used frequently in

cryptography. Its purpose is to combine two or more

numbers to produce a result in such a way that it is

extremely hard or impossible to reverse the process.

In other words, if A and B are hashed together to

produce the result C, then knowledge of C tells you

nothing about A or B.

Consider normal arithmetic. The basic adding rule is

a + b = c. If we know a and b, we can easily work

out c. However, if we know b and c, we can, as

easily, work out a (a = c � b). Hash algorithms do

not have this reversible property. So a hash b = c

may be easy to compute; but given b and c, it is

effectively impossible to work out a.

One application of hashing is to protect a master key

by generating a temporary session key. Suppose a =

128-bit master key and b = time of day, then you

could generate a new 128-bit key c by hashing

together a and b. Even if the attacker knows the

time of day and discovers the new key c, he cannot

derive the original master key. In this example the

new key is the same length as the original one.

Another use of hashes is to combine a large number

of bits into a small number. This is used to generate

messages' integrity checks. Suppose you hash a

1,000-byte message (8,000 bits) with a secret key to

produce a result, which is only 64 bits long. Given the

result, an attacker cannot compute the secret key or

the original message. However, there is only one

correct result that corresponds to the message. By

sending the result with the message, the receiver

can check that a message is intact and unaltered.

Even if a single bit of the 1,000-byte message was

altered, the resulting 64-bit hash result would be

totally different.

Change Connection State

The object of the handshake has been to authenticate and

create a new pending connection state ready to be

turned on when all the keys and other required information

have been obtained. Remember that there is a current state

and a pending state. After initialization, the current state is

"no encryption." The master key that has been created is

now used to initialize the pending state according to the

cipher suite in use. How this is done depends of the details

of the cipher suite. For example, the cipher might not need

all 384 bits of the master key or will want to derive different

keys for receive and transmit, which it can do by further

hashing the master key. This is done in WPA/RSN, for

example. Suffice it to say that once the master key is

established, both the client and the server are able to fully

set up the pending connection state and then switch it to

become the current state. When the switch is performed,

each side sends a change connection state message to

the other.

Finished

The handshake performs one more operation before

completing�confirming that the new cipher suite is

operating and that there was no tampering with any of the

handshake messages. Each side sends a finished message

for this purpose. Remember that the new cipher suite has

now been activated, so this message will be encrypted with

the new master key. The finished message contains a hash

value covering the new master secret and all the handshake

messages that have been exchanged from the hello

message up to (but not including) the finished message.

Assuming the message is received correctly, the new cipher

suite is operational. The receiving party can compute the

corresponding hash value from its own records and check

that the result matches. If it does, everything is valid and it

is safe to start passing data using the new master key.

If the TLS session was being resumed, the client and server

go straight from the hello message to the finished message,

computing a new master key from the new random numbers

(in the hello messages) and the old master secret. This

process avoids the expensive certificate operations but still

prevents bogus clients or servers because knowledge of the

pre-master secret is exclusively held by the original

authenticated client and server.

Relationship of TLS Handshake and

WPA/RSN

This TLS handshake process accomplishes three things:

It has authenticated the server (and optionally the

client).

It has generated a secret master key for the session.

It has initialized and put into effect a ciphersuite to

protect communications.

Now we need to consider how this method can be applied to

support WPA or IEEE 802.11i RSN networks. In WPA,

encryption and integrity protection is provided by WEP or

TKIP. RSN may support TKIP or AES�CCMP. These functions

operate only between an access point and a wireless device.

The TLS handshake described here is exclusively concerned

with two parties: the authentication server and the client.

There is no mention of the three-way model we have

adopted for IEEE 802.1X with a supplicant, authenticator,

and authentication server.

For WPA and RSN, all we need from TLS is the authentication

function and the master key generation function. WPA/RSN

deals with its own cipher suites. WPA/RSN takes the master

secret generated by TLS and then derives a set of keys for

use in encrypting the wireless link (see Chapter 10). In this

case, although the master key is generated, the TLS record

protocol connection state is not updated�that is, for

WPA/RSN we don't use the TLS record protocol for

encryption; we just hijack its handshake exchange to

generate a secure master key.

In this way, TLS does integrate well with the IEEE 802.1X

model and is specified to run over EAP. It is the default

mandatory mode for WPA.

TLS over EAP

Although the designers of TLS probably thought that it

would most often be used over a TCP/IP connection, they

defined it in a more general way. RFC2246 simply says:

At the lowest level, layered on top of some reliable

transport protocol (e.g., TCP), is the TLS Record

Protocol.

The key words are "layered on top of some reliable transport

protocol." This general definition left the door open to

implement parts of TLS directly over EAP�"parts" because

EAP does not deal with normal data transfer; it is specifically

concerned with the authentication phase. When we use TLS

in conjunction with WPA/RSN, we want it to run over EAP

because that allows us to tie it into the IEEE 802.1X.

RFC2716, PPP EAP TLS Authentication Protocol, defines how

to perform the TLS handshake over EAP. As the name

suggests, it was originally considered (like EAP itself) in the

context of dial-in access authentication using PPP. But we

can adapt it for use also with IEEE 802.1X and RSN.

EAP always starts and ends with a similar sequence. Usually,

an identity request/response message is exchanged. Then a

series of EAP requests and responses are sent that are

specific to the authentication method, as identified by a

Type field in each message. Finally an EAP-Success or EAP-

Failure message is sent to indicate the result (see Chapter 8

for more detail on these structures). RFC2716 defines all the

middle messages that we were somewhat vague about in

Chapter 8. The general format of the EAP-Request/Response

messages is shown in Figure 9.4.

Figure 9.4. Format of EAP Message

For TLS, the RFC defines the Type field for these EAP

requests and responses to be the value 13. Only clients and

servers that understand EAP-TLS will attempt to decode

these messages. RFC2716 also defines two new fields to go

after the Type field. These fields are Flags and Length, as

shown in Figure 9.5.

Figure 9.5. Format of EAP-TLS

Message

Why does length appear twice? The first Length field refers

to the length of this EAP frame. However, the second Length

field refers to the length of an EAP-TLS packet. EAP-TLS

packets can be quite long, exceeding the maximum size of

an EAP message. In such a case, the EAP-TLS packet is

fragmented�that is, broken into multiple pieces�and sent in

several exchanges. The second length value, in the TLS

field, refers to the overall TLS message and not the current

frame. Actually this second Length field is optional and is

not normally included if the EAP-TLS data fits into the

current frame.

The Flags field contains three bits:

Length included flag: Indicates whether the Length

field is present

More fragments flag: Set if more fragments are to

follow in subsequent exchanges

Start flag: Used to signal start of handshake

The sequence of exchanges that make up the EAP-TLS

handshake are outlined in Figure 9.6. We assume that the

server has become aware of the client through some

method such as EAP-Start. Study the diagram for a minute

before we work through it. Here is a commentary of the

steps:

1. {request} This is the start of the EAP exchange.

Server requests identity of client.

{response} Here the client sends an identity message. For

corporate use, this could identify the owner of the client

certificate that will be sent. If the client does not intend to

send a certificate, it will effectively be anonymous and could

therefore send any identity here, such as the string

"anonymous".

{request} The server sends an empty EAP-TLS request with

the flag bit start set. This is the only time the start bit is set.

{response} The client sends it Client Hello message

containing the same information as for normal TLS.

{request} The server sends two or three TLS messages in a

single request: The server hello, optionally the client

certificate request, and the server finished message.

{response} The client now replies with several TLS

messages in a single response:

Client certificate (if requested)

Pre-master secret in key exchange message

Client certificate verification information

Change cipher

Finished

Notice how the client goes ahead, creates the pre-master

secret, computes the master secret, and "puts the cipher

into effect," all in one go. However, note that the entire EAP

message is sent in the original ciphersuite, which is usually

open (that is, no encryption). The new ciphersuite is not put

into effect until after the end of the EAP messages.

{request} The server sends all its remaining messages in a

single EAP request.

{response} The client has nothing more to say but must

respond so it sends an empty response message.

Finally to complete the EAP handshake, the server sends an

EAP-Success, assuming everything has gone well. If any of

the steps failed, the server would have previously sent an

EAP-Fail at the point the problem was detected.

Figure 9.6. EAP-TLS Handshake

The use of EAP provides the key for implementing TLS with

WPA or RSN. For one thing, the use of EAP means that no IP

address is needed and the wireless device can exchange

EAP messages to the access point and perform the entire

handshake prior to being granted access to the wired

network. The access point does not need to understand TLS

to complete the transaction, providing it has an

authentication server on the network to which to send the

EAP messages. And the access point can watch out for the

EAP-Success message to learn when it should connect the

IEEE 802.1X switch and allow access to the network.

However, there are still two unanswered questions:

How does the access point send EAP messages to the

authentication server?

How does the access point get a copy of the master key

for use with TKIP or AES�CCMP encryption?

The answer to these questions lies in the use of RADIUS (see

Chapter 8). RADIUS is a protocol that allows a device to

communicate with an authentication server. It has been

much extended over the years although the basic principles

are unchanged. One of the key enhancements in relation to

WPA/RSN was the inclusion of messages that allow the

forwarding of EAP requests and responses directly to the

server. The issue of how to get the master key back to the

access point is not one that is currently covered by the

RADIUS RFCs. Also it is not covered directly by the IEEE

802.11 standard because this is out of scope for the

standard. However, WPA specifies the use of a specific

Microsoft-defined attribute to ensure interoperability

between vendors. This turns out to be the same attribute

that is already used in a similar way to send key information

to a dial-up modem pool.

Summary of TLS

This section describes how TLS works. TLS is not specifically

designed for use with wireless networks. It is based on SSL,

a security method used at the application level. However,

the invention of a method to support TLS over EAP,

combined with changes to the RADIUS protocol to support

EAP over RADIUS, has opened a path whereby WPA and RSN

can build on the substantial existing support for the

protocol. SSL is very widely deployed in Web browsers and

servers and it is highly proven. Certificate authorities are

well established and provide the infrastructure needed for

SSL operation. Now the adoption of TLS for WPA will take

advantage of SSL's success.

The next section looks at another popular authentication

approach�Kerberos V5. Although this has not been specified

for WPA, it is still a viable option for RSN and may be more

appropriate for customers that already have extensive

Kerberos installations.

Kerberos

Kerberos can be used to provide security services for an IP

network and has been around for a relatively long time. The

early work was done at Massachusetts Institute of

Technology during the 1980s and subsequently it went

through various stages of standardization in the IETF

(Neuman and Ts'o, 1994). Version 5, the current major

version, was issued in RFC1510 in 1993. This RFC has stood

up well to practical implementation and has needed little

modification although there are several more recent

extensions. By the way, no introduction to Kerberos seems

to be complete without mentioning that the name

"Kerberos" comes from the three-headed dog that guarded

the gates to Hades in Greek mythology, although which

particular hell is guarded in the case of network security is

not obvious to us.

Using Tickets

The really good idea in Kerberos is that credentials can be

embedded into a special document called a ticket. In much

the same way that you can go to Orlando, Florida, and buy a

week-long multipark ticket to mouse-related theme parks, a

Kerberos ticket provides a network user access to a variety

of network services for a limited period of time.[3]

[3]
 Kerberos tickets are service specific, so in practice you would need a

set rather than a single ticket.

Let's consider a network of separately administered servers

in a large campus using password-based authentication. To

access several services, you would need to log in separately

to each service, such as the e-mail server, file servers, the

database server, printers, and so on. Each time you logged

in, your session would be interrupted and you would have to

type a password. In the worst case, you would have to know

a different password for each service or, if you have a single

password, the service itself would have to go back to some

central authority to verify your credentials. This approach

places the onus on the network servers to check you out

every time you ask for access. Checking credentials can be

a time-consuming task and, frankly, servers have better

things to do with their time.

The situation gets worse if there are different authentication

servers for different network domains. Now the server has

to go to its local authentication server to check you out and

that server might need to go back to your home server to

complete the check. As the network grows, this process

becomes an unmanageable mess.

Using tickets greatly simplifies the process, which starts

with a master access ticket that your computer must get

when you first join the network. Before your computer can

get the first ticket, you have to prove your identity, in other

words, perform master authentication. However, once you

are validated, your computer gets the master ticket,

establishing a security context. This ticket can now be used

to get other tickets specific to the services you want. Your

computer can usually handle that task without interrupting

you.

Once your computer has a ticket for a particular service, it

presents the ticket to that service to get access. Now the

onus is on your computer to get the tickets and the load is

taken off the services. All the services do is validate a ticket

when it is presented, which they can usually do locally and

without referring to any other authority.

This description is somewhat simplified, but all the key

principles are here. Most of the rest of Kerberos is concerned

with ticket management and deals with special cases like

cross-domain access and ticket referral (more later). There

are a couple of aspects of Kerberos that are problematic

(Bellovin and Merritt, 1991).

The first issue is that Kerberos is essentially password

based. There have been schemes designed that allow the

use of digital certificates with Kerberos, but the predominant

model is that of an actual person using the computer. People

are able to enter a user password from memory when

prompted. Today many network devices are machines, not

people; and the password model does not work so well with

machines because stored passwords are subject to attack

while stored on a machine.

The second issue is that dictionary attacks were not

considered a serious threat 20 years ago. In this type of

attack, the enemy holds a database with hundreds of

millions of passwords�the sort of passwords humans tend to

make up and various combinations of them. The attack

simply involves trying every password. This is a threat if it

can be performed offline. In other words, if you can record

the messages from an encrypted logon and then go home

and run your attack against the recording rather than the

real system. Kerberos can be vulnerable to this type of

attack unless special steps are taken.

Kerberos Tickets

A ticket is just a piece of data in a special format. All

Kerberos tickets have the same basic structure but, to help

the explanation, we'll say that there are three types of

ticket:

Ticket-granting

Service access

Referral

The introduction to this chapter notes that a master ticket

must be obtained before all others. In Kerberos there is

nothing quite so strong as a master ticket but, instead, there

is a similar concept called a ticket-granting ticket (TGT).

The ticket-granting ticket lets you get other tickets from a

key distribution center (KDC) for the local security domain

(called "realm" in Kerberos).

Obtaining the Ticket-Granting Ticket

When a computer (the client) first connects to the network,

it has to contact a KDC to obtain a TGT. The KDC has two

parts: an authentication service (AS) and a ticket-granting

service (TGS), as shown in Figure 9.7.

Figure 9.7. Authentication Service

and Ticket-Granting Service

It is the job of the authentication server to check the client

and confirm that it is allowed access to the network.

Kerberos uses the approach of shared secrets. The client

has some secret information and a copy of this information

is stored in a protected user database accessible to the AS.

It is expected that the secret on the client side will be stored

in the user's head. In other words, there is no copy of the

secret password on the computer and a person is expected

to remember and enter the password during initial login.

After the user enters her password, the client sends a

request to the AS asking for a TGT. The request incorporates

proof of the secret password. The AS verifies that the secret

information matches the copy in the user database and that

current security policy allows access. If so, it sends back a

TGT to the client.

Once the client possesses the TGT, it can apply to the TGS

for tickets to other services on the network. It presents its

TGT and indicates which service it wants. The TGS creates

and sends a ticket that the client can subsequently present

to the service to get access.

Let's pause a moment and look at a few points here. The

first question that arises is why bother with the whole TGT

concept. If the KDC knows your secret password, why not

just go directly to ask for a service ticket using your secret

password? If it works to get a TGT, why not do the same for

a service ticket? The main reason why the TGT approach is a

good idea is that it helps protect the secret information. The

right way to do authentication is to use the master password

to establish a security context, but then to create temporary

session keys for the actual operations. If one of the session

keys becomes compromised or discovered, the damage

lasts only until you log off or until the lifetime of the key

expires. If you were to use the secret password every time

you obtained a service key, you would be giving an attacker

more chances to attack it. Protection of the master secret is

paramount.

The other point is that the user only wants to type the

password in once. To avoid the user retyping it all the time,

the client computer would have to keep a copy of the

password in memory for the duration of the session. If it is

stored in memory, it is vulnerable to attack. If you only use

the password once to obtain the TGT, you can delete the

password from the memory of the client. A similar argument

applies on the AS. It has to look up the user in a database to

verify the password. It would not want to access the

database every time the client requested a ticket so it would

have to cache a copy in memory, increasing risk to the

password. By generating a temporary key in the TGT, this

problem is solved.

Service Tickets

A service ticket must be held by the client until it is

presented to the required service. The ticket contains some

information that only the service can understand. The client

cannot interpret this part of the ticket. When the ticket is

sent, the service decodes its own secret part and confirms

the client's identity and other credentials. The ticket

contains other information, such as period of validity. Like a

credit card, it has a start date and expiry date (not in

months, of course).

Typically, service tickets last only for a few hours, after

which the client must return to the KDC and get a new ticket

or renew the existing ticket. Ticket life only affects your

ability to log on to the service; once you are in, you stay in

until you are logged off, regardless of whether your ticket

expires in between (although you might lose critical

services, like your file system).

Although we have distinguished TGT and service tickets to

help the explanation, in most ways they are the same. The

TGS is just a service like any other when it comes to

presenting tickets. However the TGS is the only service that

can create and issue new tickets. Ordinary services can't

create tickets. There are a couple of special cases in which

this presents a problem.

Suppose that the service you are using needs to access

another service on your behalf. For example, suppose your

organization has a special-purpose supercomputer for

crunching billions of vector computations a second. You

want to use it to process some data that is located on a file

server. You can get a ticket to use the Giga-cruncher; but, to

do the job, the cruncher needs a ticket to access your data

on the file server. This situation can be resolved in one of

two ways. The first is known as the proxy method. In this

case you, the client, go to the KDC and request a special

ticket to allow the Giga-cruncher to access the file server on

your behalf. This proxy ticket is then given to the cruncher

prior to the job starting. This approach is shown in Figure

9.8.

1. Client obtains ticket for service a.

Client presents ticket to service a and gets access.

Client obtains proxy ticket for service b.

Client gives ticket to service a, which uses it to get access

to service b.

Figure 9.8. Obtaining a Proxy Ticket

The second approach is to give the cruncher the right to go

to the KDC directly and get tickets on your behalf. You can

obtain a special TGT from the KDC, which the cruncher can

use to obtain tickets on your behalf. You then give this

special TGT to the cruncher. When it realizes it needs access

to the file server, it can go and get a ticket just for this

purpose. The sequence of events, as shown in Figure 9.9, is

as follows:

1. Client obtains ticket for service a.

Client presents ticket and obtains access to service a.

Client obtains TGT for service a to use on its behalf.

Service a obtains ticket for service b using client TGT rights.

This is called a forwarded ticket.

Figure 9.9. Use of a Forwarded Ticket

Cross-Domain Access

The discussion so far assumes that there is just one KDC in

control of a single security domain called a realm. We have

also assumed that the TGS is on the same physical server as

the AS. This need not be the case in practice, and there

could be one AS and several separate TGS servers. This

type of rearrangement is basically transparent to the

method. However, accessing services that are in the domain

of another AS is a different story and requires special

handling.

There are a number of reasons why you might have

separate security domains in an organization. Different sites

are one reason: An office in Los Angeles would probably be

administered separately from an office in London, for

example. Domains could also be used at a much lower level,

as with university departments. You might be cooperating

with another company and you might have decided to give

certain employees in the other company access to certain

servers in your company.

If an employee of Missiles Galore wants to access a server

at partner company Nukes Unlimited, the Missiles employee

needs a ticket for the Nukes server. Only the TGS in the

Nukes domain can issue tickets for the Nukes servers, but

the Missiles employee doesn't have a TGT for the Nukes

TGS.

Kerberos handles this situation using referral tickets. The

authentication servers at both Nukes and Missiles are

configured in advance to allow some users to cross over

domains; the two authentication servers share a secret

between them. When the computer of the Missiles employee

(the client) wants to get to the Nukes file server, it asks its

own AS to give it a TGT for Nukes. The local AS cannot do

this because it doesn't have the rights to issue such a ticket,

but it knows that such access is allowed for this user. So

instead, it issues a referral ticket telling the client to ask

the AS in the Nukes network directly. This referral ticket is

presented to the Nukes AS, which is able to confirm that it

was created by its friend, the AS at Missiles. Given that they

have an agreement, the Nukes AS then issues a TGT for its

own network to the client. The client can use this TGT to

obtain service tickets to certain servers on the Nukes

network.

How Tickets Work

So far we have only described where tickets come from and

what you do with them. We have said nothing about what

they contain or why they are secure. A prime requirement of

a ticket is that you cannot forge one; that is, make a new

one or modify an existing one without permission. Also the

service that is presented with a ticket has to be sure it was

issued by the TGS and that the client is the valid ticket

holder. Not surprisingly, these requirements are achieved by

encrypting parts of the ticket with secret keys. Multiple sets

of keys can be involved. Let's start from the top when the

client first goes to the AS and asks for a TGT.

The client needs to send its identity and its secret to the AS.

This is akin to the user name and password of a typical

login. The server uses the identity information to look up its

own copy of the client's master secret from the user

database. To be more correct, the client only needs to prove

that it possesses the master password; it doesn't need to

send the actual password to the AS. The identity is not

considered confidential and is sent in the clear, or

unencrypted. The proof of password is achieved by using it

to encrypt some value that can be checked by the server.

Usually this is a timestamp with the date and time at the

moment of sending. The server can decrypt the timestamp

with its copy of the client's master secret, and if it produces

a sensible value that matches its own clock, it accepts the

request. By the way, this is where Kerberos is vulnerable to

dictionary attack. An enemy monitoring the link knows, to

within a few seconds, the time when the message is sent.

Therefore, he can take a copy of the request away and run a

dictionary attack by encrypting the known time value with

millions of possible passwords until a match is found.

At this point the AS creates the TGT. It generates a new

random key that the client and the TGS can use later to

protect their communications. This is called the session

key and it needs to be delivered securely to both the client

and the TGS. The ticket also needs to contain other

information for the TGS so it can confirm the identity of the

client and so on. This is all accomplished by constructing the

response out of two halves. One half is intended to be

understood only by the client. The other half is the TGT and

is intended to be understood only by the ticket-granting

server (Figure 9.10).

Figure 9.10. Kerberos Ticket

This message is sent from the AS to the client. The data is

private because both halves are separately encrypted. This

is the last time the client's master secret is used until a new

TGT is required. The client decrypts its part of the message

and stores the session key that will be used to protect the

communication with the TGS. It also saves the TGT for later

use. Note that it cannot read the contents of the TGT

(except the header) because it is encrypted in the TGS's

secret. The client doesn't know this secret; it is shared only

between the AS and the TGS. Note also that this exchange

has provided implicit mutual authentication. The AS

confirms that the client knows the master key by checking

the time stamp value. The client confirms that the AS knows

the master key because otherwise the message returned

would not make sense when decrypted.

Now the client is ready to go and get service tickets. It

sends the TGT to the TGS with a request for some service.

Suppose the client is requesting access to a printer service.

The TGS is able to decrypt the ticket and hence finds out the

session key for use with this client. It is also able to check

that the client is valid and find out other information that

was placed there originally by the AS, such as its access

rights. With the request, the client also sends the current

time encrypted with the session key to prevent replay

attacks�that is, to stop someone recording the message and

playing it back later while pretending to be the client. After

the TGS has extracted the session key from the ticket, it can

decrypt the timestamp value and check that the request is

live and not an old one. Using a rather morbid example, this

is like proving that a photograph of a hostage is recent by

getting him to hold up to the camera a copy of a current

newspaper.

Assuming the TGS is prepared to issue a ticket for the

printer, it now repeats the same process that was done by

the AS when the TGT was created. It generates a new

random session key for use with the printer service and

builds a new ticket. This is encrypted with the secret key

that is shared between the TGS and the printer. The new

session key is encrypted in the current session key and sent

back along with the service ticket. Optionally, the TGS can

re-encrypt the time value sent by the client so the client can

confirm that the message is live and not a replay.

The granting of tickets and their use is iterative. That is, the

process of getting and using a TGT is essentially repeated in

subsequent service tickets. The client master key is used

only at the beginning, and afterwards session keys are used

that have a limited life. An attacker has few chances to get

at the client master keys. However, as mentioned before,

there are a few weaknesses of which to be aware.

The first problem is dictionary attacks. Because the AS reply

is encrypted in the client's master key and some fields in

the plaintext are known (such as the timestamp), it is

possible for a recording of the reply to be taken away and

tested against millions of possible passwords. If the user is

allowed to choose the password for the master key, sooner

or later someone will choose a weak password, such as the

name of his dog or where she went on holiday last year.

Such passwords will certainly be discovered by an offline

dictionary attack. Protection against offline dictionary attack

can be provided by mechanisms called zero knowledge

password proofs. Examples of such protocols are EKE

(Bellovin and Merritt, 1992) and SRP (Wu, 1998) (RFC2945).

These protocols are not strictly part of Kerberos V5, and full

explanation is beyond the scope of this book. Suffice it to

say that the password is mixed up with temporary secret

keys that are established for the transfer and discarded

afterward. Because an attacker doesn't know the temporary

key and it is different on each login, a dictionary attack

doesn't give useful information. The downside is that such

methods require significant computation resources and are

subject to patent licensing requirements.

Another problem with Kerberos is the fact that the identity is

sent unencrypted. An attacker can, at least, track which

user is accessing the network. Remember that the Kerberos

ticket request could be going over a wide area link and, of

course, in the case of wireless, such requests will be visible

to anyone. Some people think that this lack of anonymity is

a problem.

Use of Kerberos in RSN

IEEE 802.11 RSN does not directly specify how to implement

Kerberos. It only specifies IEEE 802.1X with its associated

use of EAP. As a result, there are several ways Kerberos

could be applied. What we describe here is an approach that

was proposed by several vendors during IEEE 802.11

standards meetings.

The general picture we have used so far to describe how

RSN authentication works has three components in three

boxes: the supplicant, the authenticator, and the

authentication server (see the discussion in Chapter 8 on

IEEE 802.1X/EAP and Figure 9.11).

Figure 9.11. Three-Party Security

Model

The RADIUS protocol is needed only if the authentication

server is separate from the authenticator and connected by

an IP network. For small networks, such as might be used at

home, a simple authentication server can be built right in to

the access point, eliminating the need for any

communications protocol between it and the authenticator

(Figure 9.12). In this case the user configures a list of users

and passwords directly into the access point and the details

of the EAP communications are hidden.

Figure 9.12. Small Network with

Built-in Authentication Server

The Kerberos model lies somewhere between the first model

(Figure 9.11) and the second (Figure 9.12). But before going

on to describe the Kerberos model in detail, we need to

work through a few steps.

First of all, consider the situation existing after the client has

been authenticated and connected to the network. By then,

it has an IP address, and it has obtained a TGT. The client

can happily send Kerberos requests to the TGS to get new

service tickets. It can submit those new tickets to services

and generally go about its business. At this point, Kerberos

is being used exactly as it was intended. The tricky part,

however, is how to get to this state from startup. How is the

authentication performed and how does the access point

make a decision to admit the client to the network in the

first place?

Now let's look at an interesting concept. As we know,

Kerberos tickets allow a client to get access to a service.

Previously, we have described services in terms of file

servers and printers, but network access could also be

considered as a service. As an example, access to the DHCP

server that allocates IP addresses could be considered a

service that should be provided only to valid clients. The

neat concept is to treat the access point itself as a service.

In other words, we view the access point as a service that

passes data packets to and from a wired LAN. In Kerberos

terminology, we would say that, in order to be allowed to

use this service, you have to present a valid ticket first. The

process of getting connected to the network becomes:

1. Authenticate to the Kerberos AS and get a TGT.

Go to the TGS and get a valid ticket for network access (in

other words, a ticket to the access point).

Present the ticket to the access point, which then confirms

its validity and allows you to connect to the network.

This is an attractive concept because it makes the access

control for the network just like any other Kerberos service.

It has the superb result of simplifying roaming: When the

client wants to move to a different access point, it presents

the same ticket to the next access point and so on.

Attractive as this may seem, you may be thinking, "Hang on

a cotton picking moment … that can't work!" This is a

classic example of "which came first, the chicken or the

egg?" You need a ticket to get access to the network, but

you need access to the network to get a ticket!

In fact, the situation might be even worse. If the client is

using DHCP, it won't have an IP address until it can get to

the DHCP server. Suppose you need a ticket to get to the

DHCP server as well.[4] The client is stuck: It doesn't have an

IP address and, even if it did, it couldn't get to the network

to authenticate with the AS anyway because it doesn't have

a ticket for the access point. A method has been developed

to overcome this deadlock. The solution requires the use of

a proxy Kerberos application server residing on the

access point (this is just extra firmware). The proxy is a sort

of trusted friend connected to the network that can act on

the client's behalf.

[4]
 It would be unusual to require a ticket for the DHCP server, but we use

this as an example because it is analogous to the problem of getting

rights to use the access point.

Imagine you go out for the evening and want to enter an

exclusive nightclub. The doorman says you can't come in

because you are not a member. "So how do I become a

member?", you ask. The doorman tells you to apply to the

club's owner Luigi. "Where is Luigi?", you ask with a sinking

feeling. The doorman tells you that Luigi is at the bar inside

the club! What you need in this situation is a friend who is

already a member of the club to go in and ask Luigi to give

you membership. In the network, the Kerberos proxy is the

equivalent of that friend.

Figure 9.13 shows where the proxy resides in the scheme of

things. In some ways the picture looks like Figure 9.12, in

which the authentication server is in the access point.

However, the proxy cannot make the access decision by

itself. It can only act as the client's advocate. This is what

we meant when we said that the Kerberos case is

somewhere between Figure 9.11 and Figure 9.12. The EAP

transaction terminates at the proxy, but the authentication

is done elsewhere in the network. At the time of writing, the

operation of the Kerberos proxy is described in draft-ietf-cat-

iakerb-08, an IETF draft titled "Initial and Pass Through

Authentication Using Kerberos V5 and the GSS-API

(IAKERB)."

Figure 9.13. Use of a Proxy to Obtain

Tickets

The opening lines in the abstract of this document read:

This document defines extensions to the Kerberos

protocol specification (RFC 1510 [1]) and GSSAPI

Kerberos protocol mechanism RFC 1964 [2]) that

enables a client to obtain Kerberos tickets for services

where the KDC is not accessible to the client, but is

accessible to the application server.

This seems to be just what we need. We'll come back to

GSS-API shortly, but first let's focus on what the Kerberos

proxy does. When the mobile device (client) first comes

within range, it connects to the access point. At this stage

the IEEE 802.1X controlled port is open (disconnected) so

the client cannot communicate with the network. It can,

however, communicate to the IEEE 802.1X authenticator,

which is closely connected to the Kerberos proxy. The client

uses EAP to talk to the Kerberos proxy. In the process the

proxy finds out the identity of the client and obtains its

secret key information. It can then use this to make a

request to the Kerberos AS on the client's behalf. If a TGT is

granted by the AS, this can be passed back to the proxy and

then to the client. The completion of this phase closes the

IEEE 802.1X controlled port. However, in this case there is a

second switch in the series that prevents the client getting

to the network until it presents a ticket for the access point

service, as shown in Figure 9.14.

Figure 9.14. Example Access Point

Supporting Kerberos

Referring to Figure 9.14, there are two notional switches that

must be closed before data can flow from the client to the

network. We say "notional" because, most likely, these are

not physical switches but functions buried in software (see

Figure 9.14). At the start, both switches are open as shown.

All client data packets emerge from the IEEE 802.11 part of

the access point and these go to the IEEE 802.1X

authenticator and also to the AP service manager. As we

know, the IEEE 802.1X authentication listens only to EAP

packets; everything else is ignored. The AP service manager

is only interested in Kerberos messages and waits to be

presented with a valid ticket before it closes its switch.

After the EAP authentication, the IEEE 802.1X switch closes

and the client will have obtained a TGT with the help of the

proxy. However, it still cannot talk to the network because it

has not presented a ticket to the AP service manager. And

because the AP service manager is a Kerberos agent, it

would also need an IP address to present such a ticket. The

services of the proxy are needed several more times.

The client needs one or two more tickets. It needs one for

the access point and it may need one for the DHCP server

(let's assume so). First, it asks the proxy to obtain a ticket

for the access point. The proxy uses the client's TGT to

request the access point ticket from the KDC. The ticket is

passed back to the client. Now the client asks the proxy to

present its access point ticket to the AP service manager.

Assuming the ticket is valid, the AP closes the switch and

the client can at last talk to the network. However, the client

still doesn't have an IP address so it must ask the proxy two

more favors: to obtain a ticket for the DHCP server and to

present this ticket to the DHCP server. Finally, the client can

obtain its IP address and become a full member of the

network. It thanks the proxy for the hard work (actually, it

doesn't, but that's life) and does all further Kerberos

requests for itself.

The IAKERB describes a proxy for use with GSS-API, and the

client uses EAP to talk to the proxy. How do these two

statements fit together? The approach proposed to use EAP

with Kerberos takes advantage of a concept called GSS-API.

GSS-API provides an abstract way to define security

services. Imagine a team designing an operating system

that has secure communications between the application

and a remote server. The team has to provide an

authentication method, and they have to provide privacy

and integrity services linked to the authentication method.

The question is, "Which method should they choose?" If they

pick one, it may not meet everybody's requirements. That

might mean they have to implement several different

methods and allow the user to select the method. Worse

still, the team knows that in the future new methods are

likely to be invented and then they will be faced with

upgrading the operating system.

At the risk of being controversial, we should say that if the

operating system design team works for a company that

owns 95% of the installed base, they may feel comfortable

in defining a specific solution and setting that as the

benchmark. This more pragmatic approach has been taken

in WPA, which simply defines TLS and the mandatory

solution. However, let's go back to our more general-minded

design team.

All the methods considered by the design team are likely to

have some characteristics in common. They must all

implement effective authentication. They all have privacy

services (in other words, encryption) and they all provide

message integrity to prevent forgery. Because these

characteristics are common across all methods, the idea

was hatched to have a generic interface between the

operating system and the security services. This would, in

principle, allow the team to plug in security methods

according to their needs and avoid the operating system

design having to commit to a single approach (see Figure

9.15).

Figure 9.15. Role of GSS-API

The interface by which the communication occurs between

the operating system and the security services is called

GSS-API, which (finally) we can tell you stands for Generic

Security Service Application Programming Interface defined

in RFC2743. There is an RFC defining how to use Kerberos

with GSS-API (RFC1964) and, importantly from our

perspective, there is also a draft that specifies how to use

GSS-API in conjunction with EAP. By joining these together,

we can now support Kerberos over EAP and hence fit

Kerberos into the IEEE 802.1X model.

If you think all of this looks rather complicated, you are not

alone. But the complexity lies more in the number of

standards and drafts involved in specifying operation rather

than in the basic concepts. It is a complexity that is not

transferred to the network owner, assuming you are already

maintaining a Kerberos-based network.

The main security weakness in the approach comes from

the fact that the access points must share a secret with the

KDC. This is needed to validate the ticket that is used to

gain service from the access point. Apart from being an

administrative nuisance to maintain this secret in many

access points, it is necessary that the same secret be

shared by all the access points if the ticket is to be used for

roaming. Such widespread use of a secret is generally

frowned upon by security experts. In its favor Kerberos is

well known and well tested, it is relatively easy to maintain,

and it is the basis of access security for a number of major

operating systems, including Microsoft Windows 2000.

Cisco Light EAP (LEAP)

This book avoids focusing on vendor-specific or proprietary

approaches. However, we make an exception for Cisco LEAP

because it has been quite widely deployed and a number of

authentication server manufacturers have added support in

their RADIUS servers. LEAP, sometimes called EAP-Cisco

Wireless, is interesting in that it was really the first

commercial use of IEEE 802.1X and EAP for wireless LAN.

The basic model used in LEAP is the same as that used in

WPA, although the two should not be confused. LEAP is

definitely not WPA. It falls far short of the security levels

provided by WPA or RSN, but its introduction was farsighted

and solved some real problems in wireless LAN deployment.

LEAP has not been standardized and the details have not

been published. However, the protocol has been reverse-

engineered and made public, enabling other vendors to

implement compatible components. The information in this

book is based on that publicly available material and a

certain amount of inspired guesswork. Therefore, it cannot

be guaranteed accurate. If you want the official details, you

should apply to Cisco directly.

Consistent with IEEE 802.1X, LEAP divides the system into a

supplicant, authenticator, and authentication server. The

supplicant resides in the mobile device. At the time LEAP

was introduced, workstation operating systems did not

support IEEE 802.1X and special software and drivers had to

be loaded for this function.

The authenticator resides in the access point. Naturally,

such support was initially restricted to Cisco access points.

Note that a generic IEEE 802.1X authenticator is not

sufficient because of the way the encryption keys are

handled. The access point must have specific support for

LEAP as well as IEEE 802.1X.

The authentication server is implemented by a RADIUS

server. LEAP follows the approach for EAP over RADIUS in

RFC2869, although this RFC was still in draft form when

LEAP was designed. It also uses proprietary RADIUS

attributes to pass keys back from the server.

LEAP is a two-way challenge response protocol based on a

shared secret key known to the authentication server and

the mobile device (not the access point). It is based on the

MS-CHAPv1 commonly used for remote dial-up

authentication. Unlike conventional MS-CHAP, the

authentication is mutual, with separate challenges being

issued by the authentication server and the mobile device.

This does not explicitly authenticate the access point itself.

If a rogue access point could somehow be attached to the

wired network with a connection to the authentication

server, it could act as a "man in the middle" in the

authentication exchange. However, the access point must

have a legitimate security relationship with the

authentication server to receive the session encryption key,

so a rogue access point would be unable to send or receive

encrypted data to the mobile device.

Once mutual authentication is completed, the session

encryption key is sent to the access point in a RADIUS

attribute. This attribute is encrypted using a secret shared

between the access point and the server. The client also

computes a copy of the session key. The key is not

transmitted across the wireless link but is computed based

on some nonce value. We do not know how this is done

because it is a proprietary protocol, but our best guess is

that is uses some combination of the challenge text

exchanged during authentication. The access point signals

successful authentication by sending an EAPOL-Success

message to the mobile device. It then activates encryption

by sending an EAPOL-Key message. The process is

summarized here and shown in Figure 9.16:

1. The authentication server challenges the mobile

device by sending a random string. The mobile

device must prove it knows the key by sending a

response derived from the challenge.

The mobile device sends a challenge to the authentication

server, which must also respond correctly.

The authentication server generates and sends a session

key to the access point with the EAP success notification in a

RADIUS message.

The access point notifies the mobile device of authentication

using the EAPOL-Success message. At this point the client

computes the matching session key.

The access point sends an EAPOL-Key message to activate

encryption. Note that this does not send the actual key; it is

just a notification message.

The mobile device and access point communicate using

WEP encryption.

Figure 9.16. Message Flow for LEAP

On the wireless side LEAP uses IEEE 802.1X and EAPOL as

described in Chapter 8 on access control. On the wired side

LEAP uses EAP over RADIUS. The EAP type number for LEAP

is 17.

LEAP embodies many of the base concepts that are now

incorporated into WPA and RSN. However, WPA/RSN has

added many more details that improve the overall security.

LEAP originally ran over WEP, which has known weaknesses,

although the ability of LEAP to generate temporary keys

helps reduce the effectiveness of attacks. LEAP uses MS-

CHAPv1, which is known to be vulnerable to some dictionary

attacks. Overall, though, LEAP represented a major step

forward in wireless LAN security when it was introduced,

with the benefits of:

Mutual authentication

Temporary session keys

Centralized key management

clbr://internal.invalid/book/0321136209_24031533.html

Protected EAP Protocol (PEAP)

PEAP, as the name suggests, provides a way to do EAP

negotiation safe from prying eyes. The original motivation

was to make password-based client security safe from

offline dictionary attack. To achieve this, the EAP session is

completely hidden from attackers. It was hard to decide

whether PEAP should be in Chapter 8 in the discussion of

access control or here, in the coverage of upper-layer

authentication. PEAP is a sort of welding together of EAP

and TLS in an attempt to maintain the flexibility of EAP while

overcoming its lack of inherent security protection.

First, let's consider the security weaknesses of EAP. EAP is

like a good sandwich: meaty center surrounded by two

slices of thin bread (apologies to vegetarians). The meaty

center is the authentication exchange between the client

and the server. If a method like TLS is used, the security

credentials of this part are good. The thin slices of bread are

the parts of EAP that are common to all methods�the EAP-

Identity phase and the EAP-Success or EAP-Fail messages at

the end. This is where the security weaknesses occur:

Because the EAP-Identity message is unprotected, it can

be snooped, allowing an enemy to learn the identity of

the user that is attempting to connect.

The EAP-Success/Fail message is unprotected and could

be spoofed by an attacker.

A solution to both these problems is to perform the EAP

negotiation in a private encrypted "tunnel." If we have an

existing secure connection between the client and the

server, then we can do the EAP negotiation quite safely and

the client's identity will not be revealed. All the flexibility of

EAP will still be available; you can negotiate any of the

upper-layer authentication methods available. This is the

basic idea behind PEAP: The entire EAP negotiation is

protected.

The obvious question is how to establish such a secure

communication channel, given that the purpose of EAP is to

set up a secure communication channel! To answer the

question, we need to go back to one of the basic principles

of security and consider the difference between privacy and

authenticity. Privacy means that no unwanted party can

understand the protected communications. Authenticity

means that the two (or more) parties can mutually prove

their identity.

It is quite possible to have privacy without authenticity and

sometimes this is useful. Digressing for a slightly seedy

analogy here, consider sexy chit-chat lines. People call a

premium toll phone number and talk to a complete stranger

with a sexy voice about any subject they care to choose

(although probably not sports related). The illusion is that

the woman or man who answers the phone is in some sort

of private intimate setting. However, in practice these are

regular call center operations with people sitting at rows of

desks, each with a phone. This is a case in which the caller

wants privacy, but doesn't care about (or get) authenticity.

The object of EAP is authenticity: Extensible Authentication

Protocol. The object of PEAP is to do this authentication in

private. To meet both objectives, we first establish privacy

without authenticity; and then we perform the

authentication using the private connection. In other words,

we use a two-phase approach:

In the first phase, EAP is used in a conventional way to

establish a secure connection using TLS. Only the server

is authenticated in this phase.

In the second phase, the secure connection is used for

another complete EAP negotiation in which full

authentication is performed.

TLS is the chosen method to establish privacy in phase 1;

but once the private channel is established, any EAP-

supported method could be negotiated. It does not have to

be TLS.

Notice that the first phase of PEAP does involve some level

of authentication; the server is always required to prove its

identity. It can do this by using a certificate, as described for

regular TLS. It lets the client know that the server is

legitimate and not some rogue server trying to attract

unwary clients. This is especially important for wireless LAN

because it is relatively easy for people to set up rogue

access points and falsely advertise that they belong to a

valid network. We review the two phases of EAP separately.

Phase 1

From the outside, phase 1 looks like a normal EAP

negotiation. If you study how TLS over EAP works (earlier in

this chapter), then you understand how the first phase of

PEAP works. The difference comes at the end of the phase

when, instead of sending an EAP-Success, the negotiation

moves into phase 2 and starts an entirely new EAP session

encrypted using the newly negotiated keys.

At the start of both phase 1 and phase 2, the server sends

an EAP-Request/Identity message. The client must reply with

an identity response. However, the client is explicitly

allowed to send an anonymous identity in the first EAP

round. In normal EAP, the identity is often used to determine

which upper-layer authentication method will be used. The

same is true for PEAP so the identity sent in the first phase

may enable the server to determine that PEAP will be used.

However, it could be some arbitrary name like

"peap@anonymous.com". The client's real identity is sent

during phase 2. Sometimes the authenticator uses the name

to specify which backend server will be consulted for

authentication decisions. This might be the case for an

access point in a reception area serving a variety of

companies. In such a case, a sort of half-anonymous name

can be used such as "anonymous@MyCo.com". The

company name is real, but the user name is not given until

later, when the secure connection to the company's server

is established.

During the TLS negotiation, the server might request a client

certificate. Providing such a certificate will compromise the

identity of the client. In PEAP the client has the right to

refuse to provide a certificate and the server should still

proceed to phase 2. If the client provides a certificate and

wants to use TLS anyway, there is hardly any point in going

to phase 2 because mutual authentication will be achieved

in phase 1.

Phase 2

Phase 2 is a conventional EAP negotiation allowing any

upper-layer protocol that the authentication server supports.

The only difference is that all the EAP messages are sent

mailto:peap@anonymous.com
mailto:anonymous@MyCo.com

using the encrypted session established in phase 1. It is

quite safe to send the real identity of the client. The

authenticator is not allowed to compare the identity given in

the second phase to that given in the first phase. It is

understood that the first phase identity may be

meaningless.

PEAP allows an attacker to get through phase 1

unchallenged. Because there is no authentication, any

attacker can do the TLS negotiation and establish a secure

connection to the authentication server. Therefore at the

start of phase 2, the client must be treated as completely

untrusted even though it is working in a secure link.

Obviously, if the client cannot authenticate itself

successfully in the second phase, it should be

unceremoniously disconnected.

Status of PEAP

At the time of writing, PEAP is still in draft form.[5] However,

it is essentially complete and may proceed to RFC status. An

attack (described in Chapter 15) that eliminates the benefits

provided by PEAP was recently identified, and it is unclear

yet how that attack will affect the status of PEAP within the

IETF. By the time you read this, there may or may not be an

RFC number assigned.

[5]
 IETF: draft-josefsson-pppext-eap-tls-eap-05.txt.

clbr://internal.invalid/book/0321136209_24031533.html

Authentication in the Cellular Phone

World: EAP-SIM

This last upper-layer authentication method reviewed in this

chapter is interesting because it comes from a different

industry from the others. The authentication methods that

have built up around IETF and IEEE 802 have largely been

associated with the data-processing industry. The model

used in discussing and developing the solution revolves

around the use of computers in education, industry, and the

home. Over the years the ways in which computers are used

have changed, and the models have been updated

accordingly. However, it has always been against a backdrop

of computer-based infrastructure.

New paradigms are now appearing. Over the next ten years,

computer infrastructure will become important for home

consumer electronics, and the computer industry, home

entertainment industry, and the mobile phone industry will

start to blur together. New types of cellular phones are

being designed and deployed with digital communications

capability. The cellular phone of the future will, in effect, be

a small portable computer with capabilities exceeding

laptops of today.

Up to now, the mobile phone networks and infrastructure

have been quite separate from the Internet technologies

used by the computer industry. But as phones turn into

computers, all this has to change. If a phone looks like a

mobile computer, it faces all the same issues of security

found in a conventional computer. Furthermore, the new

cellular phones will need to connect to the Internet and

other computers and servers. Therefore, a way is needed to

bridge the gap between the existing mobile phone

infrastructure and the Internet infrastructure.

This change is relevant to wireless LANs and IEEE 802.11

because products are now being deployed that have both

cellular phone data capability and an IEEE 802.11 wireless

LAN capability built in. When you are within range of an

access point, you can connect to the Internet using wireless

LAN and, at other times, you can use the cellular data

network, albeit at a lower data rate (for more information,

see Chapter 14).

Each authentication method requires a way of storing secret

information at the client end. In Kerberos, for example, it is

assumed that users remember passwords. In TLS the client

might need to have a certificate. For a large proportion of

the world's cellular phones, the secret information is held in

a smart card, often referred to as a SIM card. The SIM

card is a small plastic chip with an embedded

microprocessor. SIM cards are used in all GSM mobile

phones around the world and in many PCS phones in the

United States. The idea of the SIM card is that it contains all

the information about your subscription for the phone

service. It contains your phone number, your address book,

and, importantly, your security codes. You can pick up any

compatible cellular phone and insert your SIM card, and it

will immediately have your information and start receiving

your phone calls. The SIM card itself is a small plastic token,

as shown in Figure 9.17.

Figure 9.17. SIM Card Next to a

Quarter

The secret information in the SIM card is not known by the

subscriber. It is known only by the cellular phone company.

When you subscribe to the phone service, the phone

company programs a unique SIM card for you and installs

the secret onto it. It can then authenticate you as a

subscriber and also encrypt the data going between your

phone and the network. This scenario is similar to one in

which a company installs client certificates on the

computers of their employees so they can validate them for

network access. When a mobile phone with Wi-Fi LAN

capability wants to connect to an access point and

authenticate to the network, it makes a lot of sense to

leverage the secret stored in the SIM card. In fact, if you can

link the authentication server back to the cellular phone

billing system, you can provide subscriber access control as

well as subscriber billing. Like it or not, this gives the phone

company the ability to charge you for Wi-Fi LAN network

access.

Overview of Authentication in a GSM

Network

This section outlines how authentication is done in a

conventional GSM network. This discussion also applies to

many of the United States�based digital cellular networks

that are based on GSM technology (although they may

appear under a different name). The model was originally

designed with voice communications in mind rather than

data transfer, but it bears a striking similarity to the

methods used for data security.

When a cellular phone comes within range of a base station

and recognizes a compatible service, it may choose to try to

register with the network�that is, to join the cell. Before the

network allows the phone to connect, the phone must prove

that it is a paid-up subscriber for the service. It needs to

authenticate itself, and its identity needs to be verified with

some subscriber database server in the network.

The basic approach to authentication is a challenge

response method whereby the network sends a random

value and the phone has to encrypt it[6] with its secret key

and send it back for verification. In GSM three numbers are

used during authentication and subsequent secure

communications:

[6]
 Technically, the current algorithms are keyed hash functions rather

than encryption functions. The SRES is only 4 bytes long so the algorithm

cannot be a reversible encryption.

Random challenge: RAND

64-bit session key, which is used to encrypt the wireless

communications: Kc

Response value called SRES that is computed by

combining the secret key and the RAND value

Together, these three numbers are referred to as a triplet

(RAND, SRES, Kc).

When a phone wants to register to a new network, it sends

its identification number. This is stored in the SIM card and

is called the International Mobile Subscriber Identity

(IMSI) value. It is unique for each subscriber, rather like MAC

addresses in the LAN network. The network can identify the

home operator for the cellular phone from the IMSI and it

requests the authentication center to create and forward a

triplet for the authentication. This referral method allows

phones to roam to different networks and still be

authenticated by their home network provider.

When the local network receives the security triplet, it sends

the RAND value to the phone, which passes it to the SIM

card. Being a smart card, the SIM has it own microprocessor

and is able to compute the other two components of the

triplet using an encryption method and secret key hidden

inside. The resulting value of SRES is returned to the

network for confirmation and then the session opens using

the Kc value for link encryption (see Figure 9.18 for an

illustration of this process).

Figure 9.18. Authentication Overview

for GSM Phone Connection

There are a couple of points worth noting. First, the network

is not explicitly authenticated because it could accept any

value of SRES without checking (although, if the network

doesn't have a valid triplet, the encrypted communication

would fail because Kc will not match between the network

and the phone). Second, the algorithm used to generate

SRES and Kc is not accessible outside the SIM card or to the

network. When roaming, the network requests the

authentication center associated with your home operator

to provide a triplet; so the method used to generate SRES

and Kc can be proprietary to the home network operator.

The operator also issues the SIM card. Therefore, it is

common for different network operators to use their own

flavor of algorithm for security inside the SIM card�a sort of

security by obscurity in addition to the usual protections.

Linking GSM Security to Wi-Fi LAN

Security

Why would you want to link the existing GSM authentication

system to Wi-Fi LAN operation? Well, as mentioned earlier,

phones are becoming more like computers and users will

want high-speed Internet access combined with mobility.

One way to achieve this is to build IEEE 802.11 into a

cellular phone and allow the phone to choose between

available connections, using Wi-Fi LAN whenever available.

In fact, at least one major cellular phone vendor has

introduced a plug-in PC card for laptops that does precisely

this. It has both IEEE 802.11 capability and GSM-GPRS

cellular data capability. In an ideal scenario, the mobile

phone operator deploys access points as well as cell phone

base stations and the device can automatically switch to

use the best infrastructure available. It follows that a single

authentication and billing infrastructure is needed and,

because a SIM card is available, it makes sense to use it also

for the Wi-Fi LAN authentication.

An example of handover is shown in Figure 9.19. When the

subscriber is using the cell phone network, data goes to the

local cellular base station and GSM authentication must be

used. When the subscriber uses the Wi-Fi LAN, data goes to

the access point and RSN authentication must be used.

However, in both cases the authentication server must be

the same.

Figure 9.19. Roaming Between

Cellular and Wi-Fi LAN

EAP-SIM

At the time of writing, the proposal to use cellular phone SIM

authentication is a draft in IETF: draft-haverinen-pppext-eap-

sim-09.txt. Eventually, this draft may make the transition

into an RFC. Essentially, the object of the method is to use

the existing GSM style authentication unchanged so far as

possible. Some things cannot be changed because they are

built into the SIM card standard and method of operation.

One of the problems faced in converting cellular

authentication to RSN is that the SIM card does not produce

a very long master session key�only 64 bits. By today's

standards, we need at least 128 bits for the master key. The

SIM card produces the session key as part of its triplet

containing the challenge and response information. To get a

larger master key, multiple triplets are used. Instead of

simply sending one challenge, the server can send two, or

three, challenges during the EAP process. Each time a

challenge arrives, the SIM card computes a corresponding

triplet containing another 64-bit session key. By joining

together the 64-bit triplet keys, a session key of arbitrary

length can be created.

Another concern relates to the fact that the identity of the

subscriber is visible in each authentication. The identity can

be determined by observing the IMSI value, which is unique

to the cellular phone. To avoid the access points gathering

data about the subscriber from the IMSI value, the EAP-SIM

draft introduces the idea of IMSI privacy. Remember the

IMSI is the unique identity of the mobile device. If we can

hide the identity, a degree of anonymity is possible. In

addition, it is more difficult to mount an attack based on

observing a large number of authentications; the attacker

simply wouldn't know which authentication belongs to which

device. Therefore the EAP-SIM draft has a scheme whereby,

during authentication, the server and mobile device agree

on a new subscriber identity to use for the next

authentication. This is called a pseudonym. The new value

is set using encryption so the identity changes every time

the device connects and only the device and server know

which identity will be used each time.

The third problem with GSM authentication is that the

method does not explicitly authenticate the network. If a

rogue server were to accept the challenge response without

really checking, the mobile device would incorrectly think it

has connected to a legitimate network. This problem is

resolved by having the mobile device send a nonce value at

the start of the negotiation. The server has to incorporate

the nonce value into an encrypted response. To do this

correctly, it has to have access to legitimate triplets.

The actual message exchanges used for EAP-SIM

authentication are shown in Figure 9.20 and described here:

1. It all starts with the usual EAP request-identity

message. On the first operation the cellular phone

sends its actual IMSI information. However, for all

subsequent connects, it sends a pseudonym as

agreed on with the server during the previous

authentication. After this, the EAP-SIM specific

messages start.

The server sends an EAP-Request/SIM/Start message telling

the mobile that it is ready to proceed with authentication.

The mobile responds by sending its nonce value (this is a

16-byte unique value).

The server has several jobs to do at this stage:

Get Triplets: After the server receives the identity or

pseudonym for the cellular phone, it asks the

authentication center of the home operator to send

several triplets; let's suppose two triplets are obtained.

We write this as 2*(RAND, SRES, Kc) to indicate that

each of the two triples has three pieces of information.

Compute Session Key: The server computes a 128-bit

session key using the two (64-bit) Kc values. Rather

than just concatenating the values as described earlier,

it combines the two values with the mobile's nonce

value using a hashing algorithm.

Protect the RAND values: The values of RAND form

the challenge texts. The mobile device uses these to

generate its own copies of the triplets using the SIM

card. Therefore the RAND values must be sent to the

mobile unencrypted and are vulnerable to tampering. To

prevent this, an integrity check is computed across both

values using the session key that has just been just

derived

Compose new pseudonym: The server creates the

pseudonym that the mobile should use next time it

authenticates. This is then encrypted using the new

session key.

Now the server is ready to respond to the mobile. It sends

an EAP-Request/SIM/Challenge containing the two RAND

values, the integrity check, and the encrypted new

pseudonym.

Having received the two values of RAND, the mobile now

submits each in turn to the SIM card and gets back the

corresponding values of SRES and Kc. Assuming everything

is legitimate, these will match those held at the network

server. The mobile then computes the session key using its

copy of the nonce and verifies the integrity check word sent

by the server. It is also able to decrypt and store the new

pseudonym.

Now the mobile sends back the values of SRES that the SIM

card computed. This is the way in which the network can

confirm that the mobile really has a valid SIM card. In the

same way as the server did for RAND, the mobile computes

an integrity check over the two values of SRES and sends

this back with the response.

Assuming that the server is able to confirm a match with its

copy of SRES and verify the integrity checkword, the

authentication is now complete and an EAP-Success

message is sent. The mobile and network have mutually

authenticated and also generated a strong session key from

which link layer keys can be derived.

Figure 9.20. Message Flow for GSM-

SIM

Status of GSM-SIM Authentication

As previously mentioned, the EAP-SIM method was a draft at

the time of writing. However, the bigger issue is whether the

idea of authenticating Wi-Fi LAN by cellular phone methods

will catch on. There are few such systems available.

However, if terminals that combine cellular phone

connectivity and Wi-Fi LAN capability become widespread,

cellular phone operators may install access points all over

the place and a combined authentication process with the

strength of RSN would then be a real requirement. The issue

of public Wi-Fi LAN access and its security implications are

reviewed in Chapter 14.

Summary

Wi-Fi operates at a low level in the network layer hierarchy.

Protocols such as TCP/IP operate at a higher layer and

depend on the lower layers to transport data from place to

place. One of the problems in the original security concept

for Wi-Fi was that the security system was all contained

within the lower layers. This led to problems and, most of

all, it made it very difficult to provide centralized

management of secret keys. The solution came by the use

of upper-layer authentication methods.

A number of security protocols have been developed and

tested over the years and are well trusted by corporate

system administrators. These systems have been developed

for use in large secure networks using centralized and

remote management. We call these methods upper-layer

authentication methods because they work at the top of the

protocol stack rather than at the bottom. This chapter

describes several methods that can be used in conjunction

with RSN and WPA Wi-Fi networks.

First we reviewed TLS, which is closely related to SSL. We

provided an overview of certificate-based security and

described the message exchange involved in TLS. For a

more in-depth look at TLS, you could also refer to Eric

Rescorla's book SSL and TLS (Rescorla, 2001). We showed

how TLS could be used in conjunction with EAP and RADIUS

so it could be applied to key management in WPA and RSN.

Next we looked at Kerberos v5. Kerberos is based on the

concept of service tickets managed though central servers.

We showed how Kerberos could be applied to RSN without

using RADIUS through an interesting technique of proxy

servers.

At the end of the chapter we covered Cisco LEAP, a

proprietary approach introduced for use with WEP to assist

in the management of keys. LEAP was the first Wi-Fi�related

security approach to be based on IEEE 802.1X and has been

deployed in many corporate sites. Finally, we looked at two

newer methods, PEAP and GSM-SIM. GSM-SIM is interesting

because it bridges the gap between the cellular phone

industry and the networking industry, allowing Wi-Fi systems

to be authenticated by the cellular phone infrastructure.

Chapter 10. WPA and RSN Key

Hierarchy

We talked about keys in the introduction to WPA/RSN and

explained how, unlike WEP, both WPA and RSN use multiple

keys at different levels. In fact, there are so many keys

used, it's hard enough for the designer to keep track of

them all, let alone an attacker. But don't panic, although

there are many keys, they are all hidden away inside the

workings of WPA/RSN�the administrator needs only to

define a single master key from which all these others are

derived.

This chapter describes what a key hierarchy is and why so

many keys are needed. We look at the key hierarchies for

TKIP and AES�CCMP, the two ciphersuites described in

Chapters 11 and 12. We also review what steps are involved

in creating and updating the hierarchy, both when the Wi-Fi

LAN is first started and during normal operation.

Pairwise and Group Keys

IEEE 802.11 Wi-Fi LANs are designed to allow multiple

devices to communicate. In practice, this means a group of

mobile devices must share the radio channel and

communicate with a single access point. Many LANs provide

shared access. For example, conventional Ethernet LAN

workstations share the wiring by transmitting one at a time

and trying to avoid collisions. For efficiency, most shared

LANs also provide the capability for one workstation to send

data simultaneously to several others. Data sent between

two workstations is called unicast and data sent from one

to multiple workstations is called multicast; the case in

which one workstation sends to all the others is a special

case of multicast called broadcast. Multicast and unicast

messages have different security characteristics.

Unicast data sent between two parties needs to be private

to those two parties. This is best accomplished by using a

specific key for each pair of devices communicating. We call

this a pairwise key; usually it protects communication

between a mobile device and the access point. This means

that each mobile device needs to store one pairwise key,

and the access point needs a set of pairwise keys�one for

each mobile device that is associated.

By contrast, broadcast (or multicast) data must be received

by multiple parties who form a trusted group. Therefore, a

key must be shared by all the members of that trusted

group. This is called the group key. Each trusted mobile

device and the access point need to know a single group

key. The concept of pairwise and group keys is shown in

Figure 10.1.

Figure 10.1. Pairwise and Group Keys

The methods of managing the pairwise keys and the group

keys are somewhat different so we define each as a

separate key hierarchy. We refer to the pairwise key

hierarchy to describe all the keys used between a pair of

devices (one of which is usually the access point) and the

group key hierarchy to describe the various keys shared

by all the devices.

The next important terms are preshared keys and server-

based keys. As the name suggests, preshared keys are

installed in the access point and in the mobile device by

some method outside WPA/RSN. It could be that you phone

up a user and tell him the password, or send him a letter

that he has to eat after reading or whatever eccentric

method you choose. Most WEP systems use preshared

keys�it is the responsibility of the user to get the keys

delivered to the two parties who want to communicate.

Preshared keys bypass the concept of upper-layer

authentication completely; you are assumed to be authentic

simply by proving possession of the key.

The alternative, server-based keys, requires an upper-layer

authentication process that allows the mobile device and an

authentication server to generate matching secret keys. The

authentication sever arranges for the access point to get a

copy for use in session protection. It has the major

advantage that the operator can keep a single key database

that can be used in conjunction with many access points.

When a new employee joins, for example, the administrator

has to update only one database.

Preshared keys are easier to implement in small networks.

Most older WEP systems only supported preshared group

keys.

clbr://internal.invalid/book/0321136209_24031533.html

Pairwise Key Hierarchy

The pairwise key hierarchy is the most complicated, so let's

review that first. The hierarchy starts at the top with a

pairwise master key (PMK) delivered from the upper-

layer authentication server or with a preshared key. Let's put

preshared keys aside for the moment and look at the server-

key approach. The PMK is the top of the pairwise key

hierarchy. There is a different PMK for each mobile device,

and from this all other pairwise keys are derived. The

following paragraphs show how the PMK is created and how

it is used to generate the actual keys used in encryption.

Creating and Delivering the PMK

Let's do a one-paragraph review of IEEE 802.1X. In Chapter

8 we saw that the IEEE 802.1X model has three

components: a supplicant, an authenticator, and an

authentication server (which we abbreviate just to server

here). The mobile device is the supplicant and connects to

an access point containing the authenticator. The supplicant

uses EAP to communicate, first with the authenticator (in

the access point), and then to the server. The server makes

a decision to admit (or block) the supplicant and informs

both the authenticator and the supplicant. By this method

the authentication and authorization is done centrally (at

the server).

The highest key in the whole security context is held both by

the user and the server, or the user's equipment and the

server. This "supreme secret" key might be in a smart card,

stored on a laptop disk, or remembered in a person's head.

During the EAP authentication process, the chosen

authentication method proves that both parties know the

supreme secret. Chapter 9 outlined several ways to do this

authentication. To be useful for RSN or WPA, the

authentication method must, as a by-product of the

authentication process, generate random-like key material

that we can use for our key hierarchies. An authentication

method that does this is called key-generating. Methods

discussed in Chapter 9, such as TLS (SSL) and Kerberos, are

key-generating.

When using upper-layer authentication, you use the key

material generated during authentication to create the PMK.

If, instead of upper-layer authentication, you are using a

preshared key, this preshared key is used directly as the

PMK.

Authentication occurs between the supplicant and the

server, and the result is that both the mobile device and the

server generate matching PMKs. But in order to use the keys

to protect the wireless link, we need also to provide the PMK

to the access point. How do we get the PMK from the server

to the access point? In corporate networks, the access

point(s) are connected to the authentication server by a

network connection, usually using TCP/IP protocol, and it is

necessary to transfer the PMK across the network. In small

systems, it might be that a simple server is actually built

into the access point unit. In this case, it is easy to transfer

the key material.

The IEEE 802.11i specification does not explicitly say how

the PMK should be transferred from the server to the access

point, although recommendations are given. By contrast,

WPA specifies transfer of the PMK to the access point using

the RADIUS protocol. The RADIUS attribute MS-MPPE-Recv-

key (vendor_id=17) is used for this purpose. More details of

RADIUS are provided in Chapter 8.

At the end of the upper-level authentication phase and after

completion of the key transfer, both the mobile device and

the access point will have a copy of the PMK. The process of

obtaining the PMK ends with the EAP-Success message

being sent by the authentication, as described in Chapter 8.

In the IEEE 802.1X model of the world, the EAP-Success

message results in opening of the data port and data

starting to flow. However, in WPA/RSN, this is not the case.

There are further hurdles to clear before data is allowed. We

need to derive keys for encryption between the access point

and the mobile device. We need to verify that the keys are

matching and we need to distribute a group key for use in

broadcasts.

If you are using preshared keys, none of the upper-layer

authentication process is required and the value of the PMK

is programmed directly into the mobile device and access

point independently. The PMK is required to be 256 bits

long�that is, 32 bytes. Because 32 bytes would be a very

long password to remember, systems using preshared keys

may allow users to enter a shorter password, which the

system then expands to 256 bits. IEEE 802.11i has a

suggested method for generating a key from a shorter pass

phrase. This allows users to enter memorable text strings

and have then converted into a preshared master key in a

consistent manner.

Computing the Temporal Keys

In your enthusiasm to get encryption turned on, you might

think at this stage that we are ready to slot the PMK into the

encryption engine and get going. But we have a long way to

go yet before we reach that stage. That is why it is called a

hierarchy! The PMK is not used directly for any security

operations. Instead it is used to derive a separate set of

keys that will be used in protecting a link between two

devices (for example, between the access point and a

mobile device). Four separate keys are needed to do the job

because there are two layers to protect�the EAPOL

handshake and the user's data�and two cryptographic

functions at each layer: encryption and integrity.[1]

[1]
 Chapter 12 explains that AES�CCMP is designed so a single key can be

used for both encryption and integrity, reducing by one the number of

keys needed

Data Encryption key (128 bits)

Data Integrity key (128 bits)

EAPOL-Key Encryption key (128 bits)

EAPOL-Key Integrity key (128 bits)

These are referred to as the temporal keys because they

are recomputed every time a mobile device associates to

the access point. The collection of all four keys together is

referred to as the pairwise transient key (PTK). For

RSN/TKIP and WPA, each of these keys must be 128 bits

long so that the PTK is a total of 512 bits long.

The first two temporal keys sound familiar. They are the

ones used to encrypt the data and protect it from

modification. The second two we have not seen before.

These are used to protect the communications between the

access point and mobile device during the initial handshake.

[2] For the moment, just accept that these EAPOL keys are

needed; we will discuss them again shortly.

[2]
 And for various notifications after the handshake.

Because the temporal keys are recomputed each time a

mobile device connects, there has to be something that

changes when the computation is done; otherwise, you'd

end up with the same temporal keys every time. This is

called adding liveness to the keys, ensuring that old keys

no longer work. Liveness is achieved by including a couple

of special values called nonces in the computation. The

value of the nonce is quite arbitrary except in one respect: a

nonce value is never used twice[3] with the same key. The

word "nonce" can be thought of as "N � once"�in other

words, a value (N) only used once.[4] They say lightning

never strikes in the same place twice (which is not true) and

similarly nonces never come up with the same value twice

(which should be true by design).

[3]
 In some practical systems, "never" is compromised to mean

"extremely unlikely." For example, if a very large true random number is

used, the probability of getting the same value twice might be

considered acceptably low.

[4]
 The word "nonce" actually derives from medieval English. For an

interesting diversion, enter the phrase "for the nonce" into an Internet

search engine (include the quotation marks) and choose among the

numerous definitions.

The temporal keys are effectively shared between the two

devices because both ends of the link compute an identical

copy. It is not enough for one device to include its own

nonce value. Each device must generate a nonce, pass its

nonce to the other device, and then derive the temporal

keys by including both nonces in the computation. Also, to

make sure the identity of the two devices is bound into the

keys, the MAC address of each is included in the

computation. Figure 10.2 summarizes the process and

shows the inputs to the temporal key computation and the

four output keys. The inputs are the PMK, a nonce from each

side, and the MAC address of each side. The outputs are

four 128-bit keys. How the "key computation block" is

implemented is described later.

Figure 10.2. Temporal Key

Computation

Exchanging and Verifying Key

Information

We have described how the authentication server and the

mobile device mutually prove their identity and how key

information must be derived by the mobile device and

distributed to the access point. We have seen how the PMK

is used to generate a set of temporal keys. However, one

important step is missing: The mobile device has not yet

verified that the access point is legitimate. Because we were

able to talk to the server through the access point, it seems

reasonable to assume it is trusted. However, it could be an

access point that some hacker planted in the office and

hooked up to the internal network. Maybe your janitor is a

master hacker! Okay, maybe not, but the principle of

security is trust no one so the access point must prove its

credentials.

This is where the requirement for a secure connection

between the authentication server and the access point is

important. A secure connection requires that the server and

the access point share their own secret�so the janitor's AP

cannot establish such a connection unless it knows the

server's secret, even though it is connected inside the

office. The access point can only receive the PMK from the

server through the secure connection. So if the access point

can prove to the mobile device that it possesses the PMK,

then it proves that it is trusted by the authentication server,

which is master of all security. So this defines the test: The

access point and the mobile device must prove to each

other that they both possess a copy of the secret PMK.

This idea of mutually proving possession of a secret key was

also part of WEP but, as we saw in Chapter 6, the method

used was completely broken and was easily tricked. In

WPA/RSN the processes of proving key ownership is

combined with the process of deriving the temporal keys

using a key message exchange before the connection can

be opened for business. There are four steps to the process,

giving the name "four-way exchange," and the exchange is

done using EAPOL-Key messages.

First we will look at the four-way exchange in overview and

then drill down in more detail. The four-way exchange

occurs between the access point and the mobile device.

However, for consistency with IEEE 802.1X, these are

referred to as the authenticator and the supplicant

respectively. Remember, Authenticator = Access Point.

A Note on EAPOL-Key Messages

The standard for EAP does not specify by what type

of network its messages should be sent. EAP was

originally designed for use with PPP, which commonly

runs over ordinary dial-up connections. IEEE 802.1X

defined how to use EAP over a LAN and dubbed this

"EAPOL." The standard also defined a "key message"

that was intended to allow the supplicant and

authenticator to exchange secret key information.

The format of this key message is defined and also

the method of encrypting the key value contained in

the message. IEEE 802.11i uses the basic format of

the EAPOL-Key message but modifies it in several

ways to improve security.

The first step is for both the supplicant and authenticator to

generate a nonce value. There is no connection between the

two values�they are independent�however, there are

specific rules about how the values are generated that are

covered later in this chapter. The nonce selected by the

authenticator is called ANonce and that of the supplicant is

the SNonce. This is followed by the exchange of four

messages that we refer to as A, B, C, and D.

Message (A): Authenticator

Supplicant

The first EAPOL-Key message is sent from the authenticator

to the supplicant and contains ANonce. This message is not

encrypted or protected from tampering. Tampering with the

value simply makes the handshake fail so there is no danger

here.

Once the supplicant has received message (A), it has all the

information it needs to compute the temporal keys. It

already had the PMK, its own SNonce, and MAC address and

now it has the ANonce and MAC address of the

authenticator. So the supplicant now computes the four

temporal keys using the algorithm described later in this

chapter.

Message (B): Supplicant

Authenticator

The authenticator cannot compute its keys yet because it

does not know the value of SNonce. This is now sent by the

supplicant using message (B). This message is unencrypted

but it has a feature that was not in message (A): It includes

a message integrity code (MIC) to prevent tampering. This is

the first use of the EAPOL-Key Integrity key, one of the four

temporal keys described earlier. Computing the MIC over the

whole of message (B) prevents anyone from modifying the

message without detection. However, more importantly, it

allows the authenticator to verify that the supplicant really

does know the PMK. If the supplicant's PMK doesn't match

that of the authenticator, the MIC check will fail. Of course,

the authenticator has not computed the keys yet; but

because the message is not encrypted, it can first extract

SNonce, and then compute all the temporal keys and finally

go back and check the MIC value before moving to the next

phase.

At this point the first half of the four-way exchange is

completed. Both sides have now derived the four temporal

keys and the authenticator has verified that the supplicant

must have a matching PMK. So far, neither side has started

encrypting.

Message (C): Authenticator

Supplicant

This message is sent by the authenticator to tell the

supplicant that it is ready to start using the new keys for

encryption. It is important to synchronize this operation

because, if either the access point or the mobile device

turns on encryption before the other side is ready, the link

will break. Message (C) includes a MIC check so the

supplicant can verify that the authenticator has a matching

PMK. It also contains the starting sequence number that will

be used for the first encrypted frame to be sent using the

key (normally, 0). Note that because the MIC is computed

using a key derived from both the PMK and the supplicant's

nonce, a message recorded from a previous handshake

can't be successfully replayed.

The message is sent unencrypted and the authenticator

does not install its temporal keys until it has received the

final message (D). The authenticator waits to install the keys

because, if message (C) fails to arrive at the supplicant, the

authenticator must resend message (C). If the keys are

installed too early, the resend would be encrypted and the

supplicant would reject it.

Message (D): Supplicant

Authenticator

When the supplicant receives message (C), it replies with

message (D). This acknowledges completion of the four-way

handshake and indicates that the supplicant will now install

the keys and start encryption. The message is sent

unencrypted and then the supplicant installs its keys. Upon

receipt, the authenticator also installs its keys so

subsequent messages are all encrypted.

Let's review what has been accomplished by this exchange:

1. ANonce and SNonce values have been exchanged.

Temporal keys have been computed.

Supplicant has proved knowledge of the PMK.

Authenticator has proved knowledge of the PMK.

Both devices have synchronized and turned on encryption of

unicast packets.

Completing the Handshake

At this point both the mobile device and the access point

have obtained, computed, and installed encryption keys.

They are now communicating over a secure channel using

encryption in both directions. However, we are not quite

finished yet. Although the pairwise key hierarchy is now

installed, we still have to set up the group key hierarchy so

the access point can send broadcasts and multicast

messages to the newly authenticated mobile device.

Group Key Hierarchy

IEEE 802.11 supports multicast and broadcast messages.

One example in which multicast is useful is video

distribution. If you want to send a live broadcast to many

stations, you don't want to have to send to each station

individually�you want to transmit one copy on the LAN and

allow all the relevant stations to receive the video frames.

This is an example of group multicast. A special case of

multicast is broadcast, in which the message is sent to all

devices on the LAN. Broadcasts are used widely in LAN

protocols.

In an infrastructure network (that is, a network using an

access point), multicasts are only sent from the access point

to the mobile devices. Mobile devices are not allowed to

send broadcasts directly; however, they can initiate a

broadcast by sending the message to the access point,

which then broadcasts it on the station's behalf (to both the

wireless devices and any attached wired LAN). On the

wireless side, we want multicasts and broadcasts to be

encrypted and protected from tampering.

We cannot use the pairwise keys for broadcasts. Each

mobile device has a different set of pairwise keys so it would

be necessary to send multiple copies of the broadcast, each

encrypted differently. While this would work, it would

completely defeat the advantage of the multicast message.

Therefore, a separate key hierarchy is maintained

specifically for use in encrypting multicasts. This is called

the group key hierarchy.

Unlike pairwise keys, all the mobile devices and the access

point share a single set of group keys. This allows all the

stations to decrypt a multicast message sent from the

access point. While this solves a problem, it also creates

one: how to handle the case in which a mobile station

leaves the network.

If a mobile device chooses to leave the Wi-Fi LAN, it should

notify the access point by sending an IEEE 802.11

disassociate message. When it does this, the access point

erases the copy of the pairwise keys for the departing

mobile device and stops sending it messages. If the device

wants to rejoin later, it must go through the whole key

establishment phase from scratch. But what about the

group key? Even though the device has left the network, it

can still receive and decrypt the multicasts that are sent

because it still has a valid group key available. This is not

acceptable from a security standpoint; if a device leaves the

network, it should no longer be allowed any access at all.

The solution to this problem is to change the group key

when a device leaves the network. This is a bit like changing

the locks on your house after a long-term guest leaves; you

don't want anyone to have a door key who is not living in

your house. So group keys have an added complication: the

need to rekey.

Negotiating the pairwise keys was complicated because we

had to start with no secure connection in place and we ran

the risk of all sorts of attacks from simple snooping to

message forgery. The situation for group keys is easier

because we can wait until the pairwise keys are established

and then use the secure link to send the group key value.

This provides a significant simplification and means that the

actual group key values can be sent directly to each station

without concern about interception or modification. Group

key distribution is done using EAPOL-Key messages, as for

pairwise key. However, only two messages are needed, not

four.

The access point performs the following steps during group

key distribution:

1. Create a 256-bit group master key (GMK).

Derive the 256-bit group transient key (GTK) from which

the group temporal keys are obtained.

After each pairwise secure connection is established:

Send GTK to mobile device with current sequence

number.

Check for acknowledgment of receipt.

Because it is necessary to update the group key from time

to time, a method is needed to perform the update without

causing a break in the service. This would be a problem if

the mobile device could store only a single group key

because it takes time to go round each device and give

them all the new key value. What key would you use for

multicast transmissions during this update period�the old

one or the new one? Whichever you chose, some of the

stations would not be able to decrypt.

Fortunately, the original WEP standard made provision for

multiple keys to be stored in the mobile device: Up to four

keys can be installed at one time. Each transmitted frame

carries a 2-bit field called KeyID that specifies which of the

four keys should be used for decryption. Pairwise keys are

sent with a KeyID value of 0. But we can take advantage of

the other three key storage slots for group key updates.

Suppose that the current group keys are installed into KeyID

1. When we want to update, the authenticator sends the

new key with instructions to put it at KeyID 2. During this

key update phase, multicasts are still sent using KeyID 1

until all the attached stations have been informed of the

new key. Finally, the authenticator switches over and all the

multicasts from then on (until the next key change) are sent

with KeyID 2.

We now know how to send the GTK, but how is the GMK

generated and how is the GTK derived? In the case of

pairwise keys, the PMK was produced by the upper-layer

authentication method (or by using preshared keys). Clearly,

this process doesn't apply for the group keys because the

key is not generated per device. However, because the

object of the group keys is only to protect messages and not

provide authentication, there is no need to tie the key into

the identity of any specific device. In fact the key can be

quite arbitrarily chosen. You haven't even got the problem of

ensuring that both ends of a link pick the same value

because the access point simply sends its chosen value in

the EAPOL-Key messages.

So the rule is as follows: The access point allocates a GMK

simply by choosing a 256-bit cryptographic-quality random

number. This sounds easy but there is a gotcha: the words

"cryptographic-quality" are important. Many programming

languages provide a function that produces a "random"

number on request. Usually the numbers produced look

random but actually are quite predictable. They may come

from a stored table or be derived from the clock value. If an

attacker knows how your "random" number is generated, he

can guess your GMK. Cryptographic quality means that no

one in the universe knows what the random value will be

until the moment it is generated. Methods for generating

such numbers are suggested in the IEEE 802.11i standard.

Once the GMK is selected, it is necessary to derive the

group temporal keys. Two keys are required:

Group Encryption key (128 bits)

Group Integrity key (128 bits)

The combination of these two keys forms a 256-bit value,

the GTK. This is the value that is sent by the access point to

each attached station. The GTK is derived from the GMK by

combining with a nonce value and the MAC address of the

access point. Given that the GMK is completely random to

start with, this is arguably an unnecessary step but it does

provide consistency with the pairwise key case.

Summary of the Key Establishment

Process

The following steps summarize the process of establishing

and distributing the keys used by WPA or RSN:

If you are using a security server, the authentication

phase is completed using an upper-layer authentication.

If successful, this both authenticates the supplicant and

authorizes it to join the network. If you are using a

preshared key, authentication is assumed and

subsequently verified during the four-way key

handshake.

Once authorized, the mobile device and access point

perform a four-way handshake to generate temporal

keys and prove mutual knowledge of the PMK.

Finally the access point computes and distributes group

keys.

Only after all these phases have completed is user data

finally allowed to flow between the authenticator and the

supplicant. At last the communications link is open for

business and all the keys are available to implement the

encryption and protection needed.

Key Hierarchy Using AES�CCMP

Most of what has been described so far in this section

applies to both AES�CCMP[5] and TKIP[6] cipher methods.

The method of deriving and delivering keys applies across

the board�using the four-way handshake for pairwise keys

and the two-way handshake for group keys. However, there

is a difference in one respect: the size and number of keys

needed is different, depending on the encryption method in

use.

[5]
 Details of AES�CCMP are given in Chapter 12.

[6]
 Details of TKIP are given in Chapter 11.

Given that AES�CCMP provides a higher level of security,

you might expect that the AES�CCMP keys would be bigger

or perhaps more numerous. However, in fact, the reverse is

true. Whereas a total of 768 temporal key bits are needed

for TKIP, only 512 are needed for AES�CCMP. The reason is

because in AES�CCMP the integrity and encryption functions

are combined into a single calculation, whereas with TKIP

they are two quite distinct operations, each requiring a

separate key.

For AES�CCMP, the pairwise temporal keys are:

Data Encryption/Integrity key (128 bits)

EAPOL-Key Encryption key (128 bits)

EAPOL-Key Integrity key (128 bits)

And the group temporal key is:

Group Encryption/Integrity key (128 bits)

The PMK and GMK are still created in the same way but, at

the temporal key computation phase, fewer key bits are

generated; otherwise, there is no difference in operations.

While the four-way handshake is mandated for both WPA

and 802.11i, it is possible that new key hierarchy schemes

will be introduced for 802.11i in the future. The four-way

handshake has been criticized for being slow because it can

take several seconds to complete. The slow handshake

presents problems for system that need rapid handover

between access points such as voice-over-IP terminals.

Mixed Environments

In some cases an access point might have to support both

TKIP and AES�CCMP devices in the same network. Suppose,

for example, you have upgraded your old WEP systems to

TKIP and now want to buy new mobile device using

AES�CCMP. At least for a period, until the old cards are

replaced, you will need to have both operating side by side.

This is not a problem for the pairwise keys. If the access

point is well designed it will know which device is using what

method and store the keys appropriately. It will also know

how to encrypt and decrypt messages from and to each

device separately. However, a difficulty arises regarding

group keys and multicasts. The access point has to send a

broadcast to all the mobile devices; but if they are using

different encryption methods, how can this be done? The

answer is that they must all use the same encryption

method for multicast reception; the standard requires in this

case that TKIP should be used for multicasts even when

AES�CCMP is being used for pairwise exchanges.

If you want to set up this mixed environment, you need to

check that the AES�CCMP supporting product you purchase

also supports TKIP, at least for broadcast reception. In

practice, it is likely that most AES cards will have the option

to operate entirely in TKIP mode for the foreseeable future,

especially for cards operating in the popular IEEE 802.11b

frequency band. Note that for security purposes, RSN also

disallows the use of TKIP for pairwise if AES�CCMP is chosen

for multicast

Summary of Key Hierarchies

Figures 10.3 through 10.6 summarize the key hierarchy,

showing how the various keys are derived. These diagrams

are provided as a quick reference prior to the detailed

description of how the key derivation is implemented.

Figure 10.3. TKIP Pairwise Key

Hierarchy

Figure 10.6. AES Group Key Hierarchy

Figure 10.4. TKIP Group Key

Hierarchy

Figure 10.5. AES Pairwise Key

Hierarchy

Details of Key Derivation for WPA

This section describes the message formats and exchanges

that are used in establishing the key hierarchies. In

particular, we show the frame format used for the EAPOL-

Key frames used in the four-way and two-way exchanges.

The details shown here apply specifically to WPA but are

basically similar for IEEE 802.11i TKIP and AES as well.

Prior to the key exchanges and temporal key derivation,

several things will already have occurred. The access point

will have advertised its capabilities and a mobile device will

have selected a security method, associated, and initiated

an authentication exchange. If upper-layer authentication is

in operation, an exchange between the supplicant and

authentication server will have completed, resulting in the

delivery of a PMK to the access point. The access point will

have intercepted an EAP-Success message and delivered it

to the supplicant. Receipt of EAP-Success by the access

point triggers the four-way key exchange.

In WPA, the key exchange is done using a special variant of

the EAPOL-Key message, which is different from that defined

in IEEE 802.1X. This variant has some extra fields and is

shown in Figure 10.7.

Figure 10.7. WPA Version of EAPOL-

Key Descriptor

The descriptor shown in Figure 10.7 appears in the message

body section of an EAPOL frame. In practice, it would be

preceded by the EAPOL header, as appropriate for IEEE

802.11. The purpose of each field is described in Table 10.1.

The most complicated field is Key Information, which is

divided into a number of control bits and subfields.

Understanding the contents of this field is essential to

understanding how the handshake works. The Key

Information field is a 16-bit value divided up as shown in

Figure 10.8. and described in Table 10.2. The meaning of the

control bits 5 through 9 is shown in Table 10.3.

Figure 10.8. Key Information Field

Table 10.1. Fields of the WPA EAPOL-

Key Message

Descriptor

Type

Unique value (254) that identifies this

descriptor as the WPA variant.

Key

Information

This field contains several subfields that

provide information about the key type and how

it should be used. It also contains various

control bits to assist in the handshake

procedure.

Key Length The length of the key in bytes. Note in the

pairwise key this is the length of the PTK, even

though the actual PTK is not sent in a key

frame; it is the target key.

Replay

Counter

This value is incremented with every message

to detect any attempts at replaying an old

message. The exception is when this message

is in response to an ACK request, in which case

the replay value of the message being "ACKed"

is inserted.

Key Nonce Nonce value used to derive temporal pairwise

keys or group keys.

EAPOL-Key

IV

For group key transfer, the GTK is encrypted

using the EAPOL-Key Encryption key in

conjunction with this IV value. The encrypted

GTK is placed in the Key Data area.

Key

Sequence

Start

This indicates the value of the sequence

number to be expected in the first frame

received after the keys are installed. The

sequence number protects against replay

attacks.

Key

Identifier

This is not used in WPA. In the future it might

be used to enable multiple keys to be set up in

advance.

Key MIC This is an integrity check value computed

across the entire EAPOL-Key frame from the

EAPOL Protocol version field to the end of the

key material (this field is set to 0 during the

computation).

Key Data

Length

Defines the length number of bytes in the Key

Data field (which might be different from the

actual key itself).

Key Data Material that needs to be sent in secret. For

example, in the case of the group key, this is

the encrypted value of the GTK. In some

pairwise key messages, this carries an

information element.

Table 10.2. Key Information Field

Summary

Bits

0�3

Currently unused and set to 0.

Bits

4�9

Control bits set at different stages of the handshake.

Bits

10�11

Indicate the key index in the case of group keys. This

allows the keys to be updated late by installing new

group keys at a different index position to the current

operation group key.

Bit 12 Distinguishes between the pairwise and group key

messages

Bits

13�15

Indicate the version and allow different schemes and

key encryption methods to be used in the future. The

value of 001 indicates that:

EAPOL MIC is calculated using HMAC-MD5

EAPOL key encryption is done using RC4

Table 10.3. EAPOL-Key Message

Control Bits

Request This bit is used by the supplicant to request that

the authenticator initiate a new four-way

handshake to refresh the keys.

Error In TKIP (see Chapter 11), if a MIC failure is detected

by a mobile device, a key message is sent with the

Error bit set to inform the access point. The

Request bit will also be set to request a rekey

operation.

Secure This is set when the four-way key exchange is

completed to indicate that the link is now secure.

MIC This bit is used to indicate when a MIC has been

computed for this message and inserted into the

MIC field.

ACK This is set in messages from the authenticator to

indicate that it expects a response from the

supplicant.

Install For pairwise keys, this bit indicates that the new

key should be installed and put into effect. For

group keys, this bit is 0.

The Key Data field is used differently in pairwise and group

key handshakes. You might expect that this field would be

used to send the actual key to the other party encrypted

using the EAPOL-Key Encryption key. This is true in the case

of the GTK; however, the pairwise keys are computed

independently by the supplicant and the authenticator and

are not sent in the key message at all.

In the case of pairwise keys, the Key Data field is used for

another purpose. It is used to send a copy of the WPA/RSN

Information Element. Information elements in general are

described in Chapter 5 and this element in particular is

discussed further in Chapter 13. For the moment, just

accept that the information element needs to be transferred

and that the Key Data field is used for this purpose.

Four-Way Handshake

One of the best ways to understand use of the EAPOL-Key

descriptor is to look at a practical example. In the following

paragraphs, we follow a four-way handshake.

Message (A): Authenticator

Supplicant

At the starting state, no keys are known so the MIC cannot

be computed. The authenticator uses this message only to

send its value of ANonce to the supplicant. The contents of

message (A) are shown in Table 10.4.

Table 10.4. Message (A) Contents

Descriptor type 254

Key Information Request, Error: 0

Secure: 0

MIC: 0

Ack: 1

Install: 0

Index: 0

Key type: Pairwise

Descriptor type: 1

Key Length 64

Replay Counter <current value>

Key Nonce ANonce

EAP-Key IV 0

RSC 0

Key Identifier 0

Key MIC 0

Key Data Length 0

The Error bit is 0 because this is the first message.

The Secure bit is 0 because the four-way handshake has

not completed yet.

There is no MIC so the MIC bit is 0.

The authenticator requires the supplicant to send a

reply so it sets the ACK bit. If no reply is received after a

timeout, the authenticator may resend the message

three times before giving up. However, the message

should be resent as is, that is, with the same replay field

so that, in case the supplicant did receive a previous

message, it knows it is a duplicate and not a new

message.

We are not ready to install keys so Install is 0.

The Index field is not used with pairwise keys.

The Key Type field indicates "pairwise" and the

Descriptor Type field is set to 1.

The Replay Counter is the value of a counter that is set

to 0 when the PMK is first established and is

incremented between successive messages.

The value of ANonce is passed in the Key Nonce field

and all the other fields are set to 0. Note that the value

of ANonce can't be any old nonce. It has to be selected

in a particular way, as described later in this chapter.

The value of EAP-Key IV is 0 because there is no key

data.

RSC is 0 because the keys are no yet ready for

installation.

Key identifier is reserved and always 0.

Message (A) is sent without any protection. It is not

encrypted and there is no MIC. This is the only key message

that is ever sent without the MIC bit set to 1�a fact that can

be exploited by the supplicant, which should discard the

message if any of the fixed fields are different from what

has been described here. For example, if the supplicant sees

the MIC bit as 0 but the Install bit set, it knows there is foul

play.

Given that the supplicant checks the expected fields, an

attacker is limited to modifying the Replay Counter or the

ANonce fields. Changing the Replay Counter can only result

in message rejection and so is pointless. Any changes to the

ANonce value will be caught in message (B) because the

temporal keys computed by the supplicant from the

corrupted ANonce value would be invalid. In such a case

message (B) would fail the MIC test and be discarded.

Therefore, the fact that message (A) is unprotected does not

compromise security.

Message (B): Supplicant

Authenticator

After successful delivery of the first message, the supplicant

has a copy of ANonce and generates it own value of SNonce.

It is then able to compute the transient key. Next, it

prepares to send message (B) to the authenticator. This

message contains a MIC value and thus proves that the

supplicant knows the PMK. The fields for message (B) are

shown in Table 10.5.

Table 10.5. Message (B) Contents

Descriptor type 254

Key Information Request, Error: 0

Secure: 0

MIC: 1

Ack: 0

Install: 0

Index: 0

Key type: Pairwise

Descriptor type: 1

Key Length 64

Replay Counter From rcvd Key Message

Key Nonce SNonce

EAPOL-Key IV 0

RSC 0

Key Identifier 0

Key MIC MIC Value

Key Data Length Length of Key Data

Key Data Information Element

The Error field is 0 because there was no MIC value on

the previous frame (therefore MIC failure is impossible).

The Secure field remains 0 until the end of the four-way

handshake.

The MIC field is 1 to indicate that a MIC value has been

computed and attached to this message.

This message is in response to the ACK bit, which was

set in message (A). Therefore the ACK bit in this

message is clear.

Install is set to 0 because the keys are not agreed on

yet.

Index is not used.

Key Type indicates pairwise.

Descriptor type is 1.

The Replay Counter in this message should be set to the

same value as the counter sent in message (A). This is

because it is a response to the ACK bit in message (A).

Any other value should be rejected by the authenticator.

The value of SNonce is sent in the Key Nonce field. This

value is needed by the authenticator to compute its

copy of the temporal keys.

The MIC value is placed in the Key MIC position.

This frame contains unencrypted Key Data. This is the

information element that was used to negotiate the

security parameters during the association phase.

Inclusion of the element here prevents a rogue mobile

device from switching security parameters after the

initial negotiation. More information about the

information element is given in Chapter 13. The data is

not encrypted because the IE was sent in the open

during association and is not a secret; however, it is

protected by the MIC field and cannot therefore be

altered.

The fact that the descriptor type field is 1 indicates that the

MIC value should be computed using an algorithm called

HMAC-MD5, which produces a 16-byte MIC value. The MIC

calculation is performed over more the just message (B). It

includes all the bytes from the EAPOL protocol version field

in the header up to and including the Key Data.

A Note on HMAC-MD5

MD5 is a Message Digest algorithm�it takes a

message of arbitrary length and produces a 128-bit

value called a message digest. It doesn't matter

how long the input message is, the digest is always

128 bits. Different input messages could produce the

same message digest. However, the algorithm is

such that you cannot work in reverse: given a 128-bit

digest, you cannot compute a message that would

produce that value when processed. Therefore

publishing the digest gives nothing away about the

message. MD5 is documented in RFC 1321.

To apply MD-5 to actual messages for the purpose of

a MIC, MD-5 is used with Hash Message

Authentication Code. HMAC as defined in RFC 2104.

To compute the MIC, the supplicant needs to use the

newly computed temporal keys. In fact this will be

the first use of the keys. If the supplicant does not

know the correct PMK, it cannot produce a MIC value

that will correspond to the expected result. So the

MIC in this message achieves two things: It prevents

tampering with the message and it proves that the

supplicant knows the PMK.

Message (C): Authenticator

Supplicant

When message (B) is received by the authenticator, it is

able to extract the value of SNonce because the message is

unencrypted. The authenticator then has all the information

to compute its copy of the temporal keys. After this is done,

the pairwise key distribution is effectively complete.

However, the remaining message exchanges, messages (C)

and (D), are used to ensure that the keys are put into effect

in a synchronized way. Message (C) serves two functions.

First, it verifies to the supplicant that the authenticator

knows the PMK and is thus a trusted party. Second, it tells

the supplicant that the authenticator is ready to install and

start using the data encryption keys. The authenticator does

not actually install the keys until after it has received

message (D). Note that if a retransmission of message (C) is

needed due to failure to get a response, the retransmission

should be a copy of the original (unencrypted) transmission.

The format of message (C) is shown in Table 10.6.

The MIC bit is set and a corresponding MIC value added. The

ACK bit is set to indicate a response is required. The value of

ANonce is included for reference; although this serves no

purpose at this point, it can be used as a check to ensure

that this is part of the same four-way handshake.

Table 10.6. Message (C) Contents

Descriptor type 254

Key Information Request, Error: 0

Secure: 0

MIC: 1

Ack: 1

Install: 0

Index: 0

Key type: Pairwise

Descriptor type: 1

Key Length 64

Replay Counter <Current Value>

Key Nonce ANonce

EAPOL-Key IV 0

RSC Starting Sequence Number

Key Identifier 0

Key MIC MIC Value

Key Data Length Length of Key Data

Key Data Information Element

In this message the RSC is used to inform the mobile device

of the starting sequence number the access point intends to

use. Normally, this would be 0. The Key Data field is used to

send a copy of the IE that the access point used in

negotiating security during the association phase.

Assuming no retransmit is required, this is the last

unencrypted message sent by the authenticator during the

life of these pairwise keys. All subsequent messages are

encrypted and protected using the temporal data keys.

Message (D): Supplicant

Authenticator

This final message verifies to the authenticator that the

keys are about to be installed. The settings in the message

are shown in Table 10.7.

There is nothing surprising or new in the settings for this

message, which is similar to message (B) but without the

Key Data field. The Secure bit is not set until the four-way

handshake has successfully completed and both supplicant

and authenticator have installed the keys. This does not

happen until message (D) has been received and decoded

successfully. Once this has happened, the authenticator is in

a position to deliver the group keys. Note that the Key

Sequence Start field indicates to the authenticator the

sequence number of the first frame the supplicant intends

to send.

Table 10.7. Message (D) Contents

Descriptor type 254

Key Information Request, Error: 0

Secure: 0

MIC: 1

Ack: 0

Install: 1

Index: 0

Key type: Pairwise

Descriptor type: 1

Key Length 64

Replay Counter From rcvd Key Message

Key Nonce SNonce

EAPOL-Key IV 0

RSC Starting Sequence Number

Key Identifier 0

Key MIC MIC Value

Key Data Length 0

Group Key Handshake

After the complexities of the pairwise key exchange, which

had to start off with no security in place and build up step

by step, the group key delivery is relatively simple.

Basically, there are only two messages. The first sends the

key and the second acknowledges that the keys are

installed. As explained earlier, there is no key

synchronization message because the mobile device is able

to store more than one group key at a time and the access

point can select the key used on a message-by-message

basis. Therefore, as long as the access point knows that a

new key has been installed, it can start using it at any time

in the future; typically, this is after all the other mobile

devices have been updated.

The group key is sent in an EAPOL-key message, which we

will call message (a). This has the same format as for

pairwise keys. However, an important difference is that the

Key Data field is used to send the GTK. The fields for the

first group key message are shown in Table 10.8.

Table 10.8. Group Key Update

Descriptor

type

254

Key

Information

Request, Error: 0

Secure: 1

MIC: 1

Ack: 1

Install: 1

Index: nn

Key type: Group

Descriptor type: 1

Key Length 32

Replay

Counter

<Current Value>

Key Nonce GNonce

EAPOL-Key IV IV for encryption of Key Data

RSC Sequence number of the last encrypted group

message

Key Identifier 0

Key MIC MIC Value

Key Data

Length

32

Key Data <encrypted GTK>

Note that the Secure bit is set because the group key

exchange occurs after the pairwise keys are established.

The MIC is set (and included) and the ACK bit indicates a

reply is required. For the Group Key message the Install bit

is set. The Index field is important in the group key

message. These two bits indicate which key location should

be used to store the new key. For smooth updates, the Key

ID index value will not be the value currently in use.

The value of GNonce is included for reference. GNonce is a

nonce value selected to derive the GTK from the GMK. The

supplicant does not actually need to know this value

because the key derivation is done by the access point and

not by the mobile device, but it is sent anyway for

reference.

Finally, the actual GTK is sent, encrypted with the EAPOL

Encryption key that was created as part of the pairwise key

handshake. For descriptor type 1, the key is encrypted using

RC4 stream cipher[7] after discarding the first 256 bytes of

the RC4 cipher stream output. No padding is added so 32

bytes of GTK produces 32 encrypted bytes, which are placed

directly into the EAPOL-Key message.

[7]
 See Chapter 6 on WEP and Chapter 11 on TKIP for more information

on RC4.

When it is filled out, message (a) is sent to the mobile

device, which can decrypt the GTK and install it at the

appropriate Key ID index. It then replies with an

acknowledge message, message (b), which has the same as

for pairwise message (D) except that the Secure bit is set

and the Type bit indicates Group.

As a last point, it is expected that the group keys will be

updated fairly regularly. For example, they should be

updated when a mobile device leaves the network. Also

they should be updated if a MIC failure occurs when

decoding a multicast. Key updates can occur at any time

simply by the access point initiating a group key update

frame by sending message (a). However, they can also be

requested by a mobile device. In this case the mobile device

should send message (b) to the access point with the ACK

bit set. This causes the access point to create a new GTK

and distribute it to every device (one at a time).

clbr://internal.invalid/book/0321136209_24031533.html

Nonce Selection

The idea of the nonce values is that they are used only once

with a given key. The important thing is that this should hold

true even when the mobile device or access point is

restarted or even if a Wi-Fi LAN adapter card is moved from

one laptop to another. The combination of key and MAC

address should never use the same nonce value twice. If all

equipment had a calendar/clock (and could guarantee it was

correct), this problem can be easily solved. For example, the

nonce value could be initialized after startup, to the value of

Network Time (number of seconds since midnight, Dec 31st,

1899). Providing, on average, you don't need a nonce more

than once per second, you will always get a value that has

not been used before (unless time starts to run backwards,

which seems unlikely).

However, not all systems have a calendar clock and the

accuracy can't be guaranteed anyway. Therefore, the nonce

is created from a large counter that is initialized to a random

value at start up. The idea is that if the counter is large

enough, the probability that you will ever reuse the same

range of values is so small as to be unimportant. This

counter is 256 bits long.

Suppose that an access point starts up and sets its 256-bit

nonce counter to a perfectly random value. Then suppose

that the access point generates ten thousand nonces before

the next restart (incrementing the counter each time). New

nonces are needed only when the group keys are refreshed

and when a mobile device joins the network. Given the size

of the nonce counter, the probability that the access point

will reinitialize the counter to one of the 10,000 values it has

just used is an embarrassingly low 1 in 10-70�probably about

the same probability that time will start to run backwards.

There is a problem, however, because this analysis relies on

generation of a perfectly random number, which can also be

difficult to do.

Because of the difficulty of generating perfect random

numbers, RSN and WPA specify a way to generate the

starting value for the nonce counter by using a

pseudorandom number generator. The formula is written

using the function PRF-256. This is the random number

generator function that is also used for key derivation.

Operation of this function is described in the following

section on key computation. Here is the formula for

computing the start value of the nonce counter:

Starting nonce = PRF-256(Random Number, "Init

Counter", MAC || Time)

where:

Random Number is the best random number the

equipment can make.

"Init Counter" is a literal string.

MAC || Time is the MAC address of the device

concatenated with the best guess at Network Time (if

known).

If an attacker is going to base an attack on finding duplicate

nonce values, he is going to have to wait a long time!

clbr://internal.invalid/book/0321136209_24031533.html

Computing the Temporal Keys

Earlier we described how the temporal keys are generated

from the master keys, but we were not specific about how

this is accomplished. Obviously the derivation must be done

in a very specific way; any ambiguity might result in two

different vendors' products deriving keys that don't match

and hence failing to work together. We casually mentioned

earlier that the key information needed to be

expanded�getting more bits that we started with. For

example, although the PMK is 256 bits, it has to be

expanded into 512 bits before being divided up into the four

temporal keys.

This section explains how the key generation and

computation is done. In practice, both generation and

expansion occur during the same process. Key expansion

seems counterintuitive because it implies that additional

bits are generated from "thin air." However, the object is not

to increase the size of the base key (in other words, the key

entropy), but to derive several keys, all of which appear

unrelated to an outside observer. For example, in the case of

the four pairwise temporal keys, if an attacker knows one of

the four temporal keys, it should be impossible to derive any

of the others. It doesn't matter how many bits you expand

the master key into, the strength against brute force attacks

remains the same.

The approach to key expansion is to use a pseudorandom

number generator (PRNG) and keep generating random

bytes until you have enough for your key expansion. The

starting condition or seed of the PRNG is based on the

known information such as your master keys.

Diagrammatically, this relationship is shown in Figure 10.9,

which is really an expanded version of Figure 10.2, the key

computation block. An important point is that, given the

same seed, the PRNG always produces the same "random"

output stream so two independent devices can generate the

same set of keys by starting with the same seed value.

Figure 10.9. Temporal Key

Computation

The PRNG function is used in several places in RSN and

WPA. For example, it was used to generate the starting

nonce; it is used to expand the pairwise keys and also to

generate the GTK. This would create a potential problem if

the same PRNG were to be used in each of these different

cases. If you want a random stream of data for two different

purposes in a security system, you must be absolutely sure

that they will not both use an identical pseudorandom

stream. On the other hand, we would like to use a single

PRNG function for implementation efficiency, so what is

needed is a PRNG that is guaranteed to provide a different

stream for different uses even when the seed information

appears the same.

To achieve this, RSN and WPA define a set of pseudorandom

functions, each incorporating a different text string into the

input. There are different functions, each designed to

produce a certain number of bits. These are referred to as

PRF-n, where n is the number of bits required. The defined

choices are:

PRF-128

PRF-256

PRF-384

PRF-512

Each function takes three parameters and produces the

desired number of random bits. The three parameters are:

1. A secret key (K)

A text string specific to the application (e.g., nonce

generation versus pairwise key expansion)

Some data specific to each case, such as nonces or MAC

addresses

The notation used for these functions is: PRF-n(K, A, B). So,

for example, when we specify that the starting value for the

nonce is:

Starting nonce = PRF-256(Random Number, "Init

Counter", MAC || Time)

it means that the PRF-256 function is invoked with:

K = Random number

A = The text string "Init Counter"

B = A sequence of bytes formed by the MAC address

followed by a number representing time

In a similar way, the computation of the pairwise temporal

keys is written:

PRF-512(PMK, "Pairwise key expansion",

MAC1||MAC2||Nonce1||Nonce2)

Here MAC1 and MAC2 are the MAC addresses of the two

devices where MAC1 is the smaller (numerically) and MAC2

is the larger of the two addresses. Similarly, Nonce1 is the

smallest value between ANonce and SNonce, while Nonce2

is the largest of the two values.

The group temporal keys are derived as follows:

PRF-256(GMK, "Group key expansion", MAC||GNonce)

Here, MAC is the MAC address of the authenticator, that is,

the access point for infrastructure networks.

We see how all the various keys can be derived by using

PRF-n, so how is the PRF-n implemented? Obviously, this

has to be carefully specified if we hope to have

interoperability.

All the variants of PRF are implemented using the same

algorithm based on HMAC-SHA-1.[8] We have seen HMAC-

MD5 before; it was used to produce the MIC for EAPOL-Key

messages. But we are not generating a MIC here; we want a

random number generator. Like HMAC-MD5, HMAC-SHA-1 is

also a hashing algorithm that can be used to generate MIC

values. It is approved by the US National Institute for

Science and Technology (NIST; www.nist.gov), which

publishes the details of the algorithm. The method of

computation is different from MD5, but the effect is the

same. They both take in a stream of data and produce a

message digest of fixed length. HMAC-MD5 produces 16

bytes and HMAC-SHA-1 produces 20 bytes. The message

digest is quite unpredictable (except by using the algorithm)

and tells you nothing about the contents of the message

that was "digested." Even if you changed one single bit in

input message, an entirely new digest would be produced

with no apparent connection to the previous value. There's a

clue to how we can make a hashing algorithm into a

pseudorandom number generator.

[8]
 SHA stands for secure hash algorithm.

We take a message and hash it using HMAC-SHA-1 to get a

160-bit (20-byte) result. Now change one bit in the input

message and produce another 160 bits. We already know

that this 160 bits appears unrelated to the first one, so if we

put them together, we get 320 bits of apparently random

data. By repeating this process, we can generate a

pseudorandom stream of almost any number of bits. This is

http://www.nist.gov/default.htm

how HMAC-SHA-1 is used to implement the PRF-n functions.

Here are the details:

1. Start with the function PRF-n (K, A, B) where n

can be 128, 256, 384, or 512.

Initialize a single byte counter variable i to 0.

Create a block of data by concatenating the following:

A (the application-specific text)

0 (a single 0 byte)

B (the special data)

i (the counter, a single byte value)

This is written: A|0|B|i

Compute the hash of this block of data using key K:

r = HMAC-SHA-1(K, A|0|B|i)

Store the value of r for later in a register called R.

Now repeat this calculation as many times as needed to

generate the needed number of random bits (because 160

are generated each time, you may get more than you need,

whereupon the extra bits are discarded). Before each

iteration, increment the counter i by one and after each

iteration appending the result bits r to the register R.

After the required number of iterations, you have your

random stream of bytes.

clbr://internal.invalid/book/0321136209_24031533.html

Summary

One of the weaknesses of WEP was that it had a very simple

concept of keys. The key was simply a data string that was

loaded into both the access point and the wireless device.

The key was used directly in authentication and encryption

and was not changed except by manual reconfiguration.

Such usage makes the keys extremely vulnerable to attack.

This chapter has shown how RSN and WPA have a much

more complicated system that ensures the keys used in the

actual cryptographic operations never expose the master

secret held between the client and the authentication

server. The system also ensures that fresh keys are

established every time a session is started.

A range of keys is used, derived from a pairwise master key.

The PMK may itself be generated from the upper-layer

authentication method in use. Two problems are discussed

and solutions shown in this chapter. The first is how to

derive keys in a way that ensures they are unpredictable

and different each time they are generated. The second is

how, safely, to ensure that all trusted parties generate the

same keys while preventing an attacker joining in the key

generation process or subverting it in any way.

These problems have been solved in WPA and RSN and this

chapter describes how the solutions work. Once the keys

have been safely generated, they must be used within a

good security cipher. The next two chapters look at the

choices for security protocol: TKIP and CCMP.

Chapter 11. TKIP

Chapter 11 reviews one of the new security protocols that

was developed specifically for use with existing Wi-Fi

equipment. We will see that the TKIP security protocol

provides a huge improvement over WEP and yet is able to

operate on the same type of hardware and can even be

applied to many older Wi-Fi systems through firmware

upgrades. We start off with an overview of what TKIP is

intended to accomplish and then work through each of the

functions of TKIP in detail.

What Is TKIP and Why Was It

Created?

TKIP stands for Temporal Key Integrity Protocol, but that's

not important right now (or probably ever). TKIP exists for

one reason: to allow WEP systems to be upgraded to be

secure. This is the reason TKIP was created and this

requirement guided the design throughout the

standardization process. TKIP has now been adopted as part

of the WPA certification and also is included as part of RSN

in IEEE 802.11i. In 2001, when WEP was blown apart, there

were millions of installed Wi-Fi systems, all suddenly without

a viable link layer security solution. Originally, the new

security measures of the IEEE 802.11i standard were

expected to come into effect gradually, starting with

applications where very high security was needed. However,

when WEP was broken, in an instant, all these millions of

systems were rendered insecure. A solution was needed

that would allow them to be upgraded and become secure

again.

The requirement that TKIP should run on legacy hardware

(that is, hardware already installed using WEP) was a severe

restriction on the approach to be taken. In the case of AES

(see Chapter 12), the solution was designed from scratch;

the designers could focus on the best solution possible

within the general constraints that it should be practical and

cost-effective to implement. In some ways, this ability to

start from scratch mode made the AES approach a simpler

problem to solve. But TKIP had the requirement to be secure

and available as an upgrade to WEP systems.

To help understand why upgrading existing WEP systems is

a significant problem, we need to take a look at the internals

of Wi-Fi LAN systems and how they are built. We start with a

Wi-Fi adapter card. There are not too many manufacturers of

silicon chips for Wi-Fi LAN. In fact, the majority of existing

WEP-based Wi-Fi LAN systems are based on the chips of only

two or three companies. There are essentially four parts to a

Wi-Fi LAN card:

Radio Frequency (RF) section

Modem section

MAC (Medium Access Control) section

Host interface to connect to your computer�PC card or

USB, for example

Roughly speaking, the RF section deals with receiving and

transmitting through the antenna; the modem deals with

extracting data from the received signals; and the MAC

deals with protocol issues, including WEP encryption. The

four components are shown in Figure 11.1.

Figure 11.1. Components of a Wi-Fi

LAN Adapter

The RF section requires very special design and the use of

exotic semiconductor materials. However, the remaining

parts can be implemented in standard run-of-the-mill

integrated circuit (IC) technology. The key to reducing cost

in electronics is to cram everything you can into a minimum

number of integrated circuits and then produce a huge

quantity of them. Therefore, successive generations of Wi-Fi

LAN designs used fewer and fewer components. In the latest

systems, Host Interface, MAC, and modem blocks are

combined into a single IC. Eventually, we might expect that

the RF section will also be included, to produce a single IC

solution.

The part we want to look at is the MAC section of the IC.

This is the part that implements most of the IEEE 802.11

protocol. On one side (the Host Interface side), it receives,

from the computer, packets of data for transmission and

instructions for activities such as "look for a new AP" or

"issue a request connection to that AP." It also delivers to

the computer packets of data that have been received. On

the other side (by the modem), it delivers a stream of bits

containing all the various IEEE 802.11 control and data

frames, including special functions like sleep modes, data

acknowledgment, and retransmission of lost data.

Importantly (for us), it also encrypts and decrypts the data

frames.

Because the MAC operations are rather complex, all the

implementations are built around a small microprocessor

embedded inside the IC. The microprocessor is programmed

to handle all the formatting and timing operations to control

the protocol. Typically, however, this processor is not very

powerful and certain operations are just too fast for it to

handle. Therefore, the MAC is implemented as a

combination of firmware and hardware, as shown in Figure

11.2.

Figure 11.2. Inside the MAC Chip

Figure 11.2 shows a block called Hardware Assist. If you

want to go to the store for a loaf of bread, you can walk. But

if you want to go at 70 mph, you need hardware assistance

(in other words, your automobile). So it is with the MAC. The

small microprocessors in the Wi-Fi cards shipped from 1997

to 2003 need help to go at 11Mbps, and that comes in the

form of custom hardware in the IC.

If all the MAC functions were done only by the

microprocessor, it would be possible to change the security

system just by downloading new firmware. However,

because encryption and decryption requires a fair bit of

computation, the implementation of WEP almost always

depends on the hardware assist functions and, of course,

these functions cannot be changed after manufacture.

You can see now why TKIP is necessary. The hardware assist

functions in these earlier systems cannot support

AES�CCMP. They can support only RC4 (WEP). Therefore, the

designers set out to find a way to implement real security

using the existing RC4 implementation, and in a way that

can be done through firmware upgrades. This is TKIP.

clbr://internal.invalid/book/0321136209_24031533.html

TKIP Overview

WEP has some serious shortcomings, as listed in Table 11.1.

TKIP introduces a set of measures that address each one of

these weaknesses. In some ways, it's like the way in which

the Hubble telescope problem was repaired. The Hubble

telescope is a huge optical telescope placed in space and

orbiting the earth. Because it is in orbit, where there is just a

clear vacuum to look through and no gravity to distort the

lenses, the results were expected to be spectacular.

Excitement turned to despair as the telescope was tested

and it was found that the main mirror had been

manufactured with a defect and was not perfectly shaped.

The solution was not to replace the main mirror, which was

not possible in space; it was to add some corrective lenses

in the light path to the optical receiver after the main mirror.

TKIP solves the problems of WEP in a similar way. It cannot

change the major items such as the way RC4 is

implemented in hardware, but it can add a series of

corrective tools around the existing hardware. The changes

applied to WEP to make TKIP are summarized in Table 11.2.

The numbers in parentheses indicate which weaknesses in

Table 11.1 are addressed by each change.

Table 11.1. Weaknesses of WEP

1 The IV value is too short and not protected from reuse.

2 The way keys are constructed from the IV makes it

susceptible to weak key attacks (FMS attack).

3 There is no effective detection of message tampering

(message integrity).

4 It directly uses the master key and has no built-in

provision to update the keys.

5 There is no protection against message replay.

IVs and Nonces

The terms "IV" and "nonce" can be confused because

they seem to refer to the same concept. The

initialization vector is a term for data that is

introduced into the cryptographic process to provide

liveness. Often a nonce value is used for the IV value

so the terms IV and nonce appear to refer to the

same thing. However, the IV could be generated by

other means, such as a random number rather than

a true nonce. In WEP, the method for generating the

IV was unspecified, which was a significant problem.

Table 11.2. Changes from WEP to

TKIP

Purpose Change
Weakness

Addressed

Message

Integrity

Add a message integrity protocol

to prevent tampering that can be

implemented in software on a low-

power microprocessor.

(3)

Purpose Change
Weakness

Addressed

IV selection

and use

Change the rules for how IV values

are selected and reuse the IV as a

replay counter.

(1) (3)

Per-Packet

Key Mixing

Change the encryption key for

every frame.

(1)(2)(4)

IV Size Increase the size of the IV to avoid

ever reusing the same IV.

(1)(4)

Key

Management

Add a mechanism to distribute and

change the broadcast keys (see

Chapter 10).

(4)

Message Integrity

Message integrity is an essential part of security. If an

attacker is able to modify a message, there are many ways

in which your system can be compromised. WEP had a

method for detecting modification called the integrity check

value (ICV), but the ICV offers no real protection at all. The

ICV is not considered part of TKIP security (although its

value is still checked).

If you want to detect tampering, one simple method would

be to add together all the bytes in the message together to

create a "checksum" value and then send this along with

the message. The receiving party can perform the same

computation and verify that it gets the same result. If a bit

changes, the sum won't get the same result.

The standard term used in security for the check

value is message authentication code (MAC).

Unfortunately MAC is already used in LAN standards

to mean medium access control. To avoid confusion,

the term MIC is used in the 802.11 standard.

Such a simple approach is of no use for security because the

attacker can simply recompute the checksum to match any

changes he makes to the message. However, the general

idea is similar: Combine together all the bytes in the

message to produce a check value called the MIC (message

integrity code) and then send the MIC along with the

message. The MIC is computed using a special nonreversible

process and combining a secret key. As a result, an attacker

cannot recompute the MIC value unless he knows the secret

key. Only the intended receiver can recompute and check

the result.

There are several well-known secure methods for computing

the MIC. Such methods have been well tried and tested in

other protocols and security applications. However, for TKIP

there was a problem. All the well-known methods require

introduction of a new cryptographic algorithm or require

computations using fast multiply operations. The ones that

use multiply operations were considered, but they generally

need at least one multiply operation for each group of four

bytes. That would mean, for a typical 1514-byte data

packet, at least 379 multiply operations. The microprocessor

inside the MAC chip of most Wi-Fi cards is not very powerful;

typically, it doesn't have any sort of fast multiplication

hardware. In a small microprocessor a 32-bit multiply might

take 50µs to complete. That would mean that it would take

nearly 20ms to compute the MIC, reducing the data

throughput from 11Mbps down to less than 1Mbps.

One proposal was to move the computation of the MIC up to

the software driver level. After all, if you are using a laptop

with a modern PC processor, such computations can be

done in almost no time. But what about the poor old access

point? Most access points do not have such a high-power

processor and are already hard pressed to keep up with a

multitude of connected stations.

What was needed was a method that was as secure as the

well-known approaches but that could be done without

either multiplication or new cryptographic algorithms. This

was a tough goal. It was like saying, "I want a car as fast as

a Porsche but with a 500cc engine"�not practical. However,

a good compromise solution came from cryptographer Niels

Ferguson using a method that he called Michael. Michael is a

method of computing the MIC that uses no multiplications,

just shift and add operations, and is limited to a fairly short

checkword. Michael can be implemented on existing access

points without ruining their performance. However, the cost

of the simplicity is that Michael is vulnerable to brute force

attacks during which an attacker is able to make many

attacks rapidly one after the other. Michael makes up for

this vulnerability by introducing the concept of

countermeasures.

The concept of countermeasures is straightforward: Have a

reliable method to detect when an attack is being made and

take action to slam the door in the attacker's face. The

simplest countermeasure is just to shut the whole network

down when an attack is detected, thus preventing the

attacker from making repeated attempts.

We will look at the details of Michael later; but for now, it is

enough to know that the method allows the computation of

a MIC value that is added to the message prior to encryption

and checked by the receiver after decryption. This value

provides the message integrity missing in WEP.

Michael operates on MSDUs; the computation to produce

the MIC is done on the MSDU rather than on each MPDU.

This has two advantages. First, for the mobile device, it

allows the implementer to perform the computation in the

device driver running on the host computer prior to

forwarding the MSDU to the Wi-Fi LAN adapter card. Second,

it reduces the overhead because it is not necessary to add a

MIC value to every fragment (MPDU) of the message. By

contrast, TKIP encryption is done at the MPDU level.

Technical Note: MSDUs Versus

MPDUs

In the standard, and in this book, you will see

references to MSDUs and MPDUs. To understand TKIP

and AES�CCMP, you must understand the difference

between the two. Both refer to a single packet of

data, with a destination and source address (and

potentially other stuff). The MSDU is the packet of

data going between the host computer's software

and the wireless LAN MAC. MPDUs are packets of

data going between the MAC and the antenna. For

transmissions, MSDUs are sent by the operating

system (OS) to the MAC layer and are converted to

MPDUs ready to be sent over the radio. For

receptions, MPDUs arrive via the antenna and are

converted to MSDUs prior to being delivered to the

OS.

There is one very important point to mention: One

MSDU can be broken into multiple parts to produce

several MPDUs in a process called fragmentation.

The multiple MPDUs are then reassembled into a

single MSDU at the other end. This is done so that, if

a transmission is lost due to noise, only the MPDU

needs be resent, rather than the whole MSDU.

When talking about encryption, you must be clear

whether you are talking about MSDU or MPDU. To

help remember which is which, think of "S" as

squadron and "P" as plane�it takes a group of planes

to make a squadron. These acronyms stand for MAC

Service Data Unit and MAC Protocol Data Unit.

Michael requires its own secret key, which must be different

from the secret key used for encryption. Creating such a key

is easily accomplished when you are generating temporal

keys from a master key, as described in Chapter 10.

IV Selection and Use

Chapter 6 explained the purpose of the IV (initialization

vector) and how it is prepended to the secret key to

generate the encryption key for each packet. We also noted

that there are three fundamental weaknesses with the way

IVs are used in WEP:

The IV is too short so IV values are reused regularly in a

busy network.

The IV is not specific to the station so the same IV can

be used with the same secret key on multiple wireless

devices.

The way the IV is prepended to the key makes it

susceptible to Fluhrer-Mantin-Shamir attack (FMS) attack

(this is discussed in more detail later).

For a further explanation of why IV reuse is a problem, see

Chapter 6.

In the WEP standard, there were no requirements to avoid IV

reuse. In fact, it was not mandatory to change the value of

IV at all! Many vendors picked a random value for IV for

each packet, which seems intuitively to be a good idea.

However, at the end of the day, if you want to avoid IV

reuse for the longest time possible, the simple approach is

to start with a value of one and count up by one for each

packet. In TKIP, this behavior has been mandated as part of

the standard.

Incrementing the IV delays IV reuse, but it doesn't get you

out of the problem of "too short" IV. Even counting up, all

the values will be used after about 16 million frames, which

happens surprisingly fast in a busy network. Like the

odometer on a car, when a binary counter reaches its

maximum value, the next increment returns it all to 0�this is

called rollover. TKIP introduces several new rules for using

the IV. Essentially, there are three differences in how IVs are

used compared to WEP:

IV size is increased from 24 bits to 48 bits.

IV has a secondary role as a sequence counter to avoid

replay attacks.

IV is constructed to avoid certain "weak keys."

IV Length

The WEP IV, at 24 bits, allowed only 16,777,216 values

before a duplicate IV would be used. This is unacceptable in

practice when this number of frames could be sent in a few

hours. Chapter 6 discussed the FMS attack, the most

effective attack against WEP, and showed how WEP is very

susceptible because its IV appears first in the frame and

advertises when a weak key is being used. Some vendors

try to reduce the potency of this attack by skipping IV

values that would produce weak keys. However, this

strategy just reduces the number of possible IV values still

further, making one problem better but another one worse!

In designing TKIP, the security experts recommended that

the IV must be increased in size to provide a robust solution.

There was some debate about how to do this; but in the

end, the IEEE 802.11 task group (i) decided to insert 32

extra bits in between the existing WEP IV and the start of

the encrypted data. This was a contentious decision

because not all vendors can upgrade their legacy systems

to meet this requirement. However, most can.

Potentially, the extra 32 bits added to the original 24 gives a

new IV of 56 bits; however, in practice only 48 bits is used

because 1 byte must be "thrown away" to avoid weak keys.

The advantages of going to a 48-bit IV are startling.

Suppose you have a device sending 10,000 packets per

second. This is feasible using 64-byte packets at 11Mbps. for

example. The 24-bit IV would roll over in less than half and

hour, while the 48-bit IV would not roll over for over 900

hundred years! Moving to a 48-bit IV effectively eliminates

the IV rollover problem, although you still have to be careful

to avoid two devices separately using the same IV value

with the same key.

Increasing the IV length sounds straightforward, but it

introduces some real problems for practical implementation.

Remember that the original WEP IV is joined on the front of

the secret key to create the RC4 encryption key. Thus, a 40-

bit[1] secret key is joined to the 24-bit IV to produce a 64-bit

RC4 key. The hardware in legacy systems assumes this type

of key structure and can't be upgraded to suddenly deal

with a 88-bit RC4 key created by joining the new 48-bit IV to

the old 40-bit secret key. In TKIP this problem is solved in an

interesting way. Instead of simply forming a new RC4 key by

joining the secret key and the IV, the IV is split into two

pieces. The first 16 bits of the new IV are padded out to 24

bits in a way that avoids known weak keys. This 24-bit value

is used in the same way as for WEP systems. However,

rather than joining this value to the ordinary secret key, a

new mixed key is generated by merging together the secret

key and the remaining 32 bits of the IV (and some other

stuff, too). The way in which the long IV is incorporated into

the key, called per-packet key mixing, is described in more

detail later in this chapter and is shown in Figure 11.3. The

important thing to note here is that this approach allows us

to achieve two objectives:

[1]
 Or 104 bits when using the Wi-Fi 128-bit WEP mode.

The value of the key used for RC4 encryption is different

for every IV value.

The structure of the RC4 key is a 24-bit "old IV" field and

a 104-bit secret key field.

Figure 11.3. Creating the RC4

Encryption Key

These objectives have been achieved with the advantage of

a 48-bit IV value.

IV as a Sequence Counter�the TSC

WEP had no protection against replay attack. An enemy

could record a valid packet and play it back again later, in

the expectation that, if it decrypted correctly the first time,

it probably would do so again. In a replay attack, the enemy

doesn't attempt to decode your messages, but she does try

to guess what you are doing. In an extreme example, by

recording messages while you delete a file and replaying

them later, she could cause a file of the same name to be

deleted without ever breaking the encryption. Replay

prevention is designed to block old messages used in this

way. TKIP has a mechanism to enforce this called the TKIP

sequence counter (TSC).

In reality, the TSC and the IV value are the same thing. This

value always starts with 0 and increments by 1 for each

packet sent. Because the IV is guaranteed not to repeat for

a given key, we can prevent reply by ignoring any messages

with a TSC that we have already received. These rules mean

that it is not possible to mount a replay attack by recording

earlier messages and sending them again.

The simplest way to prevent replay attacks is to throw out

any received messages in which the TSC has not increased

by 1 compared to the last message. However, there are a

number of reasons why this simple approach would not work

in practice. First, it is possible for frames to be lost in

transmission due to interference and noise. If a frame with

TSC 1234 is received and then the next frame (1235) is lost,

the subsequent arriving frame would have a TSC of 1236, a

value that is 2 greater than the last TSC seen. Because of

the lost frame, all subsequent frames would get rejected on

the basis that the TSC did not increase by 1.

So let's revise the rule: throw out any messages that have a

TSC less than or equal to the last message. But what about

retransmission? According to the standard, frames must be

acknowledged by the receiver with a short ACK message. If

they are not acknowledged, the message should be

retransmitted with a bit set to indicate that it is a duplicate.

Being a repeat message, these will have the same TSC as

the original attempt. In practice, this works okay because

only one valid copy is needed at the receiving end so it is no

problem to throw out the duplicates when checking the TSC

at the receiver. The possibility of retransmissions illustrates

that duplicate TSCs should not always be treated as

evidence of an attack.

A more difficult problem arises due to a new concept called

burst-ack. In the original IEEE 802.11 standard, each data

frame sent must be acknowledged separately. While this

requirement is effective, it is somewhat inefficient because

the transmitter has to keep stopping and waiting for the ACK

message to be received before proceeding. The idea of

burst-ack is to send up to 16 frames in quick succession and

then allow the receiver to acknowledge all 16 in one

message. If some of the messages were not received

successfully, the receiver can specify which ones need to be

resent. Burst-ack has not yet been added to the standard,

but it is likely to be included in the future.

Can you see the problem from the perspective of the TSC?

Suppose 16 frames are sent, each with a TSC greater than

the last, and the receiver fails to get the first one. It then

requests that the first frame be resent, which would happen

with its original TSC value. This value would be 15 less than

the last frame received and would thus be rejected,

according to the rule of "TSC must be greater."

To accommodate this burst-ack, TKIP uses the concept of a

replay window. The receiver keeps track of the highest

TSC received and also the last 16 TSC values received.

When a new frame is received, it categorizes the frame as

one of three types:

ACCEPT: TSC is larger than the largest seen so far.

REJECT: TSC is less than the value of the largest�16.

WINDOW: TSC is less than the largest, but more than

the lower limit (largest�16).

For the WINDOW category, it checks to see whether a frame

with that TSC has been received before. If so, it rejects it.

The receiver must keep a record of the last 16 TSC values

and check them off as they are received.

This set of rules is more complicated than the simple test

we started with, but it effectively prevents replay attacks

while allowing the protocol to run efficiently.

Countering the FMS Attack

The most devastating attack against WEP was described in a

paper by Scott Fluhrer, Itsik Mantin, and Adi Shamirand and

is usually referred to as the FMS attack. This weakness

allows script tools to deduce the secret key by monitoring

the link. Let's take a (very) quick look at the attack.

The RC4 cipher generates a pseudorandom stream of bytes

that can be combined with the data to be encrypted so the

whole stream of data looks like random noise. To generate

the random sequence, RC4 uses a 256-byte array of values

that is reorganized into a different pattern between each

byte of random output. The 256-byte array is initialized

using the secret encryption key.

Certain key values, called weak keys, create a situation in

which the first few bytes of pseudorandom output are not all

that random. In other words, if a weak key were being used,

there would be a higher probability of certain values coming

out in the first few bytes. This fact is exploitable: If you know

a weak key is being used, you can work backwards to guess

the entire encryption key value just by looking at the first

few bytes from a collection of packets. WEP has this

particular weakness because it uses the IV value as the first

bytes of the key, and the IV value is visible to everyone. As

a result, a weak key will eventually be used, thereby giving

an enemy the basis for an attack.

Ron Rivest, the designer of RC4, recommended a simple

solution to this problem. You simply generate, and throw

away, 256 bytes of the random stream before you start

encrypting. This approach denies the attacker a chance to

get hold of the dangerous first few bytes and ensures that

the whole 256-byte array is fully churned up and no longer

contains any accessible key information. Well, this would be

a simple answer except that, for most of the Wi-Fi cards

shipped with WEP, the hardware assist in the MAC chip does

not support this solution. It is programmed to start using the

first random bytes as soon as they are ready.

Given this severe known weakness, and denied the

opportunity to resolve it in the recommended way, the

designers of TKIP decided on a two-pronged defense:

Try to avoid weak keys.

Try to further obscure the secret key.

The FMS attack depends on the ability of the attacker to

collect multiple samples of frames with weak keys. Only

about 60 frames are needed before the first bits of

information emerge and complete decoding of the key can

occur after a few million packets. So how to defeat the

attack? The approach adopted in TKIP is to change the

secret key with every packet.[2] If you take this approach,

the attacker can never get enough samples to attack any

given key. This sounds impractical, but in the next section

you will see how you can make this change even on older

adapter cards.

[2]
 With WEP the encryption key did change with each packet because it

contained the IV. However, the secret part of the key (excluding the IV)

was constant.

Another defense against FMS attack is to avoid using weak

keys at all. The problem is that no one knows for sure what

all the weak keys are. Cryptographers can say that a certain

type of key is weak�but they can't say that all the others are

strong. However, the following section on key mixing shows

that two bits in the IV are always fixed to a specific value to

avoid a well-known class of weak keys.

Some vendors have modified their WEP implementations to

avoid IVs that produce weak keys. However, there is another

problem with this approach. We already know that there are

not enough IV values available when the IV is 24 bits long. If

we now reduce the IV space still further, we reduce one

problem but make another one worse! This problem is

removed in TKIP simply by doubling the length of the IV.

This section focuses on the changes to the use of the IV in

TKIP. There are three significant changes: The length is

increased to 48 bits, the IV doubles up as a sequence

counter (the TSC), and the IV is combined with the secret

key in a more complicated way than WEP. The last feature

achieves two results: It enables the 48-bit IV to be

incorporated without changing the implementation

hardware and it avoids the use of a known class of weak

keys. The changes to the IV provide a significant amount of

extra security over WEP.

Per-Packet Key Mixing

The previous section explains that the basis of an FMS

attack is an enemy trying to guess the key based on

observing the first few bytes of the encrypted data. The

attacker needs to analyze quite a few frames to make a

reasonable guess. To defeat this attack (in its current known

form), the encryption key is changed for every packet sent.

After all, an enemy can't attack the key if it keeps changing.

This issue of "keys" is a little confusing. In the WEP scenario,

it was simple. There was a WEP key and it was used for

everything. If it was compromised, then all was lost. Such a

simple approach is not good enough for TKIP, so there are

multiple levels of keys derived from a single master key.

Session keys are derived from the master key. These keys

are then split into pieces for various uses, one of which is

encryption (for more detail, see Chapter 10). What per-

packet key mixing does is to further derive a key specifically

for each and every packet sent. In other words, at the level

of RC4, every packet uses a different, and apparently

unrelated, key. The session keys and master key do not, of

course, change every packet! In addition to making it harder

to mount attacks, the generation of a key per packet allows

the extended-length IV value to be incorporated.

The process of key derivation involves mixing together

various bits of information in a hash function. The result

produced bears no obvious relationship to the values you

start with; however, if both ends of a link start off with the

same information and use the same hash method, they will

produce the same result�in other words, matching keys.

The problem is that the computation to derive the key can

be processing intensive. There is not a lot of computing

power in the MAC chip of most WEP-based Wi-Fi cards. So,

on the face of it, deriving a new key for every packet might

seem infeasible. But there was another trick up the sleeve

of Doug Whiting and Russ Housley, the inventors of the key-

mixing scheme. The calculation was divided into two

phases. Phase 1 involves all the data that is relatively static,

such as the secret session key, the high order 32 bits of the

IV, and the MAC address. Phase 2 is a quicker computation

and includes the only item that changes every packet�the

low order 16 bits of the IV. Even in this case, the next IV

value is known so the processor can go off and compute one

or more mixed keys in advance, anticipating that a frame

will arrive shortly and need decrypting.

We briefly mentioned that the MAC address is included in

the computation of the mixed key. There is an excellent

reason for this inclusion. Two devices are communicating

using a shared session key, which means that the same

session is used for messages in both directions. A uses the

same session key to send messages to B as B does when

sending to A. But if both A and B start with an IV of 0 and

then increment the IV by 1 for each packet sent, you

immediately get IV collisions. They both are using the same

IV value with the same key. One way to avoid this problem is

for A to use only even IV values and B to use only odd

values, for example. However, this further reduces our IV

number space and doesn't help for broadcasts and

multicasts.

We do know that for A and B to work in the LAN, they must

have different MAC addresses. So by mixing the MAC

address into the per-packet key, we guarantee that even if

both devices use the same IV and the same session key, the

mixed key used by A in encrypting the packet will be

different from that used by B. Problem solved.

The process of combining the MAC address session key and

IV is shown in Figure 11.3. Notice how the lower bits of the

IV are only incorporated into the phase 2 computation so

the phase 1 computation only needs to be redone every 216

(that is, 65,536) packets. Only 16 bits of the new, long IV go

into the old WEP IV position. The middle byte of the old IV d

is computed by copying the first byte and setting certain

bits to fixed values to avoid creating a class of weak keys.

Details of the mixing algorithm for the two phases of the key

mixing are given later. However, at this point we have seen

the essentials of all the mechanisms that have been added

to TKIP to make it both secure and compatible with old WEP

systems.

All the problems with WEP have been solved in TKIP. The list

of weaknesses is completely covered. The solutions used

allow backwards implementation on WEP hardware�an

example of excellent engineering: not just finding a good

solution, but finding one within severe and sometimes

perverse constraints. The following section revisits the

concepts described so far in this chapter and looks at the

details at implementation issues.

TKIP Implementation Details

This section gets into the details of how the TKIP algorithm

is implemented. This may be of interest only if you yourself

are a designer. If you don't need to know these details but

still want to read on, we admire your dedication!

The first assumption we make is that master keys have

been distributed and session keys derived on both sides of

the communications link. The master keys could have been

obtained using an upper layer authentication method based

on EAP, or preshared master keys could be in use. The latter

case is analogous to the WEP approach, in which keys are

distributed out of band and programmed, or simply typed,

into the devices. This approach could be used for smaller

networks or ad-hoc mode (IBSS) operation.

Chapter 10 describes the way in which the keys are derived.

As noted in that chapter, three types of key are derived for

TKIP:

Key to protect the EAPOL-Key exchange messages

Pairwise key to be used for actual message protection

using TKIP

Group key to protect broadcasts using TKIP

It is the second two types of key information that we are

interested in here. From the pairwise key information are

derived temporal keys:

Temporal Encryption key (128 bit): This is used as an

input to the key mixing stage prior to actual RC4

encryption.

Temporal Authenticator TX MIC key: This is used with the

Michael authentication method to create the MIC on

frames transmitted by the authenticator (access point in

ESS network).

Temporal Authenticator RX MIC key: This is used with

Michael to create the MIC on frames transmitted by the

supplicant (typically the mobile device).

For the group keys, only the first two types of key need be

derived because broadcasts (and multicasts) are sent out

only by the authenticator and never by the supplicant.

TKIP's task is to provide a security service for validating the

integrity of received data and to obscure transmitted data

beyond recognition. To accomplish this, TKIP employs a set

of tools:

IV generation and checking

MIC generation and checking

Encryption and decryption

For the transmit side, the position of these components

relative to other MAC activities is shown in Figure 11.4. The

four processes of TKIP are shown as follows:

Michael

Key derivation

IV/TSC

RC4

Figure 11.4. TKIP Role in

Transmission

Note that the integrity check value is computed over, and

appended to, the MSDU prior to fragmentation. As a result,

the check value bytes are present only in the last MPDU and

are within the encrypted payload. The original (WEP)

checkword, the ICV, is still computed and appended to each

MPDU, although it is not included as part of TKIP packet

integrity checking.

Because the MIC is computed at the MSDU level, it is not

possible to include the IV value in the MIC computation for

two reasons. First, because the MSDU might be fragmented,

there might be multiple values of IV used to send the

fragments of the MSDU, so which value of IV would you

choose? Second, the value for the IV must not be selected

until after the fragment is removed from the transmission

queues. In future to support multimedia, IEEE 802.11e could

have up to eight priority queues for outbound frames and

the order in which fragments are selected for transmission

depends on many factors related to priority and real-time

constraints. Therefore, MSDUs of higher priority can

overtake a previous MSDU or even interrupt it between

fragments. In TKIP, we have only one IV counter for the

whole link (and not one per queue), and so the assignment

of the IV value has to wait until the last moment, when a

fragment is selected for transmission. As a result, the value

cannot be known when the MIC is calculated

Computing the MIC at the MSDU level, and not protecting

the IV, allows an attacker to block a station by replaying old

frames with a new IV value. The problem arises because the

IV doubles up as the TKIP sequence counter (TSC) used to

avoid replay attacks. Such forged frames will, of course, fail

to decrypt correctly and be discarded. They do not threaten

the integrity of the protocol. However, the effect is to make

subsequent valid frames look like a replay attack. When a

valid frame arrives, it might be rejected because the TSC

value has been "used up" by the attacking station. This is a

class of denial-of-service attack. In wireless, there are

many simple ways to deny service that cannot be prevented

and do present a potential nuisance.

The Encryption box shown in Figure 11.4 is assumed to be

the same RC4 encryption used in WEP. Most manufacturers

implemented this box in a way that can't be changed by

firmware upgrades. Existing WEP equipment often includes

hardware initialization of the RC4 S-Box. The fact that this

unit could not be changed was the biggest problem for the

design of TKIP.

Before looking at each of the TKIP elements in detail, let's

look at the corresponding receive chain, as shown in Figure

11.5.

Figure 11.5. TKIP Role in Reception

The receive chain is not quite the reverse of the transmit

chain. For one thing, decryption is not the first operation.

Instead, the TSC (derived from the IV) is checked as a replay

defense. Note that the ICV value is checked and used to

reject the packet. This is not technically an integrity check,

but it is a quick indication of whether the decryption has

been successful: Decrypting a packet with the wrong key or

IV values is almost certain to produce a bad ICV value.

The MIC is checked after all the fragments have been

received and reassembled into an MSDU. Note that if the

MIC fails, not only will the MSDU be discarded but

countermeasures may be invoked. Although possible, it is

extremely unlikely that random errors in transmission would

be such that the frame would pass the CRC check and then

decrypt to produce an acceptable ICV. If we receive a MIC

failure, we can be very sure that it is due to intentional

tampering and not just random interference or transmission

errors.

clbr://internal.invalid/book/0321136209_24031533.html

Message Integrity�Michael

Michael works by computing an 8-byte check value called

the message integrity code (MIC) and appending this to the

MSDU prior to transmission. The MIC is computed over the

entire (unencrypted) data in the frame and also the source

and destination MAC addresses. Michael was invented by

Neils Ferguson (2002) and was designed specifically to

address the special needs of TKIP, in particular the need to

be implemented using a relatively low power processor and

without high-speed hardware multiply.

The adoption of Michael by the standards group was

somewhat controversial. The algorithm is new, and "new" is

considered a bad word by cryptographers. Cryptographers

like well-studied algorithms. Furthermore, the security level,

measured by the equivalent key bit size, is low�the design

goal is only 20 bits of security, so a randomly chosen MIC

value has about a one in a million chance of being accepted

as valid. One in a million is not considered to be very rare by

cryptographic standards. As a result of this weakness,

mandatory countermeasures were added to stop an attacker

from making rapidly repeating attempts with random MIC

value.

There are several well-known ways to implement a MIC with

very high levels of security; the problem is that these

methods are just too processing intensive to be run by older

equipment already in the field. Because the whole point of

TKIP was to allow upgrade of that equipment, these

attractive methods were simply not viable. The weaknesses

of Michael are in no way criticisms. The IEEE 802.11 task

group (i) could have chosen to design an approach as strong

as any known. The weaknesses come from the need to

design an approach that could be used with existing WEP

hardware. In the end, the standards group felt that this was

the best solution within these constraints and that the

countermeasures overcome any risk from attacks on the

basic method.

Countermeasures

Let's elaborate on what is meant by countermeasures.

Suppose you are an attacker and you want to get a forged

message past the MIC check. The most likely scenario is

that you have captured a previous message and modified it

in some way. You want the modification to go unnoticed. It is

already going to be hard to get the message accepted to

the point at which the MIC value is even checked�you have

to get past the IV replay protection and the ICV decryption

check first. But let's suppose you have figured out how to do

that. The 8-byte MIC value is encrypted in the frame along

with the data so you won't know what the original value is.

However, you do know where it is because RC4 encrypts

each byte separately and therefore you are able to

substitute random values into the field where you know the

MIC bytes will be. When the message is decrypted, your

inserted random bytes will certainly be changed to another

value. However, because they are random, you don't really

care about that. You just think about that one in a million

chance that the inserted bytes will happen to be right.

In most cases your replacement MIC bytes will not match

the message contents and the message will be thrown away.

However, there is a small chance that the bytes will match

the message and, bingo, you've succeeded in your attack.

The message is delivered as valid despite having been

altered.

A chance of one in a million doesn't sound too good; but

remember, people do actually win the lottery, although it

will never (statistically) be you. If an attacker is able to try

this trick a million times, all the odds change. Sooner or

later, the attack will succeed if it is not detected. The

purpose of countermeasures is to detect such an attack and

stop the attacker having too many plays at the game.

The purpose of countermeasures with Michael is to reliably

detect an attack and close down communication to the

attacked station for a period of one minute. This simple

action limits the attacker to one try per minute, meaning

that on average it would take one year of continuous trying

to get a random packet through. Unless you have a

particularly bad network administration department,

someone will notice the network going up and down once

per minute all year long ("ours wouldn't," I hear some cynics

say).

The actual countermeasures used with Michael are a little

more sophisticated. The object is to prevent the attacker

from making repeated attacks, but also to try to keep the

network going as long as possible. We don't want to tear

everything down on the first detected problem.

The approach is to disable the keys for a link as soon as the

attack is detected. The compromised devices are then

unable to communicate until new keys are generated.

Typically the new keys are generated immediately and the

network can recover quickly. However, Michael has a 60-

second "blackout" rule that says that, if there has been any

MIC attack within the last 60 seconds, generation of new

keys must be delayed until the 60-second period has

expired. This limits the attacker to one try per minute for the

entire network.

MIC Failure at Mobile Device

There are two cases in which the supplicant (in the mobile

device) can detect a MIC failure. The first is received

multicasts (broadcasts) that indicate an attack on the group

keys. The other is received unicast messages in which a

failure indicates an attack on the pairwise keys. The

required behavior is similar in both cases:

For a MIC failure on a multicast message:

1. Delete the local copy of the group key.

Request a new copy of the group key from the authenticator

using an EAPOL message (indicates MIC failure).

Log the event and inform system manager if possible.

For a MIC failure on a unicast message:

1. Drop any received frames and block any

transmitted frames except for IEEE 802.1X

messages (to allow new key exchange).

Request new pairwise keys by sending EAPOL message to

the authenticator.

Log the event and notify the operator if possible.

MIC Failure at Access Point

Although the access point does not receive multicast

messages (and hence can't discover a MIC failure for the

group key), there are still two cases to consider. The first is a

MIC failure detected in a received unicast message, and the

second is notification of a group key MIC failure due to

receiving an EAPOL key message from a mobile device. The

actions to take in each case are as follows:

For a MIC failure related to the group key

1. Delete the existing group key and stop sending

multicast messages.

Log the event and notify the operator.

If there has been another MIC failure within the last 60

seconds, wait until the 60-second blackout period expires.

Create a new group key and distribute to all stations.

For a MIC failure related to pairwise keys:

1. Log the event and notify the system operator.

Drop any received frames and block any transmitted frames

except IEEE 802.1X messages (to allow new key exchange).

If there has been another MIC failure within the last 60

seconds, wait until the 60-second blackout period expires.

Initiate a four-way key exchange to establish new pairwise

keys.

On first encountering these countermeasures, many people

express a concern that an attacker could cause untold

disruption to the network. On the face of it, if an attacker

sends a forged multicast message every 59 seconds, the

network would be permanently in blackout period and

unable to operate. In principle, this is true and is another

class of denial-of-service attack. However, it is important to

note that, in practice, it is extremely difficult to forge a

frame to do this. The frame must first pass the TSC check

and must decrypt correctly before the MIC is even looked at.

Consider these issues:

1. You have to forge a frame where the TSC (TKIP

sequence counter) is correct so the frame is not

immediately dropped as "out of sequence."

The TSC is also part of the IV, and the IV is mixed into the

per-packet encryption key. So if you change the TSC, the

frame will not decrypt correctly; the ICV will not give a good

value and the frame will be deleted.

So to mount the denial-of-service attack, you have to

capture a valid frame during transmission, prevent it being

delivered to its intended destination, modify the MIC (to

make it invalid), recompute the ICV so that it matches the

changed MIC value, and finally deliver the message so as to

trigger the MIC failure.

Frankly there are many ways to the mount denial-of-service

attacks, and most of them are much simpler than trying to

trigger the Michael countermeasures. The simplest way to

mount a DoS attack is just to send disassociate messages

for each of the connected stations. By its very nature,

wireless communications is subject to DoS attack. Look at

the way the Soviet Union successfully denied its population

access to western TV stations by jamming. DoS is a service

attack rather than a security attack; and while the

countermeasures give one more mechanism, triggering

countermeasures is by no means the easiest approach for

the enemy.

Computation of the MIC

The computation of the MIC in Michael uses only

substitutions, rotations, and exclusive OR operations. There

are no multiplies. The units of data that are handled are

based on 32-bit words. These characteristics make the

method suitable for implementation on lower-power

processors. Many of the access points shipped between

1998 and 2002 were based on low-cost 32-bit CISC

processors such as the Intel I486. Consistent with this,

operations that are endian dependent are defined to be little

endian (as for Intel processors).

The data to be protected by the MIC includes the actual

payload and the source and destination address fields.

These are ordered as shown in Figure 11.6.

Figure 11.6. Data for MIC

Computation

The first part of the algorithm is to organize the data into

32-bit words. This is done for both the key and the data. The

64-bit key is divided into two 32-bit words called K0 and K1.

This task must be done in the right order and is designed to

be easy for Intel x86 processors. The conversion to two 32-

bit words is shown in Figure 11.7 where the 64-bit key is

treated as 8 bytes, stored sequentially in memory.

Figure 11.7. Little Endian Key

Splitting

The least significant byte of the information is always stored

in the lowest memory address and K0 is stored lower than

K1. After splitting the key, the data must also be split into

32-bit words. To guarantee this, the data must be padded to

a multiple of 4 bytes. First, a single byte value of 0x5a is

added to the end of the data. Finally, extra pad bytes with a

value of 0 are added. At least four 0 bytes must be added

and the total length of the data must be a multiple of 4

bytes. Thus, between four and seven zeros are always

added.

As an example, if the original user data was 1 byte:

MSDU data is 13 bytes (two 6-byte addresses plus 1

user data byte).

Value 0x5a is added to give 14 bytes.

Six 0 bytes are added, giving a total of 20 bytes (5 x 32-

bit words) to be processed by Michael.

Note that these extra bytes are not really added to the data

or ever sent over the link. They are just added for the

purpose of computing the MIC and are then discarded. Now

we have two 32-bit key words K0, K1, and a set of data

words M0, M1… Mn. The last word Mn is always 0 and the

second to last word is always non zero (because of the 0x5a

that was added). Our object is to compute a 64-bit MIC

value comprising two 32-bit words, V0 and V1, which will be

appended to the data prior to encryption.

The algorithm works as follows:

1. Make a copy of the key: l = K0 and r = K1.

Exclusive OR the first data word M0 with l.

Call the Michael block function with the values of l and r;

new values are returned.

Repeat steps 2 and 3 for all the remaining data blocks.

The final values of l and r form the MIC result V0 and V1,

respectively. In programming language style, this sequence

can be represented as follows::

(l, r) (K0, K1)

for i=0 to N-1 do

 l l Mi

 (l, r) FnMichael(l, r)

V0 = l

V1 = r

The Michael block function FnMichael takes two words (l, r),

processes them together, and produces two new values of

(l, r). The details of the computations are provided in

programming language style here:

(l, r) FnMichael (l, r)

r r (l <<< 17)

l (l + r) mod 232

r r XSWAP(l)

l (l + r) mod 232

r r (l <<< 3)

l (l + r) mod 232

r r (l >>> 2)

l (l + r) mod 232

return (l, r)

The key to the operations here is:

: Exclusive OR

+: twos compliment addition

<<<: rotate left

>>>: rotate right

mod(2n): discard any bits of higher significance than n

XSWAP: given a 32-bit word, swap the lower 16 bits

and the upper 16 bits (hexadecimal 12345678

becomes 56781234)

The resulting two words can now be appended onto the

actual MSDU data (nonpadded) as 8 bytes of extra data.

Notice that, because this process occurs at the MSDU level,

it is completely transparent to the rest of the 802.11 MAC

and encryption.

Per-Packet Key Mixing

The key-mixing function creates a new key for every packet

transmitted. It was introduced for two reasons:

As a way to protect against RC4 weak key attacks. The

recommended defense (discard the first 256 bytes of

key stream) was not possible in existing deployed

hardware.

As a way to incorporate the extra bits of the extended

IV.

The approach is to combine the session key, the IV and the

source MAC address together with a hash function to

produce a mixed key. Including the source MAC address

provides added protection against forgery and also

separates out the key space of the two communicating

devices that share the session key.

Performing a hash operation for every packet to be

encrypted or decrypted is a major overhead and hard work

for the low-power MAC processor typical in earlier Wi-Fi LAN

systems. To ease the burden, the mixing has been divided

into two phases. During phase 1, the session key and source

address are hashed. The result remains constant during the

session. In phase 2, performed for every packet, the IV is

mixed with the result of the first phase to produce an

encryption key. This key is then used to initialize the RC4

encryption hardware.

Note that even the second part of the key-mixing

computation can be performed in advance because the IV

increases monotonically. Therefore, a station knows which

values of IV will be coming up shortly and could precompute

a number of keys in advance. This step avoids the need for

a real-time computation when a packet is received. The two

phases of key mixing are shown in Figure 11.3. As you can

see in this figure, 104 bits of mixed key material are needed

to form the total RC4 key of 128 bits when the IV is added.

There is nothing very glamorous about the computations for

the key mixing but let's quickly look at the algorithm.

The inputs to the computation are abbreviated:

TSC = TKIP Sequence Counter (48 bits)

TSCU = Upper 32 bits of TSC (32 bits)

TSCL = Lower 16 bits of TSC (16 bits)

TA = Transmitter address, the MAC address of the

encrypting station (48 bits)

TK = The temporal session key (128 bits)

P1K = Output of the first phase (80 bits)

P2K = Output of the second phase (128 bits); this

becomes the RC4Key.

The two phases can be written as the following functions:

P1K Phase1(TA, TSCU, TK)

P2K Phase2(P1K, TSCL, TK)

When the system starts up or a new key exchange occurs,

the TSC is reset to 0. The system typically computes the

value of P1K right away and stores it for use in generating

P2K. P1K needs to be recomputed every time TSCU

changes, which is every 65536 packets. There is no reason

why the next value of P1K can't be computed in advance so

there will be no delay when TCSU actually changes.

Substitution Table or S-Box

Both phase 1 and phase 2 require a byte substitution table

or S-box. The substitution table is to the computer what

logarithm tables used to be to schoolchildren before

calculators.[3] You take a value and look up a corresponding

value in a table. The calculations have been done in

advance to determine the correct values in the table. A

typical substitution table for a byte value is 256 bytes long

so there is one entry for each value of the byte.

[3]
 This is true for the S-box of RC-4, which is generated by computation.

However, unlike log-tables, S-boxes for other algorithms may contain

values that are not mathematically generated.

However, key mixing uses 16-bit word values. A full

substitution table for a 16-bit value would be 216 or 65,336

words long�a total of 128Kbytes! However, this full table is

needed only if you want to be able to have a reversible

function and create a second table that will "undo" the

substitution and get you back where you started. You do not

need such a table for hashing functions; in fact, this type of

reversal is something you want to prevent. Therefore, the

key-mixing algorithm uses a partial substitution table with

512 word entries, which you can think of as two tables, each

with 256 words. To make the substitution for a 16-bit word

X, we use the upper byte of X as an index into the first table

and the lower byte of X as an index into the second table.

Then we exclusive OR the two words from the tables to

produce a final 16-bit word substitution. This is denoted in

the algorithm by the function:

i = S[j]

where i is the result of substituting for j.

The 512 values for the substitution table are listed in the

standard. The same substation tables must be used by

everyone for this approach to work.

Phase 1 Computation

The output of phase 1 is only 80 bits long (not 128), but it

uses all 128 bits of the temporal key in the computation.

The result is computed in an array of five 16-bit words called

P1K0, P1K1, P1K2, P1K3, and P1K4. The following terminology

is used in the algorithm:

TSC1 = bits 16�31 of the TSC (the middle 16 bits)

TSC2 = bits 32�47 of the TSC (the upper 16 bits)

TAn = nth byte of the encrypting station's MAC address

(TA0 = lowest byte, TA5 = highest byte)

TKn = nth byte of the temporal key

(TK0 = lowest byte, TK5 = highest byte)

the expression X Y is used to denote combining two bytes

into a 16-bit word so that:

X Y = 256*X + Y

S[] denotes the result from the 16-bit substitution table:

PHASE1_STEP1

 P1K0 = TSC1

 P1K1 = TSC2

 P1K2 = TA1 TA0

 P1K3 = TA3 TA2

 P1K4 = TA5 TA4

PHASE1_STEP2:

 FOR i = 0 to 3

 BEGIN

 P1K0 = P1K0 + S[P1K4 (TK1 TK0)]

 P1K1 = P1K1 + S[P1K0 (TK5 TK4)]

 P1K2 = P1K2 + S[P1K1 (TK9 TK8)]

 P1K3 = P1K3 + S[P1K2 (TK13 TK12)]

 P1K4 = P1K4 + S[P1K3 (TK1 TK0)] + i

 P1K0 = P1K0 + S[P1K4 (TK3 TK2)]

 P1K1 = P1K1 + S[P1K0 (TK7 TK6)]

 P1K2 = P1K2 + S[P1K1 (TK11 TK10)]

 P1K3 = P1K3 + S[P1K2 (TK15 TK14)]

 P1K4 = P1K4 + S[P1K3 (TK3 TK2)] + 2*i

+ 1

END

Although this is quite a bit of computation�certainly more

than in phase 2�the arithmetic comprises entirely shifts,

adds, and exclusive OR operations.

Phase 2 Computation

On the face of it, phase 2 looks more complicated than

phase 1. However, although there are more steps, there is

no repeating loop in the computation. The result is

computed in an array of six 16-bits words called: PPK0, PPK1,

PPK2, PPK3, and PPK4. The following terminology is used in

the algorithm:

P1Kn = output words from phase 1

TSC0 = bits 0 - 15 of the TSC (the lower 16 bits)

TKn = nth byte of the temporal key

(TK0 = lowest byte, TK5 = highest byte)

The expression X Y is used to denote combining two bytes

into a 16-bit word so that:

X Y = 256*X + Y

The expression >>>(word) means that the 16-bit word is

rotated one place right.

The expression (word) means that the 16-bit word is

shifted one place right.

S[] denotes the result from the 16-bit substitution table.

RC4Keyn means the nth byte of the RC4 key used for

encryption.

PHASE2,STEP1:

 PPK0 = P1K0

 PPK1 = P1K1

 PPK2 = P1K2

 PPK3 = P1K3

 PPK4 = P1K4

 PPK5 = P1K5 + TSC0

PHASE2,STEP2:

 PPK0 = PPK0 + S[PPK5 (TK1 TK0)]

 PPK1 = PPK1 + S[PPK0 (TK3 TK2)]

 PPK2 = PPK2 + S[PPK1 (TK5 TK4)]

 PPK3 = PPK3 + S[PPK2 (TK7 TK6)]

 PPK4 = PPK4 + S[PPK3 (TK9 TK8)]

 PPK5 = PPK5 + S[PPK4 (TK11 TK10)]

 PPK0 = PPK0 + >>>(PPK5 (TK13 TK12))

 PPK1 = PPK1 + >>>(PPK0 (TK15 TK14))

 PPK2 = PPK2 + >>>(PPK1)

 PPK3 = PPK3 + >>>(PPK2)

 PPK4 = PPK4 + >>>(PPK3)

 PPK5 = PPK5 + >>>(PPK4)

PHASE2,STEP3:

 RC4Key0 = UpperByte(TSC0)

 RC4Key1 = (UpperByte (TSC0) | 0x20) & 0x7F

 RC4Key2 = LowerByte(TSC0)

 RC4Key3 = LowerByte ((PPK5 (TK1 TK0))

 RC4Key4 = LowerByte (PPK0)

 RC4Key5 = UpperByte (PPK0)

 RC4Key6 = LowerByte (PPK1)

 RC4Key7 = UpperByte (PPK1)

 RC4Key8 = LowerByte (PPK2)

 RC4Key9 = UpperByte (PPK2)

 RC4Key10 = LowerByte (PPK3)

 RC4Key11 = UpperByte (PPK3)

 RC4Key12 = LowerByte (PPK4)

 RC4Key13 = UpperByte (PPK4)

 RC4Key14 = LowerByte (PPK5)

 RC4Key15 = UpperByte (PPK5)

The final output of phase 2 is an array of 16 bytes

containing the RC4 key to be used in encryption. This can be

loaded into the legacy WEP encryption engine prior to

processing the MPDU for transmission. The first 3 bytes of

this key are transmitted as the WEP IV field (24 bits) and

contain the lower 16 bits of the TKIP IV value and the TSC.

The second byte of the WEP IV is a repeat of the first byte,

except that bit 5 is forced to 1 and bit 4 is forced to 0.

Forcing these bits prevents generation of the major class of

weak keys. This byte is ignored on receipt.

Summary

This chapter describes how the designers started with the

limitations of existing WEP systems and devised a whole

new security protocol to fit. TKIP is a masterpiece of retro-

engineering and provides real security in a way that WEP

never could. All the major weaknesses of WEP have been

addressed, including weak key attacks, lack of tamper

detection, lack of replay protection, and others.

Furthermore, TKIP has been designed by some of the most

eminent experts in the field and confidence in the integrity

of the solution is high.

Still, there is no doubt that TKIP is a compromise. The

necessary simplicity of the Michael integrity protection

means that network disruptive countermeasures are

necessary. Also, although the weak key vulnerability has

been mitigated by the key-mixing approach, the

fundamental weakness in the first bytes of the RC4 key

stream is still there and might in future be compromised in

some way. It seems unlikely now, but it could happen.

Assuming no cracks show up, it seems likely that TKIP will

be around for a long time and that new systems will also

provide support, not just old WEP systems. However, there

are a number of reasons why completely new users might

want to consider the use of AES-based security, as

described in the next chapter.

Chapter 12. AES�CCMP

AES�CCMP is the strongest security in development for IEEE

802.11i. This chapter looks at why AES was chosen and at

its credentials as an encryption algorithm. Security systems

use AES in conjunction with an operating mode; some of the

simpler and more common modes are covered here. We

then introduce CCMP, the protocol used with IEEE 802.11,

and explain how it is implemented in practice. This chapter

shows how CCMP fits into the IEEE 802.11 framework and

provides state-of-the-art security for the most demanding

users.

clbr://internal.invalid/book/0321136209_24031533.html

Introduction

Chapter 11 looked in detail at TKIP, one of the options for

implementing encryption and message authentication under

RSN. TKIP, which is mandatory to implement for WPA, will be

widely used for Wi-Fi LAN security due to its ability to be

used on older WEP cards. However, it is not the default

mode for IEEE 802.11i. The default mode is based on a block

ciphersuite called the Advanced Encryption Standard or

AES. AES-based security can generally be considered as

stronger than TKIP-based security. This is not to say that

TKIP is inadequate. In reality, TKIP is extremely strong and

quite suitable for commercial applications. So why was an

AES-based solution defined? And what does it mean to say

that it is more secure? The answers to these questions and a

detailed look at how AES�CCMP works are provided in this

chapter.

First, let's clarify what we mean when we talk about RSN

using AES. AES is not a security protocol; it is a block cipher.

In RSN the security protocol built around AES is called

Counter Mode�CBC MAC Protocol, or CCMP. CCMP defines a

set of rules that use the AES block cipher to enable the

encryption and protection of IEEE 802.11 frames of data.

AES is to CCMP what RC4 is to TKIP.

One reason that CCMP is considered stronger than TKIP is

that it was designed from the ground up to provide security

for IEEE 802.11. The designers took a clean sheet of paper

and created CCMP using the best-known techniques. By

contrast, TKIP is a compromise, designed to accommodate

existing WEP hardware and some aspects of TKIP, notably

the Michael integrity protocol, are known to be vulnerable.

Why AES?

When the IEEE 802.11 security task group started work in

2000, its goal was to create a solution that was really secure

in all the ways discussed in the first section of this book. It

was known at that time that WEP was not very secure,

although the really devastating attacks on WEP were only

discovered later.

One of the important tasks of the group was to select an

encryption algorithm for the new security standard. The

encryption algorithm is the root of security. It takes known

data and converts it into random-looking ciphertext. By

itself, an encryption algorithm is by no means sufficient for

implementing secure communications: An entire security

protocol must be defined for that purpose. However, the

encryption algorithm is at the heart of all the operations. If

your encryption algorithm requires too much processing

power, too much memory, or, in the worst scenario, can be

compromised, all the other complexity you built into the

security protocol will not produce a useful solution.

The timing of the task group on this decision was good

because another agency had been considering the same

question for a while. No less than the U.S. National Institute

for Science and Technology (NIST) had been looking for an

encryption method for the U.S. government and other

agencies in a range of security applications. NIST's approach

was to hold a sort of competition in which the best experts

from around the world submitted a proposal and methods.

Eventually, this process resulted in the selection of a

method and the approval of a standard, FIPS 197 specifying

AES (NIST, 2002). NIST's own announcement is so well

written that I include the first part here so you can read the

details for yourself:

DEPARTMENT OF COMMERCE

National Institute of Standards and Technology

[Docket No. 000929280�1201�01]

RIN 0693�ZA42

Announcing Approval of Federal Information

Processing Standard

(FIPS) 197, Advanced Encryption Standard (AES)

AGENCY: National Institute of Standards and Technology

(NIST), Commerce.

ACTION: Notice.

The Secretary of Commerce approves FIPS 197,

Advanced Encryption Standard (AES), and makes it

compulsory and binding on Federal agencies for the

protection of sensitive, unclassified information. A new

robust encryption algorithm was needed to replace the

aging Data Encryption Standard (FIPS 46�3), which

had been developed in the 1970s. In September 1997,

NIST issued a Federal Register notice soliciting an

unclassified, publicly disclosed encryption algorithm

that would be available royalty-free worldwide.

Following the submission of 15 candidate algorithms

and three publicly held conferences to discuss and

analyze the candidates, the field was narrowed to five

candidates. NIST continued to study all available

information and analyses about the candidate

algorithms, and selected one of the algorithms, the

Rijndael algorithm, to propose for the AES.

EFFECTIVE DATE: This standard is effective May 26, 2002.

FOR FURTHER INFORMATION CONTACT: Ms. Elaine Barker, (301)

975�2911, National Institute of Standards and

Technology, 10 Bureau Drive, STOP 8930,

Gaithersburg, MD 20899�8930.

A copy of FIPS 197 is available electronically from the

NIST web site at:

<http://csrc.nist.gov/encryption/aes/index.html/>.

The IEEE 802.11 task group decided to adopt AES as its core

encryption protocol. One benefit of the choice was high

confidence that the method is secure, given the amount of

review it has received in the NIST selection process.

However, there were other less obvious benefits, too.

Encryption technology is subject to export control in the

United States and other countries. By using a method that is

well understood by government agencies, applications for

export licenses are more easily processed.

The selection of AES for IEEE 802.11i was made before all

the trouble with WEP became well known. The expectation

was that AES-based solutions would gradually replace WEP

as the new standard became deployed. It was not expected

that existing Wi-Fi LAN adapters would be upgraded to AES.

In most cases, this would not be practical because the

hardware needed to implement AES is different from that

needed for RC4. However, when the flaws of WEP became

known, there was a sudden need to upgrade all the existing

hardware and this led to the creation and deployment of

TKIP. As a result, we now have three potential solutions:

http://csrc.nist.gov/encryption/aes/index.html/default.htm

WEP, TKIP, and CCMP. There is a lot in common between

WPA/TKIP and RSN/CCMP�based systems. Key management,

for example, is almost entirely the same. The biggest

differences occur at the low layers where the data is

encrypted and decrypted. We start by looking at the cipher

AES, and how it can be applied to real data.

clbr://internal.invalid/book/0321136209_24031533.html

AES Overview

AES is a block cipher. Using mathematical and logical

operations, the method combines a key and a 128-bit block

of data (unencrypted) to produce a block of different data

(encrypted). For all practical purposes, it is impossible

perform this transform if you don't know the key. AES is

reversible (that is, you can convert back to the original data

using decryption), which is useful, but not essential to all

security protocols. The encrypted and unencrypted blocks

are exactly the same size. The conversion of a single block

of 128 bits of data is all that AES does�but it does it quite

efficiently and is extremely secure. It is very unlikely that

any fundamental weakness will be discovered in future.

AES is based on the Rijndael algorithm, invented by Joan

Daeman and Vincent Rijmen. This algorithm is very well

documented, including the algorithm and implementation

details (Daeman and Rijmen, 2000, 2001). The overview in

this book provides a flavor of the method and does not

attempt to provide any mathematical justification, although

it is necessary to look at some of the quirky arithmetic

involved.

The Rijndael algorithm allows for a selection of block sizes

and key sizes. The choices are 128, 192, or 256 bits for

each. When NIST adopted Rijndael for AES, it specified only

one block size, 128 bits, but retained the choice of three key

lengths. IEEE 802.11i goes one step further and restricts

both the key size and the block length to 128 bits. This

simplifies implementation and relieves the users of having

to make yet another choice during installation.

Modes of Operation

You can use AES to encrypt and decrypt a single fixed length

block of data. However, in practice real messages do not

occur as fixed-length blocks. Wi-Fi LAN data, for example, is

transmitted in frames of various different lengths, typically

between 512 to 12,000 bits in each frame. Therefore, to

make use of a block cipher like AES, you need to define a

way of converting an arbitrary-length message into a

sequence of fixed-length blocks prior to encryption.

Similarly, the method has to enable you to reassemble

messages from blocks during decryption. The method used

to convert between messages and blocks is referred to as

the block cipher's mode of operation.

There are quite a few different modes that can be used in

conjunction with AES. NIST, for example, has a list of 16

different approaches on its Web site and is open for more

proposals. The choice of the mode is very important

because it has implications both for the complexity of

implementation and also for security. Bad modes can create

security loopholes even though the underlying AES

encryption is so strong.

CCMP uses a mode called CCM, which itself is based on

counter mode. Before looking at these modes, let's consider

the issue of message authenticity. AES provides a method

for encrypting data, obscuring the content so it cannot be

read by an attacker. However, and just as important, the

receiver needs to know that the message is authentic�that

it has not been modified. This is usually accomplished by

adding a message integrity code (MIC).[1] For efficiency, we

want this MIC to be computed using the AES encryption

algorithm so it makes sense that the operating mode should

define how to provide both encryption and authenticity.

[1]
 The term "MAC" is widely used in cryptography, but IEEE 802.11i (and

other chapters in this book) use the term MIC instead because the

acronym MAC is already used.

To understand modes of operation, we start by reviewing

one of the most simple and intuitive modes: Electronic Code

Book (ECB). The mode is generally indicated by being

placed after the letters "AES" so a system using Electronic

Code Book described as AES/ECB.

Electronic Code Book (ECB)

ECB mode (Menezes et al., 1996; Schneier, 1996) simply

takes a piece off the input message one block at a time and

encrypts each block sequentially using the same key until

no more pieces are left. This process is shown in Figure 12.1,

which displays the computation for both serial (one block at

a time) and parallel encryption.

Figure 12.1. ECB Operating Mode

This approach sounds simple, but it has a couple of

problems. The most obvious is that the message may not be

an exact multiple of the block size so you have to pad out

any partial block at the end and remember the real length.

However, there is also a security problem: If two blocks have

the same data, the encrypted result of the two blocks will

also be the same, giving information to any onlooker.

Consider a message composed of a string of the same letter

repeated 64 times, for example, "AAAAAAA…". If the AES

block size is 128 bits (16 bytes), then using ECB would break

down the message to four blocks, each with a string of 16

A's. After encryption, the four blocks would each produce

identical ciphertext, informing an onlooker that this

message has a repeating pattern. Because of this weakness

(and others), practical systems do not use ECB. It is not, for

example, on the list of NIST-recommended modes. Even the

strongest block cipher cannot protect against weaknesses in

the mode.

Counter Mode

Counter mode is more complicated that ECB and operates in

quite a different way. It does not use the AES block cipher

directly to encrypt the data. Instead, it encrypts the value of

an arbitrary value called the counter and then XORs the

result with the data to produce ciphertext. The counter is

generally incremented by 1 for each successive block

processed�hence the name. This process is shown in Figure

12.2.

Figure 12.2. Example of Counter

Mode

In this example the message is divided into blocks, and each

block is XORed, with the result of encrypting the counter

value using AES. In Figure 12.2 the counter starts at 1 and

increments up to 11. In practice, the counter might start at

an arbitrary value and might increment by some other value

or pattern. The important thing is that the receiving party

who wants to decrypt the message must know the starting

value of the counter and the rules for advancing it.

Because the counter changes value for each block, the

problem seen in ECB with repeating blocks is avoided. Even

if two blocks of data were identical, they would be combined

with a different counter value to produce different

ciphertext. However, as presented, this method would still

encrypt two identical, but separate, messages to the same

result. This is why, in practice, the counter does not start at

1. Typically, it is initialized from a nonce value that changes

for each successive message.

Counter mode has some interesting properties. Decryption

is exactly the same process as encryption because XORing

the same value twice takes you back to the original value.[2]

This means that implementations only need to implement

the AES encryption block (and not the decryption block).

The other useful feature, for some applications, is that the

encryption can be done completely in parallel. Because all

the counter values are known at the start, you could have a

bank of AES encryption devices and encrypt an entire

message in a single parallel operation. This is not the case

for many of the other modes. The last useful property is that

there is no problem if the message doesn't break into an

exact number of blocks. You simply take the last (short)

block and XOR it with the encrypted counter output using

only the number of bits you need. Therefore, the length of

the ciphertext can be exactly the same as the length of the

input message. Because each block operation depends on

the state of the counter from the previous block, counter

mode is essentially stream cipher.

[2]
 This is an example in which the underlying cipher does not need to be

reversible.

Counter mode has been used for more than twenty years

and is well known and trusted by the cryptographic

community. Its simplicity and maturity make it an attractive

option for RSN. However, basic counter mode does not

provide any message authentication, only encryption.

Therefore, for RSN, additional capability must be added.

Counter Mode + CBC MAC : CCM

CCM mode was created especially for use in IEEE 802.11i

RSN, but it is applicable to other systems as well and has

been submitted to NIST as a general mode for use with AES.

It has also been submitted to the IETF for use in IP security.

CCM was invented by three of the cryptographers

participating in the IEEE 802.11i standards group: Doug

Whiting, Russ Housley, and Niels Ferguson. It builds on top

of counter mode.

CCM uses counter mode in conjunction with a message

authentication method called cipher block chaining (CBC).

CBC is used to produce a message integrity code (MIC). The

MIC is called a message authentication code by the

cryptographic community, leading to the name CBC-MAC.

CBC-MAC is another technique that has been used for many

years and has been standardized internationally. For more

information, see Bellare et al. (2000). It is really simple in

concept:

1. Take the first block in the message and encrypt it

using AES (or any block cipher).

XOR the result with the second block and then encrypt the

result.

XOR the result with the next block and encrypt that…and so

on.

The result is a single block (128 bits in our case) that

combines all the data in the message. If one or more bits

were to change in the message, the result would be

completely different (okay, so there is a 2-128 chance it will

be the same). CBC-MAC is simple but cannot be parallelized;

the encryption operations must be done sequentially.

Furthermore, it should be noted that, by itself, CBC-MAC can

only be used on messages that are an exact number of

blocks. CCMP provides a solution based on padding, as

described later; however, the padding method has raised

concerns among some cryptographers.

CCM mode pulls together two well-known approaches,

counter mode and CBC-MAC. It adds some features that are

very useful for certain applications such as RSN. The

features it adds are:

Specification of a nonce so successive messages are

separated cryptographically.

Linking together the encryption and authentication

(message integrity) under a single key.

Extension of the authentication to cover data that is not

to be encrypted.

The last item needs further explanation and is important for

RSN. In most existing methods that perform both encryption

and authentication, an assumption is made that the entire

message will be encrypted. However, in IEEE 802.11, only

part of the message needs to be encrypted. The header

portion of the IEEE 802.11 frame contains the MAC

addresses used to deliver the frame as well as other

information relevant to operation of the Wi-Fi LAN. These

fields must be sent "in the clear" so other wireless devices

can operate. Therefore, only the data portion of the frame is

encrypted. However, although the header is not encrypted,

the receiver would still like assurance that it has not been

modified. For example, you don't want an attacker to

change the source address so you accidentally reply to him

instead of to the original sender. To achieve this, CCM mode

allows the encryption to be performed on a subpart of the

message that is authenticated by CBC-MAC.

As a general rule, using the same key for two separate

cryptographic functions is not wise. This rule appears to be

broken here because the same key is used for both

encryption and authentication. However, although the same

key is used, it is in each case used in conjunction with an

initialization vector (IV). The construction of the IV is

different for the counter mode and CBC-MAC portions, thus

leading, in effect, to two separate keys. The effectiveness of

this separation has been shown by cryptographers (Jonsson,

2002).

Offset Codebook Mode (OCB)

OCB mode was invented by Phil Rogaway of the University

of California, Davis, following on from work done at IBM

Research Labs. It is an authenticated encryption

scheme, which means it achieves both message encryption

and authentication in a single computation. OCB has some

advantages:

OCB is parallelizable so it can be done faster using

multiple hardware blocks.

OCB is very efficient, taking only slightly more than the

theoretical minimum encryption operations possible.

OCB is provably secure, which means it can be "proved"

that it is as secure as the underlying block cipher (AES).

Because of its advantages, OCB was the first mode selected

by the IEEE 802.11i working group and was given the name

WRAP. However, concern was raised over intellectual

property rights. The standards group was concerned about

mandating a method that might, in the future, result in the

need to make license payments. Therefore, CCMP was

adopted as mandatory and OCB was eventually dropped. It

is mentioned here because a few vendors have

implemented WRAP, and it is possible you might encounter

it as a proprietary mode in some early implementations.

If you want more details of OCB, visit Rogaway's Web site

www.cs.ucdavis.edu/~rogaway or read the conference paper

(Rogaway et al., 2001).

http://www.cs.ucdavis.edu/~rogaway
clbr://internal.invalid/book/0321136209_24031533.html

How CCMP Is Used in RSN

This section describes how Wi-Fi LAN packets are encrypted

using CCMP. The first important point is that CCMP encrypts

data at the MPDU level. The difference between MPDU and

MSDU is discussed in Chapter 11; but to recap, the MPDU

corresponds to the frames that actually get transmitted over

the radio link. There is one MPDU for each frame

transmitted, and the MPDU itself might be the result of

fragmenting larger packets passed from a higher layer,

called MSDUs.

Steps in Encrypting a Transmission

Figure 12.3 shows the flow of data from MSDU to MPDU and

eventually out to the radio link.

Figure 12.3. Flow of Frames Through

CCMP

The data arrives as an MSDU and may be broken into

fragments. Each fragment is formed into an MPDU and

assigned its own IEEE 802.11 header containing source and

destination addresses and other information. At this point,

each MPDU is processed by the CCMP algorithm to generate

a new encrypted MPDU. Only the data part is encrypted, not

the header. However, CCMP does more than just encrypt

portions of the MPDU. It also inserts extra fields, causing the

resulting encrypted MPDU to be 16 bytes longer than the

original.

An overview of the steps in encrypting an MPDU are shown

in Figure 12.4 and described below:

1. We start with an unencrypted MPDU, complete

with IEEE 802.11 MAC header. The header

includes the source and destination address, but

the values of some fields will not be known until

later and are set to 0 for now.

The MAC header is separated from the MPDU and put aside.

Information from the header is extracted and used while

creating the 8-byte MIC value. At this stage the 8-byte CCMP

header is constructed for later inclusion into the MPDU

The MIC value is now computed so as to protect the CCMP

header, the data, and parts of the IEEE 802.11 header.

Liveness is ensured by the inclusion of a nonce value. The

MIC is appended to the data.

The combination of data and MIC is encrypted. After

encryption the CCMP header is prepended.

Finally the MAC header is restored onto the front of the new

MPDU and the MPDU is ready to the queued for

transmission. The transmission logic need have no

knowledge of the CCMP header. From here until

transmission, only the MAC header will be updated.

Figure 12.4. Steps in Processing an

MPDU

The encrypted MPDUs are placed on a queue prior to

transmission. There might be several queues waiting their

turn based on some priority policy. This allows for later

extension to accommodate different traffic classes under

IEEE 802.11e. Immediately prior to transmission, some of

the fields of the IEEE 802.11 header are updated to meet

transmission rules. Those fields that are subject to such

changes are called mutable fields and are excluded from

the MIC computation.

CCMP Header

The CCMP header must be prepended to the encrypted data

and transmitted in the clear (that is unencrypted). The

CCMP header has two purposes. First, it provides the 48-bit

packet number (PN) that provides replay protection and

enables the receiver to derive the value of the nonce that

was used in the encryption. Second, in the case of

multicasts, it tells the receiver which group key has been

used (see Chapter 10). The format of the CCMP header is

very similar to that used for the TKIP header. This is

intentional to simplify implementation for access points that

need to receive transmissions from a mixed group of TKIP

and CCMP mobile devices. The format is shown in Figure

12.5.

Figure 12.5. CCMP Header

Six bytes are used for the 48-bit PN value, 1 byte is

reserved, and the remaining byte contains the KeyID bits,

the function of which is described in Chapter 10. Note that

the bit next to the KeyID bits is set to a value of 1,

corresponding to the Extended IV bit in TKIP. This value

indicates that the frame format is RSN rather than the

earlier WEP format.

Overview of Implementation

Implementation of the CCMP block can be viewed as a single

process with inputs and outputs, as shown in Figure 12.6.

Figure 12.6. Encryption and

Decryption with CCMP

Note that the decryption phase has the same inputs as the

encryption phase (except that the input MPDU is encrypted).

This is because the header information, including the CCMP

header, is transmitted across the link in the clear and can

therefore be extracted by the receiver prior to decryption.

The implementation of CCMP (shown in Figure 12.4 as a

"block") must keep a sequence counter called the packet

number (PN), which it increments for each packet

processed. This prevents an attacker trying to reuse a

packet that has previously been sent. The PN is 48 bits long,

large enough to ensure it never overflows. There will never

be two packets sent with the same sequence value. Of

course if you power down the device and restart, the PN will

be reset, but this will be with a different key value and

hence does not create a threat.

Implementation of the CCMP encryption block is shown in

Figure 12.7.

Figure 12.7. CCMP Encryption Block

Note how the computation occurs in two stages: first, the

MIC is calculated and appended to the MPDU, and then the

entire MPDU (including MIC) is encrypted to produce the

result. Let's look in more detail at each step.

An encrypted MPDU contains two more fields than an

unencrypted MPDU. It has the CCMP header and the MIC

value. The MIC field is 8 octets (64 bits). Note that the MIC is

only half the size of the AES block but is still long enough to

reduce the chance of a successful MIC forgery to less than 1

in 1019.

The order of fields in the encrypted MPDU is shown in Figure

12.8.

Figure 12.8. MPDU Encrypted under

CCMP (CH = CCMP Header)

Steps in Encrypting an MPDU

Before starting the encryption process, it is useful to prepare

all the pieces of the MPDU in the order they will eventually

appear. We start off with three pieces: the MAC header, the

CCMP header, and the plaintext data, as shown in Figure

12.8a. The mutable fields of the MAC header are masked out

by setting them to 0. The CCMP header is filled in with the

PN and KeyID bits. Note that the PN is incremented by one

for each MPDU prior to being used. The data portion can be

filled in with plaintext data.

The MAC header and CCMP headers will not be encrypted

but need to be protected by the MIC. These two items are

grouped together to form the authenticated data, as

shown in Figure 12.8b. The first job after assembling the

pieces is to compute the MIC.

Computing the MIC

Computation of the MIC is done using CBC-MAC, which

encrypts a starting block and then successively XORs

subsequent blocks and encrypts the result. The final MIC is

one 128-bit block, but we only need a 64-bit MIC so, for

CCMP, we discard the lower 64 bits of the result.

In CCMP the first block of the CBC-MAC computation is not

taken directly from our MPDU but is formed in a special way

using a nonce value. The format of the first block is shown in

Figure 12.9 comprising a nonce and two other fields: Flag

and DLen.

Figure 12.9. Format of the First Block

for CBC-MAC

The nonce guarantees freshness by ensuring that each

encryption uses data that has never been used before

(under a given key). You might think that we could just use

the packet number (PN) for the nonce because it increments

for each MPDU and hence never repeats. However,

remember that the key is shared between at least two

communicating parties (more for the group key) and these

parties may, each at some point, use a PN that has already

been used by another party, violating the "use once per

key" rule. To avoid this problem, the nonce is formed by

combining the PN with the MAC address of the sender.

The third field included in the nonce is the Priority field.

The Priority field is a placeholder for future capability when

there are different traffic streams with different

characteristics (audio, video, and so on). In such a case, it

might be useful to have a separate PN for each type of data.

The three fields combine to create the 104-bit nonce, as

shown in Figure 12.10.

Figure 12.10. Constructing the First

Block for CBC-MAC

The other two fields that, with the nonce, create the first

block for CBC-MAC are also shown in Figure 12.10. The flag

field has a fixed value of 01011001 and indicates, among

other things, that the MIC is 64 bits. In other (non-RSN)

applications of CCM, the Flags field might be different, but

this does not concern us here. The last field, DLen, indicates

the length of the plaintext data.

Once the first block has been prepared, the MIC is computed

one block at a time by incorporating the authenticated data

and then incorporating the plaintext data. One of the

characteristics of CBC-MAC is that it works only for an exact

number of blocks. If the data doesn't divide into an exact

number, it must be padded. For the purposes of the MIC

computation, CCMP requires that both the authenticated

data and the plaintext data be padded to an exact number

of blocks. In IEEE 802.11, it is likely that neither the

authenticated data nor the plaintext data will be a suitable

length, so each is padded with zeros to meet this

requirement, as shown in Figure 12.8C. The MIC is computed

across the combination of the special first block, the

authenticated data, and the plaintext data, including the

zero pad bytes. Note that the pad bytes are only inserted for

the MIC computation and are not actually inserted in the

MPDU, as illustrated by Figure 12.8d.

Encrypting the MPDU

Once the MIC has been computed and appended to the

plaintext data, we are ready to start encrypting the MPDU.

The encryption occurs using counter mode and starting with

the data immediately following the CCMP header in the

template. Note that because of the padding during the MIC

computation, we are guaranteed that the blocks to be

encrypted will be aligned with the blocks included in the MIC

computation. The encrypted data replaces the original data

for the entire data portion and the MIC value, resulting in a

complete encrypted MPDU ready to be queued for

transmission, as shown in Figure 12.8E. It is not necessary

to use padding for the encryption stage because counter

mode allows any excess bits in the last block to be

discarded.

An essential step in counter mode is to initialize the counter

in a way that avoids ever using the same start value twice.

Therefore the counter is constructed from a nonce in an

almost identical way to that for the MIC. In fact the nonce

value used is identical to that of the MIC and includes the

sequence counter, source MAC address, and priority fields.

This value is then joined with two fields: Flag and Counter

("Ctr"), as shown in Figure 12.11.

Figure 12.11. Constructing the

Counter for CCMP AES Counter Mode

The ctr value starts at 1 and counts up as counter mode

proceeds. Because the nonce is a unique value and the ctr

field is 16 bits long, you are guaranteed to have unique

counter values for any message with fewer than 65536

blocks. This easily accommodates the largest MPDUs

allowed in IEEE 802.11.

Well, almost ready. First we need to put back all the fields in

the MAC header that were masked out for the MIC

computation. Although these fields are not used for the MIC,

they may still be important.

Once the counter is initialized, encryption can proceed as

described in the previous section "Counter Mode" in this

chapter. Each successive value of the counter is encrypted

using the secret key and XORed with the template data to

produce the encrypted data.

Decrypting MPDUs

When the encrypted MPDU is delivered to the receiver, the

first job is to get the right key for decryption. The correct

pairwise keys are selected based on the source MAC address

in the MAC header. There are a number of steps the receiver

must take to extract and check the validity of the received

data. Decryption is only one step and this process is more

generally called decapsulation.

The packet number (PN) is sent unencrypted in the CCMP

header. The first thing the receiver does is to read the PN

and compare to the last frame received. If the sequence

number is lower or equal to the last one, it should be

discarded as a replay of an old message. In this case the

receiver goes no further with the MPDU.

Assuming the PN matches, the next step is to prepare for

decryption using AES/counter mode. This requires the

computation of the starting value for the counter, which

must match that value used in encryption. All the

information is available in the received frame. The sequence

number can be combined with the source MAC address and

priority to create the nonce. This is then combined with the

known flag value and the start ctr value (also 1) to create

the initial counter. Note there is no secret here: Any attacker

can compute the same value. However, it is of no use unless

the secret key is also known. Decryption proceeds as for

encryption. Successive values of the counter are encrypted

and XORed with the received MPDU to restore the

unencrypted data and the MIC value.

The next stage is to verify that the MIC value is correct. The

MIC value is recalculated across the same data (and

padding) as the original MPDU at the sender. The mutable

fields in the header are masked out and the computation

performed over the whole MPDU, excluding the MIC. Of

course, if the data is unaltered from when it was sent, and

we have the right secret key, the same result will be

obtained. This can be compared to the MIC value sent with

the frame: A match means the frame is valid. A mismatch is

most likely evidence of an attack and the frame will be

discarded.

Interestingly, with CCMP the process of decryption is almost

identical to that for encryption, leading to a nice

simplification for implementation. Once the MPDU is

decoded, the MIC and CCMP header can be removed, and is

the remaining data is passed up for reassembly with other

received fragments to reform the MSDU. You can see how

the CCMP process gives protection against forgery,

eavesdropping, and copy/replay attacks. It is very strong.

As we said at the start of the chapter, the most advanced

security protocol is of no use if the underlying cipher

mechanism (in this case, AES) has a flaw. AES has no known

flaws that might compromise security. If you are interested,

Appendix A describes how AES works. This appendix

includes some mathematics, which may be unfamiliar. It you

are prepared to accept AES as a "black box" that encrypts

blocks of data, then feel free to skip the appendix!

Summary

A large number of Wi-Fi systems have been deployed based

on the RC4 encryption algorithm. This was part of the IEEE

802.11 WEP implementation and has been included in the

WPA TKIP specification to allow firmware upgrades possibly

in combination with a driver upgrade. However, when the

IEEE 802.11 committee started looking for a new security

solution to be built from scratch, they chose instead the

cipher AES on which to build. This chapter has explained

why that decision was made and how it has been

incorporated into the RSN solution.

AES is a cipher that can be used in many ways to create

security protocols. This chapter has looked at the various

modes that have been designed to use AES in practical

situations�in particular, a new mode called CCM that was

invented to support IEEE 802.11 TGi RSN and that is now

likely to be adopted by NIST as one of the standard modes

for AES. This mode forms the basis of CCMP, the AES-based

protocol for IEEE 802.11i. We have now covered, in this

book, all the core protocols needed to implement WPA and

RSN security. The next chapter looks at how the techniques

are applied to IBSS networks and covers additional

mechanisms that enable Wi-Fi systems to identify and safely

select other Wi-Fi systems that support the new security

provisions.

clbr://internal.invalid/book/0321136209_24031533.html

Chapter 13. Wi-Fi LAN

Coordination: ESS and IBSS

Chapter 13 covers a range of topics. We look at the process

by which a mobile device is able to find an access point and

join the network. This leads to a discussion on how the

mobile device and access point ensure they have

compatible security properties and how a mobile device

might be able to roam from one access point to another

which incurring a large delay due to the authentication

process.

In the second half of the chapter, we revisit the IBSS or ad-

hoc style of network. Such networks do not use access

points and present extra problems for security

implementation. In this chapter we look at the solution

proposed by the IEEE 802.11i standards group.

clbr://internal.invalid/book/0321136209_24031533.html

Network Coordination

A Wi-Fi LAN needs to be coordinated at many levels. At the

lowest levels the IEEE 802.11 standard specifies procedures

to synchronize timing and avoid multiple devices

transmitting at the same time. At higher levels there are

procedures to enable smooth joining and exiting from the

network. We are interested in these higher-level procedures

because they impact on the security operations.

ESS Versus IBSS

Most Wi-Fi LAN systems are organized with one or more

access points and a number of clients. A typical home

installation has one access point and two or three clients. A

large corporate network might have hundreds of access

points and thousands of clients. In IEEE 802.11, networks of

this type are called infrastructure mode or ESS networks.

IEEE 802.11 also supports a mode called ad-hoc or IBSS

network. The significant difference is that in IBSS mode,

there is no access point and any mobile device can talk to

any other directly. On the face of it, IBSS is simpler and

more efficient for small networks but creates management

problems because no one device is in control.

As we described in Chapter 5, both types of networks are

controlled using management messages that are

independent of the actual data being passed from device to

device. The management and control messages allow the

network to share the available transmission time efficiently

and also enable the access point to exercise control of the

network. For a review of the types of messages used, look

again at Chapter 5.

From an architectural point of view, IBSS presents quite a

few problems for security. If you have an access point, you

can give that access point the responsibility for checking the

credentials of new devices and, because all the data must

pass through, it can effectively block unwelcome devices.

However, in the IBSS case you cannot enforce effective

controls because any device can talk to any other. We come

back to this issue later in the chapter. For now, though, let's

review the procedures and messages that allow the access

point to maintain control in an ESS network.

Joining an ESS Network

The original IEEE 802.11 required that a new mobile device

(an aspirant device) must pass two phases before being

allowed to join the network. The first phase is an

authentication exchange whereby the aspirant device is

supposed to prove its credentials to the access point. We

now know that the original method was very insecure, but

the basic idea was to block any unwanted devices by

rejecting them at an early stage. If an aspirant device

passes the authentication phase it is then required to

associate to the access point. The process of association is

intended to check that the capabilities of the device and the

access point are compatible and negotiate some of the

variable parameters such as data rate. Once a device is

associated, it must send all its data frames to the access

point, which will then be responsible for forwarding the data

on to its destination.

If the device decides to move to another access point,

perhaps for better signal strength, it is required to dissociate

from the current access point before associating with the

new one. No device can be associated with two access

points at the same time. By contrast, in the original IEEE

802.11 standard, it is acceptable to authenticate with

another access point in advance, to reduce time during the

handover.

In RSN/WPA we cannot use so simple a system. RSN/WPA is

based on IEEE 802.1X and EAP. From the point of view of

IEEE 802.11, EAP messages are not management or control

frames. They do not belong to IEEE 802.11 and are therefore

treated like ordinary data frames. Before we can even start

the IEEE 802.1X process, an aspirant device must already be

connected (in other words, associated) with the access

point. This turns the process of joining on its head because

it means that association must be done before

authentication! The network is protected by blocking data

until the IEEE 802.1X and key handshakes have occurred.

For WPA/RSN the management messages that are used for

authentication in the older systems are still used, but they

play no part in security. However, the management

messages for association still have an important role and

are used in negotiating the security method to be used. To

see how this is done, let's quickly review the message

sequences.

The access point sends out beacon messages, usually about

ten times a second. The beacons include information about

the capabilities of the access point and also serve as a

timing reference for some of the protocol operations such as

power saving modes. Here we are concerned with the ability

of the beacons to advertise capabilities. The items to be

advertised include things like the network name or SSID, the

supported data rates, and so on.

When a mobile device is looking for an access point with

which to connect, it can listen on each radio channel for

beacons or it can speed things up by issuing a probe

request that basically says, "Is anybody there?" An access

point receiving the request can reply immediately with a

probe response, essentially with the same information as a

beacon. This process allows a new mobile device to scan

around quickly and find the access points available. It also

allows a connected device to keep one eye open for other

access points with better signal strength that might be

candidates for roaming.

Once a device has identified a target access point, it

attempts to pass the two stages of authentication and

association. For WPA/RSN, the access point allows open

authentication. This simply means that the authentication

exchange is two messages:

The mobile device asks to be authenticated.

The access point says "OK."

No actual authentication is performed; it is just a null

process.

The second part is more important. The device sends an

association request to the access point. This tells the access

point about the capabilities of the device and also specifies

which capabilities of the access point the device wants to

use. Assuming the access point finds these acceptable, it

generally sends an association response, allowing the

device to join the network. In the case of RSN and WPA, the

device must then complete the IEEE 802.1X procedure and

the pairwise key handshake before sending data.

WPA/RSN Information Element

The messages that pass capabilities information include

capability bits and Information Elements, as described

in Chapter 5. RSN/WPA systems have a specific Information

Element that is used to negotiate the type of security that

will be used. This works as follows. If an access point

supports either RSN or WPA (or both), it includes in its

beacon and probe response an Information Element with the

following information:

Whether the access point is using preshared key or

authentication server (key management)

What group security mechanism is operating

A list of one or more pairwise key security mechanisms

that are supported

For example, a company that is transitioning from WEP to

WPA might use WEP for broadcast (group) security and allow

either WEP or TKIP on a device-by-device basis. The

Information Element would inform WPA devices and they

would select to use WEP/TKIP. The older WEP stations would

not understand the new Information Element and would

continue to use WEP/WEP, which is acceptable in this case.

Later, the company might discontinue the use of WEP and

the Information Element would indicate TKIP for broadcasts

and only TKIP for pairwise connections.

If that same company then migrated to RSN, it might start

advertising TKIP for broadcast and a choice of AES or TKIP

for pairwise connections. The Information Element for RSN is

not quite the same as for WPA and may contain more

information. RSN is indicated by a capability bit and, if this

bit is set, the default is to use AES�CCMP for both group and

pairwise connections. The Information Element would be

needed only if, as in the example above, a choice was

offered.

The Information Element (IE) described so far is sent by the

access point in beacons and probe responses. The mobile

device must also include an Information Element in its

association request if it wants to use the security

capabilities. Although the IE sent by the access point might

have a list of protocols to choose, the one sent with the

association request must indicate only a single choice. This

is the selection made by the mobile device and defines the

protocol that will be used from that point on.

Validating the Information Elements

If the access point advertises a choice of TKIP or WEP, the

mobile device may legitimately select to use WEP. This

would be pretty strange, though. If the mobile device

understands the Information Element, it must support WPA

or RSN, so why would it choose an inferior security system

like WEP? The simple answer is that it would not�unless

there had been foul play. This example leads us to a

potential weakness that must be prevented.

Suppose an attacker watches an access point and makes a

note of what information is sent in probe responses.

Remember that these messages are not encrypted; they are

open for all to see. Suppose the access point is offering both

TKIP and WEP. Now a new mobile device arrives and issues a

probe request. The access point responds, but the attacker

goes into action and blocks the response by transmitting

some well-timed garbage. The attacker now forges a

message that looks exactly like the valid response except

that it offers only WEP as a choice. The mobile device thinks

the access point only supports WEP and associates with this

choice. The access point might think this is strange, but it

appears quite valid. What the attacker has achieved is to

force the mobile device to use a weaker security method; he

has successfully weakened the target system.

To prevent this type of attack, both the access point and the

mobile device send another copy of the valid Information

Element during the pairwise four-way handshake. The four-

way handshake is protected against any sort of tampering

so, although the attacker can substitute the modified

Information Element in the original response, he can't

substitute it in the four-way handshake. Therefore, by

keeping a copy of the original message, both the mobile

device and the access point can detect the attack and drop

the connection.

In this example, protection of the Information Element sent

by the mobile device seems less important. Suppose the

mobile device selects TKIP and indicates this in its

association request. There wouldn't be much point in an

attacker changing the selection to WEP because, even if

accepted by the access point, not much will happen when

the mobile device sends TKIP-encrypted frames to an access

point that is expecting WEP! However, there is another

reason for protecting the mobile device's selection. This is a

more subtle reason and is associated with the process of

preauthentication described in the next section.

Preauthentication Using IEEE 802.1X

If you have a mobile device and move around a reasonably

sized network, you need to roam. Or, to be more specific,

your mobile device has to switch from one access point to

another due to the limited coverage area of each access

point. Ideally, you would like this to happen so fast that you,

the user, don't notice it happening. You don't want your

laptop to freeze up for a few seconds each time it happens

and, worse still, you don't want it to come back with a

"network failure" message in the middle of a file transfer.

To achieve this type of seamless handover, you need the

switchover to be very fast, preferably milliseconds. This has

two implications. First, you need the switchover to occur

before you get outside the coverage area of the access

point you are currently using. Second, you want the new

access point to accept you as quickly as possible so you can

continue operation. Security presents a problem for the

second objective.

If you wait until the switchover before starting the

authentication process, it could take a few seconds before

the access point lets you back onto the network. This is

especially true if you are using upper-layer authentication

needing the services of some remote authentication server.

One way to get around this problem is to do the

authentication in advance so the access point is ready to let

you join as soon as you are ready. The process is called

preauthentication.

The original IEEE 802.11 WEP system allowed

preauthentication using the simple authenticate messages.

However, these messages are not relevant to RSN or WPA.

We need to perform full authentication using IEEE 802.1X,

including upper-layer authentication if required. The

superficial difficulty is that we can't talk to the new access

point until after we have associated with it�or can we?

Remember, we do have an existing connection with the old

access point, which, if we are doing things right, is still

connecting us to the wired network. Clearly the new access

point must be on the same wired network if the roaming

operation is to make any sense. Therefore, we should be

able to talk to the new access point via its wired connection.

Although we may detect the new access point from the

radio signal, we preauthenticate using the wired

infrastructure. This is shown in Figure 13.1.

Figure 13.1. Preauthentication

Communications

In principle, communicating via the wired network allows the

mobile device to perform all the same EAP operations that

would typically be performed wirelessly after association.

This includes the conversation with a remote authentication

server as well as the four-way pairwise key exchange and

the group key exchange. Because all the messages are sent

in EAPOL messages, they can travel equally well over a

wired or wireless LAN. We say "in principle" because,

although it is practical, this approach does drive a dump

truck through the underlying architecture assumptions in

IEEE 802.1X and causes sleepless nights among the

standards purists. The problem is that technically the IEEE

802.1X authenticator controls a data port that is created

when the station associates. But with preauthentication, no

such port exists yet. You can think of ways to deal with this

problem by creating a temporary port that get connected

later, but it is a bit messy.

If preauthentication is done, the mobile can have an entire

set of keys already in place at the point where it roams and

associates with the new access point. If the new access

point can map the mobile device onto the temporary IEEE

802.1X port that was authorized earlier, it can resume

communication immediately. This is where we make further

use of the copies of the Information Element that are

included with the four-way handshake. When the mobile

device preauthenticates, it needs to inform the

authenticator which type of cipher it is going to use. This

information is provided in the Information Element sent with

the handshake. When the mobile device finally roams, the

new access point needs to check that it has selected the

same cipher in the association request that it selected

during the handshake.

IBSS Ad-Hoc Networks

Several times we have mentioned IBSS networks, also called

ad-hoc networks, and deferred discussion on the security

issues. This section finally looks at these issues in detail and

discusses a solution that may be available. At the time of

writing, WPA does not provide a security solution for IBSS.

Chapter 7 discusses the security context. Security

operations take place within a limited context that has a

clear start and end. In other words, the context is created by

some actions and closed by some other actions. This

approach maps quite well into networks with an access

point because the access point has master control of the

local network. It is a place where the authenticator can

reside and all the mobile devices can establish and break a

security context with that authenticator.

The major advantage of an IBSS network is that there is no

master device. All devices have equal status and any device

can talk to any other device. This is also the major problem

with IBSS networks from a security standpoint.

First, let's quickly review how an IBSS network operates.

Suppose a group of people get together in a conference

room for a meeting and they want to share information

among their laptop computers. They agree on an SSID or

network name that they will use for their meeting and

configure it into their laptops, specifying IBSS operation.

When the first laptop is enabled, it starts looking for

beacons containing the target SSID. It ignores beacons from

access points and looks only for beacons from other devices

in IBSS mode. If it doesn't see any beacons, it realizes that it

is the first arrival and starts sending beacons itself.

The next laptop to turn on sees the beacon from the first

laptop, with the correct SSID, and synchronizes its timing.

Now the two devices may share the process of sending

beacons according to an algorithm defined in the IEEE

802.11 standard. If the first station goes away, the second

one sends all the beacons by itself. If any device has a

broadcast message to send, it just transmits and all the

others listen. If any device wants to send a frame to another

device, it just transmits with the target device's MAC

address as the destination. Note that there is no process of

association and devices can come and go as they please

without any hellos or goodbyes.

In our simple example, this works very nicely. All the people

in the conference room are within range of each other and

all the laptops can communicate. If somebody goes out of

range, they are cut off; there is no concept of roaming. Now

we come to the security problem.

The conference participants might realize that their session

is incredibly insecure. Not only can outsiders see their data,

but anyone can join in the network just by observing the

SSID over the air. What they would like is to agree on a

password at the start of the meeting, limit access only to

those who know the password, and encrypt the data. On the

face of it, this seems straightforward, but what does it mean

to "limit access to those who know the password"? Because

there is no coordinator, every mobile device has to block the

unwelcome newcomer and because there is no association,

how do you set up encryption that needs things like

sequence numbers and exchanges of nonces?

This is the problem with IBSS. Intuitively, it seems simple to

share a password around the table and just encrypt the data

with it. But good security is never simple. It's easy to say

things like, "Oh well, it's good enough for this application;

after all, meetings only last an hour or so." But this is the

path that leads to problems, as we saw with WEP. Eventually

people use the technology in areas in which it is "no longer

good enough" and then security breaches occur. Consider

that some people have proposed to use IBSS mode to

implement ad-hoc neighborhood mesh networks for

broadband connection to the home. A simple solution that

might be good enough for short meetings will certainly fail

in such an application.

There are solutions that can work and are secure.

Unfortunately, they are not simple. The current proposal for

IEEE 802.11i works as follows. First, let's assume that every

mobile device has two personalities. When it wants to talk to

another device, it assumes the role of a supplicant. When

someone else wants to talk to it, it assumes the role of an

authenticator. Think of a football team playing at home or

away; the mobile device is either visiting (as a supplicant) or

hosting (as an authenticator). This is shown is Figure 13.2, in

which the role played by the device depends on the

direction of communications.

Figure 13.2. Mobile Device

Supporting Both Supplicant and

Authenticator

Now that we have established the roles of supplicant and

authenticator, we can apply the principles of IEEE 802.1X.

Of course we can't use upper-layer authentication because

there is no way to attach to a common authentication

server. However, we can use a preshared key, which is quite

appropriate for the meeting case in which the master key is

distributed verbally. Once we have the preshared key and

IEEE 802.1X in place, we can almost use the same approach

for IBSS as we did for ESS. We can use the four-way

handshake to establish pairwise keys, including the

exchange of nonces. We can also use the Information

Element to establish the starting value of the sequence

counter. "Almost" is the operative word here because there

are a couple of problems yet to solve.

The first issue is that, if we follow this model to the letter,

we have to establish separate pairwise keys for each

direction of communication. There are two supplicants and

two authenticators, which is inefficient and unnecessary.

Therefore, the device with the lowest MAC address goes first

and establishes the temporal keys, and then the

authenticator in the other direction uses the same set

without further ado.

The second issue is more difficult. What do we do about the

group keys? Intuitively, you would think that the group keys

would be shared by all the devices in the IBSS. However,

there are a number of problems with this approach. Who

would be responsible for creating the group key given that

there is no master? And how does the group key get

distributed to everyone when you don't know who else is out

there? To solve this problem, we need to go back to first

principles and remind ourselves of the purpose for the group

key. It is to protect multicasts and broadcasts, not to allow

"any to any" communication. Multicasts are one to many

communications, not many to many.

In the case of an ESS network, the "one" is always the

access point. In the case of an IBSS network, the "one" is

the device currently transmitting the multicast. It follows

that there can be a separate group key for each mobile

device that is used only when that particular device is

sending a multicast. Providing all the intended recipients

(the "many") know the sender's group key, they can receive

the message. The sender is now responsible for maintaining

its own group key and for delivering it to all the other

devices with which it has a pairwise key relationship.

So now we have the IBSS security solution. It is complicated.

Ironically, the fact that ad-hoc networks are so simple to set

up makes them more complicated to secure. In summary,

the process is as follows

1. The first device starts up and begins beaconing.

The second device starts up, detects the beacons, and

synchronizes.

Whichever device has the lower MAC address now acts as a

supplicant and authenticates to the other device using IEEE

802.1X. It then performs the four-way pairwise handshake to

establish temporal keys derived from a shared master

secret.

Both devices now send the other their group key.

At this point the two devices can communicate privately.

Now a third device arrives and wants to join the network. It

must first synchronize and then perform separate pairwise

key handshakes with each of the two existing devices. It

must then share its group key with both the other stations

and receive a group key from each of them. It has to

remember five sets of keys (including its own group key).

At this point you start to see the complexity. In general, if

there are N devices in the ad-hoc network, each must keep

track of 2*N�1 keys. So for 16 devices, you need to track 31

sets of keys to remain connected. This is the problem: The

solution does not scale to large numbers of devices.

However, given that all the devices have to be in a single

wireless cell so they can all hear each other, maybe that is

not too much of a price to pay. At least it's secure.

clbr://internal.invalid/book/0321136209_24031533.html

Summary

This brief chapter collects together the loose ends left over

after the substantial chapters describing the security

protocol. We started by reviewing the process by which

mobile devices join to an access point. We then explained

the use of the WPA/RSN Information Element that is

employed in the negotiation of security capabilities between

the mobile device and the access point.

After considering the process for joining a network, we

looked at the issue of roaming from one access point to

another. A problem is created if a full authentication

handshake is needed every time such a roam occurs

because the authentication exchange could take a second

or even more. At the time of writing, there are a number of

proposals for "fast roaming" using preauthentication or

cached keys. We looked at one example of a

preauthentication scheme.

Finally we returned to the difficult issue of security in IBSS

(ad-hoc) networks. In this case the lack of a central

coordinating device such as the access point creates a

problem. We reviewed the approach for IBSS security as

defined for IEEE 802.11i.

Part III: Wi-Fi Security in the

Real World

Chapter 14. Public Wireless Hotspots

Chapter 15. Known Attacks: Technical Review

Chapter 16. Actual Attack Tools

Chapter 17. Open Source Implementation Example

clbr://internal.invalid/book/0321136209_24031533.html

Chapter 14. Public Wireless

Hotspots

This chapter reviews an area that has seen substantial

deployment and interest over the past few years�that of

public Wi-Fi LAN access. The first part of the chapter

discusses the motivations for creating such wireless LANs

and the different types of businesses involved in

deployment. The second half of the chapter looks at the

security implications for users of hot spots and shows that

the motivations of the network operator and the user are

often quite different.

clbr://internal.invalid/book/0321136209_24031533.html

Development of Hotspots

If you're like most people, you love to have access to the

Internet when traveling. It is a great way to keep your office

work going when on the road, and apart from anything else,

getting e-mails at your hotel in Outer Mongolia makes you

feel a lot closer to home. As it happened, wireless LAN

technology was developing about the same time that

Internet use was expanding rapidly, and it is not surprising

that the two have become linked. Today there are an

increasing number of places where you can power up your

laptop with a Wi-Fi wireless LAN adapter and connect to the

Internet. Locations such as airports, hotels, coffee shops,

and even private homes are becoming hosts for the service.

This chapter reviews the types of systems and different

approaches to security you might encounter. We also point

out some security risks if you are a user of such networks

and what you can do to protect yourself.

Public Wireless Access Defined

What is public wireless access? This is not as straightforward

a question as it might sound. Some countries such as the

United Kingdom regulate the use of IEEE 802.11 for

providing a public service. This has caused much discussion

about what constitutes "public." For example, if your

company allows visitors in the lobby to get access to the

Internet via Wi-Fi LAN, is it providing a public service?

In its broadest sense, "public wireless access" simply means

that any person who has purchased equipment with IEEE

802.11 capability can legitimately connect to an access

point and get service from an open location such as a coffee

shop. The only restriction on who may connect is that they

might have to pay the required fees for the privilege. If

there are enough access points installed in public places,

IEEE 802.11 could eventually provide almost universal

wireless broadband access in cities. In principle, it means

that IEEE 802.11 could compete with the existing cellular

phone infrastructure in the future�a prospect that rattles the

huge telecommunications providers and makes venture

capitalists drool with excitement.

Barriers to Growth

It sounds rather simple to set up a Wi-Fi LAN hotspot, but

several early players who launched into large-scale

deployments in hotels found little financial success, and

some went broke. So what went wrong?

There are two barriers to the growth of public Wi-Fi LAN. The

first is what we will call the "fax machine problem," and the

second is the multiparty nature of the business.

Fax Machine Problem

Facsimile machines have been around for almost a century,

but sales didn't pick up until the 1980s, when they grew

explosively. The barrier here was that it was no good being

the only person with a fax machine�there had to be

someone to send faxes to. It was only when a critical mass

of fax machine owners was reached that ownership had real

benefits, causing rapid acceptance. The situation is similar

with Wi-Fi LAN hotspots. People won't buy an IEEE 802.11

card for public access until most hotels provide service.

However, hotels won't install the required access points and

network because customers don't have Wi-Fi LAN cards. This

problem is being overcome now because so many people

are using IEEE 802.11 in their homes and businesses; not

only do they have the equipment, but it is installed on their

laptops.

Multiparty Barrier

The multiparty barrier is only just being solved now, and

different approaches are being tried. The issue is that, in

each wireless hotspot, you have several players providing

one piece of the solution and all hoping to make money out

of it. For example, in a hotel you have:

1. The proprietor (hotel management)

The installer and operator of the local Wi-Fi access points

The provider of the connection to the Internet

The company that manages the access control and billing of

the system

The company that sells subscriptions and provides customer

service

The early entrants to the market tried to take on roles (2),

(4), and (5) and negotiate directly with each hotel for

installation rights. However, this meant that each location

was limited to supporting a single supplier's service. People

soon realized that it would make more sense if the location

could support a range of different service providers and

route the authentication and billing to the appropriate

company when a user logs in.

Today, there are essentially three business models being

deployed around these parties. We look at each briefly

because the type of approach affects the security problem.

Model 1: Wireless Internet Service

Provider

In this model a single company takes on the entire service

provision. Often it focuses on one type of facility, such as

hotels or airports. It may also provide regular wired Ethernet

jacks in hotel rooms, with wireless used only in conference

facilities or where wiring is difficult. To use the service, you

must subscribe, which can be done on a monthly basis or on

a daily basis when you are staying in a hotel. The

subscription is only good for one service provider; so if the

hotel where you are staying has access points from a

competing service provider, you may have to subscribe to

more than one service.

Model 2: Brand-Based Service

Provider

In this approach, the subscription process is separated from

the network provision. When you sign on, your customer

service and billing are handled by a company that does not

actually own a wireless network but promotes a brand.

For instance, say the service provider promotes a brand

called GetItHere. GetItHere has negotiated access with other

companies that own and install wireless hotspots. This

separation has several benefits. The "brand" company deals

with marketing and customer service. It advertises the

service and explains the benefits. Potential customers are

told that they can get wireless access at any location

showing the GetItHere logo.

The actual network can be provided by specialist

companies, individual enterprises like coffee shops, or even

private individuals. These providers can focus on running

the network; they get paid based on how many GetItHere

customers connect. Furthermore, this approach allows the

network providers to support more than one brand-based

service. For example, they could support both GetItHere

customers and ConnectItUp customers. This model makes

efficient use of available wireless hotspots and provides a

wider choice of locations for customers.

Model 3: Cellular Operator Extension

Service

Cellular phone operators have huge existing billing and

customer service organizations. They also have a massive

customer base. It makes a lot of sense for them to extend

their service to cover Wi-Fi LAN access. Many people would

like the idea of a combined bill for cell phone and mobile

Internet access. The problem for the cellular phone

operators is that their existing network architecture is not

compatible with Wi-Fi LAN hotspots. While access points and

cell phone base-stations perform an analogous role, the

approach to installation and maintenance is quite different.

Therefore, although they seem natural candidates, the

cellular phone operators are moving cautiously into this

area. If they succeed, they have a huge advantage from a

business operations point of view.

Security Issues in Public Hotspots

The security issues in public Wi-Fi LANs are different from

those in corporate Wi-Fi LANs. The same goals are there:

privacy, integrity, and so on. But because of the public

nature of the network, there are some real additional

threats. One of the underlying assumptions of corporate

LANs is that there are only two groups of people using the

network: those who are trusted and those who are

untrusted. At the local level, most companies make no

attempt to prevent one trusted person from attacking

another. In other words, once you let two employees join the

network, say George and Sue, you assume that they are

both good citizens and will go about their legitimate

business. You might have separate passwords for file access

and so on, but you are not expecting George to impersonate

Sue or Sue to try to hack into George's hard disk. If they

were to do so, you would probably fire the offending party,

who would then become part of the untrusted group.

The situation is quite different in a public hotspot. There are

still two groups: those who can join and those who cannot.

But the criterion for entry has nothing to do with trust; it just

depends on whether you have paid your subscription fee.

Unlike the corporate case, in this case you have to assume

that one connected member may try to attack another.

Another difference between corporate and hotspot security

goals is the motivation of the various participants. In a

corporate LAN, it is generally assumed that the employees

and employer share similar goals. The employer wants to

protect the employees from attack and the employees

(usually) have the interests of the company at heart. This is

not the case in a wireless hotspot. The service provider just

wants to get paid and doesn't really care whether you get

hacked (except that it causes bad publicity for the

business). The motivation of the service provider is to

prevent fraud. The motivation of the users is to protect

themselves, and they may not be concerned if a loophole

allows them to let all their friends get access using the same

account.

The third, and critical, difference between corporate and

public access is that the network infrastructure behind the

Wi-Fi LAN is not secure. In a corporate environment, the Wi-

Fi LAN acts as a gateway between an insecure wireless

world and a secure wired world. Behind the access points,

the network is protected by locked wiring closets and server

rooms (or in the case of smaller companies, the fact that the

hub is on the boss's desk). In the public environment the

backend network may be accessible to anyone, rather like

an unprotected wireless network.

This difference in motivation places a greater responsibility

on hotspot users to protect themselves. The rest of this

chapter looks at the different ways in which hotspots are

deployed and organized, but in most cases the differences

are business related and do not help the security of the

user. With this in mind, we look at some actions users

should take before joining hotspot networks.

clbr://internal.invalid/book/0321136209_24031533.html

How Hotspots Are Organized

Although the details vary between installations, all hotspots

have essentially the same architecture. The components

are:

Subscribers

Access points to provide the wireless coverage

Hotspot controllers to provide access control

Authentication server to verify legitimate users

Local content intranet services

Public Internet services

Figure 14.1 shows how these components relate to each

other. It is interesting that the use of the hotspot controller

and authentication server is similar to the concept of the

authenticator and authentication server in IEEE 802.1X. But

note that most deployed hotspots do not use IEEE 802.1X

today. In fact, most use no security measures at the Wi-Fi

LAN level.

Figure 14.1. Hot Spot Components

The following sections describe each of these components.

The actual physical location of the various functions varies

from system to system, as do the methods used to

authenticate the user. However, the basic functions and

requirements are more or less the same in each case.

Subscribers

In Figure 14.1, the subscriber and access point equipment

are often completely standard IEEE 802.11 components�the

same type you might buy to install in your office or even at

home. The use of standard components is especially useful

at the subscriber end. Ideally, you don't want customers to

have to add any new software or hardware to their system

to connect. For instance, they may want to subscribe to

several services and they may use Wi-Fi LAN at the office.

They will not want to have to purchase and carry around a

special Wi-Fi LAN card for each hotspot they plan to use. In

addition, people are very concerned about installing new

software, especially drivers. They are understandably

worried that, after they install the software for the hotspot,

their Wi-Fi LAN will no longer work back at the office.

Requiring special hardware and software on the user's

laptop computer also blocks the impulse purchase effect

that is so powerful in this business. A classic example is

when you are at an airport and your plane is delayed. You

have several hours to kill, and you see a booth offering

Internet access for $5 per hour. You sign up there and then.

Hotspots can get lots of new customers this way, but many

potential customers won't join if they first have to load

special software.

The down side of the "no new hardware/software" approach

is that it is very difficult to provide a seamless service.

Seamless means that the system connects and registers

automatically whenever the user moves into a hotspot. This

is the sort of behavior you expect from a cellular phone, for

example. By contrast, most hotspots require you to go

through a login phase using a Web browser prior to getting

access�not a great hassle until you forget your password,

but an extra step nonetheless.

Currently, if you want to provide automatic registration to

the network, you need to install special components onto

the laptop. One interesting approach introduced by the

mobile phone industry is to have a Wi-Fi LAN adapter with a

slot to insert a GSM SIM card, which is the same type of

smart card used in GSM cellular phones. In this case the

system really can operate seamlessly and automatically

identify and connect to hotspots without user intervention.

One major vendor, Nokia, has introduced a combined

cellular data/Wi-Fi LAN adapter so the system can switch

back and forth between hotspot and cellular coverage,

giving constant network access. However, approaches like

this clearly need to be preconfigured and installed before

you go on the road.

When IEEE 802.11i is deployed, there will be a new

opportunity to provide seamless access through IEEE

802.1X. Popular operating systems will probably have built-

in support for IEEE 802.1X, including operation over IEEE

802.11i. In the future, you can expect all the authentication

software to be built into laptops at the factory. All you will

need to do, when subscribing to a Wi-Fi LAN service, is to

purchase a digital certificate for the service. After that,

connection will be automatic.

Access Points

For the most part, the access points used in wireless

hotspots have the same features as those used at home or

in the office. Typically, WEP encryption is not used and

authentication is the responsibility of the hotspot controller.

While conventional access points can be used "off the

shelf," vendors have started to introduce access points

customized for use in hotspots. The mechanical design of

the unit needs to be more robust and more tamperproof if

located in a public area. You don't want screw-in antennas

sticking out, for example, or you are likely to find that some

curious child will screw them out and wander off. Also, you

don't want the unit festooned with flashing colored LEDs

because this just attracts unwanted attention. Many sites

solve these problems by mounting the access points in a

closet or a locked box, but new streamlined access points

with integrated antennas are now available for direct

mounting on a wall. The radiation pattern of the antenna

might be different from an access point designed for the

home, radiating mostly in one direction, for example, so the

access point can be mounted at the end of a room.

One area often overlooked by system designers is how the

access point shares information between users. In a

conventional Wi-Fi LAN, a broadcast message sent by one

mobile device is transmitted by the access point to all the

other mobile devices. This is the meaning of broadcast. But

in a wireless hotspot, you may not want this to happen. For

example, upper-layer networking protocols such as

Microsoft's Network Neighborhood use multicasts to

advertise network file systems to other devices on the same

LAN. However, in an airport you don't want your file system

to be advertised to a bunch of strangers sitting in the gate

area. Of course, you can disable network sharing in your

laptop, but most people forget or don't know how. Therefore,

it is helpful if the access point in the hotspot is smart

enough to block the redistribution of such broadcasts to the

whole hotspot.

The access points must be connected to the hotspot

controller. Usually, this is done using wired Ethernet. If there

are multiple access points, they will typically be connected

together on a shared LAN using a hub. These wired

connections are a source of weakness from a security

standpoint. Physical security of the wires and hubs

connecting the access points might be low. It could be easy

for an attacker to find the hub in a closet and connect a

laptop to it using a spare port. Assuming it is a shared LAN

hub, it would then be easy for them to intercept all the data

flowing into the hotspot. Even if WEP or RSN were used to

protect the transmission on the wireless side, it would not

protect against this type of interception because it occurs

after the access point has decrypted the data. The attacker

could also record authentication transactions for later

analysis or even forge messages from a subscriber who is

authenticated. This weakness in wiring plant security is a

major headache for hotspot security in general.

Hotspot Controllers

The hotspot controller is the key component that makes the

hotspot possible. There are many functions it has to

perform, including:

User authentication

Collection of billing information

Tracking usage time where subscription is time limited

Providing local IP addresses

Filtering requests to allow free access to certain servers

and Web sites

Emulating e-mail services to allow mail forwarding

Emulating DNS name resolution

We have shown the hotspot controllers as independent

boxes in Figure 14.1. However, while companies do sell self-

contained hotspot controller units, hotspot controller

functions can be implemented in other ways. For example, a

small site may have only one access point, and the

controller functions would be at a remote location

connected by a frame relay link. In the case of such a small

site, the access point itself could incorporate the controller

functions as well. There are also solutions that make use of

an ordinary PC to act as a controller. This section focuses on

the functions rather than where they reside.

If the operator is charging for access, user authentication is

obviously a key feature. The most common approach so far

is to require login via a Web page. The idea is that when the

subscriber connects and brings up a Web browser, she will

always get the login screen presented, regardless of what

URL she actually requested. For example, if she enters

www.favoritefish.com in the browser, she will be diverted to

the hotspot login screen. The controller has to do a bit of

trickery to accomplish this redirect.

The access points are run in open mode without WEP

encryption or authentication. Therefore, with a suitable

wireless card, anybody can connect to the hotspot network.

The controller will give any connected device an IP address

upon request so the newly connected device can start

sending packets to the Internet. However, all the packets go

through the controller. And it will not forward them to the

real Internet until you have logged in. The controller

inspects your packets, looking for Web requests; and when it

sees one, it diverts it to its own internal Web server, which

presents the login screen instead. Your browser is unaware

that this has happened and presents the login screen as if it

came from the real Web site.

After you have entered your user name and password, or

whatever is required, the controller stops intercepting your

packets and forwards them to the Internet. Some controllers

may store your original request and then forward it after the

login so you get your requested Web site automatically after

the login screen.

http://www.favoritefish.com/default.htm

The use of Web login also allows security features in the

browser to be used so the information for the login is

protected. This results in the browser displaying "https://" in

the URL address and gives you some guarantee that the

hotspot is legitimate and not itself a bogus operation.

In many cases the controller will allow access to certain Web

sites without having to log in. These are known as white-

list sites. For example, an airport might allow access to the

airlines' Web sites or a supermarket might allow access to

their advertising sites.

In some circumstances, login via the browser might be a

nuisance or a problem. If you are moving from one hotspot

to another, you might be forced to log in each time because

each has a separate controller. Worse, if your PC is

configured to use virtual private networking (VPN), you

might not be able to log in at all because the controller

would be unable to decode your Web site requests. In such a

case, you must turn off the VPN feature, log in, and then

reenable VPN before proceeding. There are various

proprietary schemes that allow the authentication process

to occur automatically, avoiding the need to log in via the

browser. As previously mentioned, these schemes generally

need to be configured in advance or use some special

hardware. The availability of RSN and IEEE 802.1X provides

the opportunity for automatic authentication without using

the browser. Imagine that your laptop has built-in support

for IEEE 802.11i (RSN), IEEE 802.1X, and EAP/TLS

authentication. If you were to purchase and install a client

digital certificate for your laptop, you would be able to go to

any hotspot and log in transparently. You could probably

purchase the digital certificate over the Internet from a Web

site that, naturally, would be on the controller's white list.

This, of course, assumes that the hotspot has support for

RSN, but it does show how hotspots in the future can

become easier to access.

Authentication Server

The credentials of each subscriber have to be stored in a

central database for verification. As outlined in Chapter 8,

EAP and IEEE 802.1X allow the subscriber to negotiate

access directly with the central authentication server.

However, in most existing hotspots the credentials are first

collected by the hotspot controller and then verified in a

separate transaction between the controller and the

authentication server. From an architectural standpoint,

those hotspots that require subscribers to log in with a user

name and password look very similar to a dial-up modem

pool. When you connect to the Internet via a dial-up

modem, you (or you computer) transfer your user name and

password to the modem pool controller, which then uses

RADIUS to verify your access rights. In is natural, therefore,

that the hotspot controller will also use RADIUS for this

purpose. In fact, this is one advantage of the user

name/password scenario for hotspots: Existing

authentication server databases can be used. In principle,

the same authentication server could support both dial-up

and hotspot sites.

An interesting situation exists for the hotspots based on

cellular phone authentication. When cell phones were first

introduced, the cellular phone industry had the same

problem to resolve for user authentication and billing of

mobile users. It needed a system that would allow you to

roam in and out of cell sites and be identified and connected

automatically. The industry now has a huge installed

network that, quite clearly, works well. The idea of using a

GSM SIM card or U.S. cellular equivalent in the Wi-Fi LAN

adapter is that you can tap into that huge existing customer

authentication and billing system. In this case the hotspot

controller needs to be able to interface with and talk to the

cellular phone authentication server. These servers use their

own protocols designed for the cellular industry and are not

based on Internet protocols. To implement such a system,

therefore, a special type of authentication gateway server is

needed to bridge between the Internet network and the

cellular network. The hotspot controllers may still use

RADIUS to communicate with this gateway, and it will

convert the RADIUS requests into the appropriate form for

the cellular system. The cellular authentication server will

see the Wi-Fi LAN user as if it were another cell phone.

Different Types of Hotspots

Eventually hotspots might become so widespread that you

could sit down almost anywhere and seamlessly connect to

the Internet, much in the same way that we expect from a

cell phone today. For the moment, though, hotspots are few

and far between. This section looks at four types of

hotspots:

Airports

Hotels

Coffee shops

Homes

Airports

Airports are huge enterprises, like small cities in their own

right. Management of such a large-scale organization

depends heavily on contracted services. It follows that

hotspots in airports are likely to be installed and run by a

specialist contractor. In some cases, individual airlines have

decided to install hotspots in their executive lounges.

However, the use of wireless really needs some central

coordination to avoid polluting the air with many

overlapping systems. Ideally, a single contractor would

manage hotspots; this contractor would install coverage in

suitable areas and then obtain a cut of revenues from

subscribers. This approach fits the brand model discussed

earlier. Naturally, the airport authority would want to be

paid as well. In the case of cell phone base stations,

payment is often in the form of a fixed annual fee.

Hotspots in the airport are likely to use dedicated hotspot

controller units that are placed in locked equipment closets.

They may even have a local authentication server capable

of storing a copy of the central authentication server's

entries.

Hotels

Hotels are much smaller than airports but are still unlikely to

want to get involved with the installation and operation of

the wireless network. Features such as network access are

becoming an important differentiator for hotels attracting

business customers, and many hotel chains have signed

exclusive deals with hotspot companies to install equipment

on their premises. Often this includes both wired and

wireless network access. In these cases, there is probably a

dedicated hotspot controller installed in the hotel.

Coffee Shops

Coffee shops or so-called cyber cafés use hotspots to attract

business customers or even private customers who don't

have high-speed Internet access at home. These enterprises

are too small to need a dedicated hotspot controller.

Fortunately, there are several alternatives available.

The first is to forward all the data from the access point

back to some central location where a single controller can

support many coffee shop�type operations. The connection

could be done using a dedicated lease line connection or a

frame relay connection. The problem is that the cost of such

connections is quite high. The second approach is to have a

special access point with built-in hotspot controller

functions. Finally you can have a special access point with

the ability to tunnel data across the Internet to a central site

with a hotspot controller. This is the same as the first option

(leased line) except that it uses a regular Internet

connection to reduce cost.

Homes

The idea of a hotspot in the home is novel but contentious.

Many people have broadband Internet connections to their

homes. Some people share them with their neighbors, using

wireless links between the houses. Here is the contentious

part: Such sharing may be in violation of the contract

customers have with the broadband service supplier. The

legality of setting up home-based hotspots is something

that a person should confirm before starting. Anyway, back

to the point: If you share your Internet connection with

neighbors, why not with anyone else within range? Maybe

you are next door to a convenience store or in a multiunit

dwelling. There could be many people who would like to use

your broadband connection. If you have not turned on

wireless security, there might be people using it already

without your knowledge!

Some companies have had the idea to turn this into a sort of

cottage industry. They market and sell hotspot wireless

access to subscribers and then sign up private homes to be

hotspots. We call these companies "cottage hotspot"

companies. The idea goes something like this. At your home

you have a computer, a Wi-Fi LAN, and a broadband Internet

connection. You are prepared to let others join your Wi-Fi

LAN and get Internet access for a small fee, but you have no

way to collect the money. You contact the cottage hotspot

company and sign up to allow your Wi-Fi LAN to be

accessed. They provide you with some special software to

load on your PC. This special software runs in the

background and performs authentication of would-be

customers. It also communicates (via your Internet

connection) to a central server owned by the cottage

hotspot company, and reports how many people are using

your network.

At the end of the month, the cottage hotspot company

sends you a check with a payment based on how successful

your hotspot has been. The company, of course, is billing its

subscribers and keeping a good share of the proceeds as

well. Subscribers can find out where participating hotspots

are from the company's Web site. The hope of the cottage

hotspot companies is that, if enough homes subscribe,

wireless access will be available on every street.

Home hotspots are a neat idea. It costs a person nothing to

set up because he already has the equipment. The big

threat to the idea comes from the reaction by the

broadband Internet providers. Obviously, they would like to

sell access to everybody on the street separately rather

than having them all share one connection. Today, some

broadband providers' contracts even limit the connection to

one computer in the home, although many people have a

network of computers at home. The providers generally turn

a blind eye to sharing for your family use, but they are

unlikely to do so if you start turning it into a business.

clbr://internal.invalid/book/0321136209_24031533.html

How to Protect Yourself When Using a

Hotspot

There is no doubt that, as a user of a hotspot, you are

vulnerable to many types of attack. At minimum, your data

can be intercepted and read. In the worst scenario, people

can get into your computer and copy, delete, or modify files

or even plant a virus. The wireless traffic in a hotspot is

generally not encrypted. However, even if it were, the link

between the access point and the hotspot controller is

unprotected and then the data is probably going on to the

public Internet anyway. Given that the data is going over the

Internet, you may accept that it is not private; however, the

prospect of someone accessing your computer should be

taken very seriously.

The biggest danger comes from shared file systems. Many

popular operating systems allow your files to appear as a

shared directory to other computers on the network. This is

the most popular method of networking for small businesses

and home users. However, if you have a shared directory

and forget to "unshare" it before entering the hotspot, there

is a real danger that it will be noticed by a stranger and

investigated. A level of protection can be gained by always

using a password for shared directories. All but the most

motivated attackers will probably give up and move on.

A second danger comes from Trojan viruses. Like the

mythical Trojan horse, a Trojan virus is carried into your

computer on an infected executable file. Once there, it

quietly sends out messages while connected to the network,

notifying an enemy where you are and opening a portal for

them to connect to your computer. Good virus protection

should always be used to avoid such viruses, and personal

firewall software, covered in the next section, usually blocks

the port that Trojan viruses use.

Personal Firewall Software

If you need real protection, you are advised to install

personal firewall software. This will not provide privacy for

your data but will also protect against attacks on your

computer. Such software is available from a number of

companies and is now built into some operating systems.

The software monitors all data going in or out of your

computer. It blocks any suspicious attempts to access your

computer and generally provides a single simple software

switch that blocks all network sharing in one go.

When you are operating in a hotspot, you should allow only

TCP/IP packets to come in and go out of your computer. This

protocol is all that is needed for Internet access. Other

protocols are sometimes used for computer-to-computer

communication on a local network, which is just what you

want to prevent. The firewall can block all non�TCP/IP traffic.

Most TCP/IP data is connection oriented. For example, when

you want to access a Web site or an e-mail server, your

computer establishes a connection to the server and then

sends and receives data. Once the connection is

established, data can pass both ways. You want the firewall

to allow connections that you initiate but to reject

connections coming in from somewhere else. This stops

other people from connecting to your computer.

Unfortunately, if you block all incoming connections, some

functions won't work. For example, an FTP file transfer may

require that the sending server is able to make a connection

to your computer. Good firewall software has the ability to

allow certain incoming connections based on knowledge of

what you are trying to do. Some applications do not use

connection-oriented TCP but use an IP datagram service

(UDP). The use of such applications will be limited if firewall

protections are in place. However, such

applications�videoconferencing or voice-over IP, for

example�are usually quite specialized. If you are using such

applications, you may want to consider the further

protection of a virtual private network (VPN).

Virtual Private Network (VPN)

VPN is a much used and often misunderstood term. It tends

to be used to describe some sort of general security system

operating at the TCP/IP layer. The concept of VPN is to

superimpose a private network on top of a public network so

you can get the advantages of a dedicated network and the

low cost of a shared network. Security is a key component of

implementing a VPN. Most VPNs create point-to-point

connections between two users or a user and a server. If two

people want to talk to each other across a crowded room,

they know that anyone in the middle can hear their

conversation. In the days before telephones, people used

devices called speaking tubes: By putting their ears to one

end, they could hear the person speaking into the other

end. These were used to communicate between the bridge

of a ship and the engine room, for example. In a similar way,

a VPN creates a tunnel through the shared network medium

so only the two parties at each end of the tunnel can read

messages sent at the other end. Various security techniques

are used to wrap the data being sent across the network so

it is quite impenetrable to anyone in the middle. These

tunnels are like independent virtual connections, hence the

name VPN.

A typical use for a VPN tunnel is to connect an employee to

their company's intranet. This type of connection is

particularly useful when the employee is out of the office

and using the Internet. One end of the tunnel resides on the

employee's laptop computer and the other end in a server

at the company's premises. Once such a connection is

established, the employee's communication is as secure as

if she were in the office, regardless of the fact that the

tunnel passes over the Internet or Wi-Fi LANs or any other

type of insecure network.

The concept of the tunnel is both a strength and a

weakness. It is ideal if you want to communicate to only one

other destination. However, it is a problem if you want to

communicate with several locations at once. If you want to

communicate with two or three servers, you would have to

have multiple tunnels in operation. And if you want to

browse Web sites, you need to turn VPN off because public

Web sites do not support VPN attachment. Some companies

solve this problem by requiring that all communications

from a company laptop go to the company VPN server. If

you want to browse the Internet, your data must first go to

the company VPN server, then to the company intranet, and

finally back out onto the Internet via the company firewall.

This requirement ensures ultimate control and security, but

it can hardly be considered efficient. Typically, it is available

only to larger corporate users.

VPN Details

The technical details of VPN are extensive and books that

focus on VPN are available. Here we just mention a few

points. VPN operates at quite a high level in the protocol

stack, well above the layers where RSN security operates.

You need to install special client software onto your

computer before you can operate a VPN. In the future, client

software will probably be built into the operating system,

thus simplifying management. The most popular VPN

system is based on IPsec, which is defined by the IETF. There

are other approaches, including some that are proprietary;

but it seems likely that IPsec will eventually become

universal for use with TCP/IP�based systems.

IPsec provides for two parties to negotiate and authenticate

the information needed to encrypt data into a tunnel. The

original IP frames are encrypted and encapsulated inside

new IP frames that are then sent to the other end of the

pipe. This can create problems if the original IP address is

not valid at the destination network, such as when address

translation is being used along the route because the

encapsulated (and hidden) addresses will not be translated.

This was a major problem in the early days, although many

servers now have the ability to correct for the problem.

The computational overhead of encryption usually falls on

the processor in the PC rather than on special hardware.

This overhead can limit transfer rates, although the high

speed of modern processors greatly reduces the effect of

this overhead.

Regardless of the security offered by the hotspot, VPN is the

most secure way to operate in a wireless hotspot. VPN

eliminates all the problems of security that have been

mentioned, including the weakness of the wiring plant

connecting APs and the danger of network sharing with

other users in the area.

If you do not have access to a VPN server, you should

certainly consider the installation of a personal firewall.

There are also "anonymity services" that can provide a VPN-

like function for a monthly fee. These services act as a sort

of forwarding device. All your Web accesses get sent to a

server on the Internet and then are forwarded on to the

Internet again by the server. Typically, the data between

your computer and the server can be encrypted; it is

decrypted by the server and then forwarded on to the

Internet. This is ideal for use in a hotspot because it means

that your data sent over the wireless link is encrypted. If you

are interested in such services, type "anonymity" into a Web

search engines and you will find various links to companies

that can do this. For example, www.anonymizer.com.

http://www.anonymizer.com/default.htm
clbr://internal.invalid/book/0321136209_24031533.html

Summary

In this chapter we have looked at the way in which Wi-Fi

LANs are being used to provide public hotspots. The ideal

situation is that, eventually, there will be hotspots all over

the place and you will be able to sit down with your laptop

or other wireless terminal and get a connection to the

Internet without any special configuration or login required.

In fact, it should work like cellular phones today; just turn on

and use. Today, most hotspots do not work in this way;

typically, a special connection procedure is required via a

Web browser login screen. However, some cellular phone

manufacturers have started to integrate the same type of

authentication as seen in phones and this can provide more

seamless access.

In the future the use of IEEE 802.1X provides a path to more

seamless hotspot access. IEEE 802.1X will allow the user's

computer to specify the types of authentication it can

support and to negotiate access using embedded security

tokens such as digital certificates and smart cards. The use

of IEEE 802.1X makes IEEE 802.11i (RSN) security a logical

choice for hotspots in the future. However, it must be

remembered that the primary motivation of the hotspot

operator is to avoid fraudulent use rather than to protect the

privacy of the customer.

There are many security issues related to the use of

hotspots. Most provide no security on the wireless link so

your data can easily be observed by an attacker in the

hotspot. Furthermore, most treat the local Wi-Fi LAN as a

shared medium, allowing data for one wireless station to be

broadcast to other users. This creates all sorts of risks of

privacy as well as a danger of direct attacks on disk drives

that you might have inadvertently left open. On top of all

these issues, the data ultimately passes over a public

Internet connection that must be considered totally

insecure. Therefore, although you may use a personal

firewall, and in the future there might be wireless

encryption, it is likely that the use of VPN will continue as

the most secure way to protect corporate users when they

are accessing hotspots.

Chapter 15. Known Attacks:

Technical Review

Earlier in the book, we explained the basics of Wi-Fi LAN

technology and provided an intuitive notion of what security

is all about. In this chapter, we jump into the details of the

various known attacks against the security standards used

in building wireless LANs, including IEEE 802.11. Some of

the material may appear complex, and at least one of the

attacks requires a reasonable background in cryptography

for full understanding. We present the information as simply

as possible; but if you're not interested in the details, skip to

the next chapter, which discusses how attackers can use

techniques such as described in this chapter to break into a

poorly protected wireless network.

In Chapter 4, we classified attacks into four broad

categories: snooping, modification, masquerading, and

denial of service. In this chapter, we cover the material

somewhat differently by classifying the various attacks by

the security mechanism that it breaks. We also categorize

the attacks so you'll understand what a successful attack

provides to the bad guys.

Review of Basic Security Mechanisms

There are numerous ways to classify something as complex

as security. Chapter 4 focuses on the goals of the attacker,

that is, what the attacker gains if he is successful. This

section introduces another method of classifying attacks

based on the security mechanism targeted by the attacker.

Every effective security architecture uses one or more

security mechanisms to implement the goals of the

architecture. These basic security mechanisms are

confidentiality, integrity, and availability.

Confidentiality

Confidentiality protects against the inadvertent or malicious

disclosure of sensitive information, that is, it conceals

information. Usually, confidentiality is provided by

cryptographic or access control mechanisms. Let's review

the definitions of these mechanisms.

Cryptography

Encryption is the process of making information

indiscernible to an adversary, and cryptography is the

study of making and breaking encryption algorithms. There

are two widely used forms of encryption: symmetric and

asymmetric. With symmetric encryption, the communicating

parties share a secret�a key�that is used for both

encryption and decryption. With asymmetric encryption, the

communicating parties usually have two keys, a private key

for decryption and a public key for encryption. The inverse is

also true. The private key can be used to encrypt some

data. In this case, the result is essentially a signature that

can be verified by anyone having knowledge of the

corresponding public key, if he knew or could compute the

value of the encrypted data. Now, let's discuss symmetric

and asymmetric encryption in more detail.

Asymmetric Encryption

Asymmetric encryption, also known as public key

cryptography, uses a different key for decryption than the

key used for encryption, as follows:

M = D(private_key, E(public_key, M)),

where M is the message, D is the decryption function, and E

is the encryption function.

Usually, the two keys used in the process are referred to as

a key pair, with one key called the private key and the

other key called the public key. The public key is shared with

anyone for communications purposes, and the private key

remains known only to the holder, or principal, of the key

pair. The public key is usually shared in the form of a

certificate that includes information that uniquely identifies

the holder of the key pair as well as the signature of the

issuer�a trusted entity that vouches that the identity bound

to the public key in the certificate is correct. The process

that issues and revokes public-key certificates is called a

public key infrastructure, or PKI.

An example of an asymmetric encryption algorithm is the

widely used RSA public key algorithm designed by Rivest,

Shamir, and Adleman (Rivest et al., 1979).

Symmetric Encryption

Symmetric encryption uses the same secret key, k, for both

encryption and decryption, in other words:

M = D(k, E(k, M).

Examples of popular symmetric encryption algorithms

include the RC4 (Ron's Cipher 4) by Ron Rivest and AES

(Advanced Encryption Standard) ciphers, both of which have

already been covered in some detail (RC4 in Chapter 6, and

AES in Chapter 12). Symmetric ciphers operate in one of two

fashions�stream or block. In a stream cipher, such as RC4,

each byte of the plaintext or ciphertext is processed

individually�that is, a byte is the basic unit. In a block cipher

such as AES, the plaintext or ciphertext is grouped together

into blocks of a predetermined and fixed size and then

processed as a single unit.

When two parties wish to communicate securely using a

symmetric cipher, they first must agree upon the shared

secret, k, in a secure fashion. This is usually accomplished

via key distribution or key agreement, both of which are

forms of key management, which we discuss next.

Key Management

Key management systems provide the means for

implementing cryptographic periods via the secure

distribution of new keys on a regular basis. An important

point is that disclosure of the secret key during distribution

would cause any cryptographic system to fail, and failing to

regularly change keys would weaken most cryptographic

systems. Therefore, every security architecture should use a

robust key management system.

Of the two approaches to key management, manual and

automatic (electronic) systems, manual systems are more

prone to risk because they significantly depend on human

assistance, which has historically been the weakest link in

any security architecture. Automatic systems, while more

difficult to design, are significantly more robust when

correctly designed, implemented, and operated.

Access Control

Access control is another mechanism that supports

confidentiality. We previously followed the analogy of the

much-valued doorman who allows only those who live in an

apartment building to enter it. Essentially, the purpose of

access control is to allow only those who are authorized to

use or view system resources. Typically, this is accomplished

through an access control list (ACL), which in its simplest

form is a look-up table based on some identity criteria.

Access control mechanisms work very closely with

authentication as they rely on a valid identity (proven by

authentication) to make decisions concerning access.

Remember we first introduced access control in Chapter 8

and authentication in Chapter 6.

Integrity

There are two aspects to integrity. With source

integrity�also known as authentication�the information's

originator is known and credible. With data integrity, we

seek to prevent inadvertent or malicious modification of the

data.

Source Integrity

Source integrity (authentication) is the process of proving

either a principal's identity or a trusted source of

data/system resources. Strong authentication requires two

elements. The first is a common trust element�something or

someone whom the object doing the authentication trusts

and who can vouch for the subject or person being

authenticated. The second element is a unique identity for

the subject being authenticated. For example, when you use

a check to pay for goods, the cashier usually asks to see

your driver's license to ensure that it matches the name on

the check. In other words, the clerk is authenticating your

identity by trusting the Department of Motor Vehicles to

have verified your identity before issuing you a driver's

license. Although not foolproof, the difficulty of forging

drivers' licenses encourages merchants to use them as

verification when accepting checks.

Authentication works closely with access control

mechanisms, which require a verified identity to make

access decisions.

Data Integrity

Ensuring data integrity requires the detection and, ideally,

the prevention of unauthorized modifications. Whereas

cryptography detects integrity violations, access control

prevents integrity violations.

Access control for data integrity is similar to using access

control for confidentiality; the mechanism prevents

attackers from accessing and thus modifying the data. The

cryptographic approach is somewhat different in that it uses

a cryptographic hash function to create a unique hash value

or fingerprint of the data. To be considered a cryptographic

hash function, an algorithm must meet four requirements:

The hash value must be easy to compute.

Creating data that results in a specific hash value must

be computationally difficult so that it is difficult for

adversaries to replicate that hash value and make

undetected alterations to data.

The hash function must be one way, making it difficult

to recreate the data based solely on the hash value.

Collisions�that is, identical hash values for two random

data sets�must be difficult to find.

Given a cryptographic hash function, detecting integrity

violations is straightforward. First, we compute the hash

value for a given data set. Then, we compute a new hash

value over the same data at a later time and compare it to

the previous value. If the two values are not equal, the data

was modified. We do this using message authentication

codes and digital signatures.

Message Authentication Codes

Message authentication codes (MAC[1]) use a keyed one-way

function to provide message authenticity proving that the

contents have not been altered in route.

[1]
 The cryptographic and security community use the acronym MAC

while the IEEE uses MIC (message integrity check). The reason the IEEE

uses MIC is that the acronym MAC was already in use. In this chapter, we

use MAC.

A keyed cryptographic hash is the most common way to

build a MAC, requiring a shared secret, k, between the

communicating parties and an agreed-upon cryptographic

hash function, H. To send a message, M, along with another

MAC, the sender computes the MAC using MAC = H(k M, k),

and sends <M, MAC> to the recipient.

Upon receipt, the receiver computes a MAC value over M

and compares the computed value to the received MAC. If

the two values are the same, the message authenticity is

valid.

While the simple MAC shown previously provides message

authenticity, it should not be used in practice because a

much stronger MAC exists. The HMAC MAC has a formal

basis for its security properties (Krawczyk, 2003).

Digital Signatures

Digital signatures use a cryptographic hash function such as

MD5 or SHA1 along with public key cryptography to ensure

message authenticity and data integrity. To compute a

digital signature, the sender first computes a hash value h

of the message M and then encrypts this hash value using

an asymmetric algorithm, typically RSA, with the sender's

private key. This process of computing a digital signature is

shown below:

h = H(M)

S = ERSA(private_key, h)

The sender now sends the message M and the signature S

to the recipient. To verify the authenticity of the message,

the receiver calculates the hash value of the message, h´,

and decrypts the signature S using the sender's public key

to obtain the original hash value h. The receiver now

compares the two hash values: If they are equal, the

message is authentic; if they are not, the message was

either tampered (data integrity attack) or not tampered

while in route from the expected sender (source integrity).

The process of generating the two hash values is shown

below:

h' = H(M)

h = DRSA(public_key, S)

Some people wrongly believe that cryptography provides a

complete security solution. It does not. Cryptography is an

extremely important tool in providing security, but it is not

the complete solution to our security problems.

Review of Previous IEEE 802.11

Security Mechanisms

The original (1999) version of the IEEE 802.11 specification

defines several security mechanisms. The first is the wired

equivalent privacy (WEP) protocol, which was designed to

provide users with the same level of confidentiality

protection as that of a wired network. The standard also

includes a shared key authentication mechanism and

integrity protection against inadvertent errors. While access

control is not specifically addressed in the standard, most

vendors have implemented an access control list

mechanism based on MAC addresses.

Confidentiality

In the 1999 version of the standard, confidentiality is

implemented through the WEP protocol, which uses RC4 for

encryption (Menezes et al, 1996; Schneier, 1996). RC4 is a

proprietary stream cipher designed by Ron Rivest in 1987.

The algorithm was reverse-engineered and made public

anonymously in 1994. While the algorithm has received a

great deal of public attention, RSA Labs still claims the

algorithm is a trade secret.

RC4 and WEP

RC4 is a remarkably simple cipher. As a result, the

performance of the algorithm is high. It also makes

describing the algorithm easy. There are two major phases

in RC4. The first phase is the key setup algorithm (KSA),

which establishes a 256-byte array with a permutation of

the numbers 0�255. The permutation in the array, or S-box,

is established by first initializing the array with the numbers

0�255 in order. The elements in the S-box are then

permuted through the following process. First, a second 256-

byte array, or K-box, is filled with the key that repeats as

needed to fill the array. Next, the bytes in the S-box are

swapped according to the pseudocode in Equation 15-1.

Equation 15-1 RC4 Key Schedule

Algorithm

i = j = 0;

For i = 0 to 255 do

 J = (j + Si + Ki) mod 256;

 Swap Si and Sj;

End;

The next phase in RC4 is the pseudorandom generation

phase. In this phase, the algorithm in Equation 15-2

generates a pseudorandom byte R.

Equation 15-2 RC4 Pseudorandom

Generation Algorithm

i = (i + 1) mod 256

j = (j + Si) mod 256

Swap Si and Sj

K = (Si + Sj) mod 256

R = SK

To produce n pseudorandom bytes, the algorithm executes

Equation 15-2 n times. To encrypt plaintext, the stream of

generated pseudorandom bytes is combined with the

plaintext bytes using the XOR function as a combining

function, as shown in Equation 15-3:

Equation 15-3 RC4 Encryption

Ci = Pi + Ri

where Ci is the ith ciphertext byte, Pi is the ith plaintext byte,

and Ri is the ith pseudorandom byte. The decryption process

is just the inverse encryption shown in Equation 15-3 and is

shown in Equation 15-4.

Equation 15-4 RC4 Decryption

Pi = Ci + Ri

The equations shown in Equations 15-3 and 15-4 are a

Vernam cipher (Vernam, 1926). The Vernam cipher,

designed by Gilbert Vernam during World War I while

working for AT&T, is the only completely secure encryption

system provided that Ri is a true random byte. In this case,

Equations 15-3 and 15-4 are known as a one-time pad. To

be completely secure Ri must be truly random, and a

random sequence must never be used more than once.

Because the former Soviet Union made this serious mistake

following World War II, the American National Security

Agency was able to decrypt a number of one-time pad

enciphered messages sent by Soviet agents in a project

code named VENONA (U.S. NSA, 1999).

RC4, however, is not a completely secure encryption system

because it generates pseudorandom bytes, not truly random

bytes. WEP uses RC4 along with an initialization vector (IV)

to ensure that each message encrypts differently along with

a 32-bit cyclic redundancy check to protect data integrity

during the transmission of encrypted 802.11 packets.

Initialization Vector

WEP uses a 24-bit IV in an attempt to ensure that RC4's

pseudorandom byte stream is not reused because reusing

the same pseudorandom byte stream creates depth, which

can make the attacker's job easier. The sender uses a

unique key with every packet that is derived by appending

the shared secret key, k, to the publicly known IV. This

process is shown in Figure 15.1.

Figure 15.1. RC4 as Used in WEP

Integrity Check Value

WEP uses a 32-bit cyclic redundancy check (CRC) as an

integrity check value (ICV). The ICV detects any changes

(malicious or inadvertent) in the transmitted message's

underlying plaintext. Unfortunately, while a CRC easily

detects most inadvertent changes, it does not provide

integrity or message authenticity capabilities against

malicious changes. Thus, an attacker can easily modify

messages protected by a CRC.

A CRC uses the mathematics of finite fields, more

specifically, GF(2). Fortunately, the mechanics (not the

mathematics) of how a CRC works are easily explained. A

message M that is n + 1 bits long can be represented as an

nth-degree polynomial, M(x). For instance, consider a

message consisting of only the single ASCII letter "O," which

is represented in binary as 01001111. The polynomial

corresponding to this message is 07 + x6 + 05 + 04 + x3 +

x2 + x + 1, or x6 + x3 + x2 + x + 1.

For a CRC to work, both the sender and the recipient must

agree upon a polynomial G(x) of degree m that will be used

to calculate the CRC.[2] This polynomial will be used as a

divisor for the message.

[2]
 How this polynomial is selected is beyond the scope of this book.

The WEP CRC polynomial is G(x) = x32 + x26 + x23 + x22 +

x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1, with

m = 32 (IEEE, 1997). Transmitting an n + 1-bit message, M

also transmits an additional m bits, for a total message

length of n + m + 1 bits. We'll call the message and the

additional m bits the polynomial P(x). The m + 1 bits added

to the original message make P(x) divisible by G(x) with a

remainder of 0. The m + 1 bits are determined by increasing

the degree of M(x) by m, then by multiplying M(x) by xm to

obtain M´(x), and then dividing M´(x) by G(x). The

remainder, if any, is then subtracted from M´(x), resulting in

P(x)�the transmitted value of n + m + 1 bits.

Verification of the CRC by the recipient involves a similar

process. The recipient divides P(x) by G(x), and if the

remainder is 0, the message does not contain unintentional

errors. The key word here is unintentional because CRCs do

not prevent the introduction of intentional errors when the

attacker knows G(x).The attacker only needs to modify M(x)

and calculate new m + 1 bits, just as the sender did. An

example of how to calculate a CRC is provided in Appendix

B.

WEP Datagram Format

Figure 15.2 shows the WEP datagram format. The preamble

of the datagram is a four-octet value that includes the 24-bit

IV in plaintext, a 6-bit pad, and a 2-bit keyID value.

Figure 15.2. WEP Datagram Format

The WEP datagram format can be represented by C =

RC4(IV, k) <M, CRC(M)>, which shows that RC4 encrypts

both the message and the results of the CRC calculation

(ICV).

An important point to remember about WEP is that the

plaintext and the pseudorandom bytes produced by RC4 are

combined with a linear function, XOR. This fact causes

significant problems for WEP that are discussed later in this

chapter.

Key Management

The 802.11 standard neither addresses link-layer key

management nor does it provide recommendations for

upper-layer key management. The standard, instead, relies

only on manual key management, which is difficult to

perform in a timely manner when the number of hosts is

large.

As a result, only a few major vendors initially implemented

any form of key management or key agreement in their

high-end products, and all of these products use upper-layer

methods. Unfortunately, the vendors do not provide

sufficient information to determine the level of assurance

their products provide. Worse, in some cases, available

details indicate that vendors' "solutions"' worsen the

problem by using protocols with well-known

vulnerabilities�for example, an unauthenticated Diffie-

Hellman key agreement.

The 802.11 standard offers two methods for using WEP

keys. The first provides a window of four keys. A station or

access point (AP) can decrypt packets enciphered with any

one of the four keys; transmission, however, is limited to

one of the four manually entered keys�the default key. The

second method is called a key mappings table. In this

method, each unique MAC address can have a separate key.

According to the 802.11 specification, a key mappings table

should have at least ten entries. The maximum size,

however, is likely chip-set dependent. Having a separate key

for each user makes the cryptographic attacks found by

others slightly more difficult because the traffic per key will

be reduced, but enforcing a reasonable key period remains

a problem as the keys can only be changed manually.

Access Control

Access control is a major component of any secure

architecture. The previous 802.11 standard does not define

any means for access control. As a result, most vendors

implement access control lists using the client's MAC

address as its identity, and one major vendor implements a

proprietary access control using a shared secret.

Each access point can limit network access to clients using a

listed MAC address. If the client's address is not listed,

access to the network is prevented.

A major wireless vendor has defined Closed Network, a

proprietary access control mechanism. With this

mechanism, a network manager can use either an open or a

closed network. Anyone is permitted to join an open

network, but only clients with knowledge of the network

name, or SSID, can join a closed network. In essence, the

network name acts as a shared secret. Unfortunately,

because the SSID is sent over the air unencrypted, it is not a

well-protected secret.

Integrity and Authentication

The current IEEE 802.11 standard does not have a robust

mechanism designed specifically for integrity purposes.

Some claim that the 32-bit CRC ICV function provides

integrity; but, as we have seen, this is not the case in

practice.

The 1999 specification has only two forms of standardized

authentication in 802.11�open system and shared-key

authentication.

Open System Authentication

Open system authentication is the default authentication

protocol for 802.11. As the name implies, this method

authenticates anyone who requests it; in essence, it

provides a NULL authentication process. This method was

likely included in the standard to permit the use of a single-

state machine that supports authenticated and

unauthenticated operation.

Shared-Key Authentication

Shared-key authentication uses a standard challenge and

response along with a shared secret key to provide

authentication. The station wishing to authenticate, the

initiator, sends an authentication request management

frame indicating that it wants to use shared-key

authentication. The recipient of the authentication request,

the responder, responds by sending an authentication

management frame containing 128 octets of challenge text

to the initiator.

The responder generates the challenge text by using the

WEP pseudorandom number generator (PRNG) with the

shared secret and a random IV. The IV is always sent in the

clear as part of a WEP-protected frame. Once the initiator

receives the management frame from the responder, it

copies the contents of the challenge text into a new

management frame body and then encrypts it with WEP,

using the shared secret along with a new IV selected by the

initiator. The initiator then sends the encrypted

management frame to the responder. The responder

decrypts the received frame and verifies that the 32-bit CRC

integrity check value (ICV) is valid and that the challenge

text matches that sent in the first message. The entire

process is shown in Figure 15.3.

Figure 15.3. Authentication Sequence

Attacks Against the Previous IEEE

802.11 Security Mechanisms

Unfortunately, all of the security mechanisms defined in the

1999 version of the IEEE 802.11 standard have been proven

ineffective. The problems range from issues with the lowest

primitives up to the high-level protocols used.

Confidentiality

There are numerous flaws in both RC4 as used in WEP and in

WEP itself that indicate that WEP provides no effective

protection at this point.

RC4 Problems

Since 1994, researchers have identified a series of small

flaws in RC4, none of which resulted in a practical attack.

More recently, however, Itsik Mantin and Adi Shamir

described a reliable distinguisher[3] for RC4 ciphertext. While

this flaw was not a break, it identified a statistical bias in the

second output word of RC4's pseudorandom generator.

Shortly thereafter, Scott Fluhrer joined Mantin and Shamir in

authoring a paper that did result in a practical and complete

break (key recovery) of RC4 as used in WEP, and their attack

has subsequently been implemented and released in

several open source projects.

[3]
 Given ciphertext produced by an unknown system, a cryptanalyst

uses a distinguisher to identify the cryptologic, or algorithm, that

produced the given ciphertext.

Mantin and Shamir Bias Flaw

In a paper presented at the Fast Software Encryption (FSE)

2001 conference, Mantin and Shamir (2001) described a

bias in the second word of the pseudorandom stream

produced by RC4: Zero occurs as the second word with

twice the expected probability (1/128 instead of 1/256) in

what should be a pseudorandom sequence with all values

equally likely. While this may seem a minor problem, it

allows ciphertext produced by RC4 to be easily distinguished

from ciphertext produced with random cipher systems and it

lays the groundwork for a much larger result described

below.

Fluhrer, Mantin, and Shamir Key

Schedule Attack

Several months later, Scott Fluhrer and colleagues found a

devastating attack against a class of keys used in RC4 that

leak information about the secret key. Unfortunately for

WEP, the class of weak keys found by Fluhrer, Mantin, and

Shamir were exactly those used by WEP (Fluhrer et al.,

2001).

Fluhrer and his colleagues found that when RC4 is used with

an initialization vector appended or prepended to the secret

key, certain values of the IV produce a weak key. An

adversary who collects enough of these weak keys passively

through eavesdropping can recover the secret key in linear

time with respect to the key size; in other words, an attack

against 104-bit WEP is only slightly more difficult than an

attack against 40-bit WEP. Furthermore, the attack relies

only on the first byte of output from the RC4 pseudorandom

generator, as determined by the equation: S[S[1] + S[S[1]]],

where S is the S-box used in the implementation of RC4.

In most cases, determining the first pseudorandom byte

would be difficult because of the variability of the underlying

plaintext. But because WEP is used in an IP data-networking

environment, the first byte of the vast majority of packets is

0xAA, a value in the LLC header. Thus, we have known

plaintext and can easily recover the first pseudorandom

byte.

Recovering the secret key now involves passively collecting

enough packets of the form <keybyteindex+3, 0xFF, N>,

where keybyteindex is the index of the secret key we are

trying to recover and N is any byte value. This form of

packet lets us guess the true key byte with an accuracy of

5%, and the trick is to collect enough such packets to

ensure a correct guess. Fluhrer et al. estimate that

approximately 60 such packets are required, and

Stubblefield et al. (2002) found that 256 packets always

selected the correct key byte. This process is iterated until

all key bytes are determined.

Fluhrer et al. estimated they would need approximately four

million packets to recover a 104-bit key. However,

Stubblefield et al. implemented the attack and found they

needed between four and six million packets to recover

each key byte in an unoptimized attack. Stubblefield also

optimized the attack so as to reduce the number of required

packets to one million. Recovering this quantity of packets

depends on the network load and can range from less than

one hour in a moderately to heavily used network (300 or

more packets per second) to several hours in a lightly used

network.

Other WEP Problems

In addition to the problems with RC4, WEP itself has a

number of flaws running the entire range of field elements

in the protocol.

IV Space

WEP uses a pitifully small 24-bit IV space (224 or

16,777,216).[4] Assuming a moderate to heavy network

load, this space is exhausted within a few hours and creates

an IV collision�that is, the same <IV,K> pair is used to

encrypt two different plaintexts. When multiple hosts share

the same encryption key in a network, the time between

collisions is obviously much shorter.

[4]
 An interesting side note is that the attack by Fluhrer, Mantin, and

Shamir would have been easier if the IV space were larger�solving one

problem makes another worse. This is a good example of why security is

difficult.

The consequence of an IV collision is significant with a

stream cipher. Because of the linearity of the XOR

combining function, deriving the underlying plaintext is

much easier.

Given two ciphertexts produced with the same <IV, K> pair:

C1 = RC4(IV,K) P1

C2 = RC4(IV,K) P2

XORing the two ciphertexts together removes the

pseudorandom stream generated by RC4 and produces the

XOR of the two plaintexts (Borisov et al., 2001).

C1 C2 = (RC4(IV,K) P1) (RC4(IV,K) P2)

C1 C2 = P1 P2

The XOR of two plaintexts makes it significantly easier to

recover the two plaintexts because of their well-known

structure.

Replay Attacks

The WEP protocol provides no form of message

authentication; thus, it allows intercepted messages to be

replayed or sent again without modification (Borisov et al.,

2001). While replaying packets will not permit an adversary

to become a peer on the network, it can result in a

significant denial-of-service attack and can also be used to

reduce the cost of other attacks. This lack of message

authentication also permits attackers to create man-in-the-

middle attacks.

WEP Message Modification

WEP uses a 32-bit CRC that is a linear function of the

plaintext. Although WEP's RC4 encryption covers the ICV,

the stream encryption also uses a linear combiner, XOR. As

a result, we can manipulate an intercepted packet by

flipping bits in the data and CRC portions of the packet to

create a new�but still valid�packet with a different plaintext

than the original (Walker, 2000; Borisov et al, 2001).

Recall how WEP produces ciphertext C by XORing the

plaintext with the key stream. The attacker's goal in this

attack is to produce a new ciphertext C´that decrypts to a

new valid message with a valid ICV. Unfortunately, the

attacker can accomplish this without knowing the value of

the secret encryption key. Because both the RC4 encryption

and the ICV are linear in nature, the attacker can modify an

intercepted message by XORing the appropriate bits in the

message portion of the ciphertext, and then calculating a

new CRC of the changes and XORing this new CRC with the

CRC portion of the datagram. The following equations, taken

from Borisov et al. (2001), show this process

mathematically.

C' = C < D, CRC(D) >

C' = RC4(IV,K) < M,CRC(M) > < D, CRC(D) >

C' = RC4(IV,K) < M D, CRC(M) CRC(D) >

C' = RC4(IV,K) < M', CRC(M D) >

C' = RC4(IV,K) < M', CRC(M') >

The above derivation works because the WEP CRC is

linear�that is, CRC(M) CRC(D) = CRC(M D). An example

message modification is shown in Appendix B.

An Active Implementation of Fluhrer,

Mantin, and Shamir

The research literature has not discussed the possibility of

using active measures to speed the process of obtaining

enough packets for a successful Fluhrer, Mantin, and Shamir

attack. Obviously, active measures only make sense on

lightly loaded networks.

The two possible approaches are simple. In the first and

easiest approach, traffic analysis identifies an address

resolution protocol (ARP) request packet. The ARP request is

replayed continuously (remember WEP has no replay

protection) until it collects enough packets from the ARP

responses to determine the RC4 key. The second approach

involves slightly more work. Here, we wait until we see an

ARP request message and build upon it until it provides

enough known plaintext to recover an adequate

pseudorandom stream to forge Internet Control Message

Protocol (ICMP) ping packets (Petroni, 2003). Ping packets

are forged and the responses collected until the RC4 key can

be collected.

Experimentation indicates that approximately 450 ping

packets and replies can be sent per second between a

station (STA) and an AP, and thus we can collect the

required one million packets in approximately thirty-seven

minutes. Of course, this attack fully loads the network, but if

done during off-hours, it would likely remain unnoticed.

Several vendors, however, are now filtering most of the

Fluhrer weak IVs in their firmware. This prevents the

attacker from collecting enough weak IVs to recover the

WEP secret key, but it reduces the cost of a previous attack

against WEP, as described next.

An Inductive Chosen Plaintext Attack

This attack leverages several poor design aspects of WEP.

The first is the lack of replay protection, the second is the

nature of the CRC used, and the third is the fact that WEP is

a stream cipher rather than a block cipher. The attack

involves two steps (Arbaugh, 2001 and Petroni, 2003). The

first step, or base phase, involves recovery of an initial

amount of pseudorandom stream from traffic analysis

(eavesdropping). The second step, the inductive phase, then

forges messages with the recovered pseudorandom until a

dictionary of all IVs is created.

Base Phase

During the base phase, we need to collect enough

pseudorandom stream for a given IV so that we can begin to

forge packets. The commonly used Dynamic Host Control

Protocol (DHCP) makes this easy. We simply wait until we

see a DHCP discover or request message that provides us

with a base of known plaintext. This base is 38 bytes in

length, composed of the following known elements:

LLC header:
6 bytes

IP header:
20 bytes

UDP header[5]:
8 bytes

DHCP header:
4 bytes

[5]
 The 2 bytes of the UDP checksum are usually set to all zeros in most

DHCP implementations. Thus, we do not need to calculate that field.

This provides us with a total of 38 bytes of pseudorandom

stream, which is sufficient to forge ICMP echo request

packets, also known as ping packets. We use a ping packet

because it elicits a response from the targeted host, and it

permits an arbitrary amount of data to be appended to the

echo request.

Inductive Phase

Once we've recovered enough pseudorandom stream, we

can begin the inductive phase. The inductive phase has two

parts: recovery of the maximum transmission unit (MTU)

and building the dictionary.

MTU Recovery

We need to recover a full MTU of the pseudorandom byte

stream so we can recover a full MTU of the pseudorandom

byte stream for every ping packet transmitted. The method

that we use is the most complicated aspect of this attack,

and it leverages the fact that the CRC provides redundant

information about the underlying plaintext and the fact that

WEP is a stream cipher rather than a block cipher. Our goal

is to recover the MTU 1 byte at a time by guessing the next

byte, and waiting for confirmation that we guessed correctly.

We begin by crafting a ping packet in a very specific fashion.

We start with the 38 bytes recovered in the inductive phase,

and we set n = 38. A proper ping packet without any

additional payload is 34 bytes (38 bytes when the CRC or

ICV is added), but we want to send a packet of 39, or n + 1

bytes. We do this by guessing the 39th byte and

constructing the ping packet as shown in Figure 15.4.

Figure 15.4. MTU Recovery Process

We create a packet of n � 3 bytes (or 35 bytes�ping packet

plus 1 payload byte). This is the data portion in Figure 15.4.

We next calculate the CRC/ICV over this data portion, but we

append only the first 3 bytes of the result. Now, we XOR this

data with the n bytes of the pseudorandom stream, and

prepend the IEEE 802.11 header and the appropriate IV,

which results in a packet of n bytes. Finally, we guess the n

+ 1 byte and append it to the packet. Now, we have the

specially crafted ping packet. We transmit it, and wait a

small amount of time for a response. If we get a response,

we know we guessed the correct n + 1 byte and we can

proceed to recover the corresponding pseudorandom byte.

If we don't get a response, then we guessed incorrectly and

we continue to try the remaining 255 byte possibilities.

Once we get a response, we need to recover the n + 1

pseudorandom byte, as shown in Figure 15.5.

Figure 15.5. Recovery of the n + 1

Byte

Because the host we pinged responded with an ICMP echo

response packet, we know that the byte we guessed was

the correct ciphertext byte for our packet. We also know the

corresponding plaintext byte�the fourth byte of the ICV that

we didn't use in creating the packet. We now XOR these 2

bytes together (known plaintext with corresponding

ciphertext), and we recover the n + 1 pseudorandom byte.

Now because we recovered the n + 1 pseudorandom byte,

we continue this process (increasing n by one to recover the

n + 2 pseudorandom byte) until we recover a full

MTU�usually 1,500 bytes for Ethernet.

Building the Dictionary

Once we've recovered the full MTU, we need to build a

dictionary of all of the 224 (16,777,216) possible IVs used.

This dictionary (assuming an indexed flat file) will be

approximately 23.5 gigabytes�well within range of today's

laptop computers.

The actual recovery of the pseudorandom stream for each

IV leverages the fact that the ICMP echo response returns

exactly the same data that was appended to the ICMP echo

request. Thus, if we send a ping equal in size to the MTU,

we'll get a response of exactly the same size. But, it will be

encrypted with a different IV than the one in which we

transmitted the IV. Therefore, we once again have known

plaintext (the data we appended to the ping request) along

with the corresponding plaintext. This permits the recovery

of a full MTU's worth of pseudorandom for the returned IV. To

build the full dictionary, we continue the above process until

we have every IV.

Cost of the Attack

The cost of the inductive chosen plaintext attack depends

on how aggressive the attacker wants to be. We'll assume a

moderately aggressive attacker in our calculations so we

can approximate worst case for the defender.

In an implementation of the attack, the average time of

recovery for a single byte in the inductive phase was 1.7

seconds/byte, and the average time to recover a full MTU

(1,500 bytes) was 42.8 minutes. Once a full MTU is

recovered, we need to build the dictionary. A current

implementation of the attack recovers IVs at a rate of 11.5

msec/IV, or 53.7 hours to recover all 224 IVs with a single

host�a fairly significant amount of time. However, building

the dictionary is embarrassingly parallel and the total time

to build the dictionary can be found by dividing 53.7 hours

by the number of attacking hosts. Thus, an attacker using

eight different hosts in the attack can reduce the time to

around six hours�something to worry about, especially

because the time required is completely independent of the

key size. In other words, it takes approximately six hours to

build the dictionary (or seven hours total) for both 40- and

104-bit WEP keys.

Effects of Filtering IVs

A number of vendors are now filtering IVs to protect against

the multiple open source implementations of the Fluhrer et

al. attack (see Chapter 16). The most aggressive filtering

reduces the IV space by 6 bits to 218 (262,144)�a significant

reduction in IV space, and a significant reduction in the

overall time of the inductive chosen plaintext attack. The

reduction in time occurs only with building the dictionary so

we still must take 42.8 minutes to recover a full MTU. But

now instead of taking over 53 hours to build the dictionary

with one attacking host, we can build the dictionary in 50.3

minutes�a serious reduction in time and the size of the

dictionary shrinks considerably as well.

Ironically, the countermeasure to one attack makes another

attack significantly better�better in some respects than the

attack the countermeasure was designed to prevent.

Access Control

While the 1999 version of the IEEE 802.11 standard does

not define a mechanism for access control, most

implementations use MAC address-based access control

lists. In addition, a major vendor has implemented a

proprietary access control mechanism entitled Closed

Network. This section describes the significant flaws found

in each.

Problems with MAC-Based Access

Control Lists

In theory, ACLs provide a reasonable level of security when

we use a strong form of identity. Unfortunately, MAC

addresses do not provide strong identity for two reasons.

First, an attacker can easily observe MAC addresses because

they must appear in the clear even when WEP is enabled.

Second, some wireless cards allow their MAC address to be

changed via software. As a result, an attacker can easily

eavesdrop to determine valid MAC addresses and program

the desired address into the wireless card, bypassing access

control and gaining access to the network.

Problems with Proprietary Closed

Network Access Control

In most IEEE 802.11 wireless networks, the access point

broadcasts the network identity using a text string called

SSID. This allows a mobile device to search for specific

networks by listening to broadcasts called beacons. The

idea of the closed network is to treat the network name or

SSID as a secret so the mobile device must have prior

knowledge of the SSID before connecting. In practice,

security mechanisms based on a shared secret are robust,

provided the secrets are well protected when in use and

when distributed. Unfortunately, although the SSID can be

hidden in the beacon, there are several other management

messages in IEEE 802.11 that contain the network name in

the clear. (The actual messages containing the SSID depend

on the vendor of the access point.) As a result, an attacker

can easily sniff the network name to determine the shared

secret and gain access to the network. This flaw exists even

with WEP-enabled networks because management frames

are not protected.

Authentication

As previously discussed, the 1999 version of IEEE 802.11

provides only two forms of authentication. Obviously, the

open method of authentication provides no security as all

stations are permitted to associate. Unfortunately, although

the shared-key authentication method was designed with

security in mind, it is not secure.

Shared-Key Authentication

An attacker can easily exploit the original IEEE 802.11

shared-key authentication through a passive attack by

eavesdropping on one leg of a mutual authentication. The

attack works because of the protocol's fixed structure,

wherein the only difference between authentication

messages is the random challenge, and the weaknesses in

WEP (Arbaugh et al., 2001; Arbaugh et al., 2002). The

attacker first captures the second and third management

messages from the authentication exchange. The second

message contains the random challenge in the clear, while

the third message contains the challenge encrypted with

the shared authentication key. Because the attacker now

knows the random challenge P, the encrypted challenge

ciphertext C, and the public IV, the attacker can derive the

pseudorandom stream produced using WEPK, IV
PR, with the

shared key K and the public initialization variable, IV, as

shown below:

The recovered pseudorandom stream, WEPK, IV
PR, is the

same size as the authentication frame because all the

frame's elements are known: algorithm number, sequence

number, status code, element ID, length, and the challenge

text. Furthermore, all but the challenge text will remain the

same for all authentication responses. The attacker now has

all of the elements to successfully authenticate to the target

network without ever knowing the shared secret K. The

attacker requests authentication of the AP it wishes to

associate/join. The AP responds with an authentication

challenge in the clear. The attacker uses the random

challenge text R and the pseudorandom stream�WEPK,

IV
PR�to compute a valid authentication response frame body

by XORing the two values together. The attacker then

computes a new ICV, as described by Borisov et al. (2001).

Finally, the attacker responds with a valid authentication

response message and associates with the AP to join the

network.

clbr://internal.invalid/book/0321136209_24031533.html

Man-in-the-Middle Attacks

The basic concept of man-in-the-middle (MiM) attacks was

introduced in Chapter 4. In this section, we discuss the

details of how exactly an attacker could establish a man-in-

the-middle attack against your wireless network. There are

two different methods to establish a man-in-the-middle

attack in a wireless network. The first is using management

frames and is specific to wireless networking, and the

second is ARP spoofing, which is also a problem for wired

networks.

Management Frames

Because the management frames lack any integrity

protection, establishing a man in the middle with IEEE

802.11 based networks is easy (there's even a hacker tool

that will do it for you, described in Chapter 16). MiMs can be

established regardless of any protections (WPA, RSN, VPN,

and so on) that you might be using but do not necessarily

pose a threat if the security protocol is strong. MiM attacks

are possible because there are no integrity guarantees

provided at the link layer (layer 2), and MAC addresses are

easily forged.

The attack begins (assuming that the target STA is already

associated to an AP) by the attacker issuing a

Deauthentication message to the target STA. This causes

the STA to drop its association with its current AP and look

to reassociate with another (possibly the old) AP. At the

same time, the attacker establishes a malicious AP with the

same ESSID and MAC address as an AP within range of the

attacker but on a different channel than the valid AP. The

target STA associates with the attacker's fake AP because it

is denied service at the valid AP by the attacker's forged

Deauthentication messages. Once the STA has associated

with the bogus AP, the bogus AP immediately associates

with the valid AP and begins forwarding all traffic so

authentication (if used as in WPA or RSN) completes. This

process is shown in Figure 15.6. The attacker now has

complete control over the traffic stream between the STA

and its valid AP. If encryption is not used, then the attacker

can modify packets before forwarding. If encryption is used,

packets can be denied or delayed. They can also be

modified to assist in other attacks, as we'll see later in this

chapter.

Figure 15.6. Example Man-in-the-

Middle Attack

ARP Spoofing

ARP spoofing has been a plague on wired networks for some

time; and while there are some limited countermeasures

available to prevent and identify ARP attacks, an ARP attack

can still succeed more often than not. ARP identifies the

MAC address for a given IP address. A client or STA wanting

to communicate with a specific IP address issues an ARP-

Request as a broadcast packet on the LAN asking to learn

the MAC address of the given IP address. Because ARP

packets do not have any integrity protection, anyone (even

attackers with access to LAN) can respond with incorrect or

malicious information, effectively poisoning the ARP cache

of the requestor. Thus, from that point until the cache entry

times out, the client uses an improper MAC address for the

given IP address, causing all traffic to go to the attacker

rather than the real recipient.

There is an important distinction between using

management frames (as described in the previous section)

and using ARP spoofing for establishing MiM attacks. With

ARP spoofing, the attacker must have access to the link

layer, whereas using management frames does not have

this requirement. If encryption is being used, the attacker

must first break the encryption (or be able to forge packets)

before he can perform a successful ARP spoofing attack.

With WEP-based networks, breaking the encryption, as we

have seen, is a small problem. But with WPA- or RSN-based

networks, this is a significant (and hopefully impossible)

hurdle.

clbr://internal.invalid/book/0321136209_24031533.html

Problems Created by Man-in-the-

Middle Attacks

Because the attacker can inject himself between

communicating parties (the STA and AP) in a man-in-the-

middle attack, the attacker has the ability to completely

control the content of the communications (if encryption

and message authenticity are not used); and even if

encryption and/or message authenticity is used, the

attacker can still deny or delay communications.

This section examines two different problems that occur

because of MiM attacks. In the first case, the attacker can

hijack, or take over, a session; even when robust

authentication and access control are used without

encryption. In the second case, an MiM attack eliminates the

protection afforded by the use of an encrypted tunnel.

802.1x and EAP

Shortly after the IEEE 802.1x protocol was defined, a large

number of users were considering using it for authenticating

users at hotspots without using WEP. While in theory this is

a good idea, using 802.1x this way didn't solve any

problems (Mishra and Arbaugh, 2002). Essentially, the

attacker simply waits until the STA is completely

authenticated and then sends a forged Disassociate or

Deauthentication management frame to the STA. At this

point, the STA believes it no longer has a session and

attempts to reconnect (the attacker can continue to send

forged management frames to the STA, keeping it from

establishing a session). The AP, on the other hand, believes

there is still a session, and the attacker can now use that

session, masquerading as the STA up until a

reauthentication event takes place�usually in five minutes.

Finally, we earlier discussed in Chapter 9 the problems with

EAP and so we won't duplicate that discussion here.

PEAP

PEAP was designed to protect the EAP exchange from

eavesdroppers (see Chapter 9). There were two reasons for

this. The first was to provide privacy and allow users to

remain anonymous to eavesdroppers because traffic

analysis can be a significant threat in some cases, and the

second was to provide protection for the EAP control

messages EAP-Success and EAP-Failure. Unfortunately, an

easy MiM attack eliminates all of the protection provided by

PEAP when anonymous connections are supported.

In the first phase of PEAP, an anonymous tunnel is

established between the STA and the AP, with the STA

sending an anonymous identity if it likes. If the STA sends an

anonymous identity, then it cannot be authenticated. A TLS

tunnel is created nonetheless with the anonymous

credentials, and phase 2 is started, which is a normal EAP

session.

The attack against PEAP works by establishing the MiM prior

to phase 1 of PEAP. The attacker establishes two different

anonymous tunnels. The first (PEAP phase 1) is with the AP,

and second (PEAP phase 1) is with the STA. In the first

tunnel with the AP, the attacker masquerades as the STA,

and in the second tunnel the attacker masquerades as the

AP. The STA now begins phase 2 and the attacker sees the

true identity information of the STA as well as having the

ability to forge EAP control messages�just as if PEAP were

not being used (Asokan et al., 2003).

clbr://internal.invalid/book/0321136209_24031533.html

Denial-of-Service Attacks

We've made denial-of-service attacks into a separate section

for several reasons. First, denial-of-service attacks are

extremely difficult to protect against, and especially so with

wireless. Any attacker with a bigger amplifier, antenna, or

using more power, can deny service to an individual or

group at the RF level. As a result, RF attacks are difficult but

not impossible to prevent. The military, for instance, uses

spread spectrum, frequency hopping, and probably

ultrawide-band systems to mitigate the possibility of an

attacker jamming important frequencies. We don't have that

luxury because our equipment is readily available to our

attackers. Therefore, RF-based denial-of-service attacks

against IEEE 802.11-based networks (and actually any

consumer wireless standard) are nearly impossible to

prevent. An attacker with the know-how and access to the

right equipment can mount a denial-of-service attack

against your wireless network.

Another class of denial-of-service attack against the network

and cryptographic protocols, specifically layer 2 or the MAC

layer, is preventable. Unfortunately, neither the old nor the

new Wi-Fi standards opted to protect against this form of

attack�TGi debated the cost of protecting against layer 2

denial-of-service attacks, but opted for downward

compatibility with the old standard rather than protection

against denial-of-service attacks.

Layer 2 Denial-of-Service Attacks

Against All Wi-Fi-Based Standards

You may have noticed that the management frames, for

example, Associate-request, don't have any integrity

protection. That is, these frames can easily be forged by an

attacker. An attacker can deny service to a station/client or

to an entire access point, and in some cases across a LAN.

The attack is trivial with the right software (see Chapter 16).

If the attacker wishes to prevent a station from using the Wi-

Fi LAN, he has several choices. First, when the attacker can

see the AP to which the station is associated, he simply

forges a Disassociation or Deauthentication frame and

sends it to either the AP or STA. The AP/STA, thinking that

the station wishes to leave (or the AP no longer can service

the STA), grants the request and closes the association.

Unfortunately, both of these management frames

(Disassociation and Deauthentication) permit the attacker to

use the broadcast MAC address as the target. This results in

all stations associated with the targeted AP being knocked

off the AP.

Second, the attacker can deny service to a station when he

can see an AP on the same wired LAN as the AP to which the

target station is associated. In this case, the attacker sends

a forged Association-request message with the target

station's MAC address to an AP on the same wired LAN. The

AP that receives the association request approves (because

we don't authenticate until after association) it and sends

out a layer 2 update frame to the wired LAN. The router or

switch now begins forwarding traffic to the AP that just sent

the layer 2 update, and the actual station no longer receives

any traffic. Obviously, both of these attacks need to be

constantly run to prevent service to a particular station, and

this is one of the reasons why TGi opted not to protect

against it.

Another method of denying service to a group is similar and

involves loading up an AP with bogus stations such that the

resources on the AP are exhausted and the AP either

reboots or no longer permits new stations to associate to it.

TGi decided not to protect against these attacks because

the majority of the participants felt that a determined

attacker can always resort to an RF-based attack. The

majority of the members of TGi also were concerned with

potential problems with backward compatibility if integrity

protection were added to management frames.

Unfortunately, these attacks have been implemented in an

open source tool (see Chapter 16).

WPA Cryptographic Denial-of-Service

Attack

Michael is a lightweight message authenticity algorithm (see

Chapter 11). Because Michael provides only 20 bits of

protection against message modification attacks,

countermeasures were designed to prevent active attacks.

These countermeasures are effective at preventing the

creation of a forged message. However, they also introduce

the potential for a denial-of-service attack against the entire

AP.

A capable attacker can accomplish the WPA denial-of-service

attack. The attack isn't trivial to accomplish, but it doesn't

require rocket science either. Essentially, the attacker must

accomplish three tasks. The first is to stop a valid packet

from reaching the AP, and then, second, to modify the

packet such that the ICV remains valid. The third and final

task is to send the modified packet before a packet with a

higher TSC is received by the AP.

Accomplishing all three tasks is easy once a man-in-the-

middle attack is established between the AP and an STA.

Because the attacker controls the connection between to

the STA and AP, he can easily perform the first and third

tasks. Performing the second task requires applying what we

discussed earlier in this chapter and is shown in Appendix A

to modify the message.

Once the attacker sends two such modified packets to the

AP within a minute, the AP shuts down for exactly one

minute, preventing traffic from all stations associated with

the AP from communicating. The AP must also rekey

stations immediately upon beginning service after the one-

minute delay.

While this is a particularly brutal DoS attack, the same

results are obtained by using a much easier attack�the

management frame DoS described earlier.

Summary

Unfortunately, none of the original security mechanisms in

IEEE 802.11 wireless local networks were robust.

Adversaries easily bypass both the access control

mechanisms and the shared-key authentication mechanism.

Serious flaws in the WEP encapsulation process allow

recovery of the secret encryption key and the malicious

modification and replay of WEP-protected datagrams. Each

of these problems alone poses a significant threat to

deployed wireless networks�together, they make exploiting

wireless networks easy.

Fortunately, both WPA and RSN prevent the confidentiality,

integrity, and access control attacks (see Chapter 7).

Unfortunately, however, neither WPA nor RSN prevents

denial-of-service attacks using forged management frames.

The topic was hotly debated during several TGi meetings,

and the consensus of the task group, not necessarily the

authors, was that DoS attacks are a fact of life in wireless

networking and that protecting the management frames

would create downward compatibility problems.

clbr://internal.invalid/book/0321136209_24031533.html

Chapter 16. Actual Attack Tools

Therefore, against those skilled in attack, an enemy

does not know where to defend; against the experts in

defense, the enemy does not know where to attack.

Therefore I say: 'Know the enemy but know yourself; in

a hundred battles you will never be in peril.'

�Sun Tzu, The Art of War

This chapter looks in detail at several tools, available on the

Internet, that hackers can use to attack Wi-Fi networks. Most

are UNIX based and require the ability to compile (and

sometimes tweak) the tool. However, more are becoming

available for Microsoft Windows all the time. We explain

where to get the tools, what they do, and how to use them.

Some people might feel uncomfortable about our publicizing

these tools and explaining their use. However, it is our goal

to remove any doubt you may have about their potency. By

getting in the driver's seat, you will get a better

understanding of how weak the older Wi-Fi systems are. The

good news is that the tools are of very limited use against

WPA or RSN. Certainly, you would not be able to use them to

gather any information about secret keys or encrypted data.

So view this chapter as a cautionary tale and feel glad that

you at least "know the enemy."

By understanding how the bad guys operate, and the tools

they use, you can better design, install, and operate your

defenses (in other words, better understand the threat

against your system). Understanding today's threat does not

necessarily make you immune. The computer security

process is very much like the Borg in Star Trek: The Next

Generation. That is, the bad guys will adapt based on what

you do. You must stay vigilant, react to the changes that the

attackers make, and plan your responses.

Before describing the attack tools, we review the attacker's

process in a generic sense to give you some insight into how

you might be attacked. Not all of the bad guys operate

exactly as we describe, but their process is similar.

clbr://internal.invalid/book/0321136209_24031533.html

Attacker Goals

One of the main issues to understand is, "What is the goal

and/or goals of the attacker?" Different attackers have

different goals. For instance, the disgruntled employee may

only want to "to turn the lights out" with a denial-of-service

(DoS) attack, which is an availability attack. Another

attacker may want to steal personal information to facilitate

identity theft, which is a confidentiality attack.

Fortunately, the goals of the attacker align with the three

main security properties: availability, confidentiality, and

integrity. Which one is most important to a specific attacker

depends on their motivation and the underlying value of

your information.

You now have an idea what the attackers want to achieve.

Let's take a look at how they're going to try and do it.

clbr://internal.invalid/book/0321136209_24031533.html

Process

The process an attacker follows is very similar to the

process that the military uses when planning an operation.

In essence, you have to first find out where you want to go

(reconnaissance). Then, you have to figure out how to get

there and what you will do when you arrive (planning and

collection). Finally, you need to review your collection and

then execute the operation.

While it might be a bit of a stretch to say that an attacker

plans and executes with military-like precision, even the

most undisciplined attackers follow (unknowingly) some

aspects of this process, as shown in Figure 16.1.

Figure 16.1. High-Level Attacker

Process

The process is cyclic because, at any point, additional

information may be required that forces a return to an

earlier phase to obtain the information.

Reconnaissance

One of the most important aspects of any attack is

reconnaissance; the target must be identified. In the

wireless LAN case, there are two ways that an attacker can

identify a target, and the motive of an attacker plays an

important part here. If the attacker is just looking for

network access, then he will seek until he finds an easy

victim. By contrast, in a targeted attack, the attacker

focuses on finding access associated with his target, which

is slightly more difficult for the attacker and significantly

more difficult for the defender to defend against.

If the attacker is only looking for network access, his

reconnaissance could be limited to looking at any of the

many publicly available databases or maps of access points.

These maps and databases can be found on many Internet

sites, such as www.nodedb.com, and an attacker need only

find one near his current location. The process, however, is

slightly more difficult for the attacker if he has to find a

specific target.

Finding a wireless LAN target requires war driving, which is a

process named after the term war dialing.[1]. War driving, or

wilding, seeks to find access points accessible outside the

bounds of their deployment�in the street, for example.

[1]
 War dialing describes how attackers find computer systems on the

plain old telephone system (POTS) network. Several tools, most notably

toneloc, were written to assist attackers in finding computers attached to

telephones by "brute forcing" telephone numbers�trying every possible

telephone number (9999) in a given exchange. In war driving, rather

than brute force telephone numbers, people drive or walk around looking

for access points.

The tools required for war driving are simple and widely

available: a notebook computer, a Wi-Fi PC card, a special

software program, and, optionally, a directional antenna and

GPS receiver. Simple war driving can be done with a

completely standard setup because both Microsoft Windows

XP and Apple's MacOS X have a means to identify Wi-Fi

equipment built in. They lack, however, the ability to trace;

that is, to record the time and location of identified access

points.

The next two sections discuss two of the most popular war

driving software programs available at the time of this

writing.

http://www.nodedb.com/default.htm

NetStumbler

One of the most popular software programs for war driving

is the NetStumbler program (www.stumbler.net). This

program, which only works under Microsoft Windows,

provides an intuitive user interface along with the ability to

connect with several types of GPS receivers. The result,

when combined with a laptop and GPS, is an easily installed

and operated tool for war driving.

One of the main reasons for the popularity of NetStumbler,

besides the fact that it runs on the most popular operating

system family, is that it is easy to install and operate. Just

download, plug in a supported Wireless LAN card, and

double-click!

NetStumbler displays most of the information needed in one

screen, broken down into two panes (see Figure 16.2). The

left pane provides shortcuts for displaying the networks in

just about any fashion. By default, the main pane on the

right displays all the networks. However, you can easily

choose to view only those networks on a specific channel,

specific SSIDs or those with encryption, and so on. In fact,

the interface is so intuitive and easy to use, we won't waste

any more time explaining it.

Figure 16.2. NetStumbler Main

Screen

http://www.stumbler.net/default.htm

The maker of NetStumbler, Marius Milner, even has a tool

worthy of James Bond: MiniStumbler, which runs on a Pocket

PC (see Figure 16.3). Now, attackers can walk around the

interiors of office buildings, without attracting attention,

with a PDA hidden in their inner suit pocket. With this

program, any wireless LANs located in publicly accessible

buildings are at risk of detection, and potential compromise,

if they lack basic security protection.

Figure 16.3. PocketStumbler

While NetStumbler is easy to operate, it lacks the

sophistication of the next tool that we're going to describe:

Kismet. From an attacker's point of view, one of the major

problems with NetStumbler is that it operates in an active

mode�that is, it transmits probe requests as part of the

process of finding access points. Using probe requests

creates an additional problem for the attacker because the

attacker won't be able to identify any of the closed or

cloaked networks; these networks will not respond to a

probe request without the correct network name (SSID).

Kismet

Another popular tool for war driving is Kismet

(www.kismetwireless.net). Kismet is a completely passive

tool (does not transmit probe requests) that runs under the

Linux and OpenBSD operating systems. Kismet includes all

of the functionality of NetStumbler as well as basic traffic

analysis functionality. An attacker running Kismet easily

http://www.kismetwireless.net/default.htm

determines the network configuration for those networks

running without basic WEP protection, and it displays

character strings it sees in the traffic. This is good for

finding passwords and so on. Kismet does this by examining

and displaying the traffic on the targeted network such as IP

headers and ARP requests. This process provides essential

information to the attacker so that they may use (or should

we say abuse) the targeted network.

Kismet saves the information it collects in a series of files

that can be viewed later. These files contain lists of all of the

information about a network, raw packet dumps, and

captured WEP traffic so that it can be fed into one of the

open source WEP crackers available (more on that later in

this chapter).

The main window of Kismet is shown in Figure 16.4. On the

right side, there is a short informational panel displaying the

number of networks found (Ntwrks), the number of packets

(Pckets) seen, the number of encrypted packets (Cryptd),

the number of encrypted packets with a weak IV (Weak),

packets interpreted as noise (Noise), the number of packets

discarded due to bad CRC (ICV) values (Discrd), the packet

rate (Pkts/s), and the total elapsed time in seconds (Elapsd).

The lower panel lists status messages as they occur. The

largest and main panel of Kismet provides a network list of

all of the networks found since Kismet was started as well as

information about each of the networks. The exact

information shown for the networks is configurable. Figure

16.4 shows the default configuration.

Figure 16.4. Kismet Main Window

The first column lists the name, or SSID, of the network

found. An exclamation point (!) before the name indicates

activity was seen in the last three seconds, while a period (.)

indicates activity was seen in the last six seconds. The next

column, headed by "T", indicates the type of network

identified. An "A" indicates an access point in infrastructure

mode, a "D" indicates a data-only host or station, and an "H"

indicates an ad-hoc network master.

The third column, headed by "W", indicates whether WEP is

used by the network. "Y" indicates yes, and "N" indicates no.

One of the interesting things about Kismet is what the

developer calls "fuzzy encryption detection." Some access

points don't properly indicate when WEP is used by setting

the appropriate bit in the IEEE 802.11 header of the packet.

As a result, relying solely on that bit results in misidentifying

some networks as not using WEP when they really do.

Kismet looks at the first few bytes of the LLC header to see

whether they are the same. If they are, WEP is not used. If

they aren't, encryption is being used.

The fourth column, "Ch", shows the channel that the

network is using. This is followed by the number of packets

seen, Packts. The sixth column, Flags, provides information

about the network. Specifically, it indicates how the IP

Range in the next column was determined. An "A" indicates

that the IP block was found by an ARP packet, and a "U"

indicates that the block was found with a UDP packet. Both

indicators ("A" and "U") can be followed by a positive

integer value that indicates the number of octets that match

within the address block. Finally, a "D" indicates that the

block was found with a DHCP packet, and a "C" indicates

that Kismet identified Cisco discovery packets on the

network, and thus Cisco equipment.

In addition to the main window, Kismet provides several

other popup displays that provide additional information

about a specific network. When Kismet starts up, it is in

Auto fit mode. In this mode, the network names change

position automatically based on the last network seen. In

this mode, you're unable to scroll among the networks and

select one to learn more information. So, the first thing you

want to do is select the Sort window by pressing "s". You are

presented with a number of different ways to sort the

network information in the main pane. When you make a

choice, the window redisplays.

You are now able to scroll among the displayed networks

with the up and down arrows. In Figure 16.4, the first

network, WideOpen, is selected. By pressing the "i" key, a

popup window appears with all of the information Kismet

knows about the selected network. An example is shown in

Figure 16.5.

Figure 16.5. Kismet Network

Information Display

As you can see in Figure 16.5, Kismet provides a great deal

more information about the selected network than

NetStumbler. Kismet can even provide a real-time dump of

the ASCII strings that it sees on the selected network. To get

that information, click the "d" key in the main window (see

Figure 16.6). The strings from the intercepted traffic are

displayed, indicating in the example in the figure, the

download of a Web page from www.ieee802.org, which we

initiated as part of a test. This window continues to show the

intercepted strings until you exit by clicking the "x" key.

Figure 16.6. Kismet Strings Dump

http://www.ieee802.org/default.htm

Note that one potential issue with the use of Kismet, and

specifically this function, is that it may violate state and/or

federal law by intercepting communications. We certainly do

not advocate such use and, if you are tempted to try the

tool, we highly recommend that you discuss this issue with

your own legal counsel before proceeding.

Kismet provides two other informational popup windows.

The first provides statistics about channel and encryption

usage (Figure 16.7). Open it by clicking "a" from the main

window. Open the second window (Figure 16.8) by clicking

"r" to show the packet reception rate.

Figure 16.7. Kismet Channel Usage

Figure 16.8. Kismet Packet Reception

Rate

We've covered only part of Kismet's capability. We haven't

covered the files that Kismet generates as archival

information, or the integration of Kismet with a global

positioning system (GPS). Learning and using these

capabilities are straightforward; but as with any powerful

tool, Kismet takes a little bit of time to get the most out of it.

Once you've learned the basics, however, Kismet becomes a

potent tool.

clbr://internal.invalid/book/0321136209_24031533.html

Example Scenarios

The remainder of this chapter describes two example

scenarios. The first is a network that does not provide any

security; we'll call it WideOpen. The second, which uses the

original basic Wi-Fi protections, we'll call LockedUp. Both the

WideOpen and the LockedUp network are shown in Figure

16.4 so you can see the initial identification of the network.

We will now pretend to be an attacker with the goal, in each

case, of becoming a fully functional peer on the network.

Planning

This section explains the steps we need to follow to meet

our goal of becoming a fully functional peer on each of the

example, or target, networks.

WideOpen

The WideOpen network is running without WEP, and as such

Kismet was able to determine the IP network address range

(refer back to Figure 16.4). Kismet also creates a file of all of

the captured packets (usually named Kismet-<date>.dump,

where <date> is the date when the packets were captured),

which you can review with a tool such as Ethereal

(www.ethereal.com), as shown in Figure 16.9. Using

Ethereal, you can determine the MAC address of valid clients

as well as determine whether the wireless network is using

shared-key authentication. In Figure 16.9, a packet trace is

http://www.ethereal.com/default.htm

shown of the WideOpen network using Ethereal. A probe

request from a client is shown prior to the client joining the

network.

Figure 16.9. Ethereal Capture and

Display Screen

At this point, we probably don't need any collection beyond

that already done by Kismet. Therefore, we're ready to

execute and become a peer on the network once we've

successfully identified a valid client and determined whether

shared-key authentication is being used. We don't expect

that shared-key authentication is being used because,

although shared key is specified by IEEE 802.11, shared key

is not allowed in Wi-Fi certified equipment.

LockedUp

Things are much different with the LockedUp network (see

Figure 16.10). In this case, we can't see any of the network

parameters we see in Kismet. Therefore, we must first crack

the WEP key with one of the many WEP-cracking utilities

that are available on the Internet. One of the more effective

programs, bsd-airtools by David Hulton

(www.dachb0den.com/projects/bsd-airtools.html), comes

with a set of utilities for scanning and cracking WEP

networks. This example covers two of those tools,

dwepdump and dwepcrack. Dwepdump collects WEP-

encrypted packets and stores them in a file for later use by

dwepcrack, which attempts to recover the corresponding

WEP key. Both tools are explained in more detail later in this

chapter.

Figure 16.10. Ethereal Display of the

WEP-Protected LockedUp Network

http://www.dachb0den.com/projects/bsd-airtools.html

So our plan now is to move on to collection, when we'll use

dwepdump to collect enough traffic to successfully break

the WEP key.

Collection

The process of using dwepdump to collect enough packets

to recover a WEP key is simple; the most difficult part is

determining what key size (40 bits or 104 bits) the network

is using. As a rule of thumb, you're probably best starting

with 40 bits unless you suspect the target network is

particularly concerned about security.

A sample invocation and screenshot of dwepdump collecting

traffic for 40-bit WEP is shown in Figure 16.11. The screen

shows six columns. The first three indicate the number (in

hexadecimal) of weak IVs found for the first three key bytes.

The first column is the one described by Scott Fluhrer et al.

(2002) and the second and third columns are those

described by the developer of bsd-airtools, who extended

the FMS beyond the first key byte. The fourth column

displays the total number of packets with a weak IV, the fifth

column lists the total number of packets seen, and the last

column displays the actual weak IV found of the first class

only. We made this modification to help show what weak IVs

look like; you won't see this column in the tool you

download. You'll also note that the IV is printed backward.

Figure 16.11. Dwepdump Screen

Capture

Dwepdump must run until you collect at least 60 (0x3c in

hexadecimal) weak IVs for the first byte (first column

displaying 0x3c). You may also require more than 60 weak

IVs for the first key byte in practice because this attack is

probabilistic�in other words, each weak IV for the first byte

provides a hint as to the first key byte with a 5% probability.

In our experience, having around 80 weak IVs guarantees

success, while 60 works most (but not all) of the time.

The length of time required to recover these packets

depends on the load and number of clients visible to the

collection client. It also depends on the type of equipment

being used by the target. If all of the equipment being used

by the target filters out weak IVs (as most of the major

vendors' latest firmware does), dwepdump may never

collect enough of the important first class of IVs. If, however,

the equipment is not filtering weak IVs, the length of time

will vary from 20 minutes to several days, depending on the

network load.

Analysis

At this point in the process, we've collected enough data to

begin analyzing it. In some scenarios, however, more data

may be required. In such scenarios, we could just go back to

collection or planning when we need to revise our plan.

Recovery of WEP Key

Once enough packets have been collected, recovering the

WEP key is straightforward using dwepcrack. An example of

starting dwepcrack is shown in Figure 16.12. In this case,

however, the key is not correctly identified. When this

happens, you have two choices. You can go back and try

and collect more packets to add to those you've already

collected, or you can use a fudge factor to identify the key.

Dwepcrack works by calculating the probability for all 256

potential byte values for each position within the key. Thus,

a 40-bit key would have an array of probabilities of [5 x

256]. The fudge factor tells the cracking program how far

down the list of probabilities to try for each position. Thus, a

fudge value of 2 would try the top two likely key values in

each position until it found the correct match or finished

trying each value. A brute-force of the entire key space

would, therefore, be a fudge value of 256. It's not worth

using a fudge value of 256 because it probably won't finish.

Instead, you could use a value under six when you have

more than 60 of the first class of weak IVs.

Figure 16.12. Dwepcrack Failing to

Find the Correct Key

Figure 16.13 shows a run of dwepcrack using a fudge factor

under six on the same set of data analyzed in Figure 16.12.

In this case, however, the WEP key is found quickly after all

of the data is read into memory from the file system. You'll

find that the reading of the data into memory is usually the

most time-consuming process and that, once that data is in

memory, the amount of time spent analyzing the data is

less than a minute.

Figure 16.13. Dwepcrack Finding the

Correct WEP Key

Dwepcrack is an incredibly powerful tool, and it doesn't take

a significant effort to learn how to use all of its power.

Current versions of dwepcrack run on both FreeBSD and

OpenBSD.

Passive Identification of Network

Parameters

At this point, you've recovered the WEP key. But you know

nothing of the network configuration. You basically have two

choices. The first is to write a custom program (none

currently exists for downloading) that decrypts the data

you've already collected and formats it for display in

Ethereal. The second is to use the WEP key and collect more

traffic with your wireless LAN card set to decrypt the traffic

and display it in Ethereal. Alternatively, you can set the

encryption key in the Kismet configuration file and Kismet

will identify the network parameters for you.

In either case, you must examine the raw packet traces to

determine the IP space and other network parameters used

by the target network. While this process may sound

daunting, it in fact is rather trivial to accomplish.

Once you've completed this step, you have all of the

information you need to become a peer on the LockedUp

network.

Execution

At this point, you have obtained all of the information

needed to become a fully functional peer on both the

LockedUp and WideOpen networks. You cracked the WEP

key for the LockedUp network, and WideOpen does not use

encryption. Next, you simply pick the time to join the

network and set the parameters on your computer just as

you do for any other network. The only possible curve ball is

if MAC address filtering is being used. In this case, you'll

immediately realize that you can't use the network, so you

need to go back to the data you collected and identify a

MAC address that was using the network. Now, just listen

first to make sure that the address isn't still being used, and

if it isn't, use the driver interface to set the MAC address to

the address you've identified as valid. This works only with

certain types of Wi-Fi cards on certain operating systems,

for example, FreeBSD, OpenBSD, and Linux.

clbr://internal.invalid/book/0321136209_24031533.html

Other Tools of Interest

This section describes some other tools that can be used

against your wireless network. The first tool is Airsnort, one

of the original tools to implement the FMS attack against

WEP. The second tool is Airjack, which implements wireless

DoS attacks as well as establishes man-in-the-middle

attacks.

Airsnort

Airsnort (http://airsnort.shmoo.com), compared to the

bsdairtools described earlier in this chapter, is easy to use.

It has an X-windows�based interface and an MS-Windows

version in alpha testing, shown in Figure 16.14.

Figure 16.14. Airsnort Capture

Window

Figure 16.14 shows Airsnort running against our LockedUp

network. Airsnort offers several features over the bsdairtools

family that make the tool much easier to use. One of these

features is the parallel cracking. The program is constantly

http://airsnort.shmoo.com/default.htm

working in the background to break the WEP key. When it

does, it displays it in both hexidecimal and ASCII in the right

columns (PW Hex and PW ASCII). Airsnort also allows you to

capture on multiple networks or access points by scanning

across the channels. This design causes you to miss packets

sometimes, yet it remains a powerful feature.

Airsnort doesn't have the performance that bsdairtools has.

In head-to-head tests we've run, bsdairtools seriously

outperforms Airsnort. In one case, bsdairtools cracked the

key in approximately 20 minutes, whereas Airsnort ran for

six hours without recovering the key. The user forum for

Airsnort located at http://airsnort.sourceforge.net indicates

that others have had approximately the same performance

from Airsnort.

Airjack

Airjack is a series of tools written by Abaddon. The tools

were first described at the Black Hat Conference in 2002,

and were available on the Internet for a short while at

http://802.11ninja.net and run under the GNU/Linux

operating system only. The tools provide an attacker with

the ability to perform a DoS attack against an access point,

actively determine the ESSID for a closed network, establish

a man in the middle, and set the MAC address of the

wireless card.

DoS Attack

The program wlan_jack continuously sends a

Deauthentication message to the LAN broadcast address

http://airsnort.sourceforge.net/default.htm
http://802.11ninja.net/default.htm

masquerading as an AP by using the same MAC address as

the AP. This causes all of the stations/clients associated to

that AP to drop their connections to the AP (disassociate);

and because the attacker is continuously sending the

Deauthentication message, the stations/clients can never

associate to the AP for long, thereby creating a DoS attack

(see Chapter 15).

ESSID Determination

The program essid_jack actively determines the ESSID for a

closed network. Recall that some equipment uses the ESSID

as a shared secret for access control (see Chapter 15). The

ESSID can be determined passively by being patient and

waiting until a station sends a Probe-Request message. If

you're in a hurry, however, you can use essid_jack, which

works similarly to wlan_jack in that it sends a forged

Deauthentication message. It differs in that it only sends it

to a single client, and then listens for the client to

reassociate with the AP, during which step the ESSID is

broadcast in the clear for essid_jack to sniff it and display it

for you!

Man-in-the-Middle Attack

The program monkey_jack performs a man-in-the-middle

attack against a station and a specific access point, as

shown in Figure 15.6. However, we were unable to get the

code to work by simply compiling it. In discussions with the

author, he explained that the code is a proof of concept and

that it does have several problems, such as a race condition,

because the same card that knocks the target station off the

AP (using a DoS) is also the card that is acting as the fake

AP. Additionally, monkey_jack requires some changes to a

wireless card driver that the author has not released.

While monkey_jack doesn't work as originally packaged, the

author hobbled the code on purpose. The point of releasing

the code, and of giving a talk at Black Hat 2002 (Abaddon,

2002), is to show that man-in-the-middle attacks can be

accomplished, not to provide another tool to potential

attackers.

Summary

This chapter focuses on the tools that are readily available

on the Internet for anyone with the skills to compile a

program under UNIX. The very existence of these tools

dramatically increases the number of people who can crack

your network if you are not using proper security. Our hopes

in providing you with this information are twofold. First, it is

essential to understand what attackers can accomplish

against your defenses; this is the only way that you can

have any hope of designing an effective defense. Second,

you can use some of this material to test the security of

your own network (with the proper approvals first) to ensure

that your organization is using effective security as well.

The good news is that WPA and RSN provide the tools you

need to respond to these threats. It is likely that attempts

will be made to crack WPA in the future. If a crack is found,

more tools will be produced. However, WPA and RSN are in a

different class than WEP when it comes to the approach

taken in their design, and confidence in their ability to hold

up to attack is much higher.

clbr://internal.invalid/book/0321136209_24031533.html

Chapter 17. Open Source

Implementation Example

Designing security architectures is not an easy job. It takes

great care, experience, and knowledge. Unfortunately, this

book can't give you care and experience, but it can at least

provide the requisite knowledge you need to secure your

wireless network. This chapter does not provide a step-by-

step guide to installing specific vendors' products. Vendors

change their product lines and their user interfaces far too

often to make that information relevant for more than a few

months. Instead of providing a single secure configuration,

we'd rather teach you how to put one together yourself. For

those who like to tinker or build everything yourself, we will,

however, explain how to use several open and free software

projects to build your own secure wireless network. The

details on these projects are still very new and will probably

change, but we wanted to show a "nuts and bolts" approach

to help you learn.

We start with general architecture guidance for some

common situations, and then we explain how to use the

open and free source projects.

General Architecture Design

Guidelines

We've touched on the many design issues needed for

security, but now we boil these down to three key design

principles for security architectures:

1. Isolate potentially hostile traffic from sensitive

traffic.

Canalize[1] potentially hostile traffic through a small set of

fixed entry points that are well protected and monitored.

[1]
 Canalize means forcing the data down a well-defined route, like water

in a canal.

Use a layered defense whenever possible.

Many of you will recognize these as the guidelines that

apply to Internet connections. The firewall is an

instantiation of these principles. It isolates and canalizes

traffic through a fixed entry point, and it can apply

additional layers of security through the use of a virtual

private network or additional authentication requirements.

Wireless networks are somewhat more difficult to deal with

than an Internet connection, however. Whereas an Internet

connection enters the enterprise in only a few fixed

locations, wireless access points must be located throughout

the enterprise to provide reasonable coverage areas.

So what are our choices in providing isolation and

canalization? Well, we could make each access point a

firewall. While this certainly meets our goals, it also

introduces a horrendous management burden in large

enterprises and may not be the best approach in all

situations. Certainly in small office/home office (SOHO)

scenarios, this might make some sense because there is

only one access point, however.

You can now recognize some of the tradeoffs you must make

when designing security architectures. A good security

architect must balance the threat, information value, and

costs (both monetary and management) in designing the

architecture. While the solution of making every access

point a firewall-like device meets some of the design

criteria, it introduces a potentially difficult management

problem in some environments. As a result, you must select

your equipment carefully.

You would be well served by working closely with your

vendor or value-added reseller when choosing equipment.

Don't blindly accept statements by either the vendor or

their integrator that the equipment is secure. Ask them to

define what they mean�for example, "Secure against what

type of threat?" Be especially diligent if the vendor uses a

proprietary solution. Ask who has reviewed the solution, and

ask to see the details so you or someone within your

organization can review it. These days, there are few

reasons to use a proprietary solution because both WPA and

RSN provide protection robust enough for almost all

organizations. If you are extremely paranoid, you can add

security using upper-layer protection, such as VPN.

Finally, remember, that WPA is an interim solution until IEEE

802.11i RSN is complete. It may be that the full RSN will

become WPA2 in the future. The cryptographic primitives

used in WPA are believed to be robust, but it takes time to

ensure that an algorithm is secure. For instance, RC4 was

known publicly for some time before the problems were

found that decimated WEP. As such, you should (if security

is important to you) plan on upgrading your infrastructure to

the AES-based solution (RSN) as soon as you can.

Protecting a Deployed Network

If you already have a wireless local area network deployed

in your organization, you need to take several steps (if you

haven't already) to ensure that it is protected. First, apply

the design principles discussed in the previous section:

Isolate and canalize the traffic. Second, upgrade your

equipment's firmware to WPA. Let's look at each of these in

turn.

Isolate and Canalize

Isolating the traffic from access points may be the most

difficult aspect of trying to improve the security of your

network, unless you already have your access points on the

same LAN segment.

Assuming that you haven't already isolated the traffic, you

essentially have two choices. The first is to run new cables

to your access points, placing them on the same LAN

segment without additional enterprise traffic. The second is

to use your current switches to create a VLAN (IEEE 802.10)

to isolate your wireless equipment. The first choice is not

optimal in terms of time and cost, as it requires a great deal

of work and expense. The second approach is relatively

painless if your equipment already supports VLANs. If it

doesn't, you must balance the purchase of new switches

with the cost of running new cable (remember our

discussion on tradeoffs). A VLAN provides a moderate

degree of isolation. However, the isolation is not complete

when the switches are attacked via ARP spoofing and other

means; see http://ettercap.sourceforge.net. But the

http://ettercap.sourceforge.net/default.htm

protection provided by a VLAN is better than allowing the

traffic from access points to co-mingle with traffic from the

rest of the organization.

Once your traffic is isolated, it is easy to canalize it (see

Figure 17.1). And depending on your threat model, you can

use a network address translation box, a router, or a firewall

on one or multiple entry points into the organization's

network.

Figure 17.1. Network Architecture

with Traffic Canalized

Upgrade Equipment's Firmware to

WPA

Hopefully, your installed base of access points and client

cards can all be upgraded to WPA by simply reflashing the

firmware on each device and by making some small

configuration changes. If that's the case, you should

perform that upgrade as soon as possible to support WPA.

Once you've upgraded to WPA, you can use WPA in one of

two modes: preshared key (PSK) and server-based

infrastructure. In PSK mode, you enter a password at each

client and each access point and you're done, though you

must also update client software from your vendor. While

this approach is simple, it doesn't scale well beyond the

home or small office. In those cases, you need to deploy an

authentication server. Later in this chapter, we discuss what

you'll need to do to deploy the infrastructure for supporting

both WPA and RSN.

Of course, you must check with your equipment vendor for

details on upgrading the firmware and client software.

What to Do If You Can't Do Anything

The steps we've outlined involve a great deal of work and

probably require you to spend money to improve things.

What do you do if you can't make any of these suggested

changes? The first and most important question you must

answer is, "What is the utility of using wireless versus not

using it?" Does it add value to your business? In addition,

you have to consider the value of the information on your

network. What can someone do (or get) if they break into

your network? Finally, you have to consider the threat

against your network. Is there a reason for someone to try

and break into your network?

If you do that analysis, and you decide (and only you can

make that decision) to keep using your wireless network,

here are some steps that you can follow to mitigate the risks

to your network. Our goals in providing this information are

to help you protect yourself as best you can. Remember,

however, that your network and all of the information on it

will be vulnerable, and our recommendation is that you

make the investment in time and equipment to get it right

rather than relying solely on these pointers.

The whole idea is to make it as difficult as possible for

someone to break into your network.

1. Use all available security measures provided by

your equipment. That means use WEP, MAC

address filtering, and shared key authentication.

Yes. All of these can be broken, but not by

everyone. Thus, you're reducing the threat. But,

you do remain vulnerable. (Sorry, our lawyers

made us shout that.)

Change your WEP key as often as possible.

Turn off the wireless network when it is not in use. This is

probably only practical in a home or small office. But the

point is to reduce the risk as much as possible.

Upgrade your equipment to at least WPA or, better yet, to

RSN as soon as possible.

Planning to Deploy a WPA Network

If you haven't yet installed a wireless network, life is a little

simpler. You don't have to worry about retrofitting; you can

start out the right way from the beginning.

Consider isolating and canalizing your wireless equipment.

You must also evaluate the equipment you'll be purchasing

from the vendor. For instance, if IEEE 8802.11i RSN (based

on AES) isn't out yet, can you upgrade the equipment you

purchase later? Is the upgrade via software or hardware?

(Most likely, it will be a hardware upgrade.) Also, look very

carefully at proprietary vendor solutions. Ask to see the

details of the proprietary solution, and who has evaluated it

besides the vendor. If the vendor won't share the details

with you or can't answer the question, think carefully before

using that solution. Finally, if RSN is available, there is very

little reason to use a proprietary solution unless you have a

very specific need that RSN does not directly meet.

If you have a medium to large deployment, install an

authentication server infrastructure to centralize user

management and accounting, which we describe next.

Finally, the biggest single thing that you must do is to turn

off support for WEP. As long as WEP is enabled, you are

susceptible to a down-grade attack, in other words, an

attacker can associate using WEP and crack the key (see

Chapter 15).

Deploying the Infrastructure

A significant amount of infrastructure is required to support

WPA when you are not using preshared keys. The effort

required to set up the infrastructure is, unfortunately,

nontrivial. However, it is only a one-time cost, and setting it

up properly will save you time in the long run.

As with everything in security, the devil is in the details, and

setting up your infrastructure is no exception. Because

vendor products change, it is difficult to provide a step-by-

step cookbook for you. So instead, we describe in general

what you must do and provide pointers to more detailed

guidance, usually on the Web.

Add a RADIUS Server for IEEE 802.1X

Support

The central arbiter for all access and authentication

decisions in WPA is the organization's RADIUS server. It's

likely that this is exactly how your Internet service provider

(ISP) makes access decisions when you dial up the service.

You can obtain a RADIUS server in many ways. For example,

the software package Microsoft Windows 2000 Server

includes a RADIUS server, and several vendors sell RADIUS

servers for various operating systems. There is also an open

source RADIUS server available known as FreeRADIUS, which

we describe later in this chapter.

Managing a RADIUS server is an extremely important task

because the server makes all of the security-relevant

decisions. As a result, improper configuration can lead to

breaches in your security. Fortunately, an excellent text has

been recently written that describes how to install and

configure FreeRADIUS (Hassell, 2003).

Use a Public Key Infrastructure for

Client Certificates

To use WPA to its fullest, you need to use EAP/TLS as an

authentication mechanism, and this requires using public

key certificates based on the X.509 standard. Issuing and

managing these certificates requires that a public key

infrastructure (PKI) be established within your organization,

if it hasn't been already.

Setting up a PKI has been the subject of several books, and

we can't cover all of the nuances involved. We will, however,

show how to use an open source cryptographic package to

make certificates suitable for testing purposes or for use at

home or in very small offices later in this chapter.

Install Client IEEE 802.1X Supplicant

Software

To gain the full benefit of WPA, you need to upgrade your

clients to use the IEEE 802.1X protocol for authentication

and access control. At the time of this writing Microsoft

Windows XP is the only operating system to include the

client portion, the supplicant, as part of the operating

system. However, your vendor will probably provide

software to support older versions of Windows and the Apple

Macintosh. For UNIX, you can use supplicant software

developed at the University of Maryland and released under

both the GPL and BSD style licenses. The software is located

at www.open1x.org and runs under FreeBSD, OpenBSD, and

Linux.

To install the software, you have to review the

documentation for the clients you use, and you have to

generate and add public key certificates to each client. This

is mandatory to support the EAP/TLS protocol.

http://www.open1x.org/default.htm

Practical Example Based on Open

Source Projects

This section walks you through some of the steps of building

open source applications that you can use for setting up and

evaluating a WPA or RSN network. "There is no such thing as

a free lunch" and the hidden cost of using the open source

projects is that you need substantial system knowledge and,

to some extent, an understanding of computer

programming. The vast majority of people choose instead to

purchase commercial solutions and obtain professional

support for installation. However, we'll take the time here to

show how you can set up a test environment and even

create a real operating network from tools that can be

downloaded over the Internet, and we're also going to show

you how to build an access point yourself using UNIX.

Our goals are to help anyone who likes to tinker and is

somewhat familiar with UNIX. If that does not describe you,

consider skipping this section.

We cover two versions of UNIX in this section. For the open

source access point, we use the OpenBSD operating system

(www.openbsd.org), and for the infrastructure, we use Red

Hat Linux. For more information please see our Web site

(www.wpa-security.org).

Server Infrastucture

This section shows how to use open source projects to

create your own infrastructure. There are two reasons for

this step. First, you may find that the open source project

http://www.openbsd.org/default.htm
http://www.wpa-security.org/default.htm

actually provides what you need to protect your network.

Second, even if you eventually plan to use a commercial

server, the exercise of seeing how the open source project is

structured should be informative.

There are two specific projects that we're going to discuss:

OpenSSL and FreeRADIUS:

OpenSSL provides cryptographic primitives as well as

some command line tools for creating and manipulating

public key certificates. We use OpenSSL to help build a

limited PKI.

We use FreeRADIUS to provide the authentication server

using the RADIUS protocol as the central point of our

infrastructure.

OpenSSL Instead of a PKI

If you're going to be using WPA with server-based keys in a

medium to large organization, you'll need a public key

infrastructure. There are several commercial products

available, but fortunately, there are also a few open source

projects. The most significant is the OpenCA effort found at

www.openca.org/, but it is somewhat wanting, unfortunately.

Rather than focus on the details of establishing an entire

certificate authority, we're going to show you how to build

self-signed certificates using OpenSSL. This approach is

sufficient for testing, or for a small-to-medium-sized

network. The point is to show you what is involved without

having to get lost in the details of a PKI.

http://www.openca.org/default.htm

Downloading OpenSSL

You can download the latest version of the OpenSSL from

www.openssl.org. At the time of this writing, the most recent

version was 0.9.7a. This is the version we'll use in our

examples, but you should be able to use later versions when

they are released. Before using a newer version, check with

the FreeRADIUS site to see whether an older version of

OpenSSL is required; the two projects are not well

synchronized at the moment. You also only need the base

OpenSSL distribution; you don't need the OpenSSL-engine

file unless you plan on using specialized cryptographic

support. In that case, you probably don't need these

instructions anyway.

Once you download the file, you need to change your

working directory to the location where you place source

code, in other words, /usr/local/src, and check the digital

signature on the following file and untar it.

cd /usr/local/src

tar xvfz openssl-0.9.7a.tar.gz

Compiling OpenSSL

The OpenSSL development team has made the compilation

of OpenSSL easy and straightforward, as shown in the

following syntax. This syntax works using Red Hat 7.3 and

8.0. But, you must use a different method for OpenBSD; see

www.cs.umd.edu/~arunesh/bsd/openssl.html. Also, you

need to be careful not to overwrite the current installation of

http://www.openssl.org/default.htm
http://www.cs.umd.edu/~arunesh/bsd/openssl.html

OpenSSL when using Red Hat because that will break some

of the precompiled programs in your operating system

distribution. The following commands install OpenSSL in the

/usr/local directory so you don't overwrite the previous

installed version.

cd openssl-0.9.7a

./config shared --prefix=/usr/local/openssl

make

make install

All of the previous commands should complete without error

messages.

Configuring OpenSSL

Once OpenSSL is installed, you need to make some minor

changes to the configuration files to make it easier to make

certificates (see the next section). The file that requires

editing is /usr/local/openssl/ssl/openssl.cnf. The changes

only involve modifying the default values for some of the

options in certificate requests. If you're going to generate

only one or two certificates, you don't really have to make

these changes. If you're going to generate more certificates

than that, you definitely should make these changes. You

may also want to consider increasing the length of time a

certificate is valid as well. The changes you want to make

are all in the lines that have "default" as a portion of the

identifier in the first column. An excerpt from the

openssl.cnf file follows, with the changes we made in bold.

req_extensions = v3_req # The extensions to add

to a certificate request

[req_distinguished_name]

countryName = Country Name (2 letter code)

countryName_default = US

countryName_min = 2

countryName_max = 2

stateOrProvinceName = State or Province Name (full

name)

stateOrProvinceName_default= Maryland

localityName = Locality Name (eg, city)

localityName_default = College Park

0.organizationName = Organization Name (eg,

company)

0.organizationName_default= University of Maryland

we can do this but it is not needed normally :-)

#1.organizationName = Second Organization Name

(eg, company)

#1.organizationName_default= World Wide Web Pty

Ltd

organizationalUnitName= Organizational Unit Name

(eg, section)

organizationalUnitName_default= Department of

Computer Science

commonName = Common Name (eg, YOUR name)

commonName_max = 64

emailAddress = Email Address

emailAddress_max = 64

SET-ex3 = SET extension number 3

[req_attributes]

challengePassword = A challenge password

challengePassword_min = 4

challengePassword_max = 20

challengePassword_default= ChangeMe!

unstructuredName = An optional company name

Making the Public Key Certificates

There are several steps involved in created certificates that

you can use with 802.1X. First, you need to create a

certificate authority certificate. This is self-signed; in other

words, the certificate authority attests to the validity of

itself. While this might surprise you, it is the commonly

accepted method for creating a root certificate. Once the

certificate authority, or root, is created, you need to create a

server certificate for your RADIUS server. Then, you create

certificates for all of your clients.

Creating the Certificate Authority

Several people, most recently Raymond McKay

(www.impossiblereflex.com/8021x/eap-tls-HOWTO.htm),

have created scripts to automate the commands needed to

create a certificate authority using OpenSSL. The following

script creates the self-signed root certificate.

http://www.impossiblereflex.com/8021x/eap-tls-HOWTO.htm

CA.root file

#!/bin/sh

SSL=/usr/local/openssl

export PATH=${SSL}/bin/:${SSL}/ssl/misc:${PATH}

export LD_LIBRARY_PATH=${SSL}/lib

private key into the CA directories

rm -rf demoCA

echo

"***

*************"

echo "Creating self-signed private key and

certificate"

echo "When prompted change the default value for

the Common Name field"

echo

"***

*************"

echo

Generate a new self-signed certificate.

After invocation, newreq.pem will contain a

private key and certificate

newreq.pem will be used in the next step

openssl req -new -x509 -keyout newreq.pem -out

newreq.pem �passin \

pass:whatever -passout pass:whatever

echo

"***

*************"

echo "Creating a new CA hierarchy (used later by

the "ca" command)"

echo "and private key created in the last step"

echo

"***

*************"

echo

echo "newreq.pem" | CA.pl -newca >/dev/null

echo

"***

*************"

echo "Creating ROOT CA"

echo

"***

*************"

echo

Create a PKCS#12 file, using the previously

created CA certificate/key

The certificate in demoCA/cacert.pem is the same

as in newreq.pem.

Instead of using "-in demoCA/cacert.pem" we

could have

used "-in newreq.pem" and then omitted

the "-inkey newreq.pem" because newreq.pem

contains both the

private key and certificate

openssl pkcs12 -export -in demoCA/cacert.pem -

inkey newreq.pem �out\

 root.p12 -cacerts -passin pass:whatever -passout

pass:whatever

parse the PKCS#12 file just created and produce

a PEM format

certificate and key in root.pem

openssl pkcs12 -in root.p12 -out root.pem -passin

pass:whatever \

-passout pass:whatever

Convert root certificate from PEM format to DER

format

openssl x509 -inform PEM -outform DER -in root.pem

-out root.der

#Clean Up

rm -rf newreq.pem

You create the self-signed root certificate now by executing:

/bin/bash CA.root

and answering all of the questions.

Creating a Server Certificate

To perform a mutual authentication between the RADIUS

server and the supplicant, you must have a public key

certificate for the server. This section provides the set of

commands that you must execute to request a certificate

and then have it signed by your root certificate.

An important part of creating the server certificate, and the

client certificate that you create in a few moments, is

ensuring that the certificate has the appropriate OIDs to

support Microsoft Windows XP. Now, you're probably asking,

"What is an OID?" Well, don't worry, all you really need to

know about them is that they're essentially a capability,

indicating what type of service the holder of the certificate

may use.

The OIDS needed for certificates for use with Windows XP

follow. The script creating both the client and server

certificates assumes that the OIDs are included in a file

named xpextensions located in the same directory as you

run the script.

xpextensions file

[xpclient_ext]

extendedKeyUsage = 1.3.6.1.5.5.7.3.2

[xpserver_ext]

extendedKeyUsage = 1.3.6.1.5.5.7.3.1

CA.server file

#!/bin/sh

SSL=/usr/local/openssl

export PATH=${SSL}/bin/:${SSL}/ssl/misc:${PATH}

export LD_LIBRARY_PATH=${SSL}/lib

echo

"***

****************"

echo "Creating server private key and certificate"

echo "When prompted enter the server name in the

Common Name field."

echo

"***

****************"

echo

Request a new PKCS#10 certificate.

First, newreq.pem will be overwritten with the

new certificate request

openssl req -new -keyout newreq.pem -out

newreq.pem �passin \

 pass:whatever -passout pass:whatever

Sign the certificate request. The policy is

defined in the

openssl.cnf file.

The request generated in the previous step is

specified with the

-infiles option and

the output is in newcert.pem

The -extensions option is necessary to add the

OID for the extended

key for server authentication

openssl ca -policy policy_anything -out

newcert.pem �passin \

 pass:whatever -key whatever -extensions

xpserver_ext �extfile \

 xpextensions -infiles newreq.pem

Create a PKCS#12 file from the new certificate

and its private

key found in newreq.pem

and place in file specified on the command line

openssl pkcs12 -export -in newcert.pem -inkey

newreq.pem -out $1.p12 \

 -clcerts -passin pass:whatever -passout

pass:whatever

parse the PKCS#12 file just created and produce

a PEM format

certificate and key in certsrv.pem

openssl pkcs12 -in $1.p12 -out $1.pem -passin

pass:whatever �passout \

 pass:whatever

Convert certificate from PEM format to DER

format

openssl x509 -inform PEM -outform DER -in $1.pem -

out $1.der

Clean Up

rm -rf newcert.pem newreq.pem

Save the script above to the file CA.server, and then create

the server certificate by invoking the script with the name of

the server (without spaces or special characters) as follows.

/bin/bash CA.server <servername>

When you are asked to enter the common name, you must

enter the same name as you used in executing the script,

for example, <servername>.

Creating a Client Certificate

Now that you've created the certificate for the RADIUS

server, you can create your client certificates (we'll discuss

installing them on clients shortly). The following script

shows the commands necessary to request and sign

individual client certificates. Remember to have the proper

OID file so you can use the resultant certificate with a

Windows XP client as well.

CA.client file

#!/bin/sh

SSL=/usr/local/openssl

export PATH=${SSL}/bin/:${SSL}/ssl/misc:${PATH}

export LD_LIBRARY_PATH=${SSL}/lib

echo

"***

***************"

echo "Creating client private key and certificate"

echo "When prompted enter the client name in the

Common Name field."

echo " This is the same name used as the Username

in FreeRADIUS"

echo

"***

***************"

echo

Request a new PKCS#10 certificate.

First, newreq.pem will be overwritten with the

new certificate request

openssl req -new -keyout newreq.pem -out

newreq.pem �passin \

pass:whatever -passout pass:whatever

Sign the certificate request. The policy is

defined in the

openssl.cnf file.

The request generated in the previous step is

specified with

the -infiles option and

the output is in newcert.pem

The -extensions option is necessary to add the

OID for the

extended key for client authentication

openssl ca -policy policy_anything -out

newcert.pem �passin \

 pass:whatever -key whatever -extensions

xpclient_ext �extfile \

 xpextensions -infiles newreq.pem

Create a PKCS#12 file from the new certificate

and its private

key found in newreq.pem

and place in file specified on the command line

openssl pkcs12 -export -in newcert.pem -inkey

newreq.pem -out $1.p12 \

 -clcerts -passin pass:whatever -passout

pass:whatever

parse the PKCS#12 file just created and produce

a PEM format

certificate and key in certclt.pem

openssl pkcs12 -in $1.p12 -out $1.pem -passin

pass:whatever �passout \

 pass:whatever

Convert certificate from PEM format to DER

format

openssl x509 -inform PEM -outform DER -in $1.pem -

out $1.der

clean up

rm -rf newcert.pem newreq.pem

You use the previous script, saved to the file ca.client, to

generate your client certificates by invoking the script with

the following command without spaces or special characters

in <username>.

/bin/bash ca.client <username>

Be sure to use the <username> as the common name when

you create the certificate. You'll also use the same name

when you create the RADIUS files.

Make a copy of the files created by executing the previous

scripts, root.pem and <servername>.pem, and copy them

to the directory /usr/local/1x/etc/. You'll probably have to

make that directory first. You also need to save the files

root.der and <username>.p12 for installation on the client

machine. We describe that process a bit later in this chapter

when we describe how to set up the client.

RADIUS Software

FreeRADIUS is the most widely used open source RADIUS

server found at www.freeradius.org. RADIUS is a

complicated protocol that can be configured in a large

number of different ways. In this section, we discuss only a

very basic configuration. If you're planning on using

FreeRADIUS as part of your infrastructure, you definitely

want to obtain a more detailed guide such as the O'Reilly

book RADIUS by Jonathan Hassell (2003).

Downloading FreeRADIUS

http://www.freeradius.org/default.htm

You can download the most recent version of FreeRADIUS

from the Web site www.freeradius.org/getting.html. The

most recent version at the time of writing is 0.8.1. This

version has complete support for both authentication and

dynamic keys. Make sure you download the signature of

FreeRADIUS as well. The developers of FreeRADIUS used a

detached signature (file ending in .sig) rather than an ASCII

armored signature (file ending in .asc). Verifying this

signature is very similar to the approach shown in Appendix

B. The only difference is that you will be asked to enter the

name of the file you want verified.

Now, change your working directory to your source directory

and untar the FreeRADIUS source.

cd /usr/local/src

tar xvfz freeradius-0.8.1.tar.gz

Compiling FreeRADIUS

Compiling FreeRADIUS is similar to compiling OpenSSL

except that you have to make a few changes to the files to

support EAP-TLS. First, you configure the source code by

using the configure program.

cd freeradius-0.8.1

./configure --prefix=/usr/local/radius

Once the source is configured, you must make one small

change to a makefile included with the source to ensure that

FreeRADIUS can find your version of OpenSSL and compile

EAP-TLS properly. The file that you must modify is the

http://www.freeradius.org/getting.html

subdirectory src/modules/rlm_eap/types/rlm_eap_tls/ under

your main FreeRADIUS directory. The changes you need to

make are to ensure that the header and library files from

OpenSSL can be found. A modified makefile follows.

Generated automatically from Makefile.in by

configure.

TARGET = rlm_eap_tls

SRCS = rlm_eap_tls.c eap_tls.c cb.c tls.c

RLM_CFLAGS = $(INCLTDL) -I../..

�I/usr/local/openssl/include

HEADERS = eap_tls.h

RLM_INSTALL =

NOTE: You may have to switch the order of �lssl

and �lcrypto below

RLM_LIBS += -lssl -lcrypto

RLM_LDFLAGS += -L/usr/local/openssl/lib

$(STATIC_OBJS): $(HEADERS)

$(DYNAMIC_OBJS): $(HEADERS)

RLM_DIR=../../

include ${RLM_DIR}../rules.mak

You'll end up adding "-I/usr/local/openssl/include" to the line

beginning with RLM_CFLAGS, and an entirely new line

beginning with RLM_LDFLAGS, and you may have to switch

the order of �lssl and �lcrypto.

Now, you can compile the FreeRADIUS source just like we

did OpenSSL with the following two commands from the

main FreeRADIUS directory.

make

make install

The compile and install should complete without errors.

Configuring FreeRADIUS

Now, you're ready to make the changes to the various

FreeRADIUS configuration files. There are three files that you

must modify (remember you're only doing a basic setup

here), and they are all located in the directory

/usr/local/radius/etc/raddb. The files are clients.conf,

radiusd.conf, and users.

clients.conf

The clients.conf file is responsible for determining who/what

can connect to the RADIUS server to authenticate users. In

your case, you want the access points to be able to connect.

There are two ways to enter the access point information.

First, list each access point individually. Second, list a

subnet. A key point for security here is that if you decide to

use the subnet approach, all of the access points will use

the same password�not the best idea from the standpoint of

security; however, if you have hundreds of access points, a

separate password for each becomes a management

nightmare. The choice is yours.

You can specify an access point at a time by using the

following template.

client <ipaddress> {

 secret = <password>

 shortname =

<descriptive_name_for_accounting_purposes>

}

You would create a copy of the template, above, for each

access point, entering the IP address, password, and name

for each into your clients.conf file.

The second approach is to use a single entry for an entire

local area network of access points. You do this using the

following template.

client <subnet>/<mask> {

 secret = <password>

 shortname = LAN

}

You enter the subnet and mask along with the globally

shared password into the previous template and place it in

the clients.conf file. Remember, you need to use only one of

the approaches we outlined.

radiusd.conf

You need to change only a few parts of this file. But, you

need to create two new files, /usr/local/radius/etc/raddb/DH

and /usr/local/radius/etc/raddb/random, as part of the

changes. The contents of both of these files need to be

random so you use the Linux random device to create files

with the following commands.

dd if=/dev/random

of=/usr/local/radius/etc/raddb/random count=1

bs=128

dd if=/dev/random

of=/usr/local/radius/etc/raddb/DH count=1 bs=128

This creates two files with 128 random bytes each. The

device /dev/random may block if there is insufficient entropy

(randomness) available. If one of these commands hang,

you can do one of two things. First, you can wait a while

until the entropy pool is refreshed, or second, you can use

the /dev/urandom device instead, which will not block (at

the cost of the bytes being generated by a pseudorandom

function).

Once you've created these two files, you need to make your

changes to radiusd.conf. The first set of changes is to the

following Extensible Authentication Protocol section. The

items in bold were changed from the original file.

Extensible Authentication Protocol

For all EAP related authentications

eap {

Invoke the default supported EAP type when

EAP-Identity response is received

default_eap_type = tls

Default expiry time to clean the EAP list,

It is maintained to co-relate the

EAP-response for each EAP-request sent.

timer_expire = 60

Supported EAP-types

md5 {

}

FIXME: EAP-TLS is highly experimental EAP-Type

at the moment.

Please give feedback.

tls {

private_key_password = whatever# CHANGE THIS TO

YOUR PASSWORD

private_key_file =

/usr/local/1x/etc/<servername>.pem

Sometimes Private key & Certificate are located

in the same file, then private_key_file &

certificate_file

must contain the same file name.

certificate_file =

/usr/local/1x/etc/<servername>.pem

Trusted Root CA list

CA_file = /usr/local/1x/etc/root.pem

dh_file = /usr/local/1x/etc/DH

random_file = /usr/local/1x/etc/random

This can never exceed MAX_RADIUS_LEN (4096)

preferably half the MAX_RADIUS_LEN, to

accomodate other attributes in RADIUS packet.

On most APs the MAX packet length is configured

between 1500 - 1600. In these cases, fragment

size should be <= 1024.

fragment_size = 1024

include_length is a flag which is by default set

to yes

If set to yes, Total Length of the message is

included

in EVERY packet we send.

If set to no, Total Length of the message is

included

ONLY in the First packet of a fragment series.

include_length = yes

}

}

Change your EAP section to match the previous script, being

sure to change the private_key_password and the names of

the private_key_file and certificate_file attributes to your file

names. You also need to ensure that the paths are set to

where you've placed the files you generated using OpenSSL.

Now, you need to make changes to the authorization section

and uncomment the eap line so the section looks like the

one that follows. The important part is that eap must be

added as supported.

Authorization. First preprocess (hints and

huntgroups files),

then realms, and finally look in the "users"

file.

The order of the realm modules will determine

the order that

we try to find a matching realm.

Make *sure* that 'preprocess' comes before any

realm if you

need to setup hints for the remote radius server

authorize {

The preprocess module takes care of sanitizing

some bizarre

attributes in the request, and turning them into

attributes

which are more standard.

It takes care of processing the 'raddb/hints'

and the

'raddb/huntgroups' files.

It also adds a Client-IP-Address attribute to

the request.

preprocess

The chap module will set 'Auth-Type := CHAP' if

we are

handling a CHAP request and Auth-Type has not

already been set

chap

counter

attr_filter

eap

suffix

files

etc_smbpasswd

}

Now, you make your last change to the Authentication

section, uncommenting the reference to EAP. Again, the

important part is that EAP (eap in bold above) be

uncommented.

Authentication.

This section lists which modules are available

for authentication.

Note that it does NOT mean 'try each module in

order'. It means

that you have to have a module from the

'authorize' section add

a configuration attribute 'Auth-Type := FOO'.

That authentication type

is then used to pick the appropriate module from

the list below.

The default Auth-Type is Local. That is,

whatever is not included

inside

an authtype section will be called only if Auth-

Type is set to Local

So you should do the following:

Set Auth-Type to an appropriate value in the

authorize section. For

example chap

will set Auth-Type to CHAP, ldap to LDAP etc

After that create corresponding authtype

sections in the authenticate

section below

and call the appropriate modules (chap for CHAP

etc)

authenticate {

pam

unix

Uncomment it if you want to use ldap for

authentication

authtype LDAP {

ldap

}

mschap

eap

Uncomment it if you want to support CHAP

authtype CHAP {

chap

}

Uncomment the following if you want to support

PAP and you

extract user passwords from the user database

(LDAP,SQL, etc).

You should use the 'files'module to set 'Auth-

Type := PAP' for

this to work.

authtype PAP {

pap

}

}

users

Open the users file in your favorite editor and search for the

string "John Doe". Now, enter a line for each of your client

certificates using their full name, as follows:

"<clientsfullname>" Auth-Type := EAP

You can also add the following line for testing purposes, but

make sure to remove it after your testing is completed.

"test" Auth-Type := Local, User-Password == "test"

Now, you're ready to test your installation. Because

FreeRADIUS may be using a different version of OpenSSL

than the one installed on your system, you need to build a

custom shell to start the FreeRADIUS daemon in a way that

it can find the OpenSSL libraries. Use the run-radiusd script

created by Adam Sulmicki, as follows.

#!/bin/bash -x

export LD_LIBRARY_PATH=/usr/local/openssl/lib

export

LD_PRELOAD=/usr/local/openssl/lib/libcrypto.so

/usr/local/radius/sbin/radiusd $@

Testing FreeRADIUS

Now, start FreeRADIUS in debug mode from a shell, as

follows:

run-radiusd �X �A

You'll see a great deal of output, and eventually the last line

should read "Ready to process requests." You can now test

the installation with the following command:

/usr/local/radius/bin/radtest test test localhost

0 testing123

If you get Access-Accept, everything is configured properly

and you can delete the test line from the users file. You may

also want to delete the entry for localhost in the clients.conf

file. If, however, you get no response or Access-Reject, you

need to review the configuration files. You may also have to

either disable your packet filtering firewall (in other words,

iptables), with the command service iptables stop or add a

rule to permit the RADIUS requests to work on port 1812.

Building an Open Source Access Point

In this section, we're going to show you how to build an

access point yourself using UNIX. The access point you'll

build won't have WPA support (it wasn't completed at the

time this book was written), but we'll provide links and how-

to's on our Web page, www.wpa-security.org, once the work

is finished.

AP Hardware

If you are building your own access point, there's a limited

amount of hardware you can use. The easiest, and most

expensive, is to use a laptop. An alternative is to use a low-

cost single-board computer running an Intel-compatible CPU

such as those available at www.soekris.com.

In the next section, we're going to assume that you're using

a laptop.

AP Software

Linux, FreeBSD, and OpenBSD all have the capability of

running as an access point using a WLAN card based on the

http://www.wpa-security.org/default.htm
http://www.soekris.com/default.htm

Intersil Prism2 chipset. These cards are the most common

cards available, with manufacturers such as Samsung,

Compaq, and others shipping PCMCIA WLAN cards based on

the Prism2 or Prism2.5 chipsets. At the time of writing, a list

of companies using the Intersil Prism 2 chipset was available

at: www.intersil.com/design/prism/prismuser/index.asp

We cover how to use both OpenBSD and Linux as access

points.

OpenBSD

For the first step, you need to install the latest version of the

OpenBSD operating system. The installation files and

instructions can be found at www.openbsd.org. Once the

operating system is installed, you can begin setting the

system up as an access point. You're going to be amazed at

how easy it is to turn a laptop into an access point, albeit an

expensive one.

The first step is to set up your wired network connection,

assuming that you'll be using your access point to connect

to a wired network and not as a stand-alone server. Details

on how to do this can be found at the OpenBSD Web site.

The second step is to insert your Prism2 WLAN card into the

laptop. The console window should display several lines of

information about wi0. This is the operating system kernel

recognizing the card you just inserted. One of the lines

should start with "wi0: PRISM 2". If not, the card you are

using may not be a PRISM2-based card, and these

instructions will not work for you.

http://www.intersil.com/design/prism/prismuser/index.asp
http://www.openbsd.org/default.htm

At this point, it would probably help if you familiarized

yourself with the manual page for the wicontrol command

by typing:

man wicontrol

The command wicontrol configures Prism2-based wireless

cards. As you could see from the manual entry, you are able

to select normal station mode, ad-hoc mode, or hostap

mode. The last mode, hostap, is what we're discussing here.

wicontrol also allows you to set the channel, MAC address

(remember earlier when we said it was easy to clone MAC

addresses? You use wicontrol.), WEP, and the WEP keys.

Unfortunately, right now the default distribution of OpenBSD

(and the other open source UNIX-based projects) supports

only vanilla WEP. The University of Maryland MISSL group,

however, is working on incorporating WPA into OpenBSD.

While it is too early to describe this work in this book, we'll

have more details on the MISSL Web page

(www.missl.cs.umd.edu), and on the Web page for this book

(www.wpa-security.org).

Okay. Now that you're familiar with wicontrol, we can

configure and turn on our home brew access point using the

following commands as root.

wicontrol wi0 �e 1 �k "Hello" �p 6 �f 11 �n myap

Make sure the IP_address is on the same subnet

as your wired device

ifconfig wi0 inet <IP_address> netmask <Net_mask>

Or you can use DHCP to configure the IP address

brconfig bridge0 add <wired_device> add wi0 up

The first command enables WEP encryption using the key

"Hello" as well as hostap mode on channel 11, and the

http://www.missl.cs.umd.edu/default.htm
http://www.wpa-security.org/default.htm

command assigns the network name of "myap". In the

second command, we're manually configuring the IP address

for the machine. You could also use DHCP for this as well.

The third and final command enables bridging between the

wireless interface (our AP) and the wired interface just like

the commercial access points.

That's it. We're done. If you set up the wired device with

routing and so on, and you have a DHCP server running, you

can start up a client and associate and start using your new

AP!

You should, however, add additional security to the AP by

using the built-in IPsec implementation. You can start

learning about this from the OpenBSD documentation, and

several how-to's that you'll find linked to our Web site.

Linux

You can also use Linux as your base operating system, and

we've used Linux Red Hat 8.0 and the hostap software by

Jouni Malinen at www.hostap.epitest.fi/. The hostap software

is another implementation of a prism2/2.5/3 driver for UNIX.

Hostap, however, includes support for MAC access control

lists, IEEE 802.1x, dynamic WEP rekeying, RADIUS, and

minimal support for interaccess point protocol support

(IAPP).

The hostap software has a large number of capabilities, and

covering them all here would be difficult. Therefore for the

sake of brevity, we won't cover much about hostap here.

But, we will post more information on our Web site

(www.wpa-security.org).

http://www.hostap.epitest.fi/default.htm
http://www.wpa-security.org/default.htm

Making It All Work

Now that your server infrastructure is built, we can talk

about configuring your access points to use your servers.

Given the large number of access points available on the

market today, we can't present configuration information for

all of them. Therefore, we've picked one of the more

common access points. While we're not covering many

access points, we will include links to sources of information

about other access points on our Web site.

We're also only going to describe configuring Microsoft

Windows XP for the very same reasons, but again we will

provide links to a how-to for configuring an open source

supplicant, Xsupplicant, at the end of this chapter and on

our Web site.

Configuring Cisco Access Points to

Use 802.1X

Currently, not all of the commercial access points support

IEEE 802.1X. That will change as WPA becomes more widely

available. Until then, IEEE 802.1X is currently only supported

by the major wireless vendors such as Cisco, Agere, and a

few others. If you're going to buy a new access point, you

must be certain that it supports IEEE 802.1X if you want to

use the best security available.

The following sections give some practical examples of

configuring the Cisco products via their Web interface. Note

that we cannot guarantee the accuracy of this information

because products change, and you should consult the

documentation provided with the product for definitive

information.

Configuring a Cisco AP to use IEEE 802.1X is straightforward

and involves only a few changes to the AP configuration.

This section uses the Web management interface, but you

can do this configuration via the console as well.

First make sure that you're running at least firmware version

11.08T to ensure that IEEE 802.1X support is available.

Setting the RADIUS Server Properties

From the home page of the Web-based interface, select

Setup to open the menu shown in Figure 17.2.

Figure 17.2. Setup Screen for Cisco

350 Series AP

Select Security at the bottom of the screen to open the

screen shown in Figure 17.3.

Figure 17.3. Security Setup Screen

Select the fifth item from this screen, Authentication Server,

to set up the server, as shown in Figure 17.4.

Figure 17.4. Authentication Server

Setup

This screen is the first of the two screens in which you do all

of your work. In the first column, enter the IP address for

your FreeRADIUS server. Now select RADIUS from the Server

Type dropdown menu. Enter the port number, 1812, into the

Port column, followed by the shared secret that you used

when you set up the file clients.conf as part of the

FreeRADIUS configuration earlier. Finally, set the timeout to

the default 20 seconds. Click OK, and return to the Security

Setup screen. Now select Radio Data Encryption (WEP)

(Figure 17.5).

Figure 17.5. WEP Setup Screen

Select Open for both Accept Authentication Type and

Require EAP. Now, go back to the Security Setup screen, and

select Radio Data Encryption (WEP) again. You should see

the screen shown in Figure 17.6.

Figure 17.6. WEP Screen

In the first dropdown menu, make sure you select Full

Encryption; if you do not make this selection, Windows XP

will not associate with your access point. Now, you need to

select the first WEP key and enter a value for the key. This

key is the multicast key only, and will be used only when the

AP transmits multicast data. Clients will still negotiate

pairwise keys.

Client Software

802.1X supplicant (or client) support is currently only built

into Windows XP. However, several vendors are now

supporting previous versions of Windows, and an open

source implementation is available for most open source

UNIX-based operating systems.

Windows XP

There are two steps in configuring Windows XP SP1. The

configuration for XP SP1 is slightly different from that for XP,

but you should be able to work through those differences.

The how-to's listed at the end of this chapter cover XP

configuration, so XP SP1 configuration is covered here to

show you how to use 802.1X with your infrastructure. In the

first step, the certificates you generated earlier are installed

on the client. The second step involves configuring the

wireless device on Windows XP.

You should update your version of Windows XP to Service

Pack 1. SP1 contains an important security patch that can

prevent a man-in-the-middle attack due to a malformed

packet. Therefore, the remaining instructions assume a SP1

installation.

Installing Public Key Certificates

For this step, we need the root.der and

<clientusename>.p12 files you created earlier. Copy both

files to the Windows XP client. Now, double-click the root.der

file to display the popup window shown in Figure 17.7.

Figure 17.7. Certificate Information

Popup

Click the Install Certificate button to open the Certificate

Import Wizard. Click the Next button to open the window

shown in Figure 17.8.

Figure 17.8. Certificate Import Wizard

Select the option Place all certificates in the following store

and click Browse to open a browser, as shown in Figure 17.9.

Figure 17.9. Certificate Store Browser

Select Trusted Root Certificate Authorities and click OK and

then Next and Finish. Answer Yes when you're asked if you

want to import the certificate. Now, you should see a

message that the certificate was imported successfully.

Now, double-click the <clientusername>.p12 file. The

Certificate Import Wizard appears once again. Click Next

and leave the filename alone and click Next again. Now, you

are asked to enter the challenge password you used when

generating the certificate. Click Next. Select the option

"Automatically select the certificate store based on type of

certificate" and click Next. Wait for a message indicating

that the certificate was imported successfully, and then click

Finish. A popup window will tell you that you imported the

certificate correctly.

Now you can set up the wireless device.

Wireless Device Configuration

Open the Wireless Configuration Panel by double-clicking on

one of the terminals icon in the lower-right corner of your

screen. You can find the correct icon by moving your mouse

over the icons until one says "Wireless Network". That is the

icon you need to double-click (see Figure 17.10).

Figure 17.10. Wireless Configuration

Panel

Select your network, and check the Advanced tab to open

the panel shown in Figure 17.11.

Figure 17.11. Wireless Networks

Configuration Panel

Select your network and click the Authentication tab to open

the window shown in Figure 17.12.

Figure 17.12. Wireless Network

Authentication Configuration Panel

Now select the Enable network access control using IEEE

802.1X radio button and ensure that the EAP type is listed

as Smart Card or other Certificate. Click the Properties

button to open the Smart Card or Other Certificate

Properties window shown in Figure 17.13.

Figure 17.13. Smart Card or Other

Certificate Properties Window

Select the options Use a certificate on this computer and

Validate server certificate, and ensure that the Trusted root

certificate authority option is set to the root certificate you

imported earlier.

If everything works (which we know always is the case),

you'll be connected to your network using WPA.

clbr://internal.invalid/book/0321136209_24031533.html

Summary

This chapter explained how to build your own small

enterprise or test network using open source software as

well as some commercial products. We should stress, at this

point, that the point of this exercise was to make you

familiar with how to build a working wireless network that

uses WPA. If you plan to use this setup operationally, you

should consider doing many other tasks beyond the scope

of this book.

clbr://internal.invalid/book/0321136209_24031533.html

Acknowledgments

Portions of this chapter are based on the how-to's from

Adam Sulmicki, Mike van Opstal, and Raymond McKay.

clbr://internal.invalid/book/0321136209_24031533.html

References and More Information

This section provides a pointer to using a Windows Server

instead of Open Source.

Mike Van Opstal of the University of Maryland has written an

excellent how-to on using a Windows 2000 as a RADIUS and

DHCP server. Rather than duplicate that material here, you

can find Mike's how-to at

www.cs.umd.edu/~mvanopst/8021x/howto/server.html and

a link to it at our site www.wpa-

security.org/Windows/server.html.

Adam Sulmicki's how-to can be found at

www.missl.cs.umd.edu/wireless/eaptls/ and Raymond

McKay's how-to can be found at

www.impossiblereflex.com/8021x/eap-tls-HOWTO.htm.

Finally, you can find more information about using OpenSSL

at the following URL: www.pseudonym.org/ssl/ssl_cook.htm,

and in the book by John Viega, Matt Messier, and Pravir

Chandra (2002) entitled Network Security with OpenSSL.

http://www.cs.umd.edu/~mvanopst/8021x/howto/server.html
http://www.wpa-security.org/Windows/server.html
http://www.missl.cs.umd.edu/wireless/eaptls/default.htm
http://www.impossiblereflex.com/8021x/eap-tls-HOWTO.htm
http://www.pseudonym.org/ssl/ssl_cook.htm
clbr://internal.invalid/book/0321136209_24031533.html

Appendixes

Appendix A. Overview of the AES Block Cipher

Appendix B. Example Message Modification

Appendix C. Verifying the Integrity of Downloaded Files

Appendix A. Overview of the

AES Block Cipher

The AES block cipher is the same as the Rijndael algorithm

but with a fixed block size of 128 bits (see Chapter 12). In

IEEE 802.11i RSN, a further simplification is made by

restricting the key size as well as the block size to 128 bits.

The following description relates only to the RSN version.

You can think of the encryption of the block of data as a sort

of production process in which various operations are

applied repeatedly until the finished product, the ciphertext,

is produced. A medieval blacksmith made a sword by

starting with a strip of iron and repeatedly heating it,

hammering it, adding impurities, folding it, and quenching it

in cold water. By folding the metal ten times, the sword

ended up with a thousand fine layers. In AES the data is the

raw material loaded into a state array. The state array is

processed through ten rounds of manipulation, after which it

is unloaded to form the resulting encrypted block of data. At

each stage of the process, the state is combined with a

different round key, each of which is created and derived

from the cipher key.

Although this sounds like a lot of work, one of the key

advantages of the Rijndael algorithm is that it uses only

simple operations such as shift, exclusive OR, and table

substitution. Many encryption approaches require

multiplication operations that are very expensive to

implement. Rijndael uses finite field byte multiplication, a

special operation that can be simplified down to a few

logical operations or lookups in a 256-byte table. This

appendix begins with an overview of finite field arithmetic. If

you are just interested in the encryption steps for AES, skip

to the next section.

Finite Field Arithmetic

When you were six years old, you probably spent quite a bit

of time reciting multiplication tables and doing long

additions and multiplications. You might have found it hard

to remember to pass the carry from one column of digits to

the next in an addition, but you did it because the teacher

said, "This is the way the world works." Now you encounter

finite field arithmetic, which has a different set of rules and,

on first inspection, sounds like it came from outer space.

Finite field arithmetic is important in cryptography and is the

basis of the familiar cyclic redundancy check (CRC) used to

detect errors in data packets.

Conventional arithmetic operates on an infinite range of

values, even if you limit it to positive integers. However, if

your entire universe is defined by a single byte, you have

only 256 values to deal with. What often happens is that

normal arithmetic is applied to byte values and any

overflows or underflows during the conventional arithmetic

are discarded. This works for many types of calculations, but

in some sense discarding the carry violates the rules of

conventional arithmetic. Your primary school teacher didn't

talk about number universes that had only 256 values. Finite

field arithmetic is defined specifically to handle such finite

number universes. The rules apply to cases like single byte

arithmetic so, in some sense, it is more valid than the

familiar arithmetic. But let's not get too philosophical here;

this type of arithmetic enables some good tricks and allows

some neat shortcuts in the computations. This section is not

intended to be a rigorous description of finite field

mathematics; and if you are a pure mathematician, you

probably won't like it. However, we do introduce the basics

and explain why some of the computations used in

cryptography look a little weird.

For our application, we are interested only in finite fields

that can be represented by binary numbers. For purposes of

finite field arithmetic, we can represent a binary number by

polynomials of the form:

Equation A.1

The value of x is not important as it is only the coefficients

a(n) that we are interested in. However if the coefficients

have the value 0 or 1 and x represents the value 2, then the

value of the polynomial, computed using conventional

arithmetic, corresponds to the binary value.

Each of the coefficients corresponds to one bit of a binary

number. So, for example, the 8-bit value 10010111 would be

written as:

Equation A.2

or more simply:

Equation A.3

Treating the numbers as polynomials leads to some

interesting and different behavior when you are performing

arithmetic operations. This is okay, providing such

treatment still follows some basic rules such as:

if A + B = C then A = B � C

and if A x B = C then A = C÷B

In the following sections we look at the main operations in

turn.

Addition

When you add two polynomials, each term is added

independently; there is no concept of a carry from one term

to another. For example, in conventional arithmetic

Equation A.4

In our binary representation, the coefficients can be only 0

or 1. The value 2 is not possible. Therefore, we have the rule

that, when adding the coefficients, the following addition

rule applies:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 (there is no carry)

By a useful coincidence, this is the same result as what you

get when you perform an exclusive OR operation, which is

easier for digital logic than a binary addition.

Using our binary rules, the addition of the two polynomials

in equation A.4 is:

Equation A.5

This corresponds to the binary computation:

Equation A.6

Notice how the addition has now been entirely replaced by

the exclusive OR operation. Addition of 2 bytes under these

rules is really an XOR operation, and addition cannot have a

result bigger than 1 byte, which is consistent with our 1-byte

universe.

Subtraction

The same logic that made addition become XOR also applies

to subtraction. Suppose we want to subtract the two

polynomials in (A.4). In conventional arithmetic the result

would be:

Equation A.7

The coefficient of the x term is �1. There is no �1 value in a

single binary digit. The subtraction table for two binary

digits is:

1 � 1 = 0

1 � 0 = 1

0 � 1 = 1 (there is no borrow)

0 � 0 = 0

Once again this is the same as the XOR operation so that

the binary subtraction takes the form:

Surprising but true�in this byte arithmetic universe addition

and subtraction become the same operation and are

replaced by the exclusive OR operation. Notice also how this

new arithmetic also obeys the rule that if A + B = C, then A

= B � C.

Multiplication

Multiplication deviates even more from conventional

arithmetic because of the way polynomials multiply

together. The basic rule for multiplying two polynomials is to

multiply all the terms together and then add terms of similar

order (in other words, the same power of x). Here is a simple

example in normal mathematics:

Equation A.7

By now you might guess that in our binary universe the x4

term will disappear, leading to the result:

Equation A.8

So far this looks straightforward enough and, by following

the good old school long multiplication rules, we can work

out the multiplications using only shift and XOR operations:

Equation A.9

Multiplying by x2 is the same as shifting left by two places

because:

Equation A.10

This means that the long multiplication can be done using

the accumulate row method as follows:

Equation A.11

Notice how the intermediate rows are just the first value

shifted and the result is just the XOR of the rows. Great!

Now we have a really efficient way to do addition,

subtraction, and multiplication by using this polynomial-

based arithmetic. However, there is a snag that we discuss

after looking at division.

Division

Division works by the shift and subtract method familiar

under the name long division. Of course, in our case the

subtraction is done using an XOR operation. An example is

shown here and should be fairly self-explanatory:

Equation A.12

This is the reverse of the multiplication shown in the

previous section. Gratifyingly, we get back to the result

before the multiplication, showing that our arithmetic

satisfies the rules that if A x B = C, then B = C ÷ A.

Galois Field GF()

Now comes the hard part. Not hard to implement but hard

to understand. When we did addition and subtraction, it was

not possible for the result to overflow. The result always

fitted into a byte. However, based on our long multiplication

approach, it is clearly possible that the result of multiplying

two 8-bit numbers could be more than 8 bits long. Such an

overflow is not allowed to exist in our finite field of 256

values, so what has gone wrong?

Let's go back to ordinary numbers instead of polynomials for

a moment. Let's define a finite field that comprises seven

digits {0, 1, 2, 3, 4, 5, 6}. We will define addition and

multiplication to be the conventional operations except that

the result "rolls over" from 6 back to 0. So if we add 1 to 6,

we get 0. If we multiply 2 by 4, we get 1 (2 * 4 = 4 + 4 = 6

+ 2 = 1�work it out). We can make an addition table, as

shown in Table A.1. Taking any two numbers from the top

row and left column, the sum is found in the intersection of

the row and columns.

Table A.1. Addition Table

0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

Table A.2. Multiplication Table

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

In a similar way we can define a multiplication table, as

shown in Table A.2. Here the product value is in the

intersection of each row and column. These tables can be

used for subtraction and division as well. To work out the

value of m/n, you go to the nth column, find the entry m in

the column, and the answer is the row number. For example,

to compute 6/3, go to the third column and find the value 6,

then look to the left to see the answer 6/3 = 2. Note that

this rule does not work if you try to divide by 0; try it and

you'll see the problem. As with conventional arithmetic,

dividing by 0 is undefined.

These tables show that it is possible to define a finite

number universe with familiar and useful arithmetic

operations that really work. However, this approach does

not work in all cases. Suppose we want a universe with six

numbers: {0, 1, 2, 3, 4, 5}. Applying the "roll over rule"

whereby 5 + 1 = 0, the addition and multiplication tables

come out as shown in Tables A.3 and A.4.

Look at column 2 of the multiplication table. 0 appears

twice. Numbers 1, 3, 5 don't appear at all! Column 3 only

has the values 0 and 3. What this means is that it is

impossible to do meaningful division in this number

universe. The problem is that there are six numbers and

both 2 and 3 are factors of 6. This means that 2 * 3 = 0 and

also 2 * 0 = 0.

Table A.3. Addition Table

0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

Table A.4. Multiplication Table

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

Because of this factoring problem, this type of finite number

universe can only have all four arithmetic operations (+, �,

*, ÷) if the number of values in the universe is a prime

number. It works when there are seven values because

seven is a prime number. It doesn't work with eight, nine, or

ten values, but it works with eleven values and so on.

If we return to our polynomial representation, a similar rule

applies. The finite field should be bounded by a polynomial

that is irreducible. A polynomial is reducible if it can be

factored. For example (x2 + 1) is reducible because:

Equation A.13

To make our finite field arithmetic work, we need a finite

field that is bounded by an irreducible polynomial and has

256 elements. Such a field can be created and is called a

Galois Field, denoted by GF(256). We will not present the

theory behind how a Galois Field is created. However, it has

the property that it has 2n entries and the entries are

derived from, and bounded by, an irreducible polynomial.

For GF(256), that polynomial is:

Equation A.14

This corresponds to the binary value 100011011 or

hexadecimal 11B.

Let's remind ourselves of why we digressed to discuss the

Galois Field. The problem was that multiplication according

to the rules we had defined caused undefined results due to

overflows. The question was how these should be handled

and avoided? The answer lies in treating the possible 256

values as members of the GF(256) field. This field is limited

by the irreducible polynomial that defines our GF(256). We

can think of the rules of multiplication in the same way as

shown in Table A.2. In that case the result wraps around the

prime number that defines the number of elements in the

field; in Table A.2 this prime number is 7. In conventional

arithmetic, we would say that the result is the remainder

after dividing by 7 or that the result is computed modulo 7.

In Table A.2, a multiplication can be computed as follows:

Result = (A x B) mod 7.

or

Result = Remainder((A x B) / 7)

Example: 6 * 6 = 36 mod 7 = Remainder(36/7) = 1

The same rule is now applied to our byte computations

in the GF(256) field:

Result = (A x B) mod x8 + x4 + x3 + x1 + 1 (the

irreducible polynomial)

or

Result = Remainder((A x B) / (x8 + x4 + x3 + x1 + 1)

)

Lets see how this works in practice. We saw in (A.11) the

result of a multiplication that did not overflow outside the

byte value. Let's take an example that clearly does want to

overflow:

01101001 * 00101001

Using the accumulate row approach:

Equation A.15

The intermediate result in (A.15) is 12 bits long�we need to

reduce it by wrapping around the irreducible polynomial. To

do this, we need to divide by our irreducible polynomial and

take the remainder:

Equation A.16

So the remainder after removing the overflow is 10000011.

In other words, in our finite field:

01101001 * 00101001 = 10000011

All values are within our single byte space. Hooray!

However, although it still uses only shift and XOR, the

computation now seems rather complicated and long-

winded. We had to do both long multiplication and long

division to get the result. There is a good trick we can use to

simplify the computation, however. If we look at the

accumulate row approach to multiplication, each

intermediate row represents the first multiplier shifted left to

correspond to a bit in the second multiplier. After this, all the

rows are added together and the result is taken modulus our

field polynomial 100011011. However, rather than waiting

until all the rows are accumulated before adding together,

you can shift and add 1 bit at a time as the computation

proceeds. Let's look at the previous multiplication,

01101001 * 00101001, done in this way. The sequence of

events is shown in Figure A.1. The process for computing A x

B is as follows:

Start with an accumulator value of 0.

Take each bit of B in turn, starting with the most

significant bit.

For each bit, first multiply the accumulator by 2 (shift

left).

If the bit is 1, add the value of A to the accumulator.

Figure A.1. Multiply by Shift and Add

The final value of the accumulator is the answer.

Figure A.1 shows the computation for the same example we

used earlier (A.15) and you can see that the result is the

same�this is good. In the previous example we reduced the

result of (A.15) to be within range by dividing by the value

100011101 and taking the remainder. This gave the result

shown in (A.16). However, if we use the shift and add

approach, there is another way to do the reduction that is

easier than performing this long division. Note that the shift

and add method requires that the accumulator be shifted

left at each stage. This left shift is the same as multiplying

by two. The simplification is to reduce the value within

range after each shift rather than waiting until the end.

You might think that means more divisions rather than

fewer. However, consider the result of the computation 2 *

A. If the most significant bit of A is 0, we know that there

cannot be an overflow so the result will already be in range.

If the most significant bit is 1, we know that there will be an

overflow. Because we know the result overflows, it needs to

be reduced to get back to a byte value. We also know that

the range of possible values after the shift will be

100000000 to 111111110. This means that the result of

dividing by 100011011 must always be 1 and the remainder

will be the result we want. Because we know the result of

the division is 1, we can get that wanted remainder simply

by subtracting 100011011 from the shifted value. So now

we have a simple rule for computing 2 * A:

Equation A.17

In the second case, the XOR accomplished the "subtract

100011011" operation for the byte value.

Now we have a long multiplication rule that works for all

cases. The shift operation in Figure A.8 is replaced by the

formula in (A.17). Each intermediate step as well as the final

result is guaranteed to be within the GF(256) field; in other

words, the result of the multiplication is always a single

byte. The long multiplication has been achieved by a short

sequence of XOR operations and shifts that are easily

implemented in digital systems.

Conclusion

This section introduces mathematics that may be unfamiliar

to you. The arguments seem logical, but you may be left

feeling that the operations are puzzling and nonintuitive.

However, the benefit of this type of mathematics is an

amazing simplification in the way multiplication is

implemented. It makes the design and implementation of

encryption systems, which often rely on many

multiplications, much more practical in the real world.

Steps in the AES Encryption Process

The encryption process uses a set of specially derived keys

called round keys. These are applied, along with other

operations, on an array of data that holds exactly one block

of data�the data to be encrypted. This array we call the

state array.

You take the following steps to encrypt a 128-bit block:

1. Derive the set of round keys from the cipher key.

Initialize the state array with the block data (plaintext).

Add the initial round key to the starting state array.

Perform nine rounds of state manipulation.

Perform the tenth and final round of state manipulation.

Copy the final state array out as the encrypted data

(ciphertext).

The reason that the rounds have been listed as "nine

followed by a final tenth round" is because the tenth round

involves a slightly different manipulation from the others.

The block to be encrypted is just a sequence of 128 bits.

AES works with byte quantities so we first convert the 128

bits into 16 bytes. We say "convert," but, in reality, it is

almost certainly stored this way already. Operations in

RSN/AES are performed on a two-dimensional byte array of

four rows and four columns. At the start of the encryption,

the 16 bytes of data, numbered D0 � D15, are loaded into

the array as shown in Table A.5.

Each round of the encryption process requires a series of

steps to alter the state array. These steps involve four types

of operations called:

SubBytes

ShiftRows

Table A.5. Initial Value of the

State Array

D0 D4 D8 D12

D1 D5 D9 D13

D2 D6 D10 D14

D3 D7 D11 D15

MixColumns

XorRoundKey

The details of these operations are described shortly, but

first we need to look in more detail at the generation of the

Round Keys, so called because there is a different one for

each round in the process.

Round Keys

The cipher key used for encryption is 128 bits long. Where

this key comes from is not important here; refer to Chapter

10 on key hierarchy and how the temporal encryption keys

are produced. The cipher key is already the result of many

hashing and cryptographic transformations and, by the time

it arrives at the AES block encryption, it is far removed from

the secret master key held by the authentication server.

Now, finally, it is used to generate a set of eleven 128-bit

round keys that will be combined with the data during

encryption. Although there are ten rounds, eleven keys are

needed because one extra key is added to the initial state

array before the rounds start. The best way to view these

keys is an array of eleven 16-byte values, each made up of

four 32-bit words, as shown in Table A.6.

To start with, the first round key Rkey0 is simply initialized to

the value of the cipher key (that is the secret key delivered

through the key hierarchy). Each of the remaining ten keys

is derived from this as follows.

Table A.6. Round Key Array

 32 bits 32 bits 32 bits 32 bits

Rkey0 W0 W1 W2 W3

Rkey1 W0 W1 W2 W3

Rkey2 W0 W1 W2 W3

Rkey3 W0 W1 W2 W3

Rkey4 W0 W1 W2 W3

Rkey5 W0 W1 W2 W3

Rkey6 W0 W1 W2 W3

 32 bits 32 bits 32 bits 32 bits

Rkey7 W0 W1 W2 W3

Rkey8 W0 W1 W2 W3

Rkey9 W0 W1 W2 W3

Rkey10 W0 W1 W2 W3

For each of the round keys Rkey1 to Rkey10, words W1, W2,

W3 are computed as the sum[1] of the corresponding word in

the previous round key and the preceding word in the

current round key. For example, using XOR for addition:

[1]
 Using finite field arithmetic.

Rkey5: W1 = Rkey4:W1 XOR Rkey5:W0,

Rkey8: W3 = Rkey7:W3 XOR Rkey8:W2 and so on.

The rule for the value of W0 is a little more complicated to

describe, although still simple to compute. For each round

key Rkey1 to Rkey10, the value of W0 is the sum of three 32-

bit values:

The value of W0 from the previous round key

The value of W3 from the previous round key, rotated

right by 8 bits

A special value from a table called Rcon

Thus, we write:

Rkeyi:W0 = Rkey(i-1):W0 XOR (Rkey(i-1):W3 >>> 8) XOR

Rcon[i]

where W >>> 8 means rotate right 8�for example (in

hexadecimal) 1234 becomes 4123 and Rcon[i] is an entry in

Table A.7.

Table A.7. Values in Rcon

i Rcon(i)

1 2

2 4

3 8

4 16

i Rcon(i)

5 32

6 64

7 128

8 27

9 54

10 108

There is a good reason why the sequence of this table

suddenly breaks off from 128 to 27. It is because of the way

finite fields overflow, as described in the previous section.

Although the algorithm for deriving the round keys seems

rather complicated, you will notice that no difficult

computations have been performed and it is not at all

computationally intensive. Also note that, after the first,

each key is generated sequentially and based on the

previous one. This means that it is possible to generate

each round key just in time before it is needed in the

encryption computation. Alternatively, if there is plenty of

memory, they can be derived once at the start and stored

for use with each subsequent AES block.

Computing the Rounds

Having described how the round keys are derived, we can

now return to the operations used in computing each round.

Earlier we mentioned that four operations are required

called:

SubBytes

ShiftRows

MixColumns

XorRoundKey

Each one of these operations is applied to the current state

array and produces a new version of the state array. In all

but the rarest cases, the state array is changed by the

operation. The details of each operation are given shortly.

In the first nine rounds of the process, the four operations

are performed in the order listed. In the last (tenth) round,

the MixColumns operation is not performed and only the

SubBytes, ShiftRows, and XorRoundKey operations are done.

SubBytes

This operation is a simple substitution that converts every

byte into a different value. AES defines a table of 256 values

for the substitution. You work through the 16 bytes of the

state array, use each byte as an index into the 256-byte

substitution table, and replace the byte with the value from

the substitution table. Because all possible 256 byte values

are present in the table, you end up with a totally new result

in the state array, which can be restored to its original

contents using an inverse substitution table. The contents of

the substitution table are not arbitrary; the entries are

computed using a mathematical formula but most

implementations will simply have the substitution table

stored in memory as part of the design.

ShiftRows

As the name suggests, ShiftRows operates on each row of

the state array. Each row is rotated to the right by a certain

number of bytes as follows:

1st Row:
rotated by 0 bytes (i.e., is not changed)

2nd Row:
rotated by 1 byte

3rd Row:
rotated by 2 bytes

4th Row:
rotated by 3 bytes

As an example, if the ShiftRows operation is applied to the

stating state array shown in Table A.8, the result is shown in

Table A.9.

MixColumns

This operation is the most difficult, both to explain and

perform. Each column of the state array is processed

separately to produce a new column. The new column

replaces the old one. The processing involves a matrix

multiplication. If you are not familiar with matrix arithmetic,

don't get to concerned�it is really just a convenient notation

for showing operations on tables and arrays.

The MixColumns operation takes each column of the state

array C0 to C3 and replaces it with a new column computed

by the matrix multiplication shown in Figure A.2.

Figure A.2. MixColumns Operation

Table A.8. Effect of ShiftRows

Operation�Start State

D0 D4 D8 D12

D1 D5 D9 D13

D2 D6 D10 D14

D3 D7 D11 D15

Table A.9. Effect of ShiftRows

Operation�End State

D0 D4 D8 D12

D13 D1 D5 D9

D10 D14 D2 D6

D7 D11 D15 D3

The new column is computed as follows:

C'0 = 02 * C0 + 01 * C1 + 01 * C2 + 03 * C3

C'1 = 03 * C0 + 02 * C1 + 01 * C2 + 01 * C3

C'2 = 01 * C0 + 03 * C1 + 02 * C2 + 01 * C3

C'3 = 01 * C0 + 01 * C1 + 03 * C2 + 02 * C3

Remember that we are not using normal arithmetic�we are

using finite field arithmetic, which has special rules and both

the multiplications and additions can be implemented using

XOR.

XorRoundKey

After the MixColumns operation, the XorRoundKey is very

simple indeed and hardly needs its own name. This

operation simply takes the existing state array, XORs the

value of the appropriate round key, and replaces the state

array with the result. It is done once before the rounds start

and then once per round, using each of the round keys in

turn.

Decryption

As you might expect, decryption involves reversing all the

steps taken in encryption using inverse functions:

InvSubBytes

InvShiftRows

InvMixColumns

XorRoundKey doesn't need an inverse function because

XORing twice takes you back to the original value.

InvSubBytes works the same way as SubBytes but uses a

different table that returns the original value. InvShiftRows

involves rotating left instead of right and InvMixColumns

uses a different constant matrix to multiply the columns.

The order of operation in decryption is:

1. Perform initial decryption round:

XorRoundKey

InvShiftRows

InvSubBytes

Perform nine full decryption rounds:

XorRoundKey

InvMixColumns

InvShiftRows

InvSubBytes

Perform final XorRoundKey

The same round keys are used in the same order.

Summary of AES

Now we have seen all the steps needed to take a 128-bit

block of data and transform it into ciphertext. We also

looked at the reverse process for decryption. The process of

encryption can be summarized as shown in Figure A.3. The

mathematics behind the algorithm is rather hard to

understand for nonmathematicians and we have focused on

how rather than why in this book. If you are interested in

such matters, it is probably worth reading the theoretical

papers of looking at the book that specialize in

cryptography. What is interesting, however, is the way in

which all the operations are based on byte values and

operations that are simple to implement in digital logic

gates. AES achieves the goal of being both secure and

practical for real systems.

Figure A.3. Summary of AES/RSN

Encryption

clbr://internal.invalid/book/0321136209_24031533.html

Appendix B. Example Message

Modification

This appendix describes the process needed to modify a

WEP-encrypted packet and ensure that the CRC for the

packet remains valid, in other words, the bit-flipping attack.

Assume that a sender wishes to send a message to a

recipient, and that he wishes to use a CRC to detect errors

during transmission.

Let the message, M(x), be the single ASCII letter N: M(x) =

01001110, and let the CRC generator be G(x) = x3 + x2 +

1, or 1101. To compute the CRC value, M(x) is first multiplied

by the degree of G(x), which is 3. Because multiplication in

GF(2) is a left shift, we end up with M'(x) = 01001110000.

This value is now divided by G(x), and because division in

GF(2) is the XOR operation, the result is:

1101| 01001110000

 1101

 1001

 1101

 1001

 1101

 1001

 1101

 1000

 1101

 1010

 1101

 1110

 1101

 110

The long division results in a remainder of 110, which is now

subtracted (subtraction in GF(2) is the XOR operation) from

M'(x) to obtain P(x)�the message that is sent:

P(x)=01001110110.

Upon receipt of the message, the recipient divides it with

G(x). If the remainder of the division is 0, the message did

not contain errors within the precision of the CRC.

clbr://internal.invalid/book/0321136209_24031533.html

Example Message Modification

For this example, we take the message above (ASCII 'N') and

modify the message so it becomes an ASCII y and we still

ensure that the ICV remains valid using the process

described in Chapter 15.

Stating the problem: Given P(x)= 01001110110, derive

P'(x)=01111001XXX where XXX is a valid CRC.

First, the delta between the current message, M(x), and the

desired message, N(x), is computed by the exclusive OR of

the two values.

M(x) = 01001110

N(x) = 01111001

D(x) = 00110111

Now, the CRC is calculated for the delta value:

 1101 |00110111000

 1101

 1100

 1101

 010

The remainder of the division is the CRC of the delta. Now

the delta and its CRC are exclusive OR'd with P(x):

P(x) 01001110110

D(x) 00110111000

 01111001110

CRC(D) 010

P'(x) 01111001100

Now, P'(x) is shown to be a valid message; the remainder of

the CRC calculation is 0.

 1101 | 01111001100

 1101

 1000

 1101

 1011

 1101

 1101

 1101

 0

Because the remainder of the CRC calculation is 0, P'(x) has

a valid CRC and the message has been successfully

modified.

clbr://internal.invalid/book/0321136209_24031533.html

Appendix C. Verifying the

Integrity of Downloaded Files

Recently, a trend has occurred in which a malicious Trojan

horse is hidden in popular open source programs. The

authors of the programs do not do this. Instead, it is done by

attackers modifying the source at distribution points such as

ftp download sites. The best way to ensure you don't install

software that has been modified after the authors created

the ZIP or TAR file is to check either the MD5 message

digest or the GPG signature of the files you download. The

latter is significantly better than the former because the

attacker could have easily changed the MD5 value as well.

In this appendix, we walk through the process of verifying

the code you download.

clbr://internal.invalid/book/0321136209_24031533.html

Checking the MD5 Digest

Checking the MD5 digest value is easy if you're on a UNIX

system. Most of the modern systems now have a command

md5sum. Md5sum computes the MD5 digest value for the

file name entered at the command line. Thus, you check the

digest of the recent OpenSSL distribution with the following

command:

bash-2.05$ md5sum openssl-0.9.7-beta4.tar.gz

43cf89b428fbdd7873b5aae2680cd324 openssl-0.9.7-

beta4.tar.gz

The output of MD5sum is the 128-byte MD5 digest in

hexadecimal of the file, or files, you entered on the

command line. You must check that value with the value

that would be contained in openssl-0.9.7-beta4.tar.gz.md5.

The two values should be identical. If you're lazy and are

familiar with the UNIX command line, you can also do:

md5sum TARBALL | awk '{print $1;}' | cmp -

TARBALL.md5

If you don't get any output from the above command, then

the digests match.

Checking the GPG Signature

An MD5 digest isn't foolproof. As mentioned before, an

attacker could also change the value stored in the digest file

so it always matches. A far better way to ensure the

integrity of files you download is to check the digital

signature of the file downloaded.

Checking the signature requires that you have either PGP

(www.pgp.com) or GPG (www.gnupg.org) installed on one of

your systems. You'll also need the public key of the creator

of the signature.

Here's how you would go about checking the integrity on

our openssl file.

bash-2.05$ gpg openssl-0.9.7-beta4.tar.gz.asc

gpg: Signature made Tue Nov 19 05:15:12 2002 EST

using RSA key ID E06D2CB1

gpg: Can't check signature: public key not found

bash-2.05$

We ran GPG on the signature file, but we don't have the

public key for the signer. So, we have to find the key at a

keyserver using the key ID 0xE06D2CB1. The easiest way to

do that is to go to www.keyserver.net and enter the key ID

into the window, as shown in Figure C.1, making sure to

enter "0x" before the key ID. In this case, we're entering

"0xE06D2CB1".

Figure C.1. Public Key Server

http://www.pgp.com/default.htm
http://www.gnupg.org/default.htm
http://www.keyserver.net/default.htm

If a key exists in the server with the ID you entered, you'll

see it displayed as the result of your query. The answer to

our query is shown in Figure C.2.

Figure C.2. Results of a Key ID Search

In this case, you'll see that Richard Levitte is the owner of

the public key associated with the key ID 0xE06D2CB1.

Now, you need to make sure that Richard Levitte is

authorized to sign the file you downloaded. To answer this

question, we simply look at the list of developer team

members for OpenSSL on their home page, and we see that

Richard Levitte is a member of the development team.

Ideally, the team should also put their OpenPGP fingerprints

on this page to verify that the Richard Levitte associated

with the public key we found is in fact the Richard Levitte

associated with the OpenSSL project.

Once we're happy that we have the correct key, we can

view an ASCII representation of it and cut and paste the key

into a file we can import into our OpenPGP application. The

ASCII representation of Richard Levitte's key is shown in

Figure C.3.

Figure C.3. ASCII Representation of

Public Key

Now, assuming that we saved a copy of the ASCII

representation in the file levitte.asc, we import the key into

our public key ring with the command:

bash-2.05$ gpg --import levitte.asc

gpg: key E06D2CB1: public key imported

gpg: Total number processed: 1

gpg: imported: 1 (RSA: 1)

Now that we've loaded the proper key into our public key

ring, we can verify the integrity, or authenticity, of the file

we downloaded.

bash-2.05$ gpg openssl-0.9.7-beta4.tar.gz.asc

gpg: Signature made Tue Nov 19 05:15:12 2002 EST

using RSA key ID E06D2CB1

gpg: Good signature from "Richard Levitte

<richard@levitte.org>"

gpg: aka "Richard Levitte

<levitte@lp.se>"

gpg: checking the trustdb

gpg: no ultimately trusted keys found

gpg: WARNING: This key is not certified with a

trusted signature!

gpg: There is no indication that the

signature belongs to the owner.

Fingerprint: 35 3E 6C 9E 8C 97 85 24 BD 9F D1 9E

8F 75 23 6B

You'll see that the signature of the file verified correctly. But

there's a warning message. The warning is just telling us

that Richard Levitte's public key certificate isn't signed by

anyone we trust.

clbr://internal.invalid/book/0321136209_24031533.html

Acronyms

ACK Acknowledge

ADSL Asynchronous Digital Subscriber Line

AES Advanced Encryption Standard

AP Access Point

AS Authentication Server

ATM Automatic Teller Machine

BSS Basic Service Set

CBC Cipher Block Chaining

CCM Counter Mode�CBC MAC

CCMP Counter Mode�CBC MAC Protocol

CHAP Challenge Handshake Authentication Protocol

CRC Cyclic Redundancy Check

DA Destination Address

DHCP Dynamic Host Configuration Protocol

DoS Denial of Service

EAP Extensible Authentication Protocol

EAPOL EAP Over LAN

EKE Encrypted Key Exchange

ESS Extended Service Set

GMK Group Master Key

GPS Global Positioning System

GSM Groupe Spécial Mobile

GSSAPI Generic Security Service Application Program

Interface

GTK Group Transient Key

HMAC Hash Message Authentication Code

IAKERB Initial and Pass-Through Authentication Using

Kerberos V5

IANA Internet Assigned Numbers Authority

IBSS Independent Basic Service Set

ICMP Internet Control Message Protocol

ICV Integrity Check Value

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IMSI International Mobile Subscriber Identity

IP Internet Protocol

ISO International Standards Organization

ISP Internet Service Provider

IT Information Technology

IV Initialization Vector

KDC Key Distribution Center

LAN Local Area Network

LEAP Light EAP (Cisco)

LLC Link Layer Control

MAC Medium Access Control (the meaning used in this

book)

MAC

(alt)

Message Authentication Code (cryptographic

community use)

MIC Message Integrity Code

MPDU MAC Protocol Data Unit

MSDU MAC Service Data Unit

NAK Negative Acknowledge

NAS Network Access Server

NIST National Institute of Standards and Technology

PAE Port Access Entity

PAP Password Authentication Protocol

PC Personal Computer

PDA Personal Digital Assistant

PEAP Protected EAP

PKI Public Key Infrastructure

PLCP Physical Layer Convergence Protocol

PIN Personal Identification Number

PMK Pairwise Master Key

PN Packet Number

POP Point of Presence

PPP Point to Point Protocol

PRF Pseudo Random Function

PTK Pairwise Transient Key

PRNG Pseudo Random Number Generator

USB Universal Serial Bus

RA Receiver Address

RADIUS Remote Authentication Dial-In Service

RFC Request For Comment

RH RSN Header

RSN Robust Security Network

SA Source Address

SIM Subscriber Identity Module

SRP Secure Remote Password

SSID Service Set Identifier

SSL Secure Socket Layer

STA Wireless Station

TA Transmitter Address

TGi IEEE 802.11 Task Group 'i'

TGS Ticket Granting Service

TGT Ticket Granting Ticket

TKIP Temporal Key Integrity Protocol

TLS Transport Layer Security

TSC TKIP Sequence Counter

VPN Virtual Private Network

WEP Wired Equivalent Privacy

WPA Wi-Fi Protected Access

clbr://internal.invalid/book/0321136209_24031533.html

References

Abaddon. July 2002. Airjack. http://802.11ninja.org,

Aboba, B., and D. Simon. 2001. IEEE 802.11 security and

802.1X. IEEE 802.11-00/034r1.

Abraham, D., G. Dolan, G. Double, and J. Stevens. 1991.

Transaction security system. IBM Systems Journal 39:

206�229.

Advanced Encryption Standard (AES). 2002. Technical

Report FIPS 197. U.S. National Institute of Standards.

air. www.sourceforge.net/projects/airsnort.

Anderson, R. 2001. Security Engineering. New York: John

Wiley and Sons.

Arbaugh, W.A. May 2001. An inductive chosen plaintext

attack against WEP/WEP2. www.cs.umd.edu/waa/wepwep2-

attack.html.

Arbaugh, W. A., W. L. Fithen, and John McHugh. 2000.

Windows of vulnerability: a case study analysis. IEEE

Computer 33(12): 52�59.

Arbaugh, W. A., N. Shankar, and J. Wan. 2001. Your 802.11

network has no clothes. In Proceedings of the First IEEE

International Conference on Wireless LANs and Home

Networks. Pp. 131�144.

Arbaugh, W. A., N. Shankar, J. Wan, and K. Zhang. 2002. Your

802.11 network has no clothes. IEEE Wireless

Communications Magazine 9(6): 44�51.

http://802.11ninja.org/default.htm
http://www.sourceforge.net/projects/airsnort
http://www.cs.umd.edu/waa/wepwep2-attack.html

N. Asokan, V. Niemi, and K. Nyberg. 2002. Man-in-the-

Middle. In Tunnelled Authentication Protocols, Cryptology

ePrint Archive, Report 2002/163.

www.eprint.iacr.org/2002/163.

Bellare, M., J. Kilian, and P. Rogaway. 2000. The security of

the cipher block chaining message authentication code.

Journal of Computer and System Sciences 61(3): 362�399.

Bellovin, S. M., and M. Merritt. 1991. Limitations of the

Kerberos authentication system. In USENIX Conference

Proceedings. Dallas, TX: USENIX. Pp. 253�267.

Bellovin, S. M., and M. Merritt. 1992. Encrypted key

exchange: password-based protocols secure against

dictionary attacks. In Proceedings of the IEEE Symposium on

Research in Security and Privacy. Pp. 72�84.

Bishop, M. 2002. Computer Security: Art and Science, 1st ed.

Boston: Addison-Wesley.

Blunk, L., and J. Vollbrecht. 1998. PPP Extensible

Authentication Protocol (EAP). Technical Report RFC 2284.

IETF.

Borisov, N, I. Goldberg, and D. Wagner. 2001. Intercepting

mobile communications: the insecurity of 802.11. In

Proceedings of the Seventh Annual International Conference

on Mobile Computing and Networking. Pp. 180�188.

Cheswick, W., S. Bellovin, and A. Rubin. 2003. Firewalls and

Internet Security, 2nd ed. Boston: Addison-Wesley.

Computer Emergency Response Team. October 2000.

Windows based DDoS agent.

http://www.cert.org/incident_notes/IN-2000-01.html.

http://www.eprint.iacr.org/2002/163
http://www.cert.org/incident_notes/IN-2000-01.html

Daemen, J., and V. Rijmen. 2000. Smart Card Research and

Applications, The Block Cipher Rijndael. New York: Springer-

Verlag. Pp. 288�296.

Daemen, J., and V. Rijmen. 2001. Rijndael, the advanced

encryption standard. Dr. Dobb's Journal, 26(3): 137�139.

Davie, B., L. Peterson, and D. Clark. 1999. Computer

Networks: A Systems Approach, 2nd ed. San Francisco, CA:

Morgan Kaufmann.

Dierks, T., and C. Allen. 1999. The TLS Protocol. Technical

Report RFC 2246, IETF.

eth. www.ethereal.com.

Ferguson, Michael N. An Improved MIC for 802.11 WEP,

2002. Document number IEEE 802.11-02/020r0. Available

from

http://grouper.ieee.org/groups/802/11/Documents/Document

Holder/2-020.zip.

Fluhrer, S., I. Mantin, and A. Shamir. 2001. Weaknesses in

the key scheduling algorithm of RC4. In Eighth Annual

Workshop on Selected Areas in Cryptography.

Hassell, J. 2003. RADIUS: Securing Public Access to Private

Resources. Cambridge, MA: O'Reilly and Associates.

Hopper, D. I. Secret Service agents probe wireless networks

in Washington. www.securityfocus.com/news/899.

IEEE. 1997. LAN MAN standards of the IEEE Computer

Society: wireless LAN medium access control (MAC) and

physical layer(PHY) specification. IEEE Standard 802.11.

http://www.ethereal.com/default.htm
http://grouper.ieee.org/groups/802/11/Documents/DocumentHolder/2-020.zip
http://www.securityfocus.com/news/899

IEEE. 2001. Standards for local and metropolitan area

networks: Standard for port based network access control.

IEEE Draft P802.1X/D11.

Jonsson, J. 2002. On the security of CTR + CBC-MAC. In SAC

2002 - Ninth Annual Workshop on Selected Areas of

Cryptography.

Kocher, P., J. Jaffe, and B. Jun. 1999. Differential power

analysis. Lecture Notes in Computer Science 1666: 388-397.

Krawczyk, H., M. Bellare, and R. Canetti. 1997. HMAC:

Keyed-Hasing for Message Authentication. Technical Report

RFC 2104. IETF.

Mantin, I., and A. Shamir. 2001. A practical attack on

broadcast RC4. In Proceedings of FSE 2001.

Menezes, A. J., P. C. Van Oorschot, and S. A. Vanstone, eds.

1996. Handbook of Applied Cryptography. New York: CRC

Press.

Mishra, A., and W. A. Arbaugh. 2002. An Initial Security

Analysis of the IEEE 802.1X Standard. Technical Report CS-

TR-4328. College Park: University of Maryland.

Neuman, B. C., and T. Ts'o. 1994. Kerberos: an

authentication service for computer networks. IEEE

Communications Magazine 32(9): 33�38.

Neumann, P. G. Computer-Related Risks. 1995. Reading:

Addison-Wesley.

Norris, M., and Steve Pretty. 2000. Designing the Total Area

Network: Intranets, VPNS and Enterprise Networks

Explained. New York: John Wiley and Sons.

Petroni, N. L., Jr., and W. A. Arbaugh. 2003. The dangers of

mitigating security design flaws: a wireless case study. IEEE

Security and Privacy Magazine 1(1): 28�36.

Pfleeger, C. P., S. L. Pfleeger, and W. H. Ware. 2002. Security

in Computing, 3rd ed. Upper Saddle River, NJ: Prentice Hall

PTR.

Poulsen, K. 2001. War driving by the bay.

www.securityfocus.com/news/192. Dallas Con Information

Security Conference.

Rogaway, P., M. Bellare, J. Black, and T. Krovetz. 2001. OCB:

a block-cipher mode of operation for efficient authenticated

encryption. In ACM Conference on Computer and

Communications Security. Pp. 196�205.

Rescorla, E. 2001. SSL and TLS. Boston: Addison-Wesley.

Rivest, R. 2001. RSA security response to weaknesses in key

scheduling algorithm of RC4.

www.rsasecurity.com/rsalabs/technotes/wep.html.

Rivest, R., A. Shamir, and L. Adleman. 1979. On Digital

Signatures and Public Key Cryptosystems. Technical Report

MIT/LCS/TR-212. Cambridge, MA: MIT Laboratory for

Computer Science.

Salkever, A. 2000. Hollywood vs. the hackers vs. free

speech.

www.businessweek.com/bwdaily/dnflash/aug2000/nf200008

25_720.htm.

Schneier, B. 1996. Applied Cryptography, 2nd ed. New York:

John Wiley & Sons.

http://www.securityfocus.com/news/192
http://www.rsasecurity.com/rsalabs/technotes/wep.html
http://www.businessweek.com/bwdaily/dnflash/aug2000/nf20000825_720.htm

Shamir, A., and I. Mantin. 2001. A practical attack on

broadcast RC4. In Proceedings of Fast Software Encryption.

Pp. 152�164.

Simon, D., and B. Aboba. 1999. PPP EAP TLS Authentication

Protocol. Technical Report RFC 2716, IETF.

Simpson, W. 1996. PPP Challenge Handshake Authentication

Protocol (CHAP). Technical Report RFC 1994, IETF.

Spitzner, L. 2002. Honeypots: Tracking Hackers. Boston:

Addison-Wesley.

Stoll, C. 1989. The Cuckoo's Egg. New York: Doubleday.

Stubblefield, A., J. Ioannidis, and A. D. Rubin. 2002. Using

the Fluhrer, Mantin, and Shamir attack to break WEP. In

Network and Distributed System Security Symposium

(NDSS).

U.S. Government Accounting Office. May 1998. Information

Security Management, Learning from Leading Organizations.

www.gao.gov/cgi-bin/getrpt?GAO-01-376G.

U.S. National Security Agency. 1999. Venona project.

www.nsa.gov/docs/venona/index.html.

Vernam, G. S. 1926. Cipher printing telegraphy systems for

secret wire and radio telegraphic communications. Journal of

the AIEE 45: 109�115.

Viega, J., M. Messier, and P. Chandra. 2002. Network

Security with OpenSSL. Cambridge, MA: O'Reilly and

Associates.

Walker, J. 2000. Unsafe at any key size; an analysis of the

WEP encapsulation. IEEE 802.11-00/362.

http://www.gao.gov/cgi-bin/getrpt@GAO-01-376G
http://www.nsa.gov/docs/venona/index.html

Thomas Wu. 1998. The Secure Remote Password Protocol. In

Proceedings of the 1998 Internet Society Network and

Distributed System Security Symposium, San Diego, CA Pp.

97�111.

clbr://internal.invalid/book/0321136209_24031533.html

	Main Page
	Table of content
	Copyright
	Praise for 'Real 802.11 Security: Wi-Fi Protected Access and 802.11i'
	Preface
	Why This Book Now?
	Audience
	Organization
	Disclaimer

	Acknowledgments
	Part I: What Everyone Should Know
	Chapter 1. Introduction
	Setting the Scene
	Roadmap to the Book
	Notes on the Book

	Chapter 2. Security Principles
	What Is Security?
	Good Security Thinking
	Security Terms
	Summary

	Chapter 3. Why Is Wi-Fi Vulnerable to Attack?
	Changing the Security Model
	What Are the Enemies Like?
	Traditional Security Architecture
	Danger of Passive Monitoring
	Summary

	Chapter 4. Different Types of Attack
	Classification of Attacks
	Attacks Without Keys
	Attacks on the Keys
	Summary

	Part II: The Design of Wi-Fi Security
	Chapter 5. IEEE 802.11 Protocol Primer
	Layers
	Wireless LAN Organization
	Basics of Operation in Infrastructure Mode
	Protocol Details
	Radio Bits
	Summary

	Chapter 6. How IEEE 802.11 WEP Works and Why It Doesn't
	Introduction
	Authentication
	Privacy
	Mechanics of WEP
	Why WEP Is Not Secure
	Summary

	Chapter 7. WPA, RSN, and IEEE 802.11i
	Relationship Between Wi-Fi and IEEE 802.11
	What Is IEEE 802.11i?
	What Is WPA?
	Differences Between RSN and WPA
	Security Context
	Keys
	Security Layers
	Relationship of the Standards
	Summary

	Chapter 8. Access Control: IEEE 802.1X, EAP, and RADIUS
	Importance of Access Control
	Authentication for Dial-in Users
	IEEE 802.1X
	EAP Principles
	EAPOL
	Messages Used in IEEE 802.1X
	Implementation Considerations
	RADIUS�Remote Access Dial-In User Service
	Summary

	Chapter 9. Upper-Layer Authentication
	Introduction
	Who Decides Which Authentication Method to Use?
	Use of Keys in Upper-Layer Authentication
	A Detailed Look at Upper-Level Authentication Methods
	Transport Layer Security (TLS)
	Kerberos
	Cisco Light EAP (LEAP)
	Protected EAP Protocol (PEAP)
	Authentication in the Cellular Phone World: EAP-SIM
	Summary

	Chapter 10. WPA and RSN Key Hierarchy
	Pairwise and Group Keys
	Pairwise Key Hierarchy
	Group Key Hierarchy
	Key Hierarchy Using AES�CCMP
	Mixed Environments
	Summary of Key Hierarchies
	Details of Key Derivation for WPA
	Nonce Selection
	Computing the Temporal Keys
	Summary

	Chapter 11. TKIP
	What Is TKIP and Why Was It Created?
	TKIP Overview
	Per-Packet Key Mixing
	TKIP Implementation Details
	Message Integrity�Michael
	Per-Packet Key Mixing
	Summary

	Chapter 12. AES�CCMP
	Introduction
	Why AES?
	AES Overview
	How CCMP Is Used in RSN
	Summary

	Chapter 13. Wi-Fi LAN Coordination: ESS and IBSS
	Network Coordination
	WPA/RSN Information Element
	Preauthentication Using IEEE 802.1X
	IBSS Ad-Hoc Networks
	Summary

	Part III: Wi-Fi Security in the Real World
	Chapter 14. Public Wireless Hotspots
	Development of Hotspots
	Security Issues in Public Hotspots
	How Hotspots Are Organized
	Different Types of Hotspots
	How to Protect Yourself When Using a Hotspot
	Summary

	Chapter 15. Known Attacks: Technical Review
	Review of Basic Security Mechanisms
	Review of Previous IEEE 802.11 Security Mechanisms
	Attacks Against the Previous IEEE 802.11 Security Mechanisms
	Man-in-the-Middle Attacks
	Problems Created by Man-in-the-Middle Attacks
	Denial-of-Service Attacks
	Summary

	Chapter 16. Actual Attack Tools
	Attacker Goals
	Process
	Example Scenarios
	Other Tools of Interest
	Summary

	Chapter 17. Open Source Implementation Example
	General Architecture Design Guidelines
	Protecting a Deployed Network
	Planning to Deploy a WPA Network
	Deploying the Infrastructure
	Practical Example Based on Open Source Projects
	Summary
	Acknowledgments
	References and More Information

	Appendixes
	Appendix A. Overview of the AES Block Cipher
	Finite Field Arithmetic
	Steps in the AES Encryption Process

	Appendix B. Example Message Modification
	Example Message Modification

	Appendix C. Verifying the Integrity of Downloaded Files
	Checking the MD5 Digest
	Checking the GPG Signature

	Acronyms
	References

