

Data Science & Big Data Analytics: Discovering,

Analyzing, Visualizing and Presenting Data

Published by

John Wiley & Sons, Inc. 10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis,

Indiana

Published simultaneously in Canada

ISBN: 978-1-118-87613-8

ISBN: 978-1-118-87622-0 (ebk)

ISBN: 978-1-118-87605-3 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a

retrieval system or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, scanning or

otherwise, except as permitted under Sections 107 or 108 of the

1976 United States Copyright Act, without either the prior written

permission of the Publisher, or authorization through payment of

the appropriate per-copy fee to the Copyright Clearance Center,

222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax

(978) 646-8600. Requests to the Publisher for permission should

be addressed to the Permissions Department, John Wiley & Sons,

Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax

(201) 748-6008, or online at

http://www.wiley.com/go/permissions.

http://www.wiley.com/
http://www.wiley.com/go/permissions

Limit of Liability/Disclaimer of Warranty: The publisher and the

author make no representations or warranties with respect to the

accuracy or completeness of the contents of this work and

specifically disclaim all warranties, including without limitation

warranties of fitness for a particular purpose. No warranty may

be created or extended by sales or promotional materials. The

advice and strategies contained herein may not be suitable for

every situation. This work is sold with the understanding that the

publisher is not engaged in rendering legal, accounting, or other

professional services. If professional assistance is required, the

services of a competent professional person should be sought.

Neither the publisher nor the author shall be liable for damages

arising herefrom. The fact that an organization or Web site is

referred to in this work as a citation and/or a potential source of

further information does not mean that the author or the

publisher endorses the information the organization or website

may provide or recommendations it may make. Further, readers

should be aware that Internet websites listed in this work may

have changed or disappeared between when this work was

written and when it is read.

For general information on our other products and services

please contact our Customer Care Department within the United

States at (877) 762-2974, outside the United States at (317) 572-

3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and

by print-on-demand. Some material included with standard print

versions of this book may not be included in e-books or in print-

on-demand. If this book refers to media such as a CD or DVD that

is not included in the version you purchased, you may download

this material at http://booksupport.wiley.com. For more

information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014946681

Trademarks: Wiley and the Wiley logo are trademarks or

registered trademarks of John Wiley & Sons, Inc. and/or its

http://booksupport.wiley.com/
http://www.wiley.com/

affiliates, in the United States and other countries, and may not

be used without written permission. All other trademarks are the

property of their respective owners. John Wiley & Sons, Inc. is not

associated with any product or vendor mentioned in this book.

Credits

Executive Editor

Carol Long

Project Editor

Kelly Talbot

Production Manager

Kathleen Wisor

Copy Editor

Karen Gill

Manager of Content Development and Assembly

Mary Beth Wakefield

Marketing Director

David Mayhew

Marketing Manager

Carrie Sherrill

Professional Technology and Strategy Director

Barry Pruett

Business Manager

Amy Knies

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Patrick Redmond

Proofreader

Nancy Carrasco

Indexer

Johnna VanHoose Dinse

Cover Designer

Mallesh Gurram

About the Key

Contributors

 David Dietrich heads the data science

education team within EMC Education Services, where

he leads the curriculum, strategy and course

development related to Big Data Analytics and Data

Science. He co-authored the first course in EMC's Data

Science curriculum, two additional EMC courses

focused on teaching leaders and executives about Big

Data and data science, and is a contributing author

and editor of this book. He has filed 14 patents in the

areas of data science, data privacy, and cloud

computing.

David has been an advisor to several universities

looking to develop academic programs related to data

analytics, and has been a frequent speaker at

conferences and industry events. He also has been a a

guest lecturer at universities in the Boston area. His

work has been featured in major publications including

Forbes, Harvard Business Review, and the 2014

Massachusetts Big Data Report, commissioned by

Governor Deval Patrick.

Involved with analytics and technology for nearly 20

years, David has worked with many Fortune 500

companies over his career, holding multiple roles

involving analytics, including managing analytics and

operations teams, delivering analytic consulting

engagements, managing a line of analytical software

products for regulating the US banking industry, and

developing Software-as-a-Service and BI-as-a-Service

offerings. Additionally, David collaborated with the U.S.

Federal Reserve in developing predictive models for

monitoring mortgage portfolios.

 Barry Heller is an advisory technical

education consultant at EMC Education Services. Barry

is a course developer and curriculum advisor in the

emerging technology areas of Big Data and data

science. Prior to his current role, Barry was a

consultant research scientist leading numerous

analytical initiatives within EMC's Total Customer

Experience organization. Early in his EMC career, he

managed the statistical engineering group as well as

led the data warehousing efforts in an Enterprise

Resource Planning (ERP) implementation. Prior to

joining EMC, Barry held managerial and analytical roles

in reliability engineering functions at medical

diagnostic and technology companies. During his

career, he has applied his quantitative skill set to a

myriad of business applications in the Customer

Service, Engineering, Manufacturing, Sales/Marketing,

Finance, and Legal arenas. Underscoring the

importance of strong executive stakeholder

engagement, many of his successes have resulted

from not only focusing on the technical details of an

analysis, but on the decisions that will be resulting

from the analysis. Barry earned a B.S. in

Computational Mathematics from the Rochester

Institute of Technology and an M.A. in Mathematics

from the State University of New York (SUNY) New

Paltz.

 Beibei Yang is a Technical Education

Consultant of EMC Education Services, responsible for

developing several open courses at EMC related to

Data Science and Big Data Analytics. Beibei has seven

years of experience in the IT industry. Prior to EMC she

worked as a software engineer, systems manager, and

network manager for a Fortune 500 company where

she introduced new technologies to improve efficiency

and encourage collaboration. Beibei has published

papers to prestigious conferences and has filed

multiple patents. She received her Ph.D. in computer

science from the University of Massachusetts Lowell.

She has a passion toward natural language processing

and data mining, especially using various tools and

techniques to find hidden patterns and tell stories with

data. Data Science and Big Data Analytics is an

exciting domain where the potential of digital

information is maximized for making intelligent

business decisions. We believe that this is an area that

will attract a lot of talented students and professionals

in the short, mid, and long term.

Acknowledgments

EMC Education Services embarked on learning this

subject with the intent to develop an “open”

curriculum and certification. It was a challenging

journey at the time as not many understood what it

would take to be a true data scientist. After initial

research (and struggle), we were able to define what

was needed and attract very talented professionals to

work on the project. The course, “Data Science and Big

Data Analytics,” has become well accepted across

academia and the industry.

Led by EMC Education Services, this book is the result

of efforts and contributions from a number of key EMC

organizations and supported by the office of the CTO,

IT, Global Services, and Engineering. Many sincere

thanks to many key contributors and subject matter

experts David Dietrich, Barry Heller, and Beibei

Yang for their work developing content and graphics

for the chapters. A special thanks to subject matter

experts John Cardente and Ganesh Rajaratnam for

their active involvement reviewing multiple book

chapters and providing valuable feedback throughout

the project.

We are also grateful to the following experts from EMC

and Pivotal for their support in reviewing and

improving the content in this book:

Aidan O'Brien Joe Kambourakis

Alexander Nunes Joe Milardo

Bryan Miletich John Sopka

Dan Baskette Kathryn Stiles

Daniel Mepham Ken Taylor

Dave Reiner Lanette Wells

Deborah Stokes Michael Hancock

Ellis Kriesberg Michael Vander Donk

Frank Coleman Narayanan Krishnakumar

Hisham Arafat Richard Moore

Ira Schild Ron Glick

Jack Harwood Stephen Maloney

Jim McGroddy Steve Todd

Jody Goncalves Suresh Thankappan

Joe Dery Tom McGowan

We also thank Ira Schild and Shane Goodrich for

coordinating this project, Mallesh Gurram for the cover

design, Chris Conroy and Rob Bradley for graphics, and

the publisher, John Wiley and Sons, for timely support

in bringing this book to the industry.

Nancy Gessler

Director, Education Services, EMC Corporation

Alok Shrivastava

Sr. Director, Education Services, EMC Corporation

Contents

Introduction

Chapter 1 • Introduction to Big Data Analytics

1.1 Big Data Overview

1.1.1 Data Structures

1.1.2 Analyst Perspective on Data Repositories

1.2 State of the Practice in Analytics

1.2.1 BI Versus Data Science

1.2.2 Current Analytical Architecture

1.2.3 Drivers of Big Data

1.2.4 Emerging Big Data Ecosystem and a New

Approach to Analytics

1.3 Key Roles for the New Big Data Ecosystem

1.4 Examples of Big Data Analytics

Summary

Exercises

Bibliography

Chapter 2 • Data Analytics Lifecycle

2.1 Data Analytics Lifecycle Overview

2.1.1 Key Roles for a Successful Analytics

Project

2.1.2 Background and Overview of Data

Analytics Lifecycle

2.2 Phase 1: Discovery

2.2.1 Learning the Business Domain

2.2.2 Resources

2.2.3 Framing the Problem

2.2.4 Identifying Key Stakeholders

2.2.5 Interviewing the Analytics Sponsor

2.2.6 Developing Initial Hypotheses

2.2.7 Identifying Potential Data Sources

2.3 Phase 2: Data Preparation

2.3.1 Preparing the Analytic Sandbox

2.3.2 Performing ETLT

2.3.3 Learning About the Data

2.3.4 Data Conditioning

2.3.5 Survey and Visualize

2.3.6 Common Tools for the Data Preparation

Phase

2.4 Phase 3: Model Planning

2.4.1 Data Exploration and Variable Selection

2.4.2 Model Selection

2.4.3 Common Tools for the Model Planning

Phase

2.5 Phase 4: Model Building

2.5.1 Common Tools for the Model Building

Phase

2.6 Phase 5: Communicate Results

2.7 Phase 6: Operationalize

2.8 Case Study: Global Innovation Network and

Analysis (GINA)

2.8.1 Phase 1: Discovery

2.8.2 Phase 2: Data Preparation

2.8.3 Phase 3: Model Planning

2.8.4 Phase 4: Model Building

2.8.5 Phase 5: Communicate Results

2.8.6 Phase 6: Operationalize

Summary

Exercises

Bibliography

Chapter 3 • Review of Basic Data Analytic

Methods Using R

3.1 Introduction to R

3.1.1 R Graphical User Interfaces

3.1.2 Data Import and Export

3.1.3 Attribute and Data Types

3.1.4 Descriptive Statistics

3.2 Exploratory Data Analysis

3.2.1 Visualization Before Analysis

3.2.2 Dirty Data

3.2.3 Visualizing a Single Variable

3.2.4 Examining Multiple Variables

3.2.5 Data Exploration Versus Presentation

3.3 Statistical Methods for Evaluation

3.3.1 Hypothesis Testing

3.3.2 Difference of Means

3.3.3 Wilcoxon Rank-Sum Test

3.3.4 Type I and Type II Errors

3.3.5 Power and Sample Size

3.3.6 ANOVA

Summary

Exercises

Bibliography

Chapter 4 • Advanced Analytical Theory and

Methods: Clustering

4.1 Overview of Clustering

4.2 K-means

4.2.1 Use Cases

4.2.2 Overview of the Method

4.2.3 Determining the Number of Clusters

4.2.4 Diagnostics

4.2.5 Reasons to Choose and Cautions

4.3 Additional Algorithms

Summary

Exercises

Bibliography

Chapter 5 • Advanced Analytical Theory and

Methods: Association Rules

5.1 Overview

5.2 Apriori Algorithm

5.3 Evaluation of Candidate Rules

5.4 Applications of Association Rules

5.5 An Example: Transactions in a Grocery Store

5.5.1 The Groceries Dataset

5.5.2 Frequent Itemset Generation

5.5.3 Rule Generation and Visualization

5.6 Validation and Testing

5.7 Diagnostics

Summary

Exercises

Bibliography

Chapter 6 • Advanced Analytical Theory and

Methods: Regression

6.1 Linear Regression

6.1.1 Use Cases

6.1.2 Model Description

6.1.3 Diagnostics

6.2 Logistic Regression

6.2.1 Use Cases

6.2.2 Model Description

6.2.3 Diagnostics

6.3 Reasons to Choose and Cautions

6.4 Additional Regression Models

Summary

Exercises

Chapter 7 • Advanced Analytical Theory and

Methods: Classification

7.1 Decision Trees

7.1.1 Overview of a Decision Tree

7.1.2 The General Algorithm

7.1.3 Decision Tree Algorithms

7.1.4 Evaluating a Decision Tree

7.1.5 Decision Trees in R

7.2 Naïve Bayes

7.2.1 Bayes' Theorem

7.2.2 Naïve Bayes Classifier

7.2.3 Smoothing

7.2.4 Diagnostics

7.2.5 Naïve Bayes in R

7.3 Diagnostics of Classifiers

7.4 Additional Classification Methods

Summary

Exercises

Bibliography

Chapter 8 • Advanced Analytical Theory and

Methods: Time Series Analysis

8.1 Overview of Time Series Analysis

8.1.1 Box-Jenkins Methodology

8.2 ARIMA Model

8.2.1 Autocorrelation Function (ACF)

8.2.2 Autoregressive Models

8.2.3 Moving Average Models

8.2.4 ARMA and ARIMA Models

8.2.5 Building and Evaluating an ARIMA Model

8.2.6 Reasons to Choose and Cautions

8.3 Additional Methods

Summary

Exercises

Chapter 9 • Advanced Analytical Theory and

Methods: Text Analysis

9.1 Text Analysis Steps

9.2 A Text Analysis Example

9.3 Collecting Raw Text

9.4 Representing Text

9.5 Term Frequency—Inverse Document Frequency

(TFIDF)

9.6 Categorizing Documents by Topics

9.7 Determining Sentiments

9.8 Gaining Insights

Summary

Exercises

Bibliography

Chapter 10 • Advanced Analytics—Technology

and Tools: MapReduce and Hadoop

10.1 Analytics for Unstructured Data

10.1.1 Use Cases

10.1.2 MapReduce

10.1.3 Apache Hadoop

10.2 The Hadoop Ecosystem

10.2.1 Pig

10.2.2 Hive

10.2.3 HBase

10.2.4 Mahout

10.3 NoSQL

Summary

Exercises

Bibliography

Chapter 11 • Advanced Analytics—Technology

and Tools: In-Database Analytics

11.1 SQL Essentials

11.1.1 Joins

11.1.2 Set Operations

11.1.3 Grouping Extensions

11.2 In-Database Text Analysis

11.3 Advanced SQL

11.3.1 Window Functions

11.3.2 User-Defined Functions and Aggregates

11.3.3 Ordered Aggregates

11.3.4 MADlib

Summary

Exercises

Bibliography

Chapter 12 • The Endgame, or Putting It All

Together

12.1 Communicating and Operationalizing an

Analytics Project

12.2 Creating the Final Deliverables

12.2.1 Developing Core Material for Multiple

Audiences

12.2.2 Project Goals

12.2.3 Main Findings

12.2.4 Approach

12.2.5 Model Description

12.2.6 Key Points Supported with Data

12.2.7 Model Details

12.2.8 Recommendations

12.2.9 Additional Tips on Final Presentation

12.2.10 Providing Technical Specifications and

Code

12.3 Data Visualization Basics

12.3.1 Key Points Supported with Data

12.3.2 Evolution of a Graph

12.3.3 Common Representation Methods

12.3.4 How to Clean Up a Graphic

12.3.5 Additional Considerations

Summary

Exercises

References and Further Reading

Bibliography

Index

Foreword

Technological advances and the associated changes in

practical daily life have produced a rapidly expanding

“parallel universe” of new content, new data, and new

information sources all around us. Regardless of how

one defines it, the phenomenon of Big Data is ever

more present, ever more pervasive, and ever more

important. There is enormous value potential in Big

Data: innovative insights, improved understanding of

problems, and countless opportunities to predict—and

even to shape—the future. Data Science is the

principal means to discover and tap that potential.

Data Science provides ways to deal with and benefit

from Big Data: to see patterns, to discover

relationships, and to make sense of stunningly varied

images and information.

Not everyone has studied statistical analysis at a

deep level. People with advanced degrees in applied

mathematics are not a commodity. Relatively few

organizations have committed resources to large

collections of data gathered primarily for the purpose

of exploratory analysis. And yet, while applying the

practices of Data Science to Big Data is a valuable

differentiating strategy at present, it will be a standard

core competency in the not so distant future.

How does an organization operationalize quickly to

take advantage of this trend? We've created this book

for that exact purpose.

EMC Education Services has been listening to the

industry and organizations, observing the multi-

faceted transformation of the technology landscape,

and doing direct research in order to create curriculum

and content to help individuals and organizations

transform themselves. For the domain of Data Science

and Big Data Analytics, our educational strategy

balances three things: people—especially in the

context of data science teams, processes—such as the

analytic lifecycle approach presented in this book, and

tools and technologies—in this case with the emphasis

on proven analytic tools.

So let us help you capitalize on this new “parallel

universe” that surrounds us. We invite you to learn

about Data Science and Big Data Analytics through

this book and hope it significantly accelerates your

efforts in the transformational process.

Introduction

Big Data is creating significant new opportunities for

organizations to derive new value and create

competitive advantage from their most valuable asset:

information. For businesses, Big Data helps drive

efficiency, quality, and personalized products and

services, producing improved levels of customer

satisfaction and profit. For scientific efforts, Big Data

analytics enable new avenues of investigation with

potentially richer results and deeper insights than

previously available. In many cases, Big Data analytics

integrate structured and unstructured data with real-

time feeds and queries, opening new paths to

innovation and insight.

This book provides a practitioner's approach to some

of the key techniques and tools used in Big Data

analytics. Knowledge of these methods will help

people become active contributors to Big Data

analytics projects. The book's content is designed to

assist multiple stakeholders: business and data

analysts looking to add Big Data analytics skills to their

portfolio; database professionals and managers of

business intelligence, analytics, or Big Data groups

looking to enrich their analytic skills; and college

graduates investigating data science as a career field.

The content is structured in twelve chapters. The

first chapter introduces the reader to the domain of Big

Data, the drivers for advanced analytics, and the role

of the data scientist. The second chapter presents an

analytic project lifecycle designed for the particular

characteristics and challenges of hypothesis-driven

analysis with Big Data.

Chapter 3 examines fundamental statistical

techniques in the context of the open source R analytic

software environment. This chapter also highlights the

importance of exploratory data analysis via

visualizations and reviews the key notions of

hypothesis development and testing.

Chapters 4 through 9 discuss a range of advanced

analytical methods, including clustering, classification,

regression analysis, time series and text analysis.

Chapters 10 and 11 focus on specific technologies

and tools that support advanced analytics with Big

Data. In particular, the MapReduce paradigm and its

instantiation in the Hadoop ecosystem, as well as

advanced topics in SQL and in-database text analytics

form the focus of these chapters.

Chapter 12 provides guidance on operationalizing

Big Data analytics projects. This chapter focuses on

creating the final deliverables, converting an analytics

project to an ongoing asset of an organization's

operation, and creating clear, useful visual outputs

based on the data.

EMC Academic Alliance

University and college faculties are invited to join the

Academic Alliance program to access unique “open”

curriculum-based education on the following topics:

Data Science and Big Data Analytics

Information Storage and Management

Cloud Infrastructure and Services

Backup Recovery Systems and Architecture

The program provides faculty with course resources

to prepare students for opportunities that exist in

today's evolving IT industry at no cost. For more

information, visit http://education.EMC.com/academicalliance.

EMC Proven Professional

Certification

EMC Proven Professional is a leading education and

certification program in the IT industry, providing

comprehensive coverage of information storage

http://education.emc.com/academicalliance

technologies, virtualization, cloud computing, data

science/Big Data analytics, and more.

Being proven means investing in yourself and

formally validating your expertise.

This book prepares you for Data Science Associate

(EMCDSA) certification. Visit http://education.EMC.com for

details.

http://education.emc.com/

Big Data overviewState of the practice in analytics

Business Intelligence versus Data Science

Key roles for the new Big Data ecosystemThe Data Scientist

Examples of Big Data analytics

1

Introduction to Big

Data

Analytics

Key Concepts

Much has

bee

n

written about Big Data and

the need for advanced analytics within industry,

academia, and government. Availability of new data

sources and the rise of more complex analytical

opportunities have created a need to rethink existing

data architectures to enable analytics that take

advantage of Big Data. In addition, significant debate

exists about what Big Data is and what kinds of skills

are required to make best use of it. This chapter

explains several key concepts to clarify what is meant

by Big Data, why advanced analytics are needed, how

Data Science differs from Business Intelligence (BI),

and what new roles are needed for the new Big Data

ecosystem.

1.1 Big Data Overview

Data is created constantly, and at an ever-increasing

rate. Mobile phones, social media, imaging

technologies to determine a medical diagnosis—all

these and more create new data, and that must be

stored somewhere for some purpose. Devices and

sensors automatically generate diagnostic information

that needs to be stored and processed in real time.

Merely keeping up with this huge influx of data is

difficult, but substantially more challenging is

analyzing vast amounts of it, especially when it does

not conform to traditional notions of data structure, to

identify meaningful patterns and extract useful

information. These challenges of the data deluge

present the opportunity to transform business,

government, science, and everyday life.

Several industries have led the way in developing

their ability to gather and exploit data:

Credit card companies monitor every purchase
their customers make and can identify fraudulent
purchases with a high degree of accuracy using

rules derived by processing billions of
transactions.

Mobile phone companies analyze subscribers'
calling patterns to determine, for example,
whether a caller's frequent contacts are on a rival
network. If that rival network is offering an
attractive promotion that might cause the
subscriber to defect, the mobile phone company
can proactively offer the subscriber an incentive to
remain in her contract.

For companies such as LinkedIn and Facebook,
data itself is their primary product. The valuations
of these companies are heavily derived from the
data they gather and host, which contains more
and more intrinsic value as the data grows.

Three attributes stand out as defining Big Data

characteristics:

Huge volume of data: Rather than thousands or
millions of rows, Big Data can be billions of rows
and millions of columns.

Complexity of data types and structures: Big
Data reflects the variety of new data sources,
formats, and structures, including digital traces
being left on the web and other digital repositories
for subsequent analysis.

Speed of new data creation and growth: Big
Data can describe high velocity data, with rapid
data ingestion and near real time analysis.

Although the volume of Big Data tends to attract the

most attention, generally the variety and velocity of

the data provide a more apt definition of Big Data. (Big

Data is sometimes described as having 3 Vs: volume,

variety, and velocity.) Due to its size or structure, Big

Data cannot be efficiently analyzed using only

traditional databases or methods. Big Data problems

require new tools and technologies to store, manage,

and realize the business benefit. These new tools and

technologies enable creation, manipulation, and

management of large datasets and the storage

environments that house them. Another definition of

Big Data comes from the McKinsey Global report from

2011:

Big Data is data whose scale, distribution, diversity, and/or

timeliness require the use of new technical architectures

and analytics to enable insights that unlock new sources of

business value.

McKinsey & Co.; Big Data: The Next Frontier for Innovation,

Competition, and Productivity [1]

McKinsey's definition of Big Data implies that

organizations will need new data architectures and

analytic sandboxes, new tools, new analytical

methods, and an integration of multiple skills into the

new role of the data scientist, which will be discussed

in Section 1.3. Figure 1-1 highlights several sources of

the Big Data deluge.

FIGURE 1-1 What's driving the data deluge

The rate of data creation is accelerating, driven by

many of the items in Figure 1-1.

Social media and genetic sequencing are among the

fastest-growing sources of Big Data and examples of

untraditional sources of data being used for analysis.

For example, in 2012 Facebook users posted 700

status updates per second worldwide, which can be

leveraged to deduce latent interests or political views

of users and show relevant ads. For instance, an

update in which a woman changes her relationship

status from “single” to “engaged” would trigger ads on

bridal dresses, wedding planning, or name-changing

services.

Facebook can also construct social graphs to analyze

which users are connected to each other as an

interconnected network. In March 2013, Facebook

released a new feature called “Graph Search,”

enabling users and developers to search social graphs

for people with similar interests, hobbies, and shared

locations.

Another example comes from genomics. Genetic

sequencing and human genome mapping provide a

detailed understanding of genetic makeup and lineage.

The health care industry is looking toward these

advances to help predict which illnesses a person is

likely to get in his lifetime and take steps to avoid

these maladies or reduce their impact through the use

of personalized medicine and treatment. Such tests

also highlight typical responses to different

medications and pharmaceutical drugs, heightening

risk awareness of specific drug treatments.

While data has grown, the cost to perform this work

has fallen dramatically. The cost to sequence one

human genome has fallen from $100 million in 2001 to

$10,000 in 2011, and the cost continues to drop. Now,

websites such as 23andme (Figure 1-2) offer

genotyping for less than $100. Although genotyping

analyzes only a fraction of a genome and does not

provide as much granularity as genetic sequencing, it

does point to the fact that data and complex analysis

is becoming more prevalent and less expensive to

deploy.

FIGURE 1-2 Examples of what can be learned through

genotyping, from 23andme.com

As illustrated by the examples of social media and

genetic sequencing, individuals and organizations both

derive benefits from analysis of ever-larger and more

http://23andme.com/

complex datasets that require increasingly powerful

analytical capabilities.

1.1.1 DATA STRUCTURES

Big data can come in multiple forms, including

structured and non-structured data such as financial

data, text files, multimedia files, and genetic

mappings. Contrary to much of the traditional data

analysis performed by organizations, most of the Big

Data is unstructured or semi-structured in nature,

which requires different techniques and tools to

process and analyze. [2] Distributed computing

environments and massively parallel processing (MPP)

architectures that enable parallelized data ingest and

analysis are the preferred approach to process such

complex data.

With this in mind, this section takes a closer look at

data structures.

Figure 1-3 shows four types of data structures, with

80–90% of future data growth coming from non-

structured data types. [2] Though different, the four

are commonly mixed. For example, a classic Relational

Database Management System (RDBMS) may store

call logs for a software support call center. The RDBMS

may store characteristics of the support calls as typical

structured data, with attributes such as time stamps,

machine type, problem type, and operating system. In

addition, the system will likely have unstructured,

quasi- or semi-structured data, such as free-form call

log information taken from an e-mail ticket of the

problem, customer chat history, or transcript of a

phone call describing the technical problem and the

solution or audio file of the phone call conversation.

Many insights could be extracted from the

unstructured, quasi- or semi-structured data in the call

center data.

FIGURE 1-3 Big Data Growth is increasingly

unstructured

Although analyzing structured data tends to be the

most familiar technique, a different technique is

required to meet the challenges to analyze semi-

structured data (shown as XML), quasi-structured

(shown as a clickstream), and unstructured data.

Here are examples of how each of the four main

types of data structures may look.

Structured data: Data containing a defined data
type, format, and structure (that is, transaction
data, online analytical processing [OLAP] data
cubes, traditional RDBMS, CSV files, and even
simple spreadsheets). See Figure 1-4.

FIGURE 1-4 Example of structured data

Semi-structured data: Textual data files with a
discernible pattern that enables parsing (such as
Extensible Markup Language [XML] data files that
are self-describing and defined by an XML
schema). See Figure 1-5.

Quasi-structured data: Textual data with erratic
data formats that can be formatted with effort,
tools, and time (for instance, web clickstream data
that may contain inconsistencies in data values
and formats). See Figure 1-6.

Unstructured data: Data that has no inherent
structure, which may include text documents,
PDFs, images, and video. See Figure 1-7.

Quasi-structured data is a common phenomenon

that bears closer scrutiny. Consider the following

example. A user attends the EMC World conference

and subsequently runs a Google search online to find

information related to EMC and Data Science. This

would produce a URL such as https://www.google.com/#q=EMC+

data+science and a list of results, such as in the first

graphic of Figure 1-5.

https://www.google.com/#q=EMC+data+science

FIGURE 1-5 Example of semi-structured data

After doing this search, the user may choose the

second link, to read more about the headline “Data

Scientist—EMC Education, Training, and Certification.”

This brings the user to an emc.com site focused on this

topic and a new URL,

https://education.emc.com/guest/campaign/data_science.aspx, that

http://emc.com/
https://education.emc.com/guest/campaign/data_science

displays the page shown as (2) in Figure 1-6. Arriving

at this site, the user may decide to click to learn more

about the process of becoming certified in data

science. The user chooses a link toward the top of the

page on Certifications, bringing the user to a new URL:

https://education.emc.com/guest/certification/framework/stf/data_science.aspx

, which is (3) in Figure 1-6.

Visiting these three websites adds three URLs to the

log files monitoring the user's computer or network

use. These three URLs are:

https://www.google.com/#q=EMC+data+science

https://education.emc.com/guest/campaign/data_science.aspx

https://education.emc.com/guest/certification/framework/stf/data_science.aspx

https://education.emc.com/guest/certification/framework/stf/data_science.aspx
https://www.google.com/#q=EMC+data+science
https://education.emc.com/guest/campaign/data_science.aspx
https://education.emc.com/guest/certification/framework/stf/data_science.aspx

FIGURE 1-6 Example of EMC Data Science search

results

FIGURE 1-7 Example of unstructured data: video about

Antarctica expedition [3]

This set of three URLs reflects the websites and

actions taken to find Data Science information related

to EMC. Together, this comprises a clickstream that

can be parsed and mined by data scientists to discover

usage patterns and uncover relationships among clicks

and areas of interest on a website or group of sites.

The four data types described in this chapter are

sometimes generalized into two groups: structured and

unstructured data. Big Data describes new kinds of

data with which most organizations may not be used

to working. With this in mind, the next section

discusses common technology architectures from the

standpoint of someone wanting to analyze Big Data.

1.1.2 ANALYST

PERSPECTIVE ON DATA

REPOSITORIES

The introduction of spreadsheets enabled business

users to create simple logic on data structured in rows

and columns and create their own analyses of business

problems. Database administrator training is not

required to create spreadsheets: They can be set up to

do many things quickly and independently of

information technology (IT) groups. Spreadsheets are

easy to share, and end users have control over the

logic involved. However, their proliferation can result in

“many versions of the truth.” In other words, it can be

challenging to determine if a particular user has the

most relevant version of a spreadsheet, with the most

current data and logic in it. Moreover, if a laptop is lost

or a file becomes corrupted, the data and logic within

the spreadsheet could be lost. This is an ongoing

challenge because spreadsheet programs such as

Microsoft Excel still run on many computers worldwide.

With the proliferation of data islands (or spreadmarts),

the need to centralize the data is more pressing than

ever.

As data needs grew, so did more scalable data

warehousing solutions. These technologies enabled

data to be managed centrally, providing benefits of

security, failover, and a single repository where users

could rely on getting an “official” source of data for

financial reporting or other mission-critical tasks. This

structure also enabled the creation of OLAP cubes and

BI analytical tools, which provided quick access to a

set of dimensions within an RDBMS. More advanced

features enabled performance of in-depth analytical

techniques such as regressions and neural networks.

Enterprise Data Warehouses (EDWs) are critical for

reporting and BI tasks and solve many of the problems

that proliferating spreadsheets introduce, such as

which of multiple versions of a spreadsheet is correct.

EDWs—and a good BI strategy—provide direct data

feeds from sources that are centrally managed, backed

up, and secured.

Despite the benefits of EDWs and BI, these systems

tend to restrict the flexibility needed to perform robust

or exploratory data analysis. With the EDW model,

data is managed and controlled by IT groups and

database administrators (DBAs), and data analysts

must depend on IT for access and changes to the data

schemas. This imposes longer lead times for analysts

to get data; most of the time is spent waiting for

approvals rather than starting meaningful work.

Additionally, many times the EDW rules restrict

analysts from building datasets. Consequently, it is

common for additional systems to emerge containing

critical data for constructing analytic datasets,

managed locally by power users. IT groups generally

dislike existence of data sources outside of their

control because, unlike an EDW, these datasets are not

managed, secured, or backed up. From an analyst

perspective, EDW and BI solve problems related to

data accuracy and availability. However, EDW and BI

introduce new problems related to flexibility and

agility, which were less pronounced when dealing with

spreadsheets.

A solution to this problem is the analytic sandbox,

which attempts to resolve the conflict for analysts and

data scientists with EDW and more formally managed

corporate data. In this model, the IT group may still

manage the analytic sandboxes, but they will be

purposefully designed to enable robust analytics, while

being centrally managed and secured. These

sandboxes, often referred to as workspaces, are

designed to enable teams to explore many datasets in

a controlled fashion and are not typically used for

enterprise-level financial reporting and sales

dashboards.

Many times, analytic sandboxes enable high-

performance computing using in-database processing

—the analytics occur within the database itself. The

idea is that performance of the analysis will be better if

the analytics are run in the database itself, rather than

bringing the data to an analytical tool that resides

somewhere else. In-database analytics, discussed

further in Chapter 11, “Advanced Analytics—

Technology and Tools: In-Database Analytics,” creates

relationships to multiple data sources within an

organization and saves time spent creating these data

feeds on an individual basis. In-database processing

for deep analytics enables faster turnaround time for

developing and executing new analytic models, while

reducing, though not eliminating, the cost associated

with data stored in local, “shadow” file systems. In

addition, rather than the typical structured data in the

EDW, analytic sandboxes can house a greater variety

of data, such as raw data, textual data, and other

kinds of unstructured data, without interfering with

critical production databases. Table 1-1 summarizes

the characteristics of the data repositories mentioned

in this section.

TABLE 1-1 Types of Data Repositories, from an Analyst

Perspective

Data

Repository

Characteristic

s

Spreadsheets
and data
marts

(“spreadmart

s”)

Spreadsheets and low-volume databases for
recordkeeping

Analyst depends on data extracts.

Data
Warehouses

Centralized data containers in a purpose-built space

Supports BI and reporting, but restricts robust

analyses

Analyst dependent on IT and DBAs for data access

and schema changes

Analysts must spend significant time to get

aggregated and disaggregated data extracts from

multiple sources.

Analytic
Sandbox
(workspaces)

Data assets gathered from multiple sources and
technologies for analysis

Enables flexible, high-performance analysis in a

nonproduction environment; can leverage in-

database processing

Reduces costs and risks associated with data

replication into “shadow” file systems

“Analyst owned” rather than “DBA owned”

There are several things to consider with Big Data

Analytics projects to ensure the approach fits with the

desired goals. Due to the characteristics of Big Data,

these projects lend themselves to decision support for

high-value, strategic decision making with high

processing complexity. The analytic techniques used in

this context need to be iterative and flexible, due to

the high volume of data and its complexity. Performing

rapid and complex analysis requires high throughput

network connections and a consideration for the

acceptable amount of latency. For instance, developing

a real-time product recommender for a website

imposes greater system demands than developing a

near-real-time recommender, which may still provide

acceptable performance, have slightly greater latency,

and may be cheaper to deploy. These considerations

require a different approach to thinking about analytics

challenges, which will be explored further in the next

section.

1.2 State of the Practice

in Analytics

Current business problems provide many opportunities

for organizations to become more analytical and data

driven, as shown in Table 1-2.

TABLE 1-2 Business Drivers for Advanced Analytics

Business

Driver

Example

s

Optimize business
operations

Sales, pricing, profitability, efficiency

Identify business risk Customer churn, fraud, default

Predict new business
opportunities

Upsell, cross-sell, best new customer
prospects

Comply with laws or
regulatory requirements

Anti-Money Laundering, Fair Lending,
Basel II-III, Sarbanes-Oxley (SOX)

Table 1-2 outlines four categories of common

business problems that organizations contend with

where they have an opportunity to leverage advanced

analytics to create competitive advantage. Rather than

only performing standard reporting on these areas,

organizations can apply advanced analytical

techniques to optimize processes and derive more

value from these common tasks. The first three

examples do not represent new problems.

Organizations have been trying to reduce customer

churn, increase sales, and cross-sell customers for

many years. What is new is the opportunity to fuse

advanced analytical techniques with Big Data to

produce more impactful analyses for these traditional

problems. The last example portrays emerging

regulatory requirements. Many compliance and

regulatory laws have been in existence for decades,

but additional requirements are added every year,

which represent additional complexity and data

requirements for organizations. Laws related to anti-

money laundering (AML) and fraud prevention require

advanced analytical techniques to comply with and

manage properly.

1.2.1 BI VERSUS DATA

SCIENCE

The four business drivers shown in Table 1-2 require a

variety of analytical techniques to address them

properly. Although much is written generally about

analytics, it is important to distinguish between BI and

Data Science. As shown in Figure 1-8, there are several

ways to compare these groups of analytical

techniques.

One way to evaluate the type of analysis being

performed is to examine the time horizon and the kind

of analytical approaches being used. BI tends to

provide reports, dashboards, and queries on business

questions for the current period or in the past. BI

systems make it easy to answer questions related to

quarter-to-date revenue, progress toward quarterly

targets, and understand how much of a given product

was sold in a prior quarter or year. These questions

tend to be closed-ended and explain current or past

behavior, typically by aggregating historical data and

grouping it in some way. BI provides hindsight and

some insight and generally answers questions related

to “when” and “where” events occurred.

By comparison, Data Science tends to use

disaggregated data in a more forward-looking,

exploratory way, focusing on analyzing the present

and enabling informed decisions about the future.

Rather than aggregating historical data to look at how

many of a given product sold in the previous quarter, a

team may employ Data Science techniques such as

time series analysis, further discussed in Chapter 8,

“Advanced Analytical Theory and Methods: Time Series

Analysis,” to forecast future product sales and revenue

more accurately than extending a simple trend line. In

addition, Data Science tends to be more exploratory in

nature and may use scenario optimization to deal with

more open-ended questions. This approach provides

insight into current activity and foresight into future

events, while generally focusing on questions related

to “how” and “why” events occur.

Where BI problems tend to require highly structured

data organized in rows and columns for accurate

reporting, Data Science projects tend to use many

types of data sources, including large or

unconventional datasets. Depending on an

organization's goals, it may choose to embark on a BI

project if it is doing reporting, creating dashboards, or

performing simple visualizations, or it may choose

Data Science projects if it needs to do a more

sophisticated analysis with disaggregated or varied

datasets.

FIGURE 1-8 Comparing BI with Data Science

1.2.2 CURRENT ANALYTICAL

ARCHITECTURE

As described earlier, Data Science projects need

workspaces that are purpose-built for experimenting

with data, with flexible and agile data architectures.

Most organizations still have data warehouses that

provide excellent support for traditional reporting and

simple data analysis activities but unfortunately have

a more difficult time supporting more robust analyses.

This section examines a typical analytical data

architecture that may exist within an organization.

Figure 1-9 shows a typical data architecture and

several of the challenges it presents to data scientists

and others trying to do advanced analytics. This

section examines the data flow to the Data Scientist

and how this individual fits into the process of getting

data to analyze on projects.

FIGURE 1-9 Typical analytic architecture

1. For data sources to be loaded into the data

warehouse, data needs to be well understood,

structured, and normalized with the appropriate

data type definitions. Although this kind of

centralization enables security, backup, and

failover of highly critical data, it also means that

data typically must go through significant

preprocessing and checkpoints before it can

enter this sort of controlled environment, which

does not lend itself to data exploration and

iterative analytics.

2. As a result of this level of control on the EDW,

additional local systems may emerge in the form

of departmental warehouses and local data

marts that business users create to

accommodate their need for flexible analysis.

These local data marts may not have the same

constraints for security and structure as the main

EDW and allow users to do some level of more in-

depth analysis. However, these one-off systems

reside in isolation, often are not synchronized or

integrated with other data stores, and may not

be backed up.

3. Once in the data warehouse, data is read by

additional applications across the enterprise for

BI and reporting purposes. These are high-

priority operational processes getting critical

data feeds from the data warehouses and

repositories.

4. At the end of this workflow, analysts get data

provisioned for their downstream analytics.

Because users generally are not allowed to run

custom or intensive analytics on production

databases, analysts create data extracts from

the EDW to analyze data offline in R or other

local analytical tools. Many times these tools are

limited to in-memory analytics on desktops

analyzing samples of data, rather than the entire

population of a dataset. Because these analyses

are based on data extracts, they reside in a

separate location, and the results of the analysis

—and any insights on the quality of the data or

anomalies—rarely are fed back into the main

data repository.

Because new data sources slowly accumulate in the

EDW due to the rigorous validation and data

structuring process, data is slow to move into the

EDW, and the data schema is slow to change.

Departmental data warehouses may have been

originally designed for a specific purpose and set of

business needs, but over time evolved to house more

and more data, some of which may be forced into

existing schemas to enable BI and the creation of OLAP

cubes for analysis and reporting. Although the EDW

achieves the objective of reporting and sometimes the

creation of dashboards, EDWs generally limit the

ability of analysts to iterate on the data in a separate

nonproduction environment where they can conduct

in-depth analytics or perform analysis on unstructured

data.

The typical data architectures just described are

designed for storing and processing mission-critical

data, supporting enterprise applications, and enabling

corporate reporting activities. Although reports and

dashboards are still important for organizations, most

traditional data architectures inhibit data exploration

and more sophisticated analysis. Moreover, traditional

data architectures have several additional implications

for data scientists.

High-value data is hard to reach and leverage, and
predictive analytics and data mining activities are
last in line for data. Because the EDWs are
designed for central data management and
reporting, those wanting data for analysis are
generally prioritized after operational processes.

Data moves in batches from EDW to local
analytical tools. This workflow means that data
scientists are limited to performing in-memory
analytics (such as with R, SAS, SPSS, or Excel),
which will restrict the size of the datasets they can
use. As such, analysis may be subject to
constraints of sampling, which can skew model
accuracy.

Data Science projects will remain isolated and ad
hoc, rather than centrally managed. The
implication of this isolation is that the organization

can never harness the power of advanced analytics
in a scalable way, and Data Science projects will
exist as nonstandard initiatives, which are
frequently not aligned with corporate business
goals or strategy.

All these symptoms of the traditional data

architecture result in a slow “time-to-insight” and

lower business impact than could be achieved if the

data were more readily accessible and supported by

an environment that promoted advanced analytics. As

stated earlier, one solution to this problem is to

introduce analytic sandboxes to enable data scientists

to perform advanced analytics in a controlled and

sanctioned way. Meanwhile, the current Data

Warehousing solutions continue offering reporting and

BI services to support management and mission-

critical operations.

1.2.3 DRIVERS OF BIG DATA

To better understand the market drivers related to Big

Data, it is helpful to first understand some past history

of data stores and the kinds of repositories and tools to

manage these data stores.

As shown in Figure 1-10, in the 1990s the volume of

information was often measured in terabytes. Most

organizations analyzed structured data in rows and

columns and used relational databases and data

warehouses to manage large stores of enterprise

information. The following decade saw a proliferation

of different kinds of data sources—mainly productivity

and publishing tools such as content management

repositories and networked attached storage systems

—to manage this kind of information, and the data

began to increase in size and started to be measured

at petabyte scales. In the 2010s, the information that

organizations try to manage has broadened to include

many other kinds of data. In this era, everyone and

everything is leaving a digital footprint. Figure 1-10

shows a summary perspective on sources of Big Data

generated by new applications and the scale and

growth rate of the data. These applications, which

generate data volumes that can be measured in

exabyte scale, provide opportunities for new analytics

and driving new value for organizations. The data now

comes from multiple sources, such as these:

Medical information, such as genomic sequencing
and diagnostic imaging

Photos and video footage uploaded to the World
Wide Web

Video surveillance, such as the thousands of video
cameras spread across a city

Mobile devices, which provide geospatial location
data of the users, as well as metadata about text
messages, phone calls, and application usage on
smart phones

Smart devices, which provide sensor-based
collection of information from smart electric grids,
smart buildings, and many other public and
industry infrastructures

Nontraditional IT devices, including the use of
radio-frequency identification (RFID) readers, GPS
navigation systems, and seismic processing

FIGURE 1-10 Data evolution and the rise of Big Data

sources

The Big Data trend is generating an enormous

amount of information from many new sources. This

data deluge requires advanced analytics and new

market players to take advantage of these

opportunities and new market dynamics, which will be

discussed in the following section.

1.2.4 EMERGING BIG DATA

ECOSYSTEM AND A NEW

APPROACH TO ANALYTICS

Organizations and data collectors are realizing that the

data they can gather from individuals contains intrinsic

value and, as a result, a new economy is emerging. As

this new digital economy continues to evolve, the

market sees the introduction of data vendors and data

cleaners that use crowdsourcing (such as Mechanical

Turk and GalaxyZoo) to test the outcomes of machine

learning techniques. Other vendors offer added value

by repackaging open source tools in a simpler way and

bringing the tools to market. Vendors such as

Cloudera, Hortonworks, and Pivotal have provided this

value-add for the open source framework Hadoop.

As the new ecosystem takes shape, there are four

main groups of players within this interconnected web.

These are shown in Figure 1-11.

Data devices [shown in the (1) section of Figure
1-11] and the “Sensornet” gather data from
multiple locations and continuously generate new
data about this data. For each gigabyte of new
data created, an additional petabyte of data is
created about that data. [2]

For example, consider someone playing an
online video game through a PC, game
console, or smartphone. In this case, the video
game provider captures data about the skill
and levels attained by the player. Intelligent
systems monitor and log how and when the
user plays the game. As a consequence, the
game provider can fine-tune the difficulty of
the game, suggest other related games that
would most likely interest the user, and offer
additional equipment and enhancements for
the character based on the user's age, gender,
and interests. This information may get stored
locally or uploaded to the game provider's
cloud to analyze the gaming habits and
opportunities for upsell and cross-sell, and
identify archetypical profiles of specific kinds
of users.

Smartphones provide another rich source of
data. In addition to messaging and basic phone
usage, they store and transmit data about
Internet usage, SMS usage, and real-time
location. This metadata can be used for
analyzing traffic patterns by scanning the
density of smart-phones in locations to track
the speed of cars or the relative traffic
congestion on busy roads. In this way, GPS
devices in cars can give drivers real-time
updates and offer alternative routes to avoid
traffic delays.

Retail shopping loyalty cards record not just
the amount an individual spends, but the
locations of stores that person visits, the kinds
of products purchased, the stores where goods
are purchased most often, and the
combinations of products purchased together.
Collecting this data provides insights into
shopping and travel habits and the likelihood
of successful advertisement targeting for
certain types of retail promotions.

Data collectors [the blue ovals, identified as (2)
within Figure 1-11] include sample entities that
collect data from the device and users.

Data results from a cable TV provider tracking
the shows a person watches, which TV
channels someone will and will not pay for to
watch on demand, and the prices someone is
willing to pay for premium TV content

Retail stores tracking the path a customer
takes through their store while pushing a
shopping cart with an RFID chip so they can
gauge which products get the most foot traffic
using geospatial data collected from the RFID
chips

Data aggregators (the dark gray ovals in Figure
1-11, marked as (3)) make sense of the data
collected from the various entities from the
“SensorNet” or the “Internet of Things.” These
organizations compile data from the devices and
usage patterns collected by government agencies,
retail stores, and websites. In turn, they can
choose to transform and package the data as
products to sell to list brokers, who may want to
generate marketing lists of people who may be
good targets for specific ad campaigns.

Data users and buyers are denoted by (4) in
Figure 1-11. These groups directly benefit from
the data collected and aggregated by others within
the data value chain.

Retail banks, acting as a data buyer, may want
to know which customers have the highest
likelihood to apply for a second mortgage or a
home equity line of credit. To provide input for
this analysis, retail banks may purchase data
from a data aggregator. This kind of data may
include demographic information about people
living in specific locations; people who appear
to have a specific level of debt, yet still have
solid credit scores (or other characteristics
such as paying bills on time and having
savings accounts) that can be used to infer
credit worthiness; and those who are
searching the web for information about
paying off debts or doing home remodeling
projects. Obtaining data from these various
sources and aggregators will enable a more
targeted marketing campaign, which would
have been more challenging before Big Data
due to the lack of information or high-
performing technologies.

Using technologies such as Hadoop to perform
natural language processing on unstructured,
textual data from social media websites, users
can gauge the reaction to events such as
presidential campaigns. People may, for
example, want to determine public sentiments
toward a candidate by analyzing related blogs

and online comments. Similarly, data users
may want to track and prepare for natural
disasters by identifying which areas a
hurricane affects first and how it moves, based
on which geographic areas are tweeting about
it or discussing it via social media.

FIGURE 1-11 Emerging Big Data ecosystem

As illustrated by this emerging Big Data ecosystem,

the kinds of data and the related market dynamics

vary greatly. These datasets can include sensor data,

text, structured datasets, and social media. With this in

mind, it is worth recalling that these datasets will not

work well within traditional EDWs, which were

architected to streamline reporting and dashboards

and be centrally managed. Instead, Big Data problems

and projects require different approaches to succeed.

Analysts need to partner with IT and DBAs to get the

data they need within an analytic sandbox. A typical

analytical sandbox contains raw data, aggregated

data, and data with multiple kinds of structure. The

sandbox enables robust exploration of data and

requires a savvy user to leverage and take advantage

of data in the sandbox environment.

1.3 Key Roles for the New

Big Data Ecosystem

As explained in the context of the Big Data ecosystem

in Section 1.2.4, new players have emerged to curate,

store, produce, clean, and transact data. In addition,

the need for applying more advanced analytical

techniques to increasingly complex business problems

has driven the emergence of new roles, new

technology platforms, and new analytical methods.

This section explores the new roles that address these

needs, and subsequent chapters explore some of the

analytical methods and technology platforms.

The Big Data ecosystem demands three categories

of roles, as shown in Figure 1-12. These roles were

described in the McKinsey Global study on Big Data,

from May 2011 [1].

FIGURE 1-12 Key roles of the new Big Data ecosystem

The first group—Deep Analytical Talent—is

technically savvy, with strong analytical skills.

Members possess a combination of skills to handle

raw, unstructured data and to apply complex analytical

techniques at massive scales. This group has

advanced training in quantitative disciplines, such as

mathematics, statistics, and machine learning. To do

their jobs, members need access to a robust analytic

sandbox or workspace where they can perform large-

scale analytical data experiments. Examples of current

professions fitting into this group include statisticians,

economists, mathematicians, and the new role of the

Data Scientist.

The McKinsey study forecasts that by the year 2018,

the United States will have a talent gap of 140,000–

190,000 people with deep analytical talent. This does

not represent the number of people needed with deep

analytical talent; rather, this range represents the

difference between what will be available in the

workforce compared with what will be needed. In

addition, these estimates only reflect forecasted talent

shortages in the United States; the number would be

much larger on a global basis.

The second group—Data Savvy Professionals—has

less technical depth but has a basic knowledge of

statistics or machine learning and can define key

questions that can be answered using advanced

analytics. These people tend to have a base

knowledge of working with data, or an appreciation for

some of the work being performed by data scientists

and others with deep analytical talent. Examples of

data savvy professionals include financial analysts,

market research analysts, life scientists, operations

managers, and business and functional managers.

The McKinsey study forecasts the projected U.S.

talent gap for this group to be 1.5 million people by

the year 2018. At a high level, this means for every

Data Scientist profile needed, the gap will be ten times

as large for Data Savvy Professionals. Moving toward

becoming a data savvy professional is a critical step in

broadening the perspective of managers, directors,

and leaders, as this provides an idea of the kinds of

questions that can be solved with data.

The third category of people mentioned in the study

is Technology and Data Enablers. This group represents

people providing technical expertise to support

analytical projects, such as provisioning and

administrating analytical sandboxes, and managing

large-scale data architectures that enable widespread

analytics within companies and other organizations.

This role requires skills related to computer

engineering, programming, and database

administration.

These three groups must work together closely to

solve complex Big Data challenges. Most organizations

are familiar with people in the latter two groups

mentioned, but the first group, Deep Analytical Talent,

tends to be the newest role for most and the least

understood. For simplicity, this discussion focuses on

the emerging role of the Data Scientist. It describes

the kinds of activities that role performs and provides a

more detailed view of the skills needed to fulfill that

role.

There are three recurring sets of activities that data

scientists perform:

Reframe business challenges as analytics

challenges. Specifically, this is a skill to diagnose
business problems, consider the core of a given

problem, and determine which kinds of candidate
analytical methods can be applied to solve it. This
concept is explored further in Chapter 2, “Data
Analytics Lifecycle.”

Design, implement, and deploy statistical

models and data mining techniques on Big

Data. This set of activities is mainly what people
think about when they consider the role of the
Data Scientist: namely, applying complex or
advanced analytical methods to a variety of
business problems using data. Chapter 3 through
Chapter 11 of this book introduces the reader to
many of the most popular analytical techniques
and tools in this area.

Develop insights that lead to actionable

recommendations. It is critical to note that
applying advanced methods to data problems does
not necessarily drive new business value. Instead,
it is important to learn how to draw insights out of
the data and communicate them effectively.
Chapter 12, “The Endgame, or Putting It All
Together,” has a brief overview of techniques for
doing this.

Data scientists are generally thought of as having

five main sets of skills and behavioral characteristics,

as shown in Figure 1-13:

Quantitative skill: such as mathematics or
statistics

Technical aptitude: namely, software
engineering, machine learning, and programming
skills

Skeptical mind-set and critical thinking: It is
important that data scientists can examine their
work critically rather than in a one-sided way.

Curious and creative: Data scientists are
passionate about data and finding creative ways to
solve problems and portray information.

Communicative and collaborative: Data
scientists must be able to articulate the business
value in a clear way and collaboratively work with
other groups, including project sponsors and key
stakeholders.

FIGURE 1-13 Profile of a Data Scientist

Data scientists are generally comfortable using this

blend of skills to acquire, manage, analyze, and

visualize data and tell compelling stories about it. The

next section includes examples of what Data Science

teams have created to drive new value or innovation

with Big Data.

1.4 Examples of Big Data

Analytics

After describing the emerging Big Data ecosystem and

new roles needed to support its growth, this section

provides three examples of Big Data Analytics in

different areas: retail, IT infrastructure, and social

media.

As mentioned earlier, Big Data presents many

opportunities to improve sales and marketing

analytics. An example of this is the U.S. retailer Target.

Charles Duhigg's book The Power of Habit [4]

discusses how Target used Big Data and advanced

analytical methods to drive new revenue. After

analyzing consumer-purchasing behavior, Target's

statisticians determined that the retailer made a great

deal of money from three main life-event situations.

Marriage, when people tend to buy many new
products

Divorce, when people buy new products and
change their spending habits

Pregnancy, when people have many new things to
buy and have an urgency to buy them

Target determined that the most lucrative of these

life-events is the third situation: pregnancy. Using data

collected from shoppers, Target was able to identify

this fact and predict which of its shoppers were

pregnant. In one case, Target knew a female shopper

was pregnant even before her family knew [5]. This

kind of knowledge allowed Target to offer specific

coupons and incentives to their pregnant shoppers. In

fact, Target could not only determine if a shopper was

pregnant, but in which month of pregnancy a shopper

may be. This enabled Target to manage its inventory,

knowing that there would be demand for specific

products and it would likely vary by month over the

coming nine- to ten-month cycles.

Hadoop [6] represents another example of Big Data

innovation on the IT infrastructure. Apache Hadoop is

an open source framework that allows companies to

process vast amounts of information in a highly

parallelized way. Hadoop represents a specific

implementation of the MapReduce paradigm and was

designed by Doug Cutting and Mike Cafarella in 2005

to use data with varying structures. It is an ideal

technical framework for many Big Data projects, which

rely on large or unwieldy datasets with unconventional

data structures. One of the main benefits of Hadoop is

that it employs a distributed file system, meaning it

can use a distributed cluster of servers and commodity

hardware to process large amounts of data. Some of

the most common examples of Hadoop

implementations are in the social media space, where

Hadoop can manage transactions, give textual

updates, and develop social graphs among millions of

users. Twitter and Facebook generate massive

amounts of unstructured data and use Hadoop and its

ecosystem of tools to manage this high volume.

Hadoop and its ecosystem are covered in Chapter 10,

“Advanced Analytics—Technology and Tools:

MapReduce and Hadoop.”

Finally, social media represents a tremendous

opportunity to leverage social and professional

interactions to derive new insights. LinkedIn

exemplifies a company in which data itself is the

product. Early on, LinkedIn founder Reid Hoffman saw

the opportunity to create a social network for working

professionals. As of 2014, LinkedIn has more than 250

million user accounts and has added many additional

features and data-related products, such as recruiting,

job seeker tools, advertising, and InMaps, which show

a social graph of a user's professional network. Figure

1-14 is an example of an InMap visualization that

enables a LinkedIn user to get a broader view of the

interconnectedness of his contacts and understand

how he knows most of them.

FIGURE 1-14 Data visualization of a user's social

network using InMaps

Summary

Big Data comes from myriad sources, including social

media, sensors, the Internet of Things, video

surveillance, and many sources of data that may not

have been considered data even a few years ago. As

businesses struggle to keep up with changing market

requirements, some companies are finding creative

ways to apply Big Data to their growing business

needs and increasingly complex problems. As

organizations evolve their processes and see the

opportunities that Big Data can provide, they try to

move beyond traditional BI activities, such as using

data to populate reports and dashboards, and move

toward Data Science- driven projects that attempt to

answer more open-ended and complex questions.

However, exploiting the opportunities that Big Data

presents requires new data architectures, including

analytic sandboxes, new ways of working, and people

with new skill sets. These drivers are causing

organizations to set up analytic sandboxes and build

Data Science teams. Although some organizations are

fortunate to have data scientists, most are not,

because there is a growing talent gap that makes

finding and hiring data scientists in a timely manner

difficult. Still, organizations such as those in web retail,

health care, genomics, new IT infrastructures, and

social media are beginning to take advantage of Big

Data and apply it in creative and novel ways.

Exercises

1. What are the three characteristics of Big Data, and

what are the main considerations in processing Big

Data?

2. What is an analytic sandbox, and why is it

important?

3. Explain the differences between BI and Data

Science.

4. Describe the challenges of the current analytical

architecture for data scientists.

5. What are the key skill sets and behavioral

characteristics of a data scientist?

Bibliography

[1] C. B. B. D. Manyika, “Big Data: The Next Frontier for
Innovation, Competition, and Productivity,” McKinsey Global
Institute, 2011.

[2] D. R. John Gantz, “The Digital Universe in 2020: Big Data,
Bigger Digital Shadows, and Biggest Growth in the Far East,”
IDC, 2013.

[3] http://www.willisresilience.com/emc-datalab [Online].
[4] C. Duhigg, The Power of Habit: Why We Do What We Do in Life

and Business, New York: Random House, 2012.
[5] K. Hill, “How Target Figured Out a Teen Girl Was Pregnant

Before Her Father Did,” Forbes, February 2012.
[6] http://hadoop.apache.org [Online].

http://www.willisresilience.com/emc-datalab
http://hadoop.apache.org/

DiscoveryData preparationModel planning

Model executionCommunicate resultsOperationalize

2

Data Analytics

Lifecycle

Key Concepts

Data

scienc

e projects differ from most traditional Business

Intelligence projects and many data analysis projects

in that data science projects are more exploratory in

nature. For this reason, it is critical to have a process

to govern them and ensure that the participants are

thorough and rigorous in their approach, yet not so

rigid that the process impedes exploration.

Many problems that appear huge and daunting at

first can be broken down into smaller pieces or

actionable phases that can be more easily addressed.

Having a good process ensures a comprehensive and

repeatable method for conducting analysis. In addition,

it helps focus time and energy early in the process to

get a clear grasp of the business problem to be solved.

A common mistake made in data science projects is

rushing into data collection and analysis, which

precludes spending sufficient time to plan and scope

the amount of work involved, understanding

requirements, or even framing the business problem

properly. Consequently, participants may discover mid-

stream that the project sponsors are actually trying to

achieve an objective that may not match the available

data, or they are attempting to address an interest

that differs from what has been explicitly

communicated. When this happens, the project may

need to revert to the initial phases of the process for a

proper discovery phase, or the project may be

canceled.

Creating and documenting a process helps

demonstrate rigor, which provides additional credibility

to the project when the data science team shares its

findings. A well-defined process also offers a common

framework for others to adopt, so the methods and

analysis can be repeated in the future or as new

members join a team.

2.1 Data Analytics

Lifecycle Overview

The Data Analytics Lifecycle is designed specifically for

Big Data problems and data science projects. The

lifecycle has six phases, and project work can occur in

several phases at once. For most phases in the

lifecycle, the movement can be either forward or

backward. This iterative depiction of the lifecycle is

intended to more closely portray a real project, in

which aspects of the project move forward and may

return to earlier stages as new information is

uncovered and team members learn more about

various stages of the project. This enables participants

to move iteratively through the process and drive

toward operationalizing the project work.

2.1.1 KEY ROLES FOR A

SUCCESSFUL ANALYTICS

PROJECT

In recent years, substantial attention has been placed

on the emerging role of the data scientist. In October

2012, Harvard Business Review featured an article

titled “Data Scientist: The Sexiest Job of the 21st

Century” [1], in which experts DJ Patil and Tom

Davenport described the new role and how to find and

hire data scientists. More and more conferences are

held annually focusing on innovation in the areas of

Data Science and topics dealing with Big Data. Despite

this strong focus on the emerging role of the data

scientist specifically, there are actually seven key roles

that need to be fulfilled for a high-functioning data

science team to execute analytic projects successfully.

Figure 2-1 depicts the various roles and key

stakeholders of an analytics project. Each plays a

critical part in a successful analytics project. Although

seven roles are listed, fewer or more people can

accomplish the work depending on the scope of the

project, the organizational structure, and the skills of

the participants. For example, on a small, versatile

team, these seven roles may be fulfilled by only 3

people, but a very large project may require 20 or

more people. The seven roles follow.

FIGURE 2-1 Key roles for a successful analytics project

Business User: Someone who understands the
domain area and usually benefits from the results.
This person can consult and advise the project
team on the context of the project, the value of the
results, and how the outputs will be
operationalized. Usually a business analyst, line
manager, or deep subject matter expert in the
project domain fulfills this role.

Project Sponsor: Responsible for the genesis of
the project. Provides the impetus and
requirements for the project and defines the core
business problem. Generally provides the funding
and gauges the degree of value from the final
outputs of the working team. This person sets the
priorities for the project and clarifies the desired
outputs.

Project Manager: Ensures that key milestones
and objectives are met on time and at the expected
quality.

Business Intelligence Analyst: Provides
business domain expertise based on a deep
understanding of the data, key performance
indicators (KPIs), key metrics, and business
intelligence from a reporting perspective. Business
Intelligence Analysts generally create dashboards
and reports and have knowledge of the data feeds
and sources.

Database Administrator (DBA): Provisions and
configures the database environment to support
the analytics needs of the working team. These
responsibilities may include providing access to
key databases or tables and ensuring the
appropriate security levels are in place related to
the data repositories.

Data Engineer: Leverages deep technical skills to
assist with tuning SQL queries for data
management and data extraction, and provides
support for data ingestion into the analytic
sandbox, which was discussed in Chapter 1,
“Introduction to Big Data Analytics.” Whereas the
DBA sets up and configures the databases to be
used, the data engineer executes the actual data
extractions and performs substantial data
manipulation to facilitate the analytics. The data
engineer works closely with the data scientist to
help shape data in the right ways for analyses.

Data Scientist: Provides subject matter expertise
for analytical techniques, data modeling, and
applying valid analytical techniques to given
business problems. Ensures overall analytics
objectives are met. Designs and executes
analytical methods and approaches with the data
available to the project.

Although most of these roles are not new, the last

two roles—data engineer and data scientist—have

become popular and in high demand [2] as interest in

Big Data has grown.

2.1.2 BACKGROUND AND

OVERVIEW OF DATA

ANALYTICS LIFECYCLE

The Data Analytics Lifecycle defines analytics process

best practices spanning discovery to project

completion. The lifecycle draws from established

methods in the realm of data analytics and decision

science. This synthesis was developed after gathering

input from data scientists and consulting established

approaches that provided input on pieces of the

process. Several of the processes that were consulted

include these:

Scientific method [3], in use for centuries, still
provides a solid framework for thinking about and
deconstructing problems into their principal parts.
One of the most valuable ideas of the scientific
method relates to forming hypotheses and finding
ways to test ideas.

CRISP-DM [4] provides useful input on ways to
frame analytics problems and is a popular
approach for data mining.

Tom Davenport's DELTA framework [5]: The
DELTA framework offers an approach for data
analytics projects, including the context of the
organization's skills, datasets, and leadership
engagement.

Doug Hubbard's Applied Information

Economics (AIE) approach [6]: AIE provides a
framework for measuring intangibles and provides
guidance on developing decision models,
calibrating expert estimates, and deriving the
expected value of information.

“MAD Skills” by Cohen et al. [7] offers input for
several of the techniques mentioned in Phases 2–4
that focus on model planning, execution, and key
findings.

Figure 2-2 presents an overview of the Data

Analytics Lifecycle that includes six phases. Teams

commonly learn new things in a phase that cause

them to go back and refine the work done in prior

phases based on new insights and information that

have been uncovered. For this reason, Figure 2-2 is

shown as a cycle. The circular arrows convey iterative

movement between phases until the team members

have sufficient information to move to the next phase.

The callouts include sample questions to ask to help

guide whether each of the team members has enough

information and has made enough progress to move to

the next phase of the process. Note that these phases

do not represent formal stage gates; rather, they serve

as criteria to help test whether it makes sense to stay

in the current phase or move to the next.

FIGURE 2-2 Overview of Data Analytics Lifecycle

Here is a brief overview of the main phases of the

Data Analytics Lifecycle:

Phase 1—Discovery: In Phase 1, the team learns
the business domain, including relevant history
such as whether the organization or business unit
has attempted similar projects in the past from
which they can learn. The team assesses the
resources available to support the project in terms
of people, technology, time, and data. Important
activities in this phase include framing the
business problem as an analytics challenge that
can be addressed in subsequent phases and
formulating initial hypotheses (IHs) to test and
begin learning the data.

Phase 2—Data preparation: Phase 2 requires
the presence of an analytic sandbox, in which the
team can work with data and perform analytics for
the duration of the project. The team needs to
execute extract, load, and transform (ELT) or
extract, transform and load (ETL) to get data into
the sandbox. The ELT and ETL are sometimes
abbreviated as ETLT. Data should be transformed
in the ETLT process so the team can work with it
and analyze it. In this phase, the team also needs
to familiarize itself with the data thoroughly and
take steps to condition the data (Section 2.3.4).

Phase 3—Model planning: Phase 3 is model
planning, where the team determines the methods,
techniques, and workflow it intends to follow for
the subsequent model building phase. The team
explores the data to learn about the relationships
between variables and subsequently selects key
variables and the most suitable models.

Phase 4—Model building: In Phase 4, the team
develops datasets for testing, training, and
production purposes. In addition, in this phase the
team builds and executes models based on the
work done in the model planning phase. The team
also considers whether its existing tools will
suffice for running the models, or if it will need a
more robust environment for executing models
and workflows (for example, fast hardware and
parallel processing, if applicable).

Phase 5—Communicate results: In Phase 5, the
team, in collaboration with major stakeholders,
determines if the results of the project are a
success or a failure based on the criteria
developed in Phase 1. The team should identify
key findings, quantify the business value, and
develop a narrative to summarize and convey
findings to stakeholders.

Phase 6—Operationalize: In Phase 6, the team
delivers final reports, briefings, code, and

technical documents. In addition, the team may
run a pilot project to implement the models in a
production environment.

Once team members have run models and produced

findings, it is critical to frame these results in a way

that is tailored to the audience that engaged the team.

Moreover, it is critical to frame the results of the work

in a manner that demonstrates clear value. If the team

performs a technically accurate analysis but fails to

translate the results into a language that resonates

with the audience, people will not see the value, and

much of the time and effort on the project will have

been wasted.

The rest of the chapter is organized as follows.

Sections 2.2–2.7 discuss in detail how each of the six

phases works, and Section 2.8 shows a case study of

incorporating the Data Analytics Lifecycle in a real-

world data science project.

2.2 Phase 1: Discovery

The first phase of the Data Analytics Lifecycle involves

discovery (Figure 2-3). In this phase, the data science

team must learn and investigate the problem, develop

context and understanding, and learn about the data

sources needed and available for the project. In

addition, the team formulates initial hypotheses that

can later be tested with data.

2.2.1 LEARNING THE

BUSINESS DOMAIN

Understanding the domain area of the problem is

essential. In many cases, data scientists will have deep

computational and quantitative knowledge that can be

broadly applied across many disciplines. An example of

this role would be someone with an advanced degree

in applied mathematics or statistics.

These data scientists have deep knowledge of the

methods, techniques, and ways for applying heuristics

to a variety of business and conceptual problems.

Others in this area may have deep knowledge of a

domain area, coupled with quantitative expertise. An

example of this would be someone with a Ph.D. in life

sciences. This person would have deep knowledge of a

field of study, such as oceanography, biology, or

genetics, with some depth of quantitative knowledge.

At this early stage in the process, the team needs to

determine how much business or domain knowledge

the data scientist needs to develop models in Phases 3

and 4. The earlier the team can make this assessment

the better, because the decision helps dictate the

resources needed for the project team and ensures the

team has the right balance of domain knowledge and

technical expertise.

FIGURE 2-3 Discovery phase

2.2.2 RESOURCES

As part of the discovery phase, the team needs to

assess the resources available to support the project.

In this context, resources include technology, tools,

systems, data, and people.

During this scoping, consider the available tools and

technology the team will be using and the types of

systems needed for later phases to operationalize the

models. In addition, try to evaluate the level of

analytical sophistication within the organization and

gaps that may exist related to tools, technology, and

skills. For instance, for the model being developed to

have longevity in an organization, consider what types

of skills and roles will be required that may not exist

today. For the project to have long-term success, what

types of skills and roles will be needed for the

recipients of the model being developed? Does the

requisite level of expertise exist within the

organization today, or will it need to be cultivated?

Answering these questions will influence the

techniques the team selects and the kind of

implementation the team chooses to pursue in

subsequent phases of the Data Analytics Lifecycle.

In addition to the skills and computing resources, it is

advisable to take inventory of the types of data

available to the team for the project. Consider if the

data available is sufficient to support the project's

goals. The team will need to determine whether it

must collect additional data, purchase it from outside

sources, or transform existing data. Often, projects are

started looking only at the data available. When the

data is less than hoped for, the size and scope of the

project is reduced to work within the constraints of the

existing data.

An alternative approach is to consider the long-term

goals of this kind of project, without being constrained

by the current data. The team can then consider what

data is needed to reach the long-term goals and which

pieces of this multistep journey can be achieved today

with the existing data. Considering longer-term goals

along with short-term goals enables teams to pursue

more ambitious projects and treat a project as the first

step of a more strategic initiative, rather than as a

standalone initiative. It is critical to view projects as

part of a longer-term journey, especially if executing

projects in an organization that is new to Data Science

and may not have embarked on the optimum datasets

to support robust analyses up to this point.

Ensure the project team has the right mix of domain

experts, customers, analytic talent, and project

management to be effective. In addition, evaluate how

much time is needed and if the team has the right

breadth and depth of skills.

After taking inventory of the tools, technology, data,

and people, consider if the team has sufficient

resources to succeed on this project, or if additional

resources are needed. Negotiating for resources at the

outset of the project, while scoping the goals,

objectives, and feasibility, is generally more useful

than later in the process and ensures sufficient time to

execute it properly. Project managers and key

stakeholders have better success negotiating for the

right resources at this stage rather than later once the

project is underway.

2.2.3 FRAMING THE

PROBLEM

Framing the problem well is critical to the success of

the project. Framing is the process of stating the

analytics problem to be solved. At this point, it is a

best practice to write down the problem statement and

share it with the key stakeholders. Each team member

may hear slightly different things related to the needs

and the problem and have somewhat different ideas of

possible solutions. For these reasons, it is crucial to

state the analytics problem, as well as why and to

whom it is important. Essentially, the team needs to

clearly articulate the current situation and its main

challenges.

As part of this activity, it is important to identify the

main objectives of the project, identify what needs to

be achieved in business terms, and identify what

needs to be done to meet the needs. Additionally,

consider the objectives and the success criteria for the

project. What is the team attempting to achieve by

doing the project, and what will be considered “good

enough” as an outcome of the project? This is critical

to document and share with the project team and key

stakeholders. It is best practice to share the statement

of goals and success criteria with the team and

confirm alignment with the project sponsor's

expectations.

Perhaps equally important is to establish failure

criteria. Most people doing projects prefer only to think

of the success criteria and what the conditions will look

like when the participants are successful. However,

this is almost taking a best-case scenario approach,

assuming that everything will proceed as planned and

the project team will reach its goals. However, no

matter how well planned, it is almost impossible to

plan for everything that will emerge in a project. The

failure criteria will guide the team in understanding

when it is best to stop trying or settle for the results

that have been gleaned from the data. Many times

people will continue to perform analyses past the point

when any meaningful insights can be drawn from the

data. Establishing criteria for both success and failure

helps the participants avoid unproductive effort and

remain aligned with the project sponsors

2.2.4 IDENTIFYING KEY

STAKEHOLDERS

Another important step is to identify the key

stakeholders and their interests in the project. During

these discussions, the team can identify the success

criteria, key risks, and stakeholders, which should

include anyone who will benefit from the project or will

be significantly impacted by the project. When

interviewing stakeholders, learn about the domain area

and any relevant history from similar analytics

projects. For example, the team may identify the

results each stakeholder wants from the project and

the criteria it will use to judge the success of the

project.

Keep in mind that the analytics project is being

initiated for a reason. It is critical to articulate the pain

points as clearly as possible to address them and be

aware of areas to pursue or avoid as the team gets

further into the analytical process. Depending on the

number of stakeholders and participants, the team

may consider outlining the type of activity and

participation expected from each stakeholder and

participant. This will set clear expectations with the

participants and avoid delays later when, for example,

the team may feel it needs to wait for approval from

someone who views himself as an adviser rather than

an approver of the work product.

2.2.5 INTERVIEWING THE

ANALYTICS SPONSOR

The team should plan to collaborate with the

stakeholders to clarify and frame the analytics

problem. At the outset, project sponsors may have a

predetermined solution that may not necessarily

realize the desired outcome. In these cases, the team

must use its knowledge and expertise to identify the

true underlying problem and appropriate solution.

For instance, suppose in the early phase of a project,

the team is told to create a recommender system for

the business and that the way to do this is by speaking

with three people and integrating the product

recommender into a legacy corporate system.

Although this may be a valid approach, it is important

to test the assumptions and develop a clear

understanding of the problem. The data science team

typically may have a more objective understanding of

the problem set than the stakeholders, who may be

suggesting solutions to a given problem. Therefore, the

team can probe deeper into the context and domain to

clearly define the problem and propose possible paths

from the problem to a desired outcome. In essence,

the data science team can take a more objective

approach, as the stakeholders may have developed

biases over time, based on their experience. Also,

what may have been true in the past may no longer be

a valid working assumption. One possible way to

circumvent this issue is for the project sponsor to focus

on clearly defining the requirements, while the other

members of the data science team focus on the

methods needed to achieve the goals.

When interviewing the main stakeholders, the team

needs to take time to thoroughly interview the project

sponsor, who tends to be the one funding the project

or providing the high-level requirements. This person

understands the problem and usually has an idea of a

potential working solution. It is critical to thoroughly

understand the sponsor's perspective to guide the

team in getting started on the project. Here are some

tips for interviewing project sponsors:

Prepare for the interview; draft questions, and
review with colleagues.

Use open-ended questions; avoid asking leading
questions.

Probe for details and pose follow-up questions.

Avoid filling every silence in the conversation; give
the other person time to think.

Let the sponsors express their ideas and ask
clarifying questions, such as “Why? Is that
correct? Is this idea on target? Is there anything
else?”

Use active listening techniques; repeat back what
was heard to make sure the team heard it
correctly, or reframe what was said.

Try to avoid expressing the team's opinions, which
can introduce bias; instead, focus on listening.

Be mindful of the body language of the
interviewers and stakeholders; use eye contact
where appropriate, and be attentive.

Minimize distractions.

Document what the team heard, and review it with
the sponsors.

Following is a brief list of common questions that are

helpful to ask during the discovery phase when

interviewing the project sponsor. The responses will

begin to shape the scope of the project and give the

team an idea of the goals and objectives of the project.

What business problem is the team trying to solve?

What is the desired outcome of the project?

What data sources are available?

What industry issues may impact the analysis?

What timelines need to be considered?

Who could provide insight into the project?

Who has final decision-making authority on the
project?

How will the focus and scope of the problem
change if the following dimensions change:

Time: Analyzing 1 year or 10 years' worth of
data?

People: Assess impact of changes in resources
on project timeline.

Risk: Conservative to aggressive

Resources: None to unlimited (tools,
technology, systems)

Size and attributes of data: Including
internal and external data sources

2.2.6 DEVELOPING INITIAL

HYPOTHESES

Developing a set of IHs is a key facet of the discovery

phase. This step involves forming ideas that the team

can test with data. Generally, it is best to come up with

a few primary hypotheses to test and then be creative

about developing several more. These IHs form the

basis of the analytical tests the team will use in later

phases and serve as the foundation for the findings in

Phase 5. Hypothesis testing from a statistical

perspective is covered in greater detail in Chapter 3,

“Review of Basic Data Analytic Methods Using R.”

In this way, the team can compare its answers with

the outcome of an experiment or test to generate

additional possible solutions to problems. As a result,

the team will have a much richer set of observations to

choose from and more choices for agreeing upon the

most impactful conclusions from a project.

Another part of this process involves gathering and

assessing hypotheses from stakeholders and domain

experts who may have their own perspective on what

the problem is, what the solution should be, and how

to arrive at a solution. These stakeholders would know

the domain area well and can offer suggestions on

ideas to test as the team formulates hypotheses

during this phase. The team will likely collect many

ideas that may illuminate the operating assumptions of

the stakeholders. These ideas will also give the team

opportunities to expand the project scope into

adjacent spaces where it makes sense or design

experiments in a meaningful way to address the most

important interests of the stakeholders. As part of this

exercise, it can be useful to obtain and explore some

initial data to inform discussions with stakeholders

during the hypothesis-forming stage.

2.2.7 IDENTIFYING

POTENTIAL DATA SOURCES

As part of the discovery phase, identify the kinds of

data the team will need to solve the problem. Consider

the volume, type, and time span of the data needed to

test the hypotheses. Ensure that the team can access

more than simply aggregated data. In most cases, the

team will need the raw data to avoid introducing bias

for the downstream analysis. Recalling the

characteristics of Big Data from Chapter 1, assess the

main characteristics of the data, with regard to its

volume, variety, and velocity of change. A thorough

diagnosis of the data situation will influence the kinds

of tools and techniques to use in Phases 2-4 of the

Data Analytics Lifecycle. In addition, performing data

exploration in this phase will help the team determine

the amount of data needed, such as the amount of

historical data to pull from existing systems and the

data structure. Develop an idea of the scope of the

data needed, and validate that idea with the domain

experts on the project.

The team should perform five main activities during

this step of the discovery phase:

Identify data sources: Make a list of candidate
data sources the team may need to test the initial
hypotheses outlined in this phase. Make an
inventory of the datasets currently available and
those that can be purchased or otherwise acquired
for the tests the team wants to perform.

Capture aggregate data sources: This is for
previewing the data and providing high-level
understanding. It enables the team to gain a quick
overview of the data and perform further
exploration on specific areas. It also points the
team to possible areas of interest within the data.

Review the raw data: Obtain preliminary data
from initial data feeds. Begin understanding the
interdependencies among the data attributes, and
become familiar with the content of the data, its
quality, and its limitations.

Evaluate the data structures and tools

needed: The data type and structure dictate
which tools the team can use to analyze the data.
This evaluation gets the team thinking about
which technologies may be good candidates for
the project and how to start getting access to
these tools.

Scope the sort of data infrastructure needed

for this type of problem: In addition to the tools
needed, the data influences the kind of
infrastructure that's required, such as disk storage
and network capacity.

Unlike many traditional stage-gate processes, in

which the team can advance only when specific

criteria are met, the Data Analytics Lifecycle is

intended to accommodate more ambiguity. This more

closely reflects how data science projects work in real-

life situations. For each phase of the process, it is

recommended to pass certain checkpoints as a way of

gauging whether the team is ready to move to the

next phase of the Data Analytics Lifecycle.

The team can move to the next phase when it has

enough information to draft an analytics plan and

share it for peer review. Although a peer review of the

plan may not actually be required by the project,

creating the plan is a good test of the team's grasp of

the business problem and the team's approach to

addressing it. Creating the analytic plan also requires a

clear understanding of the domain area, the problem

to be solved, and scoping of the data sources to be

used. Developing success criteria early in the project

clarifies the problem definition and helps the team

when it comes time to make choices about the

analytical methods being used in later phases.

2.3 Phase 2: Data

Preparation

The second phase of the Data Analytics Lifecycle

involves data preparation, which includes the steps to

explore, preprocess, and condition data prior to

modeling and analysis. In this phase, the team needs

to create a robust environment in which it can explore

the data that is separate from a production

environment. Usually, this is done by preparing an

analytics sandbox. To get the data into the sandbox,

the team needs to perform ETLT, by a combination of

extracting, transforming, and loading data into the

sandbox. Once the data is in the sandbox, the team

needs to learn about the data and become familiar

with it. Understanding the data in detail is critical to

the success of the project. The team also must decide

how to condition and transform data to get it into a

format to facilitate subsequent analysis. The team may

perform data visualizations to help team members

understand the data, including its trends, outliers, and

relationships among data variables. Each of these

steps of the data preparation phase is discussed

throughout this section.

Data preparation tends to be the most labor-

intensive step in the analytics lifecycle. In fact, it is

common for teams to spend at least 50% of a data

science project's time in this critical phase. If the team

cannot obtain enough data of sufficient quality, it may

be unable to perform the subsequent steps in the

lifecycle process.

Figure 2-4 shows an overview of the Data Analytics

Lifecycle for Phase 2. The data preparation phase is

generally the most iterative and the one that teams

tend to underestimate most often. This is because

most teams and leaders are anxious to begin analyzing

the data, testing hypotheses, and getting answers to

some of the questions posed in Phase 1. Many tend to

jump into Phase 3 or Phase 4 to begin rapidly

developing models and algorithms without spending

the time to prepare the data for modeling.

Consequently, teams come to realize the data they are

working with does not allow them to execute the

models they want, and they end up back in Phase 2

anyway.

FIGURE 2-4 Data preparation phase

2.3.1 PREPARING THE

ANALYTIC SANDBOX

The first subphase of data preparation requires the

team to obtain an analytic sandbox (also commonly

referred to as a workspace), in which the team can

explore the data without interfering with live

production databases. Consider an example in which

the team needs to work with a company's financial

data. The team should access a copy of the financial

data from the analytic sandbox rather than interacting

with the production version of the organization's main

database, because that will be tightly controlled and

needed for financial reporting.

When developing the analytic sandbox, it is a best

practice to collect all kinds of data there, as team

members need access to high volumes and varieties of

data for a Big Data analytics project. This can include

everything from summary-level aggregated data,

structured data, raw data feeds, and unstructured text

data from call logs or web logs, depending on the kind

of analysis the team plans to undertake.

This expansive approach for attracting data of all

kind differs considerably from the approach advocated

by many information technology (IT) organizations.

Many IT groups provide access to only a particular

subsegment of the data for a specific purpose. Often,

the mindset of the IT group is to provide the minimum

amount of data required to allow the team to achieve

its objectives. Conversely, the data science team

wants access to everything. From its perspective, more

data is better, as oftentimes data science projects are

a mixture of purpose-driven analyses and

experimental approaches to test a variety of ideas. In

this context, it can be challenging for a data science

team if it has to request access to each and every

dataset and attribute one at a time. Because of these

differing views on data access and use, it is critical for

the data science team to collaborate with IT, make

clear what it is trying to accomplish, and align goals.

During these discussions, the data science team

needs to give IT a justification to develop an analytics

sandbox, which is separate from the traditional IT-

governed data warehouses within an organization.

Successfully and amicably balancing the needs of both

the data science team and IT requires a positive

working relationship between multiple groups and data

owners. The payoff is great. The analytic sandbox

enables organizations to undertake more ambitious

data science projects and move beyond doing

traditional data analysis and Business Intelligence to

perform more robust and advanced predictive

analytics.

Expect the sandbox to be large. It may contain raw

data, aggregated data, and other data types that are

less commonly used in organizations. Sandbox size can

vary greatly depending on the project. A good rule is to

plan for the sandbox to be at least 5–10 times the size

of the original datasets, partly because copies of the

data may be created that serve as specific tables or

data stores for specific kinds of analysis in the project.

Although the concept of an analytics sandbox is

relatively new, companies are making progress in this

area and are finding ways to offer sandboxes and

workspaces where teams can access datasets and

work in a way that is acceptable to both the data

science teams and the IT groups.

2.3.2 PERFORMING ETLT

As the team looks to begin data transformations, make

sure the analytics sandbox has ample bandwidth and

reliable network connections to the underlying data

sources to enable uninterrupted read and write. In ETL,

users perform extract, transform, load processes to

extract data from a datastore, perform data

transformations, and load the data back into the

datastore. However, the analytic sandbox approach

differs slightly; it advocates extract, load, and then

transform. In this case, the data is extracted in its raw

form and loaded into the datastore, where analysts can

choose to transform the data into a new state or leave

it in its original, raw condition. The reason for this

approach is that there is significant value in preserving

the raw data and including it in the sandbox before

any transformations take place.

For instance, consider an analysis for fraud detection

on credit card usage. Many times, outliers in this data

population can represent higher-risk transactions that

may be indicative of fraudulent credit card activity.

Using ETL, these outliers may be inadvertently filtered

out or transformed and cleaned before being loaded

into the datastore. In this case, the very data that

would be needed to evaluate instances of fraudulent

activity would be inadvertently cleansed, preventing

the kind of analysis that a team would want to do.

Following the ELT approach gives the team access to

clean data to analyze after the data has been loaded

into the database and gives access to the data in its

original form for finding hidden nuances in the data.

This approach is part of the reason that the analytic

sandbox can quickly grow large. The team may want

clean data and aggregated data and may need to keep

a copy of the original data to compare against or look

for hidden patterns that may have existed in the data

before the cleaning stage. This process can be

summarized as ETLT to reflect the fact that a team

may choose to perform ETL in one case and ELT in

another.

Depending on the size and number of the data

sources, the team may need to consider how to

parallelize the movement of the datasets into the

sandbox. For this purpose, moving large amounts of

data is sometimes referred to as Big ETL. The data

movement can be parallelized by technologies such as

Hadoop or MapReduce, which will be explained in

greater detail in Chapter 10, “Advanced Analytics—

Technology and Tools: MapReduce and Hadoop.” At this

point, keep in mind that these technologies can be

used to perform parallel data ingest and introduce a

huge number of files or datasets in parallel in a very

short period of time. Hadoop can be useful for data

loading as well as for data analysis in subsequent

phases.

Prior to moving the data into the analytic sandbox,

determine the transformations that need to be

performed on the data. Part of this phase involves

assessing data quality and structuring the datasets

properly so they can be used for robust analysis in

subsequent phases. In addition, it is important to

consider which data the team will have access to and

which new data attributes will need to be derived in

the data to enable analysis.

As part of the ETLT step, it is advisable to make an

inventory of the data and compare the data currently

available with datasets the team needs. Performing

this sort of gap analysis provides a framework for

understanding which datasets the team can take

advantage of today and where the team needs to

initiate projects for data collection or access to new

datasets currently unavailable. A component of this

subphase involves extracting data from the available

sources and determining data connections for raw

data, online transaction processing (OLTP) databases,

online analytical processing (OLAP) cubes, or other

data feeds.

Application programming interface (API) is an

increasingly popular way to access a data source [8].

Many websites and social network applications now

provide APIs that offer access to data to support a

project or supplement the datasets with which a team

is working. For example, connecting to the Twitter API

can enable a team to download millions of tweets to

perform a project for sentiment analysis on a product,

a company, or an idea. Much of the Twitter data is

publicly available and can augment other datasets

used on the project.

2.3.3 LEARNING ABOUT THE

DATA

A critical aspect of a data science project is to become

familiar with the data itself. Spending time to learn the

nuances of the datasets provides context to

understand what constitutes a reasonable value and

expected output versus what is a surprising finding. In

addition, it is important to catalog the data sources

that the team has access to and identify additional

data sources that the team can leverage but perhaps

does not have access to today. Some of the activities

in this step may overlap with the initial investigation of

the datasets that occur in the discovery phase. Doing

this activity accomplishes several goals.

Clarifies the data that the data science team has
access to at the start of the project

Highlights gaps by identifying datasets within an
organization that the team may find useful but
may not be accessible to the team today. As a
consequence, this activity can trigger a project to
begin building relationships with the data owners
and finding ways to share data in appropriate
ways. In addition, this activity may provide an
impetus to begin collecting new data that benefits
the organization or a specific long-term project.

Identifies datasets outside the organization that
may be useful to obtain, through open APIs, data
sharing, or purchasing data to supplement already
existing datasets

Table 2-1 demonstrates one way to organize this

type of data inventory.

TABLE 2-1 Sample Dataset Inventory

2.3.4 DATA CONDITIONING

Data conditioning refers to the process of cleaning

data, normalizing datasets, and performing

transformations on the data. A critical step within the

Data Analytics Lifecycle, data conditioning can involve

many complex steps to join or merge datasets or

otherwise get datasets into a state that enables

analysis in further phases. Data conditioning is often

viewed as a preprocessing step for the data analysis

because it involves many operations on the dataset

before developing models to process or analyze the

data. This implies that the data-conditioning step is

performed only by IT, the data owners, a DBA, or a

data engineer. However, it is also important to involve

the data scientist in this step because many decisions

are made in the data conditioning phase that affect

subsequent analysis. Part of this phase involves

deciding which aspects of particular datasets will be

useful to analyze in later steps. Because teams begin

forming ideas in this phase about which data to keep

and which data to transform or discard, it is important

to involve multiple team members in these decisions.

Leaving such decisions to a single person may cause

teams to return to this phase to retrieve data that may

have been discarded.

As with the previous example of deciding which data

to keep as it relates to fraud detection on credit card

usage, it is critical to be thoughtful about which data

the team chooses to keep and which data will be

discarded. This can have far-reaching consequences

that will cause the team to retrace previous steps if

the team discards too much of the data at too early a

point in this process. Typically, data science teams

would rather keep more data than too little data for

the analysis. Additional questions and considerations

for the data conditioning step include these.

What are the data sources? What are the target
fields (for example, columns of the tables)?

How clean is the data?

How consistent are the contents and files?
Determine to what degree the data contains

missing or inconsistent values and if the data
contains values deviating from normal.

Assess the consistency of the data types. For
instance, if the team expects certain data to be
numeric, confirm it is numeric or if it is a mixture
of alphanumeric strings and text.

Review the content of data columns or other
inputs, and check to ensure they make sense. For
instance, if the project involves analyzing income
levels, preview the data to confirm that the income
values are positive or if it is acceptable to have
zeros or negative values.

Look for any evidence of systematic error.
Examples include data feeds from sensors or other
data sources breaking without anyone noticing,
which causes invalid, incorrect, or missing data
values. In addition, review the data to gauge if the
definition of the data is the same over all
measurements. In some cases, a data column is
repurposed, or the column stops being populated,
without this change being annotated or without
others being notified.

2.3.5 SURVEY AND

VISUALIZE

After the team has collected and obtained at least

some of the datasets needed for the subsequent

analysis, a useful step is to leverage data visualization

tools to gain an overview of the data. Seeing high-level

patterns in the data enables one to understand

characteristics about the data very quickly. One

example is using data visualization to examine data

quality, such as whether the data contains many

unexpected values or other indicators of dirty data.

(Dirty data will be discussed further in Chapter 3.)

Another example is skewness, such as if the majority

of the data is heavily shifted toward one value or end

of a continuum.

Shneiderman [9] is well known for his mantra for

visual data analysis of “overview first, zoom and filter,

then details-on-demand.” This is a pragmatic approach

to visual data analysis. It enables the user to find areas

of interest, zoom and filter to find more detailed

information about a particular area of the data, and

then find the detailed data behind a particular area.

This approach provides a high-level view of the data

and a great deal of information about a given dataset

in a relatively short period of time.

When pursuing this approach with a data

visualization tool or statistical package, the following

guidelines and considerations are recommended.

Review data to ensure that calculations remained
consistent within columns or across tables for a
given data field. For instance, did customer
lifetime value change at some point in the middle
of data collection? Or if working with financials,
did the interest calculation change from simple to
compound at the end of the year?

Does the data distribution stay consistent over all
the data? If not, what kinds of actions should be
taken to address this problem?

Assess the granularity of the data, the range of
values, and the level of aggregation of the data.

Does the data represent the population of interest?
For marketing data, if the project is focused on
targeting customers of child-rearing age, does the
data represent that, or is it full of senior citizens
and teenagers?

For time-related variables, are the measurements
daily, weekly, monthly? Is that good enough? Is
time measured in seconds everywhere? Or is it in
milliseconds in some places? Determine the level
of granularity of the data needed for the analysis,
and assess whether the current level of
timestamps on the data meets that need.

Is the data standardized/normalized? Are the
scales consistent? If not, how consistent or

irregular is the data?

For geospatial datasets, are state or country
abbreviations consistent across the data? Are
personal names normalized? English units? Metric
units?

These are typical considerations that should be part

of the thought process as the team evaluates the

datasets that are obtained for the project. Becoming

deeply knowledgeable about the data will be critical

when it comes time to construct and run models later

in the process.

2.3.6 COMMON TOOLS FOR

THE DATA PREPARATION

PHASE

Several tools are commonly used for this phase:

Hadoop [10] can perform massively parallel
ingest and custom analysis for web traffic parsing,
GPS location analytics, genomic analysis, and
combining of massive unstructured data feeds
from multiple sources.

Alpine Miner [11] provides a graphical user
interface (GUI) for creating analytic workflows,
including data manipulations and a series of

analytic events such as staged data-mining
techniques (for example, first select the top 100
customers, and then run descriptive statistics and
clustering) on Postgres SQL and other Big Data
sources.

OpenRefine (formerly called Google Refine) [12]
is “a free, open source, powerful tool for working
with messy data.” It is a popular GUI-based tool
for performing data transformations, and it's one
of the most robust free tools currently available.

Similar to OpenRefine, Data Wrangler [13] is an
interactive tool for data cleaning and
transformation. Wrangler was developed at
Stanford University and can be used to perform
many transformations on a given dataset. In
addition, data transformation outputs can be put
into Java or Python. The advantage of this feature
is that a subset of the data can be manipulated in
Wrangler via its GUI, and then the same
operations can be written out as Java or Python
code to be executed against the full, larger dataset
offline in a local analytic sandbox.

For Phase 2, the team needs assistance from IT,

DBAs, or whoever controls the Enterprise Data

Warehouse (EDW) for data sources the data science

team would like to use.

2.4 Phase 3: Model

Planning

In Phase 3, the data science team identifies candidate

models to apply to the data for clustering, classifying,

or finding relationships in the data depending on the

goal of the project, as shown in Figure 2-5. It is during

this phase that the team refers to the hypotheses

developed in Phase 1, when they first became

acquainted with the data and understanding the

business problems or domain area. These hypotheses

help the team frame the analytics to execute in Phase

4 and select the right methods to achieve its

objectives.

Some of the activities to consider in this phase

include the following:

Assess the structure of the datasets. The structure
of the datasets is one factor that dictates the tools
and analytical techniques for the next phase.
Depending on whether the team plans to analyze
textual data or transactional data, for example,
different tools and approaches are required.

Ensure that the analytical techniques enable the
team to meet the business objectives and accept or
reject the working hypotheses.

Determine if the situation warrants a single model
or a series of techniques as part of a larger
analytic workflow. A few example models include
association rules (Chapter 5, “Advanced Analytical
Theory and Methods: Association Rules”) and
logistic regression (Chapter 6, “Advanced
Analytical Theory and Methods: Regression”).
Other tools, such as Alpine Miner, enable users to
set up a series of steps and analyses and can serve
as a front-end user interface (UI) for manipulating
Big Data sources in PostgreSQL.

FIGURE 2-5 Model planning phase

In addition to the considerations just listed, it is

useful to research and understand how other analysts

generally approach a specific kind of problem. Given

the kind of data and resources that are available,

evaluate whether similar, existing approaches will

work or if the team will need to create something new.

Many times teams can get ideas from analogous

problems that other people have solved in different

industry verticals or domain areas. Table 2-2

summarizes the results of an exercise of this type,

involving several domain areas and the types of

models previously used in a classification type of

problem after conducting research on churn models in

multiple industry verticals. Performing this sort of

diligence gives the team ideas of how others have

solved similar problems and presents the team with a

list of candidate models to try as part of the model

planning phase.

TABLE 2-2 Research on Model Planning in Industry

Verticals

Market

Sector

Analytic Techniques/Methods

Used

Consumer
Packaged
Goods

Multiple linear regression, automatic relevance
determination (ARD), and decision tree

Retail
Banking

Multiple regression

Retail
Business

Logistic regression, ARD, decision tree

Wireless
Telecom

Neural network, decision tree, hierarchical
neurofuzzy systems, rule evolver, logistic regression

2.4.1 DATA EXPLORATION

AND VARIABLE SELECTION

Although some data exploration takes place in the

data preparation phase, those activities focus mainly

on data hygiene and on assessing the quality of the

data itself. In Phase 3, the objective of the data

exploration is to understand the relationships among

the variables to inform selection of the variables and

methods and to understand the problem domain. As

with earlier phases of the Data Analytics Lifecycle, it is

important to spend time and focus attention on this

preparatory work to make the subsequent phases of

model selection and execution easier and more

efficient. A common way to conduct this step involves

using tools to perform data visualizations. Approaching

the data exploration in this way aids the team in

previewing the data and assessing relationships

between variables at a high level.

In many cases, stakeholders and subject matter

experts have instincts and hunches about what the

data science team should be considering and

analyzing. Likely, this group had some hypothesis that

led to the genesis of the project. Often, stakeholders

have a good grasp of the problem and domain,

although they may not be aware of the subtleties

within the data or the model needed to accept or

reject a hypothesis. Other times, stakeholders may be

correct, but for the wrong reasons (for instance, they

may be correct about a correlation that exists but infer

an incorrect reason for the correlation). Meanwhile,

data scientists have to approach problems with an

unbiased mind-set and be ready to question all

assumptions.

As the team begins to question the incoming

assumptions and test initial ideas of the project

sponsors and stakeholders, it needs to consider the

inputs and data that will be needed, and then it must

examine whether these inputs are actually correlated

with the outcomes that the team plans to predict or

analyze. Some methods and types of models will

handle correlated variables better than others.

Depending on what the team is attempting to solve, it

may need to consider an alternate method, reduce the

number of data inputs, or transform the inputs to allow

the team to use the best method for a given business

problem. Some of these techniques will be explored

further in Chapter 3 and Chapter 6.

The key to this approach is to aim for capturing the

most essential predictors and variables rather than

considering every possible variable that people think

may influence the outcome. Approaching the problem

in this manner requires iterations and testing to

identify the most essential variables for the intended

analyses. The team should plan to test a range of

variables to include in the model and then focus on the

most important and influential variables.

If the team plans to run regression analyses, identify

the candidate predictors and outcome variables of the

model. Plan to create variables that determine

outcomes but demonstrate a strong relationship to the

outcome rather than to the other input variables. This

includes remaining vigilant for problems such as serial

correlation, multicollinearity, and other typical data

modeling challenges that interfere with the validity of

these models. Sometimes these issues can be avoided

simply by looking at ways to reframe a given problem.

In addition, sometimes determining correlation is all

that is needed (“black box prediction”), and in other

cases, the objective of the project is to understand the

causal relationship better. In the latter case, the team

wants the model to have explanatory power and needs

to forecast or stress test the model under a variety of

situations and with different datasets.

2.4.2 MODEL SELECTION

In the model selection subphase, the team's main goal

is to choose an analytical technique, or a short list of

candidate techniques, based on the end goal of the

project. For the context of this book, a model is

discussed in general terms. In this case, a model

simply refers to an abstraction from reality. One

observes events happening in a real-world situation or

with live data and attempts to construct models that

emulate this behavior with a set of rules and

conditions. In the case of machine learning and data

mining, these rules and conditions are grouped into

several general sets of techniques, such as

classification, association rules, and clustering. When

reviewing this list of types of potential models, the

team can winnow down the list to several viable

models to try to address a given problem. More details

on matching the right models to common types of

business problems are provided in Chapter 3 and

Chapter 4, “Advanced Analytical Theory and Methods:

Clustering.”

An additional consideration in this area for dealing

with Big Data involves determining if the team will be

using techniques that are best suited for structured

data, unstructured data, or a hybrid approach. For

instance, the team can leverage MapReduce to

analyze unstructured data, as highlighted in Chapter

10. Lastly, the team should take care to identify and

document the modeling assumptions it is making as it

chooses and constructs preliminary models.

Typically, teams create the initial models using a

statistical software package such as R, SAS, or Matlab.

Although these tools are designed for data mining and

machine learning algorithms, they may have

limitations when applying the models to very large

datasets, as is common with Big Data. As such, the

team may consider redesigning these algorithms to

run in the database itself during the pilot phase

mentioned in Phase 6.

The team can move to the model building phase

once it has a good idea about the type of model to try

and the team has gained enough knowledge to refine

the analytics plan. Advancing from this phase requires

a general methodology for the analytical model, a solid

understanding of the variables and techniques to use,

and a description or diagram of the analytic workflow.

2.4.3 COMMON TOOLS FOR

THE MODEL PLANNING

PHASE

Many tools are available to assist in this phase. Here

are several of the more common ones:

R [14] has a complete set of modeling capabilities
and provides a good environment for building
interpretive models with high-quality code. In
addition, it has the ability to interface with
databases via an ODBC connection and execute
statistical tests and analyses against Big Data via
an open source connection. These two factors
make R well suited to performing statistical tests
and analytics on Big Data. As of this writing, R
contains nearly 5,000 packages for data analysis

and graphical representation. New packages are
posted frequently, and many companies are
providing value-add services for R (such as
training, instruction, and best practices), as well
as packaging it in ways to make it easier to use
and more robust. This phenomenon is similar to
what happened with Linux in the late 1980s and
early 1990s, when companies appeared to package
and make Linux easier for companies to consume
and deploy. Use R with file extracts for offline
analysis and optimal performance, and use RODBC
connections for dynamic queries and faster
development.

SQL Analysis services [15] can perform in-
database analytics of common data mining
functions, involved aggregations, and basic
predictive models.

SAS/ACCESS [16] provides integration between
SAS and the analytics sandbox via multiple data
connectors such as OBDC, JDBC, and OLE DB.
SAS itself is generally used on file extracts, but
with SAS/ACCESS, users can connect to relational
databases (such as Oracle or Teradata) and data
warehouse appliances (such as Greenplum or
Aster), files, and enterprise applications (such as
SAP and Salesforce.com).

http://salesforce.com/

2.5 Phase 4: Model

Building

In Phase 4, the data science team needs to develop

datasets for training, testing, and production purposes.

These datasets enable the data scientist to develop

the analytical model and train it (“training data”),

while holding aside some of the data (“hold-out data”

or “test data”) for testing the model. (These topics are

addressed in more detail in Chapter 3.) During this

process, it is critical to ensure that the training and

test datasets are sufficiently robust for the model and

analytical techniques. A simple way to think of these

datasets is to view the training dataset for conducting

the initial experiments and the test sets for validating

an approach once the initial experiments and models

have been run.

In the model building phase, shown in Figure 2-6, an

analytical model is developed and fit on the training

data and evaluated (scored) against the test data. The

phases of model planning and model building can

overlap quite a bit, and in practice one can iterate

back and forth between the two phases for a while

before settling on a final model.

Although the modeling techniques and logic required

to develop models can be highly complex, the actual

duration of this phase can be short compared to the

time spent preparing the data and defining the

approaches. In general, plan to spend more time

preparing and learning the data (Phases 1–2) and

crafting a presentation of the findings (Phase 5).

Phases 3 and 4 tend to move more quickly, although

they are more complex from a conceptual standpoint.

As part of this phase, the data science team needs to

execute the models defined in Phase 3.

During this phase, users run models from analytical

software packages, such as R or SAS, on file extracts

and small datasets for testing purposes. On a small

scale, assess the validity of the model and its results.

For instance, determine if the model accounts for most

of the data and has robust predictive power. At this

point, refine the models to optimize the results, such

as by modifying variable inputs or reducing correlated

variables where appropriate. In Phase 3, the team may

have had some knowledge of correlated variables or

problematic data attributes, which will be confirmed or

denied once the models are actually executed. When

immersed in the details of constructing models and

transforming data, many small decisions are often

made about the data and the approach for the

modeling. These details can be easily forgotten once

the project is completed. Therefore, it is vital to record

the results and logic of the model during this phase. In

addition, one must take care to record any operating

assumptions that were made in the modeling process

regarding the data or the context.

FIGURE 2-6 Model building phase

Creating robust models that are suitable to a specific

situation requires thoughtful consideration to ensure

the models being developed ultimately meet the

objectives outlined in Phase 1. Questions to consider

include these:

Does the model appear valid and accurate on the
test data?

Does the model output/behavior make sense to the
domain experts? That is, does it appear as if the
model is giving answers that make sense in this
context?

Do the parameter values of the fitted model make
sense in the context of the domain?

Is the model sufficiently accurate to meet the
goal?

Does the model avoid intolerable mistakes?
Depending on context, false positives may be more
serious or less serious than false negatives, for
instance. (False positives and false negatives are
discussed further in Chapter 3 and Chapter 7,
“Advanced Analytical Theory and Methods:
Classification.”)

Are more data or more inputs needed? Do any of
the inputs need to be transformed or eliminated?

Will the kind of model chosen support the runtime
requirements?

Is a different form of the model required to
address the business problem? If so, go back to
the model planning phase and revise the modeling
approach.

Once the data science team can evaluate either if

the model is sufficiently robust to solve the problem or

if the team has failed, it can move to the next phase in

the Data Analytics Lifecycle.

2.5.1 COMMON TOOLS FOR

THE MODEL BUILDING

PHASE

There are many tools available to assist in this phase,

focused primarily on statistical analysis or data mining

software. Common tools in this space include, but are

not limited to, the following:

Commercial Tools:

SAS Enterprise Miner [17] allows users to
run predictive and descriptive models based
on large volumes of data from across the
enterprise. It interoperates with other large
data stores, has many partnerships, and is
built for enterprise-level computing and
analytics.

SPSS Modeler [18] (provided by IBM and
now called IBM SPSS Modeler) offers methods
to explore and analyze data through a GUI.

Matlab [19] provides a high-level language for
performing a variety of data analytics,
algorithms, and data exploration.

Alpine Miner [11] provides a GUI front end
for users to develop analytic workflows and
interact with Big Data tools and platforms on
the back end.

STATISTICA [20] and Mathematica [21] are
also popular and well-regarded data mining
and analytics tools.

Free or Open Source tools:

R and PL/R [14] R was described earlier in
the model planning phase, and PL/R is a
procedural language for PostgreSQL with R.
Using this approach means that R commands
can be executed in database. This technique
provides higher performance and is more
scalable than running R in memory.

Octave [22], a free software programming
language for computational modeling, has
some of the functionality of Matlab. Because it
is freely available, Octave is used in major
universities when teaching machine learning.

WEKA [23] is a free data mining software
package with an analytic workbench. The
functions created in WEKA can be executed
within Java code.

Python is a programming language that
provides toolkits for machine learning and
analysis, such as scikit-learn, numpy, scipy,
pandas, and related data visualization using
matplotlib.

SQL in-database implementations, such as
MADlib [24], provide an alterative to in-
memory desktop analytical tools. MADlib
provides an open-source machine learning
library of algorithms that can be executed in-
database, for PostgreSQL or Greenplum.

2.6 Phase 5: Communicate

Results

After executing the model, the team needs to compare

the outcomes of the modeling to the criteria

established for success and failure. In Phase 5, shown

in Figure 2-7, the team considers how best to articulate

the findings and outcomes to the various team

members and stakeholders, taking into account

caveats, assumptions, and any limitations of the

results. Because the presentation is often circulated

within an organization, it is critical to articulate the

results properly and position the findings in a way that

is appropriate for the audience.

FIGURE 2-7 Communicate results phase

As part of Phase 5, the team needs to determine if it

succeeded or failed in its objectives. Many times

people do not want to admit to failing, but in this

instance failure should not be considered as a true

failure, but rather as a failure of the data to accept or

reject a given hypothesis adequately. This concept can

be counterintuitive for those who have been told their

whole careers not to fail. However, the key is to

remember that the team must be rigorous enough with

the data to determine whether it will prove or disprove

the hypotheses outlined in Phase 1 (discovery).

Sometimes teams have only done a superficial

analysis, which is not robust enough to accept or reject

a hypothesis. Other times, teams perform very robust

analysis and are searching for ways to show results,

even when results may not be there. It is important to

strike a balance between these two extremes when it

comes to analyzing data and being pragmatic in terms

of showing real-world results.

When conducting this assessment, determine if the

results are statistically significant and valid. If they are,

identify the aspects of the results that stand out and

may provide salient findings when it comes time to

communicate them. If the results are not valid, think

about adjustments that can be made to refine and

iterate on the model to make it valid. During this step,

assess the results and identify which data points may

have been surprising and which were in line with the

hypotheses that were developed in Phase 1.

Comparing the actual results to the ideas formulated

early on produces additional ideas and insights that

would have been missed if the team had not taken

time to formulate initial hypotheses early in the

process.

By this time, the team should have determined

which model or models address the analytical

challenge in the most appropriate way. In addition, the

team should have ideas of some of the findings as a

result of the project. The best practice in this phase is

to record all the findings and then select the three

most significant ones that can be shared with the

stakeholders. In addition, the team needs to reflect on

the implications of these findings and measure the

business value. Depending on what emerged as a

result of the model, the team may need to spend time

quantifying the business impact of the results to help

prepare for the presentation and demonstrate the

value of the findings. Doug Hubbard's work [6] offers

insights on how to assess intangibles in business and

quantify the value of seemingly unmeasurable things.

Now that the team has run the model, completed a

thorough discovery phase, and learned a great deal

about the datasets, reflect on the project and consider

what obstacles were in the project and what can be

improved in the future. Make recommendations for

future work or improvements to existing processes,

and consider what each of the team members and

stakeholders needs to fulfill her responsibilities. For

instance, sponsors must champion the project.

Stakeholders must understand how the model affects

their processes. (For example, if the team has created

a model to predict customer churn, the Marketing

team must understand how to use the churn model

predictions in planning their interventions.) Production

engineers need to operationalize the work that has

been done. In addition, this is the phase to underscore

the business benefits of the work and begin making

the case to implement the logic into a live production

environment.

As a result of this phase, the team will have

documented the key findings and major insights

derived from the analysis. The deliverable of this

phase will be the most visible portion of the process to

the outside stakeholders and sponsors, so take care to

clearly articulate the results, methodology, and

business value of the findings. More details will be

provided about data visualization tools and references

in Chapter 12, “The Endgame, or Putting It All

Together.”

2.7 Phase 6:

Operationalize

In the final phase, the team communicates the

benefits of the project more broadly and sets up a pilot

project to deploy the work in a controlled way before

broadening the work to a full enterprise or ecosystem

of users. In Phase 4, the team scored the model in the

analytics sandbox. Phase 6, shown in Figure 2-8,

represents the first time that most analytics teams

approach deploying the new analytical methods or

models in a production environment. Rather than

deploying these models immediately on a wide-scale

basis, the risk can be managed more effectively and

the team can learn by undertaking a small scope, pilot

deployment before a wide-scale rollout. This approach

enables the team to learn about the performance and

related constraints of the model in a production

environment on a small scale and make adjustments

before a full deployment. During the pilot project, the

team may need to consider executing the algorithm in

the database rather than with in-memory tools such as

R because the run time is significantly faster and more

efficient than running in-memory, especially on larger

datasets.

FIGURE 2-8 Model operationalize phase

While scoping the effort involved in conducting a

pilot project, consider running the model in a

production environment for a discrete set of products

or a single line of business, which tests the model in a

live setting. This allows the team to learn from the

deployment and make any needed adjustments before

launching the model across the enterprise. Be aware

that this phase can bring in a new set of team

members—usually the engineers responsible for the

production environment who have a new set of issues

and concerns beyond those of the core project team.

This technical group needs to ensure that running the

model fits smoothly into the production environment

and that the model can be integrated into related

business processes.

Part of the operationalizing phase includes creating a

mechanism for performing ongoing monitoring of

model accuracy and, if accuracy degrades, finding

ways to retrain the model. If feasible, design alerts for

when the model is operating “out-of-bounds.” This

includes situations when the inputs are beyond the

range that the model was trained on, which may cause

the outputs of the model to be inaccurate or invalid. If

this begins to happen regularly, the model needs to be

retrained on new data.

Often, analytical projects yield new insights about a

business, a problem, or an idea that people may have

taken at face value or thought was impossible to

explore. Four main deliverables can be created to meet

the needs of most stakeholders. This approach for

developing the four deliverables is discussed in greater

detail in Chapter 12.

Figure 2-9 portrays the key outputs for each of the

main stakeholders of an analytics project and what

they usually expect at the conclusion of a project.

Business User typically tries to determine the
benefits and implications of the findings to the
business.

Project Sponsor typically asks questions related
to the business impact of the project, the risks and
return on investment (ROI), and the way the
project can be evangelized within the organization
(and beyond).

Project Manager needs to determine if the
project was completed on time and within budget
and how well the goals were met.

Business Intelligence Analyst needs to know if
the reports and dashboards he manages will be
impacted and need to change.

Data Engineer and Database Administrator

(DBA) typically need to share their code from the
analytics project and create a technical document
on how to implement it.

Data Scientist needs to share the code and
explain the model to her peers, managers, and
other stakeholders.

Although these seven roles represent many interests

within a project, these interests usually overlap, and

most of them can be met with four main deliverables.

Presentation for project sponsors: This contains
high-level takeaways for executive level
stakeholders, with a few key messages to aid their
decision-making process. Focus on clean, easy
visuals for the presenter to explain and for the
viewer to grasp.

Presentation for analysts, which describes
business process changes and reporting changes.
Fellow data scientists will want the details and are
comfortable with technical graphs (such as
Receiver Operating Characteristic [ROC] curves,
density plots, and histograms shown in Chapter 3
and Chapter 7).

Code for technical people.

Technical specifications of implementing the code.

As a general rule, the more executive the audience,

the more succinct the presentation needs to be. Most

executive sponsors attend many briefings in the

course of a day or a week. Ensure that the

presentation gets to the point quickly and frames the

results in terms of value to the sponsor's organization.

For instance, if the team is working with a bank to

analyze cases of credit card fraud, highlight the

frequency of fraud, the number of cases in the past

month or year, and the cost or revenue impact to the

bank (or focus on the reverse—how much more

revenue the bank could gain if it addresses the fraud

problem). This demonstrates the business impact

better than deep dives on the methodology. The

presentation needs to include supporting information

about analytical methodology and data sources, but

generally only as supporting detail or to ensure the

audience has confidence in the approach that was

taken to analyze the data.

FIGURE 2-9 Key outputs from a successful analytics

project

When presenting to other audiences with more

quantitative backgrounds, focus more time on the

methodology and findings. In these instances, the

team can be more expansive in describing the

outcomes, methodology, and analytical experiment

with a peer group. This audience will be more

interested in the techniques, especially if the team

developed a new way of processing or analyzing data

that can be reused in the future or applied to similar

problems. In addition, use imagery or data

visualization when possible. Although it may take more

time to develop imagery, people tend to remember

mental pictures to demonstrate a point more than long

lists of bullets [25]. Data visualization and

presentations are discussed further in Chapter 12.

2.8 Case Study: Global

Innovation Network and

Analysis (GINA)

EMC's Global Innovation Network and Analytics (GINA)

team is a group of senior technologists located in

centers of excellence (COEs) around the world. This

team's charter is to engage employees across global

COEs to drive innovation, research, and university

partnerships. In 2012, a newly hired director wanted to

improve these activities and provide a mechanism to

track and analyze the related information. In addition,

this team wanted to create more robust mechanisms

for capturing the results of its informal conversations

with other thought leaders within EMC, in academia, or

in other organizations, which could later be mined for

insights.

The GINA team thought its approach would provide a

means to share ideas globally and increase knowledge

sharing among GINA members who may be separated

geographically. It planned to create a data repository

containing both structured and unstructured data to

accomplish three main goals.

Store formal and informal data.

Track research from global technologists.

Mine the data for patterns and insights to improve
the team's operations and strategy.

The GINA case study provides an example of how a

team applied the Data Analytics Lifecycle to analyze

innovation data at EMC. Innovation is typically a

difficult concept to measure, and this team wanted to

look for ways to use advanced analytical methods to

identify key innovators within the company.

2.8.1 PHASE 1: DISCOVERY

In the GINA project's discovery phase, the team began

identifying data sources. Although GINA was a group of

technologists skilled in many different aspects of

engineering, it had some data and ideas about what it

wanted to explore but lacked a formal team that could

perform these analytics. After consulting with various

experts including Tom Davenport, a noted expert in

analytics at Babson College, and Peter Gloor, an expert

in collective intelligence and creator of CoIN

(Collaborative Innovation Networks) at MIT, the team

decided to crowdsource the work by seeking

volunteers within EMC.

Here is a list of how the various roles on the working

team were fulfilled.

Business User, Project Sponsor, Project

Manager: Vice President from Office of the CTO

Business Intelligence Analyst: Representatives
from IT

Data Engineer and Database Administrator

(DBA): Representatives from IT

Data Scientist: Distinguished Engineer, who also
developed the social graphs shown in the GINA
case study

The project sponsor's approach was to leverage

social media and blogging [26] to accelerate the

collection of innovation and research data worldwide

and to motivate teams of “volunteer” data scientists at

worldwide locations. Given that he lacked a formal

team, he needed to be resourceful about finding

people who were both capable and willing to volunteer

their time to work on interesting problems. Data

scientists tend to be passionate about data, and the

project sponsor was able to tap into this passion of

highly talented people to accomplish challenging work

in a creative way.

The data for the project fell into two main categories.

The first category represented five years of idea

submissions from EMC's internal innovation contests,

known as the Innovation Roadmap (formerly called the

Innovation Showcase). The Innovation Roadmap is a

formal, organic innovation process whereby employees

from around the globe submit ideas that are then

vetted and judged. The best ideas are selected for

further incubation. As a result, the data is a mix of

structured data, such as idea counts, submission

dates, inventor names, and unstructured content, such

as the textual descriptions of the ideas themselves.

The second category of data encompassed minutes

and notes representing innovation and research

activity from around the world. This also represented a

mix of structured and unstructured data. The

structured data included attributes such as dates,

names, and geographic locations. The unstructured

documents contained the “who, what, when, and

where” information that represents rich data about

knowledge growth and transfer within the company.

This type of information is often stored in business

silos that have little to no visibility across disparate

research teams.

The 10 main IHs that the GINA team developed were

as follows:

IH1: Innovation activity in different geographic
regions can be mapped to corporate strategic
directions.

IH2: The length of time it takes to deliver ideas
decreases when global knowledge transfer occurs
as part of the idea delivery process.

IH3: Innovators who participate in global
knowledge transfer deliver ideas more quickly
than those who do not.

IH4: An idea submission can be analyzed and
evaluated for the likelihood of receiving funding.

IH5: Knowledge discovery and growth for a
particular topic can be measured and compared
across geographic regions.

IH6: Knowledge transfer activity can identify
research-specific boundary spanners in disparate
regions.

IH7: Strategic corporate themes can be mapped
to geographic regions.

IH8: Frequent knowledge expansion and transfer
events reduce the time it takes to generate a
corporate asset from an idea.

IH9: Lineage maps can reveal when knowledge
expansion and transfer did not (or has not)
resulted in a corporate asset.

IH10: Emerging research topics can be classified
and mapped to specific ideators, innovators,
boundary spanners, and assets.

The GINA (IHs) can be grouped into two categories:

Descriptive analytics of what is currently
happening to spark further creativity,
collaboration, and asset generation

Predictive analytics to advise executive
management of where it should be investing in the
future

2.8.2 PHASE 2: DATA

PREPARATION

The team partnered with its IT department to set up a

new analytics sandbox to store and experiment on the

data. During the data exploration exercise, the data

scientists and data engineers began to notice that

certain data needed conditioning and normalization. In

addition, the team realized that several missing

datasets were critical to testing some of the analytic

hypotheses.

As the team explored the data, it quickly realized

that if it did not have data of sufficient quality or could

not get good quality data, it would not be able to

perform the subsequent steps in the lifecycle process.

As a result, it was important to determine what level of

data quality and cleanliness was sufficient for the

project being undertaken. In the case of the GINA, the

team discovered that many of the names of the

researchers and people interacting with the

universities were misspelled or had leading and trailing

spaces in the datastore. Seemingly small problems

such as these in the data had to be addressed in this

phase to enable better analysis and data aggregation

in subsequent phases.

2.8.3 PHASE 3: MODEL

PLANNING

In the GINA project, for much of the dataset, it seemed

feasible to use social network analysis techniques to

look at the networks of innovators within EMC. In other

cases, it was difficult to come up with appropriate

ways to test hypotheses due to the lack of data. In one

case (IH9), the team made a decision to initiate a

longitudinal study to begin tracking data points over

time regarding people developing new intellectual

property. This data collection would enable the team to

test the following two ideas in the future:

IH8: Frequent knowledge expansion and transfer
events reduce the amount of time it takes to
generate a corporate asset from an idea.

IH9: Lineage maps can reveal when knowledge
expansion and transfer did not (or has not)
result(ed) in a corporate asset.

For the longitudinal study being proposed, the team

needed to establish goal criteria for the study.

Specifically, it needed to determine the end goal of a

successful idea that had traversed the entire journey.

The parameters related to the scope of the study

included the following considerations:

Identify the right milestones to achieve this goal.

Trace how people move ideas from each milestone
toward the goal.

Once this is done, trace ideas that die, and trace
others that reach the goal. Compare the journeys
of ideas that make it and those that do not.

Compare the times and the outcomes using a few
different methods (depending on how the data is
collected and assembled). These could be as
simple as t-tests or perhaps involve different types
of classification algorithms.

2.8.4 PHASE 4: MODEL

BUILDING

In Phase 4, the GINA team employed several analytical

methods. This included work by the data scientist

using Natural Language Processing (NLP) techniques

on the textual descriptions of the Innovation Roadmap

ideas. In addition, he conducted social network

analysis using R and RStudio, and then he developed

social graphs and visualizations of the network of

communications related to innovation using R's ggplot2

package. Examples of this work are shown in Figures 2-

10 and 2-11.

FIGURE 2-10 Social graph [27] visualization of idea

submitters and finalists

FIGURE 2-11 Social graph visualization of top

innovation influencers

Figure 2-10 shows social graphs that portray the

relationships between idea submitters within GINA.

Each color represents an innovator from a different

country. The large dots with red circles around them

represent hubs. A hub represents a person with high

connectivity and a high “betweenness” score. The

cluster in Figure 2-11 contains geographic variety,

which is critical to prove the hypothesis about

geographic boundary spanners. One person in this

graph has an unusually high score when compared to

the rest of the nodes in the graph. The data scientist

identified this person and ran a query against his name

within the analytic sandbox. These actions yielded the

following information about this research scientist

(from the social graph), which illustrated how

influential he was within his business unit and across

many other areas of the company worldwide:

In 2011, he attended the ACM SIGMOD
conference, which is a top-tier conference on
large-scale data management problems and
databases.

He visited employees in France who are part of
the business unit for EMC's content management
teams within Documentum (now part of the
Information Intelligence Group, or IIG).

He presented his thoughts on the SIGMOD
conference at a virtual brownbag session attended
by three employees in Russia, one employee in
Cairo, one employee in Ireland, one employee in
India, three employees in the United States, and
one employee in Israel.

In 2012, he attended the SDM 2012 conference in
California.

On the same trip he visited innovators and
researchers at EMC federated companies, Pivotal
and VMware.

Later on that trip he stood before an internal
council of technology leaders and introduced two
of his researchers to dozens of corporate
innovators and researchers.

This finding suggests that at least part of the initial

hypothesis is correct; the data can identify innovators

who span different geographies and business units.

The team used Tableau software for data visualization

and exploration and used the Pivotal Greenplum

database as the main data repository and analytics

engine.

2.8.5 PHASE 5:

COMMUNICATE RESULTS

In Phase 5, the team found several ways to cull results

of the analysis and identify the most impactful and

relevant findings. This project was considered

successful in identifying boundary spanners and

hidden innovators. As a result, the CTO office launched

longitudinal studies to begin data collection efforts and

track innovation results over longer periods of time.

The GINA project promoted knowledge sharing related

to innovation and researchers spanning multiple areas

within the company and outside of it. GINA also

enabled EMC to cultivate additional intellectual

property that led to additional research topics and

provided opportunities to forge relationships with

universities for joint academic research in the fields of

Data Science and Big Data. In addition, the project was

accomplished with a limited budget, leveraging a

volunteer force of highly skilled and distinguished

engineers and data scientists.

One of the key findings from the project is that there

was a disproportionately high density of innovators in

Cork, Ireland. Each year, EMC hosts an innovation

contest, open to employees to submit innovation ideas

that would drive new value for the company. When

looking at the data in 2011, 15% of the finalists and

15% of the winners were from Ireland. These are

unusually high numbers, given the relative size of the

Cork COE compared to other larger centers in other

parts of the world. After further research, it was

learned that the COE in Cork, Ireland had received

focused training in innovation from an external

consultant, which was proving effective. The Cork COE

came up with more innovation ideas, and better ones,

than it had in the past, and it was making larger

contributions to innovation at EMC. It would have been

difficult, if not impossible, to identify this cluster of

innovators through traditional methods or even

anecdotal, word-of-mouth feedback. Applying social

network analysis enabled the team to find a pocket of

people within EMC who were making

disproportionately strong contributions. These findings

were shared internally through presentations and

conferences and promoted through social media and

blogs.

2.8.6 PHASE 6:

OPERATIONALIZE

Running analytics against a sandbox filled with notes,

minutes, and presentations from innovation activities

yielded great insights into EMC's innovation culture.

Key findings from the project include these:

The CTO office and GINA need more data in the
future, including a marketing initiative to convince
people to inform the global community on their
innovation/research activities.

Some of the data is sensitive, and the team needs
to consider security and privacy related to the
data, such as who can run the models and see the
results.

In addition to running models, a parallel initiative
needs to be created to improve basic Business
Intelligence activities, such as dashboards,
reporting, and queries on research activities
worldwide.

A mechanism is needed to continually reevaluate
the model after deployment. Assessing the benefits
is one of the main goals of this stage, as is defining
a process to retrain the model as needed.

In addition to the actions and findings listed, the

team demonstrated how analytics can drive new

insights in projects that are traditionally difficult to

measure and quantify. This project informed

investment decisions in university research projects by

the CTO office and identified hidden, high-value

innovators. In addition, the CTO office developed tools

to help submitters improve ideas using topic modeling

as part of new recommender systems to help idea

submitters find similar ideas and refine their proposals

for new intellectual property.

Table 2-3 outlines an analytics plan for the GINA case

study example. Although this project shows only three

findings, there were many more. For instance, perhaps

the biggest overarching result from this project is that

it demonstrated, in a concrete way, that analytics can

drive new insights in projects that deal with topics that

may seem difficult to measure, such as innovation.

TABLE 2-3 Analytic Plan from the EMC GINA Project

Components of Analytic

Plan

GINA Case

Study

Discovery

Business

Problem

Framed

Tracking global knowledge growth, ensuring effective
knowledge transfer, and quickly converting it into
corporate assets. Executing on these three elements
should accelerate innovation.

Initial

Hypothes

es

An increase in geographic knowledge transfer improves
the speed of idea delivery.

Data Five years of innovation idea submissions and history;
six months of textual notes from global innovation and
research activities

Model

Planning

Analytic

Techniqu

e

Social network analysis, social graphs, clustering, and
regression analysis

Result

and Key

Findings

1. Identified hidden, high-value innovators and found

ways to share their knowledge

2. Informed investment decisions in university
research projects

3. Created tools to help submitters improve ideas
with idea recommender systems

Innovation is an idea that every company wants to

promote, but it can be difficult to measure innovation

or identify ways to increase innovation. This project

explored this issue from the standpoint of evaluating

informal social networks to identify boundary spanners

and influential people within innovation subnetworks.

In essence, this project took a seemingly nebulous

problem and applied advanced analytical methods to

tease out answers using an objective, fact-based

approach.

Another outcome from the project included the need

to supplement analytics with a separate datastore for

Business Intelligence reporting, accessible to search

innovation/research initiatives. Aside from supporting

decision making, this will provide a mechanism to be

informed on discussions and research happening

worldwide among team members in disparate

locations. Finally, it highlighted the value that can be

gleaned through data and subsequent analysis.

Therefore, the need was identified to start formal

marketing programs to convince people to submit (or

inform) the global community on their innovation/

research activities. The knowledge sharing was critical.

Without it, GINA would not have been able to perform

the analysis and identify the hidden innovators within

the company.

Summary

This chapter described the Data Analytics Lifecycle,

which is an approach to managing and executing

analytical projects. This approach describes the

process in six phases.

1. Discovery

2. Data preparation

3. Model planning

4. Model building

5. Communicate results

6. Operationalize

Through these steps, data science teams can

identify problems and perform rigorous investigation of

the datasets needed for in-depth analysis. As stated in

the chapter, although much is written about the

analytical methods, the bulk of the time spent on

these kinds of projects is spent in preparation—

namely, in Phases 1 and 2 (discovery and data

preparation). In addition, this chapter discussed the

seven roles needed for a data science team. It is

critical that organizations recognize that Data Science

is a team effort, and a balance of skills is needed to be

successful in tackling Big Data projects and other

complex projects involving data analytics.

Exercises

1. In which phase would the team expect to invest

most of the project time? Why? Where would the

team expect to spend the least time?

2. What are the benefits of doing a pilot program

before a full-scale rollout of a new analytical

methodology? Discuss this in the context of the

mini case study.

3. What kinds of tools would be used in the following

phases, and for which kinds of use scenarios?

a. Phase 2: Data preparation

b. Phase 4: Model building

Bibliography

[1] T. H. Davenport and D. J. Patil, “Data Scientist: The Sexiest Job
of the 21st Century,” Harvard Business Review, October 2012.

[2] J. Manyika, M. Chiu, B. Brown, J. Bughin, R. Dobbs, C.
Roxburgh, and A. H. Byers, “Big Data: The Next Frontier for
Innovation, Competition, and Productivity,” McKinsey Global
Institute, 2011.

[3] “Scientific Method” [Online]. Available:
http://en.wikipedia.org/wiki/Scientific_method.

[4] “CRISP-DM” [Online]. Available:
http://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data

_Mining.

http://en.wikipedia.org/wiki/Scientific_method
http://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining

[5] T. H. Davenport, J. G. Harris, and R. Morison, Analytics at

Work: Smarter Decisions, Better Results, 2010, Harvard Business
Review Press.

[6] D. W. Hubbard, How to Measure Anything: Finding the Value of

Intangibles in Business, 2010, Hoboken, NJ: John Wiley & Sons.
[7] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein and C. Welton,

MAD Skills: New Analysis Practices for Big Data, Watertown, MA
2009.

[8] “List of APIs” [Online]. Available:
http://www.programmableweb.com/apis.

[9] B. Shneiderman [Online]. Available:
http://www.ifp.illinois.edu/nabhcs/abstracts/shneiderman.html.

[10] “Hadoop” [Online]. Available: http://hadoop.apache.org.
[11] “Alpine Miner” [Online]. Available: http://alpinenow.com.
[12] “OpenRefine” [Online]. Available: http://openrefine.org.
[13] “Data Wrangler” [Online]. Available:

http://vis.stanford.edu/wrangler/.
[14] “CRAN” [Online]. Available: http://cran.us.r-project.org.
[15] “SQL” [Online]. Available: http://en.wikipedia.org/wiki/SQL.
[16] “SAS/ACCESS” [Online]. Available:

http://www.sas.com/en_us/software/data-management/access.htm.
[17] “SAS Enterprise Miner” [Online]. Available:

http://www.sas.com/en_us/software/analytics/enterprise-miner.html.
[18] “SPSS Modeler” [Online]. Available: http://www-

03.ibm.com/software/products/en/category/business-analytics.
[19] “Matlab” [Online]. Available:

http://www.mathworks.com/products/matlab/.
[20] “Statistica” [Online]. Available: https://www.statsoft.com.
[21] “Mathematica” [Online]. Available:

http://www.wolfram.com/mathematica/.
[22] “Octave” [Online]. Available:

https://www.gnu.org/software/octave/.
[23] “WEKA” [Online]. Available:

http://www.cs.waikato.ac.nz/ml/weka/.
[24] “MADlib” [Online]. Available: http://madlib.net.

http://www.programmableweb.com/apis
http://www.ifp.illinois.edu/nabhcs/abstracts/shneiderman.html
http://hadoop.apache.org/
http://alpinenow.com/
http://openrefine.org/
http://vis.stanford.edu/wrangler/
http://cran.us.r-project.org/
http://en.wikipedia.org/wiki/SQL
http://www.sas.com/en_us/software/data-management/access.htm
http://www.sas.com/en_us/software/analytics/enterprise-miner.html
http://www-03.ibm.com/software/products/en/category/business-analytics
http://www.mathworks.com/products/matlab/
https://www.statsoft.com/
http://www.wolfram.com/mathematica/
https://www.gnu.org/software/octave/
http://www.cs.waikato.ac.nz/ml/weka/
http://madlib.net/

[25] K. L. Higbee, Your Memory—How It Works and How to

Improve It, New York: Marlowe & Company, 1996.
[26] S. Todd, “Data Science and Big Data Curriculum” [Online].

Available: http://stevetodd.typepad.com/my_weblog/data-science-and-

big-data-curriculum/.
[27] T. H Davenport and D. J. Patil, “Data Scientist: The Sexiest

Job of the 21st Century,” Harvard Business Review, October
2012.

http://stevetodd.typepad.com/my_weblog/data-science-and-big-data-curriculum/

Basic features of RData exploration and analysis with R

Statistical methods for evaluation

3

Review of Basic Data

Analytic Methods

Using R

Key Concepts

The

previous chapter

presented the six phases of the Data Analytics

Lifecycle.

Phase 1: Discovery

Phase 2: Data Preparation

Phase 3: Model Planning

Phase 4: Model Building

Phase 5: Communicate Results

Phase 6: Operationalize

The first three phases involve various aspects of

data exploration. In general, the success of a data

analysis project requires a deep understanding of the

data. It also requires a toolbox for mining and

presenting the data. These activities include the study

of the data in terms of basic statistical measures and

creation of graphs and plots to visualize and identify

relationships and patterns. Several free or commercial

tools are available for exploring, conditioning,

modeling, and presenting data. Because of its

popularity and versatility, the open-source

programming language R is used to illustrate many of

the presented analytical tasks and models in this book.

This chapter introduces the basic functionality of the

R programming language and environment. The first

section gives an overview of how to use R to acquire,

parse, and filter the data as well as how to obtain

some basic descriptive statistics on a dataset. The

second section examines using R to perform

exploratory data analysis tasks using visualization. The

final section focuses on statistical inference, such as

hypothesis testing and analysis of variance in R.

3.1 Introduction to R

R is a programming language and software framework

for statistical analysis and graphics. Available for use

under the GNU General Public License [1], R software

and installation instructions can be obtained via the

Comprehensive R Archive and Network [2]. This

section provides an overview of the basic functionality

of R. In later chapters, this foundation in R is utilized to

demonstrate many of the presented analytical

techniques.

Before delving into specific operations and functions

of R later in this chapter, it is important to understand

the flow of a basic R script to address an analytical

problem. The following R code illustrates a typical

analytical situation in which a dataset is imported, the

contents of the dataset are examined, and some

modeling building tasks are executed. Although the

reader may not yet be familiar with the R syntax, the

code can be followed by reading the embedded

comments, denoted by #. In the following scenario, the

annual sales in U.S. dollars for 10,000 retail customers

have been provided in the form of a comma-

separated-value (CSV) file. The read.csv() function is used

to import the CSV file. This dataset is stored to the R

variable sales using the assignment operator <-.

import a CSV file of the total annual sales for each customer

sales <- read.csv("c:/data/yearly_sales.csv")

examine the imported dataset

head(sales)

summary(sales)

plot num_of_orders vs. sales

plot(sales$num_of_orders,sales$sales_total,

 main="Number of Orders vs. Sales")

perform a statistical analysis (fit a linear regression model)

results <- lm(sales$sales_total ~ sales$num_of_orders)

summary(results)

perform some diagnostics on the fitted model

plot histogram of the residuals

hist(results$residuals, breaks = 800)

In this example, the data file is imported using the

read.csv() function. Once the file has been imported, it is

useful to examine the contents to ensure that the data

was loaded properly as well as to become familiar with

the data. In the example, the head() function, by default,

displays the first six records of sales.

examine the imported dataset

head(sales)

 cust_id sales_total num_of_orders gender

1 100001 800.64 3 F

2 100002 217.53 3 F

3 100003 74.58 2 M

4 100004 498.60 3 M

5 100005 723.11 4 F

6 100006 69.43 2 F

The summary() function provides some descriptive

statistics, such as the mean and median, for each data

column. Additionally, the minimum and maximum

values as well as the 1st and 3rd quartiles are

provided. Because the gender column contains two

possible characters, an “F” (female) or “M” (male), the

summary() function provides the count of each character's

occurrence.

summary(sales)

 cust_id sales_total num_of_orders gender

Min. :100001 Min. : 30.02 Min. : 1.000 F:5035

1st Qu.:102501 1st Qu.: 80.29 1st Qu.: 2.000 M:4965

Median :105001 Median : 151.65 Median : 2.000

Mean :105001 Mean : 249.46 Mean : 2.428

3rd Qu.:107500 3rd Qu.: 295.50 3rd Qu.: 3.000

Max. :110000 Max. :7606.09 Max. :22.000

Plotting a dataset's contents can provide information

about the relationships between the various columns.

In this example, the plot() function generates a

scatterplot of the number of orders (sales$num_of_orders)

against the annual sales (sales$sales_total). The $ is used

to reference a specific column in the dataset sales. The

resulting plot is shown in Figure 3-1.

plot num_of_orders vs. sales

plot(sales$num_of_orders,sales$sales_total,

 main="Number of Orders vs. Sales")

FIGURE 3-1 Graphically examining the data

Each point corresponds to the number of orders and

the total sales for each customer. The plot indicates

that the annual sales are proportional to the number of

orders placed. Although the observed relationship

between these two variables is not purely linear, the

analyst decided to apply linear regression using the lm()

function as a first step in the modeling process.

results <- lm(sales$sales_total ~ sales$num_of_orders)

results

Call:

lm(formula = sales$sales_total ~ sales$num_of_orders)

Coefficients:

 (Intercept) sales$num_of_orders

 -154.1 166.2

The resulting intercept and slope values are –154.1

and 166.2, respectively, for the fitted linear equation.

However, results stores considerably more information

that can be examined with the summary() function. Details

on the contents of results are examined by applying the

attributes() function. Because regression analysis is

presented in more detail later in the book, the reader

should not overly focus on interpreting the following

output.

summary(results)

Call:

lm(formula = sales$sales_total ~ sales$num_of_orders)

Residuals:

 Min 1Q Median 3Q Max

-666.5 -125.5 -26.7 86.6 4103.4

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -154.128 4.129 -37.33 <2e-16 ***

sales$num_of_orders 166.221 1.462 113.66 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 210.8 on 9998 degrees of freedom

Multiple R-squared: 0.5637, Adjusted R-squared: 0.5637

F-statistic: 1.292e+04 on 1 and 9998 DF, p-value: < 2.2e-16

The summary() function is an example of a generic

function. A generic function is a group of functions

sharing the same name but behaving differently

depending on the number and the type of arguments

they receive. Utilized previously, plot() is another

example of a generic function; the plot is determined

by the passed variables. Generic functions are used

throughout this chapter and the book. In the final

portion of the example, the following R code uses the

generic function hist() to generate a histogram (Figure

3-2) of the residuals stored in results. The function call

illustrates that optional parameter values can be

passed. In this case, the number of breaks is specified to

observe the large residuals.

perform some diagnostics on the fitted model

plot histogram of the residuals

hist(results$residuals, breaks = 800)

FIGURE 3-2 Evidence of large residuals

This simple example illustrates a few of the basic

model planning and building tasks that may occur in

Phases 3 and 4 of the Data Analytics Lifecycle.

Throughout this chapter, it is useful to envision how

the presented R functionality will be used in a more

comprehensive analysis.

3.1.1 R GRAPHICAL USER

INTERFACES

R software uses a command-line interface (CLI) that is

similar to the BASH shell in Linux or the interactive

versions of scripting languages such as Python. UNIX

and Linux users can enter command R at the terminal

prompt to use the CLI. For Windows installations, R

comes with RGui.exe, which provides a basic graphical

user interface (GUI). However, to improve the ease of

writing, executing, and debugging R code, several

additional GUIs have been written for R. Popular GUIs

include the R commander [3], Rattle [4], and RStudio

[5]. This section presents a brief overview of RStudio,

which was used to build the R examples in this book.

Figure 3-3 provides a screenshot of the previous R

code example executed in RStudio.

FIGURE 3-3 RStudio GUI

The four highlighted window panes follow.

Scripts: Serves as an area to write and save R
code

Workspace: Lists the datasets and variables in
the R environment

Plots: Displays the plots generated by the R code
and provides a straightforward mechanism to
export the plots

Console: Provides a history of the executed R
code and the output

Additionally, the console pane can be used to obtain

help information on R. Figure 3-4 illustrates that by

entering ?lm at the console prompt, the help details of

the lm() function are provided on the right.

Alternatively, help(lm) could have been entered at the

console prompt.

Functions such as edit() and fix() allow the user to

update the contents of an R variable. Alternatively,

such changes can be implemented with RStudio by

selecting the appropriate variable from the workspace

pane.

R allows one to save the workspace environment,

including variables and loaded libraries, into an .Rdata

file using the save.image() function. An existing .Rdata file

can be loaded using the load.image() function. Tools such

as RStudio prompt the user for whether the developer

wants to save the workspace connects prior to exiting

the GUI.

The reader is encouraged to install R and a preferred

GUI to try out the R examples provided in the book and

utilize the help functionality to access more details

about the discussed topics.

FIGURE 3-4 Accessing help in Rstudio

3.1.2 DATA IMPORT AND

EXPORT

In the annual retail sales example, the dataset was

imported into R using the read.csv() function as in the

following code.

sales <- read.csv("c:/data/yearly_sales.csv")

R uses a forward slash (/) as the separator character

in the directory and file paths. This convention makes

script files somewhat more portable at the expense of

some initial confusion on the part of Windows users,

who may be accustomed to using a backslash (\) as a

separator. To simplify the import of multiple files with

long path names, the setwd() function can be used to set

the working directory for the subsequent import and

export operations, as shown in the following R code.

setwd("c:/data/")

sales <- read.csv("yearly_sales.csv")

Other import functions include read.table() and

read.delim(), which are intended to import other common

file types such as TXT. These functions can also be

used to import the yearly_sales.csv file, as the following

code illustrates.

sales_table <- read.table("yearly_sales.csv", header=TRUE, sep=",")

sales_delim <- read.delim("yearly_sales.csv", sep=",")

The main difference between these import functions

is the default values. For example, the read.delim()

function expects the column separator to be a tab

("\t"). In the event that the numerical data in a data file

uses a comma for the decimal, R also provides two

additional functions—read.csv2() and read.delim2()—to import

such data. Table 3-1 includes the expected defaults for

headers, column separators, and decimal point

notations.

TABLE 3-1 Import Function Defaults

The analogous R functions such as write.table(),

write.csv(), and write.csv2() enable exporting of R datasets

to an external file. For example, the following R code

adds an additional column to the sales dataset and

exports the modified dataset to an external file.

add a column for the average sales per order

sales$per_order <- sales$sales_total/sales$num_of_orders

export data as tab delimited without the row names

write.table(sales,"sales_modified.txt", sep="\t", row.names=FALSE

Sometimes it is necessary to read data from a

database management system (DBMS). R packages

such as DBI [6] and RODBC [7] are available for this

purpose. These packages provide database interfaces

for communication between R and DBMSs such as

MySQL, Oracle, SQL Server, PostgreSQL, and Pivotal

Greenplum. The following R code demonstrates how to

install the RODBC package with the install.packages() function.

The library() function loads the package into the R

workspace. Finally, a connector (conn) is initialized for

connecting to a Pivotal Greenplum database training2 via

open database connectivity (ODBC) with user user. The

training2 database must be defined either in the

/etc/ODBC.ini configuration file or using the Administrative

Tools under the Windows Control Panel.

install.packages("RODBC")

library(RODBC)

conn <- odbcConnect("training2", uid="user", pwd="password")

The connector needs to be present to submit a SQL

query to an ODBC database by using the sqlQuery()

function from the RODBC package. The following R code

retrieves specific columns from the housing table in which

household income (hinc) is greater than $1,000,000.

housing_data <- sqlQuery(conn, "select serialno, state, persons, rooms

 from housing

 where hinc > 1000000")

head(housing_data)

 serialno state persons rooms

1 3417867 6 2 7

2 3417867 6 2 7

3 4552088 6 5 9

4 4552088 6 5 9

5 8699293 6 5 5

6 8699293 6 5 5

Although plots can be saved using the RStudio GUI,

plots can also be saved using R code by specifying the

appropriate graphic devices. Using the jpeg() function,

the following R code creates a new JPEG file, adds a

histogram plot to the file, and then closes the file.

Such techniques are useful when automating standard

reports. Other functions, such as png(), bmp(), pdf(), and

postscript(), are available in R to save plots in the desired

format.

jpeg(file="c:/data/sales_hist.jpeg") # create a new jpeg file

hist(sales$num_of_orders) # export histogram to jpeg

dev.off() # shut off the graphic device

More information on data imports and exports can be

found at http://cran.r-project.org/doc/manuals/r-release/R-data.html,

such as how to import datasets from statistical

software packages including Minitab, SAS, and SPSS.

3.1.3 ATTRIBUTE AND DATA

TYPES

In the earlier example, the sales variable contained a

record for each customer. Several characteristics, such

as total annual sales, number of orders, and gender,

were provided for each customer. In general, these

characteristics or attributes provide the qualitative and

quantitative measures for each item or subject of

interest. Attributes can be categorized into four types:

nominal, ordinal, interval, and ratio (NOIR) [8]. Table 3-

2 distinguishes these four attribute types and shows

the operations they support. Nominal and ordinal

attributes are considered categorical attributes,

whereas interval and ratio attributes are considered

numeric attributes.

TABLE 3-2 NOIR Attribute Types

http://cran.r-project.org/doc/manuals/r-release/R-data.html

Data of one attribute type may be converted to

another. For example, the quality of diamonds {Fair,

Good, Very Good, Premium, Ideal} is considered

ordinal but can be converted to nominal {Good,

Excellent} with a defined mapping. Similarly, a ratio

attribute like Age can be converted into an ordinal

attribute such as {Infant, Adolescent, Adult, Senior}.

Understanding the attribute types in a given dataset is

important to ensure that the appropriate descriptive

statistics and analytic methods are applied and

properly interpreted. For example, the mean and

standard deviation of U.S. postal ZIP codes are not

very meaningful or appropriate. Proper handling of

categorical variables will be addressed in subsequent

chapters. Also, it is useful to consider these attribute

types during the following discussion on R data types.

Numeric, Character, and Logical

Data Types

Like other programming languages, R supports the use

of numeric, character, and logical (Boolean) values.

Examples of such variables are given in the following R

code.

i <- 1 # create a numeric variable

sport <- "football" # create a character variable

flag <- TRUE # create a logical variable

R provides several functions, such as class() and

typeof(), to examine the characteristics of a given

variable. The class() function represents the abstract

class of an object. The typeof() function determines the

way an object is stored in memory. Although i appears

to be an integer, i is internally stored using double

precision. To improve the readability of the code

segments in this section, the inline R comments are

used to explain the code or to provide the returned

values.

class(i) # returns "numeric"

typeof(i) # returns "double"

class(sport) # returns "character"

typeof(sport) # returns "character"

class(flag) # returns "logical"

typeof(flag) # returns "logical"

Additional R functions exist that can test the

variables and coerce a variable into a specific type.

The following R code illustrates how to test if i is an

integer using the is.integer() function and to coerce i into

a new integer variable, j, using the as.integer() function.

Similar functions can be applied for double, character,

and logical types.

is.integer(i) # returns FALSE

#j <- as.integer(i) # coerces contents of i into an integer

#is.integer(j) # returns TRUE

The application of the length() function reveals that the

created variables each have a length of 1. One might

have expected the returned length of sport to have been

8 for each of the characters in the string "football".

However, these three variables are actually one

element, vectors.

length(i) # returns 1

length(flag) # returns 1

length(sport) # returns 1 (not 8 for "football")

Vectors

Vectors are a basic building block for data in R. As seen

previously, simple R variables are actually vectors. A

vector can only consist of values in the same class.

The tests for vectors can be conducted using the

is.vector() function.

is.vector(i) # returns TRUE

is.vector(flag) # returns TRUE

is.vector(sport) # returns TRUE

R provides functionality that enables the easy

creation and manipulation of vectors. The following R

code illustrates how a vector can be created using the

combine function, c() or the colon operator, :, to build a

vector from the sequence of integers from 1 to 5.

Furthermore, the code shows how the values of an

existing vector can be easily modified or accessed. The

code, related to the z vector, indicates how logical

comparisons can be built to extract certain elements of

a given vector.

u <- c("red", "yellow", "blue") # create a vector "red" "yellow" "blue"

u # returns "red" "yellow" "blue"

u[1] # returns "red" (1st element in u)

v <- 1:5 # create a vector 1 2 3 4 5

v # returns 1 2 3 4 5

sum(v) # returns 15

w <- v * 2 # create a vector 2 4 6 8 10

w # returns 2 4 6 8 10

w[3] # returns 6 (the 3rd element of w)

z <- v + w # sums two vectors element by element

z # returns 3 6 9 12 15

z > 8 # returns FALSE FALSE TRUE TRUE TRUE

z[z > 8] # returns 9 12 15

z[z > 8 | z < 5] # returns 3 9 12 15 ("|" denotes "or")

Sometimes it is necessary to initialize a vector of a

specific length and then populate the content of the

vector later. The vector() function, by default, creates a

logical vector. A vector of a different type can be

specified by using the mode parameter. The vector c, an

integer vector of length 0, may be useful when the

number of elements is not initially known and the new

elements will later be added to the end of the vector

as the values become available.

a <- vector(length=3) # create a logical vector of length 3

a # returns FALSE FALSE FALSE

b <- vector(mode="numeric", 3) # create a numeric vector of length 3

typeof(b) # returns "double"

b[2] <- 3.1 # assign 3.1 to the 2nd element

b # returns 0.0 3.1 0.0

c <- vector(mode="integer", 0) # create an integer vector of length 0

c # returns integer(0)

length(c) # returns 0

Although vectors may appear to be analogous to

arrays of one dimension, they are technically

dimensionless, as seen in the following R code. The

concept of arrays and matrices is addressed in the

following discussion.

length(b) # returns 3

dim(b) # returns NULL (an undefined value)

Arrays and Matrices

The array() function can be used to restructure a vector

as an array. For example, the following R code builds a

three-dimensional array to hold the quarterly sales for

three regions over a two-year period and then assign

the sales amount of $158,000 to the second region for

the first quarter of the first year.

the dimensions are 3 regions, 4 quarters, and 2 years

quarterly_sales <- array(0, dim=c(3,4,2))

quarterly_sales[2,1,1] <- 158000

quarterly_sales

, , 1

 [,1] [,2] [,3] [,4]

[1,] 0 0 0 0

[2,] 158000 0 0 0

[3,] 0 0 0 0

, , 2

 [,1] [,2] [,3] [,4]

[1,] 0 0 0 0

[2,] 0 0 0 0

[3,] 0 0 0 0

A two-dimensional array is known as a matrix. The

following code initializes a matrix to hold the quarterly

sales for the three regions. The parameters nrow and ncol

define the number of rows and columns, respectively,

for the sales_matrix.

sales_matrix <- matrix(0, nrow = 3, ncol = 4)

sales_matrix

 [,1] [,2] [,3] [,4]

[1,] 0 0 0 0

[2,] 0 0 0 0

[3,] 0 0 0 0

R provides the standard matrix operations such as

addition, subtraction, and multiplication, as well as the

transpose function t() and the inverse matrix function

matrix.inverse() included in the matrixcalc package. The

following R code builds a 3 × 3 matrix, M, and

multiplies it by its inverse to obtain the identity matrix.

library(matrixcalc)

M <- matrix(c(1,3,3,5,0,4,3,3,3),nrow = 3,ncol = 3) # build a 3x3 matrix

M %*% matrix.inverse(M) # multiply M by inverse(M)

 [,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

Data Frames

Similar to the concept of matrices, data frames provide

a structure for storing and accessing several variables

of possibly different data types. In fact, as the

is.data.frame() function indicates, a data frame was

created by the read.csv() function at the beginning of the

chapter.

#import a CSV file of the total annual sales for each customer

sales <- read.csv("c:/data/yearly_sales.csv")

is.data.frame(sales) # returns TRUE

As seen earlier, the variables stored in the data

frame can be easily accessed using the $ notation. The

following R code illustrates that in this example, each

variable is a vector with the exception of gender, which

was, by a read.csv() default, imported as a factor.

Discussed in detail later in this section, a factor

denotes a categorical variable, typically with a few

finite levels such as “F” and “M” in the case of gender.

length(sales$num_of_orders) # returns 10000 (number of customers)

is.vector(sales$cust_id) # returns TRUE

is.vector(sales$sales_total) # returns TRUE

is.vector(sales$num_of_orders) # returns TRUE

is.vector(sales$gender) # returns FALSE

is.factor(sales$gender) # returns TRUE

Because of their flexibility to handle many data

types, data frames are the preferred input format for

many of the modeling functions available in R. The

following use of the str() function provides the structure

of the sales data frame. This function identifies the

integer and numeric (double) data types, the factor

variables and levels, as well as the first few values for

each variable.

str(sales) # display structure of the data frame object

'data.frame': 10000 obs. of 4 variables:

 $ cust_id : int 100001 100002 100003 100004 100005 100006 ...

 $ sales_total : num 800.6 217.5 74.6 498.6 723.1 ...

 $ num_of_orders: int 3 3 2 3 4 2 2 2 2 2 ...

 $ gender : Factor w/ 2 levels "F","M": 1 1 2 2 1 1 2 2 1 2 ...

In the simplest sense, data frames are lists of

variables of the same length. A subset of the data

frame can be retrieved through subsetting

operators. R's subsetting operators are powerful in

that they allow one to express complex operations in a

succinct fashion and easily retrieve a subset of the

dataset.

extract the fourth column of the sales data frame

sales[,4]

extract the gender column of the sales data frame

sales$gender

retrieve the first two rows of the data frame

sales[1:2,]

retrieve the first, third, and fourth columns

sales[,c(1,3,4)]

retrieve both the cust_id and the sales_total columns

sales[,c("cust_id", "sales_total")]

retrieve all the records whose gender is female

sales[sales$gender=="F",]

The following R code shows that the class of the sales

variable is a data frame. However, the type of the sales

variable is a list. A list is a collection of objects that

can be of various types, including other lists.

class(sales)

"data.frame"

typeof(sales)

"list"

Lists

Lists can contain any type of objects, including other

lists. Using the vector v and the matrix M created in

earlier examples, the following R code creates assortment,

a list of different object types.

build an assorted list of a string, a numeric, a list, a vector,

and a matrix

housing <- list("own", "rent")

assortment <- list("football", 7.5, housing, v, M)

assortment

[[1]]

[1] "football"

[[2]]

[1] 7.5

[[3]]

[[3]][[1]]

[1] "own"

[[3]][[2]]

[1] "rent"

[[4]]

[1] 1 2 3 4 5

[[5]]

 [,1] [,2] [,3]

[1,] 1 5 3

[2,] 3 0 3

[3,] 3 4 3

In displaying the contents of assortment, the use of the

double brackets, [[]], is of particular importance. As the

following R code illustrates, the use of the single set of

brackets only accesses an item in the list, not its

content.

examine the fifth object, M, in the list

class(assortment[5]) # returns "list"

length(assortment[5]) # returns 1

class(assortment[[5]]) # returns "matrix"

length(assortment[[5]]) # returns 9 (for the 3x3 matrix)

As presented earlier in the data frame discussion,

the str() function offers details about the structure of a

list.

str(assortment)

List of 5

 $: chr "football"

 $: num 7.5

 $:List of 2

 ..$: chr "own"

 ..$: chr "rent"

 $: int [1:5] 1 2 3 4 5

 $: num [1:3, 1:3] 1 3 3 5 0 4 3 3 3

Factors

Factors were briefly introduced during the discussion of

the gender variable in the data frame sales. In this case,

gender could assume one of two levels: F or M. Factors can

be ordered or not ordered. In the case of gender, the

levels are not ordered.

class(sales$gender) # returns "factor"

is.ordered(sales$gender) # returns FALSE

Included with the ggplot2 package, the diamonds data

frame contains three ordered factors. Examining the cut

factor, there are five levels in order of improving cut:

Fair, Good, Very Good, Premium, and Ideal. Thus,

sales$gender contains nominal data, and diamonds$cut contains

ordinal data.

head(sales$gender) # display first six values and the levels

F F M M F F

Levels: F M

library(ggplot2)

data(diamonds) # load the data frame into the R workspace

str(diamonds)

'data.frame': 53940 obs. of 10 variables:

 $ carat : num 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 ...

 $ cut : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 ...

 $ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 ...

 $ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 3 5 4 2 ...

 $ depth : num 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ...

 $ table : num 55 61 65 58 58 57 57 55 61 61 ...

 $ price : int 326 326 327 334 335 336 336 337 337 338 ...

 $ x : num 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ...

 $ y : num 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ...

 $ z : num 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ...

head(diamonds$cut) # display first six values and the levels

Ideal Premium Good Premium Good Very Good

Levels: Fair < Good < Very Good < Premium < Ideal

Suppose it is decided to categorize sales$sales_totals into

three groups—small, medium, and big—according to

the amount of the sales with the following code. These

groupings are the basis for the new ordinal factor,

spender, with levels {small, medium, big}.

build an empty character vector of the same length as sales

sales_group <- vector(mode="character",

 length=length(sales$sales_total))

group the customers according to the sales amount

sales_group[sales$sales_total<100] <- "small"

sales_group[sales$sales_total>=100 & sales$sales_total<500] <- "medium"

sales_group[sales$sales_total>=500] <- "big"

create and add the ordered factor to the sales data frame

spender <- factor(sales_group,levels=c("small", "medium", "big"),

 ordered = TRUE)

sales <- cbind(sales,spender)

str(sales$spender)

Ord.factor w/ 3 levels "small"<"medium"<..: 3 2 1 2 3 1 1 1 2 1 ...

head(sales$spender)

big medium small medium big small

Levels: small < medium < big

The cbind() function is used to combine variables

column-wise. The rbind() function is used to combine

datasets row-wise. The use of factors is important in

several R statistical modeling functions, such as

analysis of variance, aov(), presented later in this

chapter, and the use of contingency tables, discussed

next.

Contingency Tables

In R, table refers to a class of objects used to store the

observed counts across the factors for a given dataset.

Such a table is commonly referred to as a contingency

table and is the basis for performing a statistical test

on the independence of the factors used to build the

table. The following R code builds a contingency table

based on the sales$gender and sales$spender factors.

build a contingency table based on the gender and spender factors

sales_table <- table(sales$gender,sales$spender)

sales_table

 small medium big

F 1726 2746 563

M 1656 2723 586

class(sales_table) # returns "table"

typeof(sales_table) # returns "integer"

dim(sales_table) # returns 2 3

performs a chi-squared test

summary(sales_table)

Number of cases in table: 10000

Number of factors: 2

Test for independence of all factors:

 Chisq = 1.516, df = 2, p-value = 0.4686

Based on the observed counts in the table, the

summary() function performs a chi-squared test on the

independence of the two factors. Because the reported

p-value is greater than 0.05, the assumed

independence of the two factors is not rejected.

Hypothesis testing and p-values are covered in more

detail later in this chapter. Next, applying descriptive

statistics in R is examined.

3.1.4 DESCRIPTIVE

STATISTICS

It has already been shown that the summary() function

provides several descriptive statistics, such as the

mean and median, about a variable such as the sales

data frame. The results now include the counts for the

three levels of the spender variable based on the earlier

examples involving factors.

summary(sales)

 cust_id sales_total num_of_orders gender spender

Min. :100001 Min. : 30.02 Min. : 1.000 F:5035 small :3382

1st Qu.:102501 1st Qu.: 80.29 1st Qu.: 2.000 M:4965 medium:5469

Median :105001 Median : 151.65 Median : 2.000 big :1149

Mean :105001 Mean : 249.46 Mean : 2.428

3rd Qu.:107500 3rd Qu.: 295.50 3rd Qu.: 3.000

Max. :110000 Max. :7606.09 Max. :22.000

The following code provides some common R

functions that include descriptive statistics. In

parentheses, the comments describe the functions.

to simplify the function calls, assign

x <- sales$sales_total

y <- sales$num_of_orders

cor(x,y) # returns 0.7508015 (correlation)

cov(x,y) # returns 345.2111 (covariance)

IQR(x) # returns 215.21 (interquartile range)

mean(x) # returns 249.4557 (mean)

median(x) # returns 151.65 (median)

range(x) # returns 30.02 7606.09 (min max)

sd(x) # returns 319.0508 (std. dev.)

var(x) # returns 101793.4 (variance)

The IQR() function provides the difference between

the third and the first quartiles. The other functions are

fairly self-explanatory by their names. The reader is

encouraged to review the available help files for

acceptable inputs and possible options.

The function apply() is useful when the same function

is to be applied to several variables in a data frame.

For example, the following R code calculates the

standard deviation for the first three variables in sales.

In the code, setting MARGIN=2 specifies that the sd()

function is applied over the columns. Other functions,

such as lapply() and sapply(), apply a function to a list or

vector. Readers can refer to the R help files to learn

how to use these functions.

apply(sales[,c(1:3)], MARGIN=2, FUN=sd)

 cust_id sales_total num_of_orders

 2886.895680 319.050782 1.441119

Additional descriptive statistics can be applied with

user-defined functions. The following R code defines a

function, my_range(), to compute the difference between

the maximum and minimum values returned by the

range() function. In general, user-defined functions are

useful for any task or operation that needs to be

frequently repeated. More information on user-defined

functions is available by entering help("function") in the

console.

build a function to provide the difference between

the maximum and the minimum values

my_range <- function(v) {range(v)[2] - range(v)[1]}

my_range(x)

7576.07

3.2 Exploratory Data

Analysis

So far, this chapter has addressed importing and

exporting data in R, basic data types and operations,

and generating descriptive statistics. Functions such as

summary() can help analysts easily get an idea of the

magnitude and range of the data, but other aspects

such as linear relationships and distributions are more

difficult to see from descriptive statistics. For example,

the following code shows a summary view of a data

frame data with two columns x and y. The output shows

the range of x and y, but it's not clear what the

relationship may be between these two variables.

summary(data)

 x y

 Min. :-1.90483 Min. :-2.16545

 1st Qu.:-0.66321 1st Qu.:-0.71451

 Median : 0.09367 Median :-0.03797

 Mean : 0.02522 Mean :-0.02153

 3rd Qu.: 0.65414 3rd Qu.: 0.55738

 Max. : 2.18471 Max. : 1.70199

A useful way to detect patterns and anomalies in the

data is through the exploratory data analysis with

visualization. Visualization gives a succinct, holistic

view of the data that may be difficult to grasp from the

numbers and summaries alone. Variables x and y of the

data frame data can instead be visualized in a

scatterplot (Figure 3-5), which easily depicts the

relationship between two variables. An important facet

of the initial data exploration, visualization assesses

data cleanliness and suggests potentially important

relationships in the data prior to the model planning

and building phases.

FIGURE 3-5 A scatterplot can easily show if x and y

share a relation

The code to generate data as well as Figure 3-5 is

shown next.

x <- rnorm(50)

y <- x + rnorm(50, mean=0, sd=0.5)

data <- as.data.frame(cbind(x, y))

summary(data)

library(ggplot2)

ggplot(data, aes(x=x, y=y)) +

 geom_point(size=2) +

 ggtitle("Scatterplot of X and Y") +

 theme(axis.text=element_text(size=12),

 axis.title = element_text(size=14),

 plot.title = element_text(size=20, face="bold"))

Exploratory data analysis [9] is a data analysis

approach to reveal the important characteristics of a

dataset, mainly through visualization. This section

discusses how to use some basic visualization

techniques and the plotting feature in R to perform

exploratory data analysis.

3.2.1 VISUALIZATION

BEFORE ANALYSIS

To illustrate the importance of visualizing data,

consider Anscombe's quartet. Anscombe's quartet

consists of four datasets, as shown in Figure 3-6. It was

constructed by statistician Francis Anscombe [10] in

1973 to demonstrate the importance of graphs in

statistical analyses.

FIGURE 3-6 Anscombe's quartet

The four datasets in Anscombe's quartet have nearly

identical statistical properties, as shown in Table 3-3.

TABLE 3-3 Statistical Properties of Anscombe's Quartet

Statistical

Property

Valu

e

Mean of x 9

Variance of y 11

Mean of y 7.50 (to 2 decimal points)

Variance of y 4.12 or 4.13 (to 2 decimal points)

Correlations between x and

y

0.816

Linear regression line y = 3.00+0.50x (to 2 decimal
points)

Based on the nearly identical statistical properties

across each dataset, one might conclude that these

four datasets are quite similar. However, the

scatterplots in Figure 3-7 tell a different story. Each

dataset is plotted as a scatterplot, and the fitted lines

are the result of applying linear regression models. The

estimated regression line fits Dataset 1 reasonably

well. Dataset 2 is definitely nonlinear. Dataset 3

exhibits a linear trend, with one apparent outlier at x =

13. For Dataset 4, the regression line fits the dataset

quite well. However, with only points at two x values, it

is not possible to determine that the linearity

assumption is proper.

FIGURE 3-7 Anscombe's quartet visualized as

scatterplots

The R code for generating Figure 3-7 is shown next.

It requires the R package ggplot2 [11], which can be

installed simply by running the command

install.packages("ggplot2"). The anscombe dataset for the plot is

included in the standard R distribution. Enter data() for a

list of datasets included in the R base distribution.

Enter data(DatasetName) to make a dataset available in the

current workspace.

In the code that follows, variable levels is created

using the gl() function, which generates factors of four

levels (1, 2, 3, and 4), each repeating 11 times.

Variable mydata is created using the with(data, expression)

function, which evaluates an expression in an environment

constructed from data. In this example, the data is the

anscombe dataset, which includes eight attributes: x1, x2, x3,

x4, y1, y2, y3, and y4. The expression part in the code creates

a data frame from the anscombe dataset, and it only

includes three attributes: x, y, and the group each data

point belongs to (mygroup).

install.packages("ggplot2") # not required if package has been installed

data(anscombe) # load the anscombe dataset into the current workspace

anscombe

 x1 x2 x3 x4 y1 y2 y3 y4

1 10 10 10 8 8.04 9.14 7.46 6.58

2 8 8 8 8 6.95 8.14 6.77 5.76

3 13 13 13 8 7.58 8.74 12.74 7.71

4 9 9 9 8 8.81 8.77 7.11 8.84

5 11 11 11 8 8.33 9.26 7.81 8.47

6 14 14 14 8 9.96 8.10 8.84 7.04

7 6 6 6 8 7.24 6.13 6.08 5.25

8 4 4 4 19 4.26 3.10 5.39 12.50

9 12 12 12 8 10.84 9.13 8.15 5.56

10 7 7 7 8 4.82 7.26 6.42 7.91

11 5 5 5 8 5.68 4.74 5.73 6.89

nrow(anscombe) # number of rows

[1] 11

generates levels to indicate which group each data point belongs to

levels <- gl(4, nrow(anscombe))

levels

[1] 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3

[34] 4 4 4 4 4 4 4 4 4 4 4

Levels: 1 2 3 4

Group anscombe into a data frame

mydata <- with(anscombe, data.frame(x=c(x1,x2,x3,x4), y=c(y1,y2,y3,y4),

 mygroup=levels))

mydata

 x y mygroup

1 10 8.04 1

2 8 6.95 1

3 13 7.58 1

4 9 8.81 1

...

41 19 12.50 4

42 8 5.56 4

43 8 7.91 4

44 8 6.89 4

Make scatterplots using the ggplot2 package

library(ggplot2)

theme_set(theme_bw()) # set plot color theme

create the four plots of Figure 3-7

ggplot(mydata, aes(x,y)) +

 geom_point(size=4) +

 geom_smooth(method="lm", fill=NA, fullrange=TRUE) +

 facet_wrap(~mygroup)

3.2.2 DIRTY DATA

This section addresses how dirty data can be detected

in the data exploration phase with visualizations. In

general, analysts should look for anomalies, verify the

data with domain knowledge, and decide the most

appropriate approach to clean the data.

Consider a scenario in which a bank is conducting

data analyses of its account holders to gauge

customer retention. Figure 3-8 shows the age

distribution of the account holders.

FIGURE 3-8 Age distribution of bank account holders

If the age data is in a vector called age, the graph can

be created with the following R script:

hist(age, breaks=100, main="Age Distribution of Account Holders",

 xlab="Age", ylab="Frequency", col="gray")

The figure shows that the median age of the account

holders is around 40. A few accounts with account

holder age less than 10 are unusual but plausible.

These could be custodial accounts or college savings

accounts set up by the parents of young children.

These accounts should be retained for future analyses.

However, the left side of the graph shows a huge

spike of customers who are zero years old or have

negative ages. This is likely to be evidence of missing

data. One possible explanation is that the null age

values could have been replaced by 0 or negative

values during the data input. Such an occurrence may

be caused by entering age in a text box that only

allows numbers and does not accept empty values. Or

it might be caused by transferring data among several

systems that have different definitions for null values

(such as NULL, NA, 0, −1, or −2). Therefore, data

cleansing needs to be performed over the accounts

with abnormal age values. Analysts should take a

closer look at the records to decide if the missing data

should be eliminated or if an appropriate age value

can be determined using other available information

for each of the accounts.

In R, the is.na() function provides tests for missing

values. The following example creates a vector x where

the fourth value is not available (NA). The is.na() function

returns TRUE at each NA value and FALSE otherwise.

x <- c(1, 2, 3, NA, 4)

is.na(x)

[1] FALSE FALSE FALSE TRUE FALSE

Some arithmetic functions, such as mean(), applied to

data containing missing values can yield an NA result. To

prevent this, set the na.rm parameter to TRUE to remove

the missing value during the function's execution.

mean(x)

[1] NA

mean(x, na.rm=TRUE)

[1] 2.5

The na.exclude() function returns the object with

incomplete cases removed.

DF <- data.frame(x = c(1, 2, 3), y = c(10, 20, NA))

DF

 x y

1 1 10

2 2 20

3 3 NA

DF1 <- na.exclude(DF)

DF1

 x y

1 1 10

2 2 20

Account holders older than 100 may be due to bad

data caused by typos. Another possibility is that these

accounts may have been passed down to the heirs of

the original account holders without being updated. In

this case, one needs to further examine the data and

conduct data cleansing if necessary. The dirty data

could be simply removed or filtered out with an age

threshold for future analyses. If removing records is

not an option, the analysts can look for patterns within

the data and develop a set of heuristics to attack the

problem of dirty data. For example, wrong age values

could be replaced with approximation based on the

nearest neighbor—the record that is the most similar

to the record in question based on analyzing the

differences in all the other variables besides age.

Figure 3-9 presents another example of dirty data.

The distribution shown here corresponds to the age of

mortgages in a bank's home loan portfolio. The

mortgage age is calculated by subtracting the

origination date of the loan from the current date. The

vertical axis corresponds to the number of mortgages

at each mortgage age.

FIGURE 3-9 Distribution of mortgage in years since

origination from a bank's home loan portfolio

If the data is in a vector called mortgage, Figure 3-9 can

be produced by the following R script.

hist(mortgage, breaks=10, xlab="Mortgage Age", col="gray",

 main="Portfolio Distribution, Years Since Origination")

Figure 3-9 shows that the loans are no more than 10

years old, and these 10-year-old loans have a

disproportionate frequency compared to the rest of the

population. One possible explanation is that the 10-

year-old loans do not only include loans originated 10

years ago, but also those originated earlier than that.

In other words, the 10 in the x-axis actually means ≥

10. This sometimes happens when data is ported from

one system to another or because the data provider

decided, for some reason, not to distinguish loans that

are more than 10 years old. Analysts need to study the

data further and decide the most appropriate way to

perform data cleansing.

Data analysts should perform sanity checks against

domain knowledge and decide if the dirty data needs

to be eliminated. Consider the task to find out the

probability of mortgage loan default. If the past

observations suggest that most defaults occur before

about the 4th year and 10-year-old mortgages rarely

default, it may be safe to eliminate the dirty data and

assume that the defaulted loans are less than 10 years

old. For other analyses, it may become necessary to

track down the source and find out the true origination

dates.

Dirty data can occur due to acts of omission. In the

sales data used at the beginning of this chapter, it was

seen that the minimum number of orders was 1 and

the minimum annual sales amount was $30.02. Thus,

there is a strong possibility that the provided dataset

did not include the sales data on all customers, just

the customers who purchased something during the

past year.

3.2.3 VISUALIZING A

SINGLE VARIABLE

Using visual representations of data is a hallmark of

exploratory data analyses: letting the data speak to its

audience rather than imposing an interpretation on the

data a priori. Sections 3.2.3 and 3.2.4 examine ways of

displaying data to help explain the underlying

distributions of a single variable or the relationships of

two or more variables.

R has many functions available to examine a single

variable. Some of these functions are listed in Table 3-

4.

TABLE 3-4 Example Functions for Visualizing a Single

Variable

Functio

n

Purpos

e

plot(data) Scatterplot where x is the index and y is the value;

suitable for low-volume data

barplot(data) Barplot with vertical or horizontal bars

dotchart(data
)

Cleveland dot plot [12]

hist(data) Histogram

plot(density(
data))

Density plot (a continuous histogram)

stem(data) Stem-and-leaf plot

rug(data) Add a rug representation (1-d plot) of the data to an
existing plot

Dotchart and Barplot

Dotchart and barplot portray continuous values with

labels from a discrete variable. A dotchart can be

created in R with the function dotchart(x, label=...), where x

is a numeric vector and label is a vector of categorical

labels for x. A barplot can be created with the

barplot(height) function, where height represents a

vector or matrix. Figure 3-10 shows (a) a dotchart and

(b) a barplot based on the mtcars dataset, which includes

the fuel consumption and 10 aspects of automobile

design and performance of 32 automobiles. This

dataset comes with the standard R distribution.

The plots in Figure 3-10 can be produced with the

following R code.

data(mtcars)

dotchart(mtcars$mpg,labels=row.names(mtcars),cex=.7,

 main="Miles Per Gallon (MPG) of Car Models",

 xlab="MPG")

barplot(table(mtcars$cyl), main="Distribution of Car Cylinder Counts",

 xlab="Number of Cylinders")

Histogram and Density Plot

Figure 3-11(a) includes a histogram of household

income. The histogram shows a clear concentration of

low household incomes on the left and the long tail of

the higher incomes on the right.

FIGURE 3-10 (a) Dotchart on the miles per gallon of

cars and (b) Barplot on the distribution of car cylinder

counts

FIGURE 3-11 (a) Histogram and (b) Density plot of

household income

Figure 3-11(b) shows a density plot of the logarithm

of household income values, which emphasizes the

distribution. The income distribution is concentrated in

the center portion of the graph. The code to generate

the two plots in Figure 3-11 is provided next. The rug()

function creates a one-dimensional density plot on the

bottom of the graph to emphasize the distribution of

the observation.

randomly generate 4000 observations from the log normal distribution

income <- rlnorm(4000, meanlog = 4, sdlog = 0.7)

summary(income)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 4.301 33.720 54.970 70.320 88.800 659.800

income <- 1000*income

summary(income)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 4301 33720 54970 70320 88800 659800

plot the histogram

hist(income, breaks=500, xlab="Income", main="Histogram of Income")

density plot

plot(density(log10(income), adjust=0.5),

 main="Distribution of Income (log10 scale)")

add rug to the density plot

rug(log10(income))

In the data preparation phase of the Data Analytics

Lifecycle, the data range and distribution can be

obtained. If the data is skewed, viewing the logarithm

of the data (if it's all positive) can help detect

structures that might otherwise be overlooked in a

graph with a regular, nonlogarithmic scale.

When preparing the data, one should look for signs

of dirty data, as explained in the previous section.

Examining if the data is unimodal or multimodal will

give an idea of how many distinct populations with

different behavior patterns might be mixed into the

overall population. Many modeling techniques assume

that the data follows a normal distribution. Therefore,

it is important to know if the available dataset can

match that assumption before applying any of those

modeling techniques.

Consider a density plot of diamond prices (in USD).

Figure 3-12(a) contains two density plots for premium

and ideal cuts of diamonds. The group of premium cuts

is shown in red, and the group of ideal cuts is shown in

blue. The range of diamond prices is wide—in this case

ranging from around $300 to almost $20,000. Extreme

values are typical of monetary data such as income,

customer value, tax liabilities, and bank account sizes.

Figure 3-12(b) shows more detail of the diamond

prices than Figure 3-12(a) by taking the logarithm. The

two humps in the premium cut represent two distinct

groups of diamond prices: One group centers around

log price = 2.9 (where the price is about $794), and

the other centers around log price = 3.7 (where the

price is about $5,012). The ideal cut contains three

humps, centering around 2.9, 3.3, and 3.7 respectively.

The R script to generate the plots in Figure 3-12 is

shown next. The diamonds dataset comes with the ggplot2

package.

library("ggplot2")

data(diamonds) # load the diamonds dataset from ggplot2

Only keep the premium and ideal cuts of diamonds

niceDiamonds <- diamonds[diamonds$cut=="Premium" |

 diamonds$cut=="Ideal",]

summary(niceDiamonds$cut)

 Fair Good Very Good Premium Ideal

 0 0 0 13791 21551

plot density plot of diamond prices

ggplot(niceDiamonds, aes(x=price, fill=cut)) +

 geom_density(alpha = .3, color=NA)

plot density plot of the log10 of diamond prices

ggplot(niceDiamonds, aes(x=log10(price), fill=cut)) +

 geom_density(alpha = .3, color=NA)

As an alternative to ggplot2, the lattice package

provides a function called densityplot() for making simple

density plots.

10

10

FIGURE 3-12 Density plots of (a) diamond prices and

(b) the logarithm of diamond prices

3.2.4 EXAMINING MULTIPLE

VARIABLES

A scatterplot (shown previously in Figure 3-1 and

Figure 3-5) is a simple and widely used visualization for

finding the relationship among multiple variables. A

scatterplot can represent data with up to five variables

using x-axis, y-axis, size, color, and shape. But usually

only two to four variables are portrayed in a scatterplot

to minimize confusion. When examining a scatterplot,

one needs to pay close attention to the possible

relationship between the variables. If the functional

relationship between the variables is somewhat

pronounced, the data may roughly lie along a straight

line, a parabola, or an exponential curve. If variable y is

related exponentially to x, then the plot of x versus log(y)

is approximately linear. If the plot looks more like a

cluster without a pattern, the corresponding variables

may have a weak relationship.

The scatterplot in Figure 3-13 portrays the

relationship of two variables:x and y. The red line

shown on the graph is the fitted line from the linear

regression. Linear regression will be revisited in

Chapter 6, “Advanced Analytical Theory and Methods:

Regression.” Figure 3-13 shows that the regression line

does not fit the data well. This is a case in which linear

regression cannot model the relationship between the

variables. Alternative methods such as the loess()

function can be used to fit a nonlinear line to the data.

The blue curve shown on the graph represents the

LOESS curve, which fits the data better than linear

regression.

FIGURE 3-13 Examining two variables with regression

The R code to produce Figure 3-13 is as follows. The

runif(75,0,10) generates 75 numbers between 0 to 10 with

random deviates, and the numbers conform to the

uniform distribution. The rnorm(75,0,20) generates 75

numbers that conform to the normal distribution, with

the mean equal to 0 and the standard deviation equal

to 20. The points() function is a generic function that

draws a sequence of points at the specified

coordinates. Parameter type="l" tells the function to draw

a solid line. The col parameter sets the color of the line,

where 2 represents the red color and 4 represents the

blue color.

75 numbers between 0 and 10 of uniform distribution

x <- runif(75, 0, 10)

x <- sort(x)

y <- 200 + x^3 - 10 * x^2 + x + rnorm(75, 0, 20)

lr <- lm(y ~ x) # linear regression

poly <- loess(y ~ x) # LOESS

fit <- predict(poly) # fit a nonlinear line

plot(x,y)

draw the fitted line for the linear regression

points(x, lr$coefficients[1] + lr$coefficients[2] * x,

 type = "l", col = 2)

draw the fitted line with LOESS

points(x, fit, type = "l", col = 4)

Dotchart and Barplot

Dotchart and barplot from the previous section can

visualize multiple variables. Both of them use color as

an additional dimension for visualizing the data.

For the same mtcars dataset, Figure 3-14 shows a

dotchart that groups vehicle cylinders at the y-axis and

uses colors to distinguish different cylinders. The

vehicles are sorted according to their MPG values. The

code to generate Figure 3-14 is shown next.

FIGURE 3-14 Dotplot to visualize multiple variables

sort by mpg

cars <- mtcars[order(mtcars$mpg),]

grouping variable must be a factor

cars$cyl <- factor(cars$cyl)

cars$color[cars$cyl==4] <- "red"

cars$color[cars$cyl==6] <- "blue"

cars$color[cars$cyl==8] <- "darkgreen"

dotchart(cars$mpg, labels=row.names(cars), cex=.7, groups= cars$cyl,

 main="Miles Per Gallon (MPG) of Car Models\nGrouped by Cylinder",

 xlab="Miles Per Gallon", color=cars$color, gcolor="black")

The barplot in Figure 3-15 visualizes the distribution

of car cylinder counts and number of gears. The x-axis

represents the number of cylinders, and the color

represents the number of gears. The code to generate

Figure 3-15 is shown next.

FIGURE 3-15 Barplot to visualize multiple variables

counts <- table(mtcars$gear, mtcars$cyl)

barplot(counts, main="Distribution of Car Cylinder Counts and Gears",

 xlab="Number of Cylinders", ylab="Counts",

 col=c("#0000FFFF", "#0080FFFF", "#00FFFFFF"),

 legend = rownames(counts), beside=TRUE,

 args.legend = list(x="top", title = "Number of Gears"))

Box-and-Whisker Plot

Box-and-whisker plots show the distribution of a

continuous variable for each value of a discrete

variable. The box-and-whisker plot in Figure 3-16

visualizes mean household incomes as a function of

region in the United States. The first digit of the U.S.

postal (“ZIP”) code corresponds to a geographical

region in the United States. In Figure 3-16, each data

point corresponds to the mean household income from

a particular zip code. The horizontal axis represents

the first digit of a zip code, ranging from 0 to 9, where

0 corresponds to the northeast region of the United

States (such as Maine, Vermont, and Massachusetts),

and 9 corresponds to the southwest region (such as

California and Hawaii). The vertical axis represents the

logarithm of mean household incomes. The logarithm

is taken to better visualize the distribution of the mean

household incomes.

FIGURE 3-16 A box-and-whisker plot of mean

household income and geographical region

In this figure, the scatterplot is displayed beneath

the box-and-whisker plot, with some jittering for the

overlap points so that each line of points widens into a

strip. The “box” of the box-and-whisker shows the

range that contains the central 50% of the data, and

the line inside the box is the location of the median

value. The upper and lower hinges of the boxes

correspond to the first and third quartiles of the data.

The upper whisker extends from the hinge to the

highest value that is within 1.5* IQR of the hinge. The

lower whisker extends from the hinge to the lowest

value within 1.5 * IQR of the hinge. IQR is the inter-

quartile range, as discussed in Section 3.1.4. The

points outside the whiskers can be considered possible

outliers.

The graph shows how household income varies by

region. The highest median incomes are in region 0

and region 9. Region 0 is slightly higher, but the boxes

for the two regions overlap enough that the difference

between the two regions probably is not significant.

The lowest household incomes tend to be in region 7,

which includes states such as Louisiana, Arkansas, and

Oklahoma.

Assuming a data frame called DF contains two

columns (MeanHouseholdIncome and Zip1), the following R script

uses the ggplot2 library [11] to plot a graph that is

similar to Figure 3-16.

library(ggplot2)

plot the jittered scatterplot w/ boxplot

color-code points with zip codes

the outlier.size=0 prevents the boxplot from plotting the outlier

ggplot(data=DF, aes(x=as.factor(Zip1), y=log10(MeanHouseholdIncome))) +

 geom_point(aes(color=factor(Zip1)), alpha=0.2, position="jitter") +

 geom_boxplot(outlier.size=0, alpha=0.1) +

 guides(colour=FALSE) +

 ggtitle ("Mean Household Income by Zip Code")

Alternatively, one can create a simple box-and-

whisker plot with the boxplot() function provided by the R

base package.

Hexbinplot for Large Datasets

This chapter has shown that scatterplot as a popular

visualization can visualize data containing one or more

variables. But one should be careful about using it on

high-volume data. If there is too much data, the

structure of the data may become difficult to see in a

scatterplot. Consider a case to compare the logarithm

of household income against the years of education, as

shown in Figure 3-17. The cluster in the scatterplot on

the left (a) suggests a somewhat linear relationship of

the two variables. However, one cannot really see the

structure of how the data is distributed inside the

cluster. This is a Big Data type of problem. Millions or

billions of data points would require different

approaches for exploration, visualization, and analysis.

FIGURE 3-17 (a) Scatterplot and (b) Hexbinplot of

household income against years of education

Although color and transparency can be used in a

scatterplot to address this issue, a hexbinplot is

sometimes a better alternative. A hexbinplot combines

the ideas of scatterplot and histogram. Similar to a

scatterplot, a hexbinplot visualizes data in the x-axis

and y-axis. Data is placed into hexbins, and the third

dimension uses shading to represent the concentration

of data in each hexbin.

In Figure 3-17(b), the same data is plotted using a

hexbinplot. The hexbinplot shows that the data is more

densely clustered in a streak that runs through the

center of the cluster, roughly along the regression line.

The biggest concentration is around 12 years of

education, extending to about 15 years.

In Figure 3-17, note the outlier data at MeanEducation=0.

These data points may correspond to some missing

data that needs further cleansing.

Assuming the two variables MeanHouseholdIncome and

MeanEducation are from a data frame named zcta, the

scatterplot of Figure 3-17(a) is plotted by the following

R code.

plot the data points

plot(log10(MeanHouseholdIncome) ~ MeanEducation, data=zcta)

add a straight fitted line of the linear regression

abline(lm(log10(MeanHouseholdIncome) ~ MeanEducation, data=zcta), col='red')

Using the zcta data frame, the hexbinplot of Figure 3-

17(b) is plotted by the following R code. Running the

code requires the use of the hexbin package, which can

be installed by running install.packages("hexbin").

library(hexbin)

"g" adds the grid, "r" adds the regression line

sqrt transform on the count gives more dynamic range to the shading

inv provides the inverse transformation function of trans

hexbinplot(log10(MeanHouseholdIncome) ~ MeanEducation,

 data=zcta, trans = sqrt, inv = function(x) x^2, type=c("g", "r"))

Scatterplot Matrix

A scatterplot matrix shows many scatterplots in a

compact, side-by-side fashion. The scatterplot matrix,

therefore, can visually represent multiple attributes of

a dataset to explore their relationships, magnify

differences, and disclose hidden patterns.

Fisher's iris dataset [13] includes the measurements

in centimeters of the sepal length, sepal width, petal

length, and petal width for 50 flowers from three

species of iris. The three species are setosa, versicolor,

and virginica. The iris dataset comes with the standard

R distribution.

In Figure 3-18, all the variables of Fisher's iris dataset

(sepal length, sepal width, petal length, and petal

width) are compared in a scatterplot matrix. The three

different colors represent three species of iris flowers.

The scatterplot matrix in Figure 3-18 allows its viewers

to compare the differences across the iris species for

any pairs of attributes.

FIGURE 3-18 Scatterplot matrix of Fisher's [13] iris

dataset

Consider the scatterplot from the first row and third

column of Figure 3-18, where sepal length is compared

against petal length. The horizontal axis is the petal

length, and the vertical axis is the sepal length. The

scatterplot shows that versicolor and virginica share

similar sepal and petal lengths, although the latter has

longer petals. The petal lengths of all setosa are about

the same, and the petal lengths are remarkably

shorter than the other two species. The scatterplot

shows that for versicolor and virginica, sepal length

grows linearly with the petal length.

The R code for generating the scatterplot matrix is

provided next.

define the colors

colors <- c("red", "green", "blue")

draw the plot matrix

pairs(iris[1:4], main = "Fisher's Iris Dataset",

 pch = 21, bg = colors[unclass(iris$Species)])

set graphical parameter to clip plotting to the figure region

par(xpd = TRUE)

add legend

legend(0.2, 0.02, horiz = TRUE, as.vector(unique(iris$Species)),

 fill = colors, bty = "n")

The vector colors defines the color scheme for the

plot. It could be changed to something like colors <-

c("gray50", "white", "black") to make the scatterplots

grayscale.

Analyzing a Variable over Time

Visualizing a variable over time is the same as

visualizing any pair of variables, but in this case the

goal is to identify time-specific patterns.

Figure 3-19 plots the monthly total numbers of

international airline passengers (in thousands) from

January 1940 to December 1960. Enter plot (AirPassengers)

in the R console to obtain a similar graph. The plot

shows that, for each year, a large peak occurs mid-

year around July and August, and a small peak

happens around the end of the year, possibly due to

the holidays. Such a phenomenon is referred to as a

seasonality effect.

FIGURE 3-19 Airline passenger counts from 1949 to

1960

Additionally, the overall trend is that the number of

air passengers steadily increased from 1949 to

Chapter 8, “Advanced Analytical Theory and Methods:

Time Series Analysis,” discusses the analysis of such

datasets in greater detail.

3.2.5 DATA EXPLORATION

VERSUS PRESENTATION

Using visualization for data exploration is different

from presenting results to stakeholders. Not every type

of plot is suitable for all audiences. Most of the plots

presented earlier try to detail the data as clearly as

possible for data scientists to identify structures and

relationships. These graphs are more technical in

nature and are better suited to technical audiences

such as data scientists. Nontechnical stakeholders,

however, generally prefer simple, clear graphics that

focus on the message rather than the data.

Figure 3-20 shows the density plot on the distribution

of account values from a bank. The data has been

converted to the log scale. The plot includes a rug on

the bottom to show the distribution of the variable.

This graph is more suitable for data scientists and

business analysts because it provides information that

can be relevant to the downstream analysis. The graph

shows that the transformed account values follow an

approximate normal distribution, in the range from

$100 to $10,000,000. The median account value is

approximately $30,000 (10), with the majority of the

accounts between $1,000 (10) and $1,000,000 (10).

10

4.5

3 6

FIGURE 3-20 Density plots are better to show to data

scientists

Density plots are fairly technical, and they contain so

much information that they would be difficult to

explain to less technical stakeholders. For example, it

would be challenging to explain why the account

values are in the log scale, and such information is

not relevant to stakeholders. The same message can

be conveyed by partitioning the data into log-like bins

and presenting it as a histogram. As can be seen in

Figure 3-21, the bulk of the accounts are in the

$1,000–1,000,000 range, with the peak concentration

in the $10–50K range, extending to $500K. This

portrayal gives the stakeholders a better sense of the

customer base than the density plot shown in Figure 3-

20.

10

Note that the bin sizes should be carefully chosen to

avoid distortion of the data. In this example, the bins

in Figure 3-21 are chosen based on observations from

the density plot in Figure 3-20. Without the density

plot, the peak concentration might be just due to the

somewhat arbitrary appearing choices for the bin

sizes.

This simple example addresses the different needs of

two groups of audience: analysts and stakeholders.

Chapter 12, “The Endgame, or Putting It All Together,”

further discusses the best practices of delivering

presentations to these two groups.

Following is the R code to generate the plots in

Figure 3-20 and Figure 3-21.

Generate random log normal income data

income = rlnorm(5000, meanlog=log(40000), sdlog=log(5))

Part I: Create the density plot

plot(density(log10(income), adjust=0.5),

 main="Distribution of Account Values (log10 scale)")

Add rug to the density plot

rug(log10(income))

Part II: Make the histogram

Create "log-like bins"

breaks = c(0, 1000, 5000, 10000, 50000, 100000, 5e5, 1e6, 2e7)

Create bins and label the data

bins = cut(income, breaks, include.lowest=T,

 labels = c("< 1K", "1-5K", "5-10K", "10-50K",

 "50-100K", "100-500K", "500K-1M", "> 1M"))

Plot the bins

plot(bins, main = "Distribution of Account Values",

 xlab = "Account value ($ USD)",

 ylab = "Number of Accounts", col="blue")

FIGURE 3-21 Histograms are better to show to

stakeholders

3.3 Statistical Methods for

Evaluation

Visualization is useful for data exploration and

presentation, but statistics is crucial because it may

exist throughout the entire Data Analytics Lifecycle.

Statistical techniques are used during the initial data

exploration and data preparation, model building,

evaluation of the final models, and assessment of how

the new models improve the situation when deployed

in the field. In particular, statistics can help answer the

following questions for data analytics:

Model Building and Planning

What are the best input variables for the
model?

Can the model predict the outcome given the
input?

Model Evaluation

Is the model accurate?

Does the model perform better than an
obvious guess?

Does the model perform better than another
candidate model?

Model Deployment

Is the prediction sound?

Does the model have the desired effect (such
as reducing the cost)?

This section discusses some useful statistical tools

that may answer these questions.

3.3.1 HYPOTHESIS TESTING

When comparing populations, such as testing or

evaluating the difference of the means from two

samples of data (Figure 3-22), a common technique to

assess the difference or the significance of the

difference is hypothesis testing.

FIGURE 3-22 Distributions of two samples of data

The basic concept of hypothesis testing is to form an

assertion and test it with data. When performing

hypothesis tests, the common assumption is that there

is no difference between two samples. This assumption

is used as the default position for building the test or

conducting a scientific experiment. Statisticians refer

to this as the null hypothesis (H). The alternative

hypothesis (H) is that there is a difference between

two samples. For example, if the task is to identify the

effect of drug A compared to drug B on patients, the

0

A

null hypothesis and alternative hypothesis would be

this.

H : Drug A and drug B have the same effect on
patients.

H : Drug A has a greater effect than drug B on
patients.

If the task is to identify whether advertising

Campaign C is effective on reducing customer churn,

the null hypothesis and alternative hypothesis would

be as follows.

H : Campaign C does not reduce customer churn
better than the current campaign method.

H : Campaign C does reduce customer churn
better than the current campaign.

It is important to state the null hypothesis and

alternative hypothesis, because misstating them is

likely to undermine the subsequent steps of the

hypothesis testing process. A hypothesis test leads to

either rejecting the null hypothesis in favor of the

alternative or not rejecting the null hypothesis.

Table 3-5 includes some examples of null and

alternative hypotheses that should be answered during

the analytic lifecycle.

0

A

0

A

TABLE 3-5 Example Null Hypotheses and Alternative

Hypotheses

Once a model is built over the training data, it needs

to be evaluated over the testing data to see if the

proposed model predicts better than the existing

model currently being used. The null hypothesis is that

the proposed model does not predict better than the

existing model. The alternative hypothesis is that the

proposed model indeed predicts better than the

existing model. In accuracy forecast, the null model

could be that the sales of the next month are the same

as the prior month. The hypothesis test needs to

evaluate if the proposed model provides a better

prediction. Take a recommendation engine as an

example. The null hypothesis could be that the new

algorithm does not produce better recommendations

than the current algorithm being deployed. The

alternative hypothesis is that the new algorithm

produces better recommendations than the old

algorithm.

When evaluating a model, sometimes it needs to be

determined if a given input variable improves the

model. In regression analysis (Chapter 6), for example,

this is the same as asking if the regression coefficient

for a variable is zero. The null hypothesis is that the

coefficient is zero, which means the variable does not

have an impact on the outcome. The alternative

hypothesis is that the coefficient is nonzero, which

means the variable does have an impact on the

outcome.

A common hypothesis test is to compare the means

of two populations. Two such hypothesis tests are

discussed in Section 3.3.2.

3.3.2 DIFFERENCE OF

MEANS

Hypothesis testing is a common approach to draw

inferences on whether or not the two populations,

denoted pop1 and pop2, are different from each other.

This section provides two hypothesis tests to compare

the means of the respective populations based on

samples randomly drawn from each population.

Specifically, the two hypothesis tests in this section

consider the following null and alternative hypotheses.

H : μ = μ

H : μ ≠ μ

The μ , and μ denote the population means of pop1

and pop2, respectively.

The basic testing approach is to compare the

observed sample means, and , corresponding to

each population. If the values of and are

approximately equal to each other, the distributions of

 and overlap substantially (Figure 3-23), and the

null hypothesis is supported. A large observed

difference between the sample means indicates that

the null hypothesis should be rejected. Formally, the

difference in means can be tested using Student's t-

test or the Welch's t-test.

FIGURE 3-23 Overlap of the two distributions is large if

 ≈

Student's t-test

Student's t-test assumes that distributions of the two

populations have equal but unknown variances.

0 1 2

A 1 2

1 2

Suppose n and n samples are randomly and

independently selected from two populations, pop1

and pop2, respectively. If each population is normally

distributed with the same mean (μ , = μ) and with the

same variance, then T (the t-statistic), given in

Equation 3-1, follows a t-distribution with n + n − 2

degrees of freedom (df).

The shape of the t-distribution is similar to the

normal distribution. In fact, as the degrees of freedom

approaches 30 or more, the t-distribution is nearly

identical to the normal distribution. Because the

numerator of T is the difference of the sample means,

if the observed value of T is far enough from zero such

that the probability of observing such a value of T is

unlikely, one would reject the null hypothesis that the

population means are equal. Thus, for a small

probability, say α = 0.05, T* is determined such that

P(|T|≥T) = 0.05. After the samples are collected and

the observed value of T is calculated according to

Equation 3-1, the null hypothesis (μ = μ) is rejected if

|T|≥T .

In hypothesis testing, in general, the small

probability, α, is known as the significance level of

1 2

1 2

1 2

1 2

*

*

the test. The significance level of the test is the

probability of rejecting the null hypothesis, when the

null hypothesis is actually TRUE. In other words, for α =

0.05, if the means from the two populations are truly

equal, then in repeated random sampling, the

observed magnitude of T would only exceed T* 5% of

the time.

In the following R code example, 10 observations are

randomly selected from two normally distributed

populations and assigned to the variables x and y. The

two populations have a mean of 100 and 105,

respectively, and a standard deviation equal to 5.

Student's t-test is then conducted to determine if the

obtained random samples support the rejection of the

null hypothesis.

generate random observations from the two populations

x <- rnorm(10, mean=100, sd=5) # normal distribution centered at 100

y <- rnorm(20, mean=105, sd=5) # normal distribution centered at 105

t.test(x, y, var.equal=TRUE) # run the Student's t-test

Two Sample t-test

data: x and y

t = -1.7828, df = 28, p-value = 0.08547

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -6.1611557 0.4271893

sample estimates:

 mean of x mean of y

102.2136 105.0806

From the R output, the observed value of T is t =

−1.7828. The negative sign is due to the fact that the

sample mean of x is less than the sample mean of y.

Using the qt() function in R, a T value of 2.0484

corresponds to a 0.05 significance level.

obtain t value for a two-sided test at a 0.05 significance level

qt(p=0.05/2, df=28, lower.tail= FALSE)

2.048407

Because the magnitude of the observed T statistic is

less than the T value corresponding to the 0.05

significance level (|−1.7828|< 2.0484), the null

hypothesis is not rejected. Because the alternative

hypothesis is that the means are not equal (μ ≠ μ),

the possibilities of both μ > μ and μ < μ need to be

considered. This form of Student's t-test is known as a

two-sided hypothesis test, and it is necessary for

the sum of the probabilities under both tails of the t-

distribution to equal the significance level. It is

customary to evenly divide the significance level

between both tails. So, p = 0.05/2 = 0.025 was used in

the qt() function to obtain the appropriate t-value.

To simplify the comparison of the t-test results to the

significance level, the R output includes a quantity

known as the p-value. In the preceding example, the

p-value is 0.08547, which is the sum of P(T ≤ −1.7828)

and P(T ≥ 1.7828). Figure 3-24 illustrates the t-statistic

for the area under the tail of a t-distribution. The -t and

t are the observed values of the t-statistic. In the R

output, t = 1.7828. The left shaded area corresponds

to the P(T ≤ −1.7828), and the right shaded area

corresponds to the P(T ≥ 1.7828).

1 2

1 2 1 2

FIGURE 3-24 Area under the tails (shaded) of a

student's t-distribution

In the R output, for a significance level of 0.05, the

null hypothesis would not be rejected because the

likelihood of a T value of magnitude 1.7828 or greater

would occur at higher probability than 0.05. However,

based on the p-value, if the significance level was

chosen to be 0.10, instead of 0.05, the null hypothesis

would be rejected. In general, the p-value offers the

probability of observing such a sample result given the

null hypothesis is TRUE.

A key assumption in using Student's t-test is that the

population variances are equal. In the previous

example, the t.test() function call includes var.equal=TRUE to

specify that equality of the variances should be

assumed. If that assumption is not appropriate, then

Welch's t-test should be used.

Welch's t-test

When the equal population variance assumption is not

justified in performing Student's t-test for the

difference of means, Welch's t-test [14] can be used

based on T expressed in Equation 3-2.

where , S , and n correspond to the i-th sample

mean, sample variance, and sample size. Notice that

Welch's t-test uses the sample variance (S) for each

population instead of the pooled sample variance.

In Welch's test, under the remaining assumptions of

random samples from two normal populations with the

same mean, the distribution of T is approximated by

the t-distribution. The following R code performs the

Welch's t-test on the same set of data analyzed in the

earlier Student's t-test example.

t.test(x, y, var.equal=FALSE) # run the Welch's t-test

Welch Two Sample t-test

data: x and y

t = −1.6596, df = 15.118, p-value = 0.1176

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -6.546629 0.812663

sample estimates:

 mean of x mean of y

102.2136 105.0806

In this particular example of using Welch's t-test, the

p-value is 0.1176, which is greater than the p-value of

0.08547 observed in the Student's t-test example. In

this case, the null hypothesis would not be rejected at

a 0.10 or 0.05 significance level.

i i

i

2

2

It should be noted that the degrees of freedom

calculation is not as straightforward as in the Student's

t-test. In fact, the degrees of freedom calculation often

results in a non-integer value, as in this example. The

degrees of freedom for Welch's t-test is defined in

Equation 3-3.

In both the Student's and Welch's t-test examples,

the R output provides 95% confidence intervals on the

difference of the means. In both examples, the

confidence intervals straddle zero. Regardless of the

result of the hypothesis test, the confidence interval

provides an interval estimate of the difference of the

population means, not just a point estimate.

A confidence interval is an interval estimate of a

population parameter or characteristic based on

sample data. A confidence interval is used to indicate

the uncertainty of a point estimate. If is the estimate

of some unknown population mean μ, the confidence

interval provides an idea of how close is to the

unknown μ. For example, a 95% confidence interval for

a population mean straddles the TRUE, but unknown

mean 95% of the time. Consider Figure 3-25 as an

example. Assume the confidence level is 95%. If the

task is to estimate the mean of an unknown value μ in

a normal distribution with known standard deviation σ

and the estimate based on n observations is x, then

the interval straddles the unknown value of μ

with about a 95% chance. If one takes 100 different

samples and computes the 95% confidence interval for

the mean, 95 of the 100 confidence intervals will be

expected to straddle the population mean μ.

FIGURE 3-25 A 95% confidence interval straddling the

unknown population mean μ

Confidence intervals appear again in Section 3.3.6

on ANOVA. Returning to the discussion of hypothesis

testing, a key assumption in both the Student's and

Welch's t-test is that the relevant population attribute

is normally distributed. For non-normally distributed

data, it is sometimes possible to transform the

collected data to approximate a normal distribution.

For example, taking the logarithm of a dataset can

often transform skewed data to a dataset that is at

least symmetric around its mean. However, if such

transformations are ineffective, there are tests like the

Wilcoxon rank-sum test that can be applied to see if

two population distributions are different.

3.3.3 WILCOXON RANK-SUM

TEST

A t-test represents a parametric test in that it makes

assumptions about the population distributions from

which the samples are drawn. If the populations

cannot be assumed or transformed to follow a normal

distribution, a nonparametric test can be used. The

Wilcoxon rank-sum test [15] is a nonparametric

hypothesis test that checks whether two populations

are identically distributed. Assuming the two

populations are identically distributed, one would

expect that the ordering of any sampled observations

would be evenly intermixed among themselves. For

example, in ordering the observations, one would not

expect to see a large number of observations from one

population grouped together, especially at the

beginning or the end of ordering.

Let the two populations again be pop1 and pop2, with

independently random samples of size n and n

respectively. The total number of observations is then

N = n + n . The first step of the Wilcoxon test is to

1 2

1 2

rank the set of observations from the two groups as if

they came from one large group. The smallest

observation receives a rank of 1, the second smallest

observation receives a rank of 2, and so on with the

largest observation being assigned the rank of N. Ties

among the observations receive a rank equal to the

average of the ranks they span. The test uses ranks

instead of numerical outcomes to avoid specific

assumptions about the shape of the distribution.

After ranking all the observations, the assigned ranks

are summed for at least one population's sample. If

the distribution of pop1 is shifted to the right of the other

distribution, the rank-sum corresponding to pop1's

sample should be larger than the rank-sum of pop2. The

Wilcoxon rank-sum test determines the significance of

the observed rank-sums. The following R code

performs the test on the same dataset used for the

previous t-test.

wilcox.test(x, y, conf.int = TRUE)

Wilcoxon rank sum test

data: x and y

W = 55, p-value = 0.04903

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

 -6.2596774 -0.1240618

sample estimates:

 difference in location

-3.417658

The wilcox.test() function ranks the observations,

determines the respective rank-sums corresponding to

each population's sample, and then determines the

probability of such rank-sums of such magnitude being

observed assuming that the population distributions

are identical. In this example, the probability is given

by the p-value of 0.04903. Thus, the null hypothesis

would be rejected at a 0.05 significance level. The

reader is cautioned against interpreting that one

hypothesis test is clearly better than another test

based solely on the examples given in this section.

Because the Wilcoxon test does not assume anything

about the population distribution, it is generally

considered more robust than the t-test. In other words,

there are fewer assumptions to violate. However, when

it is reasonable to assume that the data is normally

distributed, Student's or Welch's t-test is an

appropriate hypothesis test to consider.

3.3.4 TYPE I AND TYPE II

ERRORS

A hypothesis test may result in two types of errors,

depending on whether the test accepts or rejects the

null hypothesis. These two errors are known as type I

and type II errors.

A type I error is the rejection of the null
hypothesis when the null hypothesis is TRUE. The
probability of the type I error is denoted by the
Greek letter α.

A type II error is the acceptance of a null
hypothesis when the null hypothesis is FALSE. The
probability of the type II error is denoted by the
Greek letter β.

Table 3-6 lists the four possible states of a

hypothesis test, including the two types of errors.

TABLE 3-6 Type I and Type II Error

The significance level, as mentioned in the Student's

t-test discussion, is equivalent to the type I error. For a

significance level such as α = 0 .05, if the null

hypothesis (μ = μ) is TRUE, there is a 5% chance that

the observed T value based on the sample data will be

large enough to reject the null hypothesis. By selecting

an appropriate significance level, the probability of

committing a type I error can be defined before any

data is collected or analyzed.

The probability of committing a Type II error is

somewhat more difficult to determine. If two

population means are truly not equal, the probability of

committing a type II error will depend on how far apart

the means truly are. To reduce the probability of a type

II error to a reasonable level, it is often necessary to

1 2

increase the sample size. This topic is addressed in the

next section.

3.3.5 POWER AND SAMPLE

SIZE

The power of a test is the probability of correctly

rejecting the null hypothesis. It is denoted by 1 − β,

where β is the probability of a type II error. Because

the power of a test improves as the sample size

increases, power is used to determine the necessary

sample size. In the difference of means, the power of a

hypothesis test depends on the true difference of the

population means. In other words, for a fixed

significance level, a larger sample size is required to

detect a smaller difference in the means. In general,

the magnitude of the difference is known as the effect

size. As the sample size becomes larger, it is easier to

detect a given effect size, δ, as illustrated in Figure 3-

26.

FIGURE 3-26 A larger sample size better identifies a

fixed effect size

With a large enough sample size, almost any effect

size can appear statistically significant. However, a

very small effect size may be useless in a practical

sense. It is important to consider an appropriate effect

size for the problem at hand.

3.3.6 ANOVA

The hypothesis tests presented in the previous

sections are good for analyzing means between two

populations. But what if there are more than two

populations? Consider an example of testing the

impact of nutrition and exercise on 60 candidates

between age 18 and 50. The candidates are randomly

split into six groups, each assigned with a different

weight loss strategy, and the goal is to determine

which strategy is the most effective.

Group 1 only eats junk food.

Group 2 only eats healthy food.

Group 3 eats junk food and does cardio exercise
every other day.

Group 4 eats healthy food and does cardio exercise
every other day.

Group 5 eats junk food and does both cardio and
strength training every other day.

Group 6 eats healthy food and does both cardio
and strength training every other day.

Multiple t-tests could be applied to each pair of

weight loss strategies. In this example, the weight loss

of Group 1 is compared with the weight loss of Group

2, 3, 4, 5, or 6. Similarly, the weight loss of Group 2 is

compared with that of the next 4 groups. Therefore, a

total of 15 t-tests would be performed.

However, multiple t-tests may not perform well on

several populations for two reasons. First, because the

number of t-tests increases as the number of groups

increases, analysis using the multiple t-tests becomes

cognitively more difficult. Second, by doing a greater

number of analyses, the probability of committing at

least one type I error somewhere in the analysis

greatly increases.

Analysis of Variance (ANOVA) is designed to address

these issues. ANOVA is a generalization of the

hypothesis testing of the difference of two population

means. ANOVA tests if any of the population means

differ from the other population means. The null

hypothesis of ANOVA is that all the population means

are equal. The alternative hypothesis is that at least

one pair of the population means is not equal. In other

words,

H : μ = μ = ... = μ

H : μ ≠ μ for at least one pair of i, j

As seen in Section 3.3.2, “Difference of Means,” each

population is assumed to be normally distributed with

the same variance.

The first thing to calculate for the ANOVA is the test

statistic. Essentially, the goal is to test whether the

clusters formed by each population are more tightly

grouped than the spread across all the populations.

Let the total number of populations be k. The total

number of samples N is randomly split into the k

groups. The number of samples in the i-th group is

denoted as n , and the mean of the group is where

i∈[1, k]. The mean of all the samples is denoted as .

The between-groups mean sum of squares, S ,

is an estimate of the between-groups variance. It

0 1 2 n

A 1 j

i

B
2

measures how the population means vary with respect

to the grand mean, or the mean spread across all the

populations. Formally, this is presented as shown in

Equation 3-4.

The within-group mean sum of squares, S , is

an estimate of the within-group variance. It

quantifies the spread of values within groups. Formally,

this is presented as shown in Equation 3-5.

If S is much larger than S , then some of the

population means are different from each other.

The F-test statistic is defined as the ratio of the

between-groups mean sum of squares and the within-

group mean sum of squares. Formally, this is

presented as shown in Equation 3-6.

The F-test statistic in ANOVA can be thought of as a

measure of how different the means are relative to the

variability within each group. The larger the observed

F-test statistic, the greater the likelihood that the

differences between the means are due to something

other than chance alone. The F-test statistic is used to

test the hypothesis that the observed effects are not

W

B W

2

2 2

due to chance—that is, if the means are significantly

different from one another.

Consider an example that every customer who visits

a retail website gets one of two promotional offers or

gets no promotion at all. The goal is to see if making

the promotional offers makes a difference. ANOVA

could be used, and the null hypothesis is that neither

promotion makes a difference. The code that follows

randomly generates a total of 500 observations of

purchase sizes on three different offer options.

offers <- sample(c("offer1", "offer2", "nopromo"), size=500, replace=T)

Simulated 500 observations of purchase sizes on the 3 offer options

purchasesize <- ifelse(offers=="offer1", rnorm(500, mean=80, sd=30),

 ifelse(offers=="offer2", rnorm(500, mean=85, sd=30),

 rnorm(500, mean=40, sd=30)))

create a data frame of offer option and purchase size

offertest <- data.frame(offer=as.factor(offers),

 purchase_amt=purchasesize)

The summary of the offertest data frame shows that

170 offer1, 161 offer2, and 169 nopromo (no promotion)

offers have been made. It also shows the range of

purchase size (purchase_amt) for each of the three offer

options.

display a summary of offertest where offer="offer1"

summary(offertest[offertest$offer=="offer1",])

 offer purchase_amt

 nopromo: 0 Min. : 4.521

 offer1 :170 1st Qu.: 58.158

 offer2 : 0 Median : 76.944

 Mean : 81.936

 3rd Qu.:104.959

 Max. :180.507

display a summary of offertest where offer="offer2"

summary(offertest[offertest$offer=="offer2",])

 offer purchase_amt

nopromo: 0 Min. : 14.04

offer1 : 0 1st Qu.: 69.46

offer2 :161 Median : 90.20

 Mean : 89.09

 3rd Qu.:107.48

 Max. :154.33

display a summary of offertest where offer="nopromo"

summary(offertest[offertest$offer=="nopromo",])

 offer purchase_amt

nopromo:169 Min. :-27.00

offer1 : 0 1st Qu.: 20.22

offer2 : 0 Median : 42.44

 Mean : 40.97

 3rd Qu.: 58.96

 Max. :164.04

The aov() function performs the ANOVA on purchase

size and offer options.

fit ANOVA test

model <- aov(purchase_amt ~ offers, data=offertest)

The summary() function shows a summary of the model.

The degrees of freedom for offers is 2, which

corresponds to the k−1 in the denominator of Equation

3-4. The degrees of freedom for residuals is 497, which

corresponds to the n−k in the denominator of Equation

3-5.

summary(model)

 Df Sum Sq Mean Sq F value Pr(>F)

offers 2 225222 112611 130.6 <2e-16 ***

Residuals 497 428470 862

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output also includes the S (112,611), S (862),

the F-test statistic (130.6), and the p-value (<2e−16).

The F-test statistic is much greater than 1 with a p-

value much less than 1. Thus, the null hypothesis that

the means are equal should be rejected.

B W
2 2

However, the result does not show whether offer1 is

different from offer2, which requires additional tests.

The TukeyHSD() function implements Tukey's Honest

Significant Difference (HSD) on all pair-wise tests for

difference of means.

TukeyHSD(model)

 Tukey multiple comparisons of means

 95% family-wise confidence level

Fit: aov(formula = purchase_amt ~ offers, data = offertest)

$offers

 diff lwr upr p adj

offer1-nopromo 40.961437 33.4638483 48.45903 0.0000000

offer2-nopromo 48.120286 40.5189446 55.72163 0.0000000

offer2-offer1 7.158849 -0.4315769 14.74928 0.0692895

The result includes p-values of pair-wise comparisons

of the three offer options. The p-values for offer1-nopromo

and offer-nopromo are equal to 0, smaller than the

significance level 0.05. This suggests that both offer1

and offer2 are significantly different from nopromo. A p-

value of 0.0692895 for offer2 against offer1 is greater

than the significance level 0.05. This suggests that

offer2 is not significantly different from offer1.

Because only the influence of one factor (offers) was

executed, the presented ANOVA is known as one-way

ANOVA. If the goal is to analyze two factors, such as

offers and day of week, that would be a two-way

ANOVA [16]. If the goal is to model more than one

outcome variable, then multivariate ANOVA (or

MANOVA) could be used.

Summary

R is a popular package and programming language for

data exploration, analytics, and visualization. As an

introduction to R, this chapter covers the R GUI, data

I/O, attribute and data types, and descriptive statistics.

This chapter also discusses how to use R to perform

exploratory data analysis, including the discovery of

dirty data, visualization of one or more variables, and

customization of visualization for different audiences.

Finally, the chapter introduces some basic statistical

methods. The first statistical method presented in the

chapter is the hypothesis testing. The Student's t-test

and Welch's t-test are included as two example

hypothesis tests designed for testing the difference of

means. Other statistical methods and tools presented

in this chapter include confidence intervals, Wilcoxon

rank-sum test, type I and II errors, effect size, and

ANOVA.

Exercises

1. How many levels does fdata contain in the

following R code?

data = c(1,2,2,3,1,2,3,3,1,2,3,3,1)

fdata = factor(data)

2. Two vectors, v1 and v2, are created with the

following R code:

v1 <- 1:5

v2 <- 6:2

What are the results of cbind(v1,v2) and rbind(v1,v2)?

3. What R command(s) would you use to remove null

values from a dataset?

4. What R command can be used to install an

additional R package?

5. What R function is used to encode a vector as a

category?

6. What is a rug plot used for in a density plot?

7. An online retailer wants to study the purchase

behaviors of its customers. Figure 3-27 shows the

density plot of the purchase sizes (in dollars). What

would be your recommendation to enhance the

plot to detect more structures that otherwise might

be missed?

FIGURE 3-27 Density plot of purchase size

8. How many sections does a box-and-whisker divide

the data into? What are these sections?

9. What attributes are correlated according to Figure

3-18? How would you describe their relationships?

10. What function can be used to fit a nonlinear line

to the data?

11. If a graph of data is skewed and all the data is

positive, what mathematical technique may be

used to help detect structures that might otherwise

be overlooked?

12. What is a type I error? What is a type II error? Is

one always more serious than the other? Why?

13. Suppose everyone who visits a retail website

gets one promotional offer or no promotion at all.

We want to see if making a promotional offer

makes a difference. What statistical method would

you recommend for this analysis?

14. You are analyzing two normally distributed

populations, and your null hypothesis is that the

mean μ of the first population is equal to the

mean μ of the second. Assume the significance

level is set at 0.05. If the observed p-value is

4.33e-05, what will be your decision regarding the

null hypothesis?

Bibliography

1

2

[1] The R Project for Statistical Computing, “R Licenses.” [Online].
Available: http://www.r-project.org/Licenses/. [Accessed 10
December 2013].

[2] The R Project for Statistical Computing, “The Comprehensive R
Archive Network.” [Online]. Available: http://cran.r-project.org/.
[Accessed 10 December 2013].

[3] J. Fox and M. Bouchet-Valat, “The R Commander: A Basic-
Statistics GUI for R,” CRAN. [Online]. Available:
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/. [Accessed 11
December 2013].

[4] G. Williams, M. V. Culp, E. Cox, A. Nolan, D. White, D. Medri,
and A. Waljee, “Rattle: Graphical User Interface for Data Mining
in R,” CRAN. [Online]. Available: http://cran.r-

project.org/web/packages/rattle/index.html. [Accessed 12 December
2013].

[5] RStudio, “RStudio IDE” [Online]. Available:
http://www.rstudio.com/ide/. [Accessed 11 December 2013].

http://www.r-project.org/Licenses/
http://cran.r-project.org/
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/
http://cran.r-project.org/web/packages/rattle/index.html
http://www.rstudio.com/ide/

[6] R Special Interest Group on Databases (R-SIG-DB), “DBI: R
Database Interface.” CRAN [Online]. Available: http://cran.r-

project.org/web/packages/DBI/index.html. [Accessed 13 December
2013].

[7] B. Ripley, “RODBC: ODBC Database Access,” CRAN. [Online].
Available: http://cran.r-project.org/web/packages/RODBC/index.html.
[Accessed 13 December 2013].

[8] S. S. Stevens, “On the Theory of Scales of Measurement,”
Science, vol. 103, no. 2684, p. 677–680, 1946.

[9] D. C. Hoaglin, F. Mosteller, and J. W. Tukey, Understanding

Robust and Exploratory Data Analysis, New York: Wiley, 1983.
[10] F. J. Anscombe, “Graphs in Statistical Analysis,” The

American Statistician, vol. 27, no. 1, pp. 17–21, 1973.
[11] H. Wickham, “ggplot2,” 2013. [Online]. Available:

http://ggplot2.org/. [Accessed 8 January 2014].
[12] W. S. Cleveland, Visualizing Data, Lafayette, IN: Hobart

Press, 1993.
[13] R. A. Fisher, “The Use of Multiple Measurements in

Taxonomic Problems,” Annals of Eugenics, vol. 7, no. 2, pp. 179–
188, 1936.

[14] B. L. Welch, “The Generalization of “Student's” Problem
When Several Different Population Variances Are Involved,”
Biometrika, vol. 34, no. 1–2, pp. 28–35, 1947.

[15] F. Wilcoxon, “Individual Comparisons by Ranking Methods,”
Biometrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[16] J. J. Faraway, “Practical Regression and Anova Using R,” July
2002. [Online]. Available: http://cran.r-

project.org/doc/contrib/Faraway-PRA.pdf. [Accessed 22 January
2014].

http://cran.r-project.org/web/packages/DBI/index.html
http://cran.r-project.org/web/packages/RODBC/index.html
http://ggplot2.org/
http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf

CentroidClusteringK-meansUnsupervised

Within Sum of Squares

4

Advanced Analytical

Theory

and Methods:

Clustering

Key Concepts

Building

upon the introduction to R

presented in Chapter 3, “Review of Basic Data Analytic

Methods Using R,” Chapter 4, “Advanced Analytical

Theory and Methods: Clustering” through Chapter 9,

“Advanced Analytical Theory and Methods: Text

Analysis” describe several commonly used analytical

methods that may be considered for the Model

Planning and Execution phases (Phases 3 and 4) of the

Data Analytics Lifecycle. This chapter considers

clustering techniques and algorithms.

4.1 Overview of Clustering

In general, clustering is the use of unsupervised

techniques for grouping similar objects. In machine

learning, unsupervised refers to the problem of finding

hidden structure within unlabeled data. Clustering

techniques are unsupervised in the sense that the data

scientist does not determine, in advance, the labels to

apply to the clusters. The structure of the data

describes the objects of interest and determines how

best to group the objects. For example, based on

customers' personal income, it is straightforward to

divide the customers into three groups depending on

arbitrarily selected values. The customers could be

divided into three groups as follows:

Earn less than $10,000

Earn between $10,000 and $99,999

Earn $100,000 or more

In this case, the income levels were chosen

somewhat subjectively based on easy-to-communicate

points of delineation. However, such groupings do not

indicate a natural affinity of the customers within each

group. In other words, there is no inherent reason to

believe that the customer making $90,000 will behave

any differently than the customer making $110,000. As

additional dimensions are introduced by adding more

variables about the customers, the task of finding

meaningful groupings becomes more complex. For

instance, suppose variables such as age, years of

education, household size, and annual purchase

expenditures were considered along with the personal

income variable. What are the natural occurring

groupings of customers? This is the type of question

that clustering analysis can help answer.

Clustering is a method often used for exploratory

analysis of the data. In clustering, there are no

predictions made. Rather, clustering methods find the

similarities between objects according to the object

attributes and group the similar objects into clusters.

Clustering techniques are utilized in marketing,

economics, and various branches of science. A popular

clustering method is k-means.

4.2 K-means

Given a collection of objects each with n measurable

attributes, k-means [1] is an analytical technique

that, for a chosen value of k, identifies k clusters of

objects based on the objects' proximity to the center of

the k groups. The center is determined as the

arithmetic average (mean) of each cluster's n-

dimensional vector of attributes. This section describes

the algorithm to determine the k means as well as how

best to apply this technique to several use cases.

Figure 4-1 illustrates three clusters of objects with two

attributes. Each object in the dataset is represented by

a small dot color-coded to the closest large dot, the

mean of the cluster.

FIGURE 4-1 Possible k-means clusters for k=3

4.2.1 USE CASES

Clustering is often used as a lead-in to classification.

Once the clusters are identified, labels can be applied

to each cluster to classify each group based on its

characteristics. Classification is covered in more detail

in Chapter 7, “Advanced Analytical Theory and

Methods: Classification.” Clustering is primarily an

exploratory technique to discover hidden structures of

the data, possibly as a prelude to more focused

analysis or decision processes. Some specific

applications of k-means are image processing,

medical, and customer segmentation.

Image Processing

Video is one example of the growing volumes of

unstructured data being collected. Within each frame

of a video, k-means analysis can be used to identify

objects in the video. For each frame, the task is to

determine which pixels are most similar to each other.

The attributes of each pixel can include brightness,

color, and location, the x and y coordinates in the

frame. With security video images, for example,

successive frames are examined to identify any

changes to the clusters. These newly identified

clusters may indicate unauthorized access to a facility.

Medical

Patient attributes such as age, height, weight, systolic

and diastolic blood pressures, cholesterol level, and

other attributes can identify naturally occurring

clusters. These clusters could be used to target

individuals for specific preventive measures or clinical

trial participation. Clustering, in general, is useful in

biology for the classification of plants and animals as

well as in the field of human genetics.

Customer Segmentation

Marketing and sales groups use k-means to better

identify customers who have similar behaviors and

spending patterns. For example, a wireless provider

may look at the following customer attributes: monthly

bill, number of text messages, data volume consumed,

minutes used during various daily periods, and years

as a customer. The wireless company could then look

at the naturally occurring clusters and consider tactics

to increase sales or reduce the customer churn rate,

the proportion of customers who end their relationship

with a particular company.

4.2.2 OVERVIEW OF THE

METHOD

To illustrate the method to find k clusters from a

collection of M objects with n attributes, the two-

dimensional case (n = 2) is examined. It is much easier

to visualize the k-means method in two dimensions.

Later in the chapter, the two-dimension scenario is

generalized to handle any number of attributes.

Because each object in this example has two

attributes, it is useful to consider each object

corresponding to the point (x , y), where x and y

denote the two attributes and i = 1, 2 ... M. For a given

cluster of m points (m≤M), the point that corresponds

to the cluster's mean is called a centroid. In

i i

mathematics, a centroid refers to a point that

corresponds to the center of mass for an object.

The k-means algorithm to find k clusters can be

described in the following four steps.

1. Choose the value of k and the k initial guesses

for the centroids.

In this example, k = 3, and the initial centroids are indicated by

the points shaded in red, green, and blue in Figure 4-2.

FIGURE 4-2 Initial starting points for the

centroids

2. Compute the distance from each data point (x ,

y) to each centroid. Assign each point to the

closest centroid. This association defines the first

k clusters.

In two dimensions, the distance, d, between any two points, (x ,

y) and (x , y), in the Cartesian plane is typically expressed by

i

i

1

1 2 2

using the Euclidean distance measure provided in Equation 4-1.

In Figure 4-3, the points closest to a centroid are shaded the

corresponding color.

FIGURE 4-3 Points are assigned to the closest

centroid

3. Compute the centroid, the center of mass, of

each newly defined cluster from Step 2.

In Figure 4-4, the computed centroids in Step 3 are the lightly

shaded points of the corresponding color. In two dimensions, the

centroid (x , y) of the m points in a k-means cluster is calculated

as follows in Equation 4-2.

Thus, (x , y) is the ordered pair of the arithmetic means of the

coordinates of the m points in the cluster. In this step, a centroid is

C C

C C

computed for each of the k clusters.

4. Repeat Steps 2 and 3 until the algorithm

converges to an answer.

a. Assign each point to the closest centroid computed in Step

3.

b. Compute the centroid of newly defined clusters.

c. Repeat until the algorithm reaches the final answer.

Convergence is reached when the computed centroids do not

change or the centroids and the assigned points oscillate back and

forth from one iteration to the next. The latter case can occur

when there are one or more points that are equal distances from

the computed centroid.

FIGURE 4-4 Compute the mean of each cluster

To generalize the prior algorithm to n dimensions,

suppose there are M objects, where each object is

described by n attributes or property values (p ,

p ,...p). Then object i is described by (p , p ,...p) for

1

2 n i1 i2 in

i = 1,2,..., M. In other words, there is a matrix with M

rows corresponding to the M objects and n columns to

store the attribute values. To expand the earlier

process to find the k clusters from two dimensions to n

dimensions, the following equations provide the

formulas for calculating the distances and the

locations of the centroids for n ≥ 1.

For a given point, p , at (p , p ,... p) and a

centroid, q, located at (q , q ,...q), the distance, d,

between p and q, is expressed as shown in Equation

4-3.

The centroid, q, of a cluster of m points, (p ,

p ,...p), is calculated as shown in Equation 4-4.

4.2.3 DETERMINING THE

NUMBER OF CLUSTERS

With the preceding algorithm, k clusters can be

identified in a given dataset, but what value of k

should be selected? The value of k can be chosen

based on a reasonable guess or some predefined

requirement. However, even then, it would be good to

know how much better or worse having k clusters

i i1 i2 in

1 2 n

i

i1

i2 in

versus k − 1 or k + 1 clusters would be in explaining

the structure of the data. Next, a heuristic using the

Within Sum of Squares (WSS) metric is examined to

determine a reasonably optimal value of k. Using the

distance function given in Equation 4-3, WSS is defined

as shown in Equation 4-5.

In other words, WSS is the sum of the squares of the

distances between each data point and the closest

centroid. The term q indicates the closest centroid

that is associated with the ith point. If the points are

relatively close to their respective centroids, the WSS

is relatively small. Thus, if k + 1 clusters do not greatly

reduce the value of WSS from the case with only k

clusters, there may be little benefit to adding another

cluster.

Using R to Perform a K-means

Analysis

To illustrate how to use the WSS to determine an

appropriate number, k, of clusters, the following

example uses R to perform a k-means analysis. The

task is to group 620 high school seniors based on their

grades in three subject areas: English, mathematics,

and science. The grades are averaged over their high

school career and assume values from 0 to 100. The

(i)

following R code establishes the necessary R libraries

and imports the CSV file containing the grades.

library(plyr)

library(ggplot2)

library(cluster)

library(lattice)

library(graphics)

library(grid)

library(gridExtra)

#import the student grades

grade_input = as.data.frame(read.csv("c:/data/grades_km_input.csv"))

The following R code formats the grades for

processing. The data file contains four columns. The

first column holds a student identification (ID) number,

and the other three columns are for the grades in the

three subject areas. Because the student ID is not used

in the clustering analysis, it is excluded from the k-

means input matrix, kmdata.

kmdata_orig = as.matrix(grade_input[,c("Student","English", "Math","Science")])

kmdata <- kmdata_orig[,2:4]

kmdata[1:10,]

 English Math Science

[1,] 99 96 97

[2,] 99 96 97

[3,] 98 97 97

[4,] 95 100 95

[5,] 95 96 96

[6,] 96 97 96

[7,] 100 96 97

[8,] 95 98 98

[9,] 98 96 96

[10,] 99 99 95

To determine an appropriate value for k, the k-means

algorithm is used to identify clusters for k = 1, 2, ...,

15. For each value of k, the WSS is calculated. If an

additional cluster provides a better partitioning of the

data points, the WSS should be markedly smaller than

without the additional cluster.

The following R code loops through several k-means

analyses for the number of centroids, k, varying from 1

to 15. For each k, the option nstart=25 specifies that the

k-means algorithm will be repeated 25 times, each

starting with k random initial centroids. The

corresponding value of WSS for each k-mean analysis

is stored in the wss vector.

wss <- numeric(15)

for (k in 1:15) wss[k] <- sum(kmeans(kmdata, centers=k, nstart=25)$withinss)

Using the basic R plot function, each WSS is plotted

against the respective number of centroids, 1 through

15. This plot is provided in Figure 4-5.

plot(1:15, wss, type="b", xlab="Number of Clusters", ylab="Within Sum of Squares")

FIGURE 4-5 WSS of the student grade data

As can be seen, the WSS is greatly reduced when k

increases from one to two. Another substantial

reduction in WSS occurs at k = 3. However, the

improvement in WSS is fairly linear for k > 3.

Therefore, the k-means analysis will be conducted for k

= 3. The process of identifying the appropriate value of

k is referred to as finding the “elbow” of the WSS

curve.

km = kmeans(kmdata,3, nstart=25)

km

K-means clustering with 3 clusters of sizes 158, 218, 244

Cluster means:

 English Math Science

1 97.21519 93.37342 94.86076

2 73.22018 64.62844 65.84862

3 85.84426 79.68033 81.50820

Clustering vector:

 [1] 1

 1 1 1 1 1 1 1 1 1 1

 [41] 1

 1 1 1 1 1 1 1 1 1 1

 [81] 1

 1 1 1 1 1 1 1 1 1 1

[121] 1

 3 3 3 3 3 3 3 3 3 3

[161] 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 1 3 3 3 1 3 3 3 3

 3 3 1 3 3 3 3 3 3 3

[201] 3

 3 3 3 3 3 3 3 3 3 3

[241] 3

 3 3 3 3 3 3 3 3 3 3

[281] 3

 3 3 3 3 3 3 3 3 3 3

[321] 3

 3 3 3 3 3 3 3 3 3 3

[361] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 2 3 2 3 3 3

 2 2 2 2 3 3 2 2 2 2

[401] 2

 2 2 2 2 2 2 2 2 2 2

[441] 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3

 2 2 2 2 2 2 2 2 3 2

[481] 2

 2 2 2 2 2 2 2 2 2 2

[521] 2

 2 2 2 2 2 2 2 2 2 2

[561] 2

 2 2 2 2 2 2 2 2 2 2

[601] 3 3 2 2 3 3 3 3 1 1 3 3 3 2 2 3 2 3 3 3

Within cluster sum of squares by cluster:

[1] 6692.589 34806.339 22984.131

 (between_SS / total_SS = 76.5 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

The displayed contents of the variable km include the

following:

The location of the cluster means

A clustering vector that defines the membership of
each student to a corresponding cluster 1, 2, or 3

The WSS of each cluster

A list of all the available k-means components

The reader can find details on these components and

using k-means in R by employing the help facility.

The reader may have wondered whether the k-

means results stored in km are equivalent to the WSS

results obtained earlier in generating the plot in Figure

4-5. The following check verifies that the results are

indeed equivalent.

c(wss[3] , sum(km$withinss))

[1] 64483.06 64483.06

In determining the value of k, the data scientist

should visualize the data and assigned clusters. In the

following code, the ggplot2 package is used to visualize

the identified student clusters and centroids.

#prepare the student data and clustering results for plotting

df = as.data.frame(kmdata_orig[,2:4])

df$cluster = factor(km$cluster)

centers=as.data.frame(km$centers)

g1= ggplot(data=df, aes(x=English, y=Math, color=cluster)) +

 geom_point() + theme(legend.position="right") +

 geom_point(data=centers,

 aes(x=English,y=Math, color=as.factor(c(1,2,3))),

 size=10, alpha=.3, show_guide=FALSE)

g2 =ggplot(data=df, aes(x=English, y=Science, color=cluster)) +

 geom_point() +

 geom_point(data=centers,

 aes(x=English,y=Science, color=as.factor(c(1,2,3))),

 size=10, alpha=.3, show_guide=FALSE)

g3 = ggplot(data=df, aes(x=Math, y=Science, color=cluster)) +

 geom_point() +

 geom_point(data=centers,

 aes(x=Math,y=Science, color=as.factor(c(1,2,3))),

 size=10, alpha=.3, show_guide=FALSE)

tmp = ggplot_gtable(ggplot_build(g1))

grid.arrange(arrangeGrob(g1 + theme(legend.position="none"),

 g2 + theme(legend.position="none"),

 g3 + theme(legend.position="none"),

 main ="High School Student Cluster Analysis",

 ncol=1))

The resulting plots are provided in Figure 4-6. The

large circles represent the location of the cluster

means provided earlier in the display of the km

contents. The small dots represent the students

corresponding to the appropriate cluster by assigned

color: red, blue, or green. In general, the plots indicate

the three clusters of students: the top academic

students (red), the academically challenged students

(green), and the other students (blue) who fall

somewhere between those two groups. The plots also

highlight which students may excel in one or two

subject areas but struggle in other areas.

FIGURE 4-6 Plots of the identified student clusters

Assigning labels to the identified clusters is useful to

communicate the results of an analysis. In a marketing

context, it is common to label a group of customers as

frequent shoppers or big spenders. Such designations

are especially useful when communicating the

clustering results to business users or executives. It is

better to describe the marketing plan for big spenders

rather than Cluster #1.

4.2.4 DIAGNOSTICS

The heuristic using WSS can provide at least several

possible k values to consider. When the number of

attributes is relatively small, a common approach to

further refine the choice of k is to plot the data to

determine how distinct the identified clusters are from

each other. In general, the following questions should

be considered.

Are the clusters well separated from each other?

Do any of the clusters have only a few points?

Do any of the centroids appear to be too close to
each other?

In the first case, ideally the plot would look like the

one shown in Figure 4-7, when n = 2. The clusters are

well defined, with considerable space between the four

identified clusters. However, in other cases, such as

Figure 4-8, the clusters may be close to each other,

and the distinction may not be so obvious.

FIGURE 4-7 Example of distinct clusters

In such cases, it is important to apply some

judgment on whether anything different will result by

using more clusters. For example, Figure 4-9 uses six

clusters to describe the same dataset as used in Figure

4-8. If using more clusters does not better distinguish

the groups, it is almost certainly better to go with

fewer clusters.

FIGURE 4-8 Example of less obvious clusters

FIGURE 4-9 Six clusters applied to the points from

Figure 4-8

4.2.5 REASONS TO CHOOSE

AND CAUTIONS

K-means is a simple and straightforward method for

defining clusters. Once clusters and their associated

centroids are identified, it is easy to assign new objects

(for example, new customers) to a cluster based on

the object's distance from the closest centroid.

Because the method is unsupervised, using k-means

helps to eliminate subjectivity from the analysis.

Although k-means is considered an unsupervised

method, there are still several decisions that the

practitioner must make:

What object attributes should be included in the
analysis?

What unit of measure (for example, miles or
kilometers) should be used for each attribute?

Do the attributes need to be rescaled so that one
attribute does not have a disproportionate effect
on the results?

What other considerations might apply?

Object Attributes

Regarding which object attributes (for example, age

and income) to use in the analysis, it is important to

understand what attributes will be known at the time a

new object will be assigned to a cluster. For example,

information on existing customers' satisfaction or

purchase frequency may be available, but such

information may not be available for potential

customers.

The Data Scientist may have a choice of a dozen or

more attributes to use in the clustering analysis.

Whenever possible and based on the data, it is best to

reduce the number of attributes to the extent possible.

Too many attributes can minimize the impact of the

most important variables. Also, the use of several

similar attributes can place too much importance on

one type of attribute. For example, if five attributes

related to personal wealth are included in a clustering

analysis, the wealth attributes dominate the analysis

and possibly mask the importance of other attributes,

such as age.

When dealing with the problem of too many

attributes, one useful approach is to identify any highly

correlated attributes and use only one or two of the

correlated attributes in the clustering analysis. As

illustrated in Figure 4-10, a scatterplot matrix, as

introduced in Chapter 3, is a useful tool to visualize the

pair-wise relationships between the attributes.

The strongest relationship is observed to be between

Attribute3 and Attribute7. If the value of one of these two

attributes is known, it appears that the value of the

other attribute is known with near certainty. Other

linear relationships are also identified in the plot. For

example, consider the plot of Attribute2 against Attribute3. If

the value of Attribute2 is known, there is still a wide

range of possible values for Attribute3. Thus, greater

consideration must be given prior to dropping one of

these attributes from the clustering analysis.

Another option to reduce the number of attributes is

to combine several attributes into one measure. For

example, instead of using two attribute variables, one

for Debt and one for Assets, a Debt to Asset ratio could

be used. This option also addresses the problem when

the magnitude of an attribute is not of real interest,

but the relative magnitude is a more important

measure.

FIGURE 4-10 Scatterplot matrix for seven attributes

Units of Measure

From a computational perspective, the k-means

algorithm is somewhat indifferent to the units of

measure for a given attribute (for example, meters or

centimeters for a patient's height). However, the

algorithm will identify different clusters depending on

the choice of the units of measure. For example,

suppose that k-means is used to cluster patients based

on age in years and height in centimeters. For k=2,

Figure 4-11 illustrates the two clusters that would be

determined for a given dataset.

FIGURE 4-11 Clusters with height expressed in

centimeters

But if the height was rescaled from centimeters to

meters by dividing by 100, the resulting clusters would

be slightly different, as illustrated in Figure 4-12.

FIGURE 4-12 Clusters with height expressed in meters

When the height is expressed in meters, the

magnitude of the ages dominates the distance

calculation between two points. The height attribute

provides only as much as the square between the

difference of the maximum height and the minimum

height or (2.0−0) = 4 to the radicand, the number

under the square root symbol in the distance formula

given in Equation 4-3. Age can contribute as much as

(80−0) = 6,400 to the radicand when measuring the

distance.

Rescaling

Attributes that are expressed in dollars are common in

clustering analyses and can differ in magnitude from

the other attributes. For example, if personal income is

expressed in dollars and age is expressed in years, the

2

2

income attribute, often exceeding $10,000, can easily

dominate the distance calculation with ages typically

less than 100 years.

Although some adjustments could be made by

expressing the income in thousands of dollars (for

example, 10 for $10,000), a more straightforward

method is to divide each attribute by the attribute's

standard deviation. The resulting attributes will each

have a standard deviation equal to 1 and will be

without units. Returning to the age and height

example, the standard deviations are 23.1 years and

36.4 cm, respectively. Dividing each attribute value by

the appropriate standard deviation and performing the

k-means analysis yields the result shown in Figure 4-

13.

FIGURE 4-13 Clusters with rescaled attributes

With the rescaled attributes for age and height, the

borders of the resulting clusters now fall somewhere

between the two earlier clustering analyses. Such an

occurrence is not surprising based on the magnitudes

of the attributes of the previous clustering attempts.

Some practitioners also subtract the means of the

attributes to center the attributes around zero.

However, this step is unnecessary because the

distance formula is only sensitive to the scale of the

attribute, not its location.

In many statistical analyses, it is common to

transform typically skewed data, such as income, with

long tails by taking the logarithm of the data. Such

transformation can also be appied in k-means, but the

Data Scientist needs to be aware of what effect this

transformation will have. For example, if log of

income expressed in dollars is used, the practitioner is

essentially stating that, from a clustering perspective,

$1,000 is as close to $10,000 as $10,000 is to

$100,000 (because log 1,000 = 3, log 10,000 = 4,

and log 100,000 = 5). In many cases, the skewness

of the data may be the reason to perform the

clustering analysis in the first place.

Additional Considerations

The k-means algorithm is sensitive to the starting

positions of the initial centroid. Thus, it is important to

rerun the k-means analysis several times for a

particular value of k to ensure the cluster results

provide the overall minimum WSS. As seen earlier, this

10

10 10

10

task is accomplished in R by using the nstart option in

the kmeans() function call.

This chapter presented the use of the Euclidean

distance function to assign the points to the closest

centroids. Other possible function choices include the

cosine similarity and the Manhattan distance functions.

The cosine similarity function is often chosen to

compare two documents based on the frequency of

each word that appears in each of the documents [2].

For two points, p and q, at (p , p ,... p) and (q ,

q ,...q), respectively, the Manhattan distance, d ,

between p and q is expressed as shown in Equation 4-

6.

The Manhattan distance function is analogous to the

distance traveled by a car in a city, where the streets

are laid out in a rectangular grid (such as city blocks).

In Euclidean distance, the measurement is made in a

straight line. Using Equation 4-6, the distance from (1,

1) to (4, 5) would be |1 − 4| + |1 − 5| = 7. From an

optimization perspective, if there is a need to use the

Manhattan distance for a clustering analysis, the

median is a better choice for the centroid than use of

the mean [2].

K-means clustering is applicable to objects that can

be described by attributes that are numerical with a

1 2 n 1

2 n 1

meaningful distance measure. From Chapter 3, interval

and ratio attribute types can certainly be used.

However, k-means does not handle categorical

variables well. For example, suppose a clustering

analysis is to be conducted on new car sales. Among

other attributes, such as the sale price, the color of the

car is considered important. Although one could assign

numerical values to the color, such as red = 1, yellow

= 2, and green = 3, it is not useful to consider that

yellow is as close to red as yellow is to green from a

clustering perspective. In such cases, it may be

necessary to use an alternative clustering

methodology. Such methods are described in the next

section.

4.3 Additional Algorithms

The k-means clustering method is easily applied to

numeric data where the concept of distance can

naturally be applied. However, it may be necessary or

desirable to use an alternative clustering algorithm. As

discussed at the end of the previous section, k-means

does not handle categorical data. In such cases, k-

modes [3] is a commonly used method for clustering

categorical data based on the number of differences in

the respective components of the attributes. For

example, if each object has four attributes, the

distance from (a, b, e, d) to (d, d, d, d) is 3. In R, the

function kmode() is implemented in the klaR package.

Because k-means and k-modes divide the entire

dataset into distinct groups, both approaches are

considered partitioning methods. A third partitioning

method is known as Partitioning around Medoids (PAM)

[4]. In general, a medoid is a representative object in a

set of objects. In clustering, the medoids are the

objects in each cluster that minimize the sum of the

distances from the medoid to the other objects in the

cluster. The advantage of using PAM is that the

“center” of each cluster is an actual object in the

dataset. PAM is implemented in R by the pam() function

included in the cluster R package. The fpc R package

includes a function pamk(), which uses the pam() function

to find the optimal value for k.

Other clustering methods include hierarchical

agglomerative clustering and density clustering

methods. In hierarchical agglomerative clustering,

each object is initially placed in its own cluster. The

clusters are then combined with the most similar

cluster. This process is repeated until one cluster,

which includes all the objects, exists. The R stats

package includes the hclust() function for performing

hierarchical agglomerative clustering. In density-based

clustering methods, the clusters are identified by the

concentration of points. The fpc R package includes a

function, dbscan(), to perform density-based clustering

analysis. Density-based clustering can be useful to

identify irregularly shaped clusters.

Summary

Clustering analysis groups similar objects based on the

objects' attributes. Clustering is applied in areas such

as marketing, economics, biology, and medicine. This

chapter presented a detailed explanation of the k-

means algorithm and its implementation in R. To use k-

means properly, it is important to do the following:

Properly scale the attribute values to prevent
certain attributes from dominating the other
attributes.

Ensure that the concept of distance between the
assigned values within an attribute is meaningful.

Choose the number of clusters, k, such that the
sum of the Within Sum of Squares (WSS) of the
distances is reasonably minimized. A plot such as
the example in Figure 4-5 can be helpful in this
respect.

If k-means does not appear to be an appropriate

clustering technique for a given dataset, then

alternative techniques such as k-modes or PAM should

be considered.

Once the clusters are identified, it is often useful to

label these clusters in some descriptive way. Especially

when dealing with upper management, these labels

are useful to easily communicate the findings of the

clustering analysis. In clustering, the labels are not

preassigned to each object. The labels are subjectively

assigned after the clusters have been identified.

Chapter 7 considers several methods to perform the

classification of objects with predetermined labels.

Clustering can be used with other analytical

techniques, such as regression. Linear regression and

logistic regression are covered in Chapter 6, “Advanced

Analytical Theory and Methods: Regression.”

Exercises

1. Using the age and height clustering example in

section 4.2.5, algebraically illustrate the impact on

the measured distance when the height is

expressed in meters rather than centimeters.

Explain why different clusters will result depending

on the choice of units for the patient's height.

2. Compare and contrast five clustering algorithms,

assigned by the instructor or selected by the

student.

3. Using the ruspini dataset provided with the cluster

package in R, perform a k-means analysis.

Document the findings and justify the choice of k.

Hint: use data(ruspini) to load the dataset into the R

workspace.

Bibliography

[1] J. MacQueen, “Some Methods for Classification and Analysis of
Multivariate Observations,” in Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, Berkeley,
CA, 1967.

[2] P.-N. Tan, V. Kumar, and M. Steinbach, Introduction to Data

Mining, Upper Saddle River, NJ: Person, 2013.
[3] Z. Huang, “A Fast Clustering Algorithm to Cluster Very Large

Categorical Data Sets in Data Mining,” 1997. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.134.83&rep=rep1&type=pdf. [Accessed 13 March 2014].
[4] L. Kaufman and P. J. Rousseeuw, “Partitioning Around Medoids

(Program PAM),” in Finding Groups in Data: An Introduction to

Cluster Analysis, Hoboken, NJ, John Wiley & Sons, Inc, 2008, p.
68-125, Chapter 2.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.83&rep=rep1&type=pdf

Association rulesApriori algorithmSupportConfidence

LiftLeverage

5

Advanced Analytical

Theory and Methods:

Association Rules

Key Concepts

This

chapter discusses an unsupervised

learning method called association rules. This is a

descriptive, not predictive, method often used to

discover interesting relationships hidden in a large

dataset. The disclosed relationships can be

represented as rules or frequent itemsets. Association

rules are commonly used for mining transactions in

databases.

Here are some possible questions that association

rules can answer:

Which products tend to be purchased together?

Of those customers who are similar to this person,
what products do they tend to buy?

Of those customers who have purchased this
product, what other similar products do they tend
to view or purchase?

5.1 Overview

Figure 5-1 shows the general logic behind association

rules. Given a large collection of transactions (depicted

as three stacks of receipts in the figure), in which each

transaction consists of one or more items, association

rules go through the items being purchased to see

what items are frequently bought together and to

discover a list of rules that describe the purchasing

behavior. The goal with association rules is to discover

interesting relationships among the items. (The

relationship occurs too frequently to be random and is

meaningful from a business perspective, which may or

may not be obvious.) The relationships that are

interesting depend both on the business context and

the nature of the algorithm being used for the

discovery.

FIGURE 5-1 The general logic behind association rules

Each of the uncovered rules is in the form X → Y,

meaning that when item X is observed, item Y is also

observed. In this case, the left-hand side (LHS) of the

rule is X, and the right-hand side (RHS) of the rule is Y.

Using association rules, patterns can be discovered

from the data that allow the association rule

algorithms to disclose rules of related product

purchases. The uncovered rules are listed on the right

side of Figure 5-1. The first three rules suggest that

when cereal is purchased, 90% of the time milk is

purchased also. When bread is purchased, 40% of the

time milk is purchased also. When milk is purchased,

23% of the time cereal is also purchased.

In the example of a retail store, association rules are

used over transactions that consist of one or more

items. In fact, because of their popularity in mining

customer transactions, association rules are

sometimes referred to as market basket analysis.

Each transaction can be viewed as the shopping

basket of a customer that contains one or more items.

This is also known as an itemset. The term itemset

refers to a collection of items or individual entities that

contain some kind of relationship. This could be a set

of retail items purchased together in one transaction, a

set of hyperlinks clicked on by one user in a single

session, or a set of tasks done in one day. An itemset

containing k items is called a k-itemset. This chapter

uses curly braces like {item 1, item 2,. . . item k} to denote a

k-itemset. Computation of the association rules is

typically based on itemsets.

The research of association rules started as early as

the 1960s. Early research by Hájek et al. [1] introduced

many of the key concepts and approaches of

association rule learning, but it focused on the

mathematical representation rather than the

algorithm. The framework of association rule learning

was brought into the database community by Agrawal

et al. [2] in the early 1990s for discovering regularities

between products in a large database of customer

transactions recorded by point-of-sale systems in

supermarkets. In later years, it expanded to web

contexts, such as mining path traversal patterns [3]

and usage patterns [4] to facilitate organization of web

pages.

This chapter chooses Apriori as the main focus of the

discussion of association rules. Apriori [5] is one of the

earliest and the most fundamental algorithms for

generating association rules. It pioneered the use of

support for pruning the itemsets and controlling the

exponential growth of candidate item-sets. Shorter

candidate itemsets, which are known to be frequent

itemsets, are combined and pruned to generate longer

frequent itemsets. This approach eliminates the need

for all possible itemsets to be enumerated within the

algorithm, since the number of all possible itemsets

can become exponentially large.

One major component of Apriori is support. Given an

itemset L, the support [2] of L is the percentage of

transactions that contain L. For example, if 80% of all

transactions contain itemset {bread}, then the support of

{bread} is 0.8. Similarly, if 60% of all transactions contain

itemset {bread,butter}, then the support of {bread,butter} is

0.6.

A frequent itemset has items that appear together

often enough. The term “often enough” is formally

defined with a minimum support criterion. If the

minimum support is set at 0.5, any itemset can be

considered a frequent itemset if at least 50% of the

transactions contain this itemset. In other words, the

support of a frequent itemset should be greater than

or equal to the minimum support. For the previous

example, both {bread} and {bread,butter} are considered

frequent itemsets at the minimum support 0.5. If the

minimum support is 0.7, only {bread} is considered a

frequent itemset.

If an itemset is considered frequent, then any subset

of the frequent itemset must also be frequent. This is

referred to as the Apriori property (or downward

closure property). For example, if 60% of the

transactions contain {bread,jam}, then at least 60% of all

the transactions will contain {bread} or {jam}. In other

words, when the support of {bread,jam} is 0.6, the support

of {bread} or {jam} is at least 0.6. Figure 5-2 illustrates how

the Apriori property works. If itemset {B,C,D} is frequent,

then all the subsets of this itemset, shaded, must also

be frequent itemsets. The Apriori property provides the

basis for the Apriori algorithm.

FIGURE 5-2 Itemset {A,B,C,D} and its subsets

5.2 Apriori Algorithm

The Apriori algorithm takes a bottom-up iterative

approach to uncovering the frequent itemsets by first

determining all the possible items (or 1-itemsets, for

example {bread}, {eggs}, {milk}, ...) and then identifying

which among them are frequent.

Assuming the minimum support threshold (or the

minimum support criterion) is set at 0.5, the algorithm

identifies and retains those itemsets that appear in at

least 50% of all transactions and discards (or “prunes

away”) the itemsets that have a support less than 0.5

or appear in fewer than 50% of the transactions. The

word prune is used like it would be in gardening,

where unwanted branches of a bush are clipped away.

In the next iteration of the Apriori algorithm, the

identified frequent 1-itemsets are paired into 2-

itemsets (for example, {bread,eggs}, {bread,milk}, {eggs,milk}, ...)

and again evaluated to identify the frequent 2-

itemsets among them.

At each iteration, the algorithm checks whether the

support criterion can be met; if it can, the algorithm

grows the itemset, repeating the process until it runs

out of support or until the itemsets reach a predefined

length. The Apriori algorithm [5] is given next. Let

variable C be the set of candidate k-itemsets and

variable L be the set of k-itemsets that satisfy the

minimum support. Given a transaction database D, a

k

k

minimum support threshold δ, and an optional

parameter N indicating the maximum length an

itemset could reach, Apriori iteratively computes

frequent itemsets L based on L .

1 Apriori (D, δ, N)

2 k ← 1

3

← {1-itemsets that satisfy minimum support δ}

4 while

≠ Ø

5 if

N ∨ (∃N ∧ k < N)

6

← candidate itemsets generated from

7 for each transaction t in database D do

8 increment the counts of

contained in t

9

← candidates in

that satisfy minimum support δ

10 k ←k+1

11 return

k+1 k

The first step of the Apriori algorithm is to identify the

frequent itemsets by starting with each item in the

transactions that meets the predefined minimum

support threshold δ. These itemsets are 1-itemsets

denoted as L , as each 1-itemset contains only one

item. Next, the algorithm grows the itemsets by joining

L onto itself to form new, grown 2-itemsets denoted

as L and determines the support of each 2-itemset in

L. Those itemsets that do not meet the minimum

support threshold δ are pruned away. The growing and

pruning process is repeated until no itemsets meet the

minimum support threshold. Optionally, a threshold N

can be set up to specify the maximum number of

items the itemset can reach or the maximum number

of iterations of the algorithm. Once completed, output

of the Apriori algorithm is the collection of all the

frequent k-itemsets.

Next, a collection of candidate rules is formed based

on the frequent itemsets uncovered in the iterative

process described earlier. For example, a frequent

itemset {milk,eggs} may suggest candidate rules {milk}

→{eggs} and {eggs}→{milk}.

5.3 Evaluation of

Candidate Rules

Frequent itemsets from the previous section can form

candidate rules such as X implies Y (X → Y). This

1

1

2

section discusses how measures such as confidence,

lift, and leverage can help evaluate the

appropriateness of these candidate rules.

Confidence [2] is defined as the measure of

certainty or trustworthiness associated with each

discovered rule. Mathematically, confidence is the

percent of transactions that contain both X and Y out

of all the transactions that contain X (see Equation 5-

1).

For example, if {bread,eggs,milk} has a support of 0.15

and {bread,eggs} also has a support of 0.15, the

confidence of rule {bread,eggs}→{milk} is 1, which means

100% of the time a customer buys bread and eggs,

milk is bought as well. The rule is therefore correct for

100% of the transactions containing bread and eggs.

A relationship may be thought of as interesting when

the algorithm identifies the relationship with a

measure of confidence greater than or equal to a

predefined threshold. This predefined threshold is

called the minimum confidence. A higher confidence

indicates that the rule (X → Y) is more interesting or

more trustworthy, based on the sample dataset.

So far, this chapter has talked about two common

measures that the Apriori algorithm uses: support and

confidence. All the rules can be ranked based on these

two measures to filter out the uninteresting rules and

retain the interesting ones.

Even though confidence can identify the interesting

rules from all the candidate rules, it comes with a

problem. Given rules in the form of X → Y, confidence

considers only the antecedent (X) and the co-

occurrence of X and Y; it does not take the consequent

of the rule (Y) into concern. Therefore, confidence

cannot tell if a rule contains true implication of the

relationship or if the rule is purely coincidental. X and Y

can be statistically independent yet still receive a high

confidence score. Other measures such as lift [6] and

leverage [7] are designed to address this issue.

Lift measures how many times more often X and Y

occur together than expected if they are statistically

independent of each other. Lift is a measure [6] of how

X and Y are really related rather than coincidentally

happening together (see Equation 5-2).

Lift is 1 if X and Y are statistically independent of

each other. In contrast, a lift of X → Y greater than 1

indicates that there is some usefulness to the rule. A

larger value of lift suggests a greater strength of the

association between X and Y.

Assuming 1,000 transactions, with {milk,eggs}

appearing in 300 of them, {milk} appearing in 500, and

{eggs} appearing in 400, then Lift(milk → eggs) =

0.3/(0.5*0.4) = 1.5. If {bread} appears in 400

transactions and {milk,bread} appears in 400, then

Lift(milk → bread) = 0.4/(0.5*0.4) = 2. Therefore it can

be concluded that milk and bread have a stronger

association than milk and eggs.

Leverage [7] is a similar notion, but instead of using

a ratio, leverage uses the difference (see Equation 5-

3). Leverage measures the difference in the probability

of X and Y appearing together in the dataset compared

to what would be expected if X and Y were statistically

independent of each other.

In theory, leverage is 0 when X and Y are statistically

independent of each other. If X and Y have some kind

of relationship, the leverage would be greater than

zero. A larger leverage value indicates a stronger

relationship between X and Y. For the previous

example, Leverage(milk → eggs) = 0.3−(0.5*0.4) = 0.1

and Leverage(milk → bread) = 0.4−(0.5*0.4) = 0.2. It

again confirms that milk and bread have a stronger

association than milk and eggs.

Confidence is able to identify trustworthy rules, but it

cannot tell whether a rule is coincidental. A high-

confidence rule can sometimes be misleading because

confidence does not consider support of the itemset in

the rule consequent. Measures such as lift and

leverage not only ensure interesting rules are

identified but also filter out the coincidental rules.

This chapter has discussed four measures of

significance and interestingness for association rules:

support, confidence, lift, and leverage. These

measures ensure the discovery of interesting and

strong rules from sample datasets. Besides these four

rules, there are other alternative measures, such as

correlation [8], collective strength [9], conviction [6],

and coverage [10]. Refer to the Bibliography to learn

how these measures work.

5.4 Applications of

Association Rules

The term market basket analysis refers to a specific

implementation of association rules mining that many

companies use for a variety of purposes, including

these:

Broad-scale approaches to better merchandising—
what products should be included in or excluded
from the inventory each month

Cross-merchandising between products and high-
margin or high-ticket items

Physical or logical placement of product within
related categories of products

Promotional programs—multiple product purchase
incentives managed through a loyalty card
program

Besides market basket analysis, association rules are

commonly used for recommender systems [11] and

clickstream analysis [12].

Many online service providers such as Amazon and

Netflix use recommender systems. Recommender

systems can use association rules to discover related

products or identify customers who have similar

interests. For example, association rules may suggest

that those customers who have bought product A have

also bought product B, or those customers who have

bought products A, B, and C are more similar to this

customer. These findings provide opportunities for

retailers to cross-sell their products.

Clickstream analysis refers to the analytics on data

related to web browsing and user clicks, which is

stored on the client or the server side. Web usage log

files generated on web servers contain huge amounts

of information, and association rules can potentially

give useful knowledge to web usage data analysts. For

example, association rules may suggest that website

visitors who land on page X click on links A, B, and C

much more often than links D, E, and F. This

observation provides valuable insight on how to better

personalize and recommend the content to site

visitors.

The next section shows an example of grocery store

transactions and demonstrates how to use R to

perform association rule mining.

5.5 An Example:

Transactions in a Grocery

Store

An example illustrates the application of the Apriori

algorithm to a relatively simple case that generalizes

to those used in practice. Using R and the arules and

arulesViz packages, this example shows how to use the

Apriori algorithm to generate frequent itemsets and

rules and to evaluate and visualize the rules.

The following commands install these two packages

and import them into the current R workspace:

install.packages('arules')

install.packages('arulesViz')

library('arules')

library('arulesViz')

5.5.1 THE GROCERIES

DATASET

The example uses the Groceries dataset from the R arules

package. The Groceries dataset is collected from 30 days

of real-world point-of-sale transactions of a grocery

store. The dataset contains 9,835 transactions, and the

items are aggregated into 169 categories.

data(Groceries)

Groceries

transactions in sparse format with

 9835 transactions (rows) and

 169 items (columns)

The summary shows that the most frequent items in

the dataset include items such as whole milk, other

vegetables, rolls/buns, soda, and yogurt. These items

are purchased more often than the others.

summary(Groceries)

transactions as itemMatrix in sparse format with

 9835 rows (elements/itemsets/transactions) and

 169 columns (items) and a density of 0.02609146

most frequent items:

 whole milk other vegetables rolls/buns soda

 2513 1903 1809 1715

 yogurt (Other)

 1372 34055

element (itemset/transaction) length distribution:

sizes

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2159 1643 1299 1005 855 645 545 438 350 246 182 117 78 77

 15 16 17 18 19 20 21 22 23 24 26 27 28 29

 55 46 29 14 14 9 11 4 6 1 1 1 1 3

 32

 1

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.000 2.000 3.000 4.409 6.000 32.000

includes extended item information - examples:

 labels level2 level1

1 frankfurter sausage meet and sausage

2 sausage sausage meet and sausage

3 liver loaf sausage meet and sausage

The class of the dataset is transactions, as defined by

the arules package. The transactions class contains three

slots:

transactionInfo: A data frame with vectors of the same
length as the number of transactions

itemInfo: A data frame to store item labels

data: A binary incidence matrix that indicates which
item labels appear in every transaction

class(Groceries)

[1] "transactions"

attr(,"package")

[1] "arules"

For the Groceries dataset, the transactionInfo is not being

used. Enter Groceries@itemInfo to display all 169 grocery

labels as well as their categories. The following

command displays only the first 20 grocery labels.

Each grocery label is mapped to two levels of

categories—level2 and level1—where level1 is a superset of

level2. For example, grocery label sausage belongs to

the sausage category in level2, and it is part of the meat

and sausage category in level1. (Note that “meet” in

level1 is a typo in the dataset.)

Groceries@itemInfo[1:20,]

 labels level2 level1

1 frankfurter sausage meet and sausage

2 sausage sausage meet and sausage

3 liver loaf sausage meet and sausage

4 ham sausage meet and sausage

5 meat sausage meet and sausage

6 finished products sausage meet and sausage

7 organic sausage sausage meet and sausage

8 chicken poultry meet and sausage

9 turkey poultry meet and sausage

10 pork pork meet and sausage

11 beef beef meet and sausage

12 hamburger meat beef meet and sausage

13 fish fish meet and sausage

14 citrus fruit fruit fruit and vegetables

15 tropical fruit fruit fruit and vegetables

16 pip fruit fruit fruit and vegetables

17 grapes fruit fruit and vegetables

18 berries fruit fruit and vegetables

19 nuts/prunes fruit fruit and vegetables

20 root vegetables vegetables fruit and vegetables

The following code displays the 10th to 20th

transactions of the Groceries dataset. The [10:20] can be

changed to [1:9835] to display all the transactions.

apply(Groceries@data[,10:20], 2,

 function(r) paste(Groceries@itemInfo[r,"labels"], collapse=", ")

)

Each row in the output shows a transaction that

includes one or more products, and each transaction

corresponds to everything in a customer's shopping

cart. For example, in the first transaction, a customer

has purchased whole milk and cereals.

[1] "whole milk, cereals"

 [2] "tropical fruit, other vegetables, white bread, bottled water,

chocolate"

 [3] "citrus fruit, tropical fruit, whole milk, butter, curd, yogurt,

flour, bottled water, dishes"

 [4] "beef"

[5] "frankfurter, rolls/buns, soda"

 [6] "chicken, tropical fruit"

 [7] "butter, sugar, fruit/vegetable juice, newspapers"

 [8] "fruit/vegetable juice"

 [9] "packaged fruit/vegetables"

[10] "chocolate"

[11] "specialty bar"

The next section shows how to generate frequent

itemsets from the Groceries dataset.

5.5.2 FREQUENT ITEMSET

GENERATION

The apriori() function from the arule package

implements the Apriori algorithm to create frequent

itemsets. Note that, by default, the apriori() function

executes all the iterations at once. However, to

illustrate how the Apriori algorithm works, the code

examples in this section manually set the parameters

of the apriori() function to simulate each iteration of the

algorithm.

Assume that the minimum support threshold is set to

0.02 based on management discretion. Because the

dataset contains 9,853 transactions, an itemset should

appear at least 198 times to be considered a frequent

itemset. The first iteration of the Apriori algorithm

computes the support of each product in the dataset

and retains those products that satisfy the minimum

support. The following code identifies 59 frequent 1-

itemsets that satisfy the minimum support. The

parameters of apriori() specify the minimum and

maximum lengths of the itemsets, the minimum

support threshold, and the target indicating the type of

association mined.

itemsets <- apriori(Groceries, parameter=list(minlen=1, maxlen=1,

 support=0.02, target="frequent itemsets"))

parameter specification:

 confidence minval smax arem aval originalSupport support minlen

 0.8 0.1 1 none FALSE TRUE 0.02 1

 maxlen target ext

 1 frequent itemsets FALSE

algorithmic control:

 filter tree heap memopt load sort verbose

 0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm

version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].

sorting and recoding items ... [59 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 done [0.00s].

writing ... [59 set(s)] done [0.00s].

creating S4 object ... done [0.00s].

The summary of the itemsets shows that the support

of 1-itemsets ranges from 0.02105 to 0.25552.

Because the maximum support of the 1-itemsets in the

dataset is only 0.25552, to enable the discovery of

interesting rules, the minimum support threshold

should not be set too close to that number.

summary(itemsets)

set of 59 itemsets

most frequent items:

frankfurter sausage ham meat chicken

 1 1 1 1 1

 (Other)

 54

element (itemset/transaction) length distribution:sizes

 1

59

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1 1 1 1 1 1

summary of quality measures:

 support

Min. :0.02105

1st Qu. :0.03015

Median :0.04809

Mean :0.06200

3rd Qu. :0.07666

Max. :0.25552

includes transaction ID lists: FALSE

mining info:

 data ntransactions support confidence

Groceries 9835 0.02 1

The following code uses the inspect() function to

display the top 10 frequent 1-itemsets sorted by their

support. Of all the transaction records, the 59 1-

itemsets such as {whole milk}, {other vegetables}, {rolls/buns},

{soda}, and {yogurt} all satisfy the minimum support.

Therefore, they are called frequent 1-itemsets.

inspect(head(sort(itemsets, by = "support"), 10))

 items support

1 {whole milk} 0.25551601

2 {other vegetables} 0.19349263

3 {rolls/buns} 0.18393493

4 {soda} 0.17437722

5 {yogurt} 0.13950178

6 {bottled water} 0.11052364

7 {root vegetables} 0.10899847

8 {tropical fruit} 0.10493137

9 {shopping bags} 0.09852567

10 {sausage} 0.09395018

In the next iteration, the list of frequent 1-itemsets is

joined onto itself to form all possible candidate 2-

itemsets. For example, 1-itemsets {whole milk} and {soda}

would be joined to become a 2-itemset {whole milk,soda}.

The algorithm computes the support of each candidate

2-itemset and retains those that satisfy the minimum

support. The output that follows shows that 61

frequent 2-itemsets have been identified.

itemsets <- apriori(Groceries, parameter=list(minlen=2, maxlen=2,

 support=0.02, target="frequent itemsets"))

parameter specification:

 confidence minval smax arem aval originalSupport support minlen

 0.8 0.1 1 none FALSE TRUE 0.02 2

 maxlen target ext

 2 frequent itemsets FALSE

algorithmic control:

 filter tree heap memopt load sort verbose

 0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm

version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].

sorting and recoding items ... [59 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 2 done [0.00s].

writing ... [61 set(s)] done [0.00s].

creating S4 object ... done [0.00s].

The summary of the itemsets shows that the support

of 2-itemsets ranges from 0.02003 to 0.07483.

summary(itemsets)

set of 61 itemsets

most frequent items:

 whole milk other vegetables yogurt rolls/buns

 25 17 9 9

 soda (Other)

 9 53

element (itemset/transaction) length distribution:sizes

 2

61

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 2 2 2 2 2 2

summary of quality measures:

 support

 Min. :0.02003

 1st Qu.:0.02227

 Median :0.02613

 Mean :0.02951

 3rd Qu.:0.03223

 Max. :0.07483

includes transaction ID lists: FALSE

mining info:

 data ntransactions support confidence

 Groceries 9835 0.02 1

The top 10 most frequent 2-itemsets are displayed

next, sorted by their support. Notice that whole milk

appears six times in the top 10 2-itemsets ranked by

support. As seen earlier, {whole milk} has the highest

support among all the 1-itemsets. These top 10 2-

itemsets with the highest support may not be

interesting; this highlights the limitations of using

support alone.

inspect(head(sort(itemsets, by ="support"),10))

 items support

1 {other vegetables,

 whole milk} 0.07483477

2 {whole milk,

 rolls/buns} 0.05663447

3 {whole milk,

 yogurt} 0.05602440

4 {root vegetables,

 whole milk} 0.04890696

5 {root vegetables,

 other vegetables} 0.04738180

6 {other vegetables,

 yogurt} 0.04341637

7 {other vegetables,

 rolls/buns} 0.04260295

8 {tropical fruit,

 whole milk} 0.04229792

9 {whole milk,

 soda} 0.04006101

10 {rolls/buns,

 soda} 0.03833249

Next, the list of frequent 2-itemsets is joined onto

itself to form candidate 3-itemsets. For example {other

vegetables,whole milk} and {whole milk,rolls/buns} would be joined

as {other vegetables,whole milk,rolls/buns}. The algorithm retains

those itemsets that satisfy the minimum support. The

following output shows that only two frequent 3-

itemsets have been identified.

itemsets <- apriori(Groceries, parameter=list(minlen=3, maxlen=3,

 support=0.02, target="frequent itemsets"))

parameter specification:

 confidence minval smax arem aval originalSupport support minlen

 0.8 0.1 1 none FALSE TRUE 0.02 3

 maxlen target ext

 3 frequent itemsets FALSE

algorithmic control:

 filter tree heap memopt load sort verbose

 0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm

version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].

sorting and recoding items ... [59 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 done [0.00s].

writing ... [2 set(s)] done [0.00s].

creating S4 object ... done [0.00s].

The 3-itemsets are displayed next:

inspect(sort(itemsets, by ="support"))

 items support

1 {root vegetables,

 other vegetables,

 whole milk} 0.02318251

2 {other vegetables,

 whole milk,

 yogurt} 0.02226741

In the next iteration, there is only one candidate 4-

itemset {root vegetables,other vegetables,whole milk,yogurt}, and its

support is below 0.02. No frequent 4-itemsets have

been found, and the algorithm converges.

itemsets <- apriori(Groceries, parameter=list(minlen=4, maxlen=4,

 support=0.02, target="frequent itemsets"))

parameter specification:

 confidence minval smax arem aval originalSupport support minlen

 0.8 0.1 1 none FALSE TRUE 0.02 4

 maxlen target ext

 4 frequent itemsets FALSE

algorithmic control:

 filter tree heap memopt load sort verbose

 0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm

version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].

sorting and recoding items ... [59 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 done [0.00s].

writing ... [0 set(s)] done [0.00s].

creating S4 object ... done [0.00s].

The previous steps simulate the Apriori algorithm at

each iteration. For the Groceries dataset, the iterations

run out of support when k = 4. Therefore, the frequent

itemsets contain 59 frequent 1-itemsets, 61 frequent

2-itemsets, and 2 frequent 3-itemsets.

When the maxlen parameter is not set, the algorithm

continues each iteration until it runs out of support or

until k reaches the default maxlen=10. As shown in the

code output that follows, 122 frequent itemsets have

been identified. This matches the total number of 59

frequent 1-itemsets, 61 frequent 2-itemsets, and 2

frequent 3-itemsets.

itemsets <- apriori(Groceries, parameter=list(minlen=1, support=0.02,

 target="frequent itemsets"))

parameter specification:

 confidence minval smax arem aval originalSupport support minlen

 0.8 0.1 1 none FALSE TRUE 0.02 1

 maxlen target ext

 10 frequent itemsets FALSE

algorithmic control:

 filter tree heap memopt load sort verbose

 0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm

version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].

sorting and recoding items ... [59 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 done [0.00s].

writing ... [122 set(s)] done [0.00s].

creating S4 object ... done [0.00s].

Note that the results are assessed based on the

specific business context of the exercise using the

specific dataset. If the dataset changes or a different

minimum support threshold is chosen, the Apriori

algorithm must run each iteration again to retrieve the

updated frequent itemsets.

5.5.3 RULE GENERATION

AND VISUALIZATION

The apriori() function can also be used to generate

rules. Assume that the minimum support threshold is

now set to a lower value 0.001, and the minimum

confidence threshold is set to 0.6. A lower minimum

support threshold allows more rules to show up. The

following code creates 2,918 rules from all the

transactions in the Groceries dataset that satisfy both the

minimum support and the minimum confidence.

rules <- apriori(Groceries, parameter=list(support=0.001,

 confidence=0.6, target = "rules"))

parameter specification:

 confidence minval smax arem aval originalSupport support minlen

 0.6 0.1 1 none FALSE TRUE 0.001 1

 maxlen target ext

 10 rules FALSE

algorithmic control:

 filter tree heap memopt load sort verbose

 0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm

version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].

sorting and recoding items ... [157 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 4 5 6 done [0.01s].

writing ... [2918 rule(s)] done [0.00s].

creating S4 object ... done [0.01s].

The summary of the rules shows the number of rules

and ranges of the support, confidence, and lift.

summary(rules)

set of 2918 rules

rule length distribution (lhs + rhs):sizes

 2 3 4 5 6

 3 490 1765 626 34

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 2.000 4.000 4.000 4.068 4.000 6.000

summary of quality measures:

 support confidence lift

 Min. :0.001017 Min. :0.6000 Min. : 2.348

 1st Qu. :0.001118 1st Qu.:0.6316 1st Qu.: 2.668

 Median :0.001220 Median :0.6818 Median : 3.168

 Mean :0.001480 Mean :0.7028 Mean : 3.450

 3rd Qu. :0.001525 3rd Qu.:0.7500 3rd Qu.: 3.692

 Max. :0.009354 Max. :1.0000 Max. :18.996

mining info:

 data ntransactions support confidence

 Groceries 9835 0.001 0.6

Enter plot(rules) to display the scatterplot of the 2,918

rules (Figure 5-3), where the horizontal axis is the

support, the vertical axis is the confidence, and the

shading is the lift. The scatterplot shows that, of the

2,918 rules generated from the Groceries dataset, the

highest lift occurs at a low support and a low

confidence.

FIGURE 5-3 Scatterplot of the 2,918 rules with

minimum support 0.001 and minimum confidence 0.6

Entering plot(rules@quality) displays a scatterplot matrix

(Figure 5-4) to compare the support, confidence, and

lift of the 2,918 rules.

Figure 5-4 shows that lift is proportional to

confidence and illustrates several linear groupings. As

indicated by Equation 5-2 and Equation 5-3, Lift =

Confidence/Support(Y). Therefore, when the support of

Y remains the same, lift is proportional to confidence,

and the slope of the linear trend is the reciprocal of

Support (Y). The following code shows that, of the

2,918 rules, there are only 18 different values for

, and the majority occurs at slopes 3.91, 5.17,

7.17, 9.17, and 9.53. This matches the slopes shown in

the third row and second column of Figure 5-4, where

the x-axis is the confidence and the y-axis is the lift.

compute the 1/Support(Y)

slope <- sort(round(rules@quality$lift / rules@quality$confidence, 2))

Display the number of times each slope appears in the dataset

unlist(lapply(split(slope,f=slope),length))

 3.91 5.17 5.44 5.73 7.17 9.05 9.17 9.53 10.64 12.08

 1585 940 12 7 188 1 102 55 1 4

12.42 13.22 13.83 13.95 18.05 23.76 26.44 30.08

1 5 2 9 3 1 1 1

FIGURE 5-4 Scatterplot matrix on the support,

confidence, and lift of the 2,918 rules

The inspect() function can display content of the rules

generated previously. The following code shows the

top ten rules sorted by the lift. Rule {Instant food

products,soda}→{hamburger meat} has the highest lift of

18.995654.

inspect(head(sort(rules, by="lift"), 10))

 lhs rhs

support confidence lift

1 {Instant food products,

 soda} => {hamburger meat}

0.001220132 0.6315789 18.995654

2 {soda,

 popcorn} => {salty snack}

0.001220132 0.6315789 16.697793

3 {ham,

 processed cheese} => {white bread}

0.001931876 0.6333333 15.045491

4 {tropical fruit,

 other vegetables,

 yogurt,

 white bread} => {butter}

0.001016777 0.6666667 12.030581

5 {hamburger meat,

 yogurt,

 whipped/sour cream} => {butter}

0.001016777 0.6250000 11.278670

6 {tropical fruit,

 other vegetables,

 whole milk,

 yogurt,

 domestic eggs} => {butter}

0.001016777 0.6250000 11.278670

7 {liquor,

 red/blush wine} => {bottled beer}

0.001931876 0.9047619 11.235269

8 {other vegetables,

 butter,

 sugar} => {whipped/sour cream}

0.001016777 0.7142857 9.964539

9 {whole milk,

 butter,

 hard cheese} => {whipped/sour cream}

0.001423488 0.6666667 9.300236

10 {tropical fruit,

 other vegetables,

 butter,

 fruit/vegetable juice} => {whipped/sour cream}

0.001016777 0.6666667 9.300236

The following code fetches a total of 127 rules whose

confidence is above 0.9:

confidentRules <- rules[quality(rules)$confidence > 0.9]

confidentRules

set of 127 rules

The next command produces a matrix-based

visualization (Figure 5-5) of the LHS versus the RHS of

the rules. The legend on the right is a color matrix

indicating the lift and the confidence to which each

square in the main matrix corresponds.

plot(confidentRules, method="matrix", measure=c("lift", "confidence"),

 control=list(reorder=TRUE))

As the previous plot() command runs, the R console

would simultaneously display a distinct list of the LHS

and RHS from the 127 rules. A segment of the output

is shown here:

Itemsets in Antecedent (LHS)

 [1] "{citrus fruit,other vegetables,soda,fruit/vegetable juice}"

 [2] "{tropical fruit,other vegetables,whole milk,yogurt,oil}"

 [3] "{tropical fruit,butter,whipped/sour cream,fruit/vegetable

juice}"

 [4] "{tropical fruit,grapes,whole milk,yogurt}"

 [5] "{ham,tropical fruit,pip fruit,whole milk}"

...

[124] "{liquor,red/blush wine}"

Itemsets in Consequent (RHS)

 [1] "{whole milk}" "{yogurt}" "{root vegetables}"

 [4] "{bottled beer}" "{other vegetables}"

FIGURE 5-5 Matrix-based visualization of LIS and RIS,

colored by lift and confidence

The following code provides a visualization of the top

five rules with the highest lift. The plot is shown in

Figure 5-6. In the graph, the arrow always points from

an item on the LHS to an item on the RHS. For

example, the arrows that connect ham, processed

cheese, and white bread suggest rule {ham,processed cheese}

→{white bread}. The legend on the top right of the graph

shows that the size of a circle indicates the support of

the rules ranging from 0.001 to 0.002. The color (or

shade) represents the lift, which ranges from 11.279 to

18.996. The rule with the highest lift is {Instant food

products,soda} → {hamburger meat}.

highLiftRules <- head(sort(rules, by="lift"), 5)

plot(highLiftRules, method="graph", control=list(type="items"))

FIGURE 5-6 Graph visualization of the top five rules

sorted by lift

5.6 Validation and Testing

After gathering the output rules, it may become

necessary to use one or more methods to validate the

results in the business context for the sample dataset.

The first approach can be established through

statistical measures such as confidence, lift, and

leverage. Rules that involve mutually independent

items or cover few transactions are considered

uninteresting because they may capture spurious

relationships.

As mentioned in Section 5.3, confidence measures

the chance that X and Y appear together in relation to

the chance X appears. Confidence can be used to

identify the interestingness of the rules.

Lift and leverage both compare the support of X and

Y against their individual support. While mining data

with association rules, some rules generated could be

purely coincidental. For example, if 95% of customers

buy X and 90% of customers buy Y, then X and Y

would occur together at least 85% of the time, even if

there is no relationship between the two. Measures like

lift and leverage ensure that interesting rules are

identified rather than coincidental ones.

Another set of criteria can be established through

subjective arguments. Even with a high confidence, a

rule may be considered subjectively uninteresting

unless it reveals any unexpected profitable actions. For

example, rules like {paper}→{pencil} may not be

subjectively interesting or meaningful despite high

support and confidence values. In contrast, a rule like

{diaper}→{beer} that satisfies both minimum support and

minimum confidence can be considered subjectively

interesting because this rule is unexpected and may

suggest a cross-sell opportunity for the retailer. This

incorporation of subjective knowledge into the

evaluation of rules can be a difficult task, and it

requires collaboration with domain experts. As seen in

Chapter 2, “Data Analytics Lifecycle,” the domain

experts may serve as the business users or the

business intelligence analysts as part of the Data

Science team. In Phase 5, the team can communicate

the results and decide if it is appropriate to

operationalize them.

5.7 Diagnostics

Although the Apriori algorithm is easy to understand

and implement, some of the rules generated are

uninteresting or practically useless. Additionally, some

of the rules may be generated due to coincidental

relationships between the variables. Measures like

confidence, lift, and leverage should be used along

with human insights to address this problem.

Another problem with association rules is that, in

Phase 3 and 4 of the Data Analytics Lifecycle (Chapter

2), the team must specify the minimum support prior

to the model execution, which may lead to too many or

too few rules. In related research, a variant of the

algorithm [13] can use a predefined target range for

the number of rules so that the algorithm can adjust

the minimum support accordingly.

Section 5.2 presented the Apriori algorithm, which is

one of the earliest and the most fundamental

algorithms for generating association rules. The Apriori

algorithm reduces the computational workload by only

examining itemsets that meet the specified minimum

threshold. However, depending on the size of the

dataset, the Apriori algorithm can be computationally

expensive. For each level of support, the algorithm

requires a scan of the entire database to obtain the

result. Accordingly, as the database grows, it takes

more time to compute in each run. Here are some

approaches to improve Apriori's efficiency:

Partitioning: Any itemset that is potentially
frequent in a transaction database must be
frequent in at least one of the partitions of the
transaction database.

Sampling: This extracts a subset of the data with
a lower support threshold and uses the subset to
perform association rule mining.

Transaction reduction: A transaction that does
not contain frequent k-itemsets is useless in
subsequent scans and therefore can be ignored.

Hash-based itemset counting: If the
corresponding hashing bucket count of a k-itemset
is below a certain threshold, the k-itemset cannot
be frequent.

Dynamic itemset counting: Only add new
candidate itemsets when all of their subsets are

estimated to be frequent.

Summary

As an unsupervised analysis technique that uncovers

relationships among items, association rules find many

uses in activities, including market basket analysis,

clickstream analysis, and recommendation engines.

Although association rules are not used to predict

outcomes or behaviors, they are good at identifying

“interesting” relationships within items from a large

dataset. Quite often, the disclosed relationships that

the association rules suggest do not seem obvious;

they, therefore, provide valuable insights for

institutions to improve their business operations.

The Apriori algorithm is one of the earliest and most

fundamental algorithms for association rules. This

chapter used a grocery store example to walk through

the steps of Apriori and generate frequent k-itemsets

and useful rules for downstream analysis and

visualization. A few measures such as support,

confidence, lift, and leverage were discussed. These

measures together help identify the interesting rules

and eliminate the coincidental rules. Finally, the

chapter discussed some pros and cons of the Apriori

algorithm and highlighted a few methods to improve

its efficiency.

Exercises

1. What is the Apriori property?

2. Following is a list of five transactions that include

items A, B, C, and D:

T1 : { A,B,C }

T2 : { A,C }

T3 : { B,C }

T4 : { A,D }

T5 : { A,C,D }

Which itemsets satisfy the minimum support of

0.5? (Hint: An itemset may include more than

one item.)

3. How are interesting rules identified? How are

interesting rules distinguished from coincidental

rules?

4. A local retailer has a database that stores 10,000

transactions of last summer. After analyzing the

data, a data science team has identified the

following statistics:

{battery} appears in 6,000 transactions.

{sunscreen} appears in 5,000 transactions.

{sandals} appears in 4,000 transactions.

{bowls} appears in 2,000 transactions.

{battery,sunscreen} appears in 1,500 transactions.

{battery,sandals} appears in 1,000 transactions.

{battery,bowls} appears in 250 transactions.

{battery,sunscreen,sandals} appears in 600 transactions.

Answer the following questions:

a. What are the support values of the preceding

itemsets?

b. Assuming the minimum support is 0.05, which

itemsets are considered frequent?

c. What are the confidence values of {battery}

→{sunscreen} and {battery,sunscreen}→{sandals}? Which of the

two rules is more interesting?

d. List all the candidate rules that can be formed

from the statistics. Which rules are considered

interesting at the minimum confidence 0.25? Out

of these interesting rules, which rule is

considered the most useful (that is, least

coincidental)?

Bibliography

[1] P. Hájek, I. Havel, and M. Chytil, “The GUHA Method of
Automatic Hypotheses Determination,” Computing, vol. 1, no. 4,
pp. 293–308, 1966.

[2] R. Agrawal, T. Imieliński, and A. Swami, “Mining Association
Rules Between Sets of Items in Large Databases,” SIGMOD '93

Proceedings of the 1993 ACM SIGMOD International Conference

on Management of Data, pp. 207–216, 1993.
[3] M.-S. Chen, J. S. Park, and P. Yu, “Efficient Data Mining for

Path Traversal Patterns,” IEEE Transactions on Knowledge and

Data Engineering, vol. 10, no. 2, pp. 209–221, 1998.
[4] R. Cooley, B. Mobasher, and J. Srivastava, “Web Mining:

Information and Pattern Discovery on the World Wide Web,”
Proceedings of the 9th IEEE International Conference on Tools

with Artificial Intelligence, pp. 558–567, 1997.
[5] R. Agrawal and R. Srikant, “Fast Algorithms for Mining

Association Rules in Large Databases,” in Proceedings of the

20th International Conference on Very Large Data Bases, San
Francisco, CA, USA, 1994.

[6] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic
Itemset Counting and Implication Rules for Market Basket Data,”
SIGMOD, vol. 26, no. 2, pp. 255–264, 1997.

[7] G. Piatetsky-Shapiro, “Discovery, Analysis and Presentation of
Strong Rules,” Knowledge Discovery in Databases, pp. 229–248,
1991.

[8] S. Brin, R. Motwani, and C. Silverstein, “Beyond Market
Baskets: Generalizing Association Rules to Correlations,”
Proceedings of the ACM SIGMOD/PODS '97 Joint Conference,
vol. 26, no. 2, pp. 265– 276, 1997.

[9] C. C. Aggarwal and P. S. Yu, “A New Framework for Itemset
Generation,” in Proceedings of the Seventeenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems

(PODS '98), Seattle, Washington, USA, 1998.
[10] M. Hahsler, “A Comparison of Commonly Used Interest

Measures for Association Rules,” 9 March 2011. [Online].
Available:

http://michael.hahsler.net/research/association_rules/measures.html.
[Accessed 4 March 2014].

[11] W. Lin, S. A. Alvarez, and C. Ruiz, “Efficient Adaptive-Support
Association Rule Mining for Recommender Systems,” Data

Mining and Knowledge Discovery, vol. 6, no. 1, pp. 83–105, 2002.
[12] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa, “Effective

Personalization Based on Association Rule Discovery from Web
Usage Data,” in ACM, 2011.

[13]W. Lin, S. A. Alvarez, and C. Ruiz, “Collaborative
Recommendation via Adaptive Association Rule Mining,” in
Proceedings of the International Workshop on Web Mining for E-

Commerce (WEBKDD), Boston, MA, 2000.

http://michael.hahsler.net/research/association_rules/measures.html

Categorical VariableLinear RegressionLogistic Regression

Ordinary Least Squares (OLS)

Receiver Operating Characteristic (ROC) CurveResiduals

6

Advanced Analytical

Theory

and Methods:

Regression

Key Concepts

In

gener

al,

regression analysis attempts to explain the influence

that a set of variables has on the outcome of another

variable of interest. Often, the outcome variable is

called a dependent variable because the outcome

depends on the other variables. These additional

variables are sometimes called the input variables or

the independent variables. Regression analysis is

useful for answering the following kinds of questions:

What is a person's expected income?

What is the probability that an applicant will
default on a loan?

Linear regression is a useful tool for answering the

first question, and logistic regression is a popular

method for addressing the second. This chapter

examines these two regression techniques and

explains when one technique is more appropriate than

the other.

Regression analysis is a useful explanatory tool that

can identify the input variables that have the greatest

statistical influence on the outcome. With such

knowledge and insight, environmental changes can be

attempted to produce more favorable values of the

input variables. For example, if it is found that the

reading level of 10-year-old students is an excellent

predictor of the students' success in high school and a

factor in their attending college, then additional

emphasis on reading can be considered, implemented,

and evaluated to improve students' reading levels at a

younger age.

6.1 Linear Regression

Linear regression is an analytical technique used to

model the relationship between several input variables

and a continuous outcome variable. A key assumption

is that the relationship between an input variable and

the outcome variable is linear. Although this

assumption may appear restrictive, it is often possible

to properly transform the input or outcome variables to

achieve a linear relationship between the modified

input and outcome variables. Possible transformations

will be covered in more detail later in the chapter.

The physical sciences have well-known linear

models, such as Ohm's Law, which states that the

electrical current flowing through a resistive circuit is

linearly proportional to the voltage applied to the

circuit. Such a model is considered deterministic in the

sense that if the input values are known, the value of

the outcome variable is precisely determined. A linear

regression model is a probabilistic one that accounts

for the randomness that can affect any particular

outcome. Based on known input values, a linear

regression model provides the expected value of the

outcome variable based on the values of the input

variables, but some uncertainty may remain in

predicting any particular outcome. Thus, linear

regression models are useful in physical and social

science applications where there may be considerable

variation in a particular outcome based on a given set

of input values. After presenting possible linear

regression use cases, the foundations of linear

regression modeling are provided.

6.1.1 USE CASES

Linear regression is often used in business,

government, and other scenarios. Some common

practical applications of linear regression in the real

world include the following:

Real estate: A simple linear regression analysis
can be used to model residential home prices as a
function of the home's living area. Such a model
helps set or evaluate the list price of a home on
the market. The model could be further improved
by including other input variables such as number
of bathrooms, number of bedrooms, lot size, school
district rankings, crime statistics, and property
taxes.

Demand forecasting: Businesses and
governments can use linear regression models to
predict demand for goods and services. For
example, restaurant chains can appropriately
prepare for the predicted type and quantity of food
that customers will consume based upon the
weather, the day of the week, whether an item is
offered as a special, the time of day, and the
reservation volume. Similar models can be built to
predict retail sales, emergency room visits, and
ambulance dispatches.

Medical: A linear regression model can be used to
analyze the effect of a proposed radiation
treatment on reducing tumor sizes. Input variables
might include duration of a single radiation
treatment, frequency of radiation treatment, and
patient attributes such as age or weight.

6.1.2 MODEL DESCRIPTION

As the name of this technique suggests, the linear

regression model assumes that there is a linear

relationship between the input variables and the

outcome variable. This relationship can be expressed

as shown in Equation 6-1.

where:

y is the outcome variable

x are the input variables, for j = 1, 2, ..., p − 1

β is the value of y when each x equals zero

β is the change in y based on a unit change in x , for j = 1, 2, ..., p

− 1

 is a random error term that represents the difference in the

linear model and a particular observed value for y

Suppose it is desired to build a linear regression

model that estimates a person's annual income as a

function of two variables—age and education—both

expressed in years. In this case, income is the outcome

variable, and the input variables are age and

j

0 j

j j

education. Although it may be an over generalization,

such a model seems intuitively correct in the sense

that people's income should increase as their skill set

and experience expand with age. Also, the

employment opportunities and starting salaries would

be expected to be greater for those who have attained

more education.

However, it is also obvious that there is considerable

variation in income levels for a group of people with

identical ages and years of education. This variation is

represented by in the model. So, in this example, the

model would be expressed as shown in Equation 6-2.

In the linear model, the β s represent the unknown p

parameters. The estimates for these unknown

parameters are chosen so that, on average, the model

provides a reasonable estimate of a person's income

based on age and education. In other words, the fitted

model should minimize the overall error between the

linear model and the actual observations. Ordinary

Least Squares (OLS) is a common technique to

estimate the parameters.

To illustrate how OLS works, suppose there is only

one input variable, x, for an outcome variable y.

Furthermore, n observations of (x,y) are obtained and

plotted in Figure 6-1.

j

FIGURE 6-1 Scatterplot of y versus x

The goal is to find the line that best approximates

the relationship between the outcome variable and the

input variables. With OLS, the objective is to find the

line through these points that minimizes the sum of

the squares of the difference between each point and

the line in the vertical direction. In other words, find

the values of β and β such that the summation

shown in Equation 6-3 is minimized.

The n individual distances to be squared and then

summed are illustrated in Figure 6-2. The vertical lines

represent the distance between each observed y value

and the line y = β + β x.

0 1

0 1

FIGURE 6-2 Scatterplot of y versus x with vertical

distances from the observed points to a fitted line

In Figure 3-7 of Chapter 3, “Review of Basic Data

Analytic Methods Using R,” the Anscombe's Quartet

example used OLS to fit the linear regression line to

each of the four datasets. OLS for multiple input

variables is a straightforward extension of the one

input variable case provided in Equation 6-3.

The preceding discussion provided the approach to

find the best linear fit to a set of observations.

However, by making some additional assumptions on

the error term, it is possible to provide further

capabilities in utilizing the linear regression model. In

general, these assumptions are almost always made,

so the following model, built upon the earlier described

model, is simply called the linear regression model.

Linear Regression Model (with

Normally Distributed Errors)

In the previous model description, there were no

assumptions made about the error term; no additional

assumptions were necessary for OLS to provide

estimates of the model parameters. However, in most

linear regression analyses, it is common to assume

that the error term is a normally distributed random

variable with mean equal to zero and constant

variance. Thus, the linear regression model is

expressed as shown in Equation 6-4.

where:

y is the outcome variable

x are the input variables, for j = 1, 2,..., p − 1

β is the value of y when each x equals zero

β is the change in y based on a unit change in x , for j = 1, 2,. . ., p

− 1

~N(0, σ) and the s are independent of each other

This additional assumption yields the following result

about the expected value of y, E(y) for given (x ,

x ,...x):

Because β and x are constants, the E(y) is the value

of the linear regression model for the given (x ,

j

0 j

j j

1

2 p− 1

j j

1

2

x ,...x). Furthermore, the variance of y, V(y), for

given (x , x ,... x) is this:

Thus, for a given (x , x ,... x), y is normally

distributed with mean β +β x + β x ...+ β x

and variance σ . For a regression model with just one

input variable, Figure 6-3 illustrates the normality

assumption on the error terms and the effect on the

outcome variable, y, for a given value of x.

For x = 8, one would expect to observe a value of y

near 20, but a value of y from 15 to 25 would appear

possible based on the illustrated normal distribution.

Thus, the regression model estimates the expected

value of y for the given value of x. Additionally, the

normality assumption on the error term provides some

useful properties that can be utilized in performing

hypothesis testing on the linear regression model and

providing confidence intervals on the parameters and

the mean of y given (x , x ,... x). The application of

these statistical techniques is demonstrated by

applying R to the earlier linear regression model on

income.

2 p−1

1 2 p−1

1 2 p−1

0 1 1 2 2 p − 1 p − 1

1 2 p−1

2

FIGURE 6-3 Normal distribution about y for a given

value of x

Example in R

Returning to the Income example, in addition to the

variables age and education, the person's gender,

female or male, is considered an input variable. The

following code reads a comma-separated-value (CSV)

file of 1,500 people's incomes, ages, years of

education, and gender. The first 10 rows are displayed:

income_input = as.data.frame(read.csv("c:/data/income.csv"))

income_input[1:10,]

 ID Income Age Education Gender

1 1 113 69 12 1

2 2 91 52 18 0

3 3 121 65 14 0

4 4 81 58 12 0

5 5 68 31 16 1

6 6 92 51 15 1

7 7 75 53 15 0

8 8 76 56 13 0

9 9 56 42 15 1

10 10 53 33 11 1

Each person in the sample has been assigned an

identification number, ID. Income is expressed in

thousands of dollars. (For example, 113 denotes

$113,000.) As described earlier, Age and Education are

expressed in years. For Gender, a 0 denotes female and a

1 denotes male. A summary of the imported data

reveals that the incomes vary from $14,000 to

$134,000. The ages are between 18 and 70 years. The

education experience for each person varies from a

minimum of 10 years to a maximum of 20 years.

summary(income_input)

 ID Income Age Education

 Min. : 1.0 Min. : 14.00 Min. :18.00 Min. :10.00

1st Qu. : 375.8 1st Qu.: 62.00 1st Qu.:30.00 1st Qu.:12.00

Median : 750.5 Median : 76.00 Median :44.00 Median :15.00

Mean : 750.5 Mean : 75.99 Mean :43.58 Mean :14.68

3rd Qu. :1125.2 3rd Qu.: 91.00 3rd Qu.:57.00 3rd Qu.:16.00

Max. :1500.0 Max. :134.00 Max. :70.00 Max. :20.00

 Gender

Min. :0.00

1st Qu.:0.00

Median :0.00

Mean :0.49

3rd Qu.:1.00

Max. :1.00

As described in Chapter 3, a scatterplot matrix is an

informative tool to view the pair-wise relationships of

the variables. The basic assumption of a linear

regression model is that there is a linear relationship

between the outcome variable and the input variables.

Using the lattice package in R, the scatterplot matrix in

Figure 6-4 is generated with the following R code:

FIGURE 6-4 Scatterplot matrix of the variables

library(lattice)

splom(~income_input[c(2:5)], groups=NULL, data=income_input,

 axis.line.tck = 0,

 axis.text.alpha = 0)

Because the dependent variable is typically plotted

along the y-axis, examine the set of scatterplots along

the bottom of the matrix. A strong positive linear trend

is observed for Income as a function of Age. Against Education,

a slight positive trend may exist, but the trend is not

quite as obvious as is the case with the Age variable.

Lastly, there is no observed effect on Income based on

Gender.

With this qualitative understanding of the

relationships between Income and the input variables, it

seems reasonable to quantitatively evaluate the linear

relationships of these variables. Utilizing the normality

assumption applied to the error term, the proposed

linear regression model is shown in Equation 6-5.

Using the linear model function, lm(), in R, the income

model can be applied to the data as follows:

results <- lm(Income~Age + Education + Gender, income_input)

summary(results)

Call:

lm(formula = Income ~ Age + Education + Gender, data = income_input)

Residuals:

 Min 1Q Median 3Q Max

-37.340 -8.101 0.139 7.885 37.271

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.26299 1.95575 3.714 0.000212 ***

Age 0.99520 0.02057 48.373 < 2e-16 ***

Education 1.75788 0.11581 15.179 < 2e-16 ***

Gender -0.93433 0.62388 -1.498 0.134443

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12.07 on 1496 degrees of freedom

Multiple R-squared: 0.6364, Adjusted R-squared: 0.6357

F-statistic: 873 on 3 and 1496 DF, p-value: < 2.2e-16

The intercept term, β , is implicitly included in the

model. The lm() function performs the parameter

0

estimation for the parameters β (j = 0, 1, 2, 3) using

ordinary least squares and provides several useful

calculations and results that are stored in the variable

called results in this example.

After the stated call to lm(), a few statistics on the

residuals are displayed in the output. The residuals are

the observed values of the error term for each of the n

observations and are defined for i = 1, 2, ...n, as

shown in Equation 6-6.

where b denotes the estimate for parameter β for j

= 0, 1, 2, ... p − 1

From the R output, the residuals vary from

approximately −37 to +37, with a median close to 0.

Recall that the residuals are assumed to be normally

distributed with a mean near zero and a constant

variance. The normality assumption is examined more

carefully later.

The output provides details about the coefficients.

The column Estimate provides the OLS estimates of the

coefficients in the fitted linear regression model. In

general, the (Intercept) corresponds to the estimated

response variable when all the input variables equal

zero. In this example, the intercept corresponds to an

estimated income of $7,263 for a newborn female with

no education. It is important to note that the available

dataset does not include such a person. The minimum

j

j j

age and education in the dataset are 18 and 10 years,

respectively. Thus, misleading results may be obtained

when using a linear regression model to estimate

outcomes for input values not representative within

the dataset used to train the model.

The coefficient for Age is approximately equal to one.

This coefficient is interpreted as follows: For every one

unit increase in a person's age, the person's income is

expected to increase by $995. Similarly, for every unit

increase in a person's years of education, the person's

income is expected to increase by about $1,758.

Interpreting the Gender coefficient is slightly different.

When Gender is equal to zero, the Gender coefficient

contributes nothing to the estimate of the expected

income. When Gender is equal to one, the expected Income

is decreased by about $934.

Because the coefficient values are only estimates

based on the observed incomes in the sample, there is

some uncertainty or sampling error for the coefficient

estimates. The Std. Error column next to the coefficients

provides the sampling error associated with each

coefficient and can be used to perform a hypothesis

test, using the t-distribution, to determine if each

coefficient is statistically different from zero. In other

words, if a coefficient is not statistically different from

zero, the coefficient and the associated variable in the

model should be excluded from the model. In this

example, the associated hypothesis tests' p-values,

Pr(>|t|), are very small for the Intercept, Age, and Education

parameters. As seen in Chapter 3, a small p-value

corresponds to a small probability that such a large t

value would be observed under the assumptions of the

null hypothesis. In this case, for a given j = 0, 1, 2, . . .,

p − 1, the null and alternate hypotheses follow:

For small p-values, as is the case for the Intercept, Age,

and Education parameters, the null hypothesis would be

rejected. For the Gender parameter, the corresponding p-

value is fairly large at 0.13. In other words, at a 90%

confidence level, the null hypothesis would not be

rejected. So, dropping the variable Gender from the linear

regression model should be considered. The following

R code provides the modified model results:

results2 <- lm(Income ~ Age + Education, income_input)

summary(results2)

Call:

lm(formula = Income ~ Age + Education, data = income_input)

Residuals:

 Min 1Q Median 3Q Max

-36.889 -7.892 0.185 8.200 37.740

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.75822 1.92728 3.507 0.000467 ***

Age 0.99603 0.02057 48.412 < 2e-16 ***

Education 1.75860 0.11586 15.179 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12.08 on 1497 degrees of freedom

Multiple R-squared: 0.6359, Adjusted R-squared: 0.6354

F-statistic: 1307 on 2 and 1497 DF, p-value: < 2.2e-16

Dropping the Gender variable from the model resulted

in a minimal change to the estimates of the remaining

parameters and their statistical significances.

The last part of the displayed results provides some

summary statistics and tests on the linear regression

model. The residual standard error is the standard

deviation of the observed residuals. This value, along

with the associated degrees of freedom, can be used

to examine the variance of the assumed normally

distributed error terms. R-squared (R) is a commonly

reported metric that measures the variation in the

data that is explained by the regression model.

Possible values of R vary from 0 to 1, with values

closer to 1 indicating that the model is better at

explaining the data than values closer to 0. An R of

exactly 1 indicates that the model explains perfectly

the observed data (all the residuals are equal to 0). In

general, the R value can be increased by adding more

variables to the model. However, just adding more

variables to explain a given dataset but not to improve

the explanatory nature of the model is known as

overfitting. To address the possibility of overfitting

the data, the adjusted R accounts for the number of

parameters included in the linear regression model.

The F-statistic provides a method for testing the

entire regression model. In the previous t-tests,

individual tests were conducted to determine the

2

2

2

2

2

statistical significance of each parameter. The provided

F-statistic and corresponding p-value enable the

analyst to test the following hypotheses:

In this example, the p-value of 2.2e − 16 is small,

which indicates that the null hypothesis should be

rejected.

Categorical Variables

In the previous example, the variable Gender was a

simple binary variable that indicated whether a person

is female or male. In general, these variables are

known as categorical variables. To illustrate how to

use categorical variables properly, suppose it was

decided in the earlier Income example to include an

additional variable, State, to represent the U.S. state

where the person resides. Similar to the use of the

Gender variable, one possible, but incorrect, approach

would be to include a State variable that would take a

value of 0 for Alabama, 1 for Alaska, 2 for Arizona, and

so on. The problem with this approach is that such a

numeric assignment based on an alphabetical ordering

of the states does not provide a meaningful measure

of the difference in the states. For example, is it useful

or proper to consider Arizona to be one unit greater

than Alaska and two units greater that Alabama?

In regression, a proper way to implement a

categorical variable that can take on m different values

is to add m−1 binary variables to the regression model.

To illustrate with the Income example, a binary variable

for each of 49 states, excluding Wyoming (arbitrarily

chosen as the last of 50 states in an alphabetically

sorted list), could be added to the model.

results3 <- lm(Income~Age + Education,

 + Alabama,

 + Alaska,

 + Arizona,

 .

 .

 .

 + WestVirginia,

 + Wisconsin,

 income_input)

The input file would have 49 columns added for

these variables representing each of the first 49

states. If a person was from Alabama, the Alabama

variable would be equal to 1, and the other 48

variables would be set to 0. This process would be

applied for the other state variables. So, a person from

Wyoming, the one state not explicitly stated in the

model, would be identified by setting all 49 state

variables equal to 0. In this representation, Wyoming

would be considered the reference case, and the

regression coefficients of the other state variables

would represent the difference in income between

Wyoming and a particular state.

Confidence Intervals on the

Parameters

Once an acceptable linear regression model is

developed, it is often helpful to use it to draw some

inferences about the model and the population from

which the observations were drawn. Earlier, we saw

that t-tests could be used to perform hypothesis tests

on the individual model parameters, β , j = 0, 1, ..., p −

1. Alternatively, these t-tests could be expressed in

terms of confidence intervals on the parameters. R

simplifies the computation of confidence intervals on

the parameters with the use of the confint() function.

From the Income example, the following R command

provides 95% confidence intervals on the intercept and

the coefficients for the two variables, Age and Education.

confint(results2, level = .95)

 2.5 % 97.5 %

(Intercept) 2.9777598 10.538690

Age 0.9556771 1.036392

Education 1.5313393 1.985862

Based on the data, the earlier estimated value of the

Education coefficient was 1.76. Using confint(), the

corresponding 95% confidence interval is (1.53, 1.99),

which provides the amount of uncertainty in the

estimate. In other words, in repeated random

sampling, the computed confidence interval straddles

the true but unknown coefficient 95% of the time. As

j

expected from the earlier t-test results, none of these

confidence intervals straddles zero.

Confidence Interval on the

Expected Outcome

In addition to obtaining confidence intervals on the

model parameters, it is often desirable to obtain a

confidence interval on the expected outcome. In the

Income example, the fitted linear regression provides the

expected income for a given Age and Education. However,

that particular point estimate does not provide

information on the amount of uncertainty in that

estimate. Using the predict() function in R, a confidence

interval on the expected outcome can be obtained for

a given set of input variable values.

In this illustration, a data frame is built containing a

specific age and education value. Using this set of

input variable values, the predict() function provides a

95% confidence interval on the expected Income for a 41-

year-old person with 12 years of education.

Age <- 41

Education <- 12

new_pt <- data.frame(Age, Education)

conf_int_pt <- predict(results2,new_pt,level=.95,interval="confidence")

conf_int_pt

 fit lwr upr

1 68.69884 67.83102 69.56667

For this set of input values, the expected income is

$68,699 with a 95% confidence interval of ($67,831,

$69,567).

Prediction Interval on a Particular

Outcome

The previous confidence interval was relatively close

(+/− approximately $900) to the fitted value.

However, this confidence interval should not be

considered as representing the uncertainty in

estimating a particular person's income. The predict()

function in R also provides the ability to calculate

upper and lower bounds on a particular outcome. Such

bounds provide what are referred to as prediction

intervals. Returning to the Income example, in R the

95% prediction interval on the Income for a 41-year-old

person with 12 years of education is obtained as

follows:

pred_int_pt <- predict(results2,new_pt,level=.95,interval="prediction")

pred_int_pt

 fit lwr upr

1 68.69884 44.98867 92.40902

Again, the expected income is $68,699. However,

the 95% prediction interval is ($44,988, $92,409). If

the reason for this much wider interval is not obvious,

recall that in Figure 6-3, for a particular input variable

value, the expected outcome falls on the regression

line, but the individual observations are normally

distributed about the expected outcome. The

confidence interval applies to the expected outcome

that falls on the regression line, but the prediction

interval applies to an outcome that may appear

anywhere within the normal distribution.

Thus, in linear regression, confidence intervals are

used to draw inferences on the population's expected

outcome, and prediction intervals are used to draw

inferences on the next possible outcome.

6.1.3 DIAGNOSTICS

The use of hypothesis tests, confidence intervals, and

prediction intervals is dependent on the model

assumptions being true. The following discussion

provides some tools and techniques that can be used

to validate a fitted linear regression model.

Evaluating the Linearity

Assumption

A major assumption in linear regression modeling is

that the relationship between the input variables and

the outcome variable is linear. The most fundamental

way to evaluate such a relationship is to plot the

outcome variable against each input variable. In the

Income example, such scatterplots were generated in

Figure 6-4. If the relationship between Age and Income is

represented as illustrated in Figure 6-5, a linear model

would not apply. In such a case, it is often useful to do

any of the following:

Transform the outcome variable.

Transform the input variables.

Add extra input variables or terms to the
regression model.

Common transformations include taking square roots

or the logarithm of the variables. Another option is to

create a new input variable such as the age squared

and add it to the linear regression model to fit a

quadratic relationship between an input variable and

the outcome.

FIGURE 6-5 Income as a quadratic function of Age

Additional use of transformations will be considered

when evaluating the residuals.

Evaluating the Residuals

As stated previously, it is assumed that the error terms

in the linear regression model are normally distributed

with a mean of zero and a constant variance. If this

assumption does not hold, the various inferences that

were made with the hypothesis tests, confidence

intervals, and prediction intervals are suspect.

To check for constant variance across all y values

along the regression line, use a simple plot of the

residuals against the fitted outcome values. Recall that

the residuals are the difference between the observed

outcome variables and the fitted value based on the

OLS parameter estimates. Because of the importance

of examining the residuals, the lm() function in R

automatically calculates and stores the fitted values

and the residuals, in the components fitted.values and

residuals in the output of the lm() function. Using the

Income regression model output stored in results2,

Figure 6-6 was generated with the following R code:

with(results2, {

plot(fitted.values, residuals,ylim=c(-40,40))

 points(c(min(fitted.values),max(fitted.values)),

 c(0,0), type = "l")})

FIGURE 6-6 Residual plot indicating constant variance

The plot in Figure 6-6 indicates that regardless of

income value along the fitted linear regression model,

the residuals are observed somewhat evenly on both

sides of the reference zero line, and the spread of the

residuals is fairly constant from one fitted value to the

next. Such a plot would support the mean of zero and

the constant variance assumptions on the error terms.

If the residual plot appeared like any of those in

Figures 6-7 through 6-10, then some of the earlier

discussed transformations or possible input variable

additions should be considered and attempted. Figure

6-7 illustrates the existence of a nonlinear trend in the

residuals. Figure 6-8 illustrates that the residuals are

not centered on zero. Figure 6-9 indicates a linear

trend in the residuals across the various outcomes

along the linear regression model. This plot may

indicate a missing variable or term from the regression

model. Figure 6-10 provides an example in which the

variance of the error terms is not a constant but

increases along the fitted linear regression model.

Evaluating the Normality

Assumption

The residual plots are useful for confirming that the

residuals were centered on zero and have a constant

variance. However, the normality assumption still has

to be validated. As shown in Figure 6-11, the following

R code provides a histogram plot of the residuals from

results2, the output from the Income example:

hist(results2$residuals, main="")

FIGURE 6-7 Residuals with a nonlinear trend

FIGURE 6-8 Residuals not centered on the zero line

FIGURE 6-9 Residuals with a linear trend

FIGURE 6-10 Residuals with nonconstant variance

FIGURE 6-11 Histogram of normally distributed

residuals

From the histogram, it is seen that the residuals are

centered on zero and appear to be symmetric about

zero, as one would expect for a normally distributed

random variable. Another option is to examine a Q-Q

plot that compares the observed data against the

quantiles (Q) of the assumed distribution. In R, the

following code generates the Q-Q plot shown in Figure

6-12 for the residuals from the Income example and

provides the line that the points should follow for

values from a normal distribution.

qqnorm(results2$residuals, ylab="Residuals", main="")

qqline(results2$residuals)

A Q-Q plot as provided in Figure 6-13 would indicate

that additional refinement of the model is required to

achieve normally distributed error terms.

FIGURE 6-12 Q-Q plot of normally distributed residuals

FIGURE 6-13 Q-Q plot of non-normally distributed

residuals

N-Fold Cross-Validation

To prevent overfitting a given dataset, a common

practice is to randomly split the entire dataset into a

training set and a testing set. Once the model is

developed on the training set, the model is evaluated

against the testing set. When there is not enough data

to create training and testing sets, an N-fold cross-

validation technique may be helpful to compare one

fitted model against another. In N-fold cross-validation,

the following occurs:

The entire dataset is randomly split into N
datasets of approximately equal size.

A model is trained against N − 1 of these datasets
and tested against the remaining dataset. A
measure of the model error is obtained.

This process is repeated a total of N times across
the various combinations of N datasets taken N −
1 at a time. Recall:

The observed N model errors are averaged over
the N folds.

The averaged error from one model is compared

against the averaged error from another model. This

technique can also help determine whether adding

more variables to an existing model is beneficial or

possibly overfitting the data.

Other Diagnostic Considerations

Although a fitted linear regression model conforms

with the preceding diagnostic criteria, it is possible to

improve the model by including additional input

variables not yet considered. In the previous Income

example, only three possible input variables—Age,

Education, and Gender—were considered. Dozens of other

additional input variables such as Housing or Marital_Status

may improve the fitted model. It is important to

consider all possible input variables early in the

analytic process.

As mentioned earlier, in reviewing the R output from

fitting a linear regression model, the adjusted R

applies a penalty to the R value based on the number

of parameters added to the model. Because the R

value will always move closer to one as more variables

are added to an existing regression model, the

adjusted R value may actually decrease after adding

more variables.

The residual plots should be examined for any

outliers, observed points that are markedly different

from the majority of the points. Outliers can result

from bad data collection, data processing errors, or an

actual rare occurrence. In the Income example, suppose

that an individual with an income of a million dollars

was included in the dataset. Such an observation could

2

2

2

2

affect the fitted regression model, as seen in one of

the examples of Anscombe's Quartet.

Finally, the magnitudes and signs of the estimated

parameters should be examined to see if they make

sense. For example, suppose a negative coefficient for

the Education variable in the Income example was

obtained. Because it is natural to assume that more

years of education lead to higher incomes, either

something very unexpected has been discovered, or

there is some issue with the model, how the data was

collected, or some other factor. In either case, further

investigation is warranted.

6.2 Logistic Regression

In linear regression modeling, the outcome variable is

a continuous variable. As seen in the earlier Income

example, linear regression can be used to model the

relationship between age and education to income.

Suppose a person's actual income was not of interest,

but rather whether someone was wealthy or poor. In

such a case, when the outcome variable is categorical

in nature, logistic regression can be used to predict the

likelihood of an outcome based on the input variables.

Although logistic regression can be applied to an

outcome variable that represents multiple values, the

following discussion examines the case in which the

outcome variable represents two values such as

true/false, pass/fail, or yes/no.

For example, a logistic regression model can be built

to determine if a person will or will not purchase a new

automobile in the next 12 months. The training set

could include input variables for a person's age,

income, and gender as well as the age of an existing

automobile. The training set would also include the

outcome variable on whether the person purchased a

new automobile over a 12-month period. The logistic

regression model provides the likelihood or probability

of a person making a purchase in the next 12 months.

After examining a few more use cases for logistic

regression, the remaining portion of this chapter

examines how to build and evaluate a logistic

regression model.

6.2.1 USE CASES

The logistic regression model is applied to a variety of

situations in both the public and the private sector.

Some common ways that the logistic regression model

is used include the following:

Medical: Develop a model to determine the
likelihood of a patient's successful response to a
specific medical treatment or procedure. Input
variables could include age, weight, blood
pressure, and cholesterol levels.

Finance: Using a loan applicant's credit history
and the details on the loan, determine the
probability that an applicant will default on the
loan. Based on the prediction, the loan can be
approved or denied, or the terms can be modified.

Marketing: Determine a wireless customer's
probability of switching carriers (known as
churning) based on age, number of family
members on the plan, months remaining on the
existing contract, and social network contacts.
With such insight, target the high-probability
customers with appropriate offers to prevent
churn.

Engineering: Based on operating conditions and
various diagnostic measurements, determine the
probability of a mechanical part experiencing a
malfunction or failure. With this probability
estimate, schedule the appropriate preventive
maintenance activity.

6.2.2 MODEL DESCRIPTION

Logistic regression is based on the logistic function

f(y), as given in Equation 6-7.

Note that as y → ∞, f(y) → 1, and as y →−∞, f(y) → 0.

So, as Figure 6-14 illustrates, the value of the logistic

function f(y) varies from 0 to 1 as y increases.

FIGURE 6-14 The logistic function

Because the range of f(y) is (0, 1), the logistic

function appears to be an appropriate function to

model the probability of a particular outcome

occurring. As the value of y increases, the probability

of the outcome occurring increases. In any proposed

model, to predict the likelihood of an outcome, y needs

to be a function of the input variables. In logistic

regression, y is expressed as a linear function of the

input variables. In other words, the formula shown in

Equation 6-8 applies.

Then, based on the input variables x , x ,..., x ,

the probability of an event is shown in Equation 6-9.

1 2 p −1

Equation 6-8 is comparable to Equation 6-1 used in

linear regression modeling. However, one difference is

that the values of y are not directly observed. Only the

value of f(y) in terms of success or failure (typically

expressed as 1 or 0, respectively) is observed.

Using p to denote f (y), Equation 6-9 can be rewritten

in the form provided in Equation 6-10.

The quantity , in Equation 6-10 is known as the

log odds ratio, or the logit of p. Techniques such as

Maximum Likelihood Estimation (MLE) are used to

estimate the model parameters. MLE determines the

values of the model parameters that maximize the

chances of observing the given dataset. However, the

specifics of implementing MLE are beyond the scope of

this book.

The following example helps to clarify the logistic

regression model. The mechanics of using R to fit a

logistic regression model are covered in the next

section on evaluating the fitted model. In this section,

the discussion focuses on interpreting the fitted model.

Customer Churn Example

A wireless telecommunications company wants to

estimate the probability that a customer will churn

(switch to a different company) in the next six months.

With a reasonably accurate prediction of a person's

likelihood of churning, the sales and marketing groups

can attempt to retain the customer by offering various

incentives. Data on 8,000 current and prior customers

was obtained. The variables collected for each

customer follow:

Age (years)

Married (true/false)

Duration as a customer (years)

Churned_contacts (count)—Number of the customer's
contacts that have churned (count)

Churned (true/false)—Whether the customer churned

After analyzing the data and fitting a logistic

regression model, Age and Churned_contacts were selected as

the best predictor variables. Equation 6-11 provides

the estimated model parameters.

Using the fitted model from Equation 6-11, Table 6-1

provides the probability of a customer churning based

on the customer's age and the number of churned

contacts. The computed values of y are also provided

in the table. Recalling the previous discussion of the

logistic function, as the value of y increases, so does

the probability of churning.

TABLE 6-1 Estimated Churn Probabilities

Based on the fitted model, there is a 93% chance

that a 20-year-old customer who has had six contacts

churn will also churn. (See the last row of Table 6-1.)

Examining the sign and values of the estimated

coefficients in Equation 6-11, it is observed that as the

value of Age increases, the value of y decreases. Thus,

the negative Age coefficient indicates that the

probability of churning decreases for an older

customer. On the other hand, based on the positive

sign of the Churned_Contacts coefficient, the value of y and

subsequently the probability of churning increases as

the number of churned contacts increases.

6.2.3 DIAGNOSTICS

The churn example illustrates how to interpret a fitted

logistic regression model. Using R, this section

examines the steps to develop a logistic regression

model and evaluate the model's effectiveness. For this

example, the churn_input data frame is structured as

follows:

head(churn_input)

 ID Churned Age Married Cust_years Churned_contacts

1 1 0 61 1 3 1

2 2 0 50 1 3 2

3 3 0 47 1 2 0

4 4 0 50 1 3 3

5 5 0 29 1 1 3

6 6 0 43 1 4 3

A Churned value of 1 indicates that the customer

churned. A Churned value of 0 indicates that the customer

remained as a subscriber. Out of the 8,000 customer

records in this dataset, 1,743 customers (~22%)

churned.

sum(churn_input$Churned)

[1] 1743

Using the Generalized Linear Model function, glm(), in

R and the specified family/link, a logistic regression

model can be applied to the variables in the dataset

and examined as follows:

Churn_logistic1 <- glm (Churned~Age + Married + Cust_years +

 Churned_contacts, data=churn_input,

 family=binomial(link="logit"))

summary(Churn_logistic1)

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.415201 0.163734 20.858 <2e-16 ***

Age -0.156643 0.004088 -38.320 <2e-16 ***

Married 0.066432 0.068302 0.973 0.331

Cust_years 0.017857 0.030497 0.586 0.558

Churned_contacts 0.382324 0.027313 13.998 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As in the linear regression case, there are tests to

determine if the coefficients are significantly different

from zero. Such significant coefficients correspond to

small values of Pr(>|z|), which denote the p-value for the

hypothesis test to determine if the estimated model

parameter is significantly different from zero.

Rerunning this analysis without the Cust_years variable,

which had the largest corresponding p-value, yields

the following:

Churn_logistic2 <- glm (Churned~Age + Married + Churned_contacts,

 data=churn_input, family=binomial(link="logit"))

summary(Churn_logistic2)

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.472062 0.132107 26.282 <2e-16 ***

Age -0.156635 0.004088 -38.318 <2e-16 ***

Married 0.066430 0.068299 0.973 0.331

Churned_contacts 0.381909 0.027302 13.988 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Because the p-value for the Married coefficient remains

quite large, the Married variable is dropped from the

model. The following R code provides the third and

final model, which includes only the Age and Churned_contacts

variables:

Churn_logistic3 <- glm (Churned~Age + Churned_contacts,

 data=churn_input, family=binomial(link="logit"))

summary(Churn_logistic3)

Call:

glm(formula = Churned ~ Age + Churned_contacts,

 family = binomial(link = "logit"), data = churn_input)

Deviance Residuals:

 Min 1Q Median 3Q Max

-2.4599 -0.5214 -0.1960 -0.0736 3.3671

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.502716 0.128430 27.27 <2e-16 ***

Age -0.156551 0.004085 -38.32 <2e-16 ***

Churned_contacts 0.381857 0.027297 13.99 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 8387.3 on 7999 degrees of freedom

Residual deviance: 5359.2 on 7997 degrees of freedom

AIC: 5365.2

Number of Fisher Scoring iterations: 6

For this final model, the entire summary output is

provided. The output offers several values that can be

used to evaluate the fitted model. It should be noted

that the model parameter estimates correspond to the

values provided in Equation 6-11 that were used to

construct Table 6-1.

Deviance and the Pseudo-R

In logistic regression, deviance is defined to be −2*

logL, where L is the maximized value of the likelihood

function that was used to obtain the parameter

estimates. In the R output, two deviance values are

provided. The null deviance is the value where the

likelihood function is based only on the intercept term

(y = β). The residual deviance is the value where0

2

the likelihood function is based on the parameters in

the specified logistic model, shown in Equation 6-12.

A metric analogous to R in linear regression can be

computed as shown in Equation 6-13.

The pseudo-R is a measure of how well the fitted

model explains the data as compared to the default

model of no predictor variables and only an intercept

term. A pseudo −R value near 1 indicates a good fit

over the simple null model.

Deviance and the Log-Likelihood

Ratio Test

In the pseudo −R calculation, the −2 multipliers

simply divide out. So, it may appear that including

such a multiplier does not provide a benefit. However,

the multiplier in the deviance definition is based on the

log-likelihood test statistic shown in Equation 6-14:

The previous description of the log-likelihood test

statistic applies to any estimation using MLE. As can

2

2

2

2

be seen in Equation 6-15, in the logistic regression

case,

So, in a hypothesis test, a large value of T would

indicate that the fitted model is significantly better

than the null model that uses only the intercept term.

In the churn example, the log-likelihood ratio statistic

would be this:

T = 8387.3 − 5359.2 = 3028.1 with 2 degrees of

freedom and a corresponding p-value that is

essentially zero.

So far, the log-likelihood ratio test discussion has

focused on comparing a fitted model to the default

model of using only the intercept. However, the log-

likelihood ratio test can also compare one fitted model

to another. For example, consider the logistic

regression model when the categorical variable Married is

included with Age and Churned_contacts in the list of input

variables. The partial R output for such a model is

provided here:

summary(Churn_logistic2)

Call:

glm(formula = Churned ~ Age + Married + Churned_contacts,

 family = binomial(link = "logit"),

 data = churn_input)

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.472062 0.132107 26.282 <2e-16 ***

Age -0.156635 0.004088 -38.318 <2e-16 ***

Married 0.066430 0.068299 0.973 0.331

Churned_contacts 0.381909 0.027302 13.988 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 8387.3 on 7999 degrees of freedom

Residual deviance: 5358.3 on 7996 degrees of freedom

The residual deviances from each model can be used

to perform a hypothesis test where H : β = 0

against H : β ≠ 0 using the base model that

includes the Age and Churned_contacts variables. The test

statistic follows:

T = 5359.2 − 5358.3 = 0.9 with 7997 − 7996 =1 degree of

freedom

Using R, the corresponding p-value is calculated as

follows:

pchisq(.9 , 1, lower=FALSE)

[1] 0.3427817

Thus, at a 66% or higher confidence level, the null

hypothesis, H : β = 0, would not be rejected.

Thus, it seems reasonable to exclude the variable Married

from the logistic regression model.

In general, this log-likelihood ratio test is particularly

useful for forward and backward step-wise methods to

add variables to or remove them from the proposed

logistic regression model.

Receiver Operating Characteristic

(ROC) Curve

0 Married

A Married

0 Married

Logistic regression is often used as a classifier to

assign class labels to a person, item, or transaction

based on the predicted probability provided by the

model. In the Churn example, a customer can be

classified with the label called Churn if the logistic model

predicts a high probability that the customer will

churn. Otherwise, a Remain label is assigned to the

customer. Commonly, 0.5 is used as the default

probability threshold to distinguish between any two

class labels. However, any threshold value can be used

depending on the preference to avoid false positives

(for example, to predict Churn when actually the

customer will Remain) or false negatives (for example, to

predict Remain when the customer will actually Churn).

In general, for two class labels, C and ¬C, where

“¬C” denotes “not C,” some working definitions and

formulas follow:

True Positive: predict C, when actually C

True Negative: predict ¬C, when actually ¬C

False Positive: predict C, when actually ¬C

False Negative: predict ¬C, when actually C

The plot of the True Positive Rate (TPR) against the

False Positive Rate (FPR) is known as the Receiver

Operating Characteristic (ROC) curve. Using the ROCR

package, the following R commands generate the ROC

curve for the Churn example:

library(ROCR)

pred = predict(Churn_logistic3, type="response")

predObj = prediction(pred, churn_input$Churned)

rocObj = performance(predObj, measure="tpr", x.measure="fpr")

aucObj = performance(predObj, measure="auc")

plot(rocObj, main = paste("Area under the curve:",

 round(aucObj@y.values[[1]] ,4)))

The usefulness of this plot in Figure 6-15 is that the

preferred outcome of a classifier is to have a low FPR

and a high TPR. So, when moving from left to right on

the FPR axis, a good model/classifier has the TPR

rapidly approach values near 1, with only a small

change in FPR. The closer the ROC curve tracks along

the vertical axis and approaches the upper-left hand of

the plot, near the point (0,1), the better the

model/classifier performs. Thus, a useful metric is to

compute the area under the ROC curve (AUC). By

examining the axes, it can be seen that the theoretical

maximum for the area is 1.

FIGURE 6-15 ROC curve for the churn example

To illustrate how the FPR and TPR values are

dependent on the threshold value used for the

classifier, the plot in Figure 6-16 was constructed using

the following R code:

extract the alpha(threshold), FPR, and TPR values from rocObj

alpha <- round(as.numeric(unlist(rocObj@alpha.values)),4)

fpr <- round(as.numeric(unlist(rocObj@x.values)),4)

tpr <- round(as.numeric(unlist(rocObj@y.values)),4)

adjust margins and plot TPR and FPR

par(mar = c(5,5,2,5))

plot(alpha,tpr, xlab="Threshold", xlim=c(0,1),

 ylab="True positive rate", type="l")

par(new="True")

plot(alpha,fpr, xlab="", ylab="", axes=F, xlim=c(0,1), type="l")

axis(side=4)

mtext(side=4, line=3, "False positive rate")

text(0.18,0.18,"FPR")

text(0.58,0.58,"TPR")

FIGURE 6-16 The effect of the threshold value in the

churn example

For a threshold value of 0, every item is classified as

a positive outcome. Thus, the TPR value is 1. However,

all the negatives are also classified as a positive, and

the FPR value is also 1. As the threshold value

increases, more and more negative class labels are

assigned. Thus, the FPR and TPR values decrease.

When the threshold reaches 1, no positive labels are

assigned, and the FPR and TPR values are both 0.

For the purposes of a classifier, a commonly used

threshold value is 0.5. A positive label is assigned for

any probability of 0.5 or greater. Otherwise, a negative

label is assigned. As the following R code illustrates, in

the analysis of the Churn dataset, the 0.5 threshold

corresponds to a TPR value of 0.56 and a FPR value of

0.08.

i <- which(round(alpha,2) == .5)

paste("Threshold=" , (alpha[i]) , " TPR=" , tpr[i] , " FPR=" , fpr[i])

[1] "Threshold= 0.5004 TPR= 0.5571 FPR= 0.0793"

Thus, 56% of customers who will churn are properly

classified with the Churn label, and 8% of the customers

who will remain as customers are improperly labeled

as Churn. If identifying only 56% of the churners is not

acceptable, then the threshold could be lowered. For

example, suppose it was decided to classify with a Churn

label any customer with a probability of churning

greater than 0.15. Then the following R code indicates

that the corresponding TPR and FPR values are 0.91

and 0.29, respectively. Thus, 91% of the customers

who will churn are properly identified, but at a cost of

misclassifying 29% of the customers who will remain.

i <- which(round(alpha,2) == .15)

paste("Threshold=" , (alpha[i]) , " TPR=" , tpr[i] , " FPR=" , fpr[i])

[1] "Threshold= 0.1543 TPR= 0.9116 FPR= 0.2869"

[2] "Threshold= 0.1518 TPR= 0.9122 FPR= 0.2875"

[3] "Threshold= 0.1479 TPR= 0.9145 FPR= 0.2942"

[4] "Threshold= 0.1455 TPR= 0.9174 FPR= 0.2981"

The ROC curve is useful for evaluating other

classifiers and will be utilized again in Chapter 7,

“Advanced Analytical Theory and Methods:

Classification.”

Histogram of the Probabilities

It can be useful to visualize the observed responses

against the estimated probabilities provided by the

logistic regression. Figure 6-17 provides overlaying

histograms for the customers who churned and for the

customers who remained as customers. With a proper

fitting logistic model, the customers who remained

tend to have a low probability of churning. Conversely,

the customers who churned have a high probability of

churning again. This histogram plot helps visualize the

number of items to be properly classified or mis-

classified. In the Churn example, an ideal histogram

plot would have the remaining customers grouped at

the left side of the plot, the customers who churned at

the right side of the plot, and no overlap of these two

groups.

FIGURE 6-17 Customer counts versus estimated churn

probability

6.3 Reasons to Choose

and Cautions

Linear regression is suitable when the input variables

are continuous or discrete, including categorical data

types, but the outcome variable is continuous. If the

outcome variable is categorical, logistic regression is a

better choice.

Both models assume a linear additive function of the

input variables. If such an assumption does not hold

true, both regression techniques perform poorly.

Furthermore, in linear regression, the assumption of

normally distributed error terms with a constant

variance is important for many of the statistical

inferences that can be considered. If the various

assumptions do not appear to hold, the appropriate

transformations need to be applied to the data.

Although a collection of input variables may be a

good predictor for the outcome variable, the analyst

should not infer that the input variables directly cause

an outcome. For example, it may be identified that

those individuals who have regular dentist visits may

have a reduced risk of heart attacks. However, simply

sending someone to the dentist almost certainly has

no effect on that person's chance of having a heart

attack. It is possible that regular dentist visits may

indicate a person's overall health and dietary choices,

which may have a more direct impact on a person's

health. This example illustrates the commonly known

expression, “Correlation does not imply causation.”

Use caution when applying an already fitted model

to data that falls outside the dataset used to train the

model. The linear relationship in a regression model

may no longer hold at values outside the training

dataset. For example, if income was an input variable

and the values of income ranged from $35,000 to

$90,000, applying the model to incomes well outside

those incomes could result in inaccurate estimates and

predictions.

The income regression example in Section 6.1.2

mentioned the possibility of using categorical variables

to represent the 50 U.S. states. In a linear regression

model, the state of residence would provide a simple

additive term to the income model but no other impact

on the coefficients of the other input variables, such as

Age and Education. However, if state does influence the

other variables' impact to the income model, an

alternative approach would be to build 50 separate

linear regression models: one model for each state.

Such an approach is an example of the options and

decisions that the data scientist must be willing to

consider.

If several of the input variables are highly correlated

to each other, the condition is known as

multicollinearity. Multicollinearity can often lead to

coefficient estimates that are relatively large in

absolute magnitude and may be of inappropriate

direction (negative or positive sign). When possible,

the majority of these correlated variables should be

removed from the model or replaced by a new variable

that is a function of the correlated variables. For

example, in a medical application of regression, height

and weight may be considered important input variables,

but these variables tend to be correlated. In this case,

it may be useful to use the Body Mass Index (BMI),

which is a function of a person's height and weight.

However, in some cases it may be necessary to use

the correlated variables. The next section provides

some techniques to address highly correlated

variables.

6.4 Additional Regression

Models

In the case of multicollinearity, it may make sense to

place some restrictions on the magnitudes of the

estimated coefficients. Ridge regression, which

applies a penalty based on the size of the coefficients,

is one technique that can be applied. In fitting a linear

regression model, the objective is to find the values of

the coefficients that minimize the sum of the residuals

squared. In ridge regression, a penalty term

proportional to the sum of the squares of the

coefficients is added to the sum of the residuals

squared. Lasso regression is a related modeling

technique in which the penalty is proportional to the

sum of the absolute values of the coefficients.

Only binary outcome variables were examined in the

use of logistic regression. If the outcome variable can

assume more than two states, multinomial logistic

regression can be used.

Summary

This chapter discussed the use of linear regression and

logistic regression to model historical data and to

predict future outcomes. Using R, examples of each

regression technique were presented. Several

diagnostics to evaluate the models and the underlying

assumptions were covered.

Although regression analysis is relatively

straightforward to perform using many existing

software packages, considerable care must be taken in

performing and interpreting a regression analysis. This

chapter highlighted that in a regression analysis, the

data scientist needs to do the following:

Determine the best input variables and their
relationship to the outcome variable.

Understand the underlying assumptions and their
impact on the modeling results.

Transform the variables, as appropriate, to
achieve adherence to the model assumptions.

Decide whether building one comprehensive
model is the best choice or consider building many
models on partitions of the data.

Exercises

1. In the Income linear regression example, consider

the distribution of the outcome variable Income. Income

values tend to be highly skewed to the right

(distribution of value has a large tail to the right).

Does such a non-normally distributed outcome

variable violate the general assumption of a linear

regression model? Provide supporting arguments.

2. In the use of a categorical variable with n possible

values, explain the following:

a. Why only n – 1 binary variables are necessary

b. Why using n variables would be problematic

3. In the example of using Wyoming as the reference

case, discuss the effect on the estimated model

parameters, including the intercept, if another

state was selected as the reference case.

4. Describe how logistic regression can be used as a

classifier.

5. Discuss how the ROC curve can be used to

determine an appropriate threshold value for a

classifier.

6. If the probability of an event occurring is 0.4, then

a. What is the odds ratio?

b. What is the log odds ratio?

7. If b = −.5 is an estimated coefficient in a linear

regression model, what is the effect on the odds

ratio for every one unit increase in the value of x ?

3

3

Classification learningNaïve BayesDecision tree

ROC curveConfusion matrix

7

Advanced Analytical

Theory

and Methods:

Classification

Key Concepts

In addition

to analytical methods such

as clustering (Chapter 4, “Advanced Analytical Theory

and Methods: Clustering”), association rule learning

Chapter 5, “Advanced Analytical Theory and Methods:

Association Rules”, and modeling techniques like

regression (Chapter 6, “Advanced Analytical Theory

and Methods: Regression”), classification is another

fundamental learning method that appears in

applications related to data mining. In classification

learning, a classifier is presented with a set of

examples that are already classified and, from these

examples, the classifier learns to assign unseen

examples. In other words, the primary task performed

by classifiers is to assign class labels to new

observations. Logistic regression from the previous

chapter is one of the popular classification methods.

The set of labels for classifiers is predetermined, unlike

in clustering, which discovers the structure without a

training set and allows the data scientist optionally to

create and assign labels to the clusters.

Most classification methods are supervised, in that

they start with a training set of prelabeled

observations to learn how likely the attributes of these

observations may contribute to the classification of

future unlabeled observations. For example, existing

marketing, sales, and customer demographic data can

be used to develop a classifier to assign a “purchase”

or “no purchase” label to potential future customers.

Classification is widely used for prediction purposes.

For example, by building a classifier on the transcripts

of United States Congressional floor debates, it can be

determined whether the speeches represent support or

opposition to proposed legislation [1]. Classification

can help health care professionals diagnose heart

disease patients [2]. Based on an e-mail's content, e-

mail providers also use classification to decide whether

the incoming e-mail messages are spam [3].

This chapter mainly focuses on two fundamental

classification methods: decision trees and naïve

Bayes.

7.1 Decision Trees

A decision tree (also called prediction tree) uses a

tree structure to specify sequences of decisions and

consequences. Given input X = {x , x ,... x }, the goal

is to predict a response or output variable Y. Each

member of the set {x , x ,...x } is called an input

variable. The prediction can be achieved by

constructing a decision tree with test points and

branches. At each test point, a decision is made to pick

a specific branch and traverse down the tree.

Eventually, a final point is reached, and a prediction

can be made. Each test point in a decision tree

involves testing a particular input variable (or

attribute), and each branch represents the decision

being made. Due to its flexibility and easy

visualization, decision trees are commonly deployed in

data mining applications for classification purposes.

The input values of a decision tree can be

categorical or continuous. A decision tree employs a

structure of test points (called nodes) and branches,

which represent the decision being made. A node

without further branches is called a leaf node. The

leaf nodes return class labels and, in some

implementations, they return the probability scores. A

decision tree can be converted into a set of decision

1 2 n

1 2 n

rules. In the following example rule, income and

mortgage_amount are input variables, and the response is the

output variable default with a probability score.

IF income < $50,000 AND mortgage_amount > $100K

THEN default = True WITH PROBABILITY 75%

Decision trees have two varieties: classification

trees and regression trees. Classification trees

usually apply to output variables that are categorical—

often binary—in nature, such as yes or no, purchase or

not purchase, and so on. Regression trees, on the

other hand, can apply to output variables that are

numeric or continuous, such as the predicted price of a

consumer good or the likelihood a subscription will be

purchased.

Decision trees can be applied to a variety of

situations. They can be easily represented in a visual

way, and the corresponding decision rules are quite

straightforward. Additionally, because the result is a

series of logical if-then statements, there is no

underlying assumption of a linear (or nonlinear)

relationship between the input variables and the

response variable.

7.1.1 OVERVIEW OF A

DECISION TREE

Figure 7-1 shows an example of using a decision tree

to predict whether customers will buy a product. The

term branch refers to the outcome of a decision and is

visualized as a line connecting two nodes. If a decision

is numerical, the “greater than” branch is usually

placed on the right, and the “less than” branch is

placed on the left. Depending on the nature of the

variable, one of the branches may need to include an

“equal to” component.

Internal nodes are the decision or test points. Each

internal node refers to an input variable or an

attribute. The top internal node is called the root. The

decision tree in Figure 7-1 is a binary tree in that each

internal node has no more than two branches. The

branching of a node is referred to as a split.

FIGURE 7-1 Example of a decision tree

Sometimes decision trees may have more than two

branches stemming from a node. For example, if an

input variable Weather is categorical and has three

choices—Sunny, Rainy, and Snowy—the corresponding node

Weather in the decision tree may have three branches

labeled as Sunny, Rainy, and Snowy, respectively.

The depth of a node is the minimum number of

steps required to reach the node from the root. In

Figure 7-1 for example, nodes Income and Age have a

depth of one, and the four nodes on the bottom of the

tree have a depth of two.

Leaf nodes are at the end of the last branches on

the tree. They represent class labels—the outcome of

all the prior decisions. The path from the root to a leaf

node contains a series of decisions made at various

internal nodes.

In Figure 7-1, the root node splits into two branches

with a Gender test. The right branch contains all those

records with the variable Gender equal to Male, and the left

branch contains all those records with the variable

Gender equal to Female to create the depth 1 internal nodes.

Each internal node effectively acts as the root of a

subtree, and a best test for each node is determined

independently of the other internal nodes. The left-

hand side (LHS) internal node splits on a question

based on the Income variable to create leaf nodes at

depth 2, whereas the right-hand side (RHS) splits on a

question on the Age variable.

The decision tree in Figure 7-1 shows that females

with income less than or equal to $45,000 and males

40 years old or younger are classified as people who

would purchase the product. In traversing this tree,

age does not matter for females, and income does not

matter for males.

Decision trees are widely used in practice. For

example, to classify animals, questions (like cold-

blooded or warm-blooded, mammal or not mammal)

are answered to arrive at a certain classification.

Another example is a checklist of symptoms during a

doctor's evaluation of a patient. The artificial

intelligence engine of a video game commonly uses

decision trees to control the autonomous actions of a

character in response to various scenarios. Retailers

can use decision trees to segment customers or

predict response rates to marketing and promotions.

Financial institutions can use decision trees to help

decide if a loan application should be approved or

denied. In the case of loan approval, computers can

use the logical if-then statements to predict whether the

customer will default on the loan. For customers with a

clear (strong) outcome, no human interaction is

required; for observations that may not generate a

clear response, a human is needed for the decision.

By limiting the number of splits, a short tree can be

created. Short trees are often used as components

(also called weak learners or base learners) in

ensemble methods. Ensemble methods use multiple

predictive models to vote, and decisions can be made

based on the combination of the votes. Some popular

ensemble methods include random forest [4], bagging,

and boosting [5]. Section 7.4 discusses these

ensemble methods more.

The simplest short tree is called a decision stump,

which is a decision tree with the root immediately

connected to the leaf nodes. A decision stump makes a

prediction based on the value of just a single input

variable. Figure 7-2 shows a decision stump to classify

two species of an iris flower based on the petal width.

The figure shows that, if the petal width is smaller than

1.75 centimeters, it's Iris versicolor; otherwise, it's Iris

virginica.

FIGURE 7-2 Example of a decision stump

To illustrate how a decision tree works, consider the

case of a bank that wants to market its term deposit

products (such as Certificates of Deposit) to the

appropriate customers. Given the demographics of

clients and their reactions to previous campaign phone

calls, the bank's goal is to predict which clients would

subscribe to a term deposit. The dataset used here is

based on the original dataset collected from a

Portuguese bank on directed marketing campaigns as

stated in the work by Moro et al. [6]. Figure 7-3 shows

a subset of the modified bank marketing dataset. This

dataset includes 2,000 instances randomly drawn from

the original dataset, and each instance corresponds to

a customer. To make the example simple, the subset

only keeps the following categorical variables: (1) job,

(2) marital status, (3) education level, (4) if the credit is in

default, (5) if there is a housing loan, (6) if the customer

currently has a personal loan, (7) contact type, (8) result of

the previous marketing campaign contact (poutcome), and

finally (9) if the client actually subscribed to the term

deposit. Attributes (1) through (8) are input variables,

and (9) is considered the outcome. The outcome

subscribed is either yes (meaning the customer will

subscribe to the term deposit) or no (meaning the

customer won't subscribe). All the variables listed

earlier are categorical.

FIGURE 7-3 A subset of the bank marketing dataset

A summary of the dataset shows the following

statistics. For ease of display, the summary only

includes the top six most frequently occurring values

for each attribute. The rest are displayed as (Other).

job marital education default

blue-collar:435 divorced: 228 primary : 335 no :1961

management :423 married :1201 secondary:1010 yes: 39

technician :339 single : 571 tertiary : 564

admin. :235 unknown : 91

services :168

retired : 92

(Other) :308

housing loan contact month poutcome

no : 916 no :1717 cellular :1287 may :581 failure: 210

yes:1084 yes: 283 telephone: 136 jul :340 other : 79

 unknown : 577 aug :278 success: 58

 jun :232 unknown:1653

 nov :183

 apr :118

 (Other):268

subscribed

no :1789

yes: 211

Attribute job includes the following values.

admin. blue-collar entrepreneur housemaid

 235 435 70 63

management retired self-employed services

 423 92 69 168

 student technician unemployed unknown

 36 339 60 10

Figure 7-4 shows a decision tree built over the bank

marketing dataset. The root of the tree shows that the

overall fraction of the clients who have not subscribed

to the term deposit is 1,789 out of the total population

of 2,000.

FIGURE 7-4 Using a decision tree to predict if a client

will subscribe to a term deposit

At each split, the decision tree algorithm picks the

most informative attribute out of the remaining

attributes. The extent to which an attribute is

informative is determined by measures such as

entropy and information gain, as detailed in Section

7.1.2.

At the first split, the decision tree algorithm chooses

the poutcome attribute. There are two nodes at depth=1.

The left node is a leaf node representing a group for

which the outcome of the previous marketing

campaign contact is a failure, other, or unknown. For this

group, 1,763 out of 1,942 clients have not subscribed

to the term deposit.

The right node represents the rest of the population,

for which the outcome of the previous marketing

campaign contact is a success. For the population of this

node, 32 out of 58 clients have subscribed to the term

deposit.

This node further splits into two nodes based on the

education level. If the education level is either secondary or

tertiary, then 26 out of 50 of the clients have not

subscribed to the term deposit. If the education level is

primary or unknown, then 8 out of 8 times the clients have

subscribed.

The left node at depth 2 further splits based on

attribute job. If the occupation is admin, blue collar, management,

retired, services, or technician, then 26 out of 45 clients have

not subscribed. If the occupation is self-employed, student, or

unemployed, then 5 out of 5 times the clients have

subscribed.

7.1.2 THE GENERAL

ALGORITHM

In general, the objective of a decision tree algorithm is

to construct a tree T from a training set S. If all the

records in S belong to some class C (subscribed = yes,

for example), or if S is sufficiently pure (greater than a

preset threshold), then that node is considered a leaf

node and assigned the label C. The purity of a node is

defined as its probability of the corresponding class.

For example, in Figure 7-4, the root

 therefore, the root is only

10.55% pure on the subscribed = yes class.

Conversely, it is 89.45% pure on the subscribed = no

class.

In contrast, if not all the records in S belong to class C

or if S is not sufficiently pure, the algorithm selects the

next most informative attribute A (duration, marital,

and so on) and partitions S according to A's values. The

algorithm constructs subtrees T , T ... for the subsets

of S recursively until one of the following criteria is met:

1 2

All the leaf nodes in the tree satisfy the minimum
purity threshold.

The tree cannot be further split with the preset
minimum purity threshold.

Any other stopping criterion is satisfied (such as
the maximum depth of the tree).

The first step in constructing a decision tree is to

choose the most informative attribute. A common way

to identify the most informative attribute is to use

entropy-based methods, which are used by decision

tree learning algorithms such as ID3 (or Iterative

Dichotomiser 3) [7] and C4.5 [8]. The entropy methods

select the most informative attribute based on two

basic measures:

Entropy, which measures the impurity of an
attribute

Information gain, which measures the purity of
an attribute

Given a class X and its label x ∈ X, let P(x) be the

probability of x. H the entropy of X, is defined as

shown in Equation 7-1.

x

Equation 7-1 shows that entropy H becomes 0 when

all P(x) is 0 or 1. For a binary classification (true or false),

H is zero if P(x) the probability of each label x is either

zero or one. On the other hand, H achieves the

maximum entropy when all the class labels are equally

probable. For a binary classification, H =1 if the

probability of all class labels is 50/50. The maximum

entropy increases as the number of possible outcomes

increases.

As an example of a binary random variable, consider

tossing a coin with known, not necessarily fair,

probabilities of coming up heads or tails. The

corresponding entropy graph is shown in Figure 7-5.

Let x =1 represent heads and x = 0 represent tails.

The entropy of the unknown result of the next toss is

maximized when the coin is fair. That is, when heads

and tails have equal probability P(x = 1) = P(x = 0) =

0.5, entropy H = −(0.5 × log 0.5 + 0.5 × log 0.5) =

1. On the other hand, if the coin is not fair, the

probabilities of heads and tails would not be equal and

there would be less uncertainty. As an extreme case,

when the probability of tossing a head is equal to 0 or

1, the entropy is minimized to 0. Therefore, the

entropy for a completely pure variable is 0 and is 1 for

a set with equal occurrences for both the classes (head

and tail, or yes and no).

X

X

X

x

X 2 2

FIGURE 7-5 Entropy of coin flips, where X=1 represents

heads

For the bank marketing scenario previously

presented, the output variable is subscribed. The base

entropy is defined as entropy of the output variable,

that is H . As seen previously,

P(subscribed=yes)=0.1055 and

P(subscribed=no)=0.8945. According to Equation 7-1,

the base entropy H =−0.1055·log 0.1055–

0.8945·log 0.8945≈0.4862.

The next step is to identify the conditional entropy

for each attribute. Given an attribute X, its value x, its

outcome Y, and its value y, conditional entropy H is

the remaining entropy of Y given X, formally defined as

shown in Equation 7-2.

subscribed

subscribed 2

2

Y|X

Consider the banking marketing scenario, if the

attribute contact is chosen, X = {cellular, telephone, unknown}.

The conditional entropy of contact considers all three

values.

Table 7-1 lists the probabilities related to the contact

attribute. The top row of the table displays the

probabilities of each value of the attribute. The next

two rows contain the probabilities of the class labels

conditioned on the contact.

TABLE 7-1 Conditional Entropy Example

The conditional entropy of the contact attribute is

computed as shown here.

Computation inside the parentheses is on the

entropy of the class labels within a single contact value.

Note that the conditional entropy is always less than or

equal to the base entropy—that is,

H |marital≤H . The conditional entropysubscribed subscribed

is smaller than the base entropy when the attribute

and the outcome are correlated. In the worst case,

when the attribute is uncorrelated with the outcome,

the conditional entropy equals the base entropy.

The information gain of an attribute A is defined as

the difference between the base entropy and the

conditional entropy of the attribute, as shown in

Equation 7-3.

In the bank marketing example, the information gain

of the contact attribute is shown in Equation 7-4.

Information gain compares the degree of purity of

the parent node before a split with the degree of purity

of the child node after a split. At each split, an

attribute with the greatest information gain is

considered the most informative attribute. Information

gain indicates the purity of an attribute.

The result of information gain for all the input

variables is shown in Table 7-2. Attribute poutcome has the

most information gain and is the most informative

variable. Therefore, poutcome is chosen for the first split of

the decision tree, as shown in Figure 7-4. The values of

information gain in Table 7-2 are small in magnitude,

but the relative difference matters. The algorithm

splits on the attribute with the largest information gain

at each round.

TABLE 7-2 Calculating Information Gain of Input

Variables for the First Split

Attribut

e

Information

Gain

poutcome 0.0289

contact 0.0201

housing 0.0133

job 0.0101

education 0.0034

marital 0.0018

loan 0.0010

default 0.0005

Detecting Significant Splits

Quite often it is necessary to measure the significance of a

split in a decision tree, especially when the information gain

is small, like in Table 7-2.

Let N and N be the number of class A and class B in the

parent node. Let N represent the number of class A going to

the left child node, N represent the number of class B going

to the left child node, N represent the number of class B

going to the right child node, and N represent the number

of class B going to the right child node.

A B

AL

BL

AR

BR

Let p and p denote the proportion of data going to the left

and right node, respectively.

The following measure computes the significance of a split. In

other words, it measures how much the split deviates from

what would be expected in the random data.

where

If K is small, the information gain from the split is not

significant. If K is big, it would suggest the information gain

from the split is significant.

Take the first split of the decision tree in Figure 7-4 on

variable poutcome for example.

N =1789, N = 211, N =1763, N =179, N =26, N

=32.

Following are the proportions of data going to the left and

right node.

The and represent the number of each class

going to the left or right node if the data is random. Their

values follow.

L R

A B AL BL AR BR

Therefore, K =126.0324, which suggests the split on poutcome

is significant.

After each split, the algorithm looks at all the records

at a leaf node, and the information gain of each

candidate attribute is calculated again over these

records. The next split is on the attribute with the

highest information gain. A record can only belong to

one leaf node after all the splits, but depending on the

implementation, an attribute may appear in more than

one split of the tree. This process of partitioning the

records and finding the most informative attribute is

repeated until the nodes are pure enough, or there is

insufficient information gain by splitting on more

attributes. Alternatively, one can stop the growth of

the tree when all the nodes at a leaf node belong to a

certain class (for example, subscribed = yes) or all the

records have identical attribute values.

In the previous bank marketing example, to keep it

simple, the dataset only includes categorical variables.

Assume the dataset now includes a continuous

variable called duration–representing the number of

seconds the last phone conversation with the bank

lasted as part of the previous marketing campaign. A

continuous variable needs to be divided into a disjoint

set of regions with the highest information gain. A

brute-force method is to consider every value of the

continuous variable in the training data as a candidate

split position. This brute-force method is

computationally inefficient. To reduce the complexity,

the training records can be sorted based on the

duration, and the candidate splits can be identified by

taking the midpoints between two adjacent sorted

values. An examples is if the duration consists of

sorted values {140, 160, 180, 200} and the candidate

splits are 150, 170, and 190.

Figure 7-6 shows what the decision tree may look

like when considering the duration attribute. The root

splits into two partitions: those clients with

duration<456 seconds, and those with duration≥456

seconds. Note that for aesthetic purposes, labels for

the job and contact attributes in the figure are

abbreviated.

FIGURE 7-6 Decision tree with attribute duration

With the decision tree in Figure 7-6, it becomes

trivial to predict if a new client is going to subscribe to

the term deposit. For example, given the record of a

new client shown in Table 7-3, the prediction is that

this client will subscribe to the term deposit. The

traversed paths in the decision tree are as follows.

duration ≥ 456

contact = cll (cellular)

duration < 700

job = ent (entrepreneur), rtr (retired)

TABLE 7-3 Record of a New Client

7.1.3 DECISION TREE

ALGORITHMS

Multiple algorithms exist to implement decision trees,

and the methods of tree construction vary with

different algorithms. Some popular algorithms include

ID3 [7], C4.5[8], and CART [9].

ID3 Algorithm

ID3 (or Iterative Dichotomiser 3) [7] is one of the first

decision tree algorithms, and it was developed by John

Ross Quinlan. Let A be a set of categorical input

variables, P be the output variable (or the predicted

class), and T be the training set. The ID3 algorithm is

shown here.

1 ID3 (A, P, T)

2 if T ∈ϕ

3 return ϕ

4 if all records in T have the same value for P

5 return a single node with that value

6 if A ∈ϕ

7 return a single node with the most frequent value of P in T

8 Compute information gain for each attribute in A relative to T

9 Pick attribute D with the largest gain

10 Let {

} be the values of attribute D

11 Partition T into {

} according to the values of D

12 return a tree with root D and branches labeled

going respectively to trees ID3(A-{D}, P,

),
ID3(A-{D}, P,

), . . . ID3(A-{D}, P,

C4.5

The C4.5 algorithm [8] introduces a number of

improvements over the original ID3 algorithm. The

C4.5 algorithm can handle missing data. If the training

records contain unknown attribute values, the C4.5

evaluates the gain for an attribute by considering only

the records where the attribute is defined.

Both categorical and continuous attributes are

supported by C4.5. Values of a continuous variable are

sorted and partitioned. For the corresponding records

of each partition, the gain is calculated, and the

partition that maximizes the gain is chosen for the

next split.

The ID3 algorithm may construct a deep and

complex tree, which would cause overfitting (Section

7.1.4). The C4.5 algorithm addresses the overfitting

problem in ID3 by using a bottom-up technique called

pruning to simplify the tree by removing the least

visited nodes and branches.

CART

CART (or Classification And Regression Trees) [9] is

often used as a generic acronym for the decision tree,

although it is a specific implementation.

Similar to C4.5, CART can handle continuous

attributes. Whereas C4.5 uses entropy-based criteria

to rank tests, CART uses the Gini diversity index

defined in Equation 7-5.

Whereas C4.5 employs stopping rules, CART

constructs a sequence of subtrees, uses cross-

validation to estimate the misclassification cost of

each subtree, and chooses the one with the lowest

cost.

7.1.4 EVALUATING A

DECISION TREE

Decision trees use greedy algorithms, in that they

always choose the option that seems the best

available at that moment. At each step, the algorithm

selects which attribute to use for splitting the

remaining records. This selection may not be the best

overall, but it is guaranteed to be the best at that step.

This characteristic reinforces the efficiency of decision

trees. However, once a bad split is taken, it is

propagated through the rest of the tree. To address

this problem, an ensemble technique (such as random

forest) may randomize the splitting or even randomize

data and come up with a multiple tree structure. These

trees then vote for each class, and the class with the

most votes is chosen as the predicted class.

There are a few ways to evaluate a decision tree.

First, evaluate whether the splits of the tree make

sense. Conduct sanity checks by validating the

decision rules with domain experts, and determine if

the decision rules are sound.

Next, look at the depth and nodes of the tree. Having

too many layers and obtaining nodes with few

members might be signs of overfitting. In overfitting,

the model fits the training set well, but it performs

poorly on the new samples in the testing set. Figure 7-

7 illustrates the performance of an overfit model. The

x-axis represents the amount of data, and the y-axis

represents the errors. The blue curve is the training

set, and the red curve is the testing set. The left side

of the gray vertical line shows that the model predicts

well on the testing set. But on the right side of the

gray line, the model performs worse and worse on the

testing set as more and more unseen data is

introduced.

FIGURE 7-7 An overfit model describes the training

data well but predicts poorly on unseen data

For decision tree learning, overfitting can be caused

by either the lack of training data or the biased data in

the training set. Two approaches [10] can help avoid

overfitting in decision tree learning.

Stop growing the tree early before it reaches the
point where all the training data is perfectly
classified.

Grow the full tree, and then post-prune the tree
with methods such as reduced-error pruning and
rule-based post pruning.

Last, many standard diagnostics tools that apply to

classifiers can help evaluate overfitting. These tools

are further discussed in Section 7.3.

Decision trees are computationally inexpensive, and

it is easy to classify the data. The outputs are easy to

interpret as a fixed sequence of simple tests. Many

decision tree algorithms are able to show the

importance of each input variable. Basic measures,

such as information gain, are provided by most

statistical software packages.

Decision trees are able to handle both numerical and

categorical attributes and are robust with redundant or

correlated variables. Decision trees can handle

categorical attributes with many distinct values, such

as country codes for telephone numbers. Decision

trees can also handle variables that have a nonlinear

effect on the outcome, so they work better than linear

models (for example, linear regression and logistic

regression) for highly nonlinear problems. Decision

trees naturally handle variable interactions. Every

node in the tree depends on the preceding nodes in

the tree.

In a decision tree, the decision regions are

rectangular surfaces. Figure 7-8 shows an example of

five rectangular decision surfaces (A, B, C, D, and E)

defined by four values—{λ ,λ ,λ ,λ }—of two

attributes (x and x). The corresponding decision tree

is on the right side of the figure. A decision surface

corresponds to a leaf node of the tree, and it can be

reached by traversing from the root of the tree

following by a series of decisions according to the

value of an attribute. The decision surface can only be

axis-aligned for the decision tree.

FIGURE 7-8 Decision surfaces can only be axis-aligned

The structure of a decision tree is sensitive to small

variations in the training data. Although the dataset is

the same, constructing two decision trees based on

1 2 3 4

1 2

two different subsets may result in very different trees.

If a tree is too deep, overfitting may occur, because

each split reduces the training data for subsequent

splits.

Decision trees are not a good choice if the dataset

contains many irrelevant variables. This is different

from the notion that they are robust with redundant

variables and correlated variables. If the dataset

contains redundant variables, the resulting decision

tree ignores all but one of these variables because the

algorithm cannot detect information gain by including

more redundant variables. On the other hand, if the

dataset contains irrelevant variables and if these

variables are accidentally chosen as splits in the tree,

the tree may grow too large and may end up with less

data at every split, where overfitting is likely to occur.

To address this problem, feature selection can be

introduced in the data preprocessing phase to

eliminate the irrelevant variables.

Although decision trees are able to handle correlated

variables, decision trees are not well suited when most

of the variables in the training set are correlated, since

overfitting is likely to occur. To overcome the issue of

instability and potential overfitting of deep trees, one

can combine the decisions of several randomized

shallow decision trees—the basic idea of another

classifier called random forest [4]—or use ensemble

methods to combine several weak learners for better

classification. These methods have been shown to

improve predictive power compared to a single

decision tree.

For binary decisions, a decision tree works better if

the training dataset consists of records with an even

probability of each result. In other words, the root of

the tree has a 50% chance of either classification. This

occurs by randomly selecting training records from

each possible classification in equal numbers. It

counteracts the likelihood that a tree will stump out

early by passing purity tests because of bias in the

training data.

When using methods such as logistic regression on a

dataset with many variables, decision trees can help

determine which variables are the most useful to

select based on information gain. Then these variables

can be selected for the logistic regression. Decision

trees can also be used to prune redundant variables.

7.1.5 DECISION TREES IN R

In R, rpart is for modeling decision trees, and an

optional package rpart.plot enables the plotting of a tree.

The rest of this section shows an example of how to

use decision trees in R with rpart.plot to predict whether

to play golf given factors such as weather outlook,

temperature, humidity, and wind.

In R, first set the working directory and initialize the

packages.

setwd("c:/")

install.packages("rpart.plot") # install package rpart.plot

library("rpart") # load libraries

library("rpart.plot")

The working directory contains a comma-separated-

value (CSV) file named DTdata.csv. The file has a header

row, followed by 10 rows of training data.

Play,Outlook,Temperature,Humidity,Wind

yes,rainy,cool,normal,FALSE

no,rainy,cool,normal,TRUE

yes,overcast,hot,high,FALSE

no,sunny,mild,high,FALSE

yes,rainy,cool,normal,FALSE

yes,sunny,cool,normal,FALSE

yes,rainy,cool,normal,FALSE

yes,sunny,hot,normal,FALSE

yes,overcast,mild,high,TRUE

no,sunny,mild,high,TRUE

The CSV file contains five attributes: Play, Outlook,

Temperature, Humidity, and Wind. Play would be the output

variable (or the predicted class), and Outlook, Temperature,

Humidity, and Wind would be the input variables. In R, read

the data from the CSV file in the working directory and

display the content.

play_decision <- read.table("DTdata.csv",header=TRUE,sep=",")

play_decision

 Play Outlook Temperature Humidity Wind

1 yes rainy cool normal FALSE

2 no rainy cool normal TRUE

3 yes overcast hot high FALSE

4 no sunny mild high FALSE

5 yes rainy cool normal FALSE

6 yes sunny cool normal FALSE

7 yes rainy cool normal FALSE

8 yes sunny hot normal FALSE

9 yes overcast mild high TRUE

10 no sunny mild high TRUE

Display a summary of play_decision.

summary(play_decision)

 Play Outlook Temperature Humidity Wind

 no :3 overcast:2 cool:5 high :4 Mode :logical

 yes:7 rainy :4 hot :2 normal:6 FALSE:7

 sunny :4 mild:3 TRUE :3

 NA's :0

The rpart function builds a model of recursive

partitioning and regression trees [9]. The following

code snippet shows how to use the rpart function to

construct a decision tree.

fit <- rpart(Play ~ Outlook + Temperature + Humidity + Wind,

 method="class",

 data=play_decision,

 control=rpart.control(minsplit=1),

 parms=list(split='information'))

The rpart function has four parameters. The first

parameter, Play ~ Outlook + Temperature + Humidity + Wind, is the

model indicating that attribute Play can be predicted

based on attributes Outlook, Temperature, Humidity, and Wind. The

second parameter, method, is set to “class,” telling R it is

building a classification tree. The third parameter, data,

specifies the dataframe containing those attributes

mentioned in the formula. The fourth parameter, control,

is optional and controls the tree growth. In the

preceding example, control=rpart.control(minsplit=1) requires

that each node have at least one observation before

attempting a split. The minsplit=1 makes sense for the

small dataset, but for larger datasets minsplit could be

set to 10% of the dataset size to combat overfitting.

Besides minsplit, other parameters are available to

control the construction of the decision tree. For

example, rpart.control(maxdepth=10,cp=0.001) limits the depth of

the tree to no more than 10, and a split must decrease

the overall lack of fit by a factor of 0.001 before being

attempted. The last parameter (parms) specifies the

purity measure being used for the splits. The value of

split can be either information (for using the information

gain) or gini (for using the Gini index).

Enter summary(fit) to produce a summary of the model

built from rpart.

The output includes a summary of every node in the

constructed decision tree. If a node is a leaf, the

output includes both the predicted class label (yes or no

for Play) and the class probabilities—P(Play). The leaf

nodes include node numbers 4, 5, 6, and 7. If a node is

internal, the output in addition displays the number of

observations that lead to each child node and the

improvement that each attribute may bring for the

next split. These internal nodes include numbers 1, 2,

and 3.

summary(fit)

Call:

rpart(formula = Play ~ Outlook + Temperature + Humidity + Wind,

 data = play_decision, method = "class",

 parms = list(split = "information"),

 control = rpart.control(minsplit = 1))

 n= 10

 CP nsplit rel error xerror xstd

1 0.3333333 0 1 1.000000 0.4830459

2 0.0100000 3 0 1.666667 0.5270463

Variable importance

 Wind Outlook Temperature

 51 29 20

Node number 1: 10 observations, complexity param=0.3333333

 predicted class=yes expected loss=0.3 P(node) =1

 class counts: 3 7

 probabilities: 0.300 0.700

 left son=2 (3 obs) right son=3 (7 obs)

 Primary splits:

 Temperature splits as RRL, improve=1.3282860, (0 missing)

 Wind < 0.5 to the right, improve=1.3282860, (0 missing)

 Outlook splits as RLL, improve=0.8161371, (0 missing)

 Humidity splits as LR, improve=0.6326870, (0 missing)

 Surrogate splits:

 Wind < 0.5 to the right, agree=0.8, adj=0.333, (0 split)

Node number 2: 3 observations, complexity param=0.3333333

 predicted class=no expected loss=0.3333333 P(node) =0.3

 class counts: 2 1

 probabilities: 0.667 0.333

 left son=4 (2 obs) right son=5 (1 obs)

 Primary splits:

 Outlook splits as R-L, improve=1.9095430, (0 missing)

 Wind < 0.5 to the left, improve=0.5232481, (0 missing)

Node number 3: 7 observations, complexity param=0.3333333

 predicted class=yes expected loss=0.1428571 P(node) =0.7

 class counts: 1 6

 probabilities: 0.143 0.857

 left son=6 (1 obs) right son=7 (6 obs)

 Primary splits:

 Wind < 0.5 to the right, improve=2.8708140, (0 missing)

 Outlook splits as RLR, improve=0.6214736, (0 missing)

 Temperature splits as LR-, improve=0.3688021, (0 missing)

 Humidity splits as RL, improve=0.1674470, (0 missing)

Node number 4: 2 observations

 predicted class=no expected loss=0 P(node) =0.2

 class counts: 2 0

 probabilities: 1.000 0.000

Node number 5: 1 observations

 predicted class=yes expected loss=0 P(node) =0.1

 class counts: 0 1

 probabilities: 0.000 1.000

Node number 6: 1 observations

 predicted class=no expected loss=0 P(node) =0.1

 class counts: 1 0

 probabilities: 1.000 0.000

Node number 7: 6 observations

 predicted class=yes expected loss=0 P(node) =0.6

 class counts: 0 6

 probabilities: 0.000 1.000

The output produced by the summary is difficult to

read and comprehend. The rpart.plot() function from the

rpart.plot package can visually represent the output in a

decision tree. Enter the following command to see the

help file of rpart.plot:

?rpart.plot

Enter the following R code to plot the tree based on

the model being built. The resulting tree is shown in

Figure 7-9. Each node of the tree is labeled as either yes

or no referring to the Play action of whether to play

outside. Note that, by default, R has converted the

values of Wind (True/False) into numbers.

rpart.plot(fit, type=4, extra=1)

FIGURE 7-9 A decision tree built from DTdata.csv

The decisions in Figure 7-9 are abbreviated. Use the

following command to spell out the full names and

display the classification rate at each node.

rpart.plot(fit, type=4, extra=2, clip.right.labs=FALSE,

 varlen=0, faclen=0)

The decision tree can be used to predict outcomes

for new datasets. Consider a testing set that contains

the following record.

Outlook="rainy", Temperature="mild", Humidity="high", Wind=FALSE

The goal is to predict the play decision of this record.

The following code loads the data into R as a data

frame newdata. Note that the training set does not

contain this case.

newdata <- data.frame(Outlook="rainy", Temperature="mild",

 Humidity="high", Wind=FALSE)

newdata

 Outlook Temperature Humidity Wind

1 rainy mild high FALSE

Next, use the predict function to generate predictions

from a fitted rpart object. The format of the predict

function follows.

predict(object, newdata = list(),

 type = c("vector", "prob", "class", "matrix"))

Parameter type is a character string denoting the type

of the predicted value. Set it to either prob or class to

predict using a decision tree model and receive the

result as either the class probabilities or just the class.

The output shows that one instance is classified as

Play=no, and zero instances are classified as Play=yes.

Therefore, in both cases, the decision tree predicts that

the play decision of the testing set is not to play.

predict(fit,newdata=newdata,type="prob")

 no yes

1 1 0

predict(fit,newdata=newdata,type="class")

 1

 no

Levels: no yes

7.2 Naïve Bayes

Naïve Bayes is a probabilistic classification method

based on Bayes' theorem (or Bayes' law) with a few

tweaks. Bayes' theorem gives the relationship between

the probabilities of two events and their conditional

probabilities. Bayes' law is named after the English

mathematician Thomas Bayes.

A naïve Bayes classifier assumes that the presence

or absence of a particular feature of a class is

unrelated to the presence or absence of other

features. For example, an object can be classified

based on its attributes such as shape, color, and

weight. A reasonable classification for an object that is

spherical, yellow, and less than 60 grams in weight

may be a tennis ball. Even if these features depend on

each other or upon the existence of the other features,

a naïve Bayes classifier considers all these properties

to contribute independently to the probability that the

object is a tennis ball.

The input variables are generally categorical, but

variations of the algorithm can accept continuous

variables. There are also ways to convert continuous

variables into categorical ones. This process is often

referred to as the discretization of continuous

variables. In the tennis ball example, a continuous

variable such as weight can be grouped into intervals

to be converted into a categorical variable. For an

attribute such as income, the attribute can be

converted into categorical values as shown below.

Low Income: income < $10,000

Working Class: $10,000 ≤ income < $50,000

Middle Class: $50,000 ≤ income < $1,000,000

Upper Class: income ≥ $1,000,000

The output typically includes a class label and its

corresponding probability score. The probability score

is not the true probability of the class label, but it's

proportional to the true probability. As shown later in

the chapter, in most implementations, the output

includes the log probability for the class, and class

labels are assigned based on the highest values.

Because naïve Bayes classifiers are easy to

implement and can execute efficiently even without

prior knowledge of the data, they are among the most

popular algorithms for classifying text documents.

Spam filtering is a classic use case of naïve Bayes text

classification. Bayesian spam filtering has become a

popular mechanism to distinguish spam e-mail from

legitimate e-mail. Many modern mail clients implement

variants of Bayesian spam filtering.

Naïve Bayes classifiers can also be used for fraud

detection [11]. In the domain of auto insurance, for

example, based on a training set with attributes such

as driver's rating, vehicle age, vehicle price, historical

claims by the policy holder, police report status, and

claim genuineness, naïve Bayes can provide

probability-based classification of whether a new claim

is genuine [12].

7.2.1 BAYES' THEOREM

The conditional probability of event C occurring,

given that event A has already occurred, is denoted as

P(C|A), which can be found using the formula in

Equation 7-6.

Equation 7-7 can be obtained with some minor

algebra and substitution of the conditional probability:

where C is the class label C∈{c , c ,...c } and A is

the observed attributes A={a , a ,...a }. Equation 7-7

is the most common form of the Bayes' theorem.

Mathematically, Bayes' theorem gives the

relationship between the probabilities of C and A, P(C)

and P(A), and the conditional probabilities of C given A

and A given C, namely P(C|A) and P(A|C).

Bayes' theorem is significant because quite often

P(C|A) is much more difficult to compute than P(A|C)

and P(C) from the training data. By using Bayes'

theorem, this problem can be circumvented.

An example better illustrates the use of Bayes'

theorem. John flies frequently and likes to upgrade his

seat to first class. He has determined that if he checks

in for his flight at least two hours early, the probability

that he will get an upgrade is 0.75; otherwise, the

probability that he will get an upgrade is 0.35. With his

busy schedule, he checks in at least two hours before

his flight only 40% of the time. Suppose John did not

receive an upgrade on his most recent attempt. What

is the probability that he did not arrive two hours

early?

Let C = {John arrived at least two hours early}, and A

= {John received an upgrade}, then ¬C = {John did not

arrive two hours early}, and ¬A = {John did not receive

an upgrade}.

1 2 n

1 2 m

John checked in at least two hours early only 40% of

the time, or P(C)=0.4. Therefore, P(¬C)=1−P(C)=0.6.

The probability that John received an upgrade given

that he checked in early is 0.75, or P(A|C)= 0.75.

The probability that John received an upgrade given

that he did not arrive two hours early is 0.35, or P(A|

¬C) = 0.35. Therefore, P(¬A|¬C) = 0.65.

The probability that John received an upgrade P(A)

can be computed as shown in Equation 7-8.

Thus, the probability that John did not receive an

upgrade P(¬A)= 0.49. Using Bayes' theorem, the

probability that John did not arrive two hours early

given that he did not receive his upgrade is shown in

Equation 7-9.

Another example involves computing the probability

that a patient carries a disease based on the result of a

lab test. Assume that a patient named Mary took a lab

test for a certain disease and the result came back

positive. The test returns a positive result in 95% of

the cases in which the disease is actually present, and

it returns a positive result in 6% of the cases in which

the disease is not present. Furthermore, 1% of the

entire population has this disease. What is the

probability that Mary actually has the disease, given

that the test is positive?

Let C = {having the disease} and A = {testing

positive}. The goal is to solve the probability of having

the disease, given that Mary has a positive test result,

P(C|A). From the problem description, P(C)= 0.01,

P(¬C)= 0.99, P(A|C) = 0.95 and P(A|¬C) = 0.06.

Bayes' theorem defines P(C|A) = P(A|C)P(C)/P(A). The

probability of testing positive, that is P(A), needs to be

computed first. That computation is shown in Equation

7-10.

According to Bayes' theorem, the probability of

having the disease, given that Mary has a positive test

result, is shown in Equation 7-11.

That means that the probability of Mary actually

having the disease given a positive test result is only

13.79%. This result indicates that the lab test may not

be a good one. The likelihood of having the disease

was 1% when the patient walked in the door and only

13.79% when the patient walked out, which would

suggest further tests.

A more general form of Bayes' theorem assigns a

classified label to an object with multiple attributes A=

{a , a ,..., a } such that the label corresponds to the

largest value of P(c |A). The probability that a set of

attribute values A (composed of m variables a , a , ...,

a) should be labeled with a classification label c

equals the probability that the set of variables a , a ,

..., a given c is true, times the probability of c

divided by the probability of a , a , ..., a .

Mathematically, this is shown in Equation 7-12.

Consider the bank marketing example presented in

Section 7.1 on predicting if a customer would

subscribe to a term deposit. Let A be a list of attributes

{job, marital, education, default, housing, loan, contact, poutcome}.

According to Equation 7-12, the problem is essentially

to calculate P(c |A), where c ∈ {subscribed = yes,

subscribed = no}.

7.2.2 NAÏVE BAYES

CLASSIFIER

With two simplifications, Bayes' theorem can be

extended to become a naïve Bayes classifier.

1 2 m

i

1 2

m i

1 2

m i i

1 2 m

i i

The first simplification is to use the conditional

independence assumption. That is, each attribute is

conditionally independent of every other attribute

given a class label c . See Equation 7-13.

Therefore, this naïve assumption simplifies the

computation of P(a , a ,..., a |c) .

The second simplification is to ignore the

denominator P(a , a ,..., a). Because P(a , a ,..., a)

appears in the denominator of P(c |A) for all values of i,

removing the denominator will have no impact on the

relative probability scores and will simplify

calculations.

Naïve Bayes classification applies the two

simplifications mentioned earlier and, as a result,

P(c |a , a ,..., a) is proportional to the product of

P(a |c) times P(c). This is shown in Equation 7-14.

The mathematical symbol ∝ indicates that the LHS

P(c |A) is directly proportional to the RHS.

Section 7.1 has introduced a bank marketing dataset

(Figure 7-3). This section shows how to use the naïve

Bayes classifier on this dataset to predict if the clients

would subscribe to a term deposit.

i

1 2 m i

1 2 m 1 2 m

i

i 1 2 m

j i i

i

Building a naïve Bayes classifier requires knowing

certain statistics, all calculated from the training set.

The first requirement is to collect the probabilities of

all class labels, P(c). In the presented example, these

would be the probability that a client will subscribe to

the term deposit and the probability the client will not.

From the data available in the training set,

P(subscribed = yes)≈ 0.11 and P(subscribed = no)≈

0.89.

The second thing the naïve Bayes classifier needs to

know is the conditional probabilities of each attribute

a given each class label c , namely P(a |c). The

training set contains several attributes: job, marital,

education, default, housing, loan, contact, and poutcome. For each

attribute and its possible values, computing the

conditional probabilities given subscribed = yes or

subscribed =no is required. For example, relative to

the marital attribute, the following conditional

probabilities are calculated.

i

j i j i

After training the classifier and computing all the

required statistics, the naïve Bayes classifier can be

tested over the testing set. For each record in the

testing set, the naïve Bayes classifier assigns the

classifier label c that maximizes .

Table 7-4 contains a single record for a client who

has a career in management, is married, holds a

secondary degree, has credit not in default, has a

housing loan but no personal loans, prefers to be

contacted via cellular, and whose outcome of the

previous marketing campaign contact was a success.

Is this client likely to subscribe to the term deposit?

TABLE 7-4 Record of an Additional Client

The conditional probabilities shown in Table 7-5 can

be calculated after building the classifier with the

training set.

TABLE 7-5 Compute Conditional Probabilities for the

New Record

i

Because P(c |a , a ,..., a) is proportional to the

product of P(a |c)(j∈[1, m]) times (c), the naïve Bayes

classifier assigns the class label c , which results in the

greatest value over all i. Thus, P(c |a , a ,..., a) is

computed for each c with .

For A = {management, married, secondary, no, yes,

no, cellular, success},

Because P(subscribed = yes|A) > P(subscribed =

no|A), the client shown in Table 7-4 is assigned with

the label subscribed = yes. That is, the client is

classified as likely to subscribe to the term deposit.

Although the scores are small in magnitude, it is the

ratio of P(yes|A) and P(no|A) that matters. In fact, the

i 1 2 m

j i i

i

i 1 2 m

i

scores of P(yes|A) and P(no|A) are not the true

probabilities but are only proportional to the true

probabilities, as shown in Equation 7-14. After all, if the

scores were indeed the true probabilities, the sum of

P(yes|A) and P(no|A) would be equal to one. When

looking at problems with a large number of attributes,

or attributes with a high number of levels, these values

can become very small in magnitude (close to zero),

resulting in even smaller differences of the scores. This

is the problem of numerical underflow, caused by

multiplying several probability values that are close to

zero. A way to alleviate the problem is to compute the

logarithm of the products, which is equivalent to the

summation of the logarithm of the probabilities. Thus,

the naïve Bayes formula can be rewritten as shown in

Equation 7-15.

Although the risk of underflow may increase as the

number of attributes increases, the use of logarithms

is usually applied regardless of the number of attribute

dimensions.

7.2.3 SMOOTHING

If one of the attribute values does not appear with one

of the class labels within the training set, the

corresponding P(a |c) will equal zero. When thisj i

happens, the resulting P(c |A) from multiplying all the

P(a |c)(j∈[1, m]) immediately becomes zero regardless

of how large some of the conditional probabilities are.

Therefore overfitting occurs. Smoothing techniques

can be employed to adjust the probabilities of P(a |c)

and to ensure a nonzero value of P(c |A). A smoothing

technique assigns a small nonzero probability to rare

events not included in the training dataset. Also, the

smoothing addresses the possibility of taking the

logarithm of zero that may occur in Equation 7-15.

There are various smoothing techniques. Among

them is the Laplace smoothing (or add-one)

technique that pretends to see every outcome once

more than it actually appears. This technique is shown

in Equation 7-16.

For example, say that 100 clients subscribe to the

term deposit, with 20 of them single, 70 married, and

10 divorced. The “raw” probability is

P(single|subscribed=yes)=20/100=0.2. With Laplace

smoothing adding one to the counts, the adjusted

probability becomes P′ (single|subscribed = yes) = (20

+ 1)/[(20 + 1) + (70 + 1) + (10 + 1)] ≈ 0.2039.

One problem of the Laplace smoothing is that it may

assign too much probability to unseen events. To

address this problem, Laplace smoothing can be

i

j i

j i

i

generalized to use instead of 1, where typically

∈[0,1]. See Equation 7-17.

Smoothing techniques are available in most standard

software packages for naïve Bayes classifiers.

However, if for some reason (like performance

concerns) the naïve Bayes classifier needs to be coded

directly into an application, the smoothing and

logarithm calculations should be incorporated into the

implementation.

7.2.4 DIAGNOSTICS

Unlike logistic regression, naïve Bayes classifiers can

handle missing values. Naïve Bayes is also robust to

irrelevant variables—variables that are distributed

among all the classes whose effects are not

pronounced.

The model is simple to implement even without

using libraries. The prediction is based on counting the

occurrences of events, making the classifier efficient to

run. Naïve Bayes is computationally efficient and is

able to handle high-dimensional data efficiently.

Related research [13] shows that the naive Bayes

classifier in many cases is competitive with other

learning algorithms, including decision trees and

neural networks. In some cases naïve Bayes even

outperforms other methods. Unlike logistic regression,

the naïve Bayes classifier can handle categorical

variables with many levels. Recall that decision trees

can handle categorical variables as well, but too many

levels may result in a deep tree. The naïve Bayes

classifier overall performs better than decision trees on

categorical values with many levels. Compared to

decision trees, naïve Bayes is more resistant to

overfitting, especially with the presence of a

smoothing technique.

Despite the benefits of naïve Bayes, it also comes

with a few disadvantages. Naïve Bayes assumes the

variables in the data are conditionally independent.

Therefore, it is sensitive to correlated variables

because the algorithm may double count the effects.

As an example, assume that people with low income

and low credit tend to default. If the task is to score

“default” based on both income and credit as two

separate attributes, naïve Bayes would experience the

double-counting effect on the default outcome, thus

reducing the accuracy of the prediction.

Although probabilities are provided as part of the

output for the prediction, naïve Bayes classifiers in

general are not very reliable for probability estimation

and should be used only for assigning class labels.

Naïve Bayes in its simple form is used only with

categorical variables. Any continuous variables should

be converted into a categorical variable with the

process known as discretization, as shown earlier. In

common statistical software packages, however, naïve

Bayes is implemented in a way that enables it to

handle continuous variables as well.

7.2.5 NAÏVE BAYES IN R

This section explores two methods of using the naïve

Bayes classifier in R. The first method is to build from

scratch by manually computing the probability scores,

and the second method is to use the naiveBayes function

from the e1071 package. The examples show how to use

naïve Bayes to predict whether employees would

enroll in an onsite educational program.

In R, first set up the working directory and initialize

the packages.

setwd("c:/")

install.packages("e1071") # install package e1071

library(e1071) # load the library

The working directory contains a CSV file (sample1.csv).

The file has a header row, followed by 14 rows of

training data. The attributes include Age, Income,

JobSatisfaction, and Desire. The output variable is Enrolls, and

its value is either Yes or No. Full content of the CSV file is

shown next.

Age,Income,JobSatisfaction,Desire,Enrolls

<=30,High,No,Fair,No

<=30,High,No,Excellent,No

31 to 40,High,No,Fair,Yes

>40,Medium,No,Fair,Yes

>40,Low,Yes,Fair,Yes

>40,Low,Yes,Excellent,No

31 to 40,Low,Yes,Excellent,Yes

<=30,Medium,No,Fair,No

<=30,Low,Yes,Fair,Yes

>40,Medium,Yes,Fair,Yes

<=30,Medium,Yes,Excellent,Yes

31 to 40,Medium,No,Excellent,Yes

31 to 40,High,Yes,Fair,Yes

>40,Medium,No,Excellent,No

<=30,Medium,Yes,Fair,

The last record of the CSV is used later for illustrative

purposes as a test case. Therefore, it does not include

a value for the output variable Enrolls, which should be

predicted using the naïve Bayes classifier built from

the training set.

Execute the following R code to read data from the

CSV file.

read the data into a table from the file

sample <- read.table("sample1.csv",header=TRUE,sep=",")

define the data frames for the NB classifier

traindata <- as.data.frame(sample[1:14,])

testdata <- as.data.frame(sample[15,])

Two data frame objects called traindata and testdata are

created for the naïve Bayes classifier. Enter traindata and

testdata to display the data frames.

The two data frames are printed on the screen as

follows.

traindata

 Age Income JobSatisfaction Desire Enrolls

1 <=30 High No Fair No

2 <=30 High No Excellent No

3 31 to 40 High No Fair Yes

4 >40 Medium No Fair Yes

5 >40 Low Yes Fair Yes

6 >40 Low Yes Excellent No

7 31 to 40 Low Yes Excellent Yes

8 <=30 Medium No Fair No

9 <=30 Low Yes Fair Yes

10 >40 Medium Yes Fair Yes

11 <=30 Medium Yes Excellent Yes

12 31 to 40 Medium No Excellent Yes

13 31 to 40 High Yes Fair Yes

14 >40 Medium No Excellent No

testdata

 Age Income JobSatisfaction Desire Enrolls

15 <=30 Medium Yes Fair

The first method shown here is to build a naïve

Bayes classifier from scratch by manually computing

the probability scores. The first step in building a

classifier is to compute the prior probabilities of the

attributes, including Age, Income, JobSatisfaction, and Desire.

According to the naïve Bayes classifier, these

attributes are conditionally independent. The

dependent variable (output variable) is Enrolls.

Compute the prior probabilities P(c) for Enrolls, where

c ∈ C and C = {Yes, No}.

tprior <- table(traindata$Enrolls)

tprior

 No Yes

 0 5 9

tprior <- tprior/sum(tprior)

tprior

 No Yes

0.0000000 0.3571429 0.6428571

The next step is to compute conditional probabilities

P(A|C), where A={Age,Income,JobSatisfaction,Desire}

and C = {Yes, No}. Count the number of “No” and

“Yes” entries for each Age group, and normalize by the

total number of “No” and “Yes” entries to get the

conditional probabilities.

ageCounts <- table(traindata[,c("Enrolls", "Age")])

ageCounts

 Age

Enrolls <=30 >40 31 to 40

i

i

 0 0 0

 No 3 2 0

 Yes 2 3 4

ageCounts <- ageCounts/rowSums(ageCounts)

ageCounts

 Age

Enrolls <=30 >40 31 to 40

 No 0.6000000 0.4000000 0.0000000

 Yes 0.2222222 0.3333333 0.4444444

Do the same for the other attributes including Income,

JobSatisfaction, and Desire.

incomeCounts <- table(traindata[,c("Enrolls", "Income")])

incomeCounts <- incomeCounts/rowSums(incomeCounts)

incomeCounts

 Income

Enrolls High Low Medium

 No 0.4000000 0.2000000 0.4000000

 Yes 0.2222222 0.3333333 0.4444444

jsCounts <- table(traindata[,c("Enrolls", "JobSatisfaction")])

jsCounts <- jsCounts/rowSums(jsCounts)

jsCounts

 Jobsatisfaction

Enrolls No Yes

 No 0.8000000 0.2000000

 Yes 0.3333333 0.6666667

desireCounts <- table(traindata[,c("Enrolls", "Desire")])

desireCounts <- desireCounts/rowSums(desireCounts)

desireCounts

 Desire

Enrolls Excellent Fair

 No 0.6000000 0.4000000

 Yes 0.3333333 0.6666667

According to Equation 7-7, probability P(c |A) is

determined by the product of P(a |c) times the (c)

where c = Yes and c =No. The larger value of P(Yes|A)

and P(No|A) determines the predicted result of the

i

j i i

1 2

output variable. Given the test data, use the following

code to predict the Enrolls.

prob_yes <-

 ageCounts["Yes",testdata[,c("Age")]]*

 incomeCounts["Yes",testdata[,c("Income")]]*

 jsCounts["Yes",testdata[,c("JobSatisfaction")]]*

 desireCounts["Yes",testdata[,c("Desire")]]*

 tprior["Yes"]

prob_no <-

 ageCounts["No",testdata[,c("Age")]]*

 incomeCounts["No",testdata[,c("Income")]]*

 jsCounts["No",testdata[,c("JobSatisfaction")]]*

 desireCounts["No",testdata[,c("Desire")]]*

 tprior["No"]

max(prob_yes,prob_no)

As shown below, the predicted result of the test set

is Enrolls=Yes.

prob_yes

 Yes

0.02821869

prob_no

 No

0.006857143

max(prob_yes, prob_no)

[1] 0.02821869

The e1071 package in R has a built-in naiveBayes function

that can compute the conditional probabilities of a

categorical class variable given independent

categorical predictor variables using the Bayes rule.

The function takes the form of naiveBayes(formula, data,...),

where the arguments are defined as follows.

formula: A formula of the form class ~ x1 + x2 + ...
assuming x1, x2... are conditionally independent

data: A data frame of factors

Use the following code snippet to execute the model

and display the results.

model <- NaiveBayes(Enrolls ~ Age+Income+JobSatisfaction+Desire,

 traindata)

display model

model

The output that follows shows that the probabilities

of model match the probabilities from the previous

method. The default laplace=laplace setting enables the

Laplace smoothing.

Naïve Bayes Classifier for Discrete Predictors

Call:

naiveBayes.default(x = X, y = Y, laplace = laplace)

A-priori probabilities:

Y No Yes

0.0000000 0.3571429 0.6428571

Conditional probabilities:

 Age

Y <=30 >40 31 to 40

 No 0.6000000 0.4000000 0.0000000

 Yes 0.2222222 0.3333333 0.4444444

 Income

Y High Low Medium

 No 0.4000000 0.2000000 0.4000000

 Yes 0.2222222 0.3333333 0.4444444

 JobSatisfaction

Y No Yes

 No 0.8000000 0.2000000

 Yes 0.3333333 0.6666667

 Desire

Y Excellent Fair

 No 0.6000000 0.4000000

 Yes 0.3333333 0.6666667

Next, predicting the outcome of Enrolls with the testdata

shows the result is Enrolls=Yes.

predict with testdata

results <- predict (model,testdata)

display results

results

[1] Yes

Levels: No Yes

The naiveBayes function accepts a Laplace parameter

that allows the customization of the value of Equation

7-17 for the Laplace smoothing. The code that follows

shows how to build a naïve Bayes classifier with

Laplace smoothing = 0.01 for prediction.

use the NB classifier with Laplace smoothing

model1 = naiveBayes(Enrolls ~., traindata, laplace=.01)

display model

model1

Naive Bayes Classifier for Discrete Predictors

Call:

naiveBayes.default(x = X, y = Y, laplace = laplace)

A-priori probabilities:

Y

 No Yes

0.0000000 0.3571429 0.6428571

Conditional probabilities:

 Age

Y <=30 >40 31 to 40

 0.333333333 0.333333333 0.333333333

 No 0.598409543 0.399602386 0.001988072

 Yes 0.222591362 0.333333333 0.444075305

 Income

Y High Low Medium

 0.3333333 0.3333333 0.3333333

 No 0.3996024 0.2007952 0.3996024

 Yes 0.2225914 0.3333333 0.4440753

 JobSatisfaction

Y No Yes

 0.5000000 0.5000000

 No 0.7988048 0.2011952

 Yes 0.3337029 0.6662971

 Desire

Y Excellent Fair

 0.5000000 0.5000000

 No 0.5996016 0.4003984

 Yes 0.3337029 0.6662971

The test case is again classified as Enrolls=Yes.

predict with testdata

results1 <- predict (model1,testdata)

display results

results1

[1] Yes

Levels: No Yes

7.3 Diagnostics of

Classifiers

So far, this book has talked about three classifiers:

logistic regression, decision trees, and naïve Bayes.

These three methods can be used to classify instances

into distinct groups according to the similar

characteristics they share. Each of these classifiers

faces the same issue: how to evaluate if they perform

well.

A few tools have been designed to evaluate the

performance of a classifier. Such tools are not limited

to the three classifiers in this book but rather serve the

purpose of assessing classifiers in general.

A confusion matrix is a specific table layout that

allows visualization of the performance of a classifier.

Table 7-6 shows the confusion matrix for a two-class

classifier. True positives (TP) are the number of

positive instances the classifier correctly identified as

positive. False positives (FP) are the number of

instances in which the classifier identified as positive

but in reality are negative. True negatives (TN) are

the number of negative instances the classifier

correctly identified as negative. False negatives (FN)

are the number of instances classified as negative but

in reality are positive. In a two-class classification, a

preset threshold may be used to separate positives

from negatives. TP and TN are the correct guesses. A

good classifier should have large TP and TN and small

(ideally zero) numbers for FP and FN.

TABLE 7-6 Confusion Matrix

In the bank marketing example, the training set

includes 2,000 instances. An additional 100 instances

are included as the testing set. Table 7-7 shows the

confusion matrix of a naïve Bayes classifier on 100

clients to predict whether they would subscribe to the

term deposit. Of the 11 clients who subscribed to the

term deposit, the model predicted 3 subscribed and 8

not subscribed. Similarly, of the 89 clients who did not

subscribe to the term, the model predicted 2

subscribed and 87 not subscribed. All correct guesses

are located from top left to bottom right of the table.

It's easy to visually inspect the table for errors,

because they will be represented by any nonzero

values outside the diagonal.

TABLE 7-7 Confusion Matrix of Naïve Bayes from the

Bank Marketing Example

The accuracy (or the overall success rate) is a

metric defining the rate at which a model has

classified the records correctly. It is defined as the sum

of TP and TN divided by the total number of instances,

as shown in Equation 7-18.

A good model should have a high accuracy score,

but having a high accuracy score alone does not

guarantee the model is well established. The following

measures can be introduced to better evaluate the

performance of a classifier.

As seen in Chapter 6, the true positive rate (TPR)

shows what percent of positive instances the classifier

correctly identified. It's also illustrated in Equation 7-

19.

The false positive rate (FPR) shows what percent

of negatives the classifier marked as positive. The FPR

is also called the false alarm rate or the type I error

rate and is shown in Equation 7-20.

The false negative rate (FNR) shows what percent

of positives the classifier marked as negatives. It is

also known as the miss rate or type II error rate

and is shown in Equation 7-21. Note that the sum of

TPR and FNR is 1.

A well-performed model should have a high TPR that

is ideally 1 and a low FPR and FNR that are ideally 0. In

reality, it's rare to have TPR = 1, FPR = 0, and FNR =

0, but these measures are useful to compare the

performance of multiple models that are designed for

solving the same problem. Note that in general, the

model that is more preferable may depend on the

business situation. During the discovery phase of the

data analytics lifecycle, the team should have learned

from the business what kind of errors can be tolerated.

Some business situations are more tolerant of type I

errors, whereas others may be more tolerant of type II

errors. In some cases, a model with a TPR of 0.95 and

an FPR of 0.3 is more acceptable than a model with a

TPR of 0.9 and an FPR of 0.1 even if the second model

is more accurate overall. Consider the case of e-mail

spam filtering. Some people (such as busy executives)

only want important e-mail in their inbox and are

tolerant of having some less important e-mail end up

in their spam folder as long as no spam is in their

inbox. Other people may not want any important or

less important e-mail to be specified as spam and are

willing to have some spam in their inboxes as long as

no important e-mail makes it into the spam folder.

Precision and recall are accuracy metrics used by the

information retrieval community, but they can be used

to characterize classifiers in general. Precision is the

percentage of instances marked positive that really are

positive, as shown in Equation 7-22.

Recall is the percentage of positive instances that

were correctly identified. Recall is equivalent to the

TPR. Chapter 9, “Advanced Analytical Theory and

Methods: Text Analysis,” discusses how to use

precision and recall for evaluation of classifiers in the

context of text analysis.

Given the confusion matrix from Table 7-7, the

metrics can be calculated as follows:

These metrics show that for the bank marketing

example, the naïve Bayes classifier performs well with

accuracy and FPR measures and relatively well on

precision. However, it performs poorly on TPR and FNR.

To improve the performance, try to include more

attributes in the datasets to better distinguish the

characteristics of the records. There are other ways to

evaluate the performance of a classifier in general,

such as N-fold cross validation (Chapter 6) or bootstrap

[14].

Chapter 6 has introduced the ROC curve, which is a

common tool to evaluate classifiers. The abbreviation

stands for receiver operating characteristic, a term

used in signal detection to characterize the trade-off

between hit rate and false-alarm rate over a noisy

channel. A ROC curve evaluates the performance of a

classifier based on the TP and FP, regardless of other

factors such as class distribution and error costs. The

vertical axis is the True Positive Rate (TPR), and the

horizontal axis is the False Positive Rate (FPR).

As seen in Chapter 6, any classifier can achieve the

bottom left of the graph where TPR = FPR = 0 by

classifying everything as negative. Similarly, any

classifier can achieve the top right of the graph where

TPR = FPR = 1 by classifying everything as positive. If

a classifier performs “at chance” by random guessing

the results, it can achieve any point on the diagonal

line TPR=FPR by choosing an appropriate threshold of

positive/negative. An ideal classifier should perfectly

separate positives from negatives and thus achieve

the top-left corner (TPR = 1, FPR = 0). The ROC curve

of such classifiers goes straight up from TPR = FPR = 0

to the top-left corner and moves straight right to the

top-right corner. In reality, it can be difficult to achieve

the top-left corner. But a better classifier should be

closer to the top left, separating it from other

classifiers that are closer to the diagonal line.

Related to the ROC curve is the area under the

curve (AUC). The AUC is calculated by measuring the

area under the ROC curve. Higher AUC scores mean

the classifier performs better. The score can range

from 0.5 (for the diagonal line TPR=FPR) to 1.0 (with

ROC passing through the top-left corner).

In the bank marketing example, the training set

includes 2,000 instances. An additional 100 instances

are included as the testing set. Figure 7-10 shows a

ROC curve of the naïve Bayes classifier built on the

training set of 2,000 instances and tested on the

testing set of 100 instances. The figure is generated by

the following R script. The ROCR package is required for

plotting the ROC curve. The 2,000 instances are in a

data frame called banktrain, and the additional 100

instances are in a data frame called banktest.

library(ROCR)

training set

banktrain <- read.table("bank-sample.csv",header=TRUE,sep=",")

drop a few columns

drops <- c("balance", "day", "campaign", "pdays", "previous", "month")

banktrain <- banktrain [,!(names(banktrain) %in% drops)]

testing set

banktest <- read.table("bank-sample-test.csv",header=TRUE,sep=",")

banktest <- banktest [,!(names(banktest) %in% drops)]

build the naïve Bayes classifier

nb_model <- naiveBayes(subscribed~.,

 data=banktrain)

perform on the testing set

nb_prediction <- predict(nb_model,

 # remove column "subscribed"

 banktest[,-ncol(banktest)],

 type='raw')

score <- nb_prediction[, c("yes")]

actual_class <- banktest$subscribed == 'yes'

pred <- prediction(score, actual_class)

perf <- performance(pred, "tpr", "fpr")

plot(perf, lwd=2, xlab="False Positive Rate (FPR)",

 ylab="True Positive Rate (TPR)")

abline(a=0, b=1, col="gray50", lty=3)

The following R code shows that the corresponding

AUC score of the ROC curve is about 0.915.

auc <- performance(pred, "auc")

auc <- unlist(slot(auc, "y.values"))

auc

[1] 0.9152196

FIGURE 7-10 ROC curve of the naïve Bayes classifier on

the bank marketing dataset

7.4 Additional

Classification Methods

Besides the two classifiers introduced in this chapter,

several other methods are commonly used for

classification, including bagging [15], boosting [5],

random forest [4], and support vector machines (SVM)

[16]. Bagging, boosting, and random forest are all

examples of ensemble methods that use multiple

models to obtain better predictive performance than

can be obtained from any of the constituent models.

Bagging (or bootstrap aggregating) [15] uses the

bootstrap technique that repeatedly samples with

replacement from a dataset according to a uniform

probability distribution. “With replacement” means

that when a sample is selected for a training or testing

set, the sample is still kept in the dataset and may be

selected again. Because the sampling is with

replacement, some samples may appear several times

in a training or testing set, whereas others may be

absent. A model or base classifier is trained separately

on each bootstrap sample, and a test sample is

assigned to the class that received the highest number

of votes.

Similar to bagging, boosting (or AdaBoost) [17] uses

votes for classification to combine the output of

individual models. In addition, it combines models of

the same type. However, boosting is an iterative

procedure where a new model is influenced by the

performances of those models built previously.

Furthermore, boosting assigns a weight to each

training sample that reflects its importance, and the

weight may adaptively change at the end of each

boosting round. Bagging and boosting have been

shown to have better performances [5] than a decision

tree.

Random forest [4] is a class of ensemble methods

using decision tree classifiers. It is a combination of

tree predictors such that each tree depends on the

values of a random vector sampled independently and

with the same distribution for all trees in the forest. A

special case of random forest uses bagging on decision

trees, where samples are randomly chosen with

replacement from the original training set.

SVM [16] is another common classification method

that combines linear models with instance-based

learning techniques. Support vector machines select a

small number of critical boundary instances called

support vectors from each class and build a linear

decision function that separates them as widely as

possible. SVM by default can efficiently perform linear

classifications and can be configured to perform

nonlinear classifications as well.

Summary

This chapter focused on two classification methods:

decision trees and naïve Bayes. It discussed the theory

behind these classifiers and used a bank marketing

example to explain how the methods work in practice.

These classifiers along with logistic regression

(Chapter 6) are often used for the classification of

data. As this book has discussed, each of these

methods has its own advantages and disadvantages.

How does one pick the most suitable method for a

given classification problem? Table 7-8 offers a list of

things to consider when selecting a classifier.

TABLE 7-8 Choosing a Suitable Classifier

Concern

s

Recommended

Method(s)

Concern

s

Recommended

Method(s)

Output of the classification should include class
probabilities in addition to the class labels.

Logistic
regression,
decision tree

Analysts want to gain an insight into how the
variables affect the model.

Logistic
regression,
decision tree

The problem is high dimensional. Naïve Bayes

Some of the input variables might be correlated. Logistic
regression,
decision tree

Some of the input variables might be irrelevant. Decision tree,
naïve Bayes

The data contains categorical variables with a
large number of levels.

Decision tree,
naïve Bayes

The data contains mixed variable types. Logistic
regression,
decision tree

There is nonlinear data or discontinuities in the
input variables that would affect the output.

Decision tree

After the classification, one can use a few evaluation

tools to measure how well a classifier has performed or

compare the performances of multiple classifiers.

These tools include confusion matrix, TPR, FPR, FNR,

precision, recall, ROC curves, and AUC.

In addition to the decision trees and naïve Bayes,

other methods are commonly used as classifiers.

These methods include but are not limited to bagging,

boosting, random forest, and SVM.

Exercises

1. For a binary classification, describe the possible

values of entropy. On what conditions does entropy

reach its minimum and maximum values?

2. In a decision tree, how does the algorithm pick the

attributes for splitting?

3. John went to see the doctor about a severe

headache. The doctor selected John at random to

have a blood test for swine flu, which is suspected

to affect 1 in 5,000 people in this country. The test

is 99% accurate, in the sense that the probability

of a false positive is 1%. The probability of a false

negative is zero. John's test came back positive.

What is the probability that John has swine flu?

4. Which classifier is considered computationally

efficient for high-dimensional problems? Why?

5. A data science team is working on a classification

problem in which the dataset contains many

correlated variables, and most of them are

categorical variables. Which classifier should the

team consider using? Why?

6. A data science team is working on a classification

problem in which the dataset contains many

correlated variables, and most of them are

continuous. The team wants the model to output

the probabilities in addition to the class labels.

Which classifier should the team consider using?

Why?

7. Consider the following confusion matrix:

What are the true positive rate, false positive rate, and false

negative rate?

Bibliography

[1] M. Thomas, B. Pang, and L. Lee, “Get Out the Vote:
Determining Support or Opposition from Congressional Floor-
Debate Transcripts,” in Proceedings of the 2006 Conference on

Empirical Methods in Natural Language Processing, Sydney,
Australia, 2006.

[2] M. Shouman, T. Turner, and R. Stocker, “Using Decision Tree
for Diagnosing Heart Disease Patients,” in Australian Computer

Society, Inc., Ballarat, Australia, in Proceedings of the Ninth

Australasian Data Mining Conference (AusDM '11).
[3] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, G. Paliouras,

and C. D. Spyropoulos, “An Evaluation of NaÏve Bayesian Anti-
Spam Filtering,” in Proceedings of the Workshop on Machine

Learning in the New Information Age, Barcelona, Spain, 2000.
[4] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no.

1, pp. 5–32, 2001.
[5] J. R. Quinlan, “Bagging, Boosting, and C4. 5,” AAAI/IAAI, vol. 1,

1996.
[6] S. Moro, P. Cortez, and R. Laureano, “Using Data Mining for

Bank Direct Marketing: An Application of the CRISP-DM

Methodology,” in Proceedings of the European Simulation and

Modelling Conference - ESM'2011, Guimaraes, Portugal, 2011.
[7] J. R. Quinlan, “Induction of Decision Trees,” Machine Learning,

vol. 1, no. 1, pp. 81–106, 1986.
[8] J. R. Quinlan, C4. 5: Programs for Machine Learning, Morgan

Kaufmann, 1993.
[9] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,

Classification and Regression Trees, Belmont, CA: Wadsworth
International Group, 1984.

[10] T. M. Mitchell, “Decision Tree Learning,” in Machine

Learning, New York, NY, USA, McGraw-Hill, Inc., 1997, p. 68.
[11] C. Phua, V. C. S. Lee, S. Kate, and R. W. Gayler, “A

Comprehensive Survey of Data Mining-Based Fraud Detection,”
CoRR, vol. abs/1009.6119, 2010.

[12] R. Bhowmik, “Detecting Auto Insurance Fraud by Data Mining
Techniques,” Journal of Emerging Trends in Computing and

Information Sciences, vol. 2, no. 4, pp. 156–162, 2011.
[13] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, Machine

Learning, Neural and Statistical Classification, New York: Ellis
Horwood, 1994.

[14] I. H. Witten, E. Frank, and M. A. Hall, “The Bootstrap,” in
Data Mining, Burlington, Massachusetts, Morgan Kaufmann,
2011, pp. 155–156.

[15] L. Breiman, “Bagging Predictors,” Machine Learning, vol. 24,
no. 2, pp. 123–140, 1996.

[16] N. Cristianini and J. Shawe-Taylor, An Introduction to Support

Vector Machines and Other Kernel-Based Learning Methods,
Cambridge, United Kingdom: Cambridge university press, 2000.

[17] Y. Freund and R. E. Schapire, “A Decision-Theoretic
Generalization of On-Line Learning and an Application to
Boosting,” Journal of Computer and System Sciences, vol. 55, no.
1, pp. 119–139, 1997.

ACFARIMAAutoregressiveMoving averagePACF

StationaryTime series

8

Advanced Analytical

Theory and Methods:

Time Series Analysis

Key Concepts

This

chapter examines the topic of

time series analysis and its applications. Emphasis is

placed on identifying the underlying structure of the

time series and fitting an appropriate Autoregressive

Integrated Moving Average (ARIMA) model.

8.1 Overview of Time

Series Analysis

Time series analysis attempts to model the underlying

structure of observations taken over time. A time

series, denoted Y= a+bX, is an ordered sequence of

equally spaced values over time. For example, Figure

8-1 provides a plot of the monthly number of

international airline passengers over a 12-year period.

FIGURE 8-1 Monthly international airline passengers

In this example, the time series consists of an

ordered sequence of 144 values. The analyses

presented in this chapter are limited to equally spaced

time series of one variable. Following are the goals of

time series analysis:

Identify and model the structure of the time series.

Forecast future values in the time series.

Time series analysis has many applications in

finance, economics, biology, engineering, retail, and

manufacturing. Here are a few specific use cases:

Retail sales: For various product lines, a clothing
retailer is looking to forecast future monthly sales.
These forecasts need to account for the seasonal
aspects of the customer's purchasing decisions.
For example, in the northern hemisphere, sweater
sales are typically brisk in the fall season, and
swimsuit sales are the highest during the late
spring and early summer. Thus, an appropriate
time series model needs to account for fluctuating
demand over the calendar year.

Spare parts planning: Companies' service
organizations have to forecast future spare part
demands to ensure an adequate supply of parts to
repair customer products. Often the spares
inventory consists of thousands of distinct part
numbers. To forecast future demand, complex
models for each part number can be built using
input variables such as expected part failure rates,
service diagnostic effectiveness, forecasted new
product shipments, and forecasted trade-
ins/decommissions. However, time series analysis
can provide accurate short-term forecasts based
simply on prior spare part demand history.

Stock trading: Some high-frequency stock
traders utilize a technique called pairs trading.
In pairs trading, an identified strong positive
correlation between the prices of two stocks is

used to detect a market opportunity. Suppose the
stock prices of Company A and Company B
consistently move together. Time series analysis
can be applied to the difference of these
companies' stock prices over time. A statistically
larger than expected price difference indicates
that it is a good time to buy the stock of Company
A and sell the stock of Company B, or vice versa.
Of course, this trading approach depends on the
ability to execute the trade quickly and be able to
detect when the correlation in the stock prices is
broken. Pairs trading is one of many techniques
that falls into a trading strategy called statistical

arbitrage.

8.1.1 BOX-JENKINS

METHODOLOGY

In this chapter, a time series consists of an ordered

sequence of equally spaced values over time.

Examples of a time series are monthly unemployment

rates, daily website visits, or stock prices every

second. A time series can consist of the following

components:

Trend

Seasonality

Cyclic

Random

The trend refers to the long-term movement in a

time series. It indicates whether the observation

values are increasing or decreasing over time.

Examples of trends are a steady increase in sales

month over month or an annual decline of fatalities

due to car accidents.

The seasonality component describes the fixed,

periodic fluctuation in the observations over time. As

the name suggests, the seasonality component is

often related to the calendar. For example, monthly

retail sales can fluctuate over the year due to the

weather and holidays.

A cyclic component also refers to a periodic

fluctuation, but one that is not as fixed as in the case

of a seasonality component. For example, retails sales

are influenced by the general state of the economy.

Thus, a retail sales time series can often follow the

lengthy boom-bust cycles of the economy.

After accounting for the other three components, the

random component is what remains. Although noise is

certainly part of this random component, there is often

some underlying structure to this random component

that needs to be modeled to forecast future values of a

given time series.

Developed by George Box and Gwilym Jenkins, the

Box-Jenkins methodology for time series analysis

involves the following three main steps:

1. Condition data and select a model.

Identify and account for any trends or seasonality in the time

series.

Examine the remaining time series and determine a suitable

model.

2. Estimate the model parameters.

3. Assess the model and return to Step 1, if

necessary.

The primary focus of this chapter is to use the Box-

Jenkins methodology to apply an ARIMA model to a

given time series.

8.2 ARIMA Model

To fully explain an ARIMA (Autoregressive Integrated

Moving Average) model, this section describes the

model's various parts and how they are combined. As

stated in the first step of the Box-Jenkins methodology,

it is necessary to remove any trends or seasonality in

the time series. This step is necessary to achieve a

time series with certain properties to which

autoregressive and moving average models can be

applied. Such a time series is known as a stationary

time series. A time series, y for t=1,2,3,...,, is at

stationary time series if the following three

conditions are met:

(a) The expected value (mean) of y is a constant
for all values of t.

(b) The variance of y is finite.

(c) The covariance of y and y depends only on
the value of h = 0, 1, 2, . . .for all t.

The covariance of y and y is a measure of how

the two variables, y and y , vary together. It is

expressed in Equation 8-1.

If two variables are independent of each other, their

covariance is zero. If the variables change together in

the same direction, the variables have a positive

covariance. Conversely, if the variables change

together in the opposite direction, the variables have a

negative covariance.

For a stationary time series, by condition (a), the

mean is a constant, say μ. So, for a given stationary

sequence, y , the covariance notation can be simplified

to what's shown in Equation 8-2.

t

t

t t+h

t t+h

t t+h

t

By part (c), the covariance between two points in the

time series can be nonzero, as long as the value of the

covariance is only a function of h. Equation 8-3 is an

example for h=3.

It is important to note that for h=0, the

cov(0)=cov(y , y)=var(y) for all t. Because the var (y)

<∞, by condition (b), the variance of y is a constant

for all t. So the constant variance coupled with part (a),

E[y] = μ, for all t and some constant μ, suggests that

a stationary time series can look like Figure 8-2. In this

plot, the points appear to be centered about a fixed

constant, zero, and the variance appears to be

somewhat constant over time.

8.2.1 AUTOCORRELATION

FUNCTION (ACF)

Although there is not an overall trend in the time

series plotted in Figure 8-2, it appears that each point

is somewhat dependent on the past points. The

difficulty is that the plot does not provide insight into

the covariance of the variables in the time series and

its underlying structure. The plot of autocorrelation

function (ACF) provides this insight. For a stationary

time series, the ACF is defined as shown in Equation 8-

4.

t t t t

t

t

FIGURE 8-2 A plot of a stationary series

Because the cov(0) is the variance, the ACF is

analogous to the correlation function of two variables,

corr (y , y), and the value of the ACF falls between

−1 and 1. Thus, the closer the absolute value of ACF(h)

is to 1, the more useful y can be as a predictor of y .

Using the same dataset plotted in Figure 8-2, the

plot of the ACF is provided in Figure 8-3.

t t+h

t t+h

FIGURE 8-3 Autocorrelation function (ACF)

By convention, the quantity h in the ACF is referred

to as the lag, the difference between the time points t

and t + h. At lag 0, the ACF provides the correlation of

every point with itself. So ACF(0) always equals 1.

According to the ACF plot, at lag 1 the correlation

between y and y , is approximately 0.9, which is

very close to 1. So y , appears to be a good

predictor of the value of y . Because ACF(2) is around

0.8, y also appears to be a good predictor of the

value of y . A similar argument could be made for lag 3

to lag 8. (All the autocorrelations are greater than 0.6.)

In other words, a model can be considered that would

express y as a linear sum of its previous 8 terms. Such

a model is known as an autoregressive model of order

8.

t t − 1

t − 1

t

t − 2

t

t

8.2.2 AUTOREGRESSIVE

MODELS

For a stationary time series, y t=1,2,3,..., an

autoregressive model of order p, denoted AR(p), is

expressed as shown in Equation 8-5:

Thus, a particular point in the time series can be

expressed as a linear combination of the prior p

values, y for j = 1, 2, . . . p, of the time series plus a

random error term, . In this definition, the time

series is often called a white noise process and is

used to represent random, independent fluctuations

that are part of the time series.

From the earlier example in Figure 8-3, the

autocorrelations are quite high for the first several

lags. Although it appears that an AR(8) model might be

a good candidate to consider for the given dataset,

examining an AR(1) model provides further insight into

the ACF and the appropriate value of p to choose. For

an AR(1) model, centered around δ = 0, Equation 8-5

simplifies to Equation 8-6.

t

t − j

Based on Equation 8-6, it is evident that y = ϕ y

 + . Thus, substituting for y yields Equation 8-

7.

Therefore, in a time series that follows an AR(1)

model, considerable autocorrelation is expected at lag

2. As this substitution process is repeated, y can be

expressed as a function of y for h = 3, 4 ...and a

sum of the error terms. This observation means that

even in the simple AR(1) model, there will be

considerable autocorrelation with the larger lags even

though those lags are not explicitly included in the

model. What is needed is a measure of the

autocorrelation between y and y for h = 1, 2, 3...

with the effect of the y to y values excluded

from the measure. The partial autocorrelation

function (PACF) provides such a measure and is

expressed as shown in Equation 8-8.

In other words, after linear regression is used to

remove the effect of the variables between y and y

on y and y , the PACF is the correlation of what

t − 1 1 t

− 2 t − 1

t

t − h

t t+h

t+1 t+h−1

t t+h

t t+h

remains. For h=1, there are no variables between y

and y . So the PACF(1) equals ACF(1). Although the

computation of the PACF is somewhat complex, many

software tools hide this complexity from the analyst.

For the earlier example, the PACF plot in Figure 8-4

illustrates that after lag 2, the value of the PACF is

sharply reduced. Thus, after removing the effects of

y and y , the partial correlation between y and

y is relatively small. Similar observations can be

made for h = 4, 5, Such a plot indicates that an

AR(2) is a good candidate model for the time series

plotted in Figure 8-2. In fact, the time series data for

this example was randomly generated based on y =

0.6y + 0.35y + where ~ N(0, 4).

FIGURE 8-4 Partial autocorrelation function (PACF) plot

Because the ACF and PACF are based on correlations,

negative and positive values are possible. Thus, the

t

t+1

t+1 t+2 t

t+3

t

t−1 t−2

magnitudes of the functions at the various lags should

be considered in terms of absolute values.

8.2.3 MOVING AVERAGE

MODELS

For a time series, y , centered at zero, a moving

average model of order q, denoted MA(q), is

expressed as shown in Equation 8-9.

In an MA(q) model, the value of a time series is a

linear combination of the current white noise term and

the prior q white noise terms. So earlier random

shocks directly affect the current value of the time

series. For MA(q) models, the behavior of the ACF and

PACF plots are somewhat swapped from the behavior

of these plots for AR(p) models. For a simulated MA(3)

time series of the form where

~ N(0,1), Figure 8-5 provides the scatterplot of the

simulated data over time.

t

FIGURE 8-5 Scatterplot of a simulated MA(3) time

series

Figure 8-6 provides the ACF plot for the simulated

data. Again, the ACF(0) equals 1, because any variable

is perfectly correlated with itself. At lags 1, 2, and 3,

the value of the ACF is relatively large in absolute

value compared to the subsequent terms. In an

autoregressive model, the ACF slowly decays, but for

an MA(3) model, the ACF somewhat abruptly cuts off

after lag 3. In general, this pattern can be extended to

any MA(q) model.

FIGURE 8-6 ACF plot of a simulated MA(3) time series

To understand why this phenomenon occurs, it is

useful to examine Equations 8-10 through 8-14 for an

MA(3) time series model:

Because the expression of y shares specific white

noise variables with the expressions for y −1, through

y −3, inclusive, those three variables are correlated to

y . However, the expression of y in Equation 8-10 does

not share white noise variables with y −4 in Equation

8-14. So the theoretical correlation between y and

y −4 is zero. Of course, when dealing with a particular

dataset, the theoretical autocorrelations are unknown,

but the observed autocorrelations should be close to

t

t

t

t t

t

t

t

zero for lags greater than q when working with an

MA(q) model.

8.2.4 ARMA AND ARIMA

MODELS

In general, the data scientist does not have to choose

between an AR(p) and an MA(q) model to describe a

time series. In fact, it is often useful to combine these

two representations into one model. The combination

of these two models for a stationary time series results

in an Autoregressive Moving Average model,

ARMA(p,q), which is expressed as shown in Equation

8-15.

If p = 0 and q ≠ 0, then the ARMA(p,q) model is

simply an AR(p) model. Similarly, if p = 0 and q ≠ 0,

then the ARMA(p,q) model is an MA(q) model.

To apply an ARMA model properly, the time series

must be a stationary one. However, many time series

exhibit some trend over time. Figure 8-7 illustrates a

time series with an increasing linear trend over time.

Since such a time series does not meet the

requirement of a constant expected value (mean), the

data needs to be adjusted to remove the trend. One

transformation option is to perform a regression

analysis on the time series and then to subtract the

value of the fitted regression line from each observed

y-value.

If detrending using a linear or higher order

regression model does not provide a stationary series,

a second option is to compute the difference between

successive y-values. This is known as differencing. In

other words, for the n values in a given time series

compute the differences as shown in Equation 8-16.

FIGURE 8-7 A time series with a trend

The mean of the time series plotted in Figure 8-8 is

certainly not a constant. Applying differencing to the

time series results in the plot in Figure 8-9. This plot

illustrates a time series with a constant mean and a

fairly constant variance over time.

FIGURE 8-8 Time series for differencing example

If the differenced series is not reasonably stationary,

applying differencing additional times may help.

Equation 8-17 provides the twice differenced time

series for t = 3, 4, ...n.

Successive differencing can be applied, but over-

differencing should be avoided. One reason is that

over-differencing may unnecessarily increase the

variance. The increased variance can be detected by

plotting the possibly over-differenced values and

observing that the spread of the values is much larger,

as seen in Figure 8-10 after differencing the values of y

twice.

FIGURE 8-9 Detrended time series using differencing

FIGURE 8-10 Twice differenced series

Because the need to make a time series stationary is

common, the differencing can be included (integrated)

into the ARMA model definition by defining the

Autoregressive Integrated Moving Average

model, denoted ARIMA(p,d,q). The structure of the

ARIMA model is identical to the expression in Equation

8-15, but the ARMA(p,q) model is applied to the time

series, y , after applying differencing d times.t

Additionally, it is often necessary to account for

seasonal patterns in time series. For example, in the

retail sales use case example in Section 8.1, monthly

clothing sales track closely with the calendar month.

Similar to the earlier option of detrending a series by

first applying linear regression, the seasonal pattern

could be determined and the time series appropriately

adjusted. An alternative is to use a seasonal

autoregressive integrated moving average

model, denoted ARIMA(p,d,q) × (P,D,Q) where:

p, d, and q are the same as defined previously.

s denotes the seasonal period.

P is the number of terms in the AR model across
the s periods.

D is the number of differences applied across the s
periods.

Q is the number of terms in the MA model across
the s periods.

For a time series with a seasonal pattern, following

are typical values of s:

52 for weekly data

12 for monthly data

s

7 for daily data

The next section presents a seasonal ARIMA example

and describes several techniques and approaches to

identify the appropriate model and forecast the future.

8.2.5 BUILDING AND

EVALUATING AN ARIMA

MODEL

For a large country, the monthly gasoline production

measured in millions of barrels has been obtained for

the past 240 months (20 years). A market research

firm requires some short-term gasoline production

forecasts to assess the petroleum industry's ability to

deliver future gasoline supplies and the effect on

gasoline prices.

library(forecast)

read in gasoline production time series

monthly gas production expressed in millions of barrels

gas_prod_input <- as.data.frame(read.csv("c:/data/gas_prod.csv"))

create a time series object

gas_prod <- ts(gas_prod_input[,2])

#examine the time series

plot(gas_prod, xlab = "Time (months)",

 ylab = "Gasoline production (millions of barrels)")

Using R, the dataset is plotted in Figure 8-11.

FIGURE 8-11 Monthly gasoline production

In R, the ts() function creates a time series object

from a vector or a matrix. The use of time series

objects in R simplifies the analysis by providing several

methods that are tailored specifically for handling

equally time spaced data series. For example, the plot()

function does not require an explicitly specified

variable for the x-axis.

To apply an ARMA model, the dataset needs to be a

stationary time series. Using the diff() function, the

gasoline production time series is differenced once and

plotted in Figure 8-12.

plot(diff(gas_prod))

abline(a=0, b=0)

FIGURE 8-12 Differenced gasoline production time

series

The differenced time series has a constant mean

near zero with a fairly constant variance over time.

Thus, a stationary time series has been obtained.

Using the following R code, the ACF and PACF plots for

the differenced series are provided in Figures 8-13 and

8-14, respectively.

examine ACF and PACF of differenced series

acf(diff(gas_prod), xaxp = c(0, 48, 4), lag.max=48, main="")

pacf(diff(gas_prod), xaxp = c(0, 48, 4), lag.max=48, main="")

The dashed lines provide upper and lower bounds at

a 95% significance level. Any value of the ACF or PACF

outside of these bounds indicates that the value is

significantly different from zero.

Figure 8-13 shows several significant ACF values. The

slowly decaying ACF values at lags 12, 24, 36, and 48

are of particular interest. A similar behavior in the ACF

was seen in Figure 8-3, but for lags 1, 2, 3,... Figure 8-

13 indicates a seasonal autoregressive pattern every

12 months. Examining the PACF plot in Figure 8-14, the

PACF value at lag 12 is quite large, but the PACF values

are close to zero at lags 24, 36, and 48. Thus, a

seasonal AR(1) model with period = 12 will be

considered. It is often useful to address the seasonal

portion of the overall ARMA model before addressing

the nonseasonal portion of the model.

FIGURE 8-13 ACF of the differenced gasoline time

series

FIGURE 8-14 PACF of the differenced gasoline time

series

The arima() function in R is used to fit a (0,1,0) ×

(1,0,0) model. The analysis is applied to the original

time series variable, gas_prod. The differencing, d = 1, is

specified by the order = c(0,1,0) term.

arima_1 <- arima (gas_prod,

 order=c(0,1,0),

 seasonal = list(order=c(1,0,0),period=12))

arima_1

Series: gas_prod

ARIMA(0,1,0)(1,0,0)[12]

Coefficients:

 sar1

 0.8335

s.e. 0.0324

sigma^2 estimated as 37.29: log likelihood=-778.69

AIC=1561.38 AICc=1561.43 BIC=1568.33

The value of the coefficient for the seasonal AR(1)

model is estimated to be 0.8335 with a standard error

of 0.0324. Because the estimate is several standard

12

errors away from zero, this coefficient is considered

significant. The output from this first pass ARIMA

analysis is stored in the variable arima_1, which contains

several useful quantities including the residuals. The

next step is to examine the residuals from fitting the

(0,1,0) × (1,0,0) ARIMA model. The ACF and PACF

plots of the residuals are provided in Figures 8-15 and

8-16, respectively.

examine ACF and PACF of the (0,1,0)x(1,0,0)12 residuals

acf(arima_1$residuals, xaxp = c(0, 48, 4), lag.max=48, main="")

pacf(arima_1$residuals, xaxp = c(0, 48, 4), lag.max=48, main="")

FIGURE 8-15 ACF of residuals from seasonal AR(1)

model

The ACF plot of the residuals in Figure 8-15 indicates

that the autoregressive behavior at lags 12, 24, 26,

and 48 has been addressed by the seasonal AR(1)

term. The only remaining ACF value of any significance

12

occurs at lag 1. In Figure 8-16, there are several

significant PACF values at lags 1, 2, 3, and 4.

Because the PACF plot in Figure 8-16 exhibits a

slowly decaying PACF, and the ACF cuts off sharply at

lag 1, an MA(1) model should be considered for the

nonseasonal portion of the ARMA model on the

differenced series. In other words, a (0,1,1) × (1,0,0)

ARIMA model will be fitted to the original gasoline

production time series.

arima_2 <- arima (gas_prod,

 order=c(0,1,1),

 seasonal = list(order=c(1,0,0),period=12))

arima_2

Series: gas_prod

ARIMA(0,1,1)(1,0,0)[12]

Coefficients:

 ma1 sar1

 -0.7065 0.8566

s.e. 0.0526 0.0298

sigma^2 estimated as 25.24: log likelihood=-733.22

AIC=1472.43 AICc=1472.53 BIC=1482.86

acf(arima_2$residuals, xaxp = c(0, 48, 4), lag.max=48, main="")

pacf(arima_2$residuals, xaxp = c(0, 48,4), lag.max=48, main="")

12

FIGURE 8-16 PACF of residuals from seasonal AR(1)

model

Based on the standard errors associated with each

coefficient estimate, the coefficients are significantly

different from zero. In Figures 8-17 and 8-18, the

respective ACF and PACF plots for the residuals from

the second pass ARIMA model indicate that no further

terms need to be considered in the ARIMA model.

FIGURE 8-17 ACF for the residuals from the (0,1,1) ×

(1,0,0) model

FIGURE 8-18 PACF for the residuals from the (0,1,1) ×

(1,0,0) model

It should be noted that the ACF and PACF plots each

have several points that are close to the bounds at a

95% significance level. However, these points occur at

relatively large lags. To avoid overfitting the model,

these values are attributed to random chance. So no

attempt is made to include these lags in the model.

However, it is advisable to compare a reasonably

fitting model to slight variations of that model.

Comparing Fitted Time Series

Models

The arima() function in R uses Maximum Likelihood

Estimation (MLE) to estimate the model coefficients. In

12

12

the R output for an ARIMA model, the log-likelihood

(logL) value is provided. The values of the model

coefficients are determined such that the value of the

log likelihood function is maximized. Based on the log

L value, the R output provides several measures that

are useful for comparing the appropriateness of one

fitted model against another fitted model. These

measures follow:

AIC (Akaike Information Criterion)

AICc (Akaike Information Criterion, corrected)

BIC (Bayesian Information Criterion)

Because these criteria impose a penalty based on

the number of parameters included in the models, the

preferred model is the fitted model with the smallest

AIC, AICc, or BIC value. Table 8-1 provides the

information criteria measures for the ARIMA models

already fitted as well as a few additional fitted models.

The highlighted row corresponds to the fitted ARIMA

model obtained previously by examining the ACF and

PACF plots.

TABLE 8-1 Information Criteria to Measure Goodness of

Fit

In this dataset, the (0,1,1) × (1,0,0) model does

have the lowest AIC, AICc, and BIC values compared to

the same criterion measures for the other ARIMA

models.

Normality and Constant Variance

The last model validation step is to examine the

normality assumption of the residuals in Equation 8-15.

Figure 8-19 indicates residuals with a mean near zero

and a constant variance over time. The histogram in

Figure 8-20 and the Q-Q plot in Figure 8-21 support the

assumption that the error terms are normally

distributed. Q-Q plots were presented in Chapter 6,

“Advanced Analytical Theory and Methods:

Regression.”

plot(arima_2$residuals, ylab = "Residuals")

abline(a=0, b=0)

hist(arima_2$residuals, xlab="Residuals", xlim=c(-20,20))

qqnorm(arima_2$residuals, main="")

qqline(arima_2$residuals)

12

FIGURE 8-19 Plot of residuals from the fitted (0,1,1) ×

(1,0,0) model

FIGURE 8-20 Histogram of the residuals from the fitted

(0,1,1) × (1,0,0) model

12

12

FIGURE 8-21 Q-Q plot of the residuals from the fitted

(0,1,1) × (1,0,0) model

If the normality or the constant variance

assumptions do not appear to be true, it may be

necessary to transform the time series prior to fitting

the ARIMA model. A common transformation is to

apply a logarithm function.

Forecasting

The next step is to use the fitted (0,1,1) × (1,0,0)

model to forecast the next 12 months of gasoline

production. In R, the forecasts are easily obtained

using the predict() function and the fitted model already

stored in the variable arima_2. The predicted values along

with the associated upper and lower bounds at a 95%

confidence level are displayed in R and plotted in

Figure 8-22.

12

12

#predict the next 12 months

arima_2.predict <- predict(arima_2,n.ahead=12)

matrix(c(arima_2.predict$pred-1.96*arima_2.predict$se,

 arima_2.predict$pred,

 arima_2.predict$pred+1.96*arima_2.predict$se), 12,3,

 dimnames=list(c(241:252) ,c("LB","Pred","UB")))

 LB Pred UB

241 394.9689 404.8167 414.6645

242 378.6142 388.8773 399.1404

243 394.9943 405.6566 416.3189

244 405.0188 416.0658 427.1128

245 397.9545 409.3733 420.7922

246 396.1202 407.8991 419.6780

247 396.6028 408.7311 420.8594

248 387.5241 399.9920 412.4598

249 387.1523 399.9507 412.7492

250 387.8486 400.9693 414.0900

251 383.1724 396.6076 410.0428

252 390.2075 403.9500 417.6926

plot(gas_prod, xlim=c(145,252),

 xlab = "Time (months)",

 ylab = "Gasoline production (millions of barrels)",

 ylim=c(360,440))

lines(arima_2.predict$pred)

lines(arima_2.predict$pred+1.96*arima_2.predict$se, col=4, lty=2)

lines(arima_2.predict$pred-1.96*arima_2.predict$se, col=4, lty=2)

FIGURE 8-22 Actual and forecasted gasoline production

8.2.6 REASONS TO CHOOSE

AND CAUTIONS

One advantage of ARIMA modeling is that the analysis

can be based simply on historical time series data for

the variable of interest. As observed in the chapter

about regression (Chapter 6), various input variables

need to be considered and evaluated for inclusion in

the regression model for the outcome variable.

Because ARIMA modeling, in general, ignores any

additional input variables, the forecasting process is

simplified. If regression analysis was used to model

gasoline production, input variables such as Gross

Domestic Product (GDP), oil prices, and unemployment

rate may be useful input variables. However, to

forecast the gasoline production using regression,

predictions are required for the GDP, oil price, and

unemployment rate input variables.

The minimal data requirement also leads to a

disadvantage of ARIMA modeling; the model does not

provide an indication of what underlying variables

affect the outcome. For example, if ARIMA modeling

was used to forecast future retail sales, the fitted

model would not provide an indication of what could

be done to increase sales. In other words, causal

inferences cannot be drawn from the fitted ARIMA

model.

One caution in using time series analysis is the

impact of severe shocks to the system. In the gas

production example, shocks might include refinery

fires, international incidents, or weather-related

impacts such as hurricanes. Such events can lead to

short-term drops in production, followed by

persistently high increases in production to

compensate for the lost production or to simply

capitalize on any price increases.

Along similar lines of reasoning, time series analysis

should only be used for short-term forecasts. Over

time, gasoline production volumes may be affected by

changing consumer demands as a result of more fuel-

efficient gasoline-powered vehicles, electric vehicles,

or the introduction of natural gas–powered vehicles.

Changing market dynamics in addition to shocks will

make any long-term forecasts, several years into the

future, very questionable.

8.3 Additional Methods

Additional time series methods include the following:

Autoregressive Moving Average with

Exogenous inputs (ARMAX) is used to analyze a
time series that is dependent on another time
series. For example, retail demand for products
can be modeled based on the previous demand

combined with a weather-related time series such
as temperature or rainfall.

Spectral analysis is commonly used for signal
processing and other engineering applications.
Speech recognition software uses such techniques
to separate the signal for the spoken words from
the overall signal that may include some noise.

Generalized Autoregressive Conditionally

Heteroscedastic (GARCH) is a useful model for
addressing time series with nonconstant variance
or volatility. GARCH is used for modeling stock
market activity and price fluctuations.

Kalman filtering is useful for analyzing real-time
inputs about a system that can exist in certain
states. Typically, there is an underlying model of
how the various components of the system interact
and affect each other. A Kalman filter processes
the various inputs, attempts to identify the errors
in the input, and predicts the current state. For
example, a Kalman filter in a vehicle navigation
system can process various inputs, such as speed
and direction, and update the estimate of the
current location.

Multivariate time series analysis examines
multiple time series and their effect on each other.
Vector ARIMA (VARIMA) extends ARIMA by

considering a vector of several time series at a
particular time, t. VARIMA can be used in
marketing analyses that examine the time series
related to a company's price and sales volume as
well as related time series for the competitors.

Summary

This chapter presented time series analysis using

ARIMA models. Time series analysis is different from

other statistical techniques in the sense that most

statistical analyses assume the observations are

independent of each other. Time series analysis

implicitly addresses the case in which any particular

observation is somewhat dependent on prior

observations.

Using differencing, ARIMA models allow

nonstationary series to be transformed into stationary

series to which seasonal and nonseasonal ARMA

models can be applied. The importance of using the

ACF and PACF plots to evaluate the autocorrelations

was illustrated in determining ARIMA models to

consider fitting. Akaike and Bayesian Information

Criteria can be used to compare one fitted ARIMA

model against another. Once an appropriate model has

been determined, future values in the time series can

be forecasted.

Exercises

1. Why use autocorrelation instead of autocovariance

when examining stationary time series?

2. Provide an example that if the cov(X, Y) = 0, the

two random variables, X and Y, are not necessarily

independent.

3. Fit an appropriate ARIMA model on the following

datasets included in R. Provide supporting

evidence on why the fitted model was selected,

and forecast the time series for 12 time periods

ahead.

a. faithful: Waiting times (in minutes) between Old Faithful

geyser eruptions

b. JohnsonJohnson: Quarterly earnings per J&J share

c. sunspot.month: Monthly sunspot activity from 1749 to 1997

4. When should an ARIMA(p,d,q) model in which d >

0 be considered instead of an ARMA(p,q) model?

TermCorpusText normalizationTFIDFTopic modeling

Sentiment analysis

9

Advanced Analytical

Theory

and Methods: Text

Analysis

Key Concepts

Text analysis, sometimes called

text analytics, refers to the representation, processing,

and modeling of textual data to derive useful insights.

An important component of text analysis is text

mining, the process of discovering relationships and

interesting patterns in large text collections.

Text analysis suffers from the curse of high

dimensionality. Take the popular children's book Green

Eggs and Ham [1] as an example. Author Theodor

Geisel (Dr. Seuss) was challenged to write an entire

book with just 50 distinct words. He responded with

the book Green Eggs and Ham, which contains 804

total words, only 50 of them distinct. These 50 words

are:

a, am, and, anywhere, are, be, boat, box, car, could, dark, do, eat,

eggs, fox, goat, good, green, ham, here, house, I, if, in, let, like,

may, me, mouse, not, on, or, rain, Sam, say, see, so, thank, that,

the, them, there, they, train, tree, try, will, with, would, you

There's a substantial amount of repetition in the

book. Yet, as repetitive as the book is, modeling it as a

vector of counts, or features, for each distinct word still

results in a 50-dimension problem.

Green Eggs and Ham is a simple book. Text analysis

often deals with textual data that is far more complex.

A corpus (plural: corpora) is a large collection of texts

used for various purposes in Natural Language

Processing (NLP). Table 9-1 lists a few example corpora

that are commonly used in NLP research.

TABLE 9-1 Example Corpora in Natural Language

Processing

The smallest corpus in the list, the complete works of

Shakespeare, contains about 0.88 million words. In

contrast, the Google n-gram corpus contains one

trillion words from publicly accessible web pages. Out

of the one trillion words in the Google n-gram corpus,

there might be one million distinct words, which would

correspond to one million dimensions. The high

dimensionality of text is an important issue, and it has

a direct impact on the complexities of many text

analysis tasks.

Another major challenge with text analysis is that

most of the time the text is not structured. As

introduced in Chapter 1, “Introduction to Big Data

Analytics,” this may include quasi-structured, semi-

structured, or unstructured data. Table 9-2 shows some

example data sources and data formats that text

analysis may have to deal with. Note that this is not

meant as an exhaustive list; rather, it highlights the

challenge of text analysis.

TABLE 9-2 Example Data Sources and Formats for Text

Analysis

9.1 Text Analysis Steps

A text analysis problem usually consists of three

important steps: parsing, search and retrieval, and text

mining. Note that a text analysis problem may also

consist of other subtasks (such as discourse and

segmentation) that are outside the scope of this book.

Parsing is the process that takes unstructured text

and imposes a structure for further analysis. The

unstructured text could be a plain text file, a weblog,

an Extensible Markup Language (XML) file, a HyperText

Markup Language (HTML) file, or a Word document.

Parsing deconstructs the provided text and renders it

in a more structured way for the subsequent steps.

Search and retrieval is the identification of the

documents in a corpus that contain search items such

as specific words, phrases, topics, or entities like

people or organizations. These search items are

generally called key terms. Search and retrieval

originated from the field of library science and is now

used extensively by web search engines.

Text mining uses the terms and indexes produced

by the prior two steps to discover meaningful insights

pertaining to domains or problems of interest. With the

proper representation of the text, many of the

techniques mentioned in the previous chapters, such

as clustering and classification, can be adapted to text

mining. For example, the k-means from Chapter 4,

“Advanced Analytical Theory and Methods: Clustering,”

can be modified to cluster text documents into groups,

where each group represents a collection of

documents with a similar topic [2]. The distance of a

document to a centroid represents how closely the

document talks about that topic. Classification tasks

such as sentiment analysis and spam filtering are

prominent use cases for the naïve Bayes classifier

(Chapter 7, “Advanced Analytical Theory and Methods:

Classification”). Text mining may utilize methods and

techniques from various fields of study, such as

statistical analysis, information retrieval, data mining,

and natural language processing.

Note that, in reality, all three steps do not have to be

present in a text analysis project. If the goal is to

construct a corpus or provide a catalog service, for

example, the focus would be the parsing task using

one or more text preprocessing techniques, such as

part-of-speech (POS) tagging, named entity

recognition, lemmatization, or stemming. Furthermore,

the three tasks do not have to be sequential.

Sometimes their orders might even look like a tree. For

example, one could use parsing to build a data store

and choose to either search and retrieve the related

documents or use text mining on the entire data store

to gain insights.

Part-of-Speech (POS)

Tagging, Lemmatization, and

Stemming

The goal of POS tagging is to build a model whose input is a

sentence, such as:

he saw a fox

and whose output is a tag sequence. Each tag marks the POS

for the corresponding word, such as:

PRP VBD DT NN

according to the Penn Treebank POS tags [3]. Therefore, the

four words are mapped to pronoun (personal), verb (past

tense), determiner, and noun (singular), respectively.

Both lemmatization and stemming are techniques to reduce

the number of dimensions and reduce inflections or variant

forms to the base form to more accurately measure the

number of times each word appears.

With the use of a given dictionary, lemmatization finds the

correct dictionary base form of a word. For example, given

the sentence:

obesity causes many problems

the output of lemmatization would be:

obesity cause many problem

Different from lemmatization, stemming does not need a

dictionary, and it usually refers to a crude process of stripping

affixes based on a set of heuristics with the hope of correctly

achieving the goal to reduce inflections or variant forms. After

the process, words are stripped to become stems. A stem is

not necessarily an actual word defined in the natural

language, but it is sufficient to differentiate itself from the

stems of other words. A well-known rule-based stemming

algorithm is Porter's stemming algorithm. It defines a set

of production rules to iteratively transform words into their

stems. For the sentence shown previously:

obesity causes many problems

the output of Porter's stemming algorithm is:

obes caus mani problem

9.2 A Text Analysis

Example

To further describe the three text analysis steps,

consider the fictitious company ACME, maker of two

products: bPhone and bEbook. ACME is in strong competition

with other companies that manufacture and sell similar

products. To succeed, ACME needs to produce

excellent phones and eBook readers and increase

sales.

One of the ways the company does this is to monitor

what is being said about ACME products in social

media. In other words, what is the buzz on its

products? ACME wants to search all that is said about

ACME products in social media sites, such as Twitter

and Facebook, and popular review sites, such as

Amazon and ConsumerReports. It wants to answer

questions such as these.

Are people mentioning its products?

What is being said? Are the products seen as good
or bad? If people think an ACME product is bad,
why? For example, are they complaining about the
battery life of the bPhone, or the response time in
their bEbook?

ACME can monitor the social media buzz using a

simple process based on the three steps outlined in

Section 9.1. This process is illustrated in Figure 9-1,

and it includes the modules in the next list.

FIGURE 9-1 ACME' Text Analysis Process

1. Collect raw text (Section 9.3). This corresponds

to Phase 1 and Phase 2 of the Data Analytic

Lifecycle. In this step, the Data Science team at

ACME monitors websites for references to

specific products. The websites may include

social media and review sites. The team could

interact with social network application

programming interfaces (APIs) process data

feeds, or scrape pages and use product names as

keywords to get the raw data. Regular

expressions are commonly used in this case to

identify text that matches certain patterns.

Additional filters can be applied to the raw data

for a more focused study. For example, only

retrieving the reviews originating in New York

instead of the entire United States would allow

ACME to conduct regional studies on its products.

Generally, it is a good practice to apply filters

during the data collection phase. They can

reduce I/O workloads and minimize the storage

requirements.

2. Represent text (Section 9.4). Convert each

review into a suitable document representation

with proper indices, and build a corpus based on

these indexed reviews. This step corresponds to

Phases 2 and 3 of the Data Analytic Lifecycle.

3. Compute the usefulness of each word in the

reviews using methods such as TFIDF (Section

9.5). This and the following two steps correspond

to Phases 3 through 5 of the Data Analytic

Lifecycle.

4. Categorize documents by topics (Section 9.6).

This can be achieved through topic models (such

as latent Dirichlet allocation).

5. Determine sentiments of the reviews (Section

9.7). Identify whether the reviews are positive or

negative. Many product review sites provide

ratings of a product with each review. If such

information is not available, techniques like

sentiment analysis can be used on the textual

data to infer the underlying sentiments. People

can express many emotions. To keep the process

simple, ACME considers sentiments as positive,

neutral, or negative.

6. Review the results and gain greater insights

(Section 9.8). This step corresponds to Phase 5

and 6 of the Data Analytic Lifecycle. Marketing

gathers the results from the previous steps. Find

out what exactly makes people love or hate a

product. Use one or more visualization

techniques to report the findings. Test the

soundness of the conclusions and operationalize

the findings if applicable.

This process organizes the topics presented in the

rest of the chapter and calls out some of the difficulties

that are unique to text analysis.

9.3 Collecting Raw Text

Recall that in the Data Analytic Lifecycle seen in

Chapter 2, “Data Analytics Lifecycle,” discovery is the

first phase. In it, the Data Science team investigates

the problem, understands the necessary data sources,

and formulates initial hypotheses. Correspondingly, for

text analysis, data must be collected before anything

can happen. The Data Science team starts by actively

monitoring various websites for user-generated

contents. The user-generated contents being collected

could be related articles from news portals and blogs,

comments on ACME's products from online shops or

reviews sites, or social media posts that contain

keywords bPhone or bEbook. Regardless of where the data

comes from, it's likely that the team would deal with

semi-structured data such as HTML web pages, Really

Simple Syndication (RSS) feeds, XML, or JavaScript

Object Notation (JSON) files. Enough structure needs to

be imposed to find the part of the raw text that the

team really cares about. In the brand management

example, ACME is interested in what the reviews say

about bPhone or bEbook and when the reviews are posted.

Therefore, the team will actively collect such

information.

Many websites and services offer public APIs [4, 5]

for third-party developers to access their data. For

example, the Twitter API [6] allows developers to

choose from the Streaming API or the REST API to

retrieve public Twitter posts that contain the keywords

bPhone or bEbook. Developers can also read tweets in real

time from a specific user or tweets posted near a

specific venue. The fetched tweets are in the JSON

format.

As an example, a sample tweet that contains the

keyword bPhone fetched using the Twitter Streaming API

version 1.1 is shown next.

01 {

02 "created_at": "Thu Aug 15 20:06:48 +0000 2013",

03 "coordinates": {

04 "type": "Point",

05 "coordinates": [

06 -157.81538521787621,

07 21.3002578885766

08]

09 },

10 "favorite_count": 0,

11 "id": 368101488276824010,

12 "id_str": "368101488276824014",

13 "lang": "en",

14 "metadata": {

15 "iso_language_code": "en",

16 "result_type": "recent"

17 },

18 "retweet_count": 0,

19 "retweeted": false,

20 "source": "<a href=\"http://www.twitter.com\"

21 rel=\"nofollow\">Twitter for bPhone",

22 "text": "I once had a gf back in the day. Then the bPhone

23 came out lol",

24 "truncated": false,

25 "user": {

26 "contributors_enabled": false,

27 "created_at": „Mon Jun 24 09:15:54 +0000 2013",

28 "default_profile": false,

29 "default_profile_image": false,

30 "description": "Love Life and Live Good",

31 "favourites_count": 23,

32 "follow_request_sent": false,

33 "followers_count": 96,

34 "following": false,

35 "friends_count": 347,

36 "geo_enabled": false,

37 "id": 2542887414,

38 "id_str": "2542887414",

39 "is_translator": false,

40 "lang": "en-gb",

41 "listed_count": 0,

42 "location": "Beautiful Hawaii",

43 "name": "The Original DJ Ice",

44 "notifications": false,

45 "profile_background_color": "C0DEED",

46 "profile_background_image_url":

47 "http://a0.twimg.com/profile_bg_imgs/378800000/b12e56725ee.jpeg",

48 "profile_background_tile": true,

49 "profile_image_url":

50 "http://a0.twimg.com/profile_imgs/378800010/2d55a4388bcffd5.jpeg",

51 "profile_link_color": "0084B4",

52 "profile_sidebar_border_color": "FFFFFF",

53 "profile_sidebar_fill_color": "DDEEF6",

54 "profile_text_color": "333333",

55 "profile_use_background_image": true,

56 "protected": false,

57 "screen_name": "DJ_Ice",

58 "statuses_count": 186,

59 "time_zone": "Hawaii",

60 "url": null,

61 "utc_offset": -36000,

62 "verified": false

63 }

64 }

Fields created_at at line 2 and text at line 22 in the

previous tweet provide the information that interests

ACME. The created_at entry stores the timestamp that the

tweet was published, and the text field stores the main

content of the Twitter post. Other fields could be

useful, too. For example, utilizing fields such as

coordinates (line 3 to 9), user's local language (lang, line

40), user's location (line 42), time_zone (line 59), and utc_offset

(line 61) allows the analysis to focus on tweets from a

specific region. Therefore, the team can research what

people say about ACME's products at a more granular

level.

Many news portals and blogs provide data feeds that

are in an open standard format, such as RSS or XML.

As an example, an RSS feed for a phone review blog is

shown next.

01 <channel>

02 <title>All about Phones</title>

03 <description>My Phone Review Site</description>

04 <link>http://www.phones.com/link.htm</link>

05

06 <item>

07 <title>bPhone: The best!</title>

08 <description>I love LOVE my bPhone!</description>

09 <link>http://www.phones.com/link.htm</link>

10 <guid isPermaLink="false">1102345</guid>

11 <pubDate>Tue, 29 Aug 2011 09:00:00 -0400</pubDate>

12 <item>

13 </channel>

The content from the title (line 7), the description (line

8), and the published date (pubDate, line 11) is what

ACME is interested in.

If the plan is to collect user comments on ACME's

products from online shops and review sites where

APIs or data feeds are not provided, the team may

have to write web scrapers to parse web pages and

automatically extract the interesting data from those

HTML files. A web scraper is a software program (bot)

that systematically browses the World Wide Web,

downloads web pages, extracts useful information, and

stores it somewhere for further study.

Unfortunately, it is nearly impossible to write a one-

size-fits-all web scraper. This is because websites like

online shops and review sites have different structures.

It is common to customize a web scraper for a specific

website. In addition, the website formats can change

over time, which requires the web scraper to be

updated every now and then. To build a web scraper

for a specific website, one must study the HTML source

code of its web pages to find patterns before

extracting any useful content. For example, the team

may find out that each user comment in the HTML is

enclosed by a DIV element inside another DIV with the

ID usrcommt, or it might be enclosed by a DIV element

with the CLASS commtcls.

The team can then construct the web scraper based

on the identified patterns. The scraper can use the curl

tool [7] to fetch HTML source code given specific URLs,

use XPath [8] and regular expressions to select and

extract the data that match the patterns, and write

them into a data store.

Regular expressions can find words and strings that

match particular patterns in the text effectively and

efficiently. Table 9-3 shows some regular expressions.

The general idea is that once text from the fields of

interest is obtained, regular expressions can help

identify if the text is really interesting for the project.

In this case, do those fields mention bPhone, bEbook, or ACME?

When matching the text, regular expressions can also

take into account capitalizations, common

misspellings, common abbreviations, and special

formats for e-mail addresses, dates, and telephone

numbers.

TABLE 9-3 Example Regular Expressions

This section has discussed three different sources

where raw data may come from: tweets that contain

keywords bPhone or bEbook, related articles from news

portals and blogs, and comments on ACME's products

from online shops or reviews sites.

If one chooses not to build a data collector from

scratch, many companies such as GNIP [9] and

DataSift [10] can provide data collection or data

reselling services.

Depending on how the fetched raw data will be used,

the Data Science team needs to be careful not to

violate the rights of the owner of the information and

user agreements about use of websites during the

data collection. Many websites place a file called

robots.txt in the root directory—that is, http://.../robots.txt

(for example, http://www.amazon.com/robots.txt). It lists the

directories and files that are allowed or disallowed to

be visited so that web scrapers or web crawlers know

how to treat the website correctly.

9.4 Representing Text

After the previous step, the team now has some raw

text to start with. In this data representation step, raw

text is first transformed with text normalization

techniques such as tokenization and case folding. Then

it is represented in a more structured way for analysis.

Tokenization is the task of separating (also called

tokenizing) words from the body of text. Raw text is

converted into collections of tokens after the

tokenization, where each token is generally a word.

A common approach is tokenizing on spaces. For

example, with the tweet shown previously:

http://.../robots.txt
http://www.amazon.com/robots.txt

I once had a gf back in the day. Then the bPhone came out lol

tokenization based on spaces would output a list of

tokens.

{I, once, had, a, gf, back, in, the, day.,

Then, the, bPhone, came, out, lol}

Note that token “day.” contains a period. This is the

result of only using space as the separator. Therefore,

tokens “day.” and “day” would be considered different

terms in the downstream analysis unless an additional

lookup table is provided. One way to fix the problem

without the use of a lookup table is to remove the

period if it appears at the end of a sentence. Another

way is to tokenize the text based on punctuation

marks and spaces. In this case, the previous tweet

would become:

{I, once, had, a, gf, back, in, the, day, .,

Then, the, bPhone, came, out, lol}

However, tokenizing based on punctuation marks

might not be well suited to certain scenarios. For

example, if the text contains contractions such as we'll,

tokenizing based on punctuation will split them into

separated words we and ll. For words such as can't, the

output would be can and t. It would be more preferable

either not to tokenize them or to tokenize we'll into we

and 'll, and can't into can and 't. The 't token is more

recognizable as negative than the t token. If the team

is dealing with certain tasks such as information

extraction or sentiment analysis, tokenizing solely

based on punctuation marks and spaces may obscure

or even distort meanings in the text.

Tokenization is a much more difficult task than one

may expect. For example, should words like state-of-the-

art, Wi-Fi, and San Francisco be considered one token or

more? Should words like Résumé, résumé, and resume all map

to the same token? Tokenization is even more difficult

beyond English. In German, for example, there are

many unsegmented compound nouns. In Chinese,

there are no spaces between words. Japanese has

several alphabets intermingled. This list can go on.

It's safe to say that there is no single tokenizer that

will work in every scenario. The team needs to decide

what counts as a token depending on the domain of

the task and select an appropriate tokenization

technique that fits most situations well. In reality, it's

common to pair a standard tokenization technique with

a lookup table to address the contractions and terms

that should not be tokenized. Sometimes it may not be

a bad idea to develop one's own tokenization from

scratch.

Another text normalization technique is called case

folding, which reduces all letters to lowercase (or the

opposite if applicable). For the previous tweet, after

case folding the text would become this:

i once had a gf back in the day. then the bphone came out lol

One needs to be cautious applying case folding to

tasks such as information extraction, sentiment

analysis, and machine translation. If implemented

incorrectly, case folding may reduce or change the

meaning of the text and create additional noise. For

example, when General Motors becomes general and motors, the

downstream analysis may very likely consider them as

separated words rather than the name of a company.

When the abbreviation of the World Health

Organization WHO or the rock band The Who become who, they

may both be interpreted as the pronoun who.

If case folding must be present, one way to reduce

such problems is to create a lookup table of words not

to be case folded. Alternatively, the team can come up

with some heuristics or rules-based strategies for the

case folding. For example, the program can be taught

to ignore words that have uppercase in the middle of a

sentence.

After normalizing the text by tokenization and case

folding, it needs to be represented in a more

structured way. A simple yet widely used approach to

represent text is called bag-of-words. Given a

document, bag-of-words represents the document as a

set of terms, ignoring information such as order,

context, inferences, and discourse. Each word is

considered a term or token (which is often the smallest

unit for the analysis). In many cases, bag-of-words

additionally assumes every term in the document is

independent. The document then becomes a vector

with one dimension for every distinct term in the

space, and the terms are unordered. The permutation

D* of a document D contains the same words exactly

the same number of times but in a different order.

Therefore, using the bag-of-words representation,

document D and its permutation D* would share the

same representation.

Bag-of-words takes quite a naïve approach, as order

plays an important role in the semantics of text. With

bag-of-words, many texts with different meanings are

combined into one form. For example, the texts “a dog

bites a man” and “a man bites a dog” have very

different meanings, but they would share the same

representation with bag-of-words.

Although the bag-of-words technique oversimplifies

the problem, it is still considered a good approach to

start with, and it is widely used for text analysis. A

paper by Salton and Buckley [11] states the

effectiveness of using single words as identifiers as

opposed to multiple-term identifiers, which retain the

order of the words:

In reviewing the extensive literature accumulated during

the past 25 years in the area of retrieval system

evaluation, the overwhelming evidence is that the

judicious use of single-term identifiers is preferable to the

incorporation of more complex entities extracted from the

texts themselves or obtained from available vocabulary

schedules.

Although the work by Salton and Buckley was

published in 1988, there has been little, if any,

substantial evidence to discredit the claim. Bag-of-

words uses single-term identifiers, which are usually

sufficient for the text analysis in place of multiple-term

identifiers.

Using single words as identifiers with the bag-of-

words representation, the term frequency (TF) of

each word can be calculated. Term frequency

represents the weight of each term in a document, and

it is proportional to the number of occurrences of the

term in that document. Figure 9-2 shows the 50 most

frequent words and the numbers of occurrences from

Shakespeare's Hamlet. The word frequency distribution

roughly follows Zipf's Law [12, 13]—that is, the i-th

most common word occurs approximately 1/ i as often

as the most frequent term. In other words, the

frequency of a word is inversely proportional to its rank

in the frequency table. Term frequency is revisited later

in this chapter.

FIGURE 9-2 The 50 most frequent words in

Shakespeare's Hamlet

What's Beyond Bag-of-

Words?

Bag-of-words is a common technique to start with. But

sometimes the Data Science team prefers other methods of

text representation that are more sophisticated. These more

advanced methods consider factors such as word order,

context, inferences, and discourse. For example, one such

method can keep track of the word order of every document

and compare the normalized differences of the word orders

[14]. These advanced techniques are outside the scope of

this book.

Besides extracting the terms, their morphological

features may need to be included. The morphological

features specify additional information about the

terms, which may include root words, affixes, part-of-

speech tags, named entities, or intonation (variations

of spoken pitch). The features from this step contribute

to the downstream analysis in classification or

sentiment analysis.

The set of features that need to be extracted and

stored highly depends on the specific task to be

performed. If the task is to label and distinguish the

part of speech, for example, the features will include

all the words in the text and their corresponding part-

of-speech tags. If the task is to annotate the named

entities like names and organizations, the features

highlight such information appearing in the text.

Constructing the features is no trivial task; quite often

this is done entirely manually, and sometimes it

requires domain expertise.

Sometimes creating features is a text analysis task

all to itself. One such example is topic modeling.

Topic modeling provides a way to quickly analyze large

volumes of raw text and identify the latent topics.

Topic modeling may not require the documents to be

labeled or annotated. It can discover topics directly

from an analysis of the raw text. A topic consists of a

cluster of words that frequently occur together and

that share the same theme. Probabilistic topic

modeling, discussed in greater detail later in Section

9.6, is a suite of algorithms that aim to parse large

archives of documents and discover and annotate the

topics.

It is important not only to create a representation of

a document but also to create a representation of a

corpus. As introduced earlier in the chapter, a corpus is

a collection of documents. A corpus could be so large

that it includes all the documents in one or more

languages, or it could be smaller or limited to a

specific domain, such as technology, medicine, or law.

For a web search engine, the entire World Wide Web is

the relevant corpus. Most corpora are much smaller.

The Brown Corpus [15] was the first million-word

electronic corpus of English, created in 1961 at Brown

University. It includes text from around 500 sources,

and the source has been categorized into 15 genres,

such as news, editorial, fiction, and so on. Table 9-4

lists the genres of the Brown Corpus as an example of

how to organize information in a corpus.

TABLE 9-4 Categories of the Brown Corpus

Many corpora focus on specific domains. For

example, the BioCreative corpora [16] are from

biology, the Switchboard corpus [17] contains

telephone conversations, and the European Parliament

Proceedings Parallel Corpus [18] was extracted from

the proceedings of the European Parliament in 21

European languages.

Most corpora come with metadata, such as the size

of the corpus and the domains from which the text is

extracted. Some corpora (such as the Brown Corpus)

include the information content of every word

appearing in the text. Information content (IC) is a

metric to denote the importance of a term in a corpus.

The conventional way [19] of measuring the IC of a

term is to combine the knowledge of its hierarchical

structure from an ontology with statistics on its actual

usage in text derived from a corpus. Terms with higher

IC values are considered more important than terms

with lower IC values. For example, the word necklace

generally has a higher IC value than the word jewelry

in an English corpus because jewelry is more general

and is likely to appear more often than necklace.

Research shows that IC can help measure the semantic

similarity of terms [20]. In addition, such measures do

not require an annotated corpus, and they generally

achieve strong correlations with human judgment [21,

20].

In the brand management example, the team has

collected the ACME product reviews and turned them

into the proper representation with the techniques

discussed earlier. Next, the reviews and the

representation need to be stored in a searchable

archive for future reference and research. This archive

could be a SQL database, XML or JSON files, or plain

text files from one or more directories.

Corpus statistics such as IC can help identify the

importance of a term from the documents being

analyzed. However, IC values included in the metadata

of a traditional corpus (such as Brown corpus) sitting

externally as a knowledge base cannot satisfy the

need to analyze the dynamically changed,

unstructured data from the web. The problem is

twofold. First, both traditional corpora and IC metadata

do not change over time. Any term not existing in the

corpus text and any newly invented words would

automatically receive a zero IC value. Second, the

corpus represents the entire knowledge base for the

algorithm being used in the downstream analysis. The

nature of the unstructured text determines that the

data being analyzed can contain any topics, many of

which may be absent in the given knowledge base. For

example, if the task is to research people's attitudes

on musicians, a traditional corpus constructed 50

years ago would not know that the term U2 is a band;

therefore, it would receive a zero on IC, which means

it's not an important term. A better approach would go

through all the fetched documents and find out that

most of them are related to music, with U2 appearing

too often to be an unimportant term. Therefore, it is

necessary to come up with a metric that can easily

adapt to the context and nature of the text instead of

relying on a traditional corpus. The next section

discusses such a metric. It's known as Term Frequency

—Inverse Document Frequency (TFIDF), which is based

entirely on all the fetched documents and which keeps

track of the importance of terms occurring in each of

the documents.

Note that the fetched documents may change

constantly over time. Consider the case of a web

search engine, in which each fetched document

corresponds to a matching web page in a search

result. The documents are added, modified, or

removed and, as a result, the metrics and indices must

be updated correspondingly. Additionally, word

distributions can change over time, which reduces the

effectiveness of classifiers and filters (such as spam

filters) unless they are retrained.

9.5 Term Frequency—

Inverse Document

Frequency (TFIDF)

This section presents TFIDF, a measure widely used in

information retrieval and text analysis. Instead of using

a traditional corpus as a knowledge base, TFIDF

directly works on top of the fetched documents and

treats these documents as the “corpus.” TFIDF is

robust and efficient on dynamic content, because

document changes require only the update of

frequency counts.

Given a term t and a document d = {t , t , t ,...t }

containing n terms, the simplest form of term

frequency of t in d can be defined as the number of

times t appears in d, as shown in Equation 9-1.

where

To understand how the term frequency is computed,

consider a bag-of-words vector space of 10 words: i,

love, acme, my, bebook, bphone, fantastic, slow, terrible, and terrific.

Given the text I love LOVE my bPhone extracted from the RSS

feed in Section 9.3, Table 9-5 shows its corresponding

term frequency vector after case folding and

tokenization.

TABLE 9-5 A Sample Term Frequency Vector

Ter

m

Frequenc

y

i 1

love 2

1 2 3 n

acme 0

my 1

bebook 0

bphone 1

fantastic 0

slow 0

terrible 0

terrific 0

The term frequency function can be logarithmically

scaled. Recall that in Figure 3-11 and Figure 3-12 of

Chapter 3, “Review of Basic Data Analytic Methods

Using R,” it shows the logarithm can be applied to

distribution with a long tail to enable more data detail.

Similarly, the logarithm can be applied to word

frequencies whose distribution also contains a long

tail, as shown in Equation 9-2.

Because longer documents contain more terms, they

tend to have higher term frequency values. They also

tend to contain more distinct terms. These factors can

conspire to raise the term frequency values of longer

documents and lead to undesirable bias favoring

longer documents. To address this problem, the term

frequency can be normalized. For example, the term

frequency of term t in document d can be normalized

based on the number of terms in d as shown in

Equation 9-3.

Besides the three common definitions mentioned

earlier, there are other less common variations [22] of

term frequency. In practice, one needs to choose the

term frequency definition that is the most suitable to

the data and the problem to be solved.

A term frequency vector (shown in Table 9-5) can

become very high dimensional because the bag-of-

words vector space can grow substantially to include

all the words in English. The high dimensionality makes

it difficult to store and parse the text and contribute to

performance issues related to text analysis.

For the purpose of reducing dimensionality, not all

the words from a given language need to be included

in the term frequency vector. In English, for example, it

is common to remove words such as the, a, of, and, to, and

other articles that are not likely to contribute to

semantic understanding. These common words are

called stop words. Lists of stop words are available in

various languages for automating the identification of

stop words. Among them is the Snowball's stop words

list [23] that contains stop words in more than ten

languages.

Another simple yet effective way to reduce

dimensionality is to store a term and its frequency only

if the term appears at least once in a document. Any

term not existing in the term frequency vector by

default will have a frequency of 0. Therefore, the

previous term frequency vector would be simplified to

what is shown in Table 9-6.

TABLE 9-6 A Simpler Form of the Term Frequency

Vector

Ter

m

Frequenc

y

i 1

love 2

my 1

bphone 1

Some NLP techniques such as lemmatization and

stemming can also reduce high dimensionality.

Lemmatization and stemming are two different

techniques that combine various forms of a word. With

these techniques, words such as play, plays, played, and

playing can be mapped to the same term.

It has been shown that the term frequency is based

on the raw count of a term occurring in a stand-alone

document. Term frequency by itself suffers a critical

problem: It regards that stand-alone document as the

entire world. The importance of a term is solely based

on its presence in this particular document. Stop words

such as the, and, and a could be inappropriately

considered the most important because they have the

highest frequencies in every document. For example,

the top three most frequent words in Shakespeare's

Hamlet are all stop words (the, and, and of, as shown in

Figure 9-2). Besides stop words, words that are more

general in meaning tend to appear more often, thus

having higher term frequencies. In an article about

consumer telecommunications, the word phone would be

likely to receive a high term frequency. As a result, the

important keywords such as bPhone and bEbook and their

related words could appear to be less important.

Consider a search engine that responds to a search

query and fetches relevant documents. Using term

frequency alone, the search engine would not properly

assess how relevant each document is in relation to

the search query.

A quick fix for the problem is to introduce an

additional variable that has a broader view of the

world—considering the importance of a term not only

in a single document but in a collection of documents,

or in a corpus. The additional variable should reduce

the effect of the term frequency as the term appears in

more documents.

Indeed, that is the intention of the inverted

document frequency (IDF). The IDF inversely

corresponds to the document frequency (DF), which

is defined to be the number of documents in the

corpus that contain a term. Let a corpus D contain N

documents. The document frequency of a term t in

corpus D = {d , d ,...d } is defined as shown in

Equation 9-4.

where

The Inverse document frequency of a term t is

obtained by dividing N by the document frequency of

the term and then taking the logarithm of that

quotient, as shown in Equation 9-5.

If the term is not in the corpus, it leads to a division-

by-zero. A quick fix is to add 1 to the denominator, as

demonstrated in Equation 9-6.

The precise base of the logarithm is not material to

the ranking of a term. Mathematically, the base

constitutes a constant multiplicative factor towards the

overall result.

Figure 9-3 shows 50 words with (a) the highest

corpus-wide term frequencies (TF), (b) the highest

1 2 N

document frequencies (DF), and (c) the highest Inverse

document frequencies (IDF) from the news category of

the Brown Corpus. Stop words tend to have higher TF

and DF because they are likely to appear more often in

most documents.

Words with higher IDF tend to be more meaningful

over the entire corpus. In other words, the IDF of a rare

term would be high, and the IDF of a frequent term

would be low. For example, if a corpus contains 1,000

documents, 1,000 of them might contain the word the,

and 10 of them might contain the word bPhone. With

Equation 9-5, the IDF of the would be 0, and the IDF of

bPhone would be log100, which is greater than the IDF of

the. If a corpus consists of mostly phone reviews, the

word phone would probably have high TF and DF but low

IDF.

Despite the fact that IDF encourages words that are

more meaningful, it comes with a caveat. Because the

total document count of a corpus (N) remains a

constant, IDF solely depends on the DF. All words

having the same DF value therefore receive the same

IDF value. IDF scores words higher that occur less

frequently across the documents. Those words that

score the lowest DF receive the same highest IDF. In

Figure 9-3 (c), for example, sunbonnet and narcotic appeared

in an equal number of documents in the Brown corpus;

therefore, they received the same IDF values. In many

cases, it is useful to distinguish between two words

that appear in an equal number of documents.

Methods to further weight words should be considered

to refine the IDF score.

The TFIDF (or TF-IDF) is a measure that considers

both the prevalence of a term within a document (TF)

and the scarcity of the term over the entire corpus

(IDF). The TFIDF of a term t in a document d is defined

as the term frequency of t in d multiplying the

document frequency of t in the corpus as shown in

Equation 9-7:

TFIDF scores words higher that appear more often in

a document but occur less often across all documents

in the corpus. Note that TFIDF applies to a term in a

specific document, so the same term is likely to

receive different TFIDF scores in different documents

(because the TF values may be different).

FIGURE 9-3 Words from Brown corpus's news category

with the highest corpus TF, DF, or IDF

TFIDF is efficient in that the calculations are simple

and straightforward, and it does not require knowledge

of the underlying meanings of the text. But this

approach also reveals little of the inter-document or

intra-document statistical structure. The next section

shows how topic models can address this short-coming

of TFIDF.

9.6 Categorizing

Documents by Topics

With the reviews collected and represented, the data

science team at ACME wants to categorize the reviews

by topics. As discussed earlier in the chapter, a topic

consists of a cluster of words that frequently occur

together and share the same theme.

The topics of a document are not as straightforward

as they might initially appear. Consider these two

reviews:

1. The bPhone5x has coverage everywhere. It's

much less flaky than my old bPhone4G.

2.While I love ACME's bPhone series, I've been

quite disappointed by the bEbook. The text is

illegible, and it makes even my old NBook look

blazingly fast.

Is the first review about bPhone5x or bPhone4G? Is

the second review about bPhone, bEbook, or NBook?

For machines, these questions can be difficult to

answer.

Intuitively, if a review is talking about bPhone5x, the

term bPhone5x and related terms (such as phone and ACME) are

likely to appear frequently. A document typically

consists of multiple themes running through the text in

different proportions—for example, 30% on a topic

related to phones, 15% on a topic related to appearance, 10%

on a topic related to shipping, 5% on a topic related to

service, and so on.

Document grouping can be achieved with clustering

methods such as k-means clustering [24] or

classification methods such as support vector

machines [25], k-nearest neighbors [26], or naïve

Bayes [27]. However, a more feasible and prevalent

approach is to use topic modeling. Topic modeling

provides tools to automatically organize, search,

understand, and summarize from vast amounts of

information. Topic models [28, 29] are statistical

models that examine words from a set of documents,

determine the themes over the text, and discover how

the themes are associated or change over time. The

process of topic modeling can be simplified to the

following.

1.Uncover the hidden topical patterns within a

corpus.

2.Annotate documents according to these topics.

3.Use annotations to organize, search, and

summarize texts.

A topic is formally defined as a distribution over a

fixed vocabulary of words [29]. Different topics would

have different distributions over the same vocabulary.

A topic can be viewed as a cluster of words with

related meanings, and each word has a corresponding

weight inside this topic. Note that a word from the

vocabulary can reside in multiple topics with different

weights. Topic models do not necessarily require prior

knowledge of the texts. The topics can emerge solely

based on analyzing the text.

The simplest topic model is latent Dirichlet

allocation (LDA) [29], a generative probabilistic model

of a corpus proposed by David M. Blei and two other

researchers. In generative probabilistic modeling, data

is treated as the result of a generative process that

includes hidden variables. LDA assumes that there is a

fixed vocabulary of words, and the number of the

latent topics is predefined and remains constant. LDA

assumes that each latent topic follows a Dirichlet

distribution [30] over the vocabulary, and each

document is represented as a random mixture of latent

topics.

Figure 9-4 illustrates the intuitions behind LDA. The

left side of the figure shows four topics built from a

corpus, where each topic contains a list of the most

important words from the vocabulary. The four

example topics are related to problem, policy, neural,

and report. For each document, a distribution over the

topics is chosen, as shown in the histogram on the

right. Next, a topic assignment is picked for each word

in the document, and the word from the corresponding

topic (colored discs) is chosen. In reality, only the

documents (as shown in the middle of the figure) are

available. The goal of LDA is to infer the underlying

topics, topic proportions, and topic assignments for

every document.

FIGURE 9-4 The intuitions behind LDA

The reader can refer to the original paper [29] for

the mathematical detail of LDA. Basically, LDA can be

viewed as a case of hierarchical Bayesian estimation

with a posterior distribution to group data such as

documents with similar topics.

Many programming tools provide software packages

that can perform LDA over datasets. R comes with an

lda package [31] that has built-in functions and sample

datasets. The lda package was developed by David M.

Blei's research group [32]. Figure 9-5 shows the

distributions of ten topics on nine scientific documents

randomly drawn from the cora dataset of the lda

package. The cora dataset is a collection of 2,410

scientific documents extracted from the Cora search

engine [33].

FIGURE 9-5 Distributions of ten topics over nine

scientific documents from the Cora dataset

The code that follows shows how to generate a

graph similar to Figure 9-5 using R and add-on

packages such as lda and ggplot.

require("ggplot2")

require("reshape2")

require("lda")

load documents and vocabulary

data(cora.documents)

data(cora.vocab)

theme_set(theme_bw())

Number of topic clusters to display

K <- 10

Number of documents to display

N <- 9

result <- lda.collapsed.gibbs.sampler(cora.documents,

 K, ## Num clusters

 cora.vocab,

 25, ## Num iterations

 0.1,

 0.1,

 compute.log.likelihood=TRUE)

Get the top words in the cluster

top.words <- top.topic.words(result$topics, 5, by.score=TRUE)

build topic proportions

topic.props <- t(result$document_sums) / colSums(result$document_sums)

document.samples <- sample(1:dim(topic.props)[1], N)

topic.props <- topic.props[document.samples,]

topic.props[is.na(topic.props)] <- 1 / K

colnames(topic.props) <- apply(top.words, 2, paste, collapse=" ")

topic.props.df <- melt(cbind(data.frame(topic.props),

 document=factor(1:N)),

 variable.name="topic",

 id.vars = "document")

qplot(topic, value*100, fill=topic, stat="identity",

 ylab="proportion (%)", data=topic.props.df,

 geom="histogram") +

 theme(axis.text.x = element_text(angle=0, hjust=1, size=12)) +

 coord_flip() +

 facet_wrap(~ document, ncol=3)

Topic models can be used in document modeling,

document classification, and collaborative filtering

[29]. Topic models not only can be applied to textual

data, they can also help annotate images. Just as a

document can be considered a collection of topics,

images can be considered a collection of image

features.

9.7 Determining

Sentiments

In addition to the TFIDF and topic models, the Data

Science team may want to identify the sentiments in

user comments and reviews of the ACME products.

Sentiment analysis refers to a group of tasks that

use statistics and natural language processing to mine

opinions to identify and extract subjective information

from texts.

Early work on sentiment analysis focused on

detecting the polarity of product reviews from Epinions

[34] and movie reviews from the Internet Movie

Database (IMDb) [35] at the document level. Later

work handles sentiment analysis at the sentence level

[36]. More recently, the focus has shifted to phrase-

level [37] and short-text forms in response to the

popularity of micro-blogging services such as Twitter

[38, 39, 40, 41, 42].

Intuitively, to conduct sentiment analysis, one can

manually construct lists of words with positive

sentiments (such as brilliant, awesome, and spectacular) and

negative sentiments (such as awful, stupid, and hideous).

Related work has pointed out that such an approach

can be expected to achieve accuracy around 60% [35],

and it is likely to be outperformed by examination of

corpus statistics [43].

Classification methods such as naïve Bayes as

introduced in Chapter 7, maximum entropy (MaxEnt),

and support vector machines (SVM) are often used to

extract corpus statistics for sentiment analysis.

Related research has found out that these classifiers

can score around 80% accuracy [35, 41, 42] on

sentiment analysis over unstructured data. One or

more of such classifiers can be applied to unstructured

data, such as movie reviews or even tweets.

The movie review corpus by Pang et al. [35] includes

2,000 movie reviews collected from an IMDb archive of

the rec.arts.movies.reviews newsgroup [43]. These

movie reviews have been manually tagged into 1,000

positive reviews and 1,000 negative reviews.

Depending on the classifier, the data may need to be

split into training and testing sets. As seen previously

in Chapter 7, a useful rule of the thumb for splitting

data is to produce a training set much bigger than the

testing set. For example, an 80/20 split would produce

80% of the data as the training set and 20% as the

testing set.

Next, one or more classifiers are trained over the

training set to learn the characteristics or patterns

residing in the data. The sentiment tags in the testing

data are hidden away from the classifiers. After the

training, classifiers are tested over the testing set to

infer the sentiment tags. Finally, the result is compared

against the original sentiment tags to evaluate the

overall performance of the classifier.

The code that follows is written in Python using the

Natural Language Processing Toolkit (NLTK) library

(http://nltk.org/). It shows how to perform sentiment

analysis using the naïve Bayes classifier over the

movie review corpus.

The code splits the 2,000 reviews into 1,600 reviews

as the training set and 400 reviews as the testing set.

The naïve Bayes classifier learns from the training set.

The sentiments in the testing set are hidden away

from the classifier. For each review in the training set,

the classifier learns how each feature impacts the

outcome sentiment. Next, the classifier is given the

testing set. For each review in the set, it predicts what

the corresponding sentiment should be, given the

features in the current review.

import nltk.classify.util

from nltk.classify import NaiveBayesClassifier

from nltk.corpus import movie_reviews

from collections import defaultdict

import numpy as np

define an 80/20 split for train/test

SPLIT = 0.8

def word_feats(words):

 feats = defaultdict(lambda: False)

 for word in words:

 feats[word] = True

 return feats

posids = movie_reviews.fileids('pos')

negids = movie_reviews.fileids('neg')

posfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'pos')

 for f in posids]

http://nltk.org/

negfeats = [(word_feats(movie_reviews.words(fileids=[f])), 'neg')

 for f in negids]

cutoff = int(len(posfeats) * SPLIT)

trainfeats = negfeats[:cutoff] + posfeats[:cutoff]

testfeats = negfeats[cutoff:] + posfeats[cutoff:]

print 'Train on %d instances\nTest on %d instances' % (len(trainfeats),

 len(testfeats))

classifier = NaiveBayesClassifier.train(trainfeats)

print 'Accuracy:', nltk.classify.util.accuracy(classifier, testfeats)

classifier.show_most_informative_features()

prepare confusion matrix

pos = [classifier.classify(fs) for (fs,l) in posfeats[cutoff:]]

pos = np.array(pos)

neg = [classifier.classify(fs) for (fs,l) in negfeats[cutoff:]]

neg = np.array(neg)

print 'Confusion matrix:'

print '\t'*2, 'Predicted class'

print '-'*40

print '|\t %d (TP) \t|\t %d (FN) \t| Actual class' % (

 (pos == 'pos').sum(), (pos == 'neg').sum()

print '-'*40

print '|\t %d (FP) \t|\t %d (TN) \t|' % (

 (neg == 'pos').sum(), (neg == 'neg').sum())

print '-'*40

The output that follows shows that the naïve Bayes

classifier is trained on 1,600 instances and tested on

400 instances from the movie corpus. The classifier

achieves an accuracy of 73.5%. Most information

features for positive reviews from the corpus include

words such as outstanding, vulnerable, and astounding; and

words such as insulting, ludicrous, and uninvolving are the

most informative features for negative reviews. At the

end, the output also shows the confusion matrix

corresponding to the classifier to further evaluate the

performance.

Train on 1600 instances

Test on 400 instances

Accuracy: 0.735

Most Informative Features

 outstanding = True pos : neg = 13.9 : 1.0

 insulting = True neg : pos = 13.7 : 1.0

 vulnerable = True pos : neg = 13.0 : 1.0

 ludicrous = True neg : pos = 12.6 : 1.0

 uninvolving = True neg : pos = 12.3 : 1.0

 astounding = True pos : neg = 11.7 : 1.0

 avoids = True pos : neg = 11.7 : 1.0

 fascination = True pos : neg = 11.0 : 1.0

 animators = True pos : neg = 10.3 : 1.0

 symbol = True pos : neg = 10.3 : 1.0

Confusion matrix:

 Predicted class

--

| 195 (TP) | 5(FN) | Actual class

--

| 101 (FP) | 99(TN) |

--

As discussed earlier in Chapter 7, a confusion

matrix is a specific table layout that allows

visualization of the performance of a model over the

testing set. Every row and column corresponds to a

possible class in the dataset. Each cell in the matrix

shows the number of test examples for which the

actual class is the row and the predicted class is the

column. Good results correspond to large numbers

down the main diagonal (TP and TN) and small, ideally

zero, off-diagonal elements (FP and FN). Table 9-7

shows the confusion matrix from the previous program

output for the testing set of 400 reviews. Because a

well-performed classifier should have a confusion

matrix with large numbers for TP and TN and ideally

near zero numbers for FP and FN, it can be concluded

that the naïve Bayes classifier has many false

negatives, and it does not perform very well on this

testing set.

TABLE 9-7 Confusion Matrix for the Example Testing

Set

Chapter 7 has introduced a few measures to

evaluate the performance of a classifier beyond the

confusion matrix. Precision and recall are two

measures commonly used to evaluate tasks related to

text analysis. Definitions of precision and recall are

given in Equations 9-8 and 9-9.

Precision is defined as the percentage of

documents in the results that are relevant. If by

entering keyword bPhone, the search engine returns 100

documents, and 70 of them are relevant, the precision

of the search engine result is 0.7%.

Recall is the percentage of returned documents

among all relevant documents in the corpus. If by

entering keyword bPhone, the search engine returns 100

documents, only 70 of which are relevant while failing

to return 10 additional, relevant documents, the recall

is 70/(70+10) = 0.875.

Therefore, the naïve Bayes classifier from Table 9-7

receives a recall of 195/(195+5) = 0.975 and a

precision of 195/(195+101) ≈ 0.659.

Precision and recall are important concepts, whether

the task is about information retrieval of a search

engine or text analysis over a finite corpus. A good

classifier ideally should achieve both precision and

recall close to 1.0. In information retrieval, a perfect

precision score of 1.0 means that every result

retrieved by a search was relevant (but says nothing

about whether all relevant documents were retrieved),

whereas a perfect recall score of 1.0 means that all

relevant documents were retrieved by the search (but

says nothing about how many irrelevant documents

were also retrieved). Both precision and recall are

therefore based on an understanding and measure of

relevance. In reality, it is difficult for a classifier to

achieve both high precision and high recall. For the

example in Table 9-7, the naïve Bayes classifier has a

high recall but a low precision. Therefore, the Data

Science team needs to check the cleanliness of the

data, optimize the classifier, and find if there are ways

to improve the precision while retaining the high recall.

Classifiers determine sentiments solely based on the

datasets on which they are trained. The domain of the

datasets and the characteristics of the features

determine what the knowledge classifiers can learn.

For example, lightweight is a positive feature for

reviews on laptops but not necessarily for reviews on

wheelbarrows or textbooks. In addition, the training

and the testing sets should share similar traits for

classifiers to perform well. For example, classifiers

trained on movie reviews generally should not be

tested on tweets or blog comments.

Note that an absolute sentiment level is not

necessarily very informative. Instead, a baseline

should be established and then compared against the

latest observed values. For example, a ratio of 40%

positive tweets on a topic versus 60% negative might

not be considered a sign that a product is unsuccessful

if other similar successful products have a similar ratio

based on the psychology of when people tweet.

The previous example demonstrates how to use

naïve Bayes to perform sentiment analysis. The

example can be applied to tweets on ACME's bPhone and

bEbook simply by replacing the movie review corpus with

the pretagged tweets. Other classifiers can also be

used in place of naïve Bayes.

The movie review corpus contains only 2,000

reviews; therefore, it is relatively easy to manually tag

each review. For sentiment analysis based on larger

amounts of streaming data such as millions or billions

of tweets, it is less feasible to collect and construct

datasets of tweets that are big enough or manually tag

each of the tweets to train and test one or more

classifiers. There are two popular ways to cope with

this problem. The first way to construct pretagged

data, as illustrated in recent work by Go et al. [41] and

Pak and Paroubek [42], is to apply supervision and use

emoticons such as :) and :(to indicate if a tweet

contains positive or negative sentiments. Words from

these tweets can in turn be used as clues to classify

the sentiments of future tweets. Go et al. [41] use

classification methods including naïve Bayes, MaxEnt,

and SVM over the training and testing datasets to

perform sentiment classifications. Their demo is

available at http://www.sentiment140.com. Figure 9-6 shows the

sentiments resulting from a query against the term

“Boston weather” on a set of tweets. Viewers can mark

the result as accurate or inaccurate, and such

feedback can be incorporated in future training of the

algorithm.

http://www.sentiment140.com/

FIGURE 9-6 Sentiment140 [41], an online tool for

Twitter sentiment analysis

Emoticons make it easy and fast to detect

sentiments of millions or billions of tweets. However,

using emoticons as the sole indicator of sentiments

sometimes can be misleading, as emoticons may not

necessarily correspond to the sentiments in the

accompanied text. For example, the sample tweet

shown in Figure 9-7 contains the :) emoticon, but the

text does not express a positive sentiment.

FIGURE 9-7 Tweet with the :) emoticon does not

necessarily correspond to a positive sentiment

To address this problem, related research usually

uses Amazon Mechanical Turk (MTurk) [44] to collect

human-tagged reviews. MTurk is a crowdsourcing

Internet marketplace that enables individuals or

businesses to coordinate the use of human intelligence

to perform tasks that are difficult for computers to do.

In many cases, MTurk has been shown to collect

human input much faster compared to traditional

channels such as door-to-door surveys. For the

example sentiment analysis task, the Data Science

team can publish the tweets collected from Section 9.3

to MTurk as Human Intelligence Tasks (HITs). The team

can then ask human workers to tag each tweet as

positive, neutral, or negative. The result can be used

to train one or more classifiers or test the

performances of classifiers. Figure 9-8 shows a sample

task on MTurk related to sentiment analysis.

FIGURE 9-8 Amazon Mechanical Turk

9.8 Gaining Insights

So far this chapter has discussed several text analysis

tasks including text collection, text representation,

TFIDF, topic models, and sentiment analysis. This

section shows how ACME uses these techniques to

gain insights into customer opinions about its

products. To keep the example simple, this section only

uses bPhone to illustrate the steps.

Corresponding to the data collection phase, the Data

Science team has used bPhone as the keyword to collect

more than 300 reviews from a popular technical review

website.

The 300 reviews are visualized as a word cloud after

removing stop words. A word cloud (or tag cloud) is

a visual representation of textual data. Tags are

generally single words, and the importance of each

word is shown with font size or color. Figure 9-9 shows

the word cloud built from the 300 reviews. The reviews

have been previously case folded and tokenized into

lowercased words, and stop words have been removed

from the text. A more frequently appearing word in

Figure 9-9 is shown with a larger font size. The

orientation of each word is only for the aesthetical

purpose. Most of the graph is taken up by the words

phone and bphone, which occur frequently but are not very

informative. Overall, the graph reveals little

information. The team needs to conduct further

analyses on the data.

FIGURE 9-9 Word cloud on all 300 reviews on bPhone

Fortunately, the popular technical review website

allows users to provide ratings on a scale from one to

five when they post reviews. The team can divide the

reviews into subgroups using those ratings.

To reveal more information, the team can remove

words such as phone, bPhone, and ACME, which are not very

useful for the study. Related research often refers to

these words as domain-specific stop words. Figure

9-10 shows the word cloud corresponding to 50 five-

star reviews extracted from the data. Note that the

shades of gray are only for the aesthetical purpose.

The result suggests that customers are satisfied with

the seller, the brand, and the product, and they recommend

bPhone to their friends and families.

Figure 9-11 shows the word cloud of 70 one-star

reviews. The words sim and button occur frequently

enough that it would be advisable to sample the

reviews that contain these terms and determine what

is being said about buttons and SIM cards. Word clouds

can reveal useful information beyond the most

prominent terms. For example, the graph in Figure 9-

11 oddly contains words like stolen and Venezuela. As the

Data Science team investigates the stories behind

these words, it finds that these words appear in 1-star

reviews because there are a few unauthorized sellers

from Venezuela that sell stolen bPhones. ACME can

take further actions from this point. This is an example

of how text analysis and even simple visualizations can

help gain insights.

FIGURE 9-10 Word cloud on five-star reviews

FIGURE 9-11 Word cloud on one-star reviews

TFIDF can be used to highlight the informative words

in the reviews. Figure 9-12 shows a subset of the

reviews in which each word with a larger font size

corresponds to a higher TFIDF value. Each review is

considered a document. With TFIDF, data analysts can

quickly go through the reviews and identify what

aspects are perceived to make bPhone a good product

or a bad product.

FIGURE 9-12 Reviews highlighted by TFIDF values

Topic models such as LDA can categorize the reviews

into topics. Figures 9-13 and 9-14 show circular graphs

of topics as results of the LDA. These figures are

produced with tools and technologies such as Python,

NoSQL, and D3.js. Figure 9-13 visualizes ten topics

built from the five-star reviews. Each topic focuses on

a different aspect that can characterize the reviews.

The disc size represents the weight of a word. In an

interactive environment, hovering the mouse over a

topic displays the full words and their corresponding

weights.

Figure 9-14 visualizes ten topics from one-star

reviews. For example, the bottom-right topic contains

words such as button, power, and broken, which may indicate

that bPhone has problems related to button and power

supply. The Data Science team can track down these

reviews and find out if that's really the case.

FIGURE 9-13 Ten topics on five-star reviews

FIGURE 9-14 Ten topics on one-star reviews

Figure 9-15 provides a different way to visualize the

topics. Five topics are extracted from five-star reviews

and one-star reviews, respectively. In an interactive

environment, hovering the mouse on a topic highlights

the corresponding words in this topic. The screenshots

in Figure 9-15 were taken when Topic 4 is highlighted for

both groups. The weight of a word in a topic is

indicated by the disc size.

FIGURE 9-15 Five topics on five-star reviews (left) and

1-star reviews (right)

The Data Science team has also conducted

sentiment analysis over 100 tweets from the popular

micro-blogging site Twitter. The result is shown in

Figure 9-16. The left side represents negative

sentiments, and the right side represents positive

sentiments. Vertically, the tweets have been randomly

placed for aesthetic purposes. Each tweet is shown as

a disc, where the size represents the number of

followers of the user who made the original tweet. The

color shade of a disc represents how frequently this

tweet has been retweeted. The figure indicates that

most customers are satisfied with ACME's bPhone.

FIGURE 9-16 Sentiment analysis on Tweets related to

bPhone

Summary

This chapter has discussed several subtasks of text

analysis, including parsing, search and retrieval, and

text mining. With a brand management example, the

chapter talks about a typical text analysis process: (1)

collecting raw text, (2) representing text, (3) using

TFIDF to compute the usefulness of each word in the

texts, (4) categorizing documents by topics using topic

modeling, (5) sentiment analysis, and (6) gaining

greater insights.

Overall text analysis is no trivial task. Corresponding

to the Data Analytic Lifecycle, the most time-

consuming parts of a text analysis project often are not

performing the statistics or implementing algorithms.

Chances are the team would spend most of the time

formulating the problem, getting the data, and

preparing the data.

Exercises

1. What are the main challenges of text analysis?

2. What is a corpus?

3. What are common words (such as a, and, of)

called?

4. Why can't we use TF alone to measure the

usefulness of the words?

5. What is a caveat of IDF? How does TFIDF address

the problem?

6. Name three benefits of using the TFIDF.

7. What methods can be used for sentiment

analysis?

8. What is the definition of topic in topic models?

9. Explain the trade-offs for precision and recall.

10. Perform LDA topic modeling on the Reuters-

21578 corpus using Python and LDA. The NLTK has

already come with the Reuters-21578 corpus. To

import this corpus, enter the following comment in

the Python prompt:

from nltk.corpus import reuters

The LDA has already been implemented by several Python libraries

such as gensim [45]. Either use one such library or implement your

own LDA to perform topic modeling on the Reuters-21578 corpus.

11. Choose a topic of your interest, such as a movie,

a celebrity, or any buzz word. Then collect 100

tweets related to this topic. Hand-tag them as

positive, neutral, or negative. Next, split them into

80 tweets as the training set and the remaining 20

as the testing set. Run one or more classifiers over

these tweets to perform sentiment analysis. What

are the precision and recall of these classifiers?

Which classifier performs better than the others?

Bibliography

[1] Dr. Seuss, “Green Eggs and Ham,” New York, NY, USA,
Random House, 1960.

[2] M. Steinbach, G. Karypis, and V. Kumar, “A Comparison of
Document Clustering Techniques,” KDD Workshop on Text

Mining, 2000.
[3] “The Penn Treebank Project,” University of Pennsylvania

[Online]. Available: http://www.cis.upenn.edu/~treebank/home.html.
[Accessed 26 March 2014].

http://www.cis.upenn.edu/~treebank/home.html

[4] Wikipedia, “List of Open APIs” [Online]. Available:
http://en.wikipedia.org/wiki/List_of_open_APIs. [Accessed 27 March
2014].

[5] ProgrammableWeb, “API Directory” [Online]. Available:
http://www.programmableweb.com/apis/directory. [Accessed 27 March
2014].

[6] Twitter, “Twitter Developers Site” [Online]. Available:
https://dev.twitter.com/. [Accessed 27 March 2014].

[7] “Curl and libcurl Tools” [Online]. Available: http://curl.haxx.se/.
[Accessed 27 March 2014].

[8] “XML Path Language (XPath) 2.0,” World Wide Web
Consortium, 14 December 2010. [Online]. Available:
http://www.w3.org/TR/xpath20/. [Accessed 27 March 2014].

[9] “Gnip: The Source for Social Data,” GNIP [Online]. Available:
http://gnip.com/. [Accessed 12 June 2014].

[10] “DataSift: Power Decisions with Social Data,” DataSift
[Online]. Available: http://datasift.com/. [Accessed 12 June 2014].

[11] G. Salton and C. Buckley, “Term-Weighting Approaches in
Automatic Text Retrieval,” in Information Processing and

Management, 1988, pp. 513–523.
[12] G. K. Zipf, Human Behavior and the Principle of Least Effort,

Reading, MA: Addison-Wesley, 1949.
[13] M. E. Newman, “Power Laws, Pareto Distributions, and Zipf's

Law,” Contemporary Physics, vol. 46, no. 5, pp. 323–351, 2005.
[14] Y. Li, D. McLean, Z. A. Bandar, J. D. O'Shea, and K. Crockett,

“Sentence Similarity Based on Semantic Nets and Corpus
Statistics,” IEEE Transactions on Knowledge and Data

Engineering, vol. 18, no. 8, pp. 1138–1150, 2006.
[15] W. N. Francis and H. Kucera, “Brown Corpus Manual,” 1979.

[Online]. Available: http://icame.uib.no/brown/bcm.html.
[16] “Critical Assessment of Information Extraction in Biology

(BioCreative)” [Online]. Available: http://www.biocreative.org/.
[Accessed 2 April 2014].

[17] J. J. Godfrey and E. Holliman, “Switchboard-1 Release 2,”
Linguistic Data Consortium, Philadelphia, 1997. [Online].

http://en.wikipedia.org/wiki/List_of_open_APIs
http://www.programmableweb.com/apis/directory
https://dev.twitter.com/
http://curl.haxx.se/
http://www.w3.org/TR/xpath20/
http://gnip.com/
http://datasift.com/
http://icame.uib.no/brown/bcm.html
http://www.biocreative.org/

Available: http://catalog.ldc.upenn.edu/LDC97S62. [Accessed 2 April
2014].

[18] P. Koehn, “Europarl: A Parallel Corpus for Statistical Machine
Translation,” MT Summit, 2005.

[19] N. Seco, T. Veale, and J. Hayes, “An Intrinsic Information
Content Metric for Semantic Similarity in WordNet,” ECAI, vol.
16, pp. 1089–1090, 2004.

[20] P. Resnik, “Using Information Content to Evaluate Semantic
Similarity in a Taxonomy,” In Proceedings of the 14th

International Joint Conference on Artificial Intelligence

(IJCAI'95), vol. 1, pp. 448–453, 1995.
[21] T. Pedersen, “Information Content Measures of Semantic

Similarity Perform Better Without Sense-Tagged Text,” Human

Language Technologies: The 2010 Annual Conference of the

North American Chapter of the Association for Computational

Linguistics, pp. 329–332, June 2010.
[22] C. D. Manning, P. Raghavan, and H. Schütze, “Document and

Query Weighting Schemes,” in Introduction to Information

Retrieval, Cambridge, United Kingdom, Cambridge University
Press, 2008, p. 128.

[23] M. Porter, “Porter's English Stop Word List,” 12 February
2007. [Online]. Available:
http://snowball.tartarus.org/algorithms/english/stop.txt.
[Accessed 2 April 2014].

[24] M. Steinbach, G. Karypis, and V. Kumar, “A Comparison of
Document Clustering Techniques,” KDD workshop on text

mining, vol. 400, no. 1, 2000.
[25] T. Joachims, “Transductive Inference for Text Classification

Using Support Vector Machines,” ICML, vol. 99, pp. 200–209,
1999.

[26] P. Soucy and G. W. Mineau, “A Simple KNN Algorithm for
Text Categorization,” ICDM, pp. 647–648, 2001.

[27] B. Liu, X. Li, W. S. Lee, and P. S. Yu, “Text Classification by
Labeling Words,” AAAI, vol. 4, pp. 425–430, 2004.

[28] D. M. Blei, “Probabilistic Topic Models,” Communications of

the ACM, vol. 55, no. 4, pp. 77–84, 2012.

http://catalog.ldc.upenn.edu/LDC97S62
http://snowball.tartarus.org/algorithms/english/stop.txt

[29] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet
Allocation,” Journal of Machine Learning Research, vol. 3, pp.
993–1022, 2003.

[30] T. Minka, “Estimating a Dirichlet Distribution,” 2000.
[31] J. Chang, “lda: Collapsed Gibbs Sampling Methods for Topic

Models,” CRAN, 14 October 2012. [Online]. Available:
http://cran.r-project.org/web/packages/lda/. [Accessed 3 April
2014].

[32] D. M. Blei, “Topic Modeling Software” [Online]. Available:
http://www.cs.princeton.edu/~blei/topicmodeling.html.
[Accessed 11 June 2014].

[33] A. McCallum, K. Nigam, J. Rennie, and K. Seymore, “A
Machine Learning Approach to Building Domain-Specific Search
Engines,” IJCAI, vol. 99, 1999.

[34] P. D. Turney, “Thumbs Up or Thumbs Down? Semantic
Orientation Applied to Unsupervised Classification of Reviews,”
Proceedings of the Association for Computational Linguistics, pp.
417–424, 2002.

[35] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs Up?
Sentiment Classification Using Machine Learning Techniques,”
Proceedings of EMNLP, pp. 79–86, 2002.

[36] M. Hu and B. Liu, “Mining and Summarizing Customer
Reviews,” Proceedings of the Tenth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 168–
177, 2004.

[37] A. Agarwal, F. Biadsy, and K. R. Mckeown, “Contextual
Phrase-Level Polarity Analysis Using Lexical Affect Scoring and
Syntactic N-Grams,” Proceedings of the 12th Conference of the

European Chapter of the Association for Computational

Linguistics, pp. 24–32, 2009.
[38] B. O'Connor, R. Balasubramanyan, B. R. Routledge, and N. A.

Smith, “From Tweets to Polls: Linking Text Sentiment to Public
Opinion Time Series,” Proceedings of the Fourth International

Conference on Weblogs and Social Media, ICWSM '10, pp. 122–
129, 2010.

http://cran.r-project.org/web/packages/lda/
http://www.cs.princeton.edu/~blei/topicmodeling.html

[39] A. Agarwal, B. Xie, I. Vovsha, O. Rambow and R. Passonneau,
“Sentiment Analysis of Twitter Data,” In Proceedings of the

Workshop on Languages in Social Media, pp. 30–38, 2011.
[40] H. Saif, Y. He, and H. Alani, “Semantic Sentiment Analysis of

Twitter,” Proceedings of the 11th International Conference on

The Semantic Web (ISWC'12), pp. 508–524, 2012.
[41] A. Go, R. Bhayani, and L. Huang, “Twitter Sentiment

Classification Using Distant Supervision,” CS224N Project

Report, Stanford, pp. 1–12, 2009.
[42] A. Pak and P. Paroubek, “Twitter as a Corpus for Sentiment

Analysis and Opinion Mining,” Proceedings of the Seventh

International Conference on Language Resources and Evaluation

(LREC'10), pp. 19–21, 2010.
[43] B. Pang and L. Lee, “Opinion Mining and Sentiment Analysis,”

Foundations and Trends in Information Retrieval, vol. 2, no. 1–2,
pp. 1–135, 2008.

[44] “Amazon Mechanical Turk” [Online]. Available:
http://www.mturk.com/. [Accessed 7 April 2014].

[45] R. Řehůřek, “Python Gensim Library” [Online]. Available:
http://radimrehurek.com/gensim/. [Accessed 8 April 2014].

http://www.mturk.com/
http://radimrehurek.com/gensim/

HadoopHadoop EcosystemMapReduceNoSQL

10

Advanced Analytics—

Technology and Tools:

MapReduce and

Hadoop

Key Concepts

Chapter

4, “Advanced Analytical Theory and Methods:

Clustering,” through Chapter 9, “Advanced Analytical

Theory and Methods: Text Analysis,” covered several

useful analytical methods to classify, predict, and

examine relationships within the data. This chapter

and Chapter 11, “Advanced Analytics—Technology and

Tools: In-Database Analytics,” address several aspects

of collecting, storing, and processing unstructured and

structured data, respectively. This chapter presents

some key technologies and tools related to the Apache

Hadoop software library, “a framework that allows for

the distributed processing of large datasets across

clusters of computers using simple programming

models” [1].

This chapter focuses on how Hadoop stores data in a

distributed system and how Hadoop implements a

simple programming paradigm known as MapReduce.

Although this chapter makes some Java-specific

references, the only intended prerequisite knowledge

is a basic understanding of programming. Furthermore,

the Java-specific details of writing a MapReduce

program for Apache Hadoop are beyond the scope of

this text. This omission may appear troublesome, but

tools in the Hadoop ecosystem, such as Apache Pig

and Apache Hive, can often eliminate the need to

explicitly code a MapReduce program. Along with other

Hadoop-related tools, Pig and Hive are covered in a

portion of this chapter dealing with the Hadoop

ecosystem.

To illustrate the power of Hadoop in handling

unstructured data, the following discussion provides

several Hadoop use cases.

10.1 Analytics for

Unstructured Data

Prior to conducting data analysis, the required data

must be collected and processed to extract the useful

information. The degree of initial processing and data

preparation depends on the volume of data, as well as

how straightforward it is to understand the structure of

the data.

Recall the four types of data structures discussed in

Chapter 1, “Introduction to Big Data Analytics”:

Structured: A specific and consistent format (for
example, a data table)

Semi-structured: A self-describing format (for
example, an XML file)

Quasi-structured: A somewhat inconsistent
format (for example, a hyperlink)

Unstructured: An inconsistent format (for
example, text or video)

Structured data, such as relational database

management system (RDBMS) tables, is typically the

easiest data format to interpret. However, in practice it

is still necessary to understand the various values that

may appear in a certain column and what these values

represent in different situations (based, for example,

on the contents of the other columns for the same

record). Also, some columns may contain unstructured

text or stored objects, such as pictures or videos.

Although the tools presented in this chapter focus on

unstructured data, these tools can also be utilized for

more structured datasets.

10.1.1 USE CASES

The following material provides several use cases for

MapReduce. The MapReduce paradigm offers the

means to break a large task into smaller tasks, run

tasks in parallel, and consolidate the outputs of the

individual tasks into the final output. Apache Hadoop

includes a software implementation of MapReduce.

More details on MapReduce and Hadoop are provided

later in this chapter.

IBM Watson

In 2011, IBM's computer system Watson participated in

the U.S. television game show Jeopardy against two of

the best Jeopardy champions in the show's history. In

the game, the contestants are provided a clue such as

“He likes his martinis shaken, not stirred” and the

correct response, phrased in the form of a question,

would be, “Who is James Bond?” Over the three-day

tournament, Watson was able to defeat the two human

contestants.

To educate Watson, Hadoop was utilized to process

various data sources such as encyclopedias,

dictionaries, news wire feeds, literature, and the entire

contents of Wikipedia [2]. For each clue provided

during the game, Watson had to perform the following

tasks in less than three seconds [3]:

Deconstruct the provided clue into words and
phrases

Establish the grammatical relationship between
the words and the phrases

Create a set of similar terms to use in Watson's
search for a response

Use Hadoop to coordinate the search for a
response across terabytes of data

Determine possible responses and assign their
likelihood of being correct

Actuate the buzzer

Provide a syntactically correct response in English

Among other applications, Watson is being used in

the medical profession to diagnose patients and

provide treatment recommendations [4].

LinkedIn

LinkedIn is an online professional network of 250

million users in 200 countries as of early 2014 [5].

LinkedIn provides several free and subscription-based

services, such as company information pages, job

postings, talent searches, social graphs of one's

contacts, personally tailored news feeds, and access to

discussion groups, including a Hadoop users group.

LinkedIn utilizes Hadoop for the following purposes [6]:

Process daily production database transaction logs

Examine the users' activities such as views and
clicks

Feed the extracted data back to the production
systems

Restructure the data to add to an analytical
database

Develop and test analytical models

Yahoo!

As of 2012, Yahoo! has one of the largest publicly

announced Hadoop deployments at 42,000 nodes

across several clusters utilizing 350 petabytes of raw

storage [7]. Yahoo!'s Hadoop applications include the

following [8]:

Search index creation and maintenance

Web page content optimization

Web ad placement optimization

Spam filters

Ad-hoc analysis and analytic model development

Prior to deploying Hadoop, it took 26 days to process

three years' worth of log data. With Hadoop, the

processing time was reduced to 20 minutes.

10.1.2 MAPREDUCE

As mentioned earlier, the MapReduce paradigm

provides the means to break a large task into smaller

tasks, run the tasks in parallel, and consolidate the

outputs of the individual tasks into the final output. As

its name implies, MapReduce consists of two basic

parts—a map step and a reduce step—detailed as

follows:

Map:

Applies an operation to a piece of data

Provides some intermediate output

Reduce:

Consolidates the intermediate outputs from the
map steps

Provides the final output

Each step uses key/value pairs, denoted as <key, value>,

as input and output. It is useful to think of the

key/value pairs as a simple ordered pair. However, the

pairs can take fairly complex forms. For example, the

key could be a filename, and the value could be the

entire contents of the file.

The simplest illustration of MapReduce is a word

count example in which the task is to simply count the

number of times each word appears in a collection of

documents. In practice, the objective of such an

exercise is to establish a list of words and their

frequency for purposes of search or establishing the

relative importance of certain words. Chapter 9

provides more details on text analytics. Figure 10-1

illustrates the MapReduce processing for a single input

—in this case, a line of text.

FIGURE 10-1 Example of how MapReduce works

In this example, the map step parses the provided

text string into individual words and emits a set of

key/value pairs of the form <word, 1>. For each unique key

—in this example, word—the reduce step sums the 1

values and outputs the <word, count> key/value pairs.

Because the word each appeared twice in the given

line of text, the reduce step provides a corresponding

key/value pair of <each, 2>.

It should be noted that, in this example, the original

key, 1234, is ignored in the processing. In a typical word

count application, the map step may be applied to

millions of lines of text, and the reduce step will

summarize the key/value pairs generated by all the

map steps.

Expanding on the word count example, the final

output of a MapReduce process applied to a set of

documents might have the key as an ordered pair and

the value as an ordered tuple of length 2n. A possible

representation of such a key/value pair follows:

<(filename, datetime),(word1,5, word2,7,... , wordn,6)>

In this construction, the key is the ordered pair filename

and datetime. The value consists of the n pairs of the

words and their individual counts in the corresponding

file.

Of course, a word count problem could be addressed

in many ways other than MapReduce. However,

MapReduce has the advantage of being able to

distribute the workload over a cluster of computers

and run the tasks in parallel. In a word count, the

documents, or even pieces of the documents, could be

processed simultaneously during the map step. A key

characteristic of MapReduce is that the processing of

one portion of the input can be carried out

independently of the processing of the other inputs.

Thus, the workload can be easily distributed over a

cluster of machines.

U.S. Navy rear admiral Grace Hopper (1906–1992),

who was a pioneer in the field of computers, provided

one of the best explanations of the need for using a

group of computers. She commented that during pre-

industrial times, oxen were used for heavy pulling, but

when one ox couldn't budge a log, people didn't try to

raise a larger ox; they added more oxen. Her point was

that as computational problems grow, instead of

building a bigger, more powerful, and more expensive

computer, a better alternative is to build a system of

computers to share the workload. Thus, in the

MapReduce context, a large processing task would be

distributed across many computers.

Although the concept of MapReduce has existed for

decades, Google led the resurgence in its interest and

adoption starting in 2004 with the published work by

Dean and Ghemawat [9]. This paper described

Google's approach for crawling the web and building

Google's search engine. As the paper describes,

MapReduce has been used in functional programming

languages such as Lisp, which obtained its name from

being readily able to process lists (List processing).

In 2007, a well-publicized MapReduce use case was

the conversion of 11 million New York Times news-

paper articles from 1851 to 1980 into PDF files. The

intent was to make the PDF files openly available to

users on the Internet. After some development and

testing of the MapReduce code on a local machine, the

11 million PDF files were generated on a 100-node

cluster in about 24 hours [10].

What allowed the development of the MapReduce

code and its execution to proceed easily was that the

MapReduce paradigm had already been implemented

in Apache Hadoop.

10.1.3 APACHE HADOOP

Although MapReduce is a simple paradigm to

understand, it is not as easy to implement, especially

in a distributed system. Executing a MapReduce job

(the MapReduce code run against some specified data)

requires the management and coordination of several

activities:

MapReduce jobs need to be scheduled based on
the system's workload.

Jobs need to be monitored and managed to ensure
that any encountered errors are properly handled
so that the job continues to execute if the system
partially fails.

Input data needs to be spread across the cluster.

Map step processing of the input needs to be
conducted across the distributed system,
preferably on the same machines where the data
resides.

Intermediate outputs from the numerous map
steps need to be collected and provided to the
proper machines for the reduce step execution.

Final output needs to be made available for use by
another user, another application, or perhaps
another MapReduce job.

Fortunately, Apache Hadoop handles these activities

and more. Furthermore, many of these activities are

transparent to the developer/user. The following

material examines the implementation of MapReduce

in Hadoop, an open source project managed and

licensed by the Apache Software Foundation [11].

The origins of Hadoop began as a search engine

called Nutch, developed by Doug Cutting and Mike

Cafarella. Based on two Google papers [9] [12],

versions of MapReduce and the Google File System

were added to Nutch in 2004. In 2006, Yahoo! hired

Cutting, who helped to develop Hadoop based on the

code in Nutch [13]. The name “Hadoop” came from the

name of Cutting's child's stuffed toy elephant that also

inspired the well-recognized symbol for the Hadoop

project.

Next, an overview of how data is stored in a Hadoop

environment is presented.

Hadoop Distributed File System

(HDFS)

Based on the Google File System [12], the Hadoop

Distributed File System (HDFS) is a file system that

provides the capability to distribute data across a

cluster to take advantage of the parallel processing of

MapReduce. HDFS is not an alternative to common file

systems, such as ext3, ext4, and XFS. In fact, HDFS

depends on each disk drive's file system to manage

the data being stored to the drive media. The Hadoop

Wiki [14] provides more details on disk configuration

options and considerations.

For a given file, HDFS breaks the file, say, into 64 MB

blocks and stores the blocks across the cluster. So, if a

file size is 300 MB, the file is stored in five blocks: four

64 MB blocks and one 44 MB block. If a file size is

smaller than 64 MB, the block is assigned the size of

the file.

Whenever possible, HDFS attempts to store the

blocks for a file on different machines so the map step

can operate on each block of a file in parallel. Also, by

default, HDFS creates three copies of each block

across the cluster to provide the necessary

redundancy in case of a failure. If a machine fails,

HDFS replicates an accessible copy of the relevant

data blocks to another available machine. HDFS is also

rack aware, which means that it distributes the blocks

across several equipment racks to prevent an entire

rack failure from causing a data unavailable event.

Additionally, the three copies of each block allow

Hadoop some flexibility in determining which machine

to use for the map step on a particular block. For

example, an idle or underutilized machine that

contains a data block to be processed can be

scheduled to process that data block.

To manage the data access, HDFS utilizes three Java

daemons (background processes): NameNode,

DataNode, and Secondary NameNode. Running on a

single machine, the NameNode daemon determines

and tracks where the various blocks of a data file are

stored. The DataNode daemon manages the data

stored on each machine. If a client application wants to

access a particular file stored in HDFS, the application

contacts the NameNode, and the NameNode provides

the application with the locations of the various blocks

for that file. The application then communicates with

the appropriate DataNodes to access the file.

Each DataNode periodically builds a report about the

blocks stored on the DataNode and sends the report to

the NameNode. If one or more blocks are not

accessible on a DataNode, the NameNode ensures that

an accessible copy of an inaccessible data block is

replicated to another machine. For performance

reasons, the NameNode resides in a machine's

memory. Because the NameNode is critical to the

operation of HDFS, any unavailability or corruption of

the NameNode results in a data unavailability event on

the cluster. Thus, the NameNode is viewed as a single

point of failure in the Hadoop environment [15]. To

minimize the chance of a NameNode failure and to

improve performance, the NameNode is typically run

on a dedicated machine.

A third daemon, the Secondary NameNode,

provides the capability to perform some of the

NameNode tasks to reduce the load on the NameNode.

Such tasks include updating the file system image with

the contents of the file system edit logs. It is important

to note that the Secondary NameNode is not a backup

or redundant NameNode. In the event of a NameNode

outage, the NameNode must be restarted and

initialized with the last file system image file and the

contents of the edits logs. The latest versions of

Hadoop provide an HDFS High Availability (HA) feature.

This feature enables the use of two NameNodes: one in

an active state, and the other in a standby state. If an

active NameNode fails, the standby NameNode takes

over. When using the HDFS HA feature, a Secondary

NameNode is unnecessary [16].

Figure 10-2 illustrates a Hadoop cluster with ten

machines and the storage of one large file requiring

three HDFS data blocks. Furthermore, this file is stored

using triple replication. The machines running the

NameNode and the Secondary NameNode are

considered master nodes. Because the DataNodes

take their instructions from the master nodes, the

machines running the DataNodes are referred to as

worker nodes.

Structuring a MapReduce Job in

Hadoop

Hadoop provides the ability to run MapReduce jobs as

described, at a high level, in Section 10.1.2. This

section offers specific details on how a MapReduce job

is run in Hadoop. A typical MapReduce program in Java

consists of three classes: the driver, the mapper, and

the reducer.

The driver provides details such as input file

locations, the provisions for adding the input file to the

map task, the names of the mapper and reducer Java

classes, and the location of the reduce task output.

Various job configuration options can also be specified

in the driver. For example, the number of reducers can

be manually specified in the driver. Such options are

useful depending on how the MapReduce job output

will be used in later downstream processing.

The mapper provides the logic to be processed on

each data block corresponding to the specified input

files in the driver code. For example, in the word count

MapReduce example provided earlier, a map task is

instantiated on a worker node where a data block

resides. Each map task processes a fragment of the

text, line by line, parses a line into words, and emits

<word, 1> for each word, regardless of how many times

word appears in the line of text. The key/value pairs are

stored temporarily in the worker node's memory (or

cached to the node's disk).

FIGURE 10-2 A file stored in HDFS

Next, the key/value pairs are processed by the built-

in shuffle and sort functionality based on the number

of reducers to be executed. In this simple example,

there is only one reducer. So, all the intermediate data

is passed to it. From the various map task outputs, for

each unique key, arrays (lists in Java) of the associated

values in the key/value pairs are constructed. Also,

Hadoop ensures that the keys are passed to each

reducer in sorted order. In Figure 10-3, <each,(1,1)> is the

first key/value pair processed, followed alphabetically

by <For,(1)> and the rest of the key/value pairs until the

last key/value pair is passed to the reducer. The ()

denotes a list of values which, in this case, is just an

array of ones.

In general, each reducer processes the values for

each key and emits a key/value pair as defined by the

reduce logic. The output is then stored in HDFS like

any other file in, say, 64 MB blocks replicated three

times across the nodes.

Additional Considerations in

Structuring a MapReduce Job

The preceding discussion presented the basics of

structuring and running a MapReduce job on a Hadoop

cluster. Several Hadoop features provide additional

functionality to a MapReduce job.

First, a combiner is a useful option to apply, when

possible, between the map task and the shuffle and

sort. Typically, the combiner applies the same logic

used in the reducer, but it also applies this logic on the

output of each map task. In the word count example, a

combiner sums up the number of occurrences of each

word from a mapper's output. Figure 10-4 illustrates

how a combiner processes a single string in the simple

word count example.

FIGURE 10-3 Shuffle and sort

FIGURE 10-4 Using a combiner

Thus, in a production setting, instead of ten

thousand possible <the, 1> key/value pairs being emitted

from the map task to the Shuffle and Sort, the

combiner emits one <the, 10000> key/value pair. The

reduce step still obtains a list of values for each word,

but instead of receiving a list of up to a million ones

list(1,1,. . .,1) for a key, the reduce step obtains a list,

such as list(10000,964,. . .,8345), which might be as long as

the number of map tasks that were run. The use of a

combiner minimizes the amount of intermediate map

output that the reducer must store, transfer over the

network, and process.

Another useful option is the partitioner. It

determines the reducers that receive keys and the

corresponding list of values. Using the simple word

count example, Figure 10-5 shows that a partitioner

can send every word that begins with a vowel to one

reducer and the other words that begin with a

consonant to another reducer.

FIGURE 10-5 Using a custom partitioner

As a more practical example, a user could use a

partitioner to separate the output into separate files

for each calendar year for subsequent analysis. Also, a

partitioner could be used to ensure that the work-load

is evenly distributed across the reducers. For example,

if a few keys are known to be associated with a large

majority of the data, it may be useful to ensure that

these keys go to separate reducers to achieve better

overall performance. Otherwise, one reducer might be

assigned the majority of the data, and the MapReduce

job will not complete until that one long-running

reduce task completes.

Developing and Executing a

hadoop MapReduce Program

A common approach to develop a Hadoop MapReduce

program is to write Java code using an Interactive

Development Environment (IDE) tool such as Eclipse

[17]. Compared to a plaintext editor or a command-

line interface (CLI), IDE tools offer a better experience

to write, compile, test, and debug code. A typical

MapReduce program consists of three Java files: one

each for the driver code, map code, and reduce code.

Additional, Java files can be written for the combiner or

the custom partitioner, if applicable. The Java code is

compiled and stored as a Java Archive (JAR) file. This

JAR file is then executed against the specified HDFS

input files.

Beyond learning the mechanics of submitting a

MapReduce job, three key challenges to a new Hadoop

developer are defining the logic of the code to use the

MapReduce paradigm; learning the Apache Hadoop

Java classes, methods, and interfaces; and

implementing the driver, map, and reduce

functionality in Java. Some prior experience with Java

makes it easier for a new Hadoop developer to focus

on learning Hadoop and writing the MapReduce job.

For users who prefer to use a programming language

other than Java, there are some other options. One

option is to use the Nadoop Streaming API, which

allows the user to write and run Hadoop jobs with no

direct knowledge of Java [18]. However, knowledge of

some other programming language, such as Python, C,

or Ruby, is necessary. Apache Hadoop provides the

Hadoop-streaming.jar file that accepts the HDFS paths for the

input/output files and the paths for the files that

implement the map and reduce functionality.

Here are some important considerations when

preparing and running a Hadoop streaming job:

Although the shuffle and sort output are provided
to the reducer in key sorted order, the reducer
does not receive the corresponding values as a list;
rather, it receives individual key/value pairs. The
reduce code has to monitor for changes in the
value of the key and appropriately handle the new
key.

The map and reduce code must already be in an
executable form, or the necessary interpreter must
already be installed on each worker node.

The map and reduce code must already reside on
each worker node, or the location of the code must
be provided when the job is submitted. In the
latter case, the code is copied to each worker
node.

Some functionality, such as a partitioner, still
needs to be written in Java.

The inputs and outputs are handled through stdin
and stdout. Stderr is also available to track the
status of the tasks, implement counter
functionality, and report execution issues to the
display [18].

The streaming API may not perform as well as
similar functionality written in Java.

A second alternative is to use Hadoop pipes, a

mechanism that uses compiled C++ code for the map

and reduced functionality. An advantage of using C++

is the extensive numerical libraries available to include

in the code [19].

To work directly with data in HDFS, one option is to

use the C API (libhdfs) or the Java API provided with

Apache Hadoop. These APIs allow reads and writes to

HDFS data files outside the typical MapReduce

paradigm [20]. Such an approach may be useful when

attempting to debug a MapReduce job by examining

the input data or when the objective is to transform

the HDFS data prior to running a MapReduce job.

Yet Another Resource Negotiator

(YARN)

Apache Hadoop continues to undergo further

development and frequent updates. An important

change was to separate the MapReduce functionality

from the functionality that manages the running of the

jobs and the associated responsibilities in a distributed

environment. This rewrite is sometimes called

MapReduce 2.0, or Yet Another Resource Negotiator

(YARN). YARN separates the resource management of

the cluster from the scheduling and monitoring of jobs

running on the cluster. The YARN implementation

makes it possible for paradigms other than MapReduce

to be utilized in Hadoop environments. For example, a

Bulk Synchronous Parallel (BSP) [21] model may be

more appropriate for graph processing than

MapReduce [22] is. Apache Hama, which implements

the BSP model, is one of several applications being

modified to utilize the power of YARN [23].

YARN replaces the functionality previously provided

by the JobTracker and TaskTracker daemons. In earlier

releases of Hadoop, a MapReduce job is submitted to

the JobTracker daemon. The JobTracker communicates

with the NameNode to determine which worker nodes

store the required data blocks for the MapReduce job.

The JobTracker then assigns individual map and reduce

tasks to the TaskTracker running on worker nodes. To

optimize performance, each task is preferably

assigned to a worker node that is storing an input data

block. The TaskTracker periodically communicates with

the JobTracker on the status of its executing tasks. If a

task appears to have failed, the JobTracker can assign

the task to a different TaskTracker.

10.2 The Hadoop

Ecosystem

So far, this chapter has provided an overview of

Apache Hadoop relative to its implementation of HDFS

and the MapReduce paradigm. Hadoop's popularity

has spawned proprietary and open source tools to

make Apache Hadoop easier to use and provide

additional functionality and features. This portion of

the chapter examines the following Hadoop-related

Apache projects:

Pig: Provides a high-level data-flow programming
language

Hive: Provides SQL-like access

Mahout: Provides analytical tools

HBase: Provides real-time reads and writes

By masking the details necessary to develop a

MapReduce program, Pig and Hive each enable a

developer to write high-level code that is later

translated into one or more MapReduce programs.

Because MapReduce is intended for batch processing,

Pig and Hive are also intended for batch processing

use cases.

Once Hadoop processes a dataset, Mahout provides

several tools that can analyze the data in a Hadoop

environment. For example, a k-means clustering

analysis, as described in Chapter 4, can be conducted

using Mahout.

Differentiating itself from Pig and Hive batch

processing, HBase provides the ability to perform real-

time reads and writes of data stored in a Hadoop

environment. This real-time access is accomplished

partly by storing data in memory as well as in HDFS.

Also, HBase does not rely on MapReduce to access the

HBase data. Because the design and operation of

HBase are significantly different from relational

databases and the other Hadoop tools examined, a

detailed description of HBase will be presented.

10.2.1 PIG

Apache Pig consists of a data flow language, Pig Latin,

and an environment to execute the Pig code. The main

benefit of using Pig is to utilize the power of

MapReduce in a distributed system, while simplifying

the tasks of developing and executing a MapReduce

job. In most cases, it is transparent to the user that a

MapReduce job is running in the background when Pig

commands are executed. This abstraction layer on top

of Hadoop simplifies the development of code against

data in HDFS and makes MapReduce more accessible

to a larger audience.

Like Hadoop, Pig's origin began at Yahoo! in 2006.

Pig was transferred to the Apache Software Foundation

in 2007 and had its first release as an Apache Hadoop

subproject in 2008. As Pig evolves over time, three

main characteristics persist: ease of programming,

behind-the-scenes code optimization, and extensibility

of capabilities [24].

With Apache Hadoop and Pig already installed, the

basics of using Pig include entering the Pig execution

environment by typing pig at the command prompt and

then entering a sequence of Pig instruction lines at the

grunt prompt.

An example of Pig-specific commands is shown here:

$ pig

grunt> records = LOAD '/user/customer.txt' AS

 (cust_id:INT, first_name:CHARARRAY,

 last_name:CHARARRAY,

 email_address:CHARARRAY);

grunt> filtered_records = FILTER records

 BY email_address matches '.*@isp.com';

grunt> STORE filtered_records INTO '/user/isp_customers';

grunt> quit

$

At the first grunt prompt, a text file is designated by

the Pig variable records with four defined fields: cust_id,

first_name, last_name, and email_address. Next, the variable

filtered_records is assigned those records where the

email_address ends with @isp.com to extract the customers

whose e-mail address is from a particular Internet

service provider (ISP). Using the STORE command, the

filtered records are written to an HDFS folder,

isp_customers. Finally, to exit the interactive Pig

environment, execute the QUIT command. Alternatively,

these individual Pig commands could be written to the

file filter_script.pig and submit them at the command

prompt as follows:

$ pig filter_script.pig

Such Pig instructions are translated, behind the

scenes, into one or more MapReduce jobs. Thus, Pig

simplifies the coding of a MapReduce job and enables

the user to quickly develop, test, and debug the Pig

code. In this particular example, the MapReduce job

would be initiated after the STORE command is

processed. Prior to the STORE command, Pig had begun

to build an execution plan but had not yet initiated

MapReduce processing.

Pig provides for the execution of several common

data manipulations, such as inner and outer joins

between two or more files (tables), as would be

expected in a typical relational database. Writing these

joins explicitly in MapReduce using Hadoop would be

quite involved and complex. Pig also provides a GROUP BY

functionality that is similar to the Group By functionality

offered in SQL. Chapter 11 has more details on using

Group By and other SQL statements.

An additional feature of Pig is that it provides many

built-in functions that are easily utilized in Pig code.

Table 10-1 includes several useful functions by

category.

TABLE 10-1 Built-In Pig Functions

Other functions and the details of these built-in

functions can be found at the pig.apache.org website [25].

In terms of extensibility, Pig allows the execution of

user-defined functions (UDFs) in its environment. Thus,

some complex operations can be coded in the user's

language of choice and executed in the Pig

environment. Users can share their UDFs in a

repository called the Piggybank hosted on the Apache

site [26]. Over time, the most useful UDFs may be

included as built-in functions in Pig.

10.2.2 HIVE

Similar to Pig, Apache Hive enables users to process

data without explicitly writing MapReduce code. One

key difference to Pig is that the Hive language, HiveQL

(Hive Query Language), resembles Structured Query

Language (SQL) rather than a scripting language.

http://pig.apache.org/

A Hive table structure consists of rows and columns.

The rows typically correspond to some record,

transaction, or particular entity (for example,

customer) detail. The values of the corresponding

columns represent the various attributes or

characteristics for each row. Hadoop and its ecosystem

are used to apply some structure to unstructured data.

Therefore, if a table structure is an appropriate way to

view the restructured data, Hive may be a good tool to

use.

Additionally, a user may consider using Hive if the

user has experience with SQL and the data is already

in HDFS. Another consideration in using Hive may be

how data will be updated or added to the Hive tables.

If data will simply be added to a table periodically,

Hive works well, but if there is a need to update data

in place, it may be beneficial to consider another tool,

such as HBase, which will be discussed in the next

section.

Although Hive's performance may be better in

certain applications than a conventional SQL database,

Hive is not intended for real-time querying. A Hive

query is first translated into a MapReduce job, which is

then submitted to the Hadoop cluster. Thus, the

execution of the query has to compete for resources

with any other submitted job. Like Pig, Hive is intended

for batch processing. Again, HBase may be a better

choice for real-time query needs.

To summarize the preceding discussion, consider

using Hive when the following conditions exist:

Data easily fits into a table structure.

Data is already in HDFS. (Note: Non-HDFS files
can be loaded into a Hive table.)

Developers are comfortable with SQL
programming and queries.

There is a desire to partition datasets based on
time. (For example, daily updates are added to the
Hive table.)

Batch processing is acceptable.

The remainder of the Hive discussion covers some

HiveQL basics. From the command prompt, a user

enters the interactive Hive environment by simply

entering hive:

$ hive

hive>

From this environment, a user can define new tables,

query them, or summarize their contents. To illustrate

how to use HiveQL, the following example defines a

new Hive table to hold customer data, load existing

HDFS data into the Hive table, and query the table.

The first step is to create a table called customer to

store customer details. Because the table will be

populated from an existing tab (‘\t’)-delimited HDFS

file, this format is specified in the table creation query.

hive> create table customer (

 cust_id bigint,

 first_name string,

 last_name string,

 email_address string)

 row format delimited

 fields terminated by '\t';

The following HiveQL query is executed to count the

number of records in the newly created table, customer.

Because the table is currently empty, the query

returns a result of zero, the last line of the provided

output. The query is converted and run as a

MapReduce job, which results in one map task and one

reduce task being executed.

hive> select count(*) from customer;

Total MapReduce jobs = 1

Launching Job 1 out of 1

Number of reduce tasks determined at compile time: 1

Starting Job = job_1394125045435_0001, Tracking URL =

 http://pivhdsne:8088/proxy/application_1394125045435_0001/

Kill Command = /usr/lib/gphd/hadoop/bin/hadoop job

 -kill job_1394125045435_0001

Hadoop job information for Stage-1: number of mappers: 1;

 number of reducers: 1

2014-03-06 12:30:23,542 Stage-1 map = 0%, reduce = 0%

2014-03-06 12:30:36,586 Stage-1 map = 100%, reduce = 0%,

 Cumulative CPU 1.71 sec

2014-03-06 12:30:48,500 Stage-1 map = 100%, reduce = 100%,

 Cumulative CPU 3.76 sec

MapReduce Total cumulative CPU time: 3 seconds 760 msec

Ended Job = job_1394125045435_0001

MapReduce Jobs Launched:

Job 0: Map: 1 Reduce: 1 Cumulative CPU: 3.76 sec HDFS Read: 242

 HDFS Write: 2 SUCCESS

Total MapReduce CPU Time Spent: 3 seconds 760 msec

OK

0

When querying large tables, Hive outperforms and

scales better than most conventional database

queries. As stated earlier, Hive translates HiveQL

queries into MapReduce jobs that process pieces of

large datasets in parallel.

To load the customer table with the contents of HDFS

file, customer.txt, it is only necessary to provide the HDFS

directory path to the file.

hive> load data inpath '/user/customer.txt' into table customer;

The following query displays three rows from the

customer table.

hive> select * from customer limit 3;

34567678 Mary Jones mary.jones@isp.com

897572388 Harry Schmidt harry.schmidt@isp.com

89976576 Tom Smith thomas.smith@another_isp.com

It is often necessary to join one or more Hive tables

based on one or more columns. The following example

provides the mechanism to join the customer table with

another table, orders, which stores the details about the

customer's orders. Instead of placing all the customer

details in the order table, only the corresponding cust_id

appears in the orders table.

hive> select o.order_number, o.order_date, c.*

 from orders o inner join customer c

 on o.cust_id = c.cust_id

 where c.email_address = 'mary.jones@isp.com';

Total MapReduce jobs = 1

Launching Job 1 out of 1

Number of reduce tasks not specified. Estimated from input data size: 1

Starting Job = job_1394125045435_0002, Tracking URL =

 http://pivhdsne:8088/proxy/application_1394125045435_0002/

Kill Command = /usr/lib/gphd/hadoop/bin/hadoop job

 -kill job_1394125045435_0002

Hadoop job information for Stage-1: number of mappers: 2;

 number of reducers: 1

2014-03-06 13:26:20,277 Stage-1 map = 0%, reduce = 0%

2014-03-06 13:26:42,568 Stage-1 map = 50%, reduce = 0%,

 Cumulative CPU 4.23 sec

2014-03-06 13:26:43,637 Stage-1 map = 100%,reduce = 0%,

 Cumulative CPU 4.79 sec

2014-03-06 13:26:52,658 Stage-1 map = 100%,reduce = 100%,

 Cumulative CPU 7.07 sec

MapReduce Total cumulative CPU time: 7 seconds 70 msec

Ended Job = job_1394125045435_0002

MapReduce Jobs Launched:

Job 0: Map: 2 Reduce: 1 Cumulative CPU: 7.07 sec HDFS Read: 602

 HDFS Write: 140 SUCCESS

Total MapReduce CPU Time Spent: 7 seconds 70 msec

OK

X234825811 2013-11-15 17:08:43 34567678 Mary Jones mary.jones@isp.com

X234823904 2013-11-04 12:53:19 34567678 Mary Jones mary.jones@isp.com

The use of joins and SQL in general will be covered in

Chapter 11. To exit the Hive interactive environment,

use quit.

hive> quit;

$

An alternative to running in the interactive

environment is to collect the HiveQL statements in a

script (for example, my_script.sql) and then execute the

file as follows:

$ hive -f my_script.sql

This introduction to Hive provided some of the basic

HiveQL commands and statements. The reader is

encouraged to research and utilize, when appropriate,

other Hive functionality such as external tables,

explain plans, partitions, and the INSERT INTO command to

append data to the existing content of a Hive table.

Following are some Hive use cases:

Exploratory or ad-hoc analysis of HDFS data:

Data can be queried, transformed, and exported to
analytical tools, such as R.

Extracts or data feeds to reporting systems,

dashboards, or data repositories such as

HBase: Hive queries can be scheduled to provide
such periodic feeds.

Combining external structured data to data

already residing in HDFS: Hadoop is excellent
for processing unstructured data, but often there
is structured data residing in an RDBMS, such as
Oracle or SQL Server, that needs to be joined with
the data residing in HDFS. The data from an
RDBMS can be periodically added to Hive tables
for querying with existing data in HDFS.

10.2.3 HBASE

Unlike Pig and Hive, which are intended for batch

applications, Apache HBase is capable of providing

real-time read and write access to datasets with

billions of rows and millions of columns. To illustrate

the differences between HBase and a relational

database, this section presents considerable details

about the implementation and use of HBase.

The HBase design is based on Google's 2006 paper

on Bigtable. This paper described Bigtable as a

“distributed storage system for managing structured

data.” Google used Bigtable to store Google product–

specific data for sites such as Google Earth, which

provides satellite images of the world. Bigtable was

also used to store web crawler results, data for

personalized search optimization, and website click-

stream data. Bigtable was built on top of the Google

File System. MapReduce was also utilized to process

data into or out of a Bigtable. For example, the raw

clickstream data was stored in a Bigtable. Periodically,

a scheduled MapReduce job would run that would

process and summarize the newly added clickstream

data and append the results to a second Bigtable [27].

The development of HBase began in 2006. HBase

was included as part of a Hadoop distribution at the

end of 2007. In May 2010, HBase became an Apache

Top Level Project. Later in 2010, Facebook began to

use HBase for its user messaging infrastructure, which

accommodated 350 million users sending 15 billion

messages per month [28].

HBase Architecture and Data

Model

HBase is a data store that is intended to be distributed

across a cluster of nodes. Like Hadoop and many of its

related Apache projects, HBase is built upon HDFS and

achieves its real-time access speeds by sharing the

workload over a large number of nodes in a distributed

cluster. An HBase table consists of rows and columns.

However, an HBase table also has a third dimension,

version, to maintain the different values of a row and

column intersection over time.

To illustrate this third dimension, a simple example

would be that for any given online customer, several

shipping addresses could be stored. So, the row would

be indicated by a customer number. One column would

provide the shipping address. The value of the

shipping address would be added at the intersection of

the customer number and the shipping address

column, along with a timestamp corresponding to

when the customer last used this shipping address.

During a customer's checkout process from an online

retailer, a website might use such a table to retrieve

and display the customer's previous shipping

addresses. As shown in Figure 10-6, the customer can

then select the appropriate address, add a new

address, or delete any addresses that are no longer

relevant.

FIGURE 10-6 Choosing a shipping address at checkout

Of course, in addition to a customer's shipping

address, other customer information, such as billing

address, preferences, billing credits/debits, and

customer benefits (for example, free shipping) must be

stored. For this type of application, real-time access is

required. Thus, the use of the batch processing of Pig,

Hive, or Hadoop's MapReduce is not a reasonable

implementation approach. The following discussion

examines how HBase stores the data and provides

real-time read and write access.

As mentioned, HBase is built on top of HDFS. HBase

uses a key/value structure to store the contents of an

HBase table. Each value is the data to be stored at the

intersection of the row, column, and version. Each key

consists of the following elements [29]:

Row length

Row (sometimes called the row key)

Column family length

Column family

Column qualifier

Version

Key type

The row is used as the primary attribute to access

the contents of an HBase table. The row is the basis for

how the data is distributed across the cluster and

allows a query of an HBase table to quickly retrieve the

desired elements. Thus, the structure or layout of the

row has to be specifically designed based on how the

data will be accessed. In this respect, an HBase table is

purpose built and is not intended for general ad-hoc

querying and analysis. In other words, it is important

to know how the HBase table will be used; this

understanding of the table's usage helps to optimally

define the construction of the row and the table.

For example, if an HBase table is to store the content

of e-mails, the row may be constructed as the

concatenation of an e-mail address and the date sent.

Because the HBase table will be stored based on the

row, the retrieval of the e-mails by a given e-mail

address will be fairly efficient, but the retrieval of all e-

mails in a certain date range will take much longer.

The later discussion on regions provides more details

on how data is stored in HBase.

A column in an HBase table is designated by the

combination of the column family and the column

qualifier. The column family provides a high-level

grouping for the column qualifiers. In the earlier

shipping address example, the row could contain the

order_number, and the order details could be stored under

the column family orders, using the column qualifiers

such as shipping_address, billing_address, order_date. In HBase, a

column is specified as column family:column qualifier.

In the example, the column orders:shipping_address refers to

an order's shipping address.

A cell is the intersection of a row and a column in a

table. The version, sometimes called the time-

stamp, provides the ability to maintain different

values for a cell's contents in HBase. Although the user

can define a custom value for the version when writing

an entry to the table, a typical HBase implementation

uses HBase's default, the current system time. In Java,

this timestamp is obtained with System.getCurrentTimeMillis(),

the number of milliseconds since January 1, 1970.

Because it is likely that only the most recent version of

a cell may be required, the cells are stored in

descending order of the version. If the application

requires the cells to be stored and retrieved in

ascending order of their creation time, the approach is

to use Long.MAX_VALUE - System.getCurrentTimeMillis() in Java as the

version number. Long.MAX_VALUE corresponds to the

maximum value that a long integer can be in Java. In

this case, the storing and sorting is still in descending

order of the version values.

Key type is used to identify whether a particular key

corresponds to a write operation to the HBase table or

a delete operation from the table. Technically, a delete

from an HBase table is accomplished with a write to

the table. The key type indicates the purpose of the

write. For deletes, a tombstone marker is written to the

table to indicate that all cell versions equal to or older

than the specified timestamp should be deleted for the

corresponding row and column family:column qualifier.

Once an HBase environment is installed, the user

can enter the HBase shell environment by entering hbase

shell at the command prompt. An HBase table, my_table,

can then be created as follows:

$ hbase shell

hbase> create 'my_table', 'cf1', 'cf2',

 {SPLITS =>['250000','500000','750000']}

Two column families, cf1 and cf2, are defined in the

table. The SPLITS option specifies how the table will be

divided based on the row portion of the key. In this

example, the table is split into four parts, called

regions. Rows less than 250000 are added to the first

region; rows from 250000 to less than 500000 are added to

the second region, and likewise for the remaining

splits. These splits provide the primary mechanism for

achieving the real-time read and write access. In this

example, my_table is split into four regions, each on its

own worker node in the Hadoop cluster. Thus, as the

table size increases or the user load increases,

additional worker nodes and region splits can be added

to scale the cluster appropriately. The reads and writes

are based on the contents of the row. HBase can

quickly determine the appropriate region to direct a

read or write command. More about regions and their

implementation will be discussed later.

Only column families, not column qualifiers, need to

be defined during HBase table creation. New column

qualifiers can be defined whenever data is written to

the HBase table. Unlike most relational databases, in

which a database administrator needs to add a column

and define the data type, columns can be added to an

HBase table as the need arises. Such flexibility is one

of the strengths of HBase and is certainly desirable

when dealing with unstructured data. Over time, the

unstructured data will likely change. Thus, the new

content with new column qualifiers must be extracted

and added to the HBase table.

Column families help to define how the table will be

physically stored. An HBase table is split into regions,

but each region is split into column families that are

stored separately in HDFS. From the Linux command

prompt, running hadoop fs -ls -R /hbase shows how the

HBase table, my_table, is stored in HBase.

$ hadoop fs -ls -R /hbase

 0 2014-02-28 16:40 /hbase/my_table/028ed22e02ad07d2d73344cd53a11fb4

243 2014-02-28 16:40 /hbase/my_table/028ed22e02ad07d2d73344cd53a11fb4/

 .regioninfo

 0 2014-02-28 16:40 /hbase/my_table/028ed22e02ad07d2d73344cd53a11fb4/

 cf1

 0 2014-02-28 16:40 /hbase/my_table/028ed22e02ad07d2d73344cd53a11fb4/

 cf2

 0 2014-02-28 16:40 /hbase/my_table/2327b09784889e6198909d8b8f342289

255 2014-02-28 16:40 /hbase/my_table/2327b09784889e6198909d8b8f342289/

 .regioninfo

 0 2014-02-28 16:40 /hbase/my_table/2327b09784889e6198909d8b8f342289/

 cf1

 0 2014-02-28 16:40 /hbase/my_table/2327b09784889e6198909d8b8f342289/

 cf2

 0 2014-02-28 16:40 /hbase/my_table/4b4fc9ad951297efe2b9b38640f7a5fd

267 2014-02-28 16:40 /hbase/my_table/4b4fc9ad951297efe2b9b38640f7a5fd/

 .regioninfo

 0 2014-02-28 16:40 /hbase/my_table/4b4fc9ad951297efe2b9b38640f7a5fd/

 cf1

 0 2014-02-28 16:40 /hbase/my_table/4b4fc9ad951297efe2b9b38640f7a5fd/

 cf2

 0 2014-02-28 16:40 /hbase/my_table/e40be0371f43135e36ea67edec6e31e3

267 2014-02-28 16:40 /hbase/my_table/e40be0371f43135e36ea67edec6e31e3/

 .regioninfo

 0 2014-02-28 16:40 /hbase/my_table/e40be0371f43135e36ea67edec6e31e3/

 cf1

 0 2014-02-28 16:40 /hbase/my_table/e40be0371f43135e36ea67edec6e31e3/

 cf2

As can be seen, four subdirectories have been

created under /hbase/mytable. Each subdirectory is named

by taking the hash of its respective region name,

which includes the start and end rows. Under each of

these directories are the directories for the column

families, cf1 and cf2 in the example, and the .regioninfo

file, which contains several options and attributes for

how the regions will be maintained. The column family

directories store keys and values for the corresponding

column qualifiers. The column qualifiers from one

column family should seldom be read with the column

qualifiers from another column family. The reason for

the separate column families is to minimize the

amount of unnecessary data that HBase has to sift

through within a region to find the requested data.

Requesting data from two column families means that

multiple directories have to be scanned to pull all the

desired columns, which defeats the purpose of

creating the column families in the first place. In such

cases, the table design may be better off with just one

column family. In practice, the number of column

families should be no more than two or three.

Otherwise, performance issues may arise [30].

The following operations add data to the table using

the put command. From these three put operations, data1

and data2 are entered into column qualifiers, cq1 and cq2,

respectively, in column family cf1. The value data3 is

entered into column qualifier cq3 in column family cf2.

The row is designated by row key 000700 in each

operation.

hbase> put 'my_table', '000700', 'cf1:cq1', 'data1'

0 row(s) in 0.0030 seconds

hbase> put 'my_table', '000700', 'cf1:cq2', 'data2'

0 row(s) in 0.0030 seconds

hbase> put 'my_table', '000700', 'cf2:cq3', 'data3'

0 row(s) in 0.0040 seconds

Data can be retrieved from the HBase table by using

the get command. As mentioned earlier, the timestamp

defaults to the milliseconds since January 1, 1970.

hbase> get 'my_table', '000700', 'cf2:cq3'

COLUMN CELL

 cf2:cq3 timestamp=1393866138714, value=data3

1 row(s) in 0.0350 seconds

By default, the get command returns the most recent

version. To illustrate, after executing a second put

operation in the same row and column, a subsequent

get provides the most recently added value of data4.

hbase> put 'my_table', '000700', 'cf2:cq3', 'data4'

0 row(s) in 0.0040 seconds

hbase> get 'my_table', '000700', 'cf2:cq3'

COLUMN CELL

 cf2:cq3 timestamp=1393866431669, value=data4

1 row(s) in 0.0080 seconds

The get operation can provide multiple versions by

specifying the number of versions to retrieve. This

example illustrates that the cells are presented in

descending version order.

hbase> get 'my_table', '000700', {COLUMN => 'cf2:cq3', VERSIONS => 2}

COLUMN CELL

 cf2:cq3 timestamp=1393866431669, value=data4

 cf2:cq3 timestamp=1393866138714, value=data3

2 row(s) in 1.0200 seconds

A similar operation to the get command is scan. A scan

retrieves all the rows between a specified STARTROW and a

STOPROW, but excluding the STOPROW. Note: if the STOPROW was

set to 000700, only row 000600 would have been returned.

hbase> scan 'my_table', {STARTROW => '000600', STOPROW =>'000800'}

ROW COLUMN+CELL

 000600 column=cf1:cq2, timestamp=1393866792008, value=data5

 000700 column=cf1:cq1, timestamp=1393866105687, value=data1

 000700 column=cf1:cq2, timestamp=1393866122073, value=data2

 000700 column=cf2:cq3, timestamp=1393866431669, value=data4

2 row(s) in 0.0400 seconds

The next operation deletes the oldest entry for

column cf2:cq3 for row 000700 by specifying the timestamp.

hbase> delete 'my_table', '000700', 'cf2:cq3', 1393866138714

0 row(s) in 0.0110 seconds

Repeating the earlier get operation to obtain both

versions only provides the last version for that cell.

After all, the older version was deleted.

hbase> get 'my_table', '000700', {COLUMN => 'cf2:cq3', VERSIONS => 2}

COLUMN CELL

 cf2:cq3 timestamp=1393866431669, value=data4

1 row(s) in 0.0130 seconds

However, running a scan operation, with the RAW

option set to true, reveals that the deleted entry

actually remains. The highlighted line illustrates the

creation of a tombstone marker, which informs the

default get and scan operations to ignore all older cell

versions of the particular row and column.

hbase> scan 'my_table', {RAW => true, VERSIONS => 2,

 STARTROW => '000700'}

ROW COLUMN+CELL

 000700 column=cf1:cq1, timestamp=1393866105687, value=data1

 000700 column=cf1:cq2, timestamp=1393866122073, value=data2

 000700 column=cf2:cq3, timestamp=1393866431669, value=data4

 000700 column=cf2:cq3, timestamp=1393866138714, type=DeleteColumn

 000700 column=cf2:cq3, timestamp=1393866138714, value=data3

1 row(s) in 0.0370 seconds

When will the deleted entries be permanently

removed? To understand this process, it is necessary to

understand how HBase processes operations and

achieves the real-time read and write access. As

mentioned earlier, an HBase table is split into regions

based on the row. Each region is maintained by a

worker node. During a put or delete operation against a

particular region, the worker node first writes the

command to a Write Ahead Log (WAL) file for the

region. The WAL ensures that the operations are not

lost if a system fails. Next, the results of the operation

are stored within the worker node's RAM in a repository

called MemStore [31].

Writing the entry to the MemStore provides the real-

time access required. Any client can access the entries

in the MemStore as soon as they are written. As the

MemStore increases in size or at predetermined time

intervals, the sorted MemStore is then written

(flushed) to a file, known as an HFile, in HDFS on the

same worker node. A typical HBase implementation

flushes the MemStore when its contents are slightly

less than the HDFS block size. Over time, these flushed

files accumulate, and the worker node performs a

minor compaction that performs a sorted merge of

the various flushed files.

Meanwhile, any get or scan requests that the worker

node receives examine these possible storage

locations:

MemStore

HFiles resulting from MemStore flushes

HFiles from minor compactions

Thus, in the case of a delete operation followed

relatively quickly by a get operation on the same row,

the tombstone marker is found in the MemStore and

the corresponding previous versions in the smaller

HFiles or previously merged HFiles. The get command is

instantaneously processed and the appropriate data

returned to the client.

Over time, as the smaller HFiles accumulate, the

worker node runs a major compaction that merges

the smaller HFiles into one large HFile. During the

major compaction, the deleted entries and the

tombstone markers are permanently removed from the

files.

Use Cases for HBase

As described in Google's Bigtable paper, a common

use case for a data store such as HBase is to store the

results from a web crawler. Using this paper's example,

the row com.cnn.www, for example, corresponds to a

website URL, www.cnn.com. A column family, called anchor, is

defined to capture the website URLs that provide links

to the row's website. What may not be an obvious

http://www.cnn.com/

implementation is that those anchoring website URLs

are used as the column qualifiers. For example, if

sportsillustrated.cnn.com provides a link to www.cnn.com, the

column qualifier is sportsillustrated.cnn.com. Additional

websites that provide links to www.cnn.com appear as

additional column qualifiers. The value stored in the

cell is simply the text on the website that provides the

link. Here is how the CNN example may look in HBase

following a get operation.

hbase> get 'web_table', 'com.cnn.www', {VERSIONS => 2}

COLUMN CELL

 anchor:sportsillustrated.cnn.com timestamp=1380224620597, value=cnn

 anchor:sportsillustrated.cnn.com timestamp=1380224000001, value=cnn.com

 anchor:edition.cnn.com timestamp=1380224620597, value=cnn

Additional results are returned for each

corresponding website that provides a link to www.cnn.com.

Finally, an explanation is required for using com.cnn.www for

the row instead of www.cnn.com. By reversing the URLs, the

various suffixes (.com, .gov, or .net) that correspond to the

Internet's top-level domains are stored in order. Also,

the next part of the domain name (cnn) is stored in

order. So, all of the cnn.com websites could be retrieved

by a scan with the STARTROW of com.cnn and the appropriate

STOPROW.

This simple use case illustrates several important

points. First, it is possible to get to a billion rows and

millions of columns in an HBase table. As of February

2014, more than 920 million websites have been

http://sportsillustrated.cnn.com/
http://www.cnn.com/
http://sportsillustrated.cnn.com/
http://www.cnn.com/
http://www.cnn.com/
http://www.cnn.com/
http://cnn.com/

identified [32]. Second, the row needs to be defined

based on how the data will be accessed. An HBase

table needs to be designed with a specific purpose in

mind and a well-reasoned plan for how data will be

read and written. Finally, it may be advantageous to

use the column qualifiers to actually store the data of

interest, rather than simply storing it in a cell. In the

example, as new hosting websites are established,

they become new column qualifiers.

A second use case is the storage and search access

of messages. In 2010, Facebook implemented such a

system using HBase. At the time, Facebook's system

was handling more than 15 billion user-to-user

messages per month and 120 billion chat messages

per month [33]. The following describes Facebook's

approach to building a search index for user inboxes.

Using each word in each user's message, an HBase

table was designed as follows:

The row was defined to be the user ID.

The column qualifier was set to a word that
appears in the message.

The version was the message ID.

The cell's content was the offset of the word in the
message.

This implementation allowed Facebook to provide

auto-complete capability in the search box and to

return the results of the query quickly, with the most

recent messages at the top. As long as the message

IDs increase over time, the versions, stored in

descending order, ensure that the most recent e-mails

are returned first to the user [34].

These two use cases help illustrate the importance

of the upfront design of the HBase table based on how

the data will be accessed. Also, these examples

illustrate the power of being able to add new columns

by adding new column qualifiers, on demand. In a

typical RDBMS implementation, new columns require

the involvement of a DBA to alter the structure of the

table.

Other HBase Usage

Considerations

In addition to the HBase design aspects presented in

the use case discussions, the following considerations

are important for a successful implementation.

Java API: Previously, several HBase shell
commands and operations were presented. The
shell commands are useful for exploring the data
in an HBase environment and illustrating their
use. However, in a production environment, the
HBase Java API could be used to program the

desired operations and the conditions in which to
execute the operations.

Column family and column qualifier names: It
is important to keep the name lengths of the
column families and column qualifiers as short as
possible. Although short names tend to go against
conventional wisdom about using meaningful,
descriptive names, the names of column family
name and the column qualifier are stored as part
of the key of each key/value pair. Thus, every
additional byte added to a name over each row can
quickly add up. Also, by default, three copies of
each HDFS block are replicated across the
Hadoop cluster, which triples the storage
requirement.

Defining rows: The definition of the row is one of
the most important aspects of the HBase table
design. In general, this is the main mechanism to
perform read/write operations on an HBase table.
The row needs to be constructed in such a way
that the requested columns can be easily and
quickly retrieved.

Avoid creating sequential rows: A natural
tendency is to create rows sequentially. For
example, if the row key is to have the customer
identification number, and the customer
identification numbers are created sequentially,

HBase may run into a situation in which all the
new users and their data are being written to just
one region, which is not distributing the workload
across the cluster as intended [35]. An approach
to resolve such a problem is to randomly assign a
prefix to the sequential number.

Versioning control: HBase table options that can
be defined during table creation or altered later
control how long a version of a cell's contents will
exist. There are options for TimeToLive (TTL) after
which any older versions will be deleted. Also,
there are options for the minimum and maximum
number of versions to maintain.

Zookeeper: HBase uses Apache Zookeeper to
coordinate and manage the various regions
running on the distributed cluster. In general,
Zookeeper is “a centralized service for
maintaining configuration information, naming,
providing distributed synchronization, and
providing group services. All of these kinds of
services are used in some form or another by
distributed applications.” [36] Instead of building
its own coordination service, HBase uses
Zookeeper. Relative to HBase, there are some
Zookeeper configuration considerations [37].

10.2.4 MAHOUT

The majority of this chapter has focused on processing,

structuring, and storing large datasets using Apache

Hadoop and various parts of its ecosystem. After a

dataset is available in HDFS, the next step may be to

apply an analytical technique presented in Chapters 4

through 9. Tools such as R are useful for analyzing

relatively small datasets, but they may suffer from

performance issues with the large datasets stored in

Hadoop. To apply the analytical techniques within the

Hadoop environment, an option is to use Apache

Mahout. This Apache project provides executable Java

libraries to apply analytical techniques in a scalable

manner to Big Data. In general, a mahout is a person

who controls an elephant. Apache Mahout is the

toolset that directs Hadoop, the elephant in this case,

to yield meaningful analytic results.

Mahout provides Java code that implements the

algorithms for several techniques in the following three

categories [38]:

Classification:

Logistic regression

Naïve Bayes

Random forests

Hidden Markov models

Clustering:

Canopy clustering

K-means clustering

Fuzzy k-means

Expectation maximization (EM)

Recommenders/collaborative filtering:

Nondistributed recommenders

Distributed item-based collaborative filtering

Pivotal HD Enterprise with

HAWQ

Users can download and install Apache Hadoop and the

described ecosystem tools directly from the www.apache.org

website. Another installation option is downloading

commercially packaged distributions of the various Apache

Hadoop projects. These distributions often include additional

user functionality as well as cluster management utilities.

Pivotal is a company that provides a distribution called Pivotal

HD Enterprise, as illustrated in Figure 10-7.

Pivotal HD Enterprise includes several Apache software

components that have been presented in this chapter.

Additional Apache software includes the following:

http://www.apache.org/

Oozie: Manages Apache Hadoop jobs by acting as a

workflow scheduler system

Sqoop: Efficiently moves data between Hadoop and

relational databases

Flume: Collects and aggregates streaming data (for

example, log data)

Additional functionality provided by Pivotal includes [39] the

following:

Command Center is a robust cluster management tool

that allows users to install, configure, monitor, and

manage Hadoop components and services through a

web graphical interface. It simplifies Hadoop cluster

installation, upgrades, and expansion using a

comprehensive dashboard with instant views of the

health of the cluster and key performance metrics. Users

can view live and historical information about the host,

application, and job-level metrics across the entire

Pivotal HD cluster. Command Center also provides CLI

and web services APIs for integration into enterprise

monitoring services.

FIGURE 10-7 Components of Pivotal HD

Enterprise

Graphlab on Open MPI (Message Passing

Interface) is a highly used and mature graph-based,

high-performing, distributed computation framework

that easily scales to graphs with billions of vertices and

edges. It is now able to run natively within an existing

Hadoop cluster, eliminating costly data movement. This

allows data scientists and analysts to leverage popular

algorithms such as page rank, collaborative filtering, and

computer vision natively in Hadoop rather than copying

the data somewhere else to run the analytics, which

would lengthen data science cycles. Combined with

MADlib's machine learning algorithms for relational data,

Pivotal HD becomes the leading advanced analytical

platform for machine learning in the world.

Hadoop Virtualization Extensions (HVE) plug-ins

make Hadoop aware of the virtual topology and scale

Hadoop nodes dynamically in a virtual environment.

Pivotal HD is the first Hadoop distribution to include HVE

plug-ins, enabling easy deployment of Hadoop in an

enterprise environment. With HVE, Pivotal HD can

deliver truly elastic scalability in the cloud, augmenting

on-premises deployment options.

HAWQ (HAdoop With Query) adds SQL's expressive

power to Hadoop to accelerate data analytics projects,

simplify development while increasing productivity,

expand Hadoop's capabilities, and cut costs. HAWQ can

help render Hadoop queries faster than any Hadoop-

based query interface on the market by adding rich,

proven, parallel SQL processing facilities. HAWQ

leverages existing business intelligence and analytics

products and a workforce's existing SQL skills to bring

more than 100 times performance improvement to a

wide range of query types and workloads.

10.3 NoSQL

NoSQL (Not only Structured Query Language) is a term

used to describe those data stores that are applied to

unstructured data. As described earlier, HBase is such

a tool that is ideal for storing key/values in column

families. In general, the power of NoSQL data stores is

that as the size of the data grows, the implemented

solution can scale by simply adding additional

machines to the distributed system. Four major

categories of NoSQL tools and a few examples are

provided next [40].

Key/value stores contain data (the value) that can

be simply accessed by a given identifier (the key). As

described in the MapReduce discussion, the values can

be complex. In a key/value store, there is no stored

structure of how to use the data; the client that reads

and writes to a key/value store needs to maintain and

utilize the logic of how to meaningfully extract the

useful elements from the key and the value. Here are

some uses for key/value stores:

Using a customer's login ID as the key, the value
contains the customer's preferences.

Using a web session ID as the key, the value
contains everything that was captured during the

session.

Document stores are useful when the value of the

key/value pair is a file and the file itself is self-

describing (for example, JSON or XML). The underlying

structure of the documents can be used to query and

customize the display of the documents' content.

Because the document is self-describing, the

document store can provide additional functionality

over a key/value store. For example, a document store

may provide the ability to create indexes to speed the

searching of the documents. Otherwise, every

document in the data store would have to be

examined. Document stores may be useful for the

following:

Content management of web pages

Web analytics of stored log data

Column family stores are useful for sparse

datasets, records with thousands of columns but only a

few columns have entries. The key/value concept still

applies, but in this case a key is associated with a

collection of columns. In this collection, related

columns are grouped into column families. For

example, columns for age, gender, income, and

education may be grouped into a demographic family.

Column family data stores are useful in the following

instances:

To store and render blog entries, tags, and
viewers' feedback

To store and update various web page metrics and
counters

Graph databases are intended for use cases such

as networks, where there are items (people or web

page links) and relationships between these items.

While it is possible to store graphs such as trees in a

relational database, it often becomes cumbersome to

navigate, scale, and add new relationships. Graph

databases help to overcome these possible obstacles

and can be optimized to quickly traverse a graph

(move from one item in the network to another item in

the network). Following are examples of graph

database implementations:

Social networks such as Facebook and LinkedIn

Geospatial applications such as delivery and traffic
systems to optimize the time to reach one or more
destinations

Table 10-2 provides a few examples of NoSQL data

stores. As is often the case, the choice of a specific

data store should be made based on the functional and

performance requirements. A particular data store may

provide exceptional functionality in one aspect, but

that functionality may come at a loss of other

functionality or performance.

TABLE 10-2 Examples of NoSQL Data Stores

Summary

This chapter examined the MapReduce paradigm and

its application in Big Data analytics. Specifically, it

examined the implementation of MapReduce in Apache

Hadoop. The power of MapReduce is realized with the

use of the Hadoop Distributed File System (HDFS) to

store data in a distributed system. The ability to run a

MapReduce job on the data stored across a cluster of

machines enables the parallel processing of petabytes

or exabytes of data. Furthermore, by adding additional

machines to the cluster, Hadoop can scale as the data

volumes grow.

This chapter examined several Apache projects

within the Hadoop ecosystem. By providing a higher-

level programming language, Apache Pig and Hive

simplify the code development by masking the

underlying MapReduce logic to perform common data

processing tasks such as filtering, joining datasets, and

restructuring data. Once the data is properly

conditioned within the Hadoop cluster, Apache Mahout

can be used to conduct data analyses such as

clustering, classification, and collaborative filtering.

The strength of MapReduce in Apache Hadoop and

the so far mentioned projects in the Hadoop

ecosystem are in batch processing environments.

When real-time processing, including read and writes,

are required, Apache HBase is an option. HBase uses

HDFS to store large volumes of data across the cluster,

but it also maintains recent changes within memory to

ensure the real-time availability of the latest data.

Whereas MapReduce in Hadoop, Pig, and Hive are

more general-purpose tools that can address a wide

range of tasks, HBase is a somewhat more purpose-

specific tool. Data will be retrieved from and written to

the HBase in a well-understood manner.

HBase is one example of the NoSQL (Not only

Structured Query Language) data stores that are being

developed to address specific Big Data use cases.

Maintaining and traversing social network graphs are

examples of relational databases not being the best

choice as a data store. However, relational databases

and SQL remain powerful and common tools and will

be examined in more detail in Chapter 11.

Exercises

1. Research and document additional use cases and

actual implementations for Hadoop.

2. Compare and contrast Hadoop, Pig, Hive, and

HBase. List strengths and weaknesses of each tool

set. Research and summarize three published use

cases for each tool set.

Exercises 3 through 5 require some programming background and a

working Hadoop environment. The text of the novel War and Peace

can be downloaded from http://onlinebooks.library.upenn.edu/ and

used as the dataset for these exercises. However, other datasets

can easily be substituted. Document all processing steps applied to

the data.

3. Use MapReduce in Hadoop to perform a word

count on the specified dataset.

4. Use Pig to perform a word count on the specified

dataset.

5. Use Hive to perform a word count on the specified

dataset.

http://onlinebooks.library.upenn.edu/

Bibliography

[1] Apache, “Apache Hadoop,” [Online]. Available:
http://hadoop.apache.org/. [Accessed 8 May 2014].

[2] Wikipedia, “IBM Watson,” [Online]. Available:
http://en.wikipedia.org/wiki/IBM_Watson. [Accessed 11 Februry
2014].

[3] D. Davidian, “IBM.com,” 14 February 2011. [Online]. Available:
https://www-304.ibm.com/ connections/blogs/davidian/tags/hadoop?

lang=en_us. [Accessed 11 February 2014].
[4] IBM, “IBM.com,” [Online]. Available: http://www-

03.ibm.com/innovation/us/watson/watson_in_healthcare.shtml.
[Accessed 11 February 2014].

[5] Linkedin, “LinkedIn,” [Online]. Available:
http://www.linkedin.com/about-us. [Accessed 11 February 2014].

[6] LinkedIn, “Hadoop,” [Online]. Available:
http://data.linkedin.com/projects/hadoop. [Accessed 11 February
2014].

[7] S. Singh, “http://developer.yahoo.com/,” [Online]. Available:
http://developer.yahoo.com/blogs/hadoop/apache-hbase-yahoo-multi-

tenancy-helm-again-171710422.html. [Accessed 11 February 2014].
[8] E. Baldeschwieler, “http://www.slideshare.net,” [Online].

Available: http://www.slideshare.net/ydn/hadoop-yahoo-internet-scale-
data-processing. [Accessed 11 February 2014].

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” [Online]. Available:
http://research.google.com/archive/mapreduce.html. [Accessed 11
February 2014].

[10] D. Gottfrid, “Self-Service, Prorated Supercomputing Fun!,” 01
November 2007. [Online]. Available:
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-

computing-fun/. [Accessed 11 February 2014].
[11] “apache.org,” [Online]. Available: http://www.apache.org/.

[Accessed 11 February 2014].
[12] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File

System,” [Online]. Available:

http://hadoop.apache.org/
http://en.wikipedia.org/wiki/IBM_Watson
http://ibm.com/
https://www-304.ibm.com/connections/blogs/davidian/tags/hadoop?lang=en_us
http://ibm.com/
http://www-03.ibm.com/innovation/us/watson/watson_in_healthcare.shtml
http://www.linkedin.com/about-us
http://data.linkedin.com/projects/hadoop
http://developer.yahoo.com/
http://developer.yahoo.com/blogs/hadoop/apache-hbase-yahoo-multi-tenancy-helm-again-171710422.html
http://www.slideshare.net/
http://www.slideshare.net/ydn/hadoop-yahoo-internet-scale-data-processing
http://research.google.com/archive/mapreduce.html
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/
http://apache.org/
http://www.apache.org/

http://static.googleusercontent.com/media/research.google.com/en/us/a

rchive/gfs-sosp2003.pdf. [Accessed 11 February 2014].
[13] D. Cutting, “Free Search: Rambilings About Lucene, Nutch,

Hadoop and Other Stuff,” [Online]. Available:
http://cutting.wordpress.com. [Accessed 11 February 2014].

[14] “Hadoop Wiki Disk Setup,” [Online]. Available:
http://wiki.apache.org/hadoop/DiskSetup. [Accessed 20 February
2014].

[15] “wiki.apache.org/hadoop,” [Online]. Available:
http://wiki.apache.org/hadoop/NameNode. [Accessed 11 February
2014].

[16] “HDFS High Availability,” [Online]. Available:
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-

site/HDFSHighAvailabilityWithNFS.html. [Accessed 8 May 2014].
[17] Eclipse. [Online]. Available: https://www.eclipse.org/downloads/.

[Accessed 27 February 2014].
[18] Apache, “Hadoop Streaming,” [Online]. Available:

https://wiki.apache.org/hadoop/HadoopStreaming. [Accessed 8 May
2014].

[19] “Hadoop Pipes,” [Online]. Available:
http://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/mapred/pip

es/package-summary.html. [Accessed 19 February 2014].
[20] “HDFS Design,” [Online]. Available:

http://hadoop.apache.org/docs/stable1/hdfs_design.html. [Accessed 19
February 2014].

[21] “BSP Tutorial,” [Online]. Available:
http://hama.apache.org/hama_bsp_tutorial.html. [Accessed 20
February 2014].

[22] “Hama,” [Online]. Available: http://hama.apache.org/. [Accessed
20 February 2014].

[23] “PoweredByYarn,” [Online]. Available:
http://wiki.apache.org/hadoop/PoweredByYarn. [Accessed 20 February
2014].

[24] “pig.apache.org,” [Online]. Available: http://pig.apache.org/.
[25] “Pig,” [Online]. Available: http://pig.apache.org/. [Accessed 11

Feb 2014].

http://static.googleusercontent.com/media/research.google.com/en/us/archive/gfs-sosp2003.pdf
http://cutting.wordpress.com/
http://wiki.apache.org/hadoop/DiskSetup
http://wiki.apache.org/hadoop
http://wiki.apache.org/hadoop/NameNode
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/HDFSHighAvailabilityWithNFS.html
https://www.eclipse.org/downloads/
https://wiki.apache.org/hadoop/HadoopStreaming
http://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/mapred/pipes/package-summary.html
http://hadoop.apache.org/docs/stable1/hdfs_design.html
http://hama.apache.org/hama_bsp_tutorial.html
http://hama.apache.org/
http://wiki.apache.org/hadoop/PoweredByYarn
http://pig.apache.org/
http://pig.apache.org/
http://pig.apache.org/

[26] “Piggybank,” [Online]. Available:
https://cwiki.apache.org/confluence/display/PIG/PiggyBank. [Accessed
28 February 2014].

[27] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R.E. Gruber Fay Chang,
“Bigtable: A Distributed Storage System for Structured Data,”
[Online]. Available:
http://research.google.com/archive/bigtable.html. [Accessed 11
February 2014].

[28] K. Muthukkaruppan, “The Underlying Technology of
Messages,” 15 November 2010. [Online]. Available:
http://www.facebook.com/notes/facebook-engineering/the-underlying-

technology-of-messages/454991608919. [Accessed 11 February 2014].
[29] “HBase Key Value,” [Online]. Available:

http://hbase.apache.org/book/regions.arch.html. [Accessed 28
February 2014].

[30] “Number of Column Families,” [Online]. Available:
http://hbase.apache.org/book/number.of.cfs.html.

[31] “HBase Regionserver,” [Online]. Available:
http://hbase.apache.org/book/regionserver.arch.html. [Accessed 3
March 2014].

[32] “Netcraft,” [Online]. Available:
http://news.netcraft.com/archives/2014/02/03/february-2014-web-

server-survey.html. [Accessed 21 February 2014].
[33] K. Muthukkaruppan, “The Underlying Technology of

Messages,” 15 November 2010. [Online]. Available:
http://www.facebook.com/notes/facebook-engineering/the-underlying-

technology-of-messages/454991608919. [Accessed 2011 February
2014].

[34] N. Spiegelberg. [Online]. Available:
http://www.slideshare.net/brizzzdotcom/facebook-messages-hbase.
[Accessed 11 February 2014].

[35] “HBase Rowkey,” [Online]. Available:
http://hbase.apache.org/book/rowkey.design.html. [Accessed 4 March
2014].

[36] “Zookeeper,” [Online]. Available: http://zookeeper.apache.org/.
[Accessed 11 Feb 2014].

https://cwiki.apache.org/confluence/display/PIG/PiggyBank
http://research.google.com/archive/bigtable.html
http://www.facebook.com/notes/facebook-engineering/the-underlying-technology-of-messages/454991608919
http://hbase.apache.org/book/regions.arch.html
http://hbase.apache.org/book/number.of.cfs.html
http://hbase.apache.org/book/regionserver.arch.html
http://news.netcraft.com/archives/2014/02/03/february-2014-web-server-survey.html
http://www.facebook.com/notes/facebook-engineering/the-underlying-technology-of-messages/454991608919
http://www.slideshare.net/brizzzdotcom/facebook-messages-hbase
http://hbase.apache.org/book/rowkey.design.html
http://zookeeper.apache.org/

[37] “Zookeeper,” [Online]. Available:
http://hbase.apache.org/book/zookeeper.html. [Accessed 21 February
2014].

[38] “Mahout,” [Online]. Available:
http://mahout.apache.org/users/basics/algorithms.html. [Accessed 19
February 2014].

[39] “Pivotal HD,” [Online]. Available: http://www.gopivotal.com/big-
data/pivotal-hd. [Accessed 8 May 2014].

[40] P. J. Sadalage and M. Fowler, NoSQL Distilled: A Brief Guide

to the Emerging World of Polyglot, Upper Saddle River, NJ:
Addison Wesley, 2013.

http://hbase.apache.org/book/zookeeper.html
http://mahout.apache.org/users/basics/algorithms.html
http://www.gopivotal.com/big-data/pivotal-hd

MADlibRegular expressionsSQLUser-defined functions

Window functions

11

Advanced Analytics—

Technology and Tools:

In-Database Analytics

Key Concepts

I

n-database analytics is a broad

term that describes the processing of data within its

repository. In many of the earlier R examples, data was

extracted from a data source and loaded into R. One

advantage of in-database analytics is that the need for

movement of the data into an analytic tool is

eliminated. Also, by performing the analysis within the

database, it is possible to obtain almost real-time

results. Applications of in-database analytics include

credit card transaction fraud detection, product

recommendations, and web advertisement selection

tailored for a particular user.

A popular open-source database is PostgreSQL. This

name references an important in-database analytic

language known as Structured Query Language

(SQL). This chapter examines basic as well as

advanced topics in SQL. The provided examples of SQL

code were tested against Greenplum database 4.1.1.1,

which is based on PostgreSQL 8.2.15. However, the

presented concepts are applicable to other SQL

environments.

11.1 SQL Essentials

A relational database, part of a Relational Database

Management System (RDBMS), organizes data in

tables with established relationships between the

tables. Figure 11-1 shows the relationships between

five tables used to store details about orders placed at

an e-commerce retailer.

FIGURE 11-1 Relationship diagram

The table orders contains records for each order

transaction. Each record contains data elements such

as the product_id ordered, the customer_id for the customer

who placed the order, the order_datetime, and so on. The

other four tables provide additional details about the

ordered items and the customer. The lines between the

tables in Figure 11-1 illustrate the relationships

between the tables. For example, a customer's first

name, last name, and gender from the customer table can

be associated with an orders record based on equality of

the customer_id in these two tables.

Although it is possible to build one large table to hold

all the order and customer details, the use of five

tables has its advantages. The first advantage is disk

storage savings. Instead of storing the product name,

which can be several hundred characters in length, in

the orders table, a much shorter product_id, of perhaps a

few bytes, can be used and stored in place of the

product's name.

Another advantage is that changes and corrections

are easily made. In this example, the table category is

used to categorize each product. If it is discovered that

an incorrect category was assigned to a particular

product item, only the category_id in the product table needs

to be updated. Without the product and category tables, it

may be necessary to update hundreds of thousands of

records in the orders table.

A third advantage is that products can be added to

the database prior to any orders being placed.

Similarly, new categories can be created in

anticipation of entirely new product lines being added

to the online retailer's offerings later.

In a relational database design, the preference is not

to duplicate pieces of data such as the customer's

name across multiple records. The process of reducing

such duplication is known as normalization. It is

important to recognize that a database that is

designed to process transactions may not necessarily

be optimally designed for analytical purposes.

Transactional databases are often optimized to handle

the insertion of new records or updates to existing

records, but not optimally tuned to perform ad-hoc

querying. Therefore, in designing analytical data

warehouses, it is common to combine several of the

tables and create one larger table, even though some

pieces of data may be duplicated.

Regardless of a database's purpose, SQL is typically

used to query the contents of the relational database

tables as well as to insert, update, and delete data. A

basic SQL query against the customer table may look like

this.

SELECT first_name,

 last_name

FROM customer

WHERE customer_id = 666730

first_name last_name

Mason Hu

This query returns the customer information for the

customer with a customer_id of 666730. This SQL query

consists of three key parts:

SELECT: Specifies the table columns to be
displayed

FROM: Specifies the name of the table to be
queried

WHERE: Specifies the criterion or filter to be
applied

In a relational database, it is often necessary to

access related data from multiple tables at once. To

accomplish this task, the SQL query uses JOIN

statements to specify the relationships between the

multiple tables.

11.1.1 JOINS

Joins enable a database user to appropriately select

columns from two or more tables. Based on the

relationship diagram in Figure 11-1, the following SQL

query provides an example of the most common type

of join: an inner join.

SELECT c.customer_id,

 o.order_id,

 o.product_id,

 o.item_quantity AS qty

FROM orders o

 INNER JOIN customer c

 ON o.customer_id = c.customer_id

WHERE c.first_name = 'Mason'

 AND c.last_name = 'Hu'

customer_id order_id product_id qty

666730 51965-1172-6384-6923 33611 5

666730 79487-2349-4233-6891 34098 1

666730 39489-4031-0789-6076 33928 1

666730 29892-1218-2722-3191 33625 1

666730 07751-7728-7969-3140 34140 4

666730 85394-8022-6681-4716 33571 1

This query returns details of the orders placed by

customer Mason Hu. The SQL query joins the two

tables in the FROM clause based on the equality of the

customer_id values. In this query, the specific customer_id

value for Mason Hu does not need to be known by the

programmer; only the customer's full name needs to

be known.

Some additional functionality beyond the use of the

INNER JOIN is introduced in this SQL query. Aliases o and c

are assigned to tables orders and customer, respectively.

Aliases are used in place of the full table names to

improve the readability of the query. By design, the

column names specified in the SELECT clause are also

provided in the output. However, the outputted column

name can be modified with the AS keyword. In the SQL

query, the values of item_quantity are displayed, but this

outputted column is now called qty.

The INNER JOIN returns those rows from the two tables

where the ON criterion is met. From the earlier query on

the customer table, there is only one row in the table for

customer Mason Hu. Because the corresponding

customer_id for Mason Hu appears six times in the orders

table, the INNER JOIN query returns six records. If the WHERE

clause was not included, the query would have

returned millions of rows for all the orders that had a

matching customer.

Suppose an analyst wants to know which customers

have created an online account but have not yet

placed an order. The next query uses a RIGHT OUTER JOIN to

identify the first five customers, alphabetically, who

have not placed an order. The sorting of the records is

accomplished with the ORDER BY clause.

SELECT c.customer_id,

 c.first_name,

 c.last_name,

 o.order_id

FROM orders o

 RIGHT OUTER JOIN customer c

 ON o.customer_id = c.customer_id

WHERE o.order_id IS NULL

ORDER BY c.last_name,

 c.first_name

LIMIT 5

customer_id first_name last_name order_id

143915 Abigail Aaron

965886 Audrey Aaron

982042 Carter Aaron

125302 Daniel Aaron

103964 Emily Aaron

In the SQL query, a RIGHT OUTER JOIN is used to specify

that all rows from the table customer, on the right-hand

side (RHS) of the join, should be returned, regardless

of whether there is a matching customer_id in the orders

table. In this query, the WHERE clause restricts the results

to only those joined customer records where there is

no matching order_id. NULL is a special SQL keyword that

denotes an unknown value. Without the WHERE clause,

the output also would have included all the records

that had a matching customer_id in the orders table, as seen

in the following SQL query.

SELECT c.customer_id,

 c.first_name,

 c.last_name,

 o.order_id

FROM orders o

 RIGHT OUTER JOIN customer c

 ON o.customer_id = c.customer_id

ORDER BY c.last_name,

 c.first_name

LIMIT 5

customer_id first_name last_name order_id

143915 Abigail Aaron

222599 Addison Aaron 50314-7576-3355-6960

222599 Addison Aaron 21007-7541-1255-3531

222599 Addison Aaron 19396-4363-4499-8582

222599 Addison Aaron 69225-1638-2944-0264

In the query results, the first customer, Abigail

Aaron, had not placed an order, but the next customer,

Addison Aaron, has placed at least four orders.

There are several other types of join statements. The

LEFT OUTER JOIN performs the same functionality as the RIGHT

OUTER JOIN except that all records from the table on the

left-hand side (LHS) of the join are considered. A FULL

OUTER JOIN includes all records from both tables regardless

of whether there is a matching record in the other

table. A CROSS JOIN combines two tables by matching

every row of the first table with every row of the

second table. If the two tables have 100 and 1,000

rows, respectively, then the resulting CROSS JOIN of these

tables will have 100,000 rows.

The actual records returned from any join operation

depend on the criteria stated in the WHERE clause. Thus,

careful consideration needs to be taken in using a WHERE

clause, especially with outer joins. Otherwise, the

intended use of the outer join may be undone.

11.1.2 SET OPERATIONS

SQL provides the ability to perform set operations,

such as unions and intersections, on rows of data. For

example, suppose all the records in the orders table are

split into two tables. The orders_arch table, short for

orders archived, contains the orders entered prior to

January 2013. The orders transacted in or after January

2013 are stored in the orders_recent table. However, all the

orders for product_id 33611 are required for an analysis.

One approach would be to write and run two separate

queries against the two tables. The results from the

two queries could then be merged later into a separate

file or table. Alternatively, one query could be written

using the UNION ALL operator as follows:

SELECT customer_id,

 order_id,

 order_datetime,

 product_id,

 item_quantity AS qty

FROM orders_arch

WHERE product_id = 33611

UNION ALL

SELECT customer_id,

 order_id,

 order_datetime,

 product_id,

 item_quantity AS qty

FROM orders_recent

WHERE product_id = 33611

ORDER BY order_datetime

customer_id order_id order_datetime product_id qty

643126 13501-6446-6326-0182 2005-01-02 19:28:08 33611 1

725940 70738-4014-1618-2531 2005-01-08 06:16:31 33611 1

742448 03107-1712-8668-9967 2005-01-08 16:11:39 33611 1

.

.

.

640847 73619-0127-0657-7016 2013-01-05 14:53:27 33611 1

660446 55160-7129-2408-9181 2013-01-07 03:59:36 33611 1

647335 75014-7339-1214-6447 2013-01-27 13:02:10 33611 1

.

.

.

The first three records from each table are shown in

the output. Because the resulting records from both

tables are appended together in the output, it is

important that the columns are specified in the same

order and that the data types of the columns are

compatible. UNION ALL merges the results of the two SELECT

statements regardless of any duplicate records

appearing in both SELECT statements. If only UNION was

used, any duplicate records, based on all the specified

columns, would be eliminated.

The INTERSECT operator determines any identical records

that are returned by two SELECT statements. For

example, if one wanted to know what items were

purchased prior to 2013 as well as later, the SQL query

using the INTERSECT operator would be this.

SELECT product_id

FROM orders_arch

INTERSECT

SELECT product_id

FROM orders_recent

product_id

22

30

31

.

.

.

It is important to note that the intersection only

returns a product_id if it appears in both tables and

returns exactly one instance of such a product_id. Thus,

only a list of distinct product IDs is returned by the

query.

To count the number of products that were ordered

prior to 2013 but not after that point in time, the EXCEPT

operator can be used to exclude the product IDs in the

orders_recent table from the product IDs in the orders_arch

table, as shown in the following SQL query.

SELECT COUNT(e.*)

FROM (SELECT product_id

 FROM orders_arch

 EXCEPT

 SELECT product_id

 FROM orders_recent) e

13569

The preceding query uses the COUNT aggregate

function to determine the number of returned rows

from a second SQL query that includes the EXCEPT

operator. This SQL query within a query is sometimes

called a subquery or a nested query. Subqueries

enable the construction of fairly complex queries

without having to first execute the pieces, dump the

rows to temporary tables, and then execute another

SQL query to process those temporary tables.

Subqueries can be used in place of a table within the

FROM clause or can be used in the WHERE clause.

11.1.3 GROUPING

EXTENSIONS

Previously, the COUNT() aggregate function was used to

count the number of returned rows from a query. Such

aggregate functions often summarize a dataset after

applying some grouping operation to it. For example, it

may be desired to know the revenue by year or

shipments per week. The following SQL query uses the

SUM() aggregate function along with the GROUP BY operator

to provide the top three ordered items based on

item_quantity.

SELECT i.product_id,

 SUM(i.item_quantity) AS total

FROM orders_recent i

GROUP BY i.product_id

ORDER BY SUM(i.item_quantity) DESC

LIMIT 3

product_id total

15072 6089

15066 6082

15060 6053

GROUP BY can use the ROLLUP() operator to calculate

subtotals and grand totals. The following SQL query

employs the previous query as a subquery in the WHERE

clause to supply the number of items ordered by year

for the top three items ordered overall. The ROLLUP

operator provides the subtotals, which match the

previous output for each product_id, as well as the grand

total.

SELECT r.product_id,

 DATE_PART('year', r.order_datetime) AS year,

 SUM(r.item_quantity) AS total

FROM orders_recent r

WHERE r.product_id IN (SELECT o.product_id

 FROM orders_recent o

 GROUP BY o.product_id

 ORDER BY SUM(o.item_quantity) DESC

 LIMIT 3)

GROUP BY ROLLUP(r.product_id, DATE_PART('year', r.order_datetime))

ORDER BY r.product_id,

 DATE_PART('year', r.order_datetime)

product_id year total

15060 2013 5996

15060 2014 57

15060 6053

15066 2013 6030

15066 2014 52

15066 6082

15072 2013 6023

15072 2014 66

15072 6089

 18224

The CUBE operator expands on the functionality of the

ROLLUP operator by providing subtotals for each column

specified in the CUBE statement. Modifying the prior

query by replacing the ROLLUP operator with the CUBE

operator results in the same output with the addition

of the subtotals for each year.

SELECT r.product_id,

 DATE_PART('year', r.order_datetime) AS year,

 SUM(r.item_quantity) AS total

FROM orders_recent r

WHERE r.product_id IN (SELECT o.product_id

 FROM orders_recent o

 GROUP BY o.product_id

 ORDER BY SUM(o.item_quantity) DESC

 LIMIT 3)

GROUP BY CUBE(r.product_id, DATE_PART('year', r.order_datetime))

ORDER BY r.product_id,

 DATE_PART('year', r.order_datetime

product_id year total

15060 2013 5996

15060 2014 57

15060 6053

15066 2013 6030

15066 2014 52

15066 6082

15072 2013 6023

15072 2014 66

15072 6089

 2013 18049 ← additional row

 2014 175 ← additional row

 18224

Because null values in the output indicate the

subtotal and grand total rows, care must be taken

when null values appear in the columns being grouped.

For example, null values may be part of the dataset

being analyzed. The GROUPING() function can identify

which rows with null values are used for the subtotals

or grand totals.

SELECT r.product_id,

 DATE_PART('year', r.order_datetime) AS year,

 SUM(r.item_quantity) AS total,

 GROUPING(r.product_id) AS group_id,

 GROUPING(DATE_PART('year', r.order_datetime)) AS group_year

FROM orders_recent r

WHERE r.product_id IN (SELECT o.product_id

 FROM orders_recent o

 GROUP BY o.product_id

 ORDER BY SUM(o.item_quantity) DESC

 LIMIT 3)

GROUP BY CUBE(r.product_id, DATE_PART('year', r.order_datetime))

ORDER BY r.product_id,

 DATE_PART('year', r.order_datetime)

product_id year total group_id group_year

15060 2013 5996 0 0

15060 2014 57 0 0

15060 6053 0 1

15066 2013 6030 0 0

15066 2014 52 0 0

15066 6082 0 1

15072 2013 6023 0 0

15072 2014 66 0 0

15072 6089 0 1

 2013 18049 1 0

 2014 175 1 0

 18224 1 1

In the preceding query, group_year is set to 1 when a

total is calculated across the values of year. Similarly,

group_id is set to 1 when a total is calculated across the

values of product_id.

The functionality of ROLLUP and CUBE can be customized

via GROUPING SETS. The SQL query using the CUBE operator

can be replaced with the following query that employs

GROUPING SETS to provide the same results.

SELECT r.product_id,

 DATE_PART('year', r.order_datetime) AS year,

 SUM(r.item_quantity) AS total

FROM orders_recent r

WHERE r.product_id IN (SELECT o.product_id

 FROM orders_recent o

 GROUP BY o.product_id

 ORDER BY SUM(o.item_quantity) DESC

 LIMIT 3)

GROUP BY GROUPING SETS((r.product_id,

 DATE_PART('year', r.order_datetime)),

 (r.product_id),

 (DATE_PART('year', r.order_datetime)),

 ())

ORDER BY r.product_id,

 DATE_PART('year', r.order_datetime)

The listed grouping sets define the columns for

which subtotals will be provided. The last grouping set,

(), specifies that the overall total is supplied in the

query results. For example, if only the grand total was

desired, the following SQL query using GROUPING SETS could

be used.

SELECT r.product_id,

 DATE_PART('year;, r.order_datetime) AS year,

 SUM(r.item_quantity) AS total

FROM orders_recent r

WHERE r.product_id IN (SELECT o.product_id

 FROM orders_recent o

 GROUP BY o.product_id

 ORDER BY SUM(o.item_quantity) DESC

 LIMIT 3)

GROUP BY GROUPING SETS((r.product_id,

 DATE_PART('year', r.order_datetime)),

 ())

ORDER BY r.product_id,

 DATE_PART('year', r.order_datetime)

product_id year total

15060 2013 5996

15060 2014 57

15066 2013 6030

15066 2014 52

15072 2013 6023

15072 2014 66

 18224

Because the GROUP BY clause can contain multiple CUBE,

ROLLUP, or column specifications, duplicate grouping sets

might occur. The GROUP_ID() function identifies the unique

rows with a 0 and the redundant rows with a 1, 2,

To illustrate the function GROUP_ID(), both ROLLUP and CUBE are

used when only one specific product_id is being

examined.

SELECT r.product_id,

 DATE_PART('year', r.order_datetime) AS year,

 SUM(r.item_quantity) AS total,

 GROUP_ID() AS group_id

FROM orders_recent r

WHERE r.product_id IN (15060)

GROUP BY ROLLUP(r.product_id, DATE_PART('year', r.order_datetime)),

 CUBE(r.product_id, DATE_PART('year', r.order_datetime))

ORDER BY r.product_id,

 DATE_PART('year', r.order_datetime),

 GROUP_ID()

product_id year total group_id

15060 2013 5996 0

15060 2013 5996 1

15060 2013 5996 3

15060 2013 5996 4

15060 2013 5996 5

15060 2013 5996 6

15060 2014 57 0

15060 2014 57 1

15060 2014 57 2

15060 2014 57 3

15060 2014 57 4

15060 2014 57 5

15060 2014 57 6

15060 6053 0

15060 6053 1

15060 6053 2

2013 5996 0

2014 57 0

 6053 0

Filtering on the group_id values equal to zero yields

unique records. This filtering can be accomplished with

the HAVING clause, as illustrated in the next SQL query.

SELECT r.product_id,

 DATE_PART('year', r.order_datetime) AS year,

 SUM(r.item_quantity) AS total,

 GROUP_ID() AS group_id

FROM orders_recent r

WHERE r.product_id IN (15060)

GROUP BY ROLLUP(r.product_id, DATE_PART('year', r.order_datetime)),

 CUBE(r.product_id, DATE_PART('year', r.order_datetime))

HAVING GROUP_ID() = 0

ORDER BY r.product_id,

 DATE_PART('year', r.order_datetime),

 GROUP_ID()

product_id year total group_id

15060 2013 5996 0

15060 2014 57 0

15060 6053 0

 2013 5996 0

 2014 57 0

 6053 0

11.2 In-Database Text

Analysis

SQL offers several basic text string functions as well as

wildcard search functionality. Related SELECT

statements and their results enclosed in the SQL

comment delimiters, /**/, include the following:

SELECT SUBSTRING('1234567890', 3,2) /* returns '34' */

SELECT '1234567890' LIKE '%7%' /* returns True */

SELECT '1234567890' LIKE '7%' /* returns False */

SELECT '1234567890' LIKE '_2%' /* returns True */

SELECT '1234567890' LIKE '_3%' /* returns False */

SELECT '1234567890' LIKE '__3%' /* returns True */

This section examines more dynamic and flexible

tools for text analysis, called regular expressions,

and their use in SQL queries to perform pattern

matching. Table 11-1 includes several forms of the

comparison operator used with regular expressions

and related SQL examples that produce a True result.

TABLE 11-1 Regular Expression Operators

More complex forms of the patterns that are

specified at the RHS of the comparison operator can

be constructed by using the elements in Table 11-2.

TABLE 11-2 Regular Expression Elements

Elemen

t

Descriptio

n

| Matches item a or b (a|b)

^ Looks for matches at the beginning of the string

$ Looks for matches at the end of the string

. Matches any single character

* Matches preceding item zero or more times

+ Matches preceding item one or more times

? Makes the preceding item optional

{n} Matches the preceding item exactly n times

() Matches the contents exactly

[] Matches any of the characters in the content, such as [0–9]

\\x Matches a nonalphanumeric character named x

\\y Matches an escape string \y

To illustrate the use of these elements, the following

SELECT statements include examples in which the

comparisons are True or False.

/* matches x or y ('x|y')*/

SELECT '123a567' ~ '23|b' /* returns True */

SELECT '123a567' ~ '32|b' /* returns False */

/* matches the beginning of the string */

SELECT '123a567' ~ '^123a' /* returns True */

SELECT '123a567' ~ '^123a7' /* returns False */

/* matches the end of the string */

SELECT '123a567' ~ 'a567$' /* returns True */

SELECT '123a567' ~ '27$' /* returns False */

/* matches any single character */

SELECT '123a567' ~ '2.a' /* returns True */

SELECT '123a567' ~ '2..5' /* returns True */

SELECT '123a567' ~ '2...5' /* returns False */

/* matches preceding character zero or more times */

SELECT '123a567' ~ '2*' /* returns True */

SELECT '123a567' ~ '2*a' /* returns True */

SELECT '123a567' ~ '7*a' /* returns True */

SELECT '123a567' ~ '37*' /* returns True */

SELECT '123a567' ~ '87*' /* returns False */

/* matches preceding character one or more times */

SELECT '123a567' ~ '2+' /* returns True */

SELECT '123a567' ~ '2+a' /* returns False */

SELECT '123a567' ~ '7+a' /* returns False */

SELECT '123a567' ~ '37+' /* returns False */

SELECT '123a567' ~ '87+' /* returns False */

/* makes the preceding character optional */

SELECT '123a567' ~ '2?' /* returns True */

SELECT '123a567' ~ '2?a' /* returns True */

SELECT '123a567' ~ '7?a' /* returns True */

SELECT '123a567' ~ '37?' /* returns True */

SELECT '123a567' ~ '87?' /* returns False */

/* Matches the preceding item exactly {n} times */

SELECT '123a567' ~ '5{0}' /* returns True */

SELECT '123a567' ~ '5{1}' /* returns True */

SELECT '123a567' ~ '5{2}' /* returns False */

SELECT '1235567' ~ '5{2}' /* returns True */

SELECT '123a567' ~ '8{0}' /* returns True */

SELECT '123a567' ~ '8{1}' /* returns False */

/* Matches the contents exactly */

SELECT '123a567' ~ '(23a5)' /* returns True */

SELECT '123a567' ~ '(13a5)' /* returns False */

SELECT '123a567' ~ '(23a5)7*' /* returns True */

SELECT '123a567' ~ '(23a5)7+' /* returns False */

/* Matches any of the contents */

SELECT '123a567' ~ '[23a8]' /* returns True */

SELECT '123a567' ~ '[8a32]' /* returns True */

SELECT '123a567' ~ '[(13a5)]' /* returns True */

SELECT '123a567' ~ '[xyz9]' /* returns False */

SELECT '123a567' ~ '[a-z]' /* returns True */

SELECT '123a567' ~ '[b-z]' /* returns False */

/* Matches a nonalphanumeric */

SELECT '$50K+' ~ '\\$' /* returns True */

SELECT '$50K+' ~ '\\+' /* returns True */

SELECT '$50K+' ~ '\\$\\+' /* returns False */

/* Use of the backslash for escape clauses */

/* \\w denotes the characters 0-9, a-z, A-Z, or the underscore(_) */

SELECT '123a567' ~ '\\w' /* returns True */

SELECT '123a567+' ~ '\\w' /* returns True */

SELECT '++++++++' ~ '\\w' /* returns False */

SELECT '_' ~ '\\w' /* returns True */

SELECT '+' ~ '\\w' /* returns False */

Regular expressions can be developed to identify

mailing addresses, e-mail addresses, phone numbers,

or currency amounts.

/* use of more complex regular expressions */

SELECT '$50K+' ~ '\\$[0-9]*K\\+' /* returns True */

SELECT '$50K+' ~ '\\$[0-9]K\\+' /* returns False */

SELECT '$50M+' ~ '\\$[0-9]*K\\+' /* returns False */

SELECT '$50M+' ~ '\\$[0-9]*(K|M)\\+' /* returns True */

/* check for ZIP code of form #####-#### */

SELECT '02038-2531' ~ '[0-9]{5}-[0-9]{4}' /* returns True */

SELECT '02038-253' ~ '[0-9]{5}-[0-9]{4}' /* returns False */

SELECT '02038' ~ '[0-9]{5}-[0-9]{4}' /* returns False */

So far, the application of regular expressions has

been illustrated by including the Boolean comparison

in a SELECT statement as if the result of the comparison

was to be returned as a column. In practice, these

comparisons are used in a SELECT statement's WHERE clause

against a table column to identify specific records of

interest. For example, the following SQL query

identifies those ZIP codes in a table of customer

addresses that do not match the form #####-####. Once

the invalid ZIP codes are identified, corrections can be

made by manual or automated means.

SELECT address_id,

 customer_id,

 city,

 state,

 zip,

 country

FROM customer_addresses

WHERE zip !~ '^[0-9]{5}-[0-9]{4}$'

address_id customer_id city state zip country

7 13 SINAI SD 57061-o236 USA

18 27 SHELL ROCK IA S0670-0480 USA

24 37 NASHVILLE TN 37228-219 USA

.

.

.

SQL functions enable the use of regular expressions

to extract the matching text, such as SUBSTRING(), as well

as update the text, such as REGEXP_REPL().

/* extract ZIP code from text string */

SELECT SUBSTRING('4321A Main Street Franklin, MA 02038-2531'

FROM '[0-9]{5}-[0-9]{4}')

02038-2531

/* replace long format zip code with short format ZIP code */

SELECT REGEXP_REPLACE('4321A Main Street Franklin, MA 02038-2531',

 '[0-9]{5}-[0-9]{4}',

 SUBSTRING(SUBSTRING('4321A Main Street Franklin, MA 02038-2531'

FROM '[0-9]{5}-[0-9]{4}'),1,5))

4321A Main Street Franklin, MA 02038

Regular expressions provide considerable flexibility

in searching and modifying text strings. However, it is

quite easy to build a regular expression that does not

work entirely as intended. For example, a particular

operation may work properly with a given dataset, but

future datasets may contain new cases to be handled.

Thus, it is important to thoroughly test any SQL code

using regular expressions.

11.3 Advanced SQL

Building upon the foundation provided in the earlier

parts of this chapter, this section presents advanced

SQL techniques that can simplify in-database analytics.

11.3.1 WINDOW FUNCTIONS

In Section 11.1.3, several SQL examples using

aggregate functions and grouping options to

summarize a dataset were provided. A window

function enables aggregation to occur but still

provides the entire dataset with the summary results.

For example, the RANK() function can be used to order a

set of rows based on some attribute. Based on the SQL

table, orders_recent, introduced in Section 11.1.2, the

following SQL query provides a ranking of customers

based on their total expenditures.

SELECT s.customer_id,

 s.sales,

 RANK()

 OVER (

 ORDER BY s.sales DESC) AS sales_rank

FROM (SELECT r.customer_id,

 SUM(r.item_quantity * r.item_price) AS sales

 FROM orders_recent r

 GROUP BY r.customer_id) s

customer_id sales sales_rank

683377 27840.00 1

238107 19983.65 2

661519 18134.11 3

628278 17965.44 4

619660 17944.20 5

.

.

.

The subquery in the FROM clause computes the total

sales for each customer. In the outermost SELECT clause,

the sales are ranked in descending order. Window

functions, such as RANK(), are followed by an OVER clause

that specifies how the function should be applied.

Additionally, the window function can be applied to

groupings of a given dataset using the PARTITION BY clause.

The following SQL query provides the customer

rankings based on sales within product categories.

SELECT s.category_name,

 s.customer_id,

 s.sales,

 RANK()

 OVER (

 PARTITION BY s.category_name

 ORDER BY s.sales DESC) AS sales_rank

FROM (SELECT c.category_name,

 r.customer_id,

 SUM(r.item_quantity * r.item_price) AS sales

 FROM orders_recent r

 LEFT OUTER JOIN product p

 ON r.product_id = p.product_id

 LEFT OUTER JOIN category c

 ON p.category_id = c.category_id

 GROUP BY c.category_name,

 r.customer_id) s

ORDER BY s.category_name,

 sales_rank

category_name customer_id sales sales_rank

Apparel 596396 4899.93 1

Apparel 319036 2799.96 2

Apparel 455683 2799.96 2

Apparel 468209 2700.00 4

Apparel 456107 2118.00 5

.

.

.

Apparel 430126 2.20 78731

Automotive Parts and Accessories 362572 5706.48 1

Automotive Parts and Accessories 587564 5109.12 2

Automotive Parts and Accessories 377616 4279.86 3

Automotive Parts and Accessories 443618 4279.86 3

Automotive Parts and Accessories 590658 3668.55 5

.

.

.

In this case, the subquery determines each

customer's sales in the respective product category.

The outer SELECT clause then ranks the customer's sales

within each category. The provided portions of the SQL

query output illustrate that the ranking begins at 1 for

each category and demonstrate how the rankings are

affected by ties in the amount of sales.

A second use of windowing functions is to perform

calculations over a sliding window in time. For

example, moving averages can be used to smooth

weekly sales figures that may exhibit large week-to-

week variation, as shown in the plot in Figure 11-2.

FIGURE 11-2 Weekly sales for an online retailer

The following SQL query illustrates how moving

averages can be implemented using window functions:

SELECT year,

 week,

 sales,

 AVG(sales)

 OVER (

 ORDER BY year, week

 ROWS BETWEEN 2 PRECEDING AND 2 FOLLOWING) AS moving_avg

FROM sales_by_week

WHERE year = 2014

 AND week <= 26

ORDER BY year,

 week

year week sales moving_avg

2014 1 1564539 1572999.333 ←average of weeks 1, 2, 3

2014 2 1572128 1579941.75 ←average of weeks 1, 2, 3, 4

2014 3 1582331 1579982.6 ←average of weeks 1, 2, 3, 4, 5

2014 4 1600769 1584834.4 ←average of weeks 2, 3, 4, 5, 6

2014 5 1580146 1583037.2 ←average of weeks 3, 4, 5, 6, 7

2014 6 1588798 1579179.6

2014 7 1563142 1563975.6

2014 8 1563043 1553665

2014 9 1524749 1547534.8

2014 10 1528593 1548051.6

2014 11 1558147 1545714.2

2014 12 1565726 1549404

2014 13 1551356 1548812.6

2014 14 1543198 1543820.2

2014 15 1525636 1536767.6

2014 16 1533185 1531662.2

2014 17 1530463 1527313.6

2014 18 1525829 1528787.8

2014 19 1521455 1532649

2014 20 1533007 1533370

2014 21 1552491 1532116

2014 22 1534068 1539713.6

2014 23 1519559 1538199.6

2014 24 1559443 1539086.2 ←average of weeks 22,23,24,25,26

2014 25 1525437 1540340.75 ←average of weeks 23,24,25,26

2014 26 1556924 1547268 ←average of weeks 24,25,26

The windowing function uses the built-in aggregate

function AVG(), which computes the arithmetic average

of a set of values. The ORDER BY clause sorts the records in

chronological order and specifies which rows should be

included in the averaging process with the current row.

In this SQL query, the moving average is based on the

current row, the preceding two rows, and the following

two rows. Because the dataset does not include the

last two weeks of 2013, the first moving average value

of 1,572,999.333 is the average of the first three

weeks of 2014: the current week and the two

subsequent weeks. The moving average value for the

second week, 1,579,941.75, is the sales value for week

2 averaged with the prior week and the two

subsequent weeks. For weeks 3 through 24, the

moving average is based on the sales from 5-week

periods, centered on the current week. At week 25, the

window begins to include fewer weeks because the

following weeks are unavailable. Figure 11-3 illustrates

the applied smoothing process against the weekly

sales figures.

FIGURE 11-3 Weekly sales with moving averages

Built-in window functions may vary by SQL

implementation. Table 11-3 [1] from the PostgreSQL

documentation includes the list of general-purpose

window functions.

TABLE 11-3 Window Functions

Functio

n

Descriptio

n

row_numbe

r()

Number of the current row within its partition, counting
from 1.

rank() Rank of the current row with gaps; same as row_number of its
first peer.

dense_ran

k()

Rank of the current row without gaps; this function counts
peer groups.

percent_r

ank()

Relative rank of the current row: (rank − 1) / (total rows −
1).

cume_dist

()

Relative rank of the current row: (number of rows
preceding or peer with current row) / (total rows).

ntile(num

_buckets

integer)

Integer ranging from 1 to the argument value, dividing the
partition as equally as possible.

lag(value

any [,

offset

integer

[,

default

any]])

Returns the value evaluated at the row that is offset rows
before the current row within the partition; if there is no
such row, instead return default. Both offset and default are
evaluated with respect to the current row. If omitted, offset
defaults to 1 and default to null.

lead(valu

e any [,

offset

integer

[,

default

any]])

Returns the value evaluated at the row that is offset rows
after the current row within the partition; if there is no
such row, instead return default. Both offset and default are
evaluated with respect to the current row. If omitted, the
offset defaults to 1 and the default to null.

first_val

ue(value

any)

Returns the value evaluated at the first row of the window
frame.

last_valu

e(value

any)

Returns the value evaluated at the last row of the window
frame.

nth_value

(value

any, nth

integer)

Returns the value evaluated at the nth row of the window
frame (counting from 1); null if no such row.

http://www.postgresql.org/docs/9.3/static/functions-window.html

11.3.2 USER-DEFINED

FUNCTIONS AND

AGGREGATES

http://www.postgresql.org/docs/9.3/static/functions-window.html

When the built-in SQL functions are insufficient for a

particular task or analysis, SQL enables the user to

create user-defined functions and aggregates. This

custom functionality can be incorporated into SQL

queries in the same ways that the built-in functions

and aggregates are used. User-defined functions can

also be created to simplify processing tasks that a user

may commonly encounter.

For example, a user-defined function can be written

to translate text strings for female (F) and male (M) to

0 and 1, respectively. Such a function may be helpful

when formatting data for use in a regression analysis.

Such a function, fm_convert(), could be implemented as

follows:

CREATE FUNCTION fm_convert(text) RETURNS integer AS

'SELECT CASE

 WHEN $1 = ''F'' THEN 0

 WHEN $1 = ''M'' THEN 1

 ELSE NULL

 END'

LANGUAGE SQL

IMMUTABLE

RETURNS NULL ON NULL INPUT

In declaring the function, the SQL query is placed

within single quotes. The first and only passed value is

referenced by $1. The SQL query is followed by a LANGUAGE

statement that explicitly states that the preceding

statement is written in SQL. Another option is to write

the code in C. IMMUTABLE indicates that the function does

not update the database and does not use the

database for lookups. The IMMUTABLE declaration informs

the database's query optimizer how best to implement

the function. The RETURNS NULL ON NULL INPUT statement

specifies how the function addresses the case when

any of the inputs are null values.

In the online retail example, the fm_convert() function

can be applied to the customer_gender column in the

customer_demographics table as follows.

SELECT customer_gender,

 fm_convert(customer_gender) as male

FROM customer_demographics

LIMIT 5

customer_gender male

M 1

F 0

F 0

M 1

M 1

Built-in and user-defined functions can be

incorporated into user-defined aggregates, which can

then be used as a window function. In Section 11.3.1, a

window function is used to calculate moving averages

to smooth a data series. In this section, a user-defined

aggregate is created to calculate an Exponentially

Weighted Moving Average (EWMA). For a given

time series, the EWMA series is defined as shown in

Equation 11-1.

where 0 ≤ α ≤ 1

The smoothing factor, determines how much weight

to place on the latest point in a given time series. By

repeatedly substituting into Equation 11-1 for the prior

value of the EWMA series, it can be shown that the

weights against the original series are exponentially

decaying backward in time.

To implement EWMA smoothing as a user-defined

aggregate in SQL, the functionality in Equation 11-1

needs to be implemented first as a user-defined

function.

CREATE FUNCTION ewma_calc(numeric, numeric, numeric) RETURNS numeric as

/* $1 = prior value of EWMA */

/* $2 = current value of series */

/* $3 = alpha, the smoothing factor */

'SELECT CASE

 WHEN $3 IS NULL /* bad alpha */

 OR $3 < 0

 OR $3 > 1 THEN NULL

 WHEN $1 IS NULL THEN $2 /* t = 1 */

 WHEN $2 IS NULL THEN $1 /* y is unknown */

 ELSE ($3 * $2) + (1-$3) *$1 /* t >= 2 */

 END'

LANGUAGE SQL

IMMUTABLE

Accepting three numeric inputs as defined in the

comments, the ewma_calc() function addresses possible

bad values of the smoothing factor as well as the

special case in which the other inputs are null. The ELSE

statement performs the usual EWMA calculation. Once

this function is created, it can be referenced in the

user-defined aggregate, ewma().

CREATE AGGREGATE ewma(numeric, numeric)

 (SFUNC = ewma_calc,

 STYPE = numeric,

 PREFUNC = dummy_function)

In the CREATE AGGREGATE statement for ewma(), SFUNC assigns

the state transition function (ewma_calc in this example)

and STYPE assigns the data type of the variable to store

the current state of the aggregate. The variable for the

current state is made available to the ewma_calc() function

as the first variable, $1. In this case, because the

ewma_calc() function requires three inputs, the ewma()

aggregate requires only two inputs; the state variable

is always internally available to the aggregate. The

PREFUNC assignment is required in the Greenplum

database for use in a massively parallel processing

(MPP) environment. For some aggregates, it is

necessary to perform some preliminary functionality

on the current state variables for a couple of servers in

the MPP environment. In this example, the assigned

PREFUNC function is added as a placeholder and is not

utilized in the proper execution of the ewma() aggregate

function.

As a window function, the ewma() aggregate, with a

smoothing factor of 0.1, can be applied to the weekly

sales data as follows.

SELECT year,

 week,

 sales,

 ewma(sales, .1)

 OVER (

 ORDER BY year, week)

FROM sales_by_week

WHERE year = 2014

 AND week <= 26

ORDER BY year,

 week

year week sales ewma

2014 1 1564539 1564539.00

2014 2 1572128 1565297.90

2014 3 1582331 1567001.21

2014 4 1600769 1570377.99

2014 5 1580146 1571354.79

.

.

.

2014 23 1519559 1542043.47

2014 24 1559443 1543783.42

2014 25 1525437 1541948.78

2014 26 1556924 1543446.30

Figure 11-4 includes the EWMA smoothed series to

the plot from Figure 11-3.

FIGURE 11-4 Weekly sales with moving average and

EWMA

Increasing the value of the smoothing factor from 0.1

causes the EWMA to follow the actual data better, but

the trade-off is that large fluctuations in the data cause

larger fluctuations in the smoothed series. The user-

defined aggregate, ewma(), is used in the SQL query in

the same manner as any other window function with

the specification of the OVER clause.

11.3.3 ORDERED

AGGREGATES

Sometimes the value of an aggregate may depend on

an ordered set of values. For example, to determine

the median of a set of values, it is common to first sort

the values from smallest to largest and identify the

median from the center of the sorted values. The

sorting can be accomplished by using the function

array_agg(). The following SQL query calculates the

median of the weekly sales data.

SELECT (d.ord_sales[d.n/2 + 1] +

 d.ord_sales[(d.n + 1)/2]) / 2.0 as median

FROM (SELECT ARRAY_AGG(s.sales ORDER BY s.sales) AS ord_sales,

 COUNT(*) AS n

 FROM sales_by_week s

 WHERE s.year = 2014

 AND s.week <= 26) d

median

1551923.5

In general, the function ARRAY_AGG() builds an array from

a table column. Executing the subquery from the

previous SQL query for just the first five weeks

illustrates the creation of the array, denoted by the

braces, and the sorted weekly sales within the array.

SELECT ARRAY_AGG(s.sales ORDER BY s.sales) AS ord_sales,

 COUNT(*) AS n

FROM sales_by_week s

WHERE s.year = 2014

 AND s.week <= 5

ord_sales n

{1564539,1572128,1580146,1582331,1600769} 5

Besides creating an array, the values can be

concatenated together into one text string using the

string_agg() function.

SELECT STRING_AGG(s.sales ORDER BY s.sales) AS ord_sales,

 COUNT(*) AS n

FROM sales_by_week s

WHERE s.year = 2014

 AND s.week <= 5

ord_sales n

15645391572128158014615823311600769 5

However, in this particular example, it may be useful

to separate the values with a delimiter, such as a

comma.

SELECT STRING_AGG(s.sales, ',' ORDER BY s.sales) AS ord_sales,

 COUNT(*) AS n

FROM sales_by_week s

WHERE s.year = 2014

 AND s.week <= 5

ord_sales n

1564539,1572128,1580146,1582331,1600769 5

Although the sorted sales appear to be an array,

there are no braces around the output. So the

displayed ordered sales are a text string.

11.3.4 MADLIB

SQL implementations include many basic analytical

and statistical built-in functions, such as means and

variances. As illustrated in this chapter, SQL also

enables the development of user-defined functions and

aggregates to provide additional functionality.

Furthermore, SQL databases can utilize an external

library of functions. One such library is known as

MADlib. The description file [2] included with the

MADlib library download states the following:

MADlib is an open-source library for scalable in-database

analytics. It offers data-parallel implementations of mathematical,

statistical, and machine learning methods for structured and

unstructured data.

The concept of Magnetic/Agile/Deep (MAD) analysis

skills was introduced in a 2009 paper by Cohen, et al.

[3]. This paper describes the components of MAD as

follows:

Magnetic: Traditional Enterprise Data Warehouse
(EDW) approaches “repel” new data sources,
discouraging their incorporation until they are
carefully cleansed and integrated. Given the
ubiquity of data in modern organizations, a data
warehouse can keep pace today only by being
“magnetic”: attracting all the data sources that
crop up within an organization regardless of data
quality niceties.

Agile: Data Warehousing orthodoxy is based on
long-range and careful design and planning. Given
growing numbers of data sources and increasingly
sophisticated and mission-critical data analyses, a
modern warehouse must instead allow analysts to

easily ingest, digest, produce, and adapt data
rapidly. This requires a database whose physical
and logical contents can be in continuous rapid
evolution.

Deep: Modern data analyses involve increasingly
sophisticated statistical methods that go well
beyond the rollups and drilldowns of traditional
business intelligence (BI). Moreover, analysts
often need to see both the forest and the trees in
running these algorithms; they want to study
enormous datasets without resorting to samples
and extracts. The modern data warehouse should
serve both as a deep data repository and as a
sophisticated algorithmic runtime engine.

In response to the inability of a traditional EDW to

readily accommodate new data sources, the concept of

a data lake has emerged. A data lake represents an

environment that collects and stores large volumes of

structured and unstructured datasets, typically in their

original, unaltered forms. More than a data depository,

the data lake architecture enables the various users

and data science teams to conduct data exploration

and related analytical activities. Apache Hadoop is

often considered a key component of building a data

lake [4].

Because MADlib is designed and built to

accommodate massive parallel processing of data,

MADlib is ideal for Big Data in-database analytics.

MADlib supports the open-source database PostgreSQL

as well as the Pivotal Greenplum Database and Pivotal

HAWQ. HAWQ is a SQL query engine for data stored in

the Hadoop Distributed File System (HDFS). Apache

Hadoop and the Pivotal products were described in

Chapter 10, “Advanced Analytics—Technology and

Tools: MapReduce and Hadoop.”

MADlib version 1.6 modules [5] are described in

Table 11-4.

TABLE 11-4 MADlib Modules

Modul

e

Descriptio

n

Generalized Linear
Includes linear
Models

Includes linear regression, logistic regression,
and multinomial logistic regression

Cross Validation Evaluates the predictive power of a fitted
model

Linear Systems Solves dense and sparse linear system
problems

Matrix
Factorization

Performs low-rank matrix factorization and
singular value decomposition

Association Rules Implements the Apriori algorithm to identify
frequent item sets

Clustering Implements k-means clustering

Topic Modeling Provides a Latent Dirichlet Allocation
predictive model for a set of documents

Descriptive
Statistics

Simplifies the computation of summary
statistics and correlations

Inferential
Statistics

Conducts hypothesis tests

Support Modules Provides general array and probability
functions that can also be used by other
MADlib modules

Dimensionality
Reduction

Enables principal component analyses and
projections

Time Series
Analysis

Conducts ARIMA analyses

http://doc.madlib.net/latest/modules.html

In the following example, MADlib is used to perform

a k-means clustering analysis, as described in Chapter

4, “Advanced Analytical Theory and Methods:

Clustering,” on the web retailer's customers. Two

customer attributes—age and total sales since 2013—

have been identified as variables of interest for the

purposes of the clustering analysis. The customer's

age is available in the customer_demographics table. The total

sales for each customer can be computed from the

orders_recent table. Because it was decided to include

customers who had not purchased anything, a LEFT OUTER

JOIN is used to include all customers. The customer's

age and sales are stored in an array in the cust_age_sales

table. The MADlib k-means function expects the

coordinates to be expressed as an array.

/* create an empty table to store the input for the k-means analysis */

CREATE TABLE cust_age_sales (

 customer_id integer,

http://doc.madlib.net/latest/modules.html

 coordinates float8[])

/* prepare the input for the k-means analysis */

INSERT INTO cust_age_sales (customer_id, coordinates[1], coordinates[2])

 SELECT d.customer_id,

 d.customer_age,

 CASE

 WHEN s.sales IS NULL THEN 0.0

 ELSE s.sales

 END

 FROM customer_demographics d

 LEFT OUTER JOIN (SELECT r.customer_id,

 SUM(r.item_quantity * r.item_price) AS sales

 FROM orders_recent r

 GROUP BY r.customer_id) s

 ON d.customer_id = s.customer_id

/* examine the first 10 rows of the input */

SELECT * from cust_age_sales

order by customer_id

LIMIT 10

customer_id coordinates

1 {32,14.98}

2 {32,51.48}

3 {33,151.89}

4 {27,88.28}

5 {31,4.85}

6 {26,54}

7 {29,63}

8 {25,101.07}

9 {32,41.05}

10 {32,0}

Using the MADlib function, kmeans_random(), the following

SQL query identifies six clusters within the provided

dataset. A description of the key input values is

provided with the query.

/*

K-means analysis

cust_age_sales - SQL table containing the input data

coordinates - the column in the SQL table that contains the data points

customer_id - the column in the SQL table that contains the

 identifier for each point

km_coord - the table to store each point and its assigned cluster

km_centers - the SQL table to store the centers of each cluster

l2norm - specifies that the Euclidean distance formula is used

25 - the maximum number of iterations

0.001 - a convergence criterion

False(twice) - ignore some options

6 - build six clusters

*/

SELECT madlib.kmeans_random('cust_age_sales', 'coordinates',

 'customer_id', 'km_coord', 'km_centers',

 'l2norm', 25 ,0.001, False, False, 6)

SELECT *

FROM km_coord

ORDER BY pid

LIMIT 10

pid coords cid

1 {1,1}:{32,14.98} 6

2 {1,1}:{32,51.48} 1

3 {1,1}:{33,151.89} 4

4 {1,1}:{27,88.28} 1

5 {1,1}:{31,4.85} 6

6 {1,1}:{26,54} 1

7 {1,1}:{29,63} 1

8 {1,1}:{25,101.07} 1

9 {1,1}:{32,41.05} 1

10 {1,1}:{32,0} 6

The output consists of the km_coord table. This table

contains the coordinates for each point id (pid), the

customer_id, and the assigned cluster ID (cid). The

coordinates (coords) are stored as sparse vectors. Sparse

vectors are useful when values in an array are

repeated many times. For example, {1,200,3}:{1,0,1}

represents the following vector containing 204

elements, {1,0,0,...0,1,1,1}, where the zeroes are

repeated 200 times.

The coordinates for each cluster center or centroid

are stored in the SQL table km_center.

SELECT *

FROM km_centers

ORDER BY coords

cid coords

6 {1,1}:{44.1131730722154,6.31487804161302}

1 {1,1}:{39.8000419034649,61.6213603286732}

4 {1,1}:{39.2578830823738,167.758556117954}

5 {1,1}:{40.9437092852768,409.846906145043}

3 {1,1}:{42.3521947160391,1150.68858851676}

2 {1,1}:{41.2411873840445,4458.93716141001}

Because the age values are similar for each centroid,

it appears that the sales values dominated the

distance calculations. After visualizing the clusters, it is

advisable to repeat the analysis after rescaling, as

discussed in Chapter 4.

Summary

This chapter presented several techniques and

examples illustrating how SQL can be used to perform

in-database analytics. A typical SQL query involves

joining several tables, filtering the returned dataset to

the desired records with a WHERE clause, and specifying

the particular columns of interest. SQL provides the set

operations of UNION and UNION ALL to merge the results of

two or more SELECT statements or INTERSECT to find common

record elements. Other SQL queries can summarize a

dataset using aggregate functions such as COUNT() and

SUM() and the GROUP BY clause. Grouping extensions such as

the CUBE and ROLLUP operators enable the computation of

subtotals and grand totals.

Although SQL is most commonly associated with

structured data, SQL tables often contain unstructured

data such as comments, descriptions, and other

freeform text content. Regular expressions and related

functions can be used in SQL to examine and

restructure such unstructured data for further analysis.

More complex SQL queries can utilize window

functions to supply computed values such as ranks

and rolling averages along with an original dataset. In

addition to built-in functions, SQL offers the ability to

create user-defined functions. Although it is possible to

process the data within a database and extract the

results into an analytical tool such as R, external

libraries such as MADlib can be utilized by SQL to

conduct statistical analyses within a database.

Exercises

1. Show that EWMA smoothing is equivalent to an

ARIMA(0,1,1) model with no constant, as described

in Chapter 8, “Advanced Analytical Theory and

Methods: Time Series Analysis.”

2. Referring to Equation (11-1), demonstrate that the

assigned weights decay exponentially in time.

3. Develop and test a user-defined aggregate to

calculate n factorial (n!), where n is an integer.

4. From a SQL table or query, randomly select 10%

of the rows. Hint: Most SQL implementations have

a random() function that provides a uniform random

number between 0 and 1. Discuss possible reasons

to randomly sample records from a SQL table.

Bibliography

[1] PostgreSQl.org, “Window Functions” [Online]. Available:
http://www.postgresql.org/docs/9.3/static/functions-window.html.
[Accessed 10 April 2014].

[2] MADlib, “MADlib” [Online]. Available:
http://madlib.net/download/. [Accessed 10 April 2014].

[3] J. Cohen, B. Dolan, M. Dunlap, J. Hellerstein, and C. Welton,
“MAD Skills: New Analysis Practices for Big Data,” in
Proceedings of the VLDB Endowment Volume 2 Issue 2, August

2009.
[4] E. Dumbill, “The Data Lake Dream,” Forbes, 14 January 2014.

[Online]. Available:
http://www.forbes.com/sites/edddumbill/2014/01/14/the-data-lake-

dream/. [Accessed 4 June 2014].
[5] MADlib, “MADlib Modules” [Online]. Available:

http://doc.madlib.net/latest/modules.html. [Accessed 10 April
2014].

http://postgresql.org/
http://www.postgresql.org/docs/9.3/static/functions-window.html
http://madlib.net/download/
http://www.forbes.com/sites/edddumbill/2014/01/14/the-data-lake-dream/
http://doc.madlib.net/latest/modules.html

Communicating and operationalizing an analytics project

Creating the final deliverables

Using a core set of material for different audiences

Comparing main focus areas for sponsors and analysts

Understanding simple data visualization principles

Cleaning up a chart or visualization

12

The Endgame, or

Putting It

All Together

Key Concepts

This

chapter

focuses

on the

final phase of

the Data Analytics

Lifecycle: operationalize. In this phase, the project

team delivers final reports, code, and technical

documentation. At the conclusion of this phase, the

team generally attempts to set up a pilot project and

implement the developed models from Phase 4 in a

production environment. As stated in Chapter 2, “Data

Analytics Lifecycle,” teams can perform a technically

accurate analysis, but if they cannot translate the

results into a language that resonates with their

audience, others will not see the value, and significant

effort and resources will have been wasted. This

chapter focuses on showing how to construct a clear

narrative summary of the work and a framework for

conveying the narrative to key stakeholders.

12.1 Communicating and

Operationalizing an

Analytics Project

As shown in Figure 12-1, the final phase in the Data

Analytics Lifecycle focuses on operationalizing the

project. In this phase, teams need to assess the

benefits of the project work and set up a pilot to

deploy the models in a controlled way before

broadening the work and sharing it with a full

enterprise or ecosystem of users. In this context, a

pilot project can refer to a project prior to a full-scale

rollout of the new algorithms or functionality. This pilot

can be a project with a more limited scope and rollout

to the lines of business, products, or services affected

by these new models.

FIGURE 12-1 Data Analytics Lifecycle, Phase 6:

operationalize

The team's ability to quantify the benefits and share

them in a compelling way with the stakeholders will

determine if the work will move forward into a pilot

project and ultimately be run in a production

environment. Therefore, it is critical to identify the

benefits and state them in a clear way in the final

presentations.

As the team scopes the effort involved to deploy the

analytical model as a pilot project, it also needs to

consider running the model in a production

environment for a discrete set of products or a single

line of business, which tests the model in a live setting.

This allows the team to learn from the deployment and

make adjustments before deploying the application or

code more broadly across the enterprise. This phase

can bring in a new set of team members—namely,

those engineers responsible for the production

environment who have a new set of issues and

concerns. This group is interested in ensuring that

running the model fits smoothly into the production

environment and the model can be integrated into

downstream processes. While executing the model in

the production environment, the team should aim to

detect input anomalies before they are fed to the

model, assess run times, and gauge competition for

resources with other processes in the production

environment.

Chapter 2 included an in-depth discussion of the

Data Analytics Lifecycle, including an overview of the

deliverables provided in its final phase, at which time it

is advisable for the team to consider the needs of each

of its main stakeholders and the deliverables,

illustrated in Figure 12-2, to satisfy these needs.

FIGURE 12-2 Key outputs from a successful analytic

project

Following is a brief review of the key outputs for each

of the main stakeholders of an analytics project and

what they usually expect at the conclusion of a project:

Business User typically tries to determine the
benefits and implications of the findings to the
business.

Project Sponsor typically asks questions related
to the business impact of the project, the risks and
return on investment (ROI), and how the project

can be evangelized within the organization and
beyond.

Project Manager needs to determine if the
project was completed on time and within budget.

Business Intelligence Analyst needs to know if
the reports and dashboards he manages will be
impacted and need to change.

Data Engineer and Database Administrator

(DBA) typically need to share the code from the
analytical project and create technical documents
that describe how to implement the code.

Data Scientists need to share the code and
explain the model to their peers, managers, and
other stakeholders.

Although these seven roles represent many interests

within a project, these interests usually overlap, and

most of them can be met with four main deliverables:

Presentation for Project Sponsors contains
high-level takeaways for executive-level
stakeholders, with a few key messages to aid their
decision-making process. Focus on clean, easy
visuals for the presenter to explain and for the
viewer to grasp.

Presentation for Analysts, which describes
changes to business processes and reports. Data
scientists reading this presentation are
comfortable with technical graphs (such as
Receiver Operating Characteristic [ROC] curves,
density plots, and histograms) and will be
interested in the details.

Code for technical people, such as engineers and
others managing the production environment

Technical specifications for implementing the
code

As a rule, the more executive the audience, the more

succinct the presentation needs to be for project

sponsors. Ensure that the presentation gets to the

point quickly and frames the results in terms of value

to the sponsor's organization. When presenting to

other audiences with more quantitative backgrounds,

focus more time on the methodology and findings. In

these instances, the team can be more expansive in

describing the outcomes, methodology, and analytical

experiments with a peer group. This audience will be

more interested in the techniques, especially if the

team developed a new way of processing or analyzing

data that can be reused in the future or applied to

similar problems. In addition, use imagery or data

visualization when possible. Although it may take more

time to develop imagery, pictures are more appealing,

easier to remember, and more effective to deliver key

messages than long lists of bullets.

12.2 Creating the Final

Deliverables

After reviewing the list of key stakeholders for data

science projects and main deliverables, this section

focuses on describing the deliverables in detail. To

illustrate this approach, a fictional case study is used

to make the examples more specific. Figure 12-3

describes a scenario of a fictional bank, YoyoDyne

Bank, which would like to embark on a project to do

churn prediction models of its customers. Churn rate in

this context refers to the frequency with which

customers sever their relationship as customers of

YoyoDyne Bank or switch to a competing bank.

FIGURE 12-3 Synopsis of YoyoDyne Bank case study

example

Based on this information, the data science team

may create an analytics plan similar to Figure 12-4

during the project.

FIGURE 12-4 Analytics plan for YoyoDyne Bank case

study

In addition to guiding the model planning and

methodology, the analytic plan contains components

that can be used as inputs for writing about the scope,

underlying assumptions, modeling techniques, initial

hypotheses, and key findings in the final presentations.

After spending substantial amounts of time in the

modeling and performing in-depth data analysis, it is

critical to reflect on the project work and consider the

context of the problems the team set out to solve.

Review the work that was completed during the

project, and identify observations about the model

outputs, scoring, and results. Based on these

observations, begin to identify the key messages and

any unexpected insights.

In addition, it is important to tailor the project

outputs to the audience. For a project sponsor, show

that the team met the project goals. Focus on what

was done, what the team accomplished, what ROI can

be anticipated, and what business value can be

realized. Give the project sponsor talking points to

evangelize the work. Remember that the sponsor

needs to relay the story to others, so make this

person's job easy, and help ensure the message is

accurate by providing a few talking points. Find ways

to emphasize ROI and business value, and mention

whether the models can be deployed within

performance constraints of the sponsor's production

environment.

In some organizations, the data science team may

not be expected to make a full business case for future

projects and implementation of the models. Instead, it

needs to be able to provide guidance about the impact

of the models to enable the project sponsor, or

someone designated by that person, to create a

business case to advocate for the pilot and subsequent

deployment of this functionality. In other words, the

data science team can assist in this effort by putting

the results of the modeling and data science work into

context to help assess the actual value and cost of

implementing this work more broadly.

When presenting to a technical audience such as

data scientists and analysts, focus on how the work

was done. Discuss how the team accomplished the

goals and the choices it made in selecting models or

analyzing the data. Share analytical methods and

decision-making processes so other analysts can learn

from them for future projects. Describe methods,

techniques, and technologies used, as this technical

audience will be interested in learning about these

details and considering whether the approach makes

sense in this case and whether it can be extended to

other, similar projects. Plan to provide specifics related

to model accuracy and speed, such as how well the

model will perform in a production environment.

Ideally, the team should consider starting the

development of the final presentation during the

project rather than at the end of the project as

commonly occurs. This approach ensures that the

team always has a version of the presentation with

working hypotheses to show stakeholders, in case

there is a need to show a work-in-process version of

the project progress on short notice. In fact, many

analysts write the executive summary at the outset of

a project and then continually refine it over time so

that at the end of the project, portions of the final

presentation are already completed. This approach

also reduces the chance that the team members will

forget key points or insights discovered during the

project. Finally, it reduces the amount of work to be

done on the presentation at the conclusion of the

project.

12.2.1 DEVELOPING CORE

MATERIAL FOR MULTIPLE

AUDIENCES

Because some of the components of the projects can

be used for different audiences, it can be helpful to

create a core set of materials regarding the project,

which can be used to create presentations for either a

technical audience or an executive sponsor.

Table 12-1 depicts the main components of the final

presentations for the project sponsor and an analyst

audience. Notice that teams can create a core set of

materials in these seven areas, which can be used for

the two presentation audiences. Three areas (Project

Goals, Main Findings, and Model Description), can be

used as is for both presentations. Other areas need

additional elaboration, such as the Approach. Still

other areas, such as the Key Points, require different

levels of detail for the analysts and data scientists than

for the project sponsor. Each of these main

components of the final presentation is discussed in

subsequent sections.

TABLE 12-1 Comparison of Materials for Sponsor and

Analyst Presentations

12.2.2 PROJECT GOALS

The Project Goals portion of the final presentation is

generally the same, or similar, for sponsors and for

analysts. For each audience, the team needs to

reiterate the goals of the project to lay the groundwork

for the solution and recommendations that are shared

later in the presentation. In addition, the Goals slide

serves to ensure there is a shared understanding

between the project team and the sponsors and

confirm they are aligned in moving forward in the

project. Generally, the goals are agreed on early in the

project. It is good practice to write them down and

share them to ensure the goals and objectives are

clearly understood by both the project team and the

sponsors.

Figures 12-5 and 12-6 show two examples of slides

for Project Goals. Figure 12-5 shows three goals for

creating a predictive model to anticipate customer

churn. The points on this version of the Goals slide

emphasize what needs to be done, but not why, which

will be included in the alternative.

FIGURE 12-5 Example of Project Goals slide for

YoyoDyne case study

Figure 12-6 shows a variation of the previous Project

Goals slide in Figure 12-5. It is a summary of the

situation prior to listing the goals. Keep in mind that

when delivering final presentations, these deliverables

are shared within organizations, and the original

context can be lost, especially if the original sponsor

leaves the group or changes roles. It is good practice

to briefly recap the situation prior to showing the

project goals. Keep in mind that adding a situation

overview to the Goals slide does make it appear busier.

The team needs to determine whether to split this into

a separate slide or keep it together, depending on the

audience and the team's style for delivering the final

presentation.

One method for writing the situational overview in a

succinct way is to summarize it in three bullets, as

follows:

Situation: Give a one-sentence overview of the
situation that has led to the analytics project.

Complication: Give a one-sentence overview of
the need for addressing this now. Something has
triggered the organization to decide to take action
at this time. For instance, perhaps it lost 100
customers in the past two weeks and now has an
executive mandate to address an issue, or perhaps
it has lost five points of market share to its biggest
competitor in the past three months. Usually, this
sentence represents the driver for why a
particular project is being initiated at this time,
rather than in some vague time in the future.

Implication: Give a one-sentence overview of the
impact of the complication. For instance, if the
bank fails to address its customer attrition
problem, it stands to lose its dominant market
position in three key markets. Focus on the
business impact to illustrate the urgency of doing
the project.

FIGURE 12-6 Example of Situation & Project Goals slide

for YoyoDyne case study

12.2.3 MAIN FINDINGS

Write a solid executive summary to portray the main

findings of a project. In many cases, the summary may

be the only portion of the presentation that hurried

managers will read. For this reason, it is imperative to

make the language clear, concise, and complete.

Those reading the executive summary should be able

to grasp the full story of the project and the key

insights in a single slide. In addition, this is an

opportunity to provide key talking points for the

executive sponsor to use to evangelize the project

work with others in the customer's organization. Be

sure to frame the outcomes of the project in terms of

both quantitative and qualitative business value. This

is especially important if the presentation is for the

project sponsor. The executive summary slide

containing the main findings is generally the same for

both sponsor and analyst audiences.

Figure 12-7 shows an example of an executive

summary slide for the YoyoDyne case study. It is useful

to take a closer look at the parts of the slide to make

sure it is clear. Keep in mind this is not the only format

for conveying the Executive Summary; it varies based

on the author's style, although many of the key

components are common themes in Executive

Summaries.

FIGURE 12-7 Example of Executive Summary slide for

YoyoDyne case study

The key message should be clear and conspicuous at

the front of the slide. It can be set apart with color or

shading, as shown in Figure 12-8; other techniques can

also be used to draw attention to it. The key message

may become the single talking point that executives or

the project sponsor take away from the project and use

to support the team's recommendation for a pilot

project, so it needs to be succinct and compelling. To

make this message as strong as possible, measure the

value of the work and quantify the cost savings,

revenue, time savings, or other benefits to make the

business impact concrete.

Follow the key message with three major supporting

points. Although Executive Summary slides can have

more than three major points, going beyond three

ideas makes it difficult for people to recall the main

points, so it is important to ensure that the ideas

remain clear and limited to the few most impactful

ideas the team wants the audience to take away from

the work that was done. If the author lists ten key

points, messages become diluted, and the audience

may remember only one or two main points.

In addition, because this is an analytics project, be

sure to make one of the key points related to if, and

how well, the work will meet the sponsor's service

level agreement (SLA) or expectations. Traditionally,

the SLA refers to an arrangement between someone

providing services, such as an information technology

(IT) department or a consulting firm, and an end user

or customer. In this case, the SLA refers to system

performance, expected uptime of a system, and other

constraints that govern an agreement. This term has

become less formal and many times conveys system

performance or expectations more generally related to

performance or timeliness. It is in this sense that SLA

is being used here. Namely, in this context, SLA refers

to the expected performance of a system and the

intent that the models developed will not adversely

impact the expected performance of the system into

which they are integrated.

Finally, although it's not required, it is often a good

idea to support the main points with a visual or graph.

Visual imagery serves to make a visceral connection

and helps retain the main message with the reader.

FIGURE 12-8 Anatomy of an Executive Summary slide

12.2.4 APPROACH

In the Approach portion of the presentation, the team

needs to explain the methodology pursued on the

project. This can include interviews with domain

experts, the groups collaborating within the

organization, and a few statements about the solution

developed. The objective of this slide is to ensure the

audience understands the course of action that was

pursued well enough to explain it to others within the

organization. The team should also include any

additional comments related to working assumptions

the team followed as it performed the work, because

this can be critical in defending why they followed a

specific course of action.

When explaining the solution, the discussion should

remain at a high level for the project sponsors. If

presenting to analysts or data scientists, provide

additional detail about the type of model used,

including the technology and the actual performance

of the model during the tests. Finally, as part of the

description of the approach, the team may want to

mention constraints from systems, tools, or existing

processes and any implications for how these things

may need to change with this project.

Figure 12-9 shows an example of how to describe the

methodology followed during a data science project to

a sponsor audience.

FIGURE 12-9 Example describing the project

methodology for project sponsors

Note that the third bullet describes the churn model

in general terms. Furthermore, the subbullets provide

additional details in nontechnical terms. Compare this

approach to the variation shown in Figure 12-10.

FIGURE 12-10 Example describing the project

methodology for analysts and data scientists

Figure 12-10 shows a variation on the approach and

methodology used in the data science project. In this

case, most of the language and description are the

same as in the example for project sponsors. The main

difference is that this version contains additional detail

regarding the kind of model used and the way the

model will score data quickly to meet the SLA. These

differences are highlighted in the boxes shown in

Figure 12-10.

12.2.5 MODEL DESCRIPTION

After describing the project approach, teams generally

include a description of the model that was used.

Figure 12-11 provides the model description for the

Yoyodyne Bank example. Although the Model

Description slide can be the same for both audiences,

the interests and objectives differ for each. For the

sponsor, the general methodology needs to be

articulated without getting into excessive detail.

Convey the basic methodology followed in the team's

work to allow the sponsor to communicate this to

others within the organization and provide talking

points.

Mentioning the scope of the data used is critical. The

purpose is to illustrate thoroughness and exude

confidence that the team used an approach that

accurately portrays its problem and is as free from bias

as possible. A key trait of a good data scientist is the

ability to be skeptical of one's own work. This is an

opportunity to view the work and the deliverable

critically and consider how the audience will receive

the work. Try to ensure it is an unbiased view of the

project and the results.

Assuming that the model will meet the agreed-upon

SLAs, mention that the model will meet the SLAs

based on the performance of the model within the

testing or staging environment. For instance, one may

want to indicate that the model processed 500,000

records in 5 minutes to give stakeholders an idea of

the speed of the model during run time. Analysts will

want to understand the details of the model, including

the decisions made in constructing the model and the

scope of the data extracts for testing and training. Be

prepared to explain the team's thought process on

this, as well as the speed of running the model within

the test environment.

FIGURE 12-11 Example of a model description for a

data science project

12.2.6 KEY POINTS

SUPPORTED WITH DATA

The next step is to identify key points based on

insights and observations resulting from the data and

model scoring results. Find ways to illustrate the key

points with charts and visualization techniques, using

simpler charts for sponsors and more technical data

visualization for analysts and data scientists.

Figure 12-12 shows an example of providing

supporting detail regarding the rate of bank customers

who would churn in various months. When developing

the key points, consider the insights that will drive the

biggest business impact and can be defended with

data. For project sponsors, use simple charts such as

bar charts, which illustrate data clearly and enable the

audience to understand the value of the insights. This

is also a good point to foreshadow some of the team's

recommendations and begin tying together ideas to

demonstrate what led to the recommendations and

why. In other words, this section supplies the data and

foundation for the recommendations that come later in

the presentation. Creating clear, compelling slides to

show the key points makes the recommendations more

credible and more likely to be acted upon by the

customer or sponsor.

FIGURE 12-12 Example of a presentation of key points

of a data science project shown as a bar chart

For analyst presentations, use more granular or

technical charts and graphs. In this case, appropriate

visualization techniques include dot charts, density

plots, ROC curves, or histograms of a data distribution

to support decisions made in the modeling techniques.

Basic concepts of data visualization are discussed later

in the chapter.

12.2.7 MODEL DETAILS

Model details are typically needed by people who have

a more technical understanding than the sponsors,

such as those who will implement the code, or

colleagues on the analytics team. Project sponsors are

typically less interested in the model details; they are

usually more focused on the business implications of

the work rather than the details of the model. This

portion of the presentation needs to show the code or

main logic of the model, including the model type,

variables, and technology used to execute the model

and score the data. The model details segment of the

presentation should focus on describing expected

model performance and any caveats related to the

model performance. In addition, this portion of the

presentation should provide a detailed description of

the modeling technique, variables, scope, and

expected effectiveness of the model.

This is where the team can provide discussion or

written details related to the variables used in the

model and explain how or why these variables were

selected. In addition, the team should share the actual

code (or at least an excerpt) developed to explain

what was created and how it operates. This also serves

to foster discussion related to any additional

constraints or implications related to the main logic of

the code. In addition, the team can use this section to

illustrate details of the key variables and the predictive

power of the model, using analyst-oriented charts and

graphs, such as histograms, dot charts, density plots,

and ROC curves.

Figure 12-13 provides a sample slide describing the

data variables, and Figure 12-14 shows a sample slide

with a technical graph to support the work.

FIGURE 12-13 Example of model details showing model

type and variables

As part of the model detail description, guidance

should be provided regarding the speed with which the

model can run in the test environment; the expected

performance in a live, production environment; and the

technology needed. This kind of discussion addresses

how well the model can meet the organization's SLA.

This section of the presentation needs to include

additional caveats, assumptions, or constraints of the

model and model performance, such as systems or

data the model needs to interact with, performance

issues, and ways to feed the outputs of the model into

existing business processes. The author of this section

needs to describe the relationships of the main

variables on the project objectives, such as the effects

of key variables on predicting churn, and the

relationship of key variables to other variables. The

team may even want to make suggestions to improve

the model, highlight any risks to introducing bias into

the modeling technique, or describe certain segments

of the data that may skew the overall predictive power

of the methodology.

FIGURE 12-14 Model details comparing two data

variables

12.2.8 RECOMMENDATIONS

The final main component of the presentation involves

creating a set of recommendations that include how to

deploy the model from a business perspective within

the organization and any other suggestions on the

rollout of the model's logic. For the Yoyodyne Bank

example, Figure 12-15 provides possible

recommendations from the project. In this section of

the presentation, measuring the impact of the

improvements and stating how to leverage that impact

within the recommendations are key. For instance, the

presentation might mention that every customer

retained represents a time savings of six hours for one

of the bank's account managers or $50,000 in savings

of new account acquisitions, due to marketing costs,

sales, and system-related costs.

For a presentation to a project sponsor audience,

focus on the business impact of the project, including

risks and ROI. Because project sponsors will be most

interested in the business impact of the project, the

presentation should also provide the sponsor with

salient points to help evangelize the work within the

organization. When preparing a presentation for

analysts, supplement the main set of

recommendations with any implications for the

modeling or for deployment in a production

environment. In either case, the team should focus on

recommending actions to operationalize the work and

the benefits the customer will receive because of

implementing these recommendations.

FIGURE 12-15 Sample recommendations for a data

science project

12.2.9 ADDITIONAL TIPS ON

THE FINAL PRESENTATION

As a team completes a project and strives to move on

to the next one, it must remember to invest adequate

time in developing the final presentations. Orienting

the audience to the project and providing context is

important. On occasion, a team is so immersed in the

project that it fails to provide sufficient context for its

recommendations and the outputs of the models. A

team needs to remember to spell out terminology and

acronyms and avoid excessive use of jargon. It should

also keep in mind that presentations may be shared

extensively; therefore, recipients may not be familiar

with the context and the journey the team has gone

through over the course of the project.

The story may need to be told multiple times to

different audiences, so the team must remain patient

in repeating some of the key messages. These

presentations should be viewed as opportunities to

refine the key messages and evangelize the good work

that was done. By this point in the process, the team

has invested many hours of work and uncovered

insights for the business. These presentations are an

opportunity to communicate these projects and build

support for future projects. As with most presentations,

it is important to gauge the audience to guide shaping

the message and the level of detail. Here are several

more tips on developing the presentations.

Use imagery and visual representations:

Visuals tend to make the presentation more
compelling. Also, people recall imagery better
than words, because images can have a more
visceral impact. These visual representations can
be static and interactive data.

Make sure the text is mutually exclusive and

collectively exhaustive (MECE): This means
having an economy of words in the presentation
and making sure the key points are covered but
not repeated unnecessarily.

Measure and quantify the benefits of the

project: This can be challenging and requires time
and effort to do well. This kind of measurement
should attempt to quantify benefits that have
financial and other benefits in a specific way.
Making the statement that a project provided
“$8.5M in annual cost savings” is much more
compelling than saying it has “great value.”

Make the benefits of the project clear and

conspicuous: After calculating the benefits of the
project, make sure to articulate them clearly in the
presentation.

12.2.10 PROVIDING

TECHNICAL SPECIFICATIONS

AND CODE

In addition to authoring the final presentations, the

team needs to deliver the actual code that was

developed and the technical documentation needed to

support it. The team should consider how the project

will affect the end users and the technical people who

will need to implement the code. It is recommended

that the team think through the implications of its work

on the recipients of the code, the kinds of questions

they will have, and their interests. For instance,

indicating that the model will need to perform real-

time monitoring may require extensive changes to an

IT runtime environment, so the team may need to

consider a compromise of nightly batch jobs to process

the data. In addition, the team may need to get the

technical team talking with the project sponsor to

ensure the implementation and SLA will meet the

business needs during the technical deployment.

The team should anticipate questions from IT related

to how computationally expensive it will be to run the

model in the production environment. If possible,

indicate how well the model ran in the test scenarios

and whether there are opportunities to tune the model

or environment to optimize performance in the

production environment.

Teams should approach writing technical

documentation for their code as if it were an

application programming interface (API). Many times,

the models become encapsulated as functions that

read a set of inputs in the production environment,

possibly perform preprocessing on data, and create an

output, including a set of post-processing results.

Consider the inputs, outputs, and other system

constraints to enable a technical person to implement

the analytical model, even if this person has not had a

connection to the data science project up to this point.

Think about the documentation as a way to introduce

the data that the model needs, the logic it is using,

and how other related systems need to interact with it

in a production environment for it to operate well. The

specifications detail the inputs the code needs and the

data format and structures. For instance, it may be

useful to specify whether structured data is needed or

whether the expected data needs to be numeric or

string formats. Describe any transformations that need

to be made on the input data before the code can use

it, and if scripting was created to perform these tasks.

These kinds of details are important when other

engineers must modify the code or utilize a different

dataset or table, if and when the environment

changes.

Regarding exception handling, the team must

consider how the code should handle data that is

outside the expected data ranges of the model

parameters and how it will handle missing data values

(Chapter 3, “Review of Basic Data Analytic Methods

Using R”), null values, zeros, NAs, or data that is in an

unexpected format or type. The technical

documentation describes how to treat these

exceptions and what implications may emerge on

downstream processes. For the model outputs, the

team must explain to what extent to post-process the

output. For example, if the model returns a value

representing the probability of customer churn,

additional logic may be needed to identify the scoring

threshold to determine which customer accounts to

flag as being at risk of churn. In addition, some

provision should be made for adjusting this threshold

and training the algorithm, either in an automated

learning fashion or with human intervention.

Although the team must create technical

documentation, many times engineers and other

technical staff receive the code and may try to use it

without reading through all the documentation.

Therefore, it is important to add extensive comments

in the code. This directs the people implementing the

code on how to use it, explains what pieces of the logic

are supposed to do, and guides other people through

the code until they're familiar with it. If the team can

do a thorough job adding comments in the code, it is

much easier for someone else to maintain the code

and tune it in the runtime environment. In addition, it

helps the engineers edit the code when their

environment changes or they need to modify

processes that may be providing inputs to the code or

receiving its outputs.

12.3 Data Visualization

Basics

As the volume of data continues to increase, more

vendors and communities are developing tools to

create clear and impactful graphics for use in

presentations and applications. Although not

exhaustive, Table 12-2 lists some popular tools.

TABLE 12-2 Common Tools for Data Visualization

Open

Source

Commercial

Tools

R(Base package, lattice, ggplot2) Tableau

GGobi/Rggobi Spotfire (TIBCO)

Gnuplot QlikView

Inkscape Adobe Illustrator

Modest Maps

OpenLayers

Processing

D3.js

Weave

As the volume and complexity of data has grown,

users have become more reliant on using crisp visuals

to illustrate key ideas and portray rich data in a simple

way. Over time, the open source community has

developed many libraries to offer more options for

portraying graphics data visually. Although this book

showed examples primarily using the base package of

R, ggplot2 provides additional options for creating

professional-looking data visualization, as does the

lattice library for R.

Gnuplot and GGobi have a command-line-driven

approach to generating data visualization. The genesis

of these tools mainly grew out of scientific computing

and the need to express complex data visually. GGobi

also has a variant called Rggobi that enables users to

access the GGobi functionality with the R software and

programming language. There are many open source

mapping tools available, including Modest Maps and

OpenLayers, both designed for developers who would

like to create interactive maps and embed them within

their own development projects or on the web. The

software programming language development

environment, Processing, employs a Java-like language

for developers to create professional-looking data

visualization. Because it is based on a programming

language rather than a GUI, Processing enables

developers to create robust visualization and have

precise control over the output. D3.js is a JavaScript

library for manipulating data and creating web-based

visualization with standards, such as Hypertext Markup

Language (HTML), Scalable Vector Graphics (SVG), and

Cascading Style Sheets (CSS). For more examples of

using open source visualization tools, refer to Nathan

Yau's website, flowingdata.com [1], or his book

Visualize This [2], which discusses additional

methods for creating data representations with open

source tools.

Regarding the commercial tools shown in Table 12-2,

Tableau, Spotfire (by TIBCO), and QlikView function as

data visualization tools and as interactive business

intelligence (BI) tools. Due to the growth of data in the

http://flowingdata.com/

past few years, organizations for the first time are

beginning to place more emphasis on ease of use and

visualization in BI over more traditional BI tools and

databases. These tools make visualization easy and

have user interfaces that are cleaner and simpler to

navigate than their predecessors. Although not

traditionally considered a data visualization tool,

Adobe Illustrator is listed in Table 12-2 because some

professionals use it to enhance visualization made in

other tools. For example, some users develop a simple

data visualization in R, save the image as a PDF or

JPEG, and then use a tool such as Illustrator to

enhance the quality of the graphic or stitch multiple

visualization work into an infographic. Inkscape is an

open source tool used for similar use cases, with much

of Illustrator's functionality.

12.3.1 KEY POINTS

SUPPORTED WITH DATA

It is more difficult to observe key insights when data is

in tables instead of in charts. To underscore this point,

in Say it with Charts, Gene Zelazny [3] mentions

that to highlight data, it is best to create a visual

representation out of it, such as a chart, graph, or

other data visualization. The opposite is also true.

Suppose an analyst chooses to downplay the data.

Sharing it in a table draws less attention to it and

makes it more difficult for people to digest.

The way one chooses to organize the visual in terms

of the color scheme, labels, and sequence of

information also influences how the viewer processes

the information and what he perceives as the key

message from the chart. The table shown in Figure 12-

16 contains many data points. Given the layout of the

information, it is difficult to identify the key points at a

glance. Looking at 45 years of store opening data can

be challenging, as shown in Figure 12-16.

FIGURE 12-16 Forty-five years of store opening data

Even showing somewhat less data is still difficult to

read through for most people. Figure 12-17 hides the

first 10 years, leaving 35 years of data in the table.

FIGURE 12-17 Thirty-five years of store opening data

As most readers will observe, it is challenging to

make sense of data, even at relatively small scales.

There are several observations in the data that one

may notice, if one looks closely at the data tables:

BigBox experienced strong growth in the 1980s
and 1990s.

By the 1980s, BigBox began adding more
SuperBox stores to its mix of chain stores.

SuperBox stores outnumber BigBox stores nearly
2 to 1 in aggregate.

Depending on the point trying to be made, the

analyst must take care to organize the information in a

way that intuitively enables the viewer to take away

the same main point that the author intended. If the

analyst fails to do this effectively, the person

consuming the data must guess at the main point and

may interpret something different from what was

intended.

Figure 12-18 shows a map of the United States, with

the points representing the geographic locations of the

stores. This map is a more powerful way to depict data

than a small table would be. The approach is well

suited to a sponsor audience. This map shows where

the BigBox store has market saturation, where the

company has grown, and where it has SuperBox stores

and other BigBox stores, based on the color and

shading. The visualization in Figure 12-18 clearly

communicates more effectively than the dense tables

in Figure 12-16 and Figure 12-17. For a sponsor

audience, the analytics team can also use other simple

visualization techniques to portray data, such as bar

charts or line charts.

FIGURE 12-18 Forty-five years of store opening data,

shown as map

12.3.2 EVOLUTION OF A

GRAPH

Visualization allows people to portray data in a more

compelling way than tables of data and in a way that

can be understood on an intuitive, precognitive level.

In addition, analysts and data scientists can use

visualization to interact with and explore data.

Following is an example of the steps a data scientist

may go through in exploring pricing data to

understand the data better, model it, and assess

whether a current pricing model is working effectively.

Figure 12-19 shows a distribution of pricing data as a

user score reflecting price sensitivity.

FIGURE 12-19 Frequency distribution of user scores

A data scientist's first step may be to view the data

as a raw distribution of the pricing levels of users.

Because the values have a long tail to the right, in

Figure 12-19, it may be difficult to get a sense of how

tightly clustered the data is between user scores of

zero and five.

To understand this better, a data scientist may rerun

this distribution showing a log distribution (Chapter 3)

of the user score, as demonstrated in Figure 12-20.

This shows a less skewed distribution that may be

easier for a data scientist to understand. Figure 12-21

illustrates a rescaled view of Figure 12-20, with the

median of the distribution around 2.0. This plot

provides the distribution of a new user score, or index,

that may gauge the level of price sensitivity of a user

when expressed in log form.

FIGURE 12-20 Frequency distribution with log of user

score

FIGURE 12-21 Frequency distribution of new user

scores

Another idea may be to analyze the stability of price

distributions over time to see if the prices offered to

customers are stable or volatile. As shown in a graphic

such as Figure 12-22, the prices appear to be stable. In

this example, the user score of pricing remains within

a tight band between two and three regardless of the

time in days. In other words, the time in which a

customer purchases a given product does not

significantly influence the price she is willing to pay, as

expressed by the user score, shown on the y-axis.

FIGURE 12-22 Graph of stability analysis for pricing

By this point the data scientist has learned the

following about this example and made several

observations about the data:

Most user scores are between two and three in
terms of their price sensitivity.

After taking the log value of the user scores, a new
user scoring index was created, which recentered
the data values around the center of the
distribution.

The pricing scores appear to be stable over time,
as the duration of the customer does not seem to
have significant influence on the user pricing

score. Instead, it appears to be relatively constant
over time, within a small band of user scores.

At this point, the analysts may want to explore the

range of price tiers offered to customers. Figures 12-22

and 12-23 demonstrate examples of the price tiering

currently in place within the customer base.

Figure 12-23 shows the price distribution for a

customer base. In this example, loyalty score and price

are positively correlated; as the loyalty score

increases, so do the prices that the customers are

willing to pay. It may seem like a strange phenomenon

that the most loyal customers in this example are

willing to pay higher prices, but the reality is that

customers who are very loyal tend to be less sensitive

to price fluctuations or increases. The key, however, is

to understand which customers are highly loyal so that

appropriate pricing can be charged to the right groups

of people.

Figure 12-24 shows a variation on 12-23. In this case,

the new graphic portrays the same customer price

tiers, but this time a rug representation (Chapter 3)

has been added at the bottom to reflect the

distribution of the data points.

FIGURE 12-23 Graph comparing the price in U.S.

dollars with a customer loyalty score

FIGURE 12-24 Graph comparing the price in U.S.

dollars with a customer loyalty score (with rug

representation)

This rug indicates that the majority of customers in

this example are in a tight band of loyalty scores,

between about 1 and 3 on the x-axis, all of which

offered the same set of prices, which are high

(between 0.9 and 1.0 on the y-axis). The y-axis in this

example may represent a pricing score, or the raw

value of a customer in millions of dollars. The

important aspect is to recognize that the pricing is

high and is offered consistently to most of the

customers in this example.

Based on what was shown in Figure 12-25, the team

may decide to develop a new pricing model. Rather

than offering static prices to customers regardless of

their level of loyalty, a new pricing model might offer

more dynamic price points to customers. In this

visualization, the data shows the price increases as

more of a curvilinear slope relative to the customer

loyalty score. The rug at the bottom of the graph

indicates that most customers remain between 1 and 3

on the x-axis, but now rather than offering all these

customers the same price, the proposal suggests

offering progressively higher prices as customer

loyalty increases. In one sense, this may seem

counterintuitive. It could be argued that the best prices

should be offered to the most loyal customers.

However, in reality, the opposite is often the case, with

the most attractive prices being offered to the least

loyal customers. The rationale is that loyal customers

are less price sensitive and may enjoy the product and

stay with it regardless of small fluctuations in price.

Conversely, customers who are not very loyal may

defect unless they are offered more attractive prices to

stay. In other words, less loyal customers are more

price sensitive. To address this issue, a new pricing

model that accounts for this may enable an

organization to maximize revenue and minimize

attrition by offering higher prices to more loyal

customers and lower prices to less loyal customers.

Creating an iterative depicting the data visually allows

the viewer to see these changes in a more concrete

way than by looking at tables of numbers or raw

values.

FIGURE 12-25 New proposed pricing model compared

to prices in U.S. dollars with rug

Data scientists typically iterate and view data in

many different ways, framing hypotheses, testing

them, and exploring the implications of a given model.

This case explores visual examples of pricing

distributions, fluctuations in pricing, and the

differences in price tiers before and after implementing

a new model to optimize price. The visualization work

illustrates how the data may look as the result of the

model, and helps a data scientist understand the

relationships within the data at a glance.

The resulting graph in the pricing scenario appears

to be technical regarding the distribution of prices

throughout a customer base and would be suitable for

a technical audience composed of other data

scientists. Figure 12-26 shows an example of how one

may present this graphic to an audience of other data

scientists or data analysts. This demonstrates a

curvilinear relationship between price tiers and

customer loyalty when expressed as an index. Note

that the comments to the right of the graph relate to

the precision of the price targeting, the amount of

variability in robustness of the model, and the

expectations of model speed when run in a production

environment.

FIGURE 12-26 Evolution of a graph, analyst example

with supporting points

Figure 12-27 portrays another example of the output

from the price optimization project scenario, showing

how one may present this to an audience of project

sponsors. This demonstrates a simple bar chart

depicting the average price per customer or user

segment. Figure 12-27 shows a much simpler-looking

visual than Figure 12-26. It clearly portrays that

customers with lower loyalty scores tend to get lower

prices due to targeting from price promotions. Note

that the right side of the image focuses on the

business impact and cost savings rather than the

detailed characteristics of the model.

FIGURE 12-27 Evolution of a graph, sponsor example

The comments to the right side of the graphic in

Figure 12-27 explain the impact of the model at a high

level and the cost savings of implementing this

approach to price optimization.

12.3.3 COMMON

REPRESENTATION METHODS

Although there are many types of data visualizations,

several fundamental types of charts portray data and

information. It is important to know when to use a

particular type of chart or graph to express a given

kind of data. Table 12-3 shows some basic chart types

to guide the reader in understanding that different

types of charts are more suited to a situation

depending on specific kinds of data and the message

the team is attempting to portray. Using a type of chart

for data it is not designed for may look interesting or

unusual, but it generally confuses the viewer. The

objective for the author is to find the best chart for

expressing the data clearly so the visual does not

impede the message, but rather supports the reader in

taking away the intended message.

TABLE 12-3 Common Representation Methods for Data

and Charts

Data for

Visualization

Type of

Chart

Components (parts of whole) Pie chart

Item Bar chart

Time series Line chart

Frequency Line chart or histogram

Correlation Scatterplot, side-by-side bar charts

Table 12-3 shows the most fundamental and

common data representations, which can be

combined, embellished, and made more sophisticated

depending on the situation and the audience. It is

recommended that the team consider the message it

is trying to communicate and then select the

appropriate type of visual to support the point.

Misusing charts tends to confuse an audience, so it is

important to take into account the data type and

desired message when choosing a chart.

Pie charts are designed to show the components, or

parts relative to a whole set of things. A pie chart is

also the most commonly misused kind of chart. If the

situation calls for using a pie chart, employ it only

when showing only 2–3 items in a chart, and only for

sponsor audiences.

Bar charts and line charts are used much more often

and are useful for showing comparisons and trends

over time. Even though people use vertical bar charts

more often, horizontal bar charts allow an author more

room to fit the text labels. Vertical bar charts tend to

work well when the labels are small, such as when

showing comparisons over time using years.

For frequency, histograms are useful for

demonstrating the distribution of data to an analyst

audience or to data scientists. As shown in the pricing

example earlier in this chapter, data distributions are

typically one of the first steps when visualizing data to

prepare for model planning. To qualitatively evaluate

correlations, scatterplots can be useful to compare

relationships among variables.

As with any presentation, consider the audience and

level of sophistication when selecting the chart to

convey the intended message. These charts are simple

examples but can easily become more complex when

adding data variables, combining charts, or adding

animation where appropriate.

12.3.4 HOW TO CLEAN UP A

GRAPHIC

Many times software packages generate a graphic for

a dataset, but the software adds too many things to

the graphic. These added visual distractions can make

the visual appear busy or otherwise obscure the main

points that are to be made with the graphic. In

general, it is a best practice to strive for simplicity

when creating graphics and data visualization graphs.

Knowing how to simplify graphics or clean up a messy

chart is helpful for conveying the key message as

clearly as possible. Figure 12-28 portrays a line chart

with several design problems.

FIGURE 12-28 How to clean up a graphic, example 1

(before)

How to Clean Up a Graphic

The line chart shown in Figure 12-28 compares two

trends over time. The chart looks busy and contains a

lot of chart junk that distracts the viewer from the

main message. Chart junk refers to elements of data

visualization that provide additional materials but do

not contribute to the data portion of the graphic. If

chart junk were removed, the meaning and

understanding of the graphic would not be diminished;

it would instead be made clearer. There are five main

kinds of “chart junk” in Figure 12-28:

Horizontal grid lines: These serve no purpose in
this graphic. They do not provide additional
information for the chart.

Chunky data points: These data points
represented as large square blocks draw the
viewer's attention to them but do not represent
any specific meaning aside from the data points
themselves.

Overuse of emphasis colors in the lines and

border: The border of the graphic is a thick, bold
line. This forces the viewer's attention to the
perimeter of the graphic, which contains no
information value. In addition, the lines showing
the trends are relatively thick.

No context or labels: The chart contains no
legend to provide context as to what is being
shown. The lines also lack labels to explain what
they represent.

Crowded axis labels: There are too many axis
labels, so they appear crowded. There is no need
for labels on the y-axis to appear every five units
or for values on the x-axis to appear every two
units. Shown in this way, the axis labels distract
the viewer from the actual data that is represented
by the trend lines in the chart.

The five forms of chart junk in Figure 12-28 are easily

corrected, as shown in Figure 12-29. Note that there is

no clear message associated with the chart and no

legend to provide context for what is shown in Figure

12-28.

FIGURE 12-29 How to clean up a graphic, example 1

(after)

FIGURE 12-30 How to clean up a graphic, example 1

(alternate “after” view)

Figures 12-29 and 12-30 portray two examples of

cleaned-up versions of the chart shown in Figure 12-

28. Note that the problems with chart junk have been

addressed. There is a clear label and title for each

chart to reinforce the message, and color has been

used in ways to highlight the point the author is trying

to make. In Figure 12-29, a strong, green color is

shown to represent the count of SuperBox stores,

because this is where the viewer's focus should be

drawn, whereas the count of BigBox stores is shown in

a light gray color.

In addition, note the amount of white space being

used in each of the two charts shown in Figures 12-29

and 12-30. Removing grid lines, excessive axes, and

the visual noise within the chart allows clear contrast

between the emphasis colors (the green line charts)

and the standard colors (the lighter gray of the BigBox

stores). When creating charts, it is best to draw most

of the main visuals in standard colors, light tones, or

color shades so that stronger emphasis colors can

highlight the main points. In this case, the trend of

BigBox stores in light gray fades into the background

but does not disappear, while making the SuperBox

stores trend in a darker gray (bright green in the online

chart) makes it prominent to support the message the

author is making about the growth of the SuperBox

stores.

An alternative to Figure 12-29 is shown in Figure 12-

30. If the main message is to show the difference in

the growth of new stores, Figure 12-30 can be created

to further simplify Figure 12-28 and graph only the

difference between SuperBox stores compared to

regular BigBox stores. Two examples are shown to

illustrate different ways to convey the message,

depending on what it is the author of these charts

would like to emphasize.

How to Clean Up a Graphic,

Second Example

Another example of cleaning up a chart is portrayed in

Figure 12-31. This vertical bar chart suffers from more

of the typical problems related to chart junk, including

misuse of color schemes and lack of context.

FIGURE 12-31 How to clean up a graphic, example 2

(before)

There are five main kinds of chart junk in Figure 12-

31:

Vertical grid lines: These vertical grid lines are
not needed in this graphic. They provide no
additional information to help the viewer
understand the message in the data. Instead, these
vertical grid lines only distract the viewer from
looking at the data.

Too much emphasis color: This bar chart uses
strong colors and too much high-contrast dark
gray-scale. In general, it is best to use subtle

tones, with a low contrast gray as neutral color,
and then emphasize the data underscoring the key
message in a dark tone or strong color.

No chart title: Because the graphic lacks a chart
title, the viewer is not oriented to what he is
viewing and does not have proper context.

Legend at right restricting chart space:

Although there is a legend for the chart, it is
shown on the right side, which causes the vertical
bar chart to be compressed horizontally. The
legend would make more sense placed across the
top, above the chart, where it would not interfere
with the data being expressed.

Small labels: The horizontal and vertical axis
labels have appropriate spacing, but the font size
is too small to be easily read. These should be
slightly larger to be easily read, while not
appearing too prominent.

Figures 12-32 and 12-33 portray two examples of

cleaned-up versions of the chart shown in Figure 12-

31. The problems with chart junk have been

addressed. There is a clear label and title for each

chart to reinforce the message, and appropriate colors

have been used in ways to highlight the point the

author is trying to make. Figures 12-32 and 12-33 show

two options for modifying the graphic, depending on

the main point the presenter is trying to make.

Figure 12-32 shows strong emphasis color (dark

blue) representing the SuperBox stores to support the

chart title: Growth of SuperBox Stores.

FIGURE 12-32 How to clean up a graphic, example 2

(after)

Suppose the presenter wanted to talk about the total

growth of BigBox stores instead. A line chart showing

the trends over time would be a better choice, as

shown in Figure 12-33.

FIGURE 12-33 How to clean up a graphic, example 2

(alternate view of “after”)

In both cases, the noise and distractions within the

chart have been removed. As a result, the data in the

bar chart for providing context has been

deemphasized, while other data has been made more

prominent because it reinforces the key point as stated

in the chart's title.

12.3.5 ADDITIONAL

CONSIDERATIONS

As stated in the previous examples, the emphasis

should be on simplicity when creating charts and

graphs. Create graphics that are free of chart junk and

utilize the simplest method for portraying graphics

clearly. The goal of data visualization should be to

support the key messages being made as clearly as

possible and with few distractions.

Similar to the idea of removing chart junk is being

cognizant of the data-ink ratio. Data-ink refers to the

actual portion of a graphic that portrays the data,

while non-data ink refers to labels, edges, colors, and

other decoration. If one imagined the ink required to

print a data visualization on paper, the data-ink ratio

could be thought of as (data-ink)/(total ink used to

print the graphic). In other words, the greater the ratio

of data-ink in the visual, the more data rich it is and

the fewer distractions it has [4].

Avoid Using Three-Dimensions in

Most Graphics

One more example where people typically err is in

adding unnecessary shading, depth, or dimensions to

graphics. Figure 12-34 shows a vertical bar chart with

two visible dimensions. This example is simple and

easy to understand, and the focus is on the data, not

the graphics. The author of the chart has chosen to

highlight the SuperBox stores in a dark blue color,

while the BigBox bars in the chart are in a lighter blue.

The title is about the growth of SuperBox stores, and

the SuperBox bars in the chart are in a dark, high-

contrast shade that draws the viewer's attention to

them.

FIGURE 12-34 Simple bar chart, with two dimensions

Compare Figure 12-34 to Figure 12-35, which shows

a three-dimensional chart. Figure 12-35 shows the

original bar chart at an angle, with some attempt at

showing depth. This kind of three-dimensional

perspective makes it more difficult for the viewer to

gauge the actual data and the scaling becomes

deceptive. Three-dimensional charts often distort

scales and axes, and impede viewer cognition. Adding

a third dimension for depth in Figure 12-35, does not

make it fancier, just more difficult to understand.

FIGURE 12-35 Misleading bar chart, with three

dimensions

The charts in Figures 12-34 and 12-35 portray the

same data, but it is more difficult to judge the actual

height of the bars in Figure 12-35. Moreover, the

shadowing and shape of the chart cause most viewers

to spend time looking at the perspective of the chart

rather than the height of the bars, which is the key

message and purpose of this data visualization.

Summary

Communicating the value of analytical projects is

critical for sustaining the momentum of a project and

building support within organizations. This support is

instrumental in turning a successful project into a

system or integrating it properly into an existing

production environment. Because an analytics project

may need to be communicated to audiences with

mixed backgrounds, this chapter recommends creating

four deliverables to satisfy most of the needs of

various stakeholders.

A presentation for a project sponsor

A presentation for an analytical audience

Technical specification documents

Well-annotated production code

Creating these deliverables enables the analytics

project team to communicate and evangelize the work

that it did, whereas the code and technical

documentation assists the team that wants to

implement the models within the production

environment.

This chapter illustrates the importance of selecting

clear and simple visual representations to support the

key points in the final presentations or for portraying

data. Most data representations and graphs can be

improved by simply removing the visual distractions.

This means minimizing or removing chart junk, which

distracts the viewer from the main purpose of a chart

or graph and does not add information value. Following

several common-sense principles about minimizing

distractions in slides and visualizations,

communicating clearly and simply, using color in a

deliberate way, and taking time to provide context

addresses most of the common problems in charts and

slides. These few guidelines support the creation of

crisp, clear visuals that convey the key messages.

In most cases, the best data visualizations use the

simplest, clearest visual to illustrate the key point.

Avoid unnecessary embellishment and focus on trying

to find the best, simplest method for transmitting the

message. Context is critical to orient the viewer to a

chart or graph, because people have immediate

reactions to imagery on a precognitive level. To this

end, make sure to employ thoughtful use of color and

orient the viewer with scales, legends, and axes.

Exercises

1. Describe four common deliverables for an

analytics project.

2. What is the focus of a presentation for a project

sponsor?

3. Give examples of appropriate charts to create in a

presentation for other data analysts and data

scientists as part of a final presentation. Explain

why the charts are appropriate to show each

audience.

4. Explain what types of graphs would be appropriate

to show data changing over time and why.

5. As part of operationalizing an analytics project,

which deliverable would you expect to provide to a

Business Intelligence analyst?

References and Further

Reading

Following are additional references to learn more about

best practices for giving presentations.

Say It with Charts, by Gene Zelazny[3]: Simple
reference book on how to select the right
graphical approach for portraying data and for
ensuring the message is clearly conveyed in
presentations.

Pyramid Principle, by Barbara Minto [5]:

Minto pioneered the approach for constructing
logical structures for presentations in threes:
three sections to the presentations, each with
three main points. This teaches people how to
weave a story out of the disparate pieces.

Presentation Zen, by Garr Reynolds [6]:

Teaches how to convey ideas simply and clearly
and use imagery in presentations. Shows many
before and after versions of graphics and slides.

Now You See It, by Stephen Few [4]: Provides
many examples for matching the appropriate kind
of data visualization to a given dataset.

Bibliography

[1] N. Yau, “flowingdata.com” [Online]. Available:
http://flowingdata.com.

[2] N. Yau, Visualize This, Indianapolis: Wiley, 2011.
[3] G. Zelazny, Say It with Charts: The Executive's Guide to Visual

Communication, McGraw-Hill, 2001.
[4] S. Few, Now You See It: Simple Visualization Techniques for

Quantitative Analysis, Analytics Press, 2009.
[5] B. Minto, The Minto Pyramid Principle: Logic in Writing,

Thinking, and Problem Solving, Prentice Hall, 2010.
[6] G. Reynolds, Presentation Zen: Simple Ideas on Presentation

Design and Delivery, Berkeley: New Riders, 2011.

http://flowingdata.com/
http://flowingdata.com/

Index

Numbers & Symbols

\ (backward slash) as separator, 69
/ (forward slash) as separator, 69
1-itemsets, 147
2-itemsets, 148–149

3 Vs (volume, variety, velocity), 2–3
3-itemsets, 149–150
4-itemsets, 150–151

A

accuracy, 225
ACF (autocorrelation function), 236–237
ACME text analysis example, 259–260

raw text collection, 260–263
aggregates (SQL)

ordered, 351–352
user-defined, 347–351

aggregators of data, 18
AIE (Applied Information Economics), 28
algorithms

clustering, 134–135
decision trees, 197–200

C4.5, 203–204
CART, 204
ID3, 203

Alphine Miner, 42
alternative hypothesis, 102–103
analytic projects

Approach, 369–371
BI analyst, 362
business users, 361
code, 362, 376–377
communication, 360–361
data engineer, 362
data scientists, 362
DBA (Database Administrator), 362
deliverables, 362–364

audiences, 364–365
core material, 364–365

key points, 372

Main Findings, 367–369
model description, 371
model details, 372–374
operationalizing, 360–361
outputs, 361
presentations, 362
Project Goals, 365–367
project manager, 362
project sponsor, 361
recommendations, 374–375
stakeholders, 361–362
technical specifications, 376–377

analytic sandboxes. See sandboxes
analytical architecture, 13–15
analytics

business drivers, 11
examples, 22–23
new approaches, 16–19

ANOVA, 110–114
Anscombe's quartet, 82–83
aov() function, 78
Apache Hadoop. See Hadoop
APIs (application programming interfaces), Hadoop, 304–305
apriori() function, 146, 152–157
Apriori algorithm, 139

grocery store example, 143
Groceries dataset, 144–146

itemset generation, 146–151
rule generation, 152–157

itemsets, 139, 140–141
counting, 158

partitioning and, 158
sampling and, 158
transaction reduction and, 158

architecture, analytical, 13–15

arima() function, 246
ARIMA (Autoregressive Integrated Moving Average) model, 236

ACF, 236–237
ARMA model, 241–244
autoregressive models, 238–239
building, 244–252
cautions, 252–253
constant variance, 250–251
evaluating, 244–252
fitted time series models, 249–250
forecasting, 251–252
moving average models, 239–241
normality, 250–251
PACF, 238–239
reasons to choose, 252–253
seasonal autoregressive integrated moving average model, 243–244
VARIMA, 253

ARMA (Autoregressive Moving Average) model, 241–244
array() function, 74
arrays

matrices, 74
R, 74–75

association rules, 138–139
application, 143
candidate rules, 141–142
diagnostics, 158
testing and, 157–158
validation, 157–158

attributes
objects, k-means, 130–131
R, 71–72

AUC (area under the curve), 227
autoregressive models, 238–239
averages, moving average models, 239–241

B

bagging, 228
bag-of-words in text analysis, 265–266
banking, 18
barplot() function, 88
barplots, 93–94
Bayes' Theorem, 212–214. See also naïve Bayes conditional probability,
212
BI (business intelligence)

analytical tools, 10
versus Data Science, 12–13

Big Data
3 Vs, 2–3
analytics, examples, 22–23
characteristics, 2
definitions, 2–3
drivers, 15–16
ecosystem, 16–19

key roles, 19–22
McKinsey & Co. on, 3
volume, 2–3

boosting, 228–229
bootstrap aggregation, 228
box-and-whisker plots, 95–96
Box-Jenkins methodology, 235–236

ARIMA model, 236
branches (decision trees), 193
Brown Corpus, 267–268
business drivers for analytics, 11
Business Intelligence Analyst, Operationalize phase, 52
Business Intelligence Analyst role, 27
Business User, Operationalize phase, 52
Business User role, 27
buyers of data, 18

C

C4.5 algorithm, 203–204
cable TV providers, 17
candidate rules, 141–142
CART (Classification And Regression Trees), 204
case folding in text analysis, 264–265
categorical algorithms, 205
categorical variables, 170–171
cbind() function, 78
centroids, 120–122

starting positions, 134
character data types, R, 72
charts, 386–387
churn rate (customers), 120

logistic regression, 180–181
class() function, 72
classification

bagging, 228
boosting, 228–229
bootstrap aggregation, 228
decision trees, 192–193

algorithms, 197–200, 203–204
binary decisions, 206
branches, 193
categorical attributes, 205
classification trees, 193
correlated variables, 206
decision stump, 194
evaluating, 204–206
greedy algorithm, 204
internal nodes, 193
irrelevant variables, 205
nodes, 193
numerical attributes, 205

R and, 206–211
redundant variables, 206
regions, 205
regression trees, 193
root, 193
short trees, 194
splits, 193, 194, 197, 200–203
structure, 205
uses, 194

naïve Bayes, 211–212
Bayes' theorem, 212–214
diagnostics, 217–218
naïve Bayes classifier, 214–217
R and, 218–224
smoothing, 217

classification trees, 193
classifiers

accuracy, 225
diagnostics, 224–228
recall, 225

clickstream, 9
clustering, 118

algorithms, 134–135
centroids, 120–122

starting positions, 134
diagnostics, 128–129
k-means, 118–119

algorithm, 120–122
customer segmentation, 120
image processing and, 119
medical uses, 119
reasons to choose, 130–134
rescaling, 133–134
units of measure, 132–133

labels, 127

number of clusters, 123–127
code, technical specifications in project, 376–377
coefficients, linear regression, 169
combiners, 302–303
Communicate Results phase of lifecycle, 30, 49–50
components, short trees as, 194
conditional entropy, 199
conditional probability, 212

naïve Bayes classifier, 215–216
confidence, 141–142

outcome, 172
parameters, 171

confidence interval, 107
confint() function, 171
confusion matrix, 224, 280
contingency tables, 79
continuous variables, discretization, 211
corpora

Brown Corpus, 267–268
corpora in Natural Language Processing, 256
IC (information content), 268–269
sentiment analysis and, 278

correlated variables, 206
credit card companies, 2
CRISP-DM, 28
crowdsourcing, 17
CSV (comma-separated-value) files, 64–65

importing, 64–65
customer segmentation

k-means, 120
logistic regression, 180–181

CVS files, 6
cyclic components of time series analysis, 235

D

data
growth needs, 9–10
sources, 15–16

data() function, 84
data aggregators, 17–18
data analysis, exploratory, 80–82

visualization and, 82–85
Data Analytics Lifecycle

Business Intelligence Analyst role, 27
Business User role, 27
Communicate Results phase, 30, 49–50

GINA case study, 58–59
Data Engineer role, 27–28
Data preparation phase, 29, 36–37

Alpine Miner, 42
data conditioning, 40–41
data visualization, 41–42
Data Wrangler, 42
dataset inventory, 39–40
ETLT, 38–39
GINA case study, 55–56
Hadoop, 42
OpenRefine, 42
sandbox preparation, 37–38
tools, 42

Data Scientist role, 28
DBA (Database Administrator) role, 27
Discovery phase, 29

business domain, 30–31
data source identification, 35–36
framing, 32–33
GINA case study, 54–55
hypothesis development, 35
resources, 31–32
sponsor interview, 33–34

stakeholder identification, 33
GINA case study, 53–60
Model Building phase, 30, 46–48

Alpine Miner, 48
GINA case study, 56–58
Mathematica, 48
Matlab, 48
Octave, 48
PL/R, 48
Python, 48
R, 48
SAS Enterprise Miner, 48
SPSS Modeler, 48
SQL, 48
STATISTICA, 48
WEKA, 48

Model Planning phase, 29–30, 42–44
data exploration, 44–45
GINA case study, 56
model selection, 45
R, 45–46
SAS/ACCESS, 46
SQL Analysis services, 46
variable selection, 44–45

Operationalize phase, 30, 50–53, 360
Business Intelligence Analyst and, 52
Business User and, 52
Data Engineer and, 52
Data Scientist and, 52
DBA (Database Administrator) and, 52
GINA case study, 59–60
Project Manager and, 52
Project Sponsor and, 52

processes, 28
Project Manager role, 27

Project Sponsor role, 27
roles, 26–28

data buyers, 18
data cleansing, 86
data collectors, 17
data conditioning, 40–41
data creation rate, 3
data devices, 17
Data Engineer, Operationalize phase, 52
Data Engineer role, 27–28
data formats, text analysis, 257
data frames, 75–76
data marts, 10
Data preparation phase of lifecycle, 29, 36–37

data conditioning, 40–41
data visualization, 41–42
dataset inventory, 39–40
ETLT, 38–39
sandbox preparation, 37–38

data repositories, 9–11
types, 10–11

Data Savvy Professionals, 20
Data Science versus BI, 12–13
Data Scientists, 28

activities, 20–21
business challenges, 20
characteristics, 21–22
Operationalize phase and, 52
recommendations and, 21
statistical models and, 20–21

data sources
Discovery phase, 35–36
text analysis, 257

data structures, 5–9
quasi-structured data, 6, 7

semi-structured data, 6
structured data, 6
unstructured data, 6

data types in R, 71–72
character, 72
logical, 72
numeric, 72
vectors, 73–74

data users, 18
data visualization, 41–42, 377–378

CSS and, 378
GGobi, 377–378
Gnuplot, 377–378
graphs, 380–386

clean up, 387–392
three-dimensional, 392–393

HTML and, 378
key points with support, 378–379
representation methods, 386–387
SVG and, 378

data warehouses, 11
Data Wrangler, 42
datasets

exporting, R and, 69–71
importing, R and, 69–71
inventory, 39–40

Davenport, Tom, 28
DBA (Database Administrator), 10, 27

Operational phase and, 52
decision trees, 192–193

algorithms, 197–200
C4.5, 203–204
CART, 204
categorical, 205
greedy, 204

ID3, 203
numerical, 205

binary decisions, 206
branches, 193
classification trees, 193
correlated variables, 206
evaluating, 204–206
greedy algorithms, 204
internal nodes, 193
irrelevant variables, 205
nodes

depth, 193
leaf, 193

R and, 206–211
redundant variables, 206
regions, 205
regression trees, 193
root, 193
short trees, 194

decision stump, 194
splits, 193, 197

detecting, 200–203
limiting, 194

structure, 205
uses, 194

Deep Analytical Talent, 19–20
DELTA framework, 28
demand forecasting, linear regression and, 162
density plots, exploratory data analysis, 88–91
dependent variables, 162
descriptive statistics, 79–80
deviance, 183–184
devices, 17

mobile, 16
nontraditional, 16

smart devices, 16
DF (document frequency), 271–272
diagnostic imaging, 16
diagnostics

association rules, 158
classifiers, 224–228
linear regression

linearity assumption, 173
N-fold cross-validation, 177–178
normality assumption, 174–177
residuals, 173–174

logistic regression
deviance, 183–184
histogram of probabilities, 188
log-likelihood test, 184–185
pseudo-R , 183
ROC curve, 185–187

naïve Bayes, 217–218
diff() function, 245
difference in means, 104

confidence interval, 107
student's t-testing, 104–106
Welch's t-test, 106–108

differencing, 241–242
dirty data, 85–87
Discovery phase of lifecycle, 29

data source identification, 35–36
framing, 32–33
hypothesis development, 35
sponsor interview, 33–34
stakeholder identification, 33

discretization of continuous variables, 211
documents, categorization, 274–277
dotchart() function, 88

2

E

Eclipse, 304
ecosystem of Big Data, 16–19

Data Savvy Professionals, 20
Deep Analytical Talent, 19–20
key roles, 19–22
Technology and Data Enablers, 20

EDWs (Enterprise Data Warehouses), 10
effect size, 110
EMC Google search example, 7–9
emoticons, 282
engineering, logistic regression and, 179
ensemble methods, decision trees, 194
error distribution

linear regression model, 165–166
residual standard error, 170

ETLT, 38–39
EXCEPT operator (SQL), 333–3334
exploratory data analysis, 80–82

density plot, 88–91
dirty data, 85–87
histograms, 88–91
multiple variables, 91–92

analysis over time, 99
barplots, 93–94
box-and-whisker plots, 95–96
dotcharts, 93–94
hexbinplots, 96–97

versus presentation, 99–101
scatterplot matrix, 97–99
visualization and, 82–85

single variable, 88–91
exporting datasets in R, 69–71
expressions, regular, 263

F

Facebook, 2, 3–4
factors, 77–78
financial information, logistic regression and, 179
FNR (false negative rate), 225
forecasting

ARIMA (Autoregressive Integrated Moving Average) model, 251–252
linear regression and, 162

FP (false positives), confusion matrix, 224
FPR (false positive rate), 225
framing in Discovery phase, 32–33
functions

aov(), 78
apriori(), 146, 152–157
arima(), 246
array(), 74
barplot(), 88
cbind(), 78
class(), 72
confint(), 171
data(), 84
diff(), 245
dotchart(), 88
gl(), 84
glm(), 183
hclust(), 135
head(), 65
inspect(), 147, 154–155
integer(), 72
IQR(), 80
is.data.frame(), 75
is.na(), 86
is.vector(), 73

jpeg(), 71
kmeans(), 134
kmode(), 134–135
length(), 72
library(), 70
lm(), 66
load.image(), 68–69
matrix.inverse(), 74
mean(), 86
my_range(), 80
na.exclude(), 86
pamk(), 135

Pig, 307–308
plot(), 65, 153–154, 245
predict(), 172
rbind(), 78
read.csv(), 64–65, 75
read.csv2(), 70
read.delim2(), 70
rpart, 207

SQL, 347–351
sqlQuery(), 70
str(), 75
summary(), 65, 66–67, 79, 80–82
t(), 74
ts(), 245
typeof(), 72
wilcox.test(), 109

window functions (SQL), 343–347
write.csv(), 70
write.csv2(), 70
write.table(), 70

G

Generalized Linear Model function, 182
genetic sequencing, 3, 4
genomics, 4, 16
genotyping, 4
GGobi, 377–378
GINA (Global Innovation Network and Analysis), Data Analytics Lifecycle
case study, 53–60
gl() function, 84
glm() function, 183
Gnuplot, 377–378
GPS systems, 16
Graph Search (Facebook), 3–4
graphs, 380–386

clean up, 387–392
three-dimensional, 392–393

greedy algorithms, 204
Green Eggs and Ham, text analysis and, 256
grocery store example of Apriori algorithm, 143

Groceries dataset, 144–146
itemsets, frequent generation, 146–151
rules, generating, 152–157

growth needs of data, 9–10
GUIs (graphical user interfaces), R and, 67–69

H

Hadoop
Data preparation phase, 42
Hadoop Streaming API, 304–305
HBase, 311–312

architecture, 312–317
column family names, 319
column qualifier names, 319
data model, 312–317
Java API and, 319
rows, 319

use cases, 317–319
versioning, 319
Zookeeper, 319

HDFS, 300–301
Hive, 308–311
LinkedIn, 297
Mahout, 319–320
MapReduce, 22

combiners, 302–303
development, 304–305
drivers, 301
execution, 304–305
mappers, 301–302
partitioners, 304
structuring, 301–304

natural language processing, 18
Pig, 306–308
pipes, 305
Watson (IBM), 297
Yahoo!, 297–298
YARN (Yet Another Resource Negotiator), 305

hash-based itemsets, Apriori algorithm and, 158
HAWQ (HAdoop With Query), 321
HBase, 311–312

architecture, 312–317
column family names, 319
column qualifier names, 319
data model, 312–317
Java API and, 319
rows, 319
use cases, 317–319
versioning, 319
Zookeeper, 319

hclust() function, 135
HDFS (Hadoop Distributed File System), 300–301

head() function, 65
hexbinplots, 96–97
histograms

exploratory data analysis, 88–91
logistic regression, 188

Hive, 308–311
HiveQL (Hive Query Language), 308
Hopper, Grace, 299
Hubbard, Doug, 28
HVE (Hadoop Virtualization Extensions), 321
hypotheses

alternative hypothesis, 102–103
Discovery phase, 35
null hypothesis, 102

hypothesis testing, 102–104
two-sided hypothesis testing, 105
type I errors, 109–110
type II errors, 109–110

I

IBM Watson, 297
ID3 algorithm, 203
IDE (Interactive Development Environment), 304
IDF (inverted document frequency), 271–272
importing datasets in R, 69–71
in-database analytics

SQL, 328–338
text analysis, 338–339

independent variables, 162
input variables, 192
inspect() function, 147, 154–155
integer() function, 72
internal nodes (decision trees), 193
Internet of Things, 17–18
INTERSECT operator (SQL), 333

IQR() function, 80
is.data.frame() function, 75
is.na() function, 86
is.vector() function, 73
itemsets, 139

1-itemsets, 147
2-itemsets, 148–149
3-itemsets, 149–150
4-itemsets, 150–151
Apriori algorithm, 139
Apriori property, 139
downward closure property, 139
dynamic counting, Apriori algorithm and, 158
frequent itemset, 139
generation, frequent, 146–151
hash-based, Apriori algorithm and, 158
k-itemset, 139, 140–141

J

joins (SQL), 330–332
jpeg() function, 71

K

k clusters
finding, 120–122
number of, 123–127

k-itemset, 139, 140–141
k-means, 118–119

customer segmentation, 120
image processing and, 119
k clusters

finding, 120–122
number of, 123–127

medical uses, 119
objects, attributes, 130–131

R and, 123–127
reasons to choose, 130–134
rescaling, 133–134
units of measure, 132–133

kmeans() function, 134
kmode() function, 134–135

L

lag, 237
Laplace smoothing, 217
lasso regression, 189
LDA (latent Dirichlet allocation), 274–275
leaf nodes, 192, 193
lemmatization, text analysis and, 258
length() function, 72
leverage, 142
library() function, 70
lifecycle. See also Data Analytics Lifecycle
lift, 142
linear regression, 162

coefficients, 169
diagnostics

linearity assumption, 173
N-fold cross-validation, 177–178
normality assumption, 174–177
residuals, 173–174

model, 163–165
categorical variables, 170–171
normally distributed errors, 165–166
outcome confidence intervals, 172
parameter confidence intervals, 171
prediction interval on outcome, 172
R, 166–170

p-values, 169–170
use cases, 162–163

LinkedIn, 2, 22–23, 297
lists in R, 76–77
lm() function, 66
load.image() function, 68–69
logical data types, R, 72
logistic regression, 178

cautions, 188–189
diagnostics, 181–182

deviance, 183–184
histogram of probabilities, 188
log-likelihood test, 184–185
pseudo-R , 183
ROC curve, 185–187

Generalized Linear Model function, 182
model, 179–181
multinomial, 190
reasons to choose, 188–189
use cases, 179

log-likelihood test, 184–185
loyalty cards, 17

M

MAD (Magnetic/Agile/Deep) skills, 28, 352–356
MADlib, 352–356
Mahout, 319–320
MapReduce, 22, 298–299

combiners, 302–303
development, 304–305
drivers, 301–302
execution, 304–305
mappers, 301–302
partitioners, 304
structuring, 301–304

market basket analysis, 139
association rules, 143

2

marketing, logistic regression and, 179
master nodes, 301
matrices

confusion matrix, 224
R, 74–75
scatterplot matrices, 97–99

matrix.inverse() function, 74
MaxEnt (maximum entropy), 278
McKinsey & Co. definition of Big Data, 3
mean() function, 86
medical information, 16

k-means and, 119
linear regression and, 162
logistic regression and, 179

minimum confidence, 141
missing data, 86
mobile devices, 16
mobile phone companies, 2
Model Building phase of lifecycle, 30, 46–48

Alpine Miner, 48
Mathematica, 48
Matlab, 48
Octave, 48
PL/R, 48
Python, 48
R, 48
SAS Enterprise Miner, 48
SPSS Modeler, 48
SQL, 48
STATISTICA, 48
WEKA, 48

Model Planning phase of lifecycle, 29–30, 42–44
data exploration, 44–45
model selection, 45
R, 45–46

SAS/ACCESS, 46
SQL Analysis services, 46
variables, selecting, 44–45

morphological features in text analysis, 266–267
moving average models, 239–241
MPP (massively parallel processing), 5
MTurk (Mechanical Turk), 282
multinomial logistic regression, 190
multivariate time series analysis, 253
my_range() function, 80

N

na.exclude() function, 86
naïve Bayes, 211–212

Bayes' theorem, 212–214
diagnostics, 217–218
naïve Bayes classifier, 214–217
R and, 218–224
sentiment analysis and, 278
smoothing, 217

natural language processing, 18
N-fold cross-validation, 177–178
NLP (Natural Language Processing), 256
nodes

master, 301
worker, 301

nodes (decision trees), 192
depth, 193
leaf, 193
leaf nodes, 192, 193

nonparametric tests, 108–109
nontraditional devices, 16
normality

ARIMA model, 250–251
linear regression, 174–177

normalization, data conditioning, 40–41
NoSQL, 322–323
null deviance, 183
null hypothesis, 102
numeric data types, R, 72
numerical algorithms, 205
numerical underflow, 216–217

O

objects, k-means, attributes, 130–131
OLAP (online analytical processing), 6

cubes, 10
OpenRefine, 42
Operationalize phase of lifecycle, 30, 50–53, 360

Business Intelligence Analyst and, 52
Business User and, 52
Data Engineer and, 52
Data Scientist and, 52
DBA (Database Administrator) and, 52
Project Manager and, 52
Project Sponsor and, 52

operators, subsetting, 75
outcome

confidence intervals, 172
prediction interval, 172

P

PACF (partial autocorrelation function), 238–239
pamk() function, 135
parameters, confidence intervals, 171
parametric tests, 108–109
parsing, text analysis and, 257
partitioning

Apriori algorithm and, 158
MapReduce, 304

photographs, 16
Pig, 306–308
Pivotal HD Enterprise, 320–321
plot() function, 65, 153–154, 245
POS (part-of-speech) tagging, 258
power of a test, 110
precision in sentiment analysis, 281
predict() function, 172
prediction trees. See decision trees
presentation versus data exploration, 99–101
probability, conditional, 212

naïve Bayes classifier, 215–216
Project Manager, Operationalize phase, 52
Project Manager role, 27
Project Sponsor, Operationalize phase, 52
Project Sponsor role, 27
pseudo-R , 183
p-values, linear regression, 169–170

Q

quasi-structured data, 6, 7
queries, SQL, 329–330

nested, 3334
subqueries, 3334

R

arrays, 74–75
attributes, types, 71–72
data frames, 75–76
data types, 71–72

character, 72
logical, 72
numeric, 72
vectors, 73–74

decision trees, 206–211

2

descriptive statistics, 79–80
exploratory data analysis, 80–82

density plot, 88–91
dirty data, 85–87
histograms, 88–91
multiple variables, 91–99
versus presentation, 99–101
visualization and, 82–85, 88–91

factors, 77–78
functions

aov(), 78
array(), 74
barplot(), 88
cbind(), 78
class(), 72
data(), 84
dotchart(), 88
gl(), 84
head(), 65

import function defaults, 70
integer(), 72
IQR(), 80
is.data.frame(), 75
is.na(), 86
is.vector(), 73
jpeg(), 71
length(), 72
library(), 70
lm(), 66
load.image(), 68–69
my_range(), 80
plot() function, 65
rbind(), 78
read.csv(), 65, 75

read.csv2(), 70
read.delim(), 69
read.delim2(), 70
read.table(), 69
str(), 75
summary(), 65, 66–67, 79
t(), 74
typeof(), 72

visualizing single variable, 88
write.csv(), 70
write.csv2(), 70
write.table(), 70

GUIs, 67–69
import/export, 69–71
k-means analysis, 123–127
linear regression model, 166–170
lists, 76–77
matrices, 74–75
model planning and, 45–46
naïve Bayes and, 218–224
operators, subsetting, 75
overview, 64–67
statistical techniques, 101–102

ANOVA, 110–114
difference in means, 104–108
effect size, 110
hypothesis testing, 102–104
power of test, 110
sample size, 110
type I errors, 109–110
type II errors, 109–110

tables, contingency tables, 79
R commander GUI, 67
random components of time series analysis, 235

Rattle GUI, 67
raw text

collection, 260–263
tokenization, 264

rbind() function, 78
RDBMS, 6
read.csv() function, 64–65, 75
read.csv2() function, 70
read.delim() function, 69
read.delim2() function, 70
read.table() function, 69
real estate, linear regression and, 162
recall in sentiment analysis, 281
redundant variables, 206
regression

lasso, 189
linear, 162

coefficients, 169
diagnostics, 173–178
model, 163–172
p-values, 169–170
use cases, 162–163

logistic, 178
cautions, 188–189
diagnostics, 181–188
model, 179–181
multinomial logistic, 190
reasons to choose, 188–189
use cases, 179

multinomial logistic, 190
ridge, 189
variables

dependent, 162
independent, 162

regression trees, 193

regular expressions, 263, 339–340
relationships, 141
repositories, 9–11

types, 10–11
representation methods, 386–387
rescaling, k-means, 133–134
residual deviance, 183
residual standard error, 170
residuals, linear regression, 173–174
resources, Discovery phase of lifecycle, 31–32
RFID readers, 16
ridge regression, 189
ROC (receiver operating characteristic) curve, 185–187, 225
roots (decision trees), 193
rpart function, 207
RStudio GUI, 67–68
rules

association rules, 138–139
application, 143
candidate rules, 141–142
diagnostics, 158
testing and, 157–158
validation, 157–158

generating, grocery store example (Apriori), 152–157

S

sales, time series analysis and, 234
sample size, 110
sampling, Apriori algorithm and, 158
sandboxes, 10, 11. See also work spaces

Data preparation phase, 37–38
SAS/ACCESS, model planning, 46
scatterplot matrix, 97–99
scatterplots, 81

Anscombe's quartet, 83

multiple variables, 91–92
scientific method, 28
searches, text analysis and, 257
seasonal autoregressive integrated moving average model, 243–244
seasonality components of time series analysis, 235
seismic processing, 16
semi-structured data, 6
SensorNet, 17–18
sentiment analysis in text analysis, 277–283

confusion matrix, 280
precision, 281
recall, 281

shopping
loyalty cards, 17
RFID chips in carts, 17

short trees, 194
smart devices, 16
smartphones, 17
smoothing, 217
social media, 3–4
sources of data, 15–16
spart parts planning, time series analysis and, 234–235
splits (decision trees), 193

detecting, 200–203
sponsor interview, Discovery phase, 33
spreadmarts, 10
spreadsheets, 6, 9, 10
SQL (Structured Query Language), 328–329

aggregates
ordered, 351–352
user-defined, 347–351

EXCEPT operator, 333–3334
functions, user-defined, 347–351
grouping, 334–338
INTERSECT operator, 333

joins, 330–332
MADlib, 352–356
queries, 329–330

nested, 3334
subqueries, 3334

set operations, 332–334
UNION ALL operator, 332–333
window functions, 343–347

SQL Analysis services, model planning and, 46
sqlQuery() function, 70
stakeholders, Discovery phase of lifecycle, 33
stationary time series, 236
statistical techniques, 101–102

ANOVA, 110–114
difference in means, 104

student's t-test, 104–106
Welch's t-test, 106–108

effect size, 110
hypothesis testing, 102–104
power of test, 110
sample size, 110
type I errors, 109–110
type II errors, 109–110
Wilcoxon rank-sum test, 108–109

statistics
Anscombe's quartet, 82–83
descriptive, 79–80

stemming, text analysis and, 258
stock trading, time series analysis and, 235
stop words, 270–271
str() function, 75
structured data, 6
subsetting operators, 75
summary() function, 65, 66–67, 79, 80–82
SVM (support vector machines), 278

T

t() function, 74
tables, contengency tables, 79
Target stores, 22
t-distribution

ANOVA, 110–114
student's t-test, 104–106
Welch's t-test, 106–108

technical specifications in project, 376–377
Technology and Data Enablers, 20
testing, association rules and, 157–158
text analysis, 256

ACME example, 259–263
bag-of-words, 265–266
corpora, 264–265

Brown Corpus, 267–268
corpora in Natural Language Processing, 256
IC (information corpora), 268–269

data formats, 257
data sources, 257
document categorization, 274–277
Green Eggs and Ham, 256
in-database, 338–339
lemmatization, 258
morphological features, 266–267
NLP (Natural Language Processing), 256
parsing, 257
POS (part-of-speech) tagging, 258
raw text, collection, 260–263
search and retrieval, 257
sentiment analysis, 277–283
stemming, 258
stop words, 270–271
text mining, 257–258

TF (term frequency) of words, 265–266
DF, 271–272
IDF, 271–272
lemmatization, 271
stemming, 271
stop words, 270–271
TFIDF, 269–274

tokenization, 264
topic modeling, 267, 274

LDA (latent Dirichlet allocation), 274–275
web scraper, 262–263
word clouds, 284
Zipf's Law, 265–266

text mining, 257
textual data files, 6
TF (term frequency) of words, 265–266

DF (document frequency), 271–272
IDF (inverted document frequency), 271–272
lemmatization, 271
stemming, 271
stop words, 270–271
TFIDF, 269–274

TFIDF (Term Frequency-Inverse Document Frequency), 269–274, 285–
286
time series analysis

ARIMA model, 236
ACF, 236–237
ARMA model, 241–244
autoregressive models, 238–239
building, 244–252
cautions, 252–253
constant variance, 250–251
evaluating, 244–252
fitted models, 249–250
forecasting, 251–252

moving average models, 239–241
normality, 250–251
PACF, 238–239
reasons to choose, 252–253
seasonal autogregressive integrated moving average model, 243–

244
ARMAX (Autoregressive Moving Average with Exogenous inputs), 253
Box-Jenkins methodology, 235–236
cyclic components, 235
differencing, 241–242
fitted models, 249–250
GARCH (Generalized Autoregressive Conditionally Heteroscedastic),

253
Kalman filtering, 253
multivariate time series analysis, 253
random components, 235
seasonal autoregressive integrated moving average model, 243–244
seasonality, 235
spectral analysis, 253
stationary time series, 236
trends, 235
use cases, 234–235
white noise process, 239

tokenization in text analysis, 264
topic modeling in text analysis, 267, 274

LDA (latent Dirichlet allocation), 274–275
TP (true positives), confusion matrix, 224
TPR (true positive rate), 225
transaction data, 6
transaction reduction, Apriori algorithm and, 158
trends, time series analysis, 235
TRP (True Positive Rate), 185–187
ts() function, 245
two-sided hypothesis test, 105
type I errors, 109–110

type II errors, 109–110
typeof() function, 72

U

UNION ALL operator (SQL), 332–333
units of measure, k-means, 132–133
unstructured data, 6

Apache Hadoop, HDFS, 300–301
LinkedIn, 297
MapReduce, 298–299
natural language processing, 18
use cases, 296–298
Watson (IBM), 297
Yahoo!, 297–298

unsupervised techniques. See clustering
users of data, 18

V

validation, association rules and, 157–158
variables

categorical, 170–171
continuous, discretization, 211
correlated, 206
decision trees, 205
dependent, 162
factors, 77–78
independent, 162
input, 192
redundant, 206

VARIMA (Vector ARIMA), 253
vectors, R, 73–74
video footage, 16

k-means and, 119
video surveillance, 16
visualization, 41–42. See also data visualization

exploratory data analysis, 82–85
single variable, 88–91

grocery store example (Apriori), 152–157
volume, variety, velocity. See 3 Vs (volume, variety, velocity)

W

Watson (IBM), 297
web scraper, 262–263
white noise process, 239
Wilcoxan rank-sum test, 108–109
wilcox.test() function, 109
window functions (SQL), 343–347
word clouds, 284
work spaces, 10, 11. See also sandboxes Data preparation phase, 37–38
worker nodes, 301
write.csv() function, 70
write.csv2() function, 70
write.table() function, 70
WSS (Within Sum of Squares), 123–127

X-Z

XML (eXtensible Markup Language), 6
Yahoo!, 297–298
YARN (Yet Another Resource Negotiator), 305
Zipf's Law, 265–266

	Title Page
	Copyright
	Credits
	About the Key Contributors
	Acknowledgments
	Contents
	Foreword
	Introduction
	EMC Academic Alliance
	EMC Proven Professional Certification

	1: Introduction to Big Data Analytics
	1.1 Big Data Overview
	1.2 State of the Practice in Analytics
	1.3 Key Roles for the New Big Data Ecosystem
	1.4 Examples of Big Data Analytics
	Summary
	Exercises
	Bibliography

	2: Data Analytics Lifecycle
	2.1 Data Analytics Lifecycle Overview
	2.2 Phase 1: Discovery
	2.3 Phase 2: Data Preparation
	2.4 Phase 3: Model Planning
	2.5 Phase 4: Model Building
	2.6 Phase 5: Communicate Results
	2.7 Phase 6: Operationalize
	2.8 Case Study: Global Innovation Network and Analysis (GINA)
	Summary
	Exercises
	Bibliography

	3: Review of Basic Data Analytic Methods Using R
	3.1 Introduction to R
	3.2 Exploratory Data Analysis
	3.3 Statistical Methods for Evaluation
	Summary
	Exercises
	Bibliography

	4: Advanced Analytical Theory and Methods: Clustering
	4.1 Overview of Clustering
	4.2 K-means
	4.3 Additional Algorithms
	Summary
	Exercises
	Bibliography

	5: Advanced Analytical Theory and Methods: Association Rules
	5.1 Overview
	5.2 Apriori Algorithm
	5.3 Evaluation of Candidate Rules
	5.4 Applications of Association Rules
	5.5 An Example: Transactions in a Grocery Store
	5.6 Validation and Testing
	5.7 Diagnostics
	Summary
	Exercises
	Bibliography

	6: Advanced Analytical Theory and Methods: Regression
	6.1 Linear Regression
	6.2 Logistic Regression
	6.3 Reasons to Choose and Cautions
	6.4 Additional Regression Models
	Summary
	Exercises

	7: Advanced Analytical Theory and Methods: Classification
	7.1 Decision Trees
	7.2 Naïve Bayes
	7.3 Diagnostics of Classifiers
	7.4 Additional Classification Methods
	Summary
	Exercises
	Bibliography

	8: Advanced Analytical Theory and Methods: Time Series Analysis
	8.1 Overview of Time Series Analysis
	8.2 ARIMA Model
	8.3 Additional Methods
	Summary
	Exercises

	9: Advanced Analytical Theory and Methods: Text Analysis
	9.1 Text Analysis Steps
	9.2 A Text Analysis Example
	9.3 Collecting Raw Text
	9.4 Representing Text
	9.5 Term Frequency—Inverse Document Frequency (TFIDF)
	9.6 Categorizing Documents by Topics
	9.7 Determining Sentiments
	9.8 Gaining Insights
	Summary
	Exercises
	Bibliography

	10: Advanced Analytics— Technology and Tools: MapReduce and Hadoop
	10.1 Analytics for Unstructured Data
	10.2 The Hadoop Ecosystem
	10.3 NoSQL
	Summary
	Exercises
	Bibliography

	11: Advanced Analytics— Technology and Tools: In-Database Analytics
	11.1 SQL Essentials
	11.2 In-Database Text Analysis
	11.3 Advanced SQL
	Summary
	Exercises
	Bibliography

	12: The Endgame, or Putting It All Together
	12.1 Communicating and Operationalizing an Analytics Project
	12.2 Creating the Final Deliverables
	12.3 Data Visualization Basics
	Summary
	Exercises
	References and Further Reading
	Bibliography

	Index

